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impacts onAntarctic climate variability atmultiple timescales.
Anomalous tropical convection triggers upper-level quasi-
stationary Rossby waves, which propagate to high south-
ern latitudes and impact the local environment. Here the
teleconnection between the IndianOceanDipole (IOD) and
Antarcticawas examined using daily gridded reanalysis data
and the Linear Response Theory Method (LRTM) during
September–November of 1980–2015. The individual con-
tribution of the IOD over the Antarctic climate is challeng-
ing to quantify as positive IOD events often co-occur with
El Niño events. However, using the LRTM, the extratropical
response due to a positive IOD was successfully extracted
from the combined signal in the composite map of anoma-
lous 250-hPa geopotential height. Applying the method to
a set ofmodels fromphase 5 and 6 of the CoupledModel In-
tercomparison Project (CMIP5 and CMIP6), significant dif-
ferenceswere observed in the extratropical response to the
IOD among the models due to bias in Rossby waveguide
and IOD precipitation pattern. The LRTMwas then applied
to evaluate the extratropical response of the 850-hPa tem-
perature, wind anomalies, and sea ice concentration anoma-
lies in observation data, and models that adequately rep-
resented both the IOD precipitation and the extratropical
waveguide. The IOD-induced cold southerly flow over the
west of the Ross Sea, the Weddell Sea, and the Antarctic
Peninsula, causing cold surface temperature anomalies and
the increase of sea ice, and warm northerly flow over the
east of the Ross Sea and the Amundsen Sea, causing warm
surface temperature anomalies and the decrease of sea ice.
We recommend the LRTM as a complementary method to
standard analysis of climate variability from observations
and global climate models.

Keywords : Tropical-Antarctic teleconnections, Rossby
waves, IOD, CMIP5, CMIP6, Sea ice.
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1 | INTRODUCTION8

Over recent decades, the Antarctic region has experienced substantial climatic change (Turner et al. 2005; Stokes et al.9

2022) which includes the rise of surface air temperature over West Antarctica and the Antarctic Peninsula (Bromwich10

et al. 2013; Johnson et al. 2022), the increase of ocean heat content and subsurface ocean temperature (Domingues11

et al. 2008; Spence et al. 2014), and rapid reduction in sea ice cover after 2015 (Turner et al. 2017; Parkinson 2019).12

Warm air temperatures cause intense surface melting (Kuipers Munneke et al. 2018; Johnson et al. 2022; Orr et al.13

2023) and the formation of meltwater ponds over the ice shelves during summer (Dell et al. 2020; Banwell et al. 2021).14

The surface melting along with the intrusion of warm water from below (Pritchard et al. 2012) has caused thinning15

of floating ice shelves in recent decades (Paolo et al. 2015), which in turn causes accelerated mass loss from the ice16

sheet, consequently accelerating sea level rise (Pritchard et al. 2012; Rignot et al. 2019). These recent changes are17

attributed to several factors, such as the shift of the Southern Annular Mode (SAM) to a more positive phase driven18

by increased emissions of greenhouse gas and loss of stratospheric ozone (Thompson et al. 2011; Jones et al. 2019),19

and anthropogenic warming (Arblaster and Meehl 2006).20

Tropical-Antarctic teleconnections have also been found to be important for understanding recent climatic changes21

around Antarctica (Yuan et al. 2018; Li et al. 2021; Orr et al. 2023). Tropical Sea Surface Temperature (SST) variability22

modulates the Antarctic climate through Rossby wave dynamics (Li et al. 2021). Deep convection in the tropics pro-23

duces anomalous mid-tropospheric diabetic heating and forms local Hadley circulation, associated with divergence24

at the upper troposphere and anomalous convergence and sinking motion in the subtropics. The upper-level conver-25

gence in the subtropics and the presence of westerlies, especially the subtropical jet, generate an upper-level vorticity26

source known as the Rossby wave source (Sardeshmukh and Hoskins 1988). This wave source excites the wave train,27

which propagates to the southern high latitudes and influences the local climate (Ding and Steig 2013; Simpkins28

et al. 2016). For example, SST anomalies associated with the El Nino-Southern Oscillation (ENSO) have been linked29

to anomalous patterns of sea ice and surface temperature across the Antarctic Peninsula, known as the Antarctic30

Dipole (Yuan and Martinson 2001; Yuan 2004). Recent studies have demonstrated the role of the Interdecadal Pacific31

Oscillation and the South Pacific convergence zone in modulating sea level pressure and surface wind fields around32

Antarctica (Meehl et al. 2016; Clem et al. 2020). Atlantic Multidecadal variability contributes to Antarctic Peninsula33

warming by reducing the surface pressure in the Amundsen Sea (Li et al. 2014; Simpkins et al. 2014). SST anoma-34

lies over the tropical Indian Ocean have also been found to have significantly contributed to sea ice changes around35

Antarctica (Purich and England 2019; Wang et al. 2019; Yu et al. 2022).36

The Indian Ocean Dipole (IOD) (Saji et al. 1999; Webster et al. 1999) is one of the major modes of tropical In-37

dian Ocean SST variability, peaking in September-November (Saji and Yamagata 2003; Zhao and Hendon 2009). The38

positive phase of the IOD is characterized by anomalous cool SSTs over the eastern equatorial Indian Ocean with sup-39

pressed atmospheric convection, lower sea level, and a shallower thermocline, and anomalously warm SSTs over the40

western equatorial Indian Ocean with enhanced atmospheric convection, higher sea level, and a deeper thermocline.41

Recent studies have identified the impact of a positive IOD on Antarctic sea ice variability. Using singular value decom-42

position, Nuncio and Yuan (2015), found that the impact of the IOD is strong in the Indian Ocean sector, west of the43

Ross Sea, and in the central Pacific sector of Antarctica. They noticed wave train forced by IOD generates anomalous44

high and low pressure centres close to the Antarctic sea ice zone. The northward (southward) flow associated with45

those anomalous pressure centres was found responsible for sea ice growth (decay) near 600E (900E) and west of46

the Ross Sea region. Feng et al. 2019, noticed positive and negative geopotential height anomaly centres at 500-hPa,47

close to the sea ice region of Antarctica during the strong positive IOD years due to Rossby wave activity flux. By48

computing the partial correlation coefficients, they noticed sea ice increase (decrease) due to northward (southward)49
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wind anomalies due to IOD. However, positive IOD events mostly co-occur with El Niño events (Annamalai et al. 2005;50

Luo et al. 2010) making it difficult to isolate and quantify the extratropical impact of the IOD itself. Therefore, despite51

considerable progress in understanding the influence of the IOD over the Antarctic climate, a robust quantification52

of IOD response in the Southern Hemisphere is lacking. Moreover, a systematic evaluation of IOD-Antarctic telecon-53

nection in the phase 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6) ensembles is yet to54

be done, and hence the potential impact of the IOD on Antarctica in future climate scenarios is also unknown.55

This paper aims to constrain the extratropical response to the positive IOD using reanalysis datasets and a semi56

empirical Linear Response Theory Method (LRTM). Further, we aim to identify biases and uncertainties in the IOD-57

Antarctic teleconnection in state-of-the-art General Circulation Models (GCMs) in the context of stationary Rossby58

wave theory. The rest of the paper is organized as follows. Section 2 provides the description of datasets andmethods59

used. Tropical forcing due to the IOD and subsequent extratropical linear response over the Southern Hemisphere60

are presented in Section 3. CMIP biases are examined in sections 4 and 5 and CMIP classification is presented in61

section 6. In section 7, the fidelity of the best-performing model’s ensemble in representing the IOD influence on62

low-level temperature and wind fields and sea ice concentration around Antarctica is presented. Finally conclusions63

are drawn in section 8.64

2 | DATA AND METHOD65

The Dipole Mode Index (DMI) (Saji et al. 1999), defined as the difference in SST anomalies between the tropical66

western Indian Ocean (500E - 700E, 100S - 100N) and the tropical eastern Indian Ocean (900E - 1100E, 100S - Equa-67

tor), was used to identify the IOD. A mean September-October-November (SON) DMI value higher than 1 standard68

deviation above the mean was chosen as the threshold to identify positive IOD years.69

The extratropical linear response to a positive IOD event was quantified using the LRTM technique, demonstrated70

by Deb et al. (2020). The LRTM represents the signal S at time t (days) as the weighted sum of the lagged forcing F71

for the last T days. Mathematically it can be written as72

S (t ) =
∫ T

0
G (τ )F (t − τ )dτ+ ∈ , (1)

where G is the Green’s function, which is evaluated by the linear least square regression between signal and lagged73

forcing (Kostov et al. 2017), τ represents lag, and ∈ is the nonlinear residual term. Here, the signal S is the anomalous74

geopotential height at 250-hPa over the SouthernHemispheremidlatitudes, and forcing F is the tropical forcing related75

to positive IOD.76

Using G, the step response is computed at time lag τ j as follows:77

Sst ep (τj ) ≈
j∑

i=0

G (τi )∆τ . (2)

In this study, ∆τ represents the time interval of the data, which is one day. The quasi-stationary step responses are78

averaged over a lag of 30–40 days, with the resulting average response being considered as the extratropical linear79

response to anomalous positive IOD precipitation .80

To identify the propagation path of Rossby waves, total stationary Rossby wavenumber Ks is computed (Hoskins81
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and Ambrizzi 1993; Dawson et al. 2011) by:82

Ks =

√
β − ūy y

ū
, (3)

where β is meridional gradient of planetary vorticity, ūyy is the time mean meridional gradient of relative vorticity, and83

ū is zonal wind climatology.84

Daily geopotential height, temperature, eastward wind (U-wind), northward wind (V-wind), and monthly U-wind85

datasets were taken fromNCEP/DOE reanalysis II (Kanamitsu et al. 2002). The daily sea ice concentration dataset was86

taken from the National Snow and Ice Data Center (NSIDC) version 4, applying the Bootstrap Algorithm (Meier et al.87

2021). Monthly SST data was taken from Hadley Center Sea Ice and Sea Surface Temperature version 1.1 (HadISST88

1.1) (Rayner et al. 2003). The daily precipitation dataset was obtained after linear interpolating the CMAP pentad89

precipitation dataset (Xie and Arkin 1997). While daily gridded precipitation fields are ideal for calculating the LRTM90

forcing, the significant impact on extratropical circulation is expected only from consistent precipitation anomalies,91

resolvable by pentad-mean datasets. To test this hypothesis, we computed the step response due to forcing calcu-92

lated using European Centre for Medium-RangeWeather Forecasts (ECMWF) fifth generation atmospheric reanalysis93

(ERA5) (Hersbach et al. 2020) daily precipitation (Not shown). The resulting step response closely matches our re-94

sult, indicating that the interpolation had negligible impact on the results presented in this study. All datasets were95

examined for the 1980-2015 period.96

Outputs from 19 CMIP5 (Taylor et al. 2012) and 21 CMIP6 (Eyring et al. 2016) historical simulations were consid-97

ered for this study. For each of the CMIP models, only one ensemble member (r1i1p1 for CMIP5 and mostly r1i1p1f198

for CMIP6with the variant f2 for a fewmodels) were used. Daily datasets were used for the variables like precipitation,99

geopotential height, temperature, U and V winds, and sea ice area fraction. Monthly datasets include SST and U-wind.100

CMIP5 datasets were used for the 1980-2005 period and CMIP6 datasets were used for the 1980-2014 period. No101

significant changes in the results were observed when NCEP/DOE Reanalysis II datasets and CMIP6 datasets were102

analyzed for the 1980–2005 period (Not shown).103

A Fourier filteringmethodwas employed to compute daily anomalies. This filtering technique effectively removed104

the annual cycle, which includes the timemean and the first six annual harmonics. Linear detrending was applied to all105

the datasets to remove the effect of longer-term effects such as anthropogenic forcing, leaving interannual variability.106

107

3 | EXTRATROPICAL LINEAR RESPONSE DUE TO POSITIVE IOD108

3.1 | Observations109

Positive IODs are often associated with El Niño events which makes it extremely difficult to isolate the extratropical110

response due to IOD alone. For example, the composite map (Figure 1a) of anomalous precipitation for positive IOD111

SON seasons between 1980 and 2015 shows anomalously positive precipitation over the tropical western Indian112

Ocean and anomalously negative precipitation over the tropical eastern Indian Ocean. This is the IOD signal (Saji et al.113

1999). However, there is also anomalously positive precipitation over the tropical eastern Pacific, and anomalously114

negative precipitation over the tropical western Pacific and Maritime Continent, which is an El Niño signal.115

The substantial anomalous precipitation dipole associated with the IOD is mainly located over the region (500E -116

1000E, 100S - 50N) bounded by the green box in Figure 1a. To prepare the tropical forcing related to positive IOD for117

the LRTM technique, a similarity metric σ(tj) for each time tj was prepared, following Deb et al. (2020). The similarity118
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metric was calculated by computing the inner product between the composite map A of precipitation anomaly and119

the daily map B(tj) of anomalous precipitation, over the region bounded by the green box in Figure 1a.120

σ (tj ) = A.B(tj ) . (4)
Hence, the similarity metric is a daily time series for SON during 1980–2015 with high positive values representing121

higher similarity (in terms of pattern and magnitude) with anomalous positive IOD precipitation pattern. The days122

corresponding to the upper quartile values of the similarity metric were identified, and the composite map for these123

upper quartile days was prepared (Figure 1b). The similarity metric effectively removed most of the El Niño related124

precipitation anomaly from the tropical Pacific, thus successfully isolating the IOD signal.125

The linear step response in the Southern Hemisphere extratropics to the positive IOD was then computed. Using126

Equation 1, the forcing F (t ) was taken to be the time series of the similarity metric σ (t j ) from Equation 4, and the127

signal S (t ) was the 250-hPa geopotential height at any particular grid point. The step response Sst ep (τ ) (Equation 2)128

of the 250-hPa geopotential height was then calculated using the resulting Green’s function, which was then averaged129

over lag 30–40 days to estimate the quasi-stationary response. This process was carried out for 250-hPa geopotential130

height at every grid point, and plotted as a map in Figure 2a. A series of positive and negative anomaly centres are131

located around Antarctica. Starting from the Indian Ocean, the wave train reaches southern Australia, west of Ross132

Sea and closer to Antarctic Peninsula before entering the Atlantic region. The wave train then travels further before133

decaying. The LRTM successfully isolated the individual upper tropospheric response over the extratropics of the134

Southern Hemisphere due to the positive IOD alone, from the combined signal due to the positive IOD plus El Niño135

that is present in the composite map Figure 2b. The extratropical linear Rossby wave pattern in Figure 2a is similar136

to the spatial pattern of partial correlation coefficients between DMI and 500-hPa geopotential height anomalies137

during austral spring, as demonstrated in Feng et al.(2019), independently validating the LRTM methodology. As the138

geopotential height anomaly centres are located close to the Antarctic region, they are likely to play an important role139

in modulating the local weather by anomalous meridional advection of heat and moisture towards and away from the140

Antarctic continent.141

3.2 | CMIP5 Models142

We next employed the LRTM to evaluate the performance of 19 CMIP5 models in capturing the IOD-Antarctic tele-143

connection. For eachmodel, we identified the positive IOD years to prepare the individual tropical forcing. An analysis144

of the results reveals a substantial intermodel spread in the linear extratropical response to the positive IOD, as illus-145

trated in Figure S1. Notably, when compared to the reference Figure 2a, all themodels exhibited biases in representing146

the magnitudes and locations of the anomaly centres. To enable a robust comparison between observed and simu-147

lated IOD responses, the study first identified the observed Rossby wave path originating at 72.50E and 350S, which148

followed the maxima and minima of the anomaly centres of the step response map depicted in Figure 2a. Next, we149

computed the meridionally averaged step response (over a 1000 km meridional distance) at each longitude along this150

path. This allowed us to generate the magnitude along the observed Rossby wave path for the step response map151

from the observation data. To ensure comparability, we remapped the step response map of each CMIP5 model onto152

a regular grid of 2.50 × 2.50, same as the observation grid. Following that, we computed the meridionally averaged153

step response along the same observed Rossby wave path for each CMIP5 model’s step response map.154

The comparison in Figure 3a reveals that, in the subtropical Indian Ocean (centered at 72.50E, 350S), the multi-155

model mean of the step responses is indistinguishable from zero. The observed step response falls outside the multi-156
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model range. A fewmodels (e.g., CMCC-CM, CMCC-CMS, IPSL-CM5A-MR, MIROC5) exhibit an opposite sign for the157

response, deviating from the observed negative anomaly response. Given the considerable inaccuracies displayed by158

the models in capturing the initial location and magnitude of the anomaly centre as the wave train initiates into the159

extratropical region, their capacity to adequately portray the overall response across the extratropics will likely be160

constrained.161

For the positive anomaly response located south of Australia (centered at 1200E, 42.50S), the multi-model mean162

of the step responses exhibits a similar positive sign to observation. However, most models, including the multi-model163

mean, underestimate the magnitude of the anomaly centre. The observed step response lies outside the one standard164

deviation band, suggesting the majority of the models’ inability to simulate the location and magnitude of the centre165

adequately.166

Focusing on the negative anomaly centre located at 177.50W, 550S, the multi-model mean of the step responses167

exhibits a similar negative sign as observation. However, the observed step response lies beyond the collective range168

of models, indicating a consistent underestimation of the centre’s magnitude by all models. A few models (e.g., GFDL-169

ESM2G, HadCM3, MPI-ESM-MR) exhibit an opposite sign for the response, deviating from the observed negative170

anomaly response.171

Subsequently, the prominent positive response observed over the Amundsen Sea (centre located at 112.50W,172

650S) was examined. The multi-model mean of the step responses exhibits a similar positive sign to observation. The173

observed step response falls within the one standard deviation range, signifying that most models effectively capture174

the anomaly centre. However, it’s notable that a substantial number of models underestimate the magnitude of this175

centre. Conversely, a minority of models (e.g., CMCC-CM, HadCM3, MIROC5) exhibit a contrasting response, failing176

to replicate the observed positive anomaly seen over the Amundsen Sea.177

Finally, the pronounced negative response over the Atlantic sector, centered at 300W, 550S, was analyzed. The178

multi-model mean of the step responses exhibits a similar negative sign to observation, albeit close to zero. However,179

the observed step response lies significantly outside the collective range represented by the models. This suggests a180

consistent tendency among all models to underestimate themagnitude of this centre. Specifically, several models (e.g.,181

CNRM-CM5, HadCM3, HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-MR) simulate an opposite sign for the response,182

indicating a discrepancy with the observed negative anomaly.183

3.3 | CMIP6 Models184

The LRTM was then employed to assess the performance of 21 CMIP6 models in capturing the IOD teleconnection.185

For each model, we identified the positive IOD years to prepare the individual tropical forcing. Similar to the CMIP5186

models, a significant variation is observed among the CMIP6 models in their step response to the positive IOD, as187

depicted in Figure S2. The same evaluation technique used to assess the performance of CMIP5 models against188

observation was applied to evaluate the CMIP6models. Figure 3b compares observation and CMIP6models, focusing189

specifically on their capability to accurately represent the magnitude of the linear extratropical response to positive190

IOD.When compared to Figure 3a, the CMIP6models were found to demonstrate similar characteristics to the CMIP5191

models. Minor distinctions are evident for the negative anomaly response over the subtropical Indian Ocean (centered192

at 72.50E, 350S) and positive anomaly response over the south of Australia (centered at 1200E, 42.50S). The multi-193

model mean of the step responses at 72.50E, 350S exhibits an opposite sign compared to the observation. In the case194

of CMIP5models, the observed step response falls outside the one standard deviation range for the anomaly centre at195

1200E, 42.50S. However, for CMIP6models, the observed step response falls within the one standard deviation range.196

Similar to CMIP5, the multi-model mean of CMIP6 models underestimates the magnitude of all anomaly centres. The197
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overall performance of CMIP6 has not improved over CMIP5 in producing the extratropical response to positive IOD.198

Accurate representation of the anomaly centres is crucial for understanding the influence of the IOD on Antarctic199

climate, as these centres play a significant role in modulating local weather patterns. Therefore, it is essential to200

correctly simulate the locations and magnitudes of these anomaly centres. To gain insights into the sources of biases201

exhibited by CMIP models in capturing this teleconnection, a thorough investigation into the dynamics of Rossby202

wave propagation is conducted in the subsequent section.203

4 | STATIONARY ROSSBY WAVE PROPAGATION204

The atmospheric basic state plays a crucial role in modulating the upper tropospheric circulation anomalies (Dawson205

et al. 2011; Deb et al. 2020). Here, the basic state of the CMIP models was evaluated using the stationary Rossby206

wavenumber diagnostic and the results were compared against the observation. Using Equation 3, the stationary207

Rossby wavenumber (Ks) was computed from the time mean zonal wind at 250 hPa. Ks was used as the refractive208

index for Rossby waves, i.e., waves are refracted from lower values of Ks towards higher values. Local maxima in the209

Ks field were identified as Rossby waveguides.210

In the observation (Figure 4a), a local maximum of Ks=4 is identified around 300S - 400S, extending across the211

Atlantic sector, continuing over the Indian and Pacific sectors, and finally returning to the Atlantic sector to complete212

the loop. Similarly, the local maxima of Ks=3 and 2 are evident around 600S, spreading across the different sectors,213

mirroring the pattern observed for Ks=4. During SON, these particular wavenumbers contribute to the formation of214

the waveguide in the extratropics. Within the waveguide, a negative step response initially emerges over the subtrop-215

ical Indian Ocean (with its centre at 72.50E, 350S). Afterward, the wave train propagates following the waveguide and216

reaches the Pacific sector. It is reflected from the lower value of Ks (west of the Antarctic Peninsula) and then refracts217

towards the higher value before decaying.218

Bias in the Rossby waveguide structure changes the propagation path of Rossby waves (Dawson et al. 2011;219

Deb et al. 2020). We found significant bias in the waveguide structure in some of the models (GFDL-ESM2G, GFDL-220

ESM2M, IPSL-CM5A-MR, MIROC5, MIROC-ESM, MPI-ESM-MR, MRI-CGCM3, CNRM-CM6-1-HR, CNRM-ESM2-221

1, IITM-ESM) (as shown in Figure S3-S6). The incorrect representation of the waveguide causes the wave train to222

propagate in a different direction than observation and thus produces erroneous step responses in the models.223

To quantify the CMIP bias in the Rossby waveguide, we remapped the stationary wavenumber map of each CMIP224

model onto a regular grid of 2.50 × 2.50, same as the observation grid. The wave train seen in observation (Figure225

4a) and CMIP models have a zonal wavenumber of approximately 3, which can propagate in the region bounded by226

Ks=3 and 4. So, we computed the bias in the meridional location of Ks=2, 3, and 4 at each longitude. To do so, the227

meridional location at each longitude was noted for a particular wavenumber contour for both the observation and228

model. Then, the model bias in each longitude location was calculated in terms of the number of grids. This was done229

for all three wavenumber contours, and finally, the biases (for all the contours at all the longitudes) were added to230

obtain the total bias, which was then converted to degrees and zonally averaged to obtain average waveguide bias231

per longitude. The method was repeated for all the models, and each model’s bias was noted (Figure 4b) which was232

further used for CMIP classification in section 6. It is to be noted that there are small islands of Ks=2, 3, and 4 within233

the region bounded by Ks=3 and 4 in both observation and models. However, as these islands have insignificant234

influence on the propagation of wave train, they were not included in the calculation of the waveguide bias.235
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5 | BIASES IN TROPICAL PRECIPITATION236

Tropical forcing plays a vital role in tropical-Antarctic teleconnection studies. However, global climate models are237

prone to significant biases in mean surface zonal wind stress and SST (Lyu et al. 2020; McKenna et al. 2020). Both238

CMIP5 and CMIP6 models are known to exhibit double ITCZ bias and hence significant bias in tropical precipitation239

(Fiedler et al. 2020; Tian and Dong 2020). Li et al. (2015) analyzed a set of CMIP5 models and noticed an "IOD-like240

bias" pattern in precipitation over the tropical Indian Ocean. Recently, Long et al. (2020) identified "IOD-like biases"241

worsening from CMIP5 to CMIP6.242

Compositemaps of IODprecipitation anomaly for individualmodels reveal that the negative precipitation anomaly243

region is extended too far westward in some of the models (e.g., CMCC-CM, CMCC-CMS, CNRM-CM5, HadGEM2-244

CC, CESM2-WACCM-FV2, CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1, FGOALS-f3-L, GFDL-ESM4, IITM-245

ESM, IPSL-CM6A-LR, UKESM1-0-LL) (as shown in Figures S7-S10). So, to quantify the bias in IOD precipitation246

pattern, we remapped each of the composite maps of anomalous IOD precipitation of the CMIP model onto a regular247

grid of 2.50 × 2.50, same as the observation grid. Then we calculated the east-west ratio, which is the ratio between248

the number of grid points containing positive anomaly values in the region encompassing 500E - 750E, 100S - 50N,249

and the number of grid points containing negative anomaly values in the region encompassing 750E - 1000E, 100S -250

50N (Figure 5a). The bias in the east-west ratio was computed by subtracting the ratio in the observation from the251

ratio in the model. The bias in east-west ratio represents the bias in the anomalous IOD precipitation pattern. The252

individual CMIP model biases in the IOD precipitation pattern is shown in Figure 5b. By employing this technique, we253

were able to distinguish the models that accurately captured the anomalous IOD precipitation pattern. Additionally,254

it facilitated the classification of models, as elaborated in the subsequent section.255

6 | CMIP MODEL CLASSIFICATION256

The biases present in global climate models have a notable impact on local climate variability and teleconnections257

with remote climate variability (Wang et al. 2014; Wang et al. 2017). Sections 4 and 5 of this study have reported258

significant biases in both CMIP5 and CMIP6 models concerning Rossby waveguides and IOD precipitation patterns.259

These biases may have impacted the IOD teleconnection in the respective models over the Southern Hemisphere. To260

assess the impact of these biases on model performance, the models were classified into four groups based on biases261

in waveguide structure and IOD precipitation pattern. Firstly, CMIP5 models were considered, and their arrangement262

in ascending order of waveguide bias allowed the determination of the median value. Similarly, the median value of263

IOD precipitation bias was determined. Models that exhibited biases lower than the median values in both waveguide264

and precipitation were classified as efficient in capturing these aspects and placed in class-A. A significant number of265

models demonstrated good representation of the extratropical waveguide but poor representation of the IOD precip-266

itation pattern, leading to their placement in class-B. Models that poorly represented the extratropical waveguide but267

adequately represented the IOD precipitation pattern were assigned to class-C. The remaining models were classified268

as class-D. The model classification results are presented in Table 1, showcasing the variations in performance from269

CMIP5 to CMIP6 in capturing the waveguide and IOD precipitation pattern.270

Out of the 19 CMIP5 models, only four models demonstrate efficient representation of both the Rossby waveg-271

uides and IOD precipitation patterns. However, in the case of CMIP6 models, a notable improvement is observed in272

the simulation of waveguides, with only one model falling into class-C (representing poor waveguide representation).273

Nevertheless, more CMIP6 models exhibit poor simulation of the IOD precipitation pattern compared to the CMIP5274
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models. This result aligns with the finding of Long et al. (2020), who reported a deterioration of IOD-like biases from275

CMIP5 to CMIP6.276

Subsequently, we directed our attention towards evaluating the performance of each class in capturing the tele-277

connection associated with the positive IOD. To facilitate comparison with observation, the step response maps of278

each CMIP model were remapped onto a 2.50 × 2.50 regular grid. Furthermore, the multi-model mean of step re-279

sponses was generated for each class, as depicted in Figures S11 and S12. The evaluation technique utilized in sec-280

tion 3 to assess the performance of individual CMIP responses was employed to evaluate the performance of the step281

responses for each class.282

6.1 | CMIP5 classification283

Figure 6 compares observation and different CMIP5 model classes regarding their ability to capture the magnitude of284

the linear extratropical response to positive IOD. The negative anomaly response over the subtropical Indian Ocean285

which is at the beginning of the wave train (centered at 72.50E, 350S) is reasonably captured by all the class-A models.286

In the case of class-Dmodels, while the multi-model mean of the step responses shows similar sign as the observation,287

its magnitude approaches zero. Class-B exhibits zero multi-model mean, while class-C displays a positive mean. It is288

worth noting that all classes underestimate the magnitude of the centre, yet class-A demonstrates superior skill in289

capturing the magnitude of the anomaly centre.290

Shifting our focus to the positive anomaly response to the south of Australia, centered at 1200E, 42.50S, class-A291

stands out in simulating the anomaly centre most accurately, with both individual models and the multi-model mean292

of the step responses closely resembling the observed step response. Other classes manage to capture the centre’s293

sign, albeit underestimating its magnitude. Interestingly, for class-D, the observed step response falls within the band294

of one standard deviation, suggesting better performance compared to classes-B and C in representing the anomaly295

centre.296

Moving on to the negative anomaly response at 177.50W, 550S, the multi-model mean for classes-A, B, and D297

mirror the sign of the observed step response. However, the magnitude is almost zero for classes B and D. In all298

cases, the anomaly centre’s magnitude is underestimated, yet class-A exhibits superior performance in reproducing299

the magnitude of the anomaly centre.300

Examining the positive response over the Amundsen Sea at 112.50W, 650S, the multi-model mean in class-A301

closely matches the observed step response. Conversely, the other classes underestimate the anomaly centre’s mag-302

nitude. Classes-C and D models are found to exhibit opposing signs.303

Lastly, considering the negative anomaly response over the Atlantic sector, centered at 300W, 550S, the multi-304

model mean for classes-A and D displays the same sign as observation. Classes-B and C show zero multi-model mean305

values. Notably, all classes substantially underestimate the magnitude of the anomaly centre.306

6.2 | CMIP6 classification307

Figure 7 shows the performance comparison of various classes of CMIP6 models against observations. Comparing308

against Figure 6, we observe that the multi-model mean of CMIP6 class-A exhibits identical characteristics with the309

multi-model mean of CMIP5 class-A in simulating the magnitude of most of the anomaly centres. However, there are310

some distinct disparities. For example, the multi-model mean of CMIP5 class-A models exhibits a similar sign as the311

observed step response for the anomaly centre at 72.50E, 350S. However, the CMIP6 class-A multi-model mean is312

zero, and some CMIP6 class-A models even show opposite responses. These findings suggest that when it comes313
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to accurately capturing the initial location and magnitude of the anomaly centre at the beginning of the wave train314

into the extratropics, the CMIP5 class-A models perform better compared to the CMIP6 class-A models. For the315

positive anomaly response over the Amundsen Sea (centered at 112.50W, 650S), the multi-model mean of CMIP5316

class-A models closely aligns with the observed step response. In contrast, the CMIP6 class-A multi-model mean317

underestimates this magnitude.318

Similar to CMIP5 class-A, the CMIP6 class-A outperforms the other classes in simulating the overall extratropical319

response to positive IOD. The comparison of multi-model step responses among different classes reveals that reduc-320

ing biases in waveguides and IOD precipitation pattern substantially improves the model’s ability to simulate the IOD321

teleconnection. The application of LRTM proved valuable in identifying CMIP biases related to teleconnection rep-322

resentation. In the subsequent section, we employed LRTM to quantitatively assess the impact of positive IOD on323

surface temperature and wind fields in the vicinity of Antarctica. This analysis was conducted using observational324

data and the CMIP5 and CMIP6 class-A ensembles.325

7 | IMPACT OF IOD ON TEMPERATURE AND WIND FIELDS AND SEA ICE326

CONCENTRATION AROUND ANTARCTICA327

The role of remote atmospheric variability over the surface temperature and wind fields around Antarctica has been328

studied extensively (Deb et al. 2018; Clem et al. 2019; Swetha Chittella et al. 2022; Orr et al. 2023). Recent studies329

have identified the impact of IOD on the Antarctic sea ice (Nuncio and Yuan 2015; Feng et al. 2019). Here we examine330

the role of IOD inmodulating the temperature andwind fields at 850-hPa and sea ice concentration around Antarctica331

using LRTM.332

Figure 8a and b show the linear step response at 850-hPa temperature and wind fields and sea ice concentra-333

tion around Antarctica during SON for positive IOD years between 1980 and 2015, forced by the similarity metric334

computed in section 3. A series of anomalous cyclonic and anticyclonic circulations are noticed around Antarctica.335

The intense cyclonic circulation anomalies over the west Pacific and Atlantic sectors and the anticyclonic circulation336

anomaly over the Amundsen Sea region play a vital role in modulating the temperature anomalies around Antarctica.337

The anomalous cyclonic (anticyclonic) circulations are associated with cold southerly flow away from the Antarctic338

continent on the western (eastern) flank and warm northerly flow towards the Antarctic continent on the eastern339

(western) flank. The cold southerly flow over the Weddell Sea and to the west of the Ross Sea causes two intense340

negative temperature anomaly centres, causing anomalous sea ice increase to the west of the Ross Sea and over341

the Weddell Sea and the Bellingshausen Sea, surrounding the tip of the Antarctic Peninsula. In contrast, the warm342

northerly flow over the Amundsen and Ross Sea sectors causes a strong positive temperature anomaly centre, causing343

sea ice to melt. Our results support the findings of Nuncio and Yuan (2015), where similar anomaly centres around344

Antarctica were observed after partially regressing surface temperatures and wind fields onto the DMI. The anomalies345

were also found to be responsible for sea ice decay or growth. Feng et al. (2019) computed the partial correlation346

between the spring Antarctic sea ice and spring DMI. They noticed the spatial pattern of anomalous sea ice similar to347

our results.348

Appreciating the performance of class-A models from CMIP5 and CMIP6, we evaluated their performance in349

capturing the IOD influence in the surface temperature and wind fields and sea ice concentration around Antarctica350

(Figure 8 (c-f)). Class-A from CMIP5 and CMIP6 simulate a weaker cyclonic circulation anomaly over theWeddell Sea.351

Both the class-A ensembles simulate a cooling effect over the Weddell Sea but with a reduced magnitude compared352

to the observation, causing the weak increase of sea ice. Class-A ensemble of CMIP5 performs better than class-A353
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of CMIP6 in simulating the magnitude of the anticyclonic circulation anomaly over the Amundsen Sea sector and354

the cyclonic circulation anomaly over the west of Ross Sea. This result is consistent with the upper atmospheric355

responses for both the classes, where the class-A ensemble of CMIP5 performs better in capturing the magnitude356

of the anomaly centres compared to CMIP6. Both the class-A ensembles exhibit similar performance in simulating357

the sea ice concentration anomaly over the Amundsen Sea sector. However, only the class-A ensemble of CMIP5358

simulates the positive sea ice concentration anomaly response over the west of Ross Sea, though the magnitude is359

weak compared to the observation.360

8 | DISCUSSION AND CONCLUSIONS361

Using the semi-empirical LRTM (Deb et al. 2020; Senapati et al. 2022), we investigate the IOD-Antarctic telecon-362

nection during SON, 1980-2015. Quantifying the distinct impact of a positive IOD event on the Antarctic climate is363

challenging as positive IOD events mostly co-occur with El Niño. Employing the similarity metric, we could identify364

the days when the ENSO-related precipitation is minimal over the tropical Pacific and thus successfully eliminated365

most of the anomalous precipitation associated with El Niño from the IOD tropical forcing. Consequently, the LRTM366

method effectively isolates and captures the extratropical IOD signal over the Southern Hemisphere, disentangling367

it from the combined signal evident in the composite map. The extratropical response in geopotential height at 250-368

hPa shows a distinct Rossby wave train, characterized by a sequence of alternating high and low-pressure systems369

encircling Antarctica. This wave train originates in the subtropical Indian Ocean and extends its influence into both370

the Pacific and Atlantic sectors.371

In our examination of extratropical responses to IOD forcing across a spectrum of CMIP5 and CMIP6 models, we372

uncover a substantial intermodel spread among these models in their capacity to accurately replicate both the spatial373

pattern and magnitude of this response. To identify the underlying source of this spread, we carried out a compre-374

hensive assessment of the model simulated atmospheric basic state and IOD precipitation. The atmospheric basic375

state and waveguide for Rossby wave propagation were quantified using the stationary Rossby wavenumber diagnos-376

tic (Hoskins and Ambrizzi 1993; Dawson et al. 2011). Our analysis revealed large biases in the Rossby waveguide377

structure simulated by the CMIP models. An adequate representation of the IOD precipitation pattern is also crucial378

for Rossby wave teleconnection. We observed that most models poorly simulate the zonal asymmetric precipitation379

pattern during positive IOD events. This is in line with earlier studies that reported the presence of significant biases380

in the CMIP models in simulating tropical precipitation (Fiedler et al. 2020; Tian and Dong 2020), and ’IOD-like’ biases381

in the atmospheric and oceanic variables over the tropical Indian Ocean (Li et al. 2015; Long et al. 2020). We observed382

significant improvement in the Rossby waveguide from CMIP5 to CMIP6. However, precipitation bias has increased383

from CMIP5 to CMIP6. To identify the relative impact of these biases on IOD-Antarctic teleconnection, the CMIP384

models were classified into four classes based on the biases in waveguide and IOD precipitation pattern.385

The class-A models, i.e., models with adequate representation of the zonal asymmetric IOD precipitation pattern386

and Rossby waveguide, outperform other models in simulating the step responses. For class-B models, adequate387

representation of the waveguide sends Rossby waves in similar directions as observation. Still, their inability to ade-388

quately represent the IOD precipitation pattern hampers their capability to simulate step responses effectively. As for389

Class-C and D models, Rossby waves propagate differently than the observation due to inadequate representation of390

the waveguide. Consequently, these models yield incorrect step responses, even though Class-C models adequately391

represent the IOD precipitation pattern. These findings indicate the relative importance of the realistic representa-392

tion of the atmospheric basic state and, hence, the Rossby waveguide over the IOD precipitation anomalies for better393
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representation of the extratropical IOD responses in CMIP models.394

Finally, we quantify the impact of IOD-teleconnection on Antarctic surface meteorological conditions using the395

LRTM. The IOD response in Antarctica was found to be associated with anomalous northerly (southerly) flow over the396

Amundsen and Ross Sea sector (the Weddell Sea sector and to the west of the Ross Sea). The warm northerly flow is397

associated with a warm temperature anomaly over the Amundsen and Ross Sea sectors. These temperature and wind398

anomalies are consistent with sea ice decrease (increase) over the Ross and Amundsen sea sectors (Bellingshausen and399

Weddell Sea sectors and west of Ross sea sector). The class-A ensemble demonstrates reasonable skill in capturing400

the observed wind, temperature, and sea ice concentration anomalies, even though the magnitude is weak compared401

to the observation. It is important to note that the class-A ensemble of CMIP5 demonstrates superior performance402

compared to the class-A ensemble of CMIP6 in simulating the magnitude of the anomaly centres around Antarctica.403

The decline in skill from CMIP5 to CMIP6 can be attributed to increased thermocline bias and resulting overly strong404

equatorial easterly wind in CMIP6 (Wang et al. 2021). Furthermore, CMIP6 models struggle to simulate the observed405

positive skewness of IOD, which has been identified as an important loss of realism in IOD simulation by McKenna406

et al. (2020).407

Our study highlights the usefulness of LRTM in capturing the IOD impact on the Antarctic climate. Using this408

novel method, we identify critical biases within CMIP models in simulating the IOD-Antarctic teleconnection. We409

systematically identify the impact of inaccuracies in representing tropical forcing associatedwith IODevents, aswell as410

deficiencies inmodeling the SouthernHemisphere basic state. These biases collectively constrain themodels’ capacity411

to accurately quantify the impact of IOD-teleconnection on the Antarctic climate. It is important to highlight that412

employing the conventional partial correlation technique for calculating the extratropical IOD response based on SST413

indices (Feng et al. 2019)might not be appropriate for CMIPmodels due to climatological SST biases across the tropical414

Indian and Pacific oceans (McKenna et al. 2020). Also, partial correlation coefficients only provide the strength of the415

relationship between DMI and geopotential height anomalies, while LRTM quantifies the actual response. However,416

one caveat of the LRTM technique is its inability to capture nonlinear tropospheric and stratospheric processes due417

to its assumption of linearity. We recommend LRTM as a complementary technique along with the standard GCM418

experiments for future tropical-Antarctic teleconnection studies.419

The outcome of this study is crucial against the backdrop of recent changes in Antarctic sea ice. Over the period420

spanning 1979 to 2015, Antarctic sea ice experienced notable growth, followed by a dramatic decline post-2015421

(Stuecker et al. 2017; Meehl et al. 2019; Parkinson 2019). It is worth noting that the majority of the CMIP models422

struggle to accurately simulate the increasing trend (Turner et al. 2013; Shu et al. 2020). The inadequate representation423

of the tropical-Antarctic teleconnection in CMIP models could potentially limit their capacity to accurately depict424

changes in Antarctic sea ice. The frequency of IOD events has shown a marked increase in recent decades, and it is425

expected to increase further, in response to the projected global mean temperature rise (Cai et al. 2018; Sun et al.426

2022). Consequently, the future evolution of Antarctic sea ice in both the Pacific and Atlantic sectors are likely to427

exhibit strong dependence on IOD-Antarctic teleconnection. Utilizing the LRTM approach, a follow-up study has428

been initiated to quantify future contributions of IOD events to surface temperature and sea ice patterns around429

Antarctica, relying on the top-performing CMIP models (classified as class-A) identified in our current study.430
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TABLE 1 CMIP classification
IOD precipitation pattern bias: small IOD precipitation pattern bias: large

Waveguide bias: small

CLass A (CMIP5 (4): ACCESS 1.0,
CanESM2, GFDL-CM3, CMCC-
CESM. CMIP6 (7): ACCESS-CM2,
CanESM5, CESM2, CESM2-FV2,
CESM2-WACCM, MIROC6, MPI-
ESM1-2-HR)

Class B (CMIP5 (6): ACCESS 1.3,
CMCC-CMS, CNRM-CM5, HadGEM2-
CC, HadGEM2-ES, MRI-ESM1. CMIP6
(11): BCC-ESM1, CESM2-WACCM-
FV2, CNRM-CM6-1, FGOALS-f3-L,
GFDL-CM4, GFDL-ESM4, INM-CM5-
0, IPSL-CM6A-LR, MRI-ESM2-0,
NorESM2-LM, UKESM1-0-LL)

Waveguide bias: large
Class C (CMIP5 (6): GFDL-ESM2M,
HadCM3, IPSL-CM5A-MR, MIROC5,
MIROC-ESM, MPI-ESM-MR. CMIP6(1):
IITM-ESM)

Class D (CMIP5 (3): CMCC-CM, GFDL-
ESM2G, MRI-CGCM3. CMIP6 (2):
CNRM-CM6-1-HR, CNRM-ESM2-1.)

F IGURE 1 (a) Composite map of daily precipitation anomaly from CMAP during SON of positive IOD years
between 1980 and 2015. The green box represents the anomalous IOD precipitation dipole region. (b) Composite
map of daily CMAP precipitation anomaly over days when similarity metric values were within the upper quartile.
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F IGURE 2 (a) Step response function for anomalous 250-hPa geopotential height from NCEP-DOE Reanalysis II,
averaged over lag 30-40 days, forced by 1 standard deviation of the similarity metric calculated from daily CMAP
precipitation. The green arrow indicates the Rossby wave propagation path. White markers indicate the maxima of
the positive anomaly centres, and red markers indicate the minima of the negative anomaly centres. (b) Composite
map of anomalous 250-hPa geopotential height from NCEP-DOE Reanalysis II during SON of positive IOD years
between 1980 and 2015.
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F IGURE 3 Step response, averaged over 1000 km meridional distance at each longitude along the observed
Rossby wave propagation path as shown in Figure 2a, for observation (magenta line), CMIP5 models (a), and CMIP6
models (b). The black line represents the multi-model mean from CMIP models, with a band of ±1 standard deviation
given by the dark blue shading and the multi-model range provided by the light blue shaded region. The horizontal
zero line is represented by red color.
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F IGURE 4 (a) Step response function as in Figure 2a and stationary wavenumbers 2, 3 and 4 (black contours)
computed from the time mean zonal wind at 250-hPa from NCEP-DOE Reanalysis II. Regions of easterly winds and
reversed meridional absolute vorticity gradient where Rossby waves cannot propagate are masked. (b) Bar chart of
the waveguide bias for the individual CMIP5 (blue) and CMIP6 (red) models.
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F IGURE 5 (a) Composite map of daily precipitation anomaly from CMAP during SON of positive IOD years
between 1980 and 2015. The green box was used to calculate the east-west ratio. (b) The Bar chart shows the IOD
precipitation pattern bias for the individual CMIP5 (blue) and CMIP6 (red) models.
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F IGURE 6 Step response, averaged over 1000 km meridional distance at each longitude along the observed
Rossby wave propagation path as shown in Figure 2a, for observation (magenta line) and CMIP5 classes. The black
line represents the multi-model mean from each class, with a band of ±1 standard deviation given by the dark blue
shading and the multi-model range provided by the light blue shaded region. The horizontal zero line is represented
by red color.
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F IGURE 7 Same as Figure 6 but for CMIP6 classes. In the case of class-C, the averaged step response is
depicted in black color, and no multi-model range or ±1 standard deviation band is displayed since there is only one
model within the class.
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F IGURE 8 Step response function for anomalous 850-hPa temperature and wind fields (black arrows), and
anomalous sea ice concentration, averaged over lag 30-40 days, forced by 1 standard deviation of the similarity
metric for observation (a, b), and ensemble of class-A models from CMIP5 (c, d) and CMIP6 (e, f). (RS: Ross Sea, AS:
Amundsen Sea, BS: Bellingshausen Sea, WS: Weddell Sea)


