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a b s t r a c t 

Typically, time-frequency analysis (TFA) of electrophysiological data is aimed at isolating narrowband signals 

(oscillatory activity) from broadband non-oscillatory (1/ f ) activity, so that changes in oscillatory activity result- 

ing from experimental manipulations can be assessed. A widely used method to do this is to convert the data to 

the decibel (dB) scale through baseline division and log transformation. This procedure assumes that, for each 

frequency, sources of power (i.e., oscillations and 1/ f activity) scale by the same factor relative to the baseline 

(multiplicative model). This assumption may be incorrect when signal and noise are independent contributors to 

the power spectrum (additive model). Using resting-state EEG data from 80 participants, we found that the level 

of 1/ f activity and alpha power are not positively correlated within participants, in line with the additive but 

not the multiplicative model. Then, to assess the effects of dB conversion on data that violate the multiplicativity 

assumption, we simulated a mixed design study with one between-subject (noise level, i.e., level of 1/ f activ- 

ity) and one within-subject (signal amplitude, i.e., amplitude of oscillatory activity added onto the background 

1/ f activity) factor. The effect size of the noise level × signal amplitude interaction was examined as a function 

of noise difference between groups, following dB conversion. Findings revealed that dB conversion led to the 

over- or under-estimation of the true interaction effect when groups differing in 1/ f levels were compared, and 

it also led to the emergence of illusory interactions when none were present. This is because signal amplitude 

was systematically underestimated in the noisier compared to the less noisy group. Hence, we recommend test- 

ing whether the level of 1/ f activity differs across groups or conditions and using multiple baseline correction 

strategies to validate results if it does. Such a situation may be particularly common in aging, developmental, or 

clinical studies. 
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. Introduction 

The study of rhythmic patterns of neural activity, or neural oscilla-

ions, has been a central area of interest in neuroscience since their dis-

overy at the dawn of electroencephalography (EEG) research (see e.g.,

uzsáki and Draguhn, 2004 ; Stone and Hughes, 2013 ). Neural oscilla-

ions of various frequencies have been linked to virtually all aspects of

ognition, from perception to memory and attention ( Ba ş ar et al., 2000 ;

uzsáki, 2002 ; Buzsáki and Draguhn, 2004 ; Cavanagh and Frank, 2014 ;

layton et al., 2015 ; Cohen, 2014a ; Gratton, 2018 ; Hanslmayr et al.,

011 ; Lundqvist et al., 2016 ; Mathewson et al., 2011 , 2009 ). Meth-

ds to identify such narrowband oscillations typically involve trans-

orming neural data to the frequency or time-frequency domain, and
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ocating peaks in the frequency spectrum or increases in power lim-

ted to an area of the time-frequency map, respectively ( Cohen, 2014b ;

errmann et al., 2014 ). Importantly, neural data in these domains ex-

ibit a 1/ f -like power spectrum, that is, amplitude – and thus, power –

ecreases as a function of frequency following a power-law function

 He, 2014 ). This prominent feature of the frequency spectrum most

ikely reflects irregular, asynchronous firing of neurons or neuronal as-

emblies with no periodicity, clearly distinguishing it from rhythmic,

scillatory neural activity ( He, 2014 ; He et al., 2010 ; Miller et al., 2009 ,

iller et al., 2014 ). 

While broadband activity resulting from non-oscillatory sources is

ften referred to as 1/ f “noise, ” it is likely to have functional signif-

cance for behavioral performance ( Clements et al., 2021 ; He et al.,

010 ; Miller et al., 2014 ; Ouyang et al., 2020 ). Nevertheless, we will
tes. 
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se the terms “1/ f activity ” and “1/ f noise ” interchangeably through-

ut this manuscript to refer to broadband activity, simply because in

tudies of narrowband oscillatory activity, this feature is not typically

f interest. In fact, in these studies, 1/ f noise needs to be corrected

or in the frequency domain ( Demanuele et al., 2007 ; Donoghue et al.,

020 ; Ouyang et al., 2020 ; Wen and Liu, 2016 ) or the time-frequency

omain ( Cohen, 2014b ; Herrmann et al., 2014 ) because it could other-

ise confound estimates of narrowband power, obscure differences in

scillatory activity between frequency bands, and/or create illusory dif-

erences where none exist. Here, we investigate the potential problems

ntroduced by noise correction strategies based on incorrect assumptions

egarding the relationship between the rhythmic and non-rhythmic com-

onents of the power spectrum. 

As noted above, one way of identifying narrowband phenomena in

he brain is to convert electrophysiological data to the time-frequency

omain, a method that has gained widespread popularity in the past

wo decades ( Cohen, 2014b ). This type of analysis allows us to exam-

ne changes in the frequency composition of the data as a function of

ime, e.g., before or after a stimulus is presented. In studies using this

pproach, one of the most common methods used to correct for the per-

asive 1/ f power scaling is to baseline correct raw power values (ex-

ressed in 𝜇V 

2 ) by dividing each time point by the mean activity in a

typically pre-stimulus) baseline period at each frequency. The result-

ng values are then converted to decibels (dB) by taking their logarithm

ith base 10 and multiplying it by 10 ( Cohen, 2014b ; Herrmann et al.,

014 ). These steps are summarized by the following formula: 

B ( activity ) tf = 10 × log 10 

( 

acti vit 𝑦 tf 

base line acti vit 𝑦 𝑓 

) 

here t denotes the time of the activity, and f denotes a given

requency. The ubiquity of dB conversion as a baseline correc-

ion method is illustrated for instance by the fact that in the

ewtimef() function of the popular EEGLAB toolbox ( Delorme and

akeig, 2004 ), baseline correction through dB conversion is the default

etting ( https://github.com/NBT-Analytics/EEGLABSVN/blob/master/

unctions/timefreqfunc/newtimef.m ). 

As shown above, when dB conversion is applied to time-frequency

ecomposed neural data, the data undergo two non-linear transforma-

ions: first they are divided by a baseline spectrum, then they are con-

erted to a logarithmic scale, operations that are identical to first trans-

orming power to the logarithmic scale and then subtracting the baseline

alues from the resulting matrix. The log-transformation is applied be-

ause power values are strongly positively skewed, and a logarithmic

ransform of the power values yields distributions that are more sym-

etrical and therefore more closely approximate a normal distribution.

hese, in turn, are desirable characteristics for testing hypotheses about

hanges in the expected value of the power as a function of the variables

f interest. 

In the present paper we will argue that the first of these two steps

i.e., division by baseline and log transform) rests on problematic as-

umptions and that both steps may lead to the distortion of the nar-

owband signal that researchers typically aim to isolate, following cor-

ection for 1/ f scaling ( Demanuele et al., 2007 ; Donoghue et al., 2020 ;

uyang et al., 2020 ; Wen and Liu, 2016 ), in large part because they

nvolve non-linear operations. 

Crucially, using a divisive baseline assumes that the relationship be-

ween the power of narrowband oscillations (e.g., a burst of theta os-

illations post-stimulus) and broadband background activity with a 1/ f

lope (ubiquitous neural noise) is multiplicative rather than additive. In

ther words, this procedure implies that narrowband oscillatory activity

ncreases or decreases in power proportionally to the baseline activity

n that frequency range. This may be a reasonable model when base-

ine activity is only reflecting a different level of the same narrowband

ctivity, and the experimental manipulation is expected to change it in

 multiplicative fashion (i.e., by doubling or halving this baseline level

f activity; Delorme and Makeig, 2004 ). In this case, the event-related
2 
hange in a narrowband oscillation in the time-frequency domain will

eflect the product of a task-specific scaling factor and an ongoing os-

illation. However, the assumption of multiplicativity is inappropriate

f the baseline and the experimentally critical levels of activity at any

articular frequency are determined by two separate phenomena that

re not perfectly coupled (i.e., if narrowband oscillations and 1/ f noise

re uncorrelated or at least not strongly positively correlated). In other

ords, unless the baseline period activity and the event-related oscilla-

ory activity reflect different levels of activation of the same underlying

ource, a division by the baseline value (i.e., the multiplicative model)

ill provide inaccurate results. 

This key assumption of divisive baseline correction is challenged

y findings on the nature of 1/ f -like background activity which consis-

ently characterize it as aperiodic or non-oscillatory ( Donoghue et al.,

020 ; He, 2014 ). It is entirely possible that for some frequencies 1/ f ac-

ivity could account for practically all the observed power during the

re-event, baseline period in a task. In such cases, it becomes difficult

o conceptualize how event-related increases in narrowband activity at

hat same frequency could represent a proportional amplification of nar-

owband oscillations ongoing in the baseline period, as no such oscilla-

ions may be present at all, or be so small as to be extremely difficult to

easure. 

The most parsimonious viable alternative to the multiplicative model

s a model where variance associated with independent factors is addi-

ive. This additive model assumes that there is a high degree of indepen-

ence between the changes induced by experimental manipulations on

arrowband and broadband (1/ f ) activity. As the variance of a signal

orresponds to its power, the power of these factors would therefore also

e additive. In terms of neural signal generation, such an additive model

ould assume that oscillatory activity is added on top of pre-existing

ackground activity and is thus largely independent of the level of such

ackground activity ( Grandchamp and Delorme, 2011 ). 

Using empirical data, in the first part of this paper we will inves-

igate whether the level of broadband activity and the magnitude of

arrowband activity in the alpha range (8–12 Hz) scale together during

est, and are therefore strongly positively correlated as predicted by a

ultiplicative model or are instead independent, and therefore largely

ncorrelated, in line with an additive relationship. Foreshadowing our

esults, we find no robust positive relationship within participants be-

ween broadband activity (identified here with the scaling factor of the

/ f noise) and power in the alpha range after detrending the data by sub-

racting the effects of 1/ f activity in the alpha band. As such, dividing by

aseline power in time-frequency analyses may be ill-advised, because

he same signal could appear to be different following baseline correc-

ion depending on the level of noise present at that given frequency due

o independently varying 1/ f activity. 

To illustrate this point, let us consider a simple example where a

arrowband signal of magnitude 2 𝜇V 

2 is added to 5 𝜇V 

2 broadband

oise at frequency f , resulting in observed power of 7 𝜇V 

2 at that fre-

uency. Here, divisive baseline correction would result in a corrected

ffect size of (2 + 5)/5 = 1.4. However, the corrected effect size of this

ame 2 𝜇V 

2 signal in the presence of 8 𝜇V 

2 broadband noise would be

2 + 8)/8 = 1.25. In general, if the background activity is independent

rom the signal of interest, dividing by the baseline will result in an

nderestimation of the effect size as the background activity becomes

arger. 

Building on this observation, in the main part of the present paper,

e demonstrate how distortions in time-frequency data caused by dB

onversion – a baseline correction method that involves division - com-

licate the interpretation of findings when noise and signal are addi-

ive. To this end, we ran a series of simulations, modeling a mixed-

esign with a within-subject factor (Condition 1 vs. Condition 2) and

 between-subject factor (Group 1 vs. Group 2). This type of design

s common in individual difference research, including aging, develop-

ental, and clinical studies. A time-limited narrow-band oscillatory sig-

al was added onto broadband random noise that displayed 1/ f scaling

https://github.com/NBT-Analytics/EEGLABSVN/blob/master/functions/timefreqfunc/newtimef.m
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Fig. 1. Schematic figure illustrating the design of the time-frequency domain 

simulations. Two groups were created on each iteration ( n = 30 each), one with 

a fixed level of 1/ f noise across iterations (level expressed in arbitrary units, see 

Methods section for details), and another with increasingly higher levels of 1/ f 

noise across iterations. The 50 iterations pictured here were run 10 times each. 
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n the frequency domain, in each condition and for each group. To ex-

lore the impact of different amounts of 1/ f noise in different groups on

he results of time-frequency analysis, we increased the level of broad-

and activity in one group by increasing the scaling factor of the 1/ f

unction, 1 across iterations of the simulation, while keeping the 1/ f

caled broadband activity constant in the other group ( Fig. 1 ). As such,

he level of noise was fixed in one group (fixed-noise group), and vari-

ble in another (variable-noise group), changing from iteration to itera-

ion. Three different scenarios were simulated: 1) the difference between

ondition 1 and Condition 2 is the same in both fixed-noise and variable-

oise groups (no Group × Condition interaction); 2) the difference be-

ween Condition 1 and Condition 2 is greater in the fixed-noise group

han in the variable-noise group (Group × Condition interaction, fixed

 variable), and 3) the difference between Condition 1 and Condition

 is smaller in the fixed-noise group, than in the variable-noise group

Group × Condition interaction, fixed < variable). The main objective

as to determine whether the size of the interaction effect changed as

 function of the noise difference between the two groups, i.e., as the

evel of broadband activity increased in the variable-noise group com-

ared to the fixed-noise group, when dB conversion, simple baseline

ubtraction, or no correction were applied to the data. We expected to

ee a greater noise-dependence of the effect size following dB conver-

ion for the reasons outlined above. Specifically, the effect size in the

ariable-noise group is likely to be gradually underestimated as a func-

ion of broadband activity (i.e., as noise increases) potentially leading

o the appearance of fixed > variable interactions even when none are

resent. 

Notably, this design was chosen because the 1/ f property of the

ower spectra of neural data has recently been shown to change with age

 Clements et al., 2021 ; Dave et al., 2018 ; Voytek et al., 2015 ), clinical

iagnosis ( Robertson et al., 2019 ), and behavioral states ( Miller et al.,

014 ; Podvalny et al., 2015 ). These findings make the situation mod-
1 This manipulation alters the offset of the 1/ f curve in log-log space while 

eaving its steepness, i.e., the exponent of the curve, unchanged. Shifting the 

ffset means that power at low frequencies and power at high frequencies 

hange in a correlated manner (both increase or decrease), whereas modu- 

ating steepness introduces anti-correlation between low and high frequency 

ower( Donoghue et al., 2020 ). This difference is of no consequence to our find- 

ngs as we did not investigate cross-frequency effects. 

A  

m  

o  

t  

t  

b  

u  

s  

s  

3 
lled in our paper highly plausible, if not common, in typical analyses

f group differences because our simulated design involves a within-

ubject change (e.g., the difference between one condition that engages

 cognitive process and one that does not, such as the incongruent and

ongruent conditions in a conflict task) compared between two groups

hat differ in broadband activity (e.g., younger and older adults). As

uch our simulated findings are relevant to most electrophysiological

and electromagnetic) studies of individual and group differences, in-

luding those common in aging, developmental and psychopathological

esearch. 

. Methods 

.1. Participants 

To investigate our first research question, related to the additivity of

arrowband and broadband signals (i.e., whether fluctuations in broad-

and activity are correlated with fluctuations in narrowband activity

cross time) we used resting state data from two previous lab projects,

omprising 80 participants (mean age = 40 ± 24, 56.25% females), and

wo age groups (N 1 = 51, 18–31-year-olds and N 2 = 29, 65–83-year-

lds). No participant reported any major health issues, including psy-

hiatric or neurological conditions, and all had normal or corrected-to-

ormal vision and hearing. 

To investigate our second research question (i.e., how dB conversion

istorts time-frequency data when signal and noise are additive) we ran

 series of simulations, described below. 

.2. Procedures 

Broadband-narrowband correlations . EEG and EOG were recorded

rom 64 channels using BrainAmp amplifiers (BrainVision Products

mbH) while participants were instructed to sit without moving, with

heir eyes open for a little over 1 min, then with their eyes closed for a

ittle over 1 min. 

EEG was recorded referenced to the left mastoid, and subsequently

e-referenced to the average of the two mastoids off-line. Sampling

ate was 500 Hz, and impedance was kept below 10k Ω. During pre-

rocessing, data were segmented into epochs of 4096 ms. Ocular arti-

acts were corrected using the method described in Gratton et al. (1983) .

pochs with voltage fluctuations exceeding 200 𝜇V were excluded from

nalyses. Data were subsequently low-pass filtered at 30 Hz using

 Hamming windowed sinc finite impulse response filter as imple-

ented in the pop_eegfiltnew() function of EEGLAB ( Delorme and

akeig, 2004 ). 

The remaining epochs were then subdivided into shorter 1024 ms

egments to increase the number of observations per participant. Then,

or each segment in each condition (eyes open or eyes closed), the offset

f the 1/ f slope and power in the alpha frequency range (8–12 Hz) were

dentified at electrode Pz. To do this, first the fast Fourier transform of

he time-domain data was calculated using the fft() function in MAT-

AB 2019b (The MathWorks, Inc., Natick, Ma, USA). Frequencies below

 Hz and above 25 Hz were discarded from further analysis. For the 1/ f

alculations, frequencies between 4 and 20 Hz were also removed so the

stimation of broadband characteristics would not be contaminated by

arrowband oscillations potentially present in the theta to beta range.

 linear model of the form power = ß0 + ß1 (1/ f ) was fitted to the re-

aining frequencies. In this formalization of 1/ f scaling, the exponent

f the slope (1/ f x ) is assumed to be x = 1, and the ß1 coefficient reflects

he offset (scaling factor) of 1/ f activity. In log-log space, this parame-

er is roughly equivalent to the intercept of the regression line and can

e interpreted as the level of broadband activity on a given trial. We

sed this linear measurement model instead of fitting a model in log-log

pace because log transforming the power spectrum would accentuate

mall fluctuations at high frequencies, which typically have extremely
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2 As the latency of the peak did not vary systematically across conditions or 

groups in our simulations, this approach is likely to give similar results to an 

approach where only one fixed time-frequency window is used across all par- 

ticipants. However, in real data, this latter approach might be suboptimal as 

the latency of an effect could differ across groups or conditions, leading to an 

inaccurate estimate of conditional power. This is why we decided to set up our 

simulations using this flexible peak finding method. 
ow signal-to-noise ratio in surface M/EEG measurements, thereby giv-

ng noise undue weight in the model fitting. Further, high frequencies

above 30 Hz) may be contaminated by EMG artifacts, which may be

ubtle and difficult to recognize and eliminate. The offset measure, on

he other hand, is primarily influenced by low frequencies where values

re less noisy in surface recordings. As such, the offset parameter of each

egment was saved for further analyses. Using the ß0 and ß1 coefficients

enerated by the model, a regression line was fitted to the full spectrum

rom 2 to 25 Hz and subtracted from the data to remove 1/ f activity.

rom this detrended spectrum, the mean power between 8 and 12 Hz

as extracted, this constituted our measure of alpha power. Once this

as been done for all segments in a condition, Kendall’s 𝜏 rank corre-

ation coefficient was calculated between the 1/ f beta weights (offset

alues) and the mean alpha values across segments within a subject, to

xamine the relationship between the level of broadband activity and

he magnitude of narrowband signals. These 𝜏 values were then saved

or each participant. Rank correlation was used as opposed to Pearson

orrelation due to the non-normal distribution of power values. 

We chose to analyze resting state EEG data to ensure that any re-

ationship that emerges between broadband and narrowband activity is

ot due to task-induced changes that affect both components of the spec-

rum separately, possibly creating illusory correlations, which could be

ither positive or negative. Please note that even during rest it cannot

e entirely ruled out that any correlation that emerges between the two

ariables is due to some underlying change that affects both simultane-

usly (e.g., a shift in mental state); however, since no systematic task

as given, the possibility of such a spurious correlation was minimized.

The effects of dB conversion . Simulations were run in MATLAB 2019b

o investigate the effects of dB conversion on time-frequency data at

arious levels of noise. Two groups were simulated (Groups 1 and 2)

oth with 30 participants, and with 200 trials (epochs) for each partici-

ant, 100 each for Condition 1 and Condition 2. The difference between

he two groups and the two conditions is detailed below. The generated

pochs were 4096-ms long and the sampling rate was set to 500 Hz. For

ach epoch, first white noise was generated in the time domain, which

as then converted to the frequency domain using the fft() function in

ATLAB. The resulting amplitude values were then multiplied by the

lope of a curve that was originally fit to the logarithm of the frequen-

ies making up the spectrum. This curve had an intercept of 0 and an

xponent of − 0.5. This exponent value was chosen to make sure that

he slope of the 1/ f function would be approximately 1 when power

amplitude 2 ) values are considered as opposed to amplitude values, as

s typical in the literature. The resulting weighted amplitude spectrum

as then transformed back to the time-domain via the inverse Fourier

ransformation as implemented by the ifft() function in MATLAB. The

evel of noise, i.e., the offset of 1/ f activity, was modulated by multi-

lying this time-domain signal by a value between 3 and 15 with 50

inearly spaced values covering this range. In the fixed-noise group, this

umber was always the lowest number, 3. In the variable-noise group,

he number increased on each iteration of the simulation. Each of these

0 iterations was run 10 times, and results were averaged across runs,

eparately for each noise level ( Fig. 1 ). 

The narrowband signal was simulated by adding a wavelet to the

oise in the time-domain. This wavelet constituted the signal of inter-

st and was created by multiplying a 5-Hz sine wave with a Gaussian

aper equal to the length of the epoch. The center of the wavelet was at

148 ms. Random Gaussian noise was added to the timing, duration,

nd phase of the signal on each trial to simulate random intraindividual

ariability seen in real recordings. Three scenarios were modelled (see

able 1 ), so that the 10 × 50 iterations were run three different times.

n scenario one, the amplitude of the signal was 1 in Condition 1 and

.2 in Condition 2 for both the fixed-noise and the variable-noise group.

n other words, the difference between conditions was the same in both

roups, i.e., there was no Condition × Group interaction. Consequently,

e will refer to this scenario as the no Group × Condition interaction.

n scenario two, amplitudes were 1 and 1.2 for Conditions 1 and 2 re-
4 
pectively in the variable-noise group, but 1 and 1.3 in the fixed-noise

roup (Group × Condition interaction, fixed > variable). Finally, in sce-

ario three, the signal difference was bigger in the variable noise group

1 vs. 1.3) than in the fixed-noise group (1 vs. 1.2; Group × Condition

nteraction, fixed < variable). 

In all three scenarios, on each iteration of the simulation (i.e., at

ach noise level), a time-frequency analysis was conducted on each

imulated subject’s data, separately for the two conditions, following

ethods described in Cohen (2014b) . To do this, epoched data were

ast Fourier transformed and multiplied by the fast Fourier transform of

orlet wavelets of different frequencies. Morlet wavelets are complex

ine waves tapered by a Gaussian, similar to the signal described above.

hirty frequencies were used to create these wavelets, logarithmically

paced between 3 Hz and 30 Hz. The number of wavelet cycles (i.e.,

he width of the Gaussian taper) increased with frequency from 3 to 10

o adjust the balance between temporal and frequency precision across

ifferent frequency bands. Next, the inverse Fourier transforms of the

roduct spectra were computed, and power values were then obtained

rom the resulting complex signals by squaring the length of the complex

ector at each time point ( Cohen, 2014b ). Power values were averaged

cross trials, then the first and last 500 ms of the epochs were removed

o avoid edge artifacts. 

The resulting time-frequency matrix was then processed in two alter-

ative ways: 1) mean activity in the baseline period was subtracted from

ll time points at each frequency (subtraction method); and 2) time-

requency points were converted to dBs by dividing each time point at

ach frequency by the mean activity in the baseline, and then taking

0 × log 10 of the resulting ratios (dB conversion). The baseline period

as defined as the first 500 ms of the epochs after trimming to avoid

dge artifacts. The uncorrected, raw power matrices were also used in

urther analyses. (Please note that baseline correction was done for each

ondition separately; however, this is unlikely to introduce any between-

ondition differences as the baseline period was not modulated system-

tically between conditions.) 

Following this processing, maximum power was identified within a

indow stretching ± 20 ms around the time point set as the center of the

avelet signal, and ± 2 Hz around the central frequency used to create

he signal for the uncorrected and the two corrected matrices in each

ondition. Then, power was averaged within a smaller window stretch-

ng ± 10 ms and ± 1 Hz around the time point and the frequency of the

eak value, respectively, to create the power values used in statistical

nalyses for each subject. 2 We will refer to these analyses as “pseudo-

onfirmatory analyses ” as they model a situation in which the researcher

as a clear hypothesis about the timing and the frequency range of the

ffect. For each iteration of the simulation, the difference between the

ean values for Condition 1 and Condition 2 was calculated for each

articipant in each group. Then the effect of Group (fixed- vs. variable-

oise) on this difference variable was tested using an independent sam-

le t -test. Mean differences and t -values are reported as a function of

oise difference between groups and correction method. 

To model a situation where the hypothetical researcher is more

aïve regarding the characteristics of the effect of interest, “pseudo-

xploratory analyses ” were also run using permutation testing. On every

teration of the simulation, the time-frequency matrix of Condition 1 was

ubtracted from the time-frequency matrix of Condition 2 for each in-

ividual in both groups. Then 1000 permutations were run, randomly

huffling the Group label on each difference matrix, and subsequently

alculating the difference between the mean difference matrix of “Group
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Table 1 

Parameter values used in the simulations investigating the effect of dB conversion on time-frequency decomposed data. 

Parameter Scenario 1 Scenario 2 Scenario 3 

Fixed-noise Variable-noise Fixed-noise Variable-noise Fixed-noise Variable-noise 

Condition 1 0.10 0.10 0.10 0.10 0.10 0.10 

Condition 2 0.14 0.14 0.17 0.14 0.14 0.17 

Note: The values for Conditions 1 and 2 represent the maximum expected power values following the time-frequency decomposition of the signal. These maximum 

values were calculated by running time-frequency analyses on the wavelet signals without any added noise (including 1/ f activity). Fixed-noise = fixed-noise group, 

variable-noise = variable noise group. For the description of Scenarios 1–3 see text. 

Fig. 2. Distribution of Kendall’s 𝜏 values across participants, quantifying the re- 

lationship between within-subject fluctuations of level of 1/ f activity and mag- 

nitude of alpha power in eyes-closed resting state data at electrode Pz. The blue 

dotted line is the mean correlation across participants, the shaded area is the 

95% confidence interval around the mean. The red dashed line indicates 0. 
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 ″ and the mean difference matrix of “Group 2 ″ . The mean and stan-

ard deviation of the resulting 1000 difference-of-differences matrices

as then used to standardize the real Group 1 – Group 2 difference

ap based on the observed data. Any points with an absolute Z -value

maller than 1.6449 - corresponding to an 𝛼 of 0.05 – were set to 0.

 cluster-based correction for multiple comparisons was then used to

dentify significant effects. Each permutated matrix was similarly thresh-

lded, and a null-distribution of cluster sizes was created by identifying

he number of pixels in the largest cluster – i.e., contiguous pixels with

bove-threshold Z -values – in each matrix. Any clusters in the original

hresholded map based on the observed data that were larger than the

5 th percentile of the null distribution were labeled significant; all other

lusters were disregarded. The mean Z -values within these clusters will

e reported for each baseline correction method and at each level of

oise. 

. Results 

Data and code for all analyses can be found at the following URL:

ttps://osf.io/sf8pv/ . 

.1. Broadband-narrowband correlations 

Fig. 2 shows the distribution of Kendall’s 𝜏 values between 1/ f off-

et and detrended alpha power across participants at electrode Pz in the

yes closed condition where alpha power was the highest. 3 The mean
3 The eyes open condition showed identical results, see Fig. S1 . 

t  

s  

5 
umber of data segments across participants was 74.65 ± 14.76. The

ean of the correlation values was overall slightly negative as opposed

o positive as would be predicted by the multiplicative model of signal

eneration. We reasoned that the negative correlation occurs because

he estimated 1/ f slope is likely to vary around the real slope. If ob-

erved power is the sum of 1/ f activity and a narrowband signal in the

lpha range, subtracting an over-/underestimate of the former from the

bserved power will lead to an under-/overestimation of the latter re-

ulting in a negative correlation. 

We ran simulations to test this idea. To create a simulated sample

omparable to our real sample, the mean amplitude spectrum was cal-

ulated for each participant across trials, along with the SD of amplitude

alues at each frequency (SD spectrum). Then, as many epochs were sim-

lated for each participant as the number of actual epochs in their data

et. Each simulated epoch was the summation of 1/ f -scaled noise and a

0 Hz wavelet (both generated the same way as described in the Proce-

ure section for the main simulations). On each 1024-ms long trial, the

agnitudes of noise and signal were modulated by multiplying each in

he time domain by a random number. These weights came from two

ormal distributions (squared to avoid negative values). In the yoked

ondition, the covariance between these two normal distributions was

et to 1, so the noise weights and the signal weights correlated perfectly

cross trials, while in the non-yoked condition, the covariance was 0.

he mean and SD of each normal distribution (4 parameters in total)

as found by searching a parameter space containing 5 possible values

or each parameter, generating 5 4 = 625 parameter combinations in to-

al. For each combination the amplitude and SD spectra of the simulated

ata were calculated, and compared to the amplitude and SD spectra of

he real data. The parameter combination that minimized the difference

etween the real and simulated spectra was chosen for a given partic-

pant (see Supplementry Materials for further details). Then, the same

ethod was used on the selected simulated data set to determine within-

ubject broadband-narrowband correlations as on the real data. When

oise and signal were modulated independently, a small negative corre-

ation emerged just like in the real data ( Fig. S2 ). When noise and signal

ere yoked, making the amplitude of the oscillation dependent on the

evel of background activity, a small positive correlation occurred. As

uch, if noise and signal scaled together in the real data as would be

xpected based on the multiplicative model, we should have observed

 positive correlation. The small negative correlation between narrow-

and (alpha) and broadband (1/ f ) activity we did observe was there-

ore likely artifactual, and consistent with predictions made under the

ypothesis of a true zero correlation between these two types of activi-

ies, but inconsistent with a positive correlation between these activities,

redicted by the multiplicative model. 

In a set of supplementary analyses (see Supplementary Materials ),

e also investigated whether our decision to use a linear measurement

odel to estimate the properties of 1/ f activity affected our findings.

or these analyses, we applied the FOOOF package (version 1.0.0) to

ur trial-level data, which uses a logarithmic model to parameterize 1/ f

ctivity and yields an estimate of the exponent and the offset of the slope

n log-log space ( Donoghue et al., 2020 ). The latter of these two parame-

ers is similar to our offset parameter, while the exponent quantifies the

teepness of the 1/ f slope in log space. We used the output parameter

https://osf.io/sf8pv/
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Fig. 3. One iteration of the simulation. In this example, the variable-noise group has the highest possible level of background activity (i.e., this would be the final, 

50 th iteration of a run). The scenario is Group × Condition interaction (fixed < variable). Only dB correction is shown, but uncorrected and baseline corrected data 

were also analyzed in the time-frequency domain (see text). (A) Trial-averaged data in the time domain across the two groups. (B) 3D plots of uncorrected power in 

the time-frequency domain in each condition and group. (C) dB-corrected power in each condition and group. (D) Condition 2 – Condition 1 difference map in the 

fixed-noise and variable-noise groups, using the dB corrected values from (C). (E) Final interaction map calculated as the difference between the two maps in (D). 
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alues to estimate 1/ f activity on each trial. This estimate was subse-

uently transformed to the linear space and subtracted from the full

pectrum on that particular trial. Alpha power was then estimated from

his difference spectrum in a manner identical to that described above.

o correlation was observed between 1/ f offset and alpha power within

ubjects ( Fig. S3A ), but a small, positive correlation ( < 0.1) did emerge

etween the exponent values (multiplied by − 1 to help interpretability)

nd alpha power ( Fig. S3B ). Importantly, the interpretation of this lat-

er correlation is not straightforward as a change in the exponent leads

o a rotational shift in the spectrum (power increases in some, e.g., low,

requencies but decreases in others, e.g., high frequencies), and the loca-
6 
ion of the “fulcrum ” will vary depending on the offset. Furthermore, the

/ f curves generated based on the FOOOF parameters were not always

 close fit to the data, suggesting that this method may not be optimal

or trial-level analyses in M/EEG recordings (see Supplementary Mate-

ials and Fig. S4 for more details). 

.2. The effects of dB conversion 

Fig. 3 shows the most important steps occurring at each iteration of

he simulation. The example shows data in the fixed-noise group and

he variable-noise group (with the highest possible level of broadband
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Fig. 4. The size of the interaction effect as a function of correction method and noise difference between the two groups. The conditional difference (Condition 2 –

Condition 1) in the variable-noise group is subtracted from the fixed-noise group. Uncorrected and baseline-subtracted values are plotted on the left-hand scale, dB 

corrected values on the right-hand scale. (A) No interaction between group and condition. (B) The conditional difference is bigger in the fixed-noise group than in 

the variable-noise group. (C) The conditional difference is bigger in the variable-noise group than in the fixed-noise group. 

Fig. 5. Pseudo-confirmatory analyses. Mean t -values across iterations as a function of correction method and noise difference between the two groups. The conditional 

difference (Condition 2 – Condition 1) in the variable-noise group is contrasted with the conditional difference in the fixed-noise group using an independent-sample 

t -test. (A) No interaction between group and condition. (B) The conditional difference is bigger in the fixed-noise group than in the variable-noise group. (C) The 

conditional difference is bigger in the variable-noise group than in the fixed-noise group. 
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a  
ctivity) from the time domain through the time-frequency domain to

he final time-frequency map, showing the between-group difference of

he conditional differences, i.e., the Group × Condition interaction map,

n the fixed < variable situation (Scenario 3). 

Figs. 4 - 6 illustrate the mean group difference of condition differ-

nces (interaction effect), mean t -values, and mean Z -values within sig-

ificant clusters, for the three Group × Condition scenarios, respectively

see Table 1 for details), averaged across the 10 runs of the simulation,

s a function of noise level in the variable noise group for each base-

ine correction method. Panels A, B, and C within each figure show the

hree scenarios: A) no Group × Condition interaction; B) Group × Condi-

ion interaction, fixed > variable, and C) Group × Condition interaction,

xed < variable scenario, respectively. 

As can be seen, the narrowband activity estimated using the dB cor-

ection method is generally more sensitive to the level of broadband

ctivity than the subtraction method. This is because baseline division

ttenuates signal magnitude as the level of additive noise increases. This

oise sensitivity is particularly evident in the no interaction and fixed

 variable scenarios (panels A and C across all figures). In the former

cenario, dB conversion led to the emergence of differences that did

ot exist – both the t -tests and permutation testing identified erroneous

ignificant Group × Condition interactions in the fixed > variable direc-

ion, even though the within-subject Condition contrast was equivalent

or the two groups. This is a consequence of the attenuation of signal
7 
agnitude in the variable-noise group as a function of noise. In the

xed < variable scenario, while t - and Z -values decreased as a function

f noise for all correction methods, they were consistently smaller, and

ven flipped sign for dB converted values at higher noise levels ( Fig. 5 C

nd Fig. 6 C ). This suggests that at very high levels of background ac-

ivity, dB conversion can even reverse the direction of the interaction,

s the conditional difference is underestimated in the high noise group

ompared to the lower noise group. This reversal effect is further il-

ustrated in Fig. 3 at the most extreme noise difference level, between

he fixed-noise group and the variable-noise group. As can be seen,

he conditional difference ( Fig. 3 D ) is greater in power and larger in

rea in the fixed-noise (minimal-noise) group compared to the variable-

oise (maximal-noise) group following dB conversion. Consequently, in

he interaction map showing the results of the fixed-minus-variable sub-

raction ( Fig. 3 E ), there is an increase in power in the frequencies and

ime points surrounding the central frequency and central time point

f the simulated effect, corresponding to an illusory fixed > variable in-

eraction effect in the fixed < variable condition. This increase is less

ronounced at the exact location of the effect, where the variable-noise

onditional difference is largest ( Fig. 3 D ), resulting in a truncated cone

hape in Fig. 3 E . 

Finally, findings in the fixed > variable scenario (panel B in Figs. 4 - 6 )

uggest that dB conversion overestimates the difference between means

s a function of noise. This is also reflected in t -values that appear to
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Fig. 6. Pseudo-exploratory analyses. Mean Z -values within the significant pixel-based cluster identified by permutation testing in the final interaction map, averaged 

across iterations, plotted as a function of correction method and noise difference between the two groups. (A) No interaction between group and condition. (B) The 

conditional difference is bigger in the fixed-noise group than in the variable-noise group. (C) The conditional difference is bigger in the variable-noise group than in 

the fixed-noise group. 
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e more stable than those resulting from the other correction methods.

he inflated effect size is once again a reflection of the underestima-

ion of the within-subject contrast in the variable-noise group as noise

ncreases. 4 

. Discussion 

Neural data in the frequency domain contain broadband activity

howing prominent 1/ f scaling, as well as more specific narrowband

ctivity (e.g., alpha oscillations). When the interest is in changes of

arrowband activity, power data from time-frequency decomposition of

/EEG recordings are often converted to dB values by taking their log 10 

ollowing baseline division, mostly to reduce the skewing of the power

istribution, but also with the intent of removing the effects of broad-

and phenomena that are often considered to be noise. As implied by

he baseline division step, this method relies on a multiplicative model

f signal generation, by which frequency-specific narrowband activity

hanges as a function of pre-existing broadband activity. 

In the present study, we first offered empirical evidence that a mul-

iplicative model does not adequately describe the relationship between

ackground activity and signal. Estimated 1/ f offset and alpha power,

alculated following the removal of the 1/ f slope, did not scale to-

ether in resting state data, i.e., they were not positively correlated over

ime within participants. In fact, a small negative relationship was ob-

erved; however, simulations indicated that the slight negative relation-

hip might have been the result of subtracting noisy estimates of 1/ f

rom the observed power spectra. 

Next, using simulated data based on an additive model of signal gen-

ration, we illustrated the pitfalls of dB conversion in situations where

roups or conditions with different broadband activity are contrasted.

arious correction methods were compared, and while they were all sen-

itive to increases in non-oscillatory activity (i.e., noise) to some extent,

his noise-dependence led to unexpected illusory effects for dB conver-
4 Grandchamp & Delorme (2011) suggested using unbiased single-trial base- 

ine correction as opposed to baseline correction of the trial-averaged time- 

requency matrices, for both subtraction- and division-based methods. This in- 

olves first correcting each individual epoch by subtracting from it or dividing 

t by the mean activity of the whole epoch, not just the baseline period. Then, 

hese shifted epochs are averaged, and the resulting averages are corrected again 

n the traditional way (subtraction or dB conversion), using mean activity in the 

aseline period. These methods are also implemented in the online code, but 

ndings are not reported here because they are largely indistinguishable from 

heir trial average-based counterparts. 

t  
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8 
ion, whereas it mostly manifested as an expected decrease in statistical

ower for subtraction-based correction. 

.1. Additivity vs. multiplicativity in signal generation 

Our finding that 1/ f offset and alpha power were not positively cor-

elated during rest suggests that a person’s level of broadband activity

oes not strongly predict the magnitude of their narrowband activity.

his is consistent with, albeit not conclusive proof of, an additive model

f signal generation where narrowband oscillations emerge on a back-

round of random arrhythmic activity, in other words, where signal is

dded to noise. It is, however, inconsistent with a multiplicative model

hat posits that changes in narrowband oscillations are the consequence

f the scaling up or down of oscillations already present in those fre-

uency bands as background activity. This would produce a positive cor-

elation between broadband activity and narrowband activity, as higher

roadband activity would mean more power across frequencies (espe-

ially lower frequencies) which, in turn, would have to result in larger

hanges in any given frequency when multiplied by a scaling factor. 

Interestingly, Muthukumaraswamy & Liley (2018) did observe

trong positive within-subject correlations between properties of 1/ f

lope and alpha power. However, these correlations were based on the

teepness of the 1/ f log-log slope (i.e., the exponent of the 1/ f function,

hich is a different parameter than that used in the current study, in

hich the exponent was instead fixed at 1) in the 20 to 100 Hz range,

nd were not observed when activity at lower frequencies was consid-

red. As such, they are more informative about the relationship between

lpha and 1/ f activity at higher frequencies, which are often ignored in

ime-frequency analysis, and less so about the relationship between level

f baseline activity in the frequency range of the narrowband signals of

nterest (typically delta to beta ranges – 0.5 to 30 Hz - in human M/EEG

tudies, including the current study). In terms of the physiological inter-

retation of the different 1/ f- related parameters, it has been proposed

hat when local field potentials are measured, the offset of 1/ f activity

epresents population spiking, while the steepness of the slope is related

o the temporal structure of spiking. However, it is still unclear if these

nterpretations hold for surface M/EEG ( Voytek and Knight, 2015 ). 

Naturally, our findings do not invalidate the claim that some EEG ef-

ects may reflect the amplification or dampening of specific narrowband

ctivity – or indeed even of broadband phenomena. For instance, in-

reases of event-related theta-power in certain contexts may reflect the

mplification of endogenous oscillations that could be occurring even

n advance of stimulus presentation ( Cohen, 2014a ; Cohen and Don-

er, 2013 ). In this sense, a hybrid model cannot be ruled out, whereby

he frequency spectrum of the baseline, pre-event neural activity is made
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p of 1/ f -scaled background activity that is not rhythmic and weak

arrowband oscillations at different frequencies (additive component).

hen a stimulus occurs, these weak oscillations are scaled up or down

multiplicative model), or their phases reset to a specific value to gen-

rate event-related signals (phase resetting, e.g., Makeig et al., 2002 ;

auseng et al., 2007 ). At the same time, the non-rhythmic background

ctivity may remain unchanged or may also increase or decrease, al-

eit independently from the additive component. This hybrid model,

owever, is not conducive to a simple mathematical analysis approach,

uch as baseline division and log transformation, which, as shown here,

ould introduce substantial distortions into the data. Similarly, it is also

ossible that a complex, nonlinear relationship exists between 1/ f scal-

ng and oscillatory power. However, assessing and mitigating this would

equire further analysis and brand-new methods of component separa-

ion to be devised, both in the frequency and the time-frequency do-

ains. In this sense, an advantage of the additive model is that it is par-

imonious and avoids making as of yet unsupported assumptions about

he relationships between different sources of variance, or power, in the

ata. 

Note that in the current study we have proposed the use of an

dditive approach, in which the first step for real frequency or time-

requency data may be the estimation of broadband (1/ f ) activity based

n frequency bands not of interest for narrowband analyses, followed

y subtraction of the broadband effect from all frequencies, and subse-

uent analysis of the narrowband effect. 5 This stepwise methodology is

onsistent with work conducted in other labs that also attempt to tease

part broadband and narrowband effects, by subtracting an estimate of

he former from the latter ( Ouyang et al., 2020 ; Wen and Liu, 2016 ). 

.2. Decibel conversion in time-frequency analysis 

In our simulations, dB conversion led to noise-dependent distortions

n the data. Specifically, when an additive relationship between the level

f background activity and narrowband signal of interest was simulated,

onversion to dB scale led to the emergence of illusory interactions be-

ween groups, characterized by different broadband activity, and to seri-

us misrepresentations of existing interactions. Figs. 4 - 6 suggest that we

o not have to assume a large difference between two groups in terms of

roadband activity for these distortions to appear. In other words, differ-

nces between the raw, uncorrected effect sizes, statistical parameters,

nd their dB corrected counterparts were already present at low and in-

ermediate levels of noise, not just at the extreme end of the scale. This

uggests that these anomalies could be present in real data, for instance

n aging, developmental, and clinical research when two groups with

ifferent levels of neural variability are compared in terms of a within-

ubject contrast (e.g., pre- and post-intervention performance; low- and

igh-demand conditions; social observation and no social observation

onditions). 

Most worrisome, group-by-condition interactions – significant dif-

erences in the within-subject contrast between groups – emerged when

o actual difference existed between groups in signal magnitude, only

n noise magnitude. As with most observed distortions, this is because

aseline division reduces the signal in the group with the higher noise

evel (here the variable-noise group) compared to the lower noise level

roup (here, the fixed-noise group) resulting in an apparent difference,

hich then undergoes a non-linear transformation when it is converted

o the log scale. Log-transformation accentuates low values, and this

ould potentially compensate for the reduction in signal magnitude to

ome extent; however, our findings clearly suggest that this is not suf-

cient. In practical terms, these distortions could mean that following
5 In our simulations, mean baseline activity in a pre-stimulus window was 

ubtracted from all time-frequency points. This is basically the same as estimat- 

ng 1/ f and then subtracting that, because in our simulated data there was never 

nything else in the baseline period other than 1/ f activity, so the mean baseline 

ctivity as a function of frequency was an estimate of 1/ f activity in and of itself. 

(  

a  

a  

f  

o  

L

9 
B correction of time-frequency data, a researcher could conclude that

wo groups differ in their oscillatory response to an intervention or in

arrowband signal change due to changing task demands, even if they

nly differ in the magnitude of their non-oscillatory 1/ f activity. 

When interactions were present in our simulations, dB conversion

ystematically over- or underestimated the size of the effect as a func-

ion of the noise difference between groups, depending on whether the

ithin-subject contrast was larger in the fixed (low broadband activity)

r variable noise (increasing broadband activity) group, respectively. In

he latter case, the direction of the effect reversed at the most extreme

oise-difference levels. This strongly suggests that dB converted results

an lead to spurious effects and incorrect conclusions. 

Our findings showed that simple baseline subtraction outperformed

B conversion in all scenarios. This is unsurprising given that our data

ere generated through an additive process. Baseline subtraction was

ot impervious to the effect of noise, but this noise-dependence only

anifested in a decrease in statistical power ( t -values tending towards

) as a function of broadband activity difference between groups. This

imply reflects the inverse relationship between signal-to-noise ratio and

ower. No distortions that could have a substantially deleterious effect

n the interpretation of findings (e.g., effect reversals, or illusory effects)

ere observed in the noise range examined. 

.3. Limitations and suggestions for future research 

The present study is not without its limitations. Other artifacts, be-

ides the imprecision of 1/ f slope estimation, could have contaminated

ur results regarding the relationship between the level of background

ctivity and alpha power. We used a fixed frequency interval based

n the canonical alpha frequency band to capture alpha power, but

his method does not take into account potential shifts in the central

requency of alpha within participants, across time ( Donoghue et al.,

020 ). However, unless these within-subject frequency shifts are cor-

elated with changes in 1/ f activity – an empirical question in its own

ight - they are unlikely to systematically distort our findings. There

re also multiple methods proposed in the literature of ensuring that

he estimation of 1/ f slope is not contaminated by narrowband oscilla-

ions in the frequency domain, and vice versa ( Donoghue et al., 2020 ;

uyang et al., 2020 ; Wen and Liu, 2016 ). We elected to simply exclude

anonical frequency bands from our slope estimation, and subtract the

stimated slope from the original spectrum, because this is a computa-

ionally efficient method of separating these two sources of activity. Al-

hough this method is unlikely to lead to perfect separation in all cases,

ur simulated findings regarding the correlation between 1/ f activity

nd narrowband power suggest that this feature would be unlikely to

ask a strong positive correlation that would be predicted by the mul-

iplicative model. A final limitation of our study is that we only consid-

red scenarios where 1/ f noise reflects real neural activity of some sort.

t is, however, possible that 1/ f scaling emerges partly or entirely due

o signal processing artifacts that are robust to common pre-processing

echniques ( Lainscsek et al., 2017 ). 

Even in light of these limitations, based on our simulated findings re-

arding dB conversion, it is clear that the choice of baseline correction

ethod needs to be motivated appropriately in time-frequency anal-

sis studies, and the assumptions behind this decision must be made

xplicit. If one assumes that the relationship between non-oscillatory

roadband activity and oscillatory narrowband activity is additive, a

ubtractive baseline is the appropriate choice, whereas if the assumption

s that a multiplicative relationship exists, baseline division is justified

 Grandchamp and Delorme, 2011 ). Here, we presented some evidence

gainst a multiplicative relationship. Notably, some but not all recent

lgorithms designed to separate 1/ f scaling from oscillatory peaks in the

requency domain involve subtracting the former from the amplitude

r power spectrum, in line with an assumption of additivity ( Wen and

iu, 2016 ; but see Demanuele et al., 2007 ; Donoghue et al., 2020 ). 



M. Gyurkovics, G.M. Clements, K.A. Low et al. NeuroImage 237 (2021) 118192 

 

t  

a  

w  

t  

a  

o  

p  

i  

b  

s  

n  

p  

o

 

f  

s  

d  

s  

g  

a  

2  

fi  

s  

o  

d  

s  

f  

p  

v  

b  

a  

o  

I

5

 

b  

q  

m  

s  

e  

t  

a  

p  

l  

s  

v  

t  

r  

i  

c  

d  

d

6

 

l

A

 

a

S

 

t

R

B  

 

B  

B  

C  

C  

 

C  

 

 

C  

C  

C  

 

D  

 

D  

 

D  

 

D  

 

 

G  

 

G  

 

G  

 

H  

 

H  

H  

 

H  

 

L  

 

L  

 

M  

 

M  

 

M  

 

M  

 

M  

 

When an additive model was assumed, distortions in the data led

o erroneous conclusions regardless of the statistical procedure used to

ssess significance. Pseudo-confirmatory analyses modelled a situation

here researchers have a priori hypotheses about the frequency range,

iming, and duration of the effect, and were based on mean power in

 predefined window, whereas pseudo-exploratory analyses were based

n permutation testing with a cluster-based correction for multiple com-

arisons ( Cohen, 2014b ), modeling a scenario where researchers are

nterested in exploring when and where a significant effect occurs. As

oth of these analyses produced unwanted noise-dependent outcomes, it

eems clear that the concerns created by problematic pre-processing can-

ot be mitigated by the choice of analytic strategy or by having strong a

riori hypotheses, and thereby limiting the focus of analysis to a region

f the time-frequency space. 

As noted above, these findings are likely to be of high importance

or researchers investigating between-group and individual differences,

uch as cross-sectional studies of development, aging, or psychiatric

isorders. Neural variability as captured by characteristics of the 1/ f

lope of the power spectrum is likely to differ between various age

roups ( Clements et al., 2021 ; Dave et al., 2018 ; Voytek et al., 2015 )

nd healthy and clinical populations (e.g., in ADHD; Robertson et al.,

019 ). In such studies, it might be prudent to ensure that unexpected

ndings are not the result of pre-processing based on inappropriate as-

umptions, for example by investigating the correlation between levels

f broadband and narrowband activity or by re-processing data using a

ifferent baseline correction method and reporting both in the Results

ection. This could ensure that the generalizability of results across dif-

erent models can be established. The online scripts associated with this

aper contain code for the implementation of both of these steps. One

iable option is to pre-register these decisions (e.g., what strategies will

e adopted to check the multiplicativity assumption of dB conversion,

nd which baseline correction strategies will be used depending on the

utcome of those checks) prior to analysis to lower the chance of Type

 errors ( Nosek et al., 2019 ). 

. Conclusion 

We presented empirical evidence that the relationship between

roadband activity as captured by the offset of 1/ f scaling in the fre-

uency domain and narrowband alpha power is not consistent with a

ultiplicative model of signal generation, in which noise and signal

cale by the same factor. Then, through a series of simulations, we

xamined the consequences of using dB conversion, a baseline correc-

ion method based on assumptions of multiplicativity, in time-frequency

nalysis of neural data when signal and noise are in fact additive. A sim-

le mixed-design, common in clinical and life span research, was simu-

ated with a between-subject and a within-subject factor. Our findings

howed severe distortions in time-frequency outputs following dB con-

ersion, whereby effects in the high broadband-activity group were sys-

ematically attenuated compared to the low broadband-activity group,

esulting in the illusory emergence of complex effects even if, in real-

ty, there were none. As cognitive neuroscientists, we should exercise

aution when deciding what kind of baseline correction (subtraction or

ivision based) to use in time-frequency data analysis and make this

ecision process explicit in reports. 
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