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Abstract. This paper introduces a deep-learning framework augmented with hu-

man guidance for evaluating the risk associated with Transvenous Lead Extrac-

tion (TLE). TLE is one type of minimally invasive cardiac procedures, and it is 

to remove old pacing wires inside the heart. The deep-learning framework auto-

matically extracts geometric features from a single plain chest X-ray image ob-

tained before the procedure. It then utilizes these features in conjunction with 

clinical data to predict the procedural risk. All geometric features were recom-

mended by a senior clinician and include the positions of coils, the number of 

leads inside the superior vena cava and the angle of leads. The proposed frame-

work was trained and tested using a database comprising records from 1,053 pa-

tients who underwent TLE procedures. Notably, the framework was successfully 

trained despite the highly imbalanced nature of the data. An accuracy of 0.91 was 

achieved and the framework can predict 88% of major complication cases. By 

combining geometric features with clinical data, we were able to deliver a signif-

icantly better accuracy and a higher recall rate for detecting high-risks patients, 

when compared with existing approaches. The methodology described in this pa-

per can be applied to the risk assessment for other cardiac procedures. 
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1 Introduction 

Transvenous lead extraction (TLE) is a minimally invasive cardiac procedure per-

formed to remove implanted leads (wires) from the veins and heart. In recent decades, 

there has been widespread adoption of cardiac implantable electronic devices. As a re-

sult, an increasing number of patients may need lead extraction procedures due to var-

ious factors such as infection, lead malfunction, or the need for device upgrades [1]. 

While the success rate of the TLE procedure remains high, it can be complex and may 

result in severe complications, and in some cases, procedure-related death. Clinical 

studies conducted in European centers have reported a 1.7% rate of major complica-

tions including deaths [2]. Therefore, it is essential to assess the risk for each individual 

patient before the TLE procedure. Sidhu et al [3] has proposed an Electra Registry 
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Outcome Score (EROS) to create a risk assessment tool using a limited number of var-

iables and an accuracy of 0.70 was achieved. Recently, Vishal et al [4] has trained three 

machine learning (ML) models and tested them on a ELECTRa database [3]. The best 

performing ML model is the logistic regression (accuracy: 0.74) and followed by the 

self-normalising neural network (0.73) and support vector machine (0.72). The results 

are marginally improvement from EROS. 

We hypothesized that adding geometric features extracted from a plain chest X-ray 

image will further improve the accuracy. Therefore, a new deep-learning framework is 

created to extract geometric features from images and to be trained on two kinds of data 

inputs. One type of data is related to personal health conditions such as whether the 

patient has heart failure, chronic respiratory diseases or infected device as well as how 

long leads has been implanted and more. Those data have been used in previous ML 

models [4]. The other type of data is geometric features extracted from one plain chest 

X-ray image acquired before the procedure. The geometric features were first suggested 

by the senior clinician. Those features are the lead angulations at different locations, 

the coil position related to the superior vena cava (SVC) and the number of overlapping 

leads in the SVC. In this paper, robust computer vision algorithms were designed, 

which are based on deep learning techniques for image segmentation. The computer 

vision algorithms were able to automatically compute the positions of the leads or coils 

inside the X-ray image and derive other geometric information such as angulation. Af-

ter conducting correlation tests between individual geometric features and the outcome 

of major complications, less significant geometric features were removed. Finally, the 

ML model was trained using the remaining geometric features along with data regard-

ing personal health conditions. 

The main contribution of this paper is the methodology for developing a deep learn-

ing framework that combines geometric features with other clinical data to achieve 

higher accuracy in detecting high-risk patients. The proposed approach is not limited 

to the TLE procedure using the chest X-ray image and it could apply to assess the risk 

of other cardiac interventional procedures using X-ray or CT images. 

2 Automatic Object Detection 

2.1 Selecting geometric features 

From the existing literature [5] as well as the experiences from a senior clinician, four 

geometric features from the plain chest X-ray image were selected. As illustrated in 

figure 1, geometric features are the coil (thick wire) position related to the SVC, the 

number of leads in the SVC, the lead angulation near the entry point of the SVC and 

the angulation of the pacing lead in the right ventricle (RV). To determine the approx-

imated location of the SVC inside the chest X-ray image, a generic anatomy model is 

overlaid with the chest X-ray image. From figure 2(a), the location of the SVC (green 

box) is the top left corner of the heart region (red box). The height of the green box is 

approximately half the height of the heart region. The width of the green box is approx-

imately one third of the heart region. The method was verified by overlaying 3D 
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anatomy models (extracted from pre-procedure CT scan) with the chest X-ray image 

(figure 2b). 

 

                

               

Fig. 1. The red box is the bounding box of  the outline of the heart. The green box is the approx-

imated location of the SVC. (a) The yellow lines are the positions of coils. (b) The colorful line 

segmentations inside the green box indicate how many wires are inside the SVC. (c) The angle 

formed by two red line is the lead angulation near the entry point of the SVC. The blue shadow 

represents the overlay of a heart model extracted from the CT images of the same patient. (d) The 

angle formed by two red line is the angulation of the pacing lead in the right ventricle. 

               

Fig. 2. (a) A medically accurate illustration of the anatomy of the heart. The red box is the region 

of the heart and the green box is the location of the SVC. (b) Overlaying 3D anatomy models 

with the X-ray image.  

a b 
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SVC is a major blood vessel inside the heart and it provides an important pathway 

for inserting the pacing leads into the right atrium and other heart chambers. The SVC 

is the most common location requiring surgical repair as the result of a major compli-

cation after the TLE procedure [5]. The common reason for the major complication 

inside SVC is the fibrotic tissue around the lead or the coil [10]. It does more likely 

happen to the coil which has a large surface area. The fibrotic tissue likely causes me-

chanical damages such as tear during the procedure. 

 

2.2 The detection of the approximate location of SVC 

To automatically located the SVC in the X-ray image, the heart region needs to be 

detected.  A transfer learning approach was used to detect the heart region via bounding 

box regression, which is based on a modified VGG16 model. As shown in figure 3, the 

last 3 pre-trained fully-connected layers have been removed and replaced with 4 full-

connected layers (128x1, 64x1, 64x1 and 4x1). The last layer outputs four float values, 

which are the coordinates of two corners positions of the bounding box. The modified 

VGG16 model uses the pre-trained weights (ImageNet) [6] and it was re-trained using 

the manual annotations of the heart region in X-ray images. 

 

Fig. 3. The architecture of the modified VGG16 model. 

Table 1. Results of precisions and recalls. 

IoU Threshold 50% 75% 

Precision 1.0 0.887 

Recall 1.0 1.0 

 

We have a database of 1,053 chest X-ray images from 1,053 patients and images 

were acquired before the TLE procedures. In addition, a public database of chest X-ray 

images [7] are also used and there are 5,863 images. The images from the public data-

base were used solely to train and test the heart region detection method. They cannot 

be used for other detection or geometric feature extraction methods because they do not 

contain any pacing leads or coils. All images were split into two groups. 70% of images 

were used for training, 20% of images were used for validation and 10% of images 

were used for the accuracy testing. The bounding boxes of heart regions were manually 

annotated by a clinical expert. The loss function for the modified VGG16 model is the 

mean squared error (MSE) and the optimizer is adaptive moment estimation (Adam). 

The learning rate was set to 0.001. The accuracy of heart region detection is measured 
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by two metrics: precision and recall. Precision is the ability of a model to identify only 

the relevant objects. Recall is the ability of a model to find all ground truth bounding 

boxes. Both precision and recall were calculated at T(IoU)=0.5 and T(IoU)=0.75. IoU 

is the Intersection Over Union, which measures how well the prediction bounding box 

aligns with the ground truth box. Table 1 presents the result. Examples of IoU and ap-

proximate location of the SVC were presented in figure 4. 

 

Fig. 4. Detecting the heart region. (a)(b) The results of IOU. The green box is the 

ground truth and the red box is the detected bounding box. (c) The green box is the 

bounding box of the SVC and the red box is the bounding box of the heart region. 

 

2.3 The detection of pacing leads and coils 

The next task to determine the position of pacing leads and coils. For the risk assess-

ment, we categorized leads into two types of leads: the normal pacing lead and the 

pacing lead with coils. The normal leads are thin metal wires. On the other hand, the 

pacing lead with coils has one or two segments of coils. Coils have a large surface area 

of electrodes and they often conduct strong currents to depolarize the heart. They can 

be recognized on x-ray images as focal areas of wire thickening. The positions of pacing 

leads and coils in X-ray image need to be automatically localized in order to compute 

the position of coil, the number of normal pacing leads inside the SVC and the lead 

angulation. In order to achieve these tasks, a lightweight multiple-output convolutional 

neural network (MO-Net) based on the UNet-like architecture was proposed. MO-Net 

has two outputs. One is for the segmentation result and the other one is for localizing 

the tip position of the pacing lead inside the RV. The number of trainable parameters is 

14.3M. Comparing to VGG16 (138M), AlexNet (62M) and ResNet-50 (23M), MO-Net 

is a lightweight network. As shown in figure 5, the main body of MO-Net is a UNet-

like architecture, which consists of a downsampling path and an upsampling path. A 

box-regression branch starts at the bottom of UNet. The branch consists of a further 

convolution layer and two Max pooling layers to extract features and reduce the spatial 

dimensionality.  

Both segmentation and box regression pathways share the same downsampling path, 

which consists of a series of convolution layers and Max pooling layers. There are two 

advantages to this approach. The first one is to reduce the computation load to achieve 

fast detection speeds. The convolution layers generate filters to extract features from 

the input image. As the segmentation and box regression targets the same objects, 

a b c 
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similar features such as wire edges and corners will be extracted by convolution layers 

on the downsampling path. It is reasonable to allow the segmentation and box regres-

sion pathways to share a series of convolution layers so that the computation load is 

significantly reduced. The second advantage is to enable transfer learning. The MO-

Net is trained on one type of target objects and it can be re-trained on another type of 

objects using transfer learning. The time of re-training could be significantly shortened 

if pre-trained weights (e.g. ImageNet) are loaded. 

 

Fig. 5. The architecture of MO-Net. 

Manual labeling. The manual labeling of pacing leads and wires in X-ray images is 

very time-consuming and tedious. To speed the process up, vessel enhancement filters 

[8] were used to extract catheters and wires. The resulting image was automatically 

binarized by an adaptive binarization method [9]. Not all wires were labeled in our 

training data. As we are only interested in pacing wires inside the heart, the pacemaker 

and nearby wire segments were also removed as they are not useful for finding geomet-

ric features. Therefore, an experienced clinician manually removed the non-target ob-

jects. Figure 6 presented the process of manual segmentation. 

 

          

Fig. 6. Manual segmentation of pacing leads. (a) The original image. (b) Image after applying 

the vessel enhancement filter. (c) The final result of manual segmentation. 

a b c 



 Contribution Title (shortened if too long) 7 

 

Training and results. The ratio for train-validation-test split is 7:2:1 and it is same as 

the ratio used in the detection of heart region. The loss function for the segmentation 

output is the dice similarity coefficient (DSC). The optimizer is Adam. The MO-Net 

was trained using 737 images. Images with the resolution of 512 × 512 were directly 

input into the network without any down-sampling as the leads might not be visible in 

the low resolution images. The data augmentation technique was used to increase the 

number of training images. The contrast or brightness of the 737 images were reduced 

by a random factor between 0.6 to 0.9 to create additional 1,474 training images. The 

reason for reducing contrast or brightness is to improve the performance of coil detec-

tion for low-contrast or dark X-ray images. The MO-Net model was implemented using 

TensorFlow API and training was carried out using a GPU cluster (GPU: Nvidia RTX 

6000 with 24GB GPU memory). The training process took about 2.5 hours. The trained 

MO-Net was tested on remaining 316 images. An accuracy of 0.76±0.11 was achieved 

for the segmentation of leads and coils and it was measured in DSC against the ground 

truth. Although the MO-Net is not always able to detect the completed length of leads, 

it is sufficient for our next task: extracting geometric features. More importantly, the 

recall of coils is 1.0 and it means that all coils within X-ray images have been success-

fully detected as the coils are high-contrast objects and relatively easy to be detected. 

Secondly, the accuracy of the tip region detection for the pacing lead is measured by 

IoU. An accuracy of 0.82±0.07 was achieved. An example of segmentation results and 

lead tip detection inside the RV are presented in figure 7.  

 
        

Fig. 7. The results of detecting leads and coils. (a)(c) The original image. (b)(d) The segmentation 

results output and lead tip detection output by the MO-Net. (c) The coil is clearly within the 

detected segmentations. 

 

2.4 The detection of coils 

Although the previous segmentation results already include the pacing leads and coils, 

the coils have not been detected as separate objects. Determining the coil's placement 

relative to the SVC is essential for evaluating the risks associated with TLE procedures. 

[10] reported that the fibrotic tissue surrounding the coil is one of leading factors con-

tributing to the mechanical damages such as tear during the procedure. To detect only 

the coil, a standard U-Net model is used and the input image is an image mask, which 

is generated from the previous segmentation results. An image dilation operation with 

the kernel size of 10x10 were applied on the binary images [11], which were the previ-

ous segmentation results for pacing leads and coils. Finally, the dilated binary images 

a b c d 

Coil Coil 
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were applied on the original images to generate the masked images and they were used 

as the input images for the U-Net model.  

To reduce the distraction from the thin lead wires, the input images were down-

sampled to 256x256 before inputting them into the U-Net model. The same data aug-

mentation technique was applied to the training images. The contrast or brightness of 

the 737 images were reduced by a random factor between 0.6 to 0.9 to create additional 

1,474 training images. Therefore, total 2,211 training images were created. The trained 

U-Net was tested on remaining 316 images. An accuracy of 0.87±0.10 was achieved 

for the detection of coils and it was measured in DSC against the ground truth. To 

measure the performance of U-Net with or without data augmentation, key metrics such 

as accuracy, precision, recall and F1-score were calculated and presented in table 2.  A 

true positive detection is defined as at least 75% length of the target coil object was 

detected. A false positive detection is defined as the other wire object was detected as 

the target coil object. An example of coil segmentation is presented in figure 8. 

 

     

Fig. 8. An example of coil detection. (a) The original image. (b) The masked image. (c) The 

segmentation of only coils. 

Table 2. Results of precisions and recalls. 

Data augmentation Accuracy Precision Recall F1 score 

without 0.88 0.89 0.92 0.90 

with 0.98 0.98 0.99 0.98 

3 The Extraction of Geometric Features 

The geometric features are the lead coil position related to the superior vena cava 

(SVC), the lead angulations at different locations and the number of overlapping leads 

in the SVC. 

 

3.1 The determination of the coil position related to the SVC 

To quantify the exact location of the detected coil, the centerline extract method de-

scribed in [9] was used. As illustrated in figure 9a, the binarized image of detected coils 

has been skeletonized so that the centerlines are represented as one-pixel-wide objects. 

Then a contour finding algorithm [12] was used to extract an array of 2D points of the 

a b c 
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centerlines. The 2D points were sorted along the long axis of the bounding box of the 

SVC (the green box in figure 9a). By comparing the array of 2D points and the bound-

ing box of the SVC, we can work out the percentage of the coil inside the SVC. 

3.2 The lead angulations 

There are two lead angulations could contribute to the tissue damage during the TLE 

procedures [13]. As illustrated in figure 9b, one is the angulation (highlighted in red) 

near the entry point of the SVC. The other is the angulation (highlighted in green) 

within the RV. When any of those two angles become acute, it could increase the risk. 

The acute angle is the angle of less than 90 degree.  

 

 
                      (a)                                             (b)                                     (c) 

Fig. 9. (a)The workflow of the determination of the coil position related to the SVC. 

(b) Lead angulations. (c) Find the turning point. 

 

The angulation near the entry point of the SVC. In order to compute the angle, the 

turning point need to be located first. This can be done by computing the local curvature 

estimation. To compute the local curvature efficiently, an approximation method was 

developed. In mathematics, the local curvature is defined as 1/R, where R is the radius 

of an approximation circle which is fitted with the curve. As shown in figure 10, the 

approximation circle touches the curve on the point where the local curvature calcula-

tion is required. Assume that that 𝑃𝑡1 and 𝑃𝑡2 are both on the approximation circle and 

the curve. Therefore, 𝑅 = 0.5𝐶/𝑠𝑖𝑛𝛼. As 𝛼 + 𝛽 = 90°, 𝑠𝑖𝑛𝛼 = cos 𝛽. the equation can 

be rewritten as 𝑅 = 0.5𝐶/𝑐𝑜𝑠𝛽. To compute 𝑐𝑜𝑠𝛽, the dot product of vector V1 and V2 

should be used. The relationship is 𝑐𝑜𝑠2𝛽 = 𝑉1
⃗⃗  ⃗ ∙ 𝑉2

⃗⃗  ⃗ ‖𝑉1
⃗⃗  ⃗‖‖𝑉2

⃗⃗  ⃗‖⁄ = 2𝑐𝑜𝑠2𝛽 − 1. Finally, 

local curvature can be computed as 𝐶𝑢𝑟𝑣 = 1/𝑅 =

√(𝑉1
⃗⃗  ⃗ ∙ 𝑉2

⃗⃗  ⃗ ‖𝑉1
⃗⃗  ⃗‖‖𝑉2

⃗⃗  ⃗‖⁄  + 1) 2⁄ 0.5𝐶⁄ . Finally, the turning point is where the local cur-

vature reaches the maximum level. The angulation was calculated by using two 
vectors (one from each side). Each vector is located where the local curvature 
reaches a local minimum. Figure 9c show an example of the computation of the 
local curvatures and the detected turning point. 
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Fig. 10. Illustration for local curvature approximation. 

 

The definitions of lead angulations. The angulation of the pacing lead in the RV is 

relatively easy to compute, which is defined as the angle between two vectors. One is 

the direction vector for the pacing lead coming out of the SVC and the other one is the 

direction vector for lead tip, which can be computed from the second output from MO-

Net. In order to increase the robustness, the principal component analysis (PCA) was 

performed on the wire data to generate the direction vectors [14]. 

 

The results. The proposed methods for detecting acute angles were tested on all 1,053 

chest X-ray images. The ground truth was the manual labelling of acute angles in two 

positions: the entry point of the SVC and inside the RV. The manual labels were created 

by a clinical expert. In the manual labels, there are 143 images with an acute angle 

inside the RV and only 7 images with an acute angle near the entry point of the SVC. 

To measure the performance of proposed methods, key metrics such as accuracy, pre-

cision, recall and F1-score were calculated and presented in table 3. 

Table 3. Key metrics for the performance of acute-angle detection methods. 

Location Accuracy Precision Recall F1 score 

SVC 0.70 0.83 0.71 0.77 

RV 0.91 0.97 0.92 0.95 

3.3 Detecting the number of leads in the SVC 

As the common reason for the major complication inside the SVC is the fibrotic tissue 

around the lead or the coil, it is also necessary to determine the approximate number of 

leads inside the SVC. A coil or more than two leads detected inside the SVC is consid-

ered as the risk factor for TLE procedures [10]. It is not possible to determine the exact 

number of leads inside the SVC robustly due to leads quite often overlaps each other 

and group together. Therefore, one way of determining the risk factor is whether more 

than two leads inside the SVC or not (the standard pacemaker has only two leads). The 

other way is whether 50% coil is within the SVC. To count the number of leads inside 

the SVC, the lead segmentation from the first output of MO-Net was binarized first and 

the centerlines were localized using the method in [9]. Running a line scanning algo-

rithm within the bounding box of the SVC to count how many leads are inside the SVC. 

The detection method was tested on 809 chest X-ray images, which do not have a coil 

inside the SVC. The ground truth was the binary label for each image. There are 61 

images (out of 809 images) with the binary label set to true by a clinical expert if there 



 Contribution Title (shortened if too long) 11 

 

are more than 2 leads inside the SVC. The performance metrics of accuracy, precision, 

recall and F1-score of the detection method are 0.782, 0.879. 0.836 and 0.857, respec-

tively.  

4 Feature Selection and Machine Learning Model 

4.1 Feature selection 

There are several geometric features suggested by the senior clinician and the values of 

those features generated by the detection algorithms are binary values. Therefore, the 

Jaccard similarity coefficient (JSC) [15] was used to test the correlation between indi-

vidual geometric feature and the binary outcome of procedure complication, as the JSC 

is a statistical measure for correlating the similarity between binary data samples. How-

ever, JSC cannot be directly applied to our highly imbalanced data. In our data, 97.6% 

of sampling data are in the majority class, with only 2.4% of the sampling data in the 

minority class (major complication cases). Therefore, the imbalanced ratio is 40.7:1. 

Highly imbalanced data could distort the results of the correlation tests towards the 

majority class [16]. To balance the test data, Adaptive Synthetic (ADASYN) sampling 

techniques [17] were used. As shown in table 4, the feature of acute angle near the entry 

point of the SVC has the lowest JSC score and the detection method for that feature is 

also not robust (recall is just 0.714). Therefore, it was removed from the feature list. 

Table 4. The results of the JSC tests. 

Geometric Features JSC Score 

50% of coil or >2 leads inside the SVC 0.351 

The acute angle inside the RV 0.029 

The acute angle near the entry point of the SVC 0.005 

 

4.2 Machine learning model for risk assessment 

Once the geometric features were selected, they were combined with personal health 

data to feed into a machine learning model to predict the TLE procedure risk. The per-

sonal health data includes gender, age, history of heart failure, respiratory disease sta-

tus, heart ejection fraction, and other relevant information. The XGBoost classifier [18] 

was chosen to predict the risk of TLE procedures as because it works well with imbal-

ance datasets and binary classifications [19]. There are total 1053 sets of data from 

1,053 TLE clinical cases and the outcome from 25 cases (2.4%) are a major complica-

tion or procedure related death. To balance the data, ADASYN were applied to the data 

and generated additional 1,003 sets of data which was labelled as the cases of a major 

complication or procedure related death. The balanced data were split into two groups. 

70% of data were used for training and 30% of data were used for testing. 

In order to compare the performance of model prediction, the XGBoost classifier 

was trained on the data related to personal health data and geometric features. Geomet-

ric features were detected by our computer vision algorithms. Those datasets were used 
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for training and testing the XGBoost classifier. After the training, the model prediction 

is assessed on the test data only. As shown in table 5, the balanced accuracy of model 

prediction using geometric features has improved substantially, when compared with 

the model prediction without using any of geometric features. Finally, the ranking of 

feature importance was shown in figure 11. 

Table 5. The results of the model prediction. AUC is the area under curve. 

Geometric 

features 

Accuracy Recall 

(major) 

Recall 

(minor) 

F1 score AUC 

Without 0.74 0.82 0.62 0.73 0.77 

with 0.91 0.91 0.88 0.90 0.96 

 

 
Fig. 11. Feature importance. There are two geometric features in the list: “Coil in SVC 

& >2 leads” and “RV acute angle”. 

5 Conclusions 

This paper presents a novel deep-learning framework for predicting the risk of the TLE 

procedures. Robust deep-learning methods were developed to extract geometric fea-

tures from plain chest X-ray images and the selection of geometric features was carried 

out by using the statistical analysis. By combining the geometric features with the per-

sonal health data, we were able to achieve a higher classification accuracy for detecting 

high-risk cases in the TLE procedures. The proposed framework not only has substan-

tially improved the chance to identify the high-risk patients but also reduce the chance 

of falsely identifying low-risk patients as high-risk patients. Our approach only use 

plain chest X-ray images as the additional data source and the chest X-ray images are 

routinely acquired before the TLE procedures. Therefore, our approach does not require 

additional data and will not change current clinical practices for the TLE procedures. 

The results have demonstrated “lead dwell time” and “coil & more than 2 leads in SVC” 

were primary features predicting major complication cases in the XGBoost classifier 

(figure 11). This supports current clinical guidance and suggests clinical judgement re-

mains paramount in appropriate patient risk stratification.  
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Our methodology for feature extraction, feature selection and model building is not 

limited to the risk prediction of the TLE procedures. The same methodology could be 

applied to other high-risk cardiac interventional procedures as well as applied to other 

commonly used medical images such as CT images or X-ray fluoroscopic images. 
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