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1.  INTRODUCTION

The brain constantly exhibits a repertoire of complex 
dynamics related to behavior in health and disease. In the 
electrophysiological power spectrum, brain dynamics are 
expressed in the form of oscillatory/periodic voltage  
fluctuations, emerging against non-oscillatory/aperiodic 
background activity. Despite accounting for a substantial 
portion of the neural signal, the aperiodic component 
has, until recently, received limited attention in cognitive 

neuroscience, often being considered “noise” devoid of 
any functional significance. Recent theoretical and meth-
odological advances, however, have begun to provide 
evidence in support of the functional relevance of the 
aperiodic component in explaining brain dynamics and 
human behavior (Donoghue et  al., 2020; Gyurkovics 
et al., 2022; Voytek et al., 2015; Waschke et al., 2021). A 
significant breakthrough in this research is the observa-
tion of a reduction in the slope of the aperiodic activity 
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(i.e., a flatter spectrum) in older adults, consistent with the 
idea of increasing neural noise in aging (Cremer & Zeef, 
1987; Salthouse, 2010; Salthouse & Lichty, 1985; Voytek 
& Knight, 2015), and suggesting an age-related shift in the 
balance between excitation and inhibition (E:I balance, 
Gao et al., 2017). In this article, we underscore the rich 
exogenous (i.e., triggered by experimental manipulations) 
and endogenous (i.e., age-related) features of scalp-
recorded aperiodic neural activity and show, for the first 
time, evidence for its dynamic alternations over time. Cru-
cially, these dynamics differ between younger and older 
adults and correlate with behavioral performance.

Aperiodic neural activity (also called 1/f noise) is char-
acterized by a progressive decrease in power across 
increasing frequencies, which follows a 1/fx function in 
linear space, where f denotes frequency, and x is a spec-
tral exponent that can be estimated from the slope 
(steepness) of the power decay. Because the aperiodic 
component follows an inverse power function, its param-
eters (exponent and offset) are best characterized by 
using log-log power spectra, where they can be esti-
mated from the negative slope and the intercept of the 
background spectrum (once periodic components are 
subtracted), following the equation of log(1/fx) = -x*log(f). 
Therefore, a more negative, steeper slope (corresponding 
to a more positive exponent) indicates increased power 
at low frequencies relative to high frequencies, while a 
less negative, flatter slope (corresponding to a less posi-
tive exponent) indicates a relative reduction in power at 
low frequencies compared to high frequencies. These 
slope changes can also be described as rotations of the 
log-log power spectrum that are either clockwise (more 
negative value, steeper spectrum) or counterclockwise 
(less negative value, flatter spectrum).

Recent in silico modeling, supported by in vivo exper-
iments (Ahmad et  al., 2022; Cohen & Maunsell, 2011; 
Gao et al., 2017; Harris & Thiele, 2011; Kanashiro et al., 
2017) has shown that the spectral slope can provide 
information about the balance between excitatory and 
inhibitory synaptic circuits (E:I balance), with steeper or 
flatter slopes reflecting increased inhibition or excitation, 
respectively. The spectral slope can also be interpreted 
as an index of the degree of synchronization of neural 
networks during their firing. This suggests that a flatter 
slope (i.e., relatively greater power at high frequencies) 
reflects more asynchronous (i.e., noisier) neural commu-
nication (Chini et al., 2022; B. J. He, 2014; W. He et al., 
2019; Voytek & Knight, 2015). These interpretations align 
with the theory of information processing architecture 
(Gratton, 2018), which posit that the excitability of neural 

representations is reflected in relative changes in the 
power of high versus low frequencies that can be sum-
marized by the spectral slope. Within this framework, 
stimuli, context variability, and increased cognitive 
demands lead to increased engagement of inhibitory cor-
tical circuits, indexed by a steeper spectral slope (see 
also Gyurkovics et al., 2022). These interpretations com-
plement each other and, together, provide a more com-
plete explanation of aperiodic 1/fx activity.

Within these synergistic viewpoints, accumulating evi-
dence shows that the spectral slope obtained from non-
invasive EEG recordings can reliably and validly reflect 
the functional properties of aperiodic neural activity 
across broad regions of the human cortex (Donoghue 
et  al., 2020; Waschke et  al., 2021; Zhang et  al., 2023). 
Consistent with a neural noise hypothesis of aging 
(Cremer & Zeef, 1987; Salthouse & Lichty, 1985; Voytek & 
Knight, 2015), several studies have shown a flatter (less 
negative) slope for older compared to younger adults, 
indicating disrupted (noisier) neural communication with 
advancing age (Clements et al., 2021; W. He et al., 2019; 
Hill et al., 2022; Merkin et al., 2023; Ostlund et al., 2022). 
Drawing on the E:I balance framework, the flatter slope 
for older adults suggests an age-related counterclock-
wise spectral rotation, signifying an increasing E:I ratio in 
the aging brain, possibly reflecting a deficit of inhibitory 
circuits in older adults (see also Gordon et al., 2014).

There is also emerging evidence suggesting that indi-
vidual differences in spectral slope may contribute to age-
related cognitive decline, with a flatter slope associated 
with poorer outcomes across the adult lifespan (e.g., Dave 
et al., 2018; Tran et al., 2020; Voytek et al., 2015). This evi-
dence suggests that the increase in neural noise observed 
in aging—indexed by a flattening slope and an increasing 
E:I ratio—may hamper older adults’ ability to process 
information. However, the mechanisms behind these phe-
nomena remain elusive, as aperiodic activity is typically 
derived from the EEG signal in the absence of experimen-
tally manipulated stimuli, which limits its interpretation with 
respect to information processing. Taken together, this 
body of research motivates the need for a methodological 
framework that classifies task-induced broadband EEG 
into periods of inhibition and excitation. This would greatly 
increase our understanding of the sequence of processing 
events that precede or follow a stimulus, allowing this 
activity to be related to other types of brain measurements, 
such as single/multiple units or neuroimaging recordings. 
In the current study, we expand on this idea in a paradigm 
that includes different phases of information processing 
performed by younger and older adults.
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A fundamental step in classifying aperiodic activity into 
periods of inhibition and excitation is to establish whether, 
when, and how the appearance of a stimulus affects the 
ongoing aperiodic activity. However, a serious challenge 
to this endeavor is the need to separate the task-induced 
(non-phase-locked) aperiodic component from other 
task-evoked (phase-locked) EEG activity (i.e., event-
related potentials, ERPs, in the time domain), both of 
which display a broadband distribution in the frequency 
domain. Gyurkovics et al. (2022) were the first to address 
this methodological issue using scalp EEG data collected 
from young adults. Their study showed reliable and sys-
tematic stimulus-induced changes in the aperiodic com-
ponent, which were independent of the concurrent ERPs 
and scaled with the attentional demands of the task. The 
reported stimulus-induced clockwise spectral rotations 
are consistent with a decreased E:I ratio (increased inhibi-
tion) following stimulus onset and likely reflect a disrup-
tion of ongoing/background excitatory activity proportional 
to processing demands (Gratton, 2018; see also Zhang 
et al., 2023). However, the Gyurkovics et al. (2022) study 
was conducted using simple paradigms with minimal 
quantification of the participants’ performance, thus mak-
ing it difficult to determine the behavioral consequences, 
if any, of the stimulus-induced spectral slope shifts. More-
over, event-related spectrograms were quantified using a 
time window extending more than 1000 ms, which pre-
cludes the detection of rapid changes in aperiodic activity 
accompanying information processing over time. Cru-

cially, that study did not investigate the effects of age, 
which is expected to modulate the E:I balance. These 
three issues are addressed in the current study.

To summarize, the current study sought to determine 
the role of the aperiodic component—indexed by the spec-
tral slope—in the relationship between aging and cognitive 
processing, while considering the temporal dynamics of 
this component. To this end, we re-analyzed scalp EEG 
data from younger and older adults performing a cued 
flanker task (ERP analyses published in Bowie et al., 2021). 
We capitalized on changes in the aperiodic background 
activity induced by cues, which do not require any overt 
responses but provide information to prepare for the 
upcoming target stimuli (Bowie et al., 2021; Gratton et al., 
1992). Pictorial cues were either repetitive, task-relevant, 
and neutral, or novel, task-irrelevant, and of variable 
valence, forming, respectively, two different task contexts: 
strategic (less variable) and affective (more variable). The 
strategic context allowed us to assess the influence of 
task-related cues on the processing of the imperative stim-
ulus. In contrast, the affective context allowed us to inves-
tigate whether cue valence impacted processing (Fig. 1A). 
To capture the temporal dynamics of aperiodic activity, the 
cue-related EEG was divided into a pre-cue time window 
and three consecutive post-cue time windows (Fig.  1B). 
The pre-cue window, being free of any cue processing, 
served as a baseline. The three subsequent post-cue win-
dows were intended to capture different phases of informa-
tion processing (early, middle, and late).

Fig. 1.  Behavioral task design and time windows for the EEG analyses. (A) Participants performed a cued flanker task. 
The warning cue presented at the beginning of the trial was followed by the imperative stimulus. Cues were images from 
the International Affective Picture System (Lang et al., 2008) and from an additional database (Iordan & Dolcos, 2015); 
images in this figure are for reference only. The cues were repetitive, task-relevant, and neutral (strategic blocks) or novel, 
task-irrelevant, and of variable valence (affective blocks); for details, see the text. (B) The cue-locked EEG recorded during 
the task was divided into four consecutive 500-ms time windows.
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The results reveal hitherto unreported features of the 
aperiodic EEG, which allowed us to estimate changes in 
the aperiodic component as a function of processing 
phase and age, which we interpret as possible dynamic 
changes in E:I balance. As such, these findings expand 
our understanding of how dynamic neural communication 
shapes cognition in younger and older adults and has 
direct implications for neuroscientific models of cognitive 
processing and age-related cognitive decline. Given that 
aperiodic neural activity is considered a key biomarker of 
healthy neural networks (Ahmad et al., 2022; Chini et al., 
2022; Gao et al., 2017), this study could also have import-
ant implications for all neurocognitive domains examining 
normative and abnormal brain dynamics.

2.  METHODS

2.1.  Participants

The study was conducted at the Beckman Institute of the 
University of Illinois at Urbana-Champaign. Forty-eight 
participants took part in the study. Two participants were 
excluded because spectral parameterization failed to 
provide converging solutions for them. Data from three 
additional participants had poor quality of the EEG power 
spectrum (the standard deviation, SD, of power across 
frequencies for each of these three participants was three 
times higher than the average SD of power across all par-
ticipants). Although the inclusion/exclusion of these three 
participants did not significantly change the results, 1/fx 
analyses require data of the highest quality to be reliable, 
given that all frequencies (including those with very small 
power) are considered. Therefore, we limited the analy-
ses presented in this article to the 43 participants with the 
highest data quality: 21 younger adults (mean age ± SD = 
21.52 ± 2.82, 13 females) and 22 older adults (mean 
age ±  SD  =  71.23 ±  4.25, 10 females). The study was 
approved by the Institutional Review Board of the Univer-
sity of Illinois at Urbana-Champaign and followed the 
Declaration of Helsinki. Written informed consent was 
obtained from all participants. ERP analyses from a sub-
set of these data, unrelated to the current report, were 
published by Bowie et al. (2021).

2.2.  Experimental task and procedure

Participants performed a cued flanker task. The task 
design is presented in Figure 1A. The imperative stimulus 
array consisted of five horizontal arrows that were either 
congruent (e.g., <<<<<) or incongruent (e.g., <<><<). 

Participants indicated, as quickly and accurately as pos-
sible, which direction (left or right) the central (target) 
stimulus was pointing by pressing one of two keypads 
located on either side of the participant. Stimulus-
response mapping was fixed (i.e., a left-pointing target 
stimulus always required a left-button press, and vice 
versa).

Images from the International Affective Picture System 
database (Lang et al., 2008) supplemented with images of 
neutral scenes from an additional database (Iordan & 
Dolcos, 2015) served as cues, preceding the presentation 
of the imperative stimulus array (their catalog numbers 
along with valence and arousal data are provided in the 
project repository at https://osf​.io​/dfbwa/). The pictorial 
cues were split into two sets to establish two different 
contexts for performing the flanker task: strategic and 
affective. In strategic blocks, cues were three neutral, low-
arousal images (screw, fire hydrant, dresser), each of which 
indicated the probability of presenting a congruent stimu-
lus array: Predict-Congruent had a p(congruent) of 75%; 
Predict-Incongruent had a p(congruent) of 25%; and No-
Prediction had a p(congruent) of 50%. The cue types were 
equiprobable within each strategic block, and participants 
were explicitly told the probability of a congruent stimulus 
represented by each cue before commencing the task. 
Predict-Congruent and Predict-Incongruent images were 
counterbalanced across participants. In affective blocks, 
288 images of varying arousal and valence served as cues. 
None of them indicated the probability of the imperative 
stimulus’ congruency. Instead, there were three task-
irrelevant cue conditions that differed in valence while 
being equated in terms of arousal (low/high): Positive, 
Negative, and Neutral. All valence-arousal combinations 
were equiprobable and intermixed within a single  
affective block.

Each trial began with a 499-ms cue, followed by a 
999-ms fixation period. Afterward, the imperative stimu-
lus array appeared for 149 ms, followed by 1848 ms of 
fixation before the onset of the next trial. The response 
window began with the onset of the imperative stimulus 
and continued until the onset of the next trial. The 
imperative stimulus arrays were presented in white 
typeface on a black computer screen and subtended 
2.23° × 0.46°. Each cue overlaid a gray background with 
uniform dimensions such that each composite image 
subtended 6.98° × 5.35°. All stimuli were presented on a 
monitor (19-inch CRT, refresh rate 60 Hz, screen resolu-
tion 1280 × 960; Dell Computer, Round Rock, TX, USA) 
using the E-Prime 2.0 software (Psychology Software 
Tools, Pittsburgh, PA, USA). Participants were seated 

https://osf.io/dfbwa/
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100  cm in front of a computer monitor centered at  
eye level.

There were three strategic blocks (288 trials each) and 
three affective blocks (288 trials each), yielding 1728 tri-
als in total. The probability of a congruent trial within a 
single block was 50%. The strategic and affective blocks 
were alternated, and their order was counterbalanced 
across participants. All participants completed a set of 
practice trials prior to the task.

2.3.  EEG data acquisition and preprocessing

Scalp EEG was recorded from 59 Ag/AgCl active elec-
trodes using a BrainAmp recording system (BrainVision 
Products). The electrodes were secured in an elastic cap 
according to the extended 10-20 international electrode 
placement system (Acharya et al., 2016). Horizontal and 
vertical electrooculograms (EOGs) were also recorded to 
monitor ocular artifacts. During recording, the data were 
filtered with a 0.10-250 Hz bandpass, digitized at a sam-
pling rate of 500 Hz and referenced to the left mastoid. 
Impedance was kept < 10 kΩ.

The data were preprocessed using custom MATLAB 
2022b codes (The MathWorks) incorporating EEGLAB 
13.6.5 (Delorme & Makeig, 2004) and ERPlab 6.1.3 
(Lopez-Calderon & Luck, 2014). The EEG was first re-
referenced to the average mastoids and bandpass fil-
tered with 0.5 and 50 Hz cut-off frequencies (to eliminate 
contamination from the power supply at 60 Hz). The data 
were then segmented into 2000-ms long epochs relative 
to the cue onset (-500 to 1500  ms). After excluding 
epochs with amplifier saturation and performing ocular 
correction (Gratton et  al., 1983), epochs with peak-to-
peak voltage fluctuations at any EEG channel exceeding 
200  µV (600-ms window width, 100-ms window step) 
were discarded. Data from electrodes Fp1 and Fp2 were 
excluded as they often contain small residual ocular arti-
facts even after ocular correction. Epochs for which 
response latency in the preceding trial exceeded 1400 ms 
were also excluded, as late response-related activity 
from the previous trial could overlap with the baseline of 
the current trial, thus distorting the measurement of pre-
cue activity. Since the accuracy of responses is not 
directly related to cue processing, epochs with both cor-
rect and incorrect responses were included1. The aver-
age number of artifact-free epochs per cue type across 
all participants was 221 (SD = 50, min = 73, max = 282).

2.4.  Statistical analyses

The data were analyzed and visualized in R 4.0.3 (R Core 
Team, 2021). p-values for F-tests were based on permu-
tations for mixed ANOVA (Frossard & Renaud, 2021; 
Kherad-Pajouh & Renaud, 2015). We used 10,000 permu-
tations, and the sign for a given parameter was reversed 
for a random half of the data points in each iteration (an 
equivalent approach was adopted in our previous work, 
Gyurkovics et al., 2022). Only planned comparisons were 
tested. p-values <0.05 were considered significant. The 
materials, data, and R code for this project are openly 
available in the project repository (https://osf​.io​/dfbwa/).

2.4.1.  Behavioral analysis

Dependent variables (DVs) were mean reaction time 
(RT), mean error rate (ERR), and mean inverse efficiency 
score (IES). IES seeks to quantify the time participants 
require to complete a task, adjusted for their accuracy, 
that is, RT/p(correct). When there is a trade-off between 
speed and accuracy, it allows to compensate for differ-
ences in accuracy, providing a robust measure of per-
formance (Townsend & Ashby, 1978). Fast guesses (i.e., 
RT ≤ 200 ms) and timeouts were discarded. Trials with 
incorrect responses were excluded from computing RT 
and IES. Since the EEG data were trimmed to epochs 
with RT < 1400 ms (for rationale, see section 2.3), this 
criterion was also applied to the behavioral data to 
maintain consistency across analyses. On average, 
12% of trials (SD = 10%) were excluded, leaving approx-
imately 1520 trials per participant for analysis. The anal-
yses replicated previously reported effects (Bowie et al., 
2021; Gratton et al., 1992), indicating that data trimming 
did not impact the results.

To evaluate results within the strategic and affective 
contexts separately (within-context ANOVAs, hereafter), 
DVs were subjected to mixed ANOVAs with Age Group as 
a between-subject factor (younger, older) and two within-
subject factors: Congruency (congruent, incongruent) 
and Cue Type (predict-congruent, no-prediction, predict-
incongruent, for the strategic context; positive, neutral, 
negative, for the affective context). To compare results 
across task contexts, data were collapsed across task 
contexts, and the cue type factor was replaced with the 
within-subject Task Context factor (strategic, affective) 
(between-context ANOVA, hereafter). When a significant 
effect was detected, the between-context ANOVA was 
supplemented with additional tests to better understand 
the nature of the effect.1  The pattern of results replicates when incorrect trials are excluded.

https://osf.io/dfbwa/
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2.4.2.  Spectral analysis

To investigate the temporal variation of the aperiodic com-
ponent, the cue-locked epochs were divided into four suc-
cessive time windows of equal length, representing, 
respectively, pre-cue activity (-501 – -1 ms; pre-cue/base-
line), activity directly after the cue (0 – 500 ms; post-cue-1), 
mid-interval activity (500 – 1000 ms; post-cue-2), and 
activity directly before the target stimulus (1000 – 1500 ms; 
post-cue-3) (see Fig. 1B). Single-trial total power spectra 
were then computed for each time window, electrode, and 
participant, using MATLAB’s built-in fast Fourier transform 
(FFT) function. Before FFT, the signal was zero-padded to 
256 points to ensure that signal length was a power of 2 for 
the FFT. The spectral resolution was 1.95 Hz. Frequencies 
< 1.95 and > 44.92 Hz were removed to avoid frequencies 
whose power estimates were based on <2 cycles and to 
ensure frequencies affected by the low-pass filter were 
omitted. The resulting total power spectra were then aver-
aged across trials for each time window (pre-cue, post-
cue-1, post-cue-2, post-cue-3), EEG channel (57 in total 
after excluding Fp1 and Fp2), and cue type (Predict-
Congruent, No-Prediction, Predict-Incongruent, Positive, 
Neutral, Negative) within each participant separately. To 
account for the presence of ERPs in the post-cue win-
dows, the FFT spectra of the ERPs (i.e., the cross-trial 
time-domain averages) were also quantified for each time 
window × electrode × cue type × participant. These spec-
tra were then subtracted from the total power spectra to 
yield power spectra after ERP removal, using the proce-
dure described by Gyurkovics et al. (2022).

To separate oscillatory and aperiodic spectral compo-
nents, single-electrode power spectra before and after 
ERP removal were then parametrized using the specparam 
algorithm (version 1.0.0; Donoghue et al., 2020) with the 
following settings: peak width limits = 3-8 Hz; the maxi-
mum number of peaks = 3; peak threshold = 2 SD; and 
aperiodic mode = “fixed.” These parameters were deter-
mined on the basis of a preliminary analysis on a random 
sample of 20 participants, following guidelines by Ostlund 
et al. (2022). The aperiodic component at each electrode 
for each participant and time window was then recon-
structed in linear space as 10(ß+xlog10(f)), where ß is the offset 
in log space, f is frequency, and -x is the slope. Slope 
values were retained for further analyses, with more neg-
ative values indexing steeper spectra (clockwise rotation) 
and decreased E:I ratio (increased inhibition).

The quality of spectral parametrization was assessed 
using specparam’s model R2. Since 14 parieto-temporal 
electrodes near the edge of the electrode cap showed 

relatively poorer fit (median of participants’ average 
R2  <  0.90 for any time window  ×  cue type), they were 
excluded from all analyses. Their reduced fit was likely due 
to muscle artifacts, affecting the estimation of high-
frequency power. To balance the statistical power of the 
different levels of the electrode cluster factor, the four out-
ermost parietal electrodes (P7, P8, PO7, PO8) were also 
excluded. The remaining 39 electrodes with satisfactory fit 
are shown in Figure 4B. Average R2s were 0.95 (SD = 0.05) 
for the younger group and 0.93 (SD = 0.03) for the older 
group. While younger participants showed a relatively 
higher specparam R2 than older adults [F(1,41)  =  4.05, 
p = 0.05], the fit was satisfactory in both age groups.

Given the novelty of the procedures used by 
Gyurkovics et al. (2022) to remove the ERP spectra, we 
first performed two auxiliary analyses to replicate their 
findings. First, to examine whether the ERPs contributed 
to the cue-locked background activity, the slopes esti-
mated on the spectra after ERP removal were compared 
with those estimated on the spectra before ERP removal. 
Second, to assess whether the cue induced a change in 
the aperiodic component (cue-induced spectral shift, 
hereafter), post-cue slopes after ERP removal were com-
pared against the pre-cue slopes. These analyses were 
performed on the slope values averaged across elec-
trodes and cue types for each time window separately, 
using a series of one-way within-subject ANOVAs.

As the pre-cue window served as a baseline in the 
analyses, we also tested whether the pre-cue slope (aver-
aged across electrodes) showed any within-subject 
effects of Cue Type or Task Context that could obscure 
the experimental effects in the post-cue period. The 
between-subject Age Group factor was also included to 
assess age-related changes in baseline aperiodic activity.

Afterward, we analyzed the temporal dynamics and 
effects of experimental manipulation on cue-induced 
spectral shifts. To this end, the post-cue spectral slopes 
after ERP removal in each of the three post-cue windows 
(i.e., post-cue-1, post-cue-2, and post-cue-3) were sub-
tracted from the pre-cue slope (baseline) for each elec-
trode × cue type × participant, yielding Shift1, Shift2, and 
Shift3, respectively. These cue-induced spectral shifts 
were then subjected to the within-context and between-
context ANOVAs, all of which included Age Group as a 
between-subject factor and two within-subject factors: 
Cue Type/Task Context and Time Window (Shift1, Shift3). 
Cue Type and Task Context levels were the same as in 
the behavioral analyses. Shift2 was deliberately excluded 
from these analyses, as we did not observe a significant 
group-level Shift2 (see section  3.2). To investigate 
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possible differences in scalp distribution, the data were 
averaged over two electrode clusters covering fronto-
central and centro-parietal regions (Fig. 4B), constituting 
an additional within-subject factor in these analyses.

2.4.3.  Neuro-behavioral correlations

Multiple rank-based regression—a non-parametric, robust 
alternative to the traditional likelihood or least-squares 
estimators (Kloke & Mckean, 2012) was used to determine 
the effects of aging and aperiodic activity on overall perfor-
mance (indexed by the IES) and magnitude of the congru-
ency effect (indexed by incongruent minus congruent IES), 
for each time window separately (pre-cue, post-cue-1, 
post-cue-2, post-cue-3). The simple model included one 
of the aperiodic predictors (pre-cue slope, Shift1, Shift2, or 
Shift3, depending on the time window), whereas the addi-
tive model additionally included continuous age. Although 
Shift2 was excluded from the ANOVAs, as there was no 
significant difference between post-cue-2 and pre-cue 
slopes (see section 3.2), we chose to re-include it in the 
correlation analyses. This is because a non-significant 
group-level effect might reflect large inter-individual vari-
ability in the post-cue-2 window, which could be poten-
tially interesting for an individual-difference perspective.

The model including the interaction between the pre-
dictors was discarded as it did not perform better than 
the additive model for any DV in any time window (non-
significant dispersion-reduction tests, an equivalent of χ2 
in classic regression; Fs ≤ 3.81). Since the effects showed 

relatively widespread scalp distributions and analyses for 
strategic and affective contexts produced largely consis-
tent results, the statistics are reported for the data aver-
aged across all 39 electrodes and both task contexts. For 
visualization purposes, the figures present the regression 
beta estimates on single electrodes. All variables were 
mean centered prior to these analyses.

3.  RESULTS

3.1.  Contextual variability supports the behavioral performance  
of older adults

RT, ERR, and IES were subjected to mixed ANOVAs to 
test the experimental effects of Age Group, Congruency, 
and Cue Type/Task Context. Since the results were largely 
consistent across all DVs, the statistics are reported for 
IES only, as this DV combines both speed and accuracy 
information, hence providing a robust summary of perfor-
mance (Townsend & Ashby, 1978). Figure 2A presents an 
overview of the behavioral results.

The analysis for the strategic context replicated previ-
ously reported effects (Bowie et  al., 2021). Participants 
were more efficient in the congruent versus incongruent 
condition [F(1,41)  =  84.04, p  <  0.001, ηp²  =  0.67], and 
older adults were less efficient than younger adults 
[F(1,41) = 28.85, p < 0.001, ηp² = 0.41]. Moreover, Con-
gruency interacted with Cue Type in the strategic context 
[F(2,82) = 8.76, p < 0.001, ηp² = 0.18]. Performance was 
lower in the congruent condition when the incongruent 
condition was predicted compared to when a congruent 

Fig. 2.  Behavioral results. (A) Inverse efficiency scores (IES) in milliseconds (ms) for the strategic context (left) and 
affective context (right). Black circles depict means across participants by cue type and congruency. Colored dots 
represent individual participants’ scores for the congruent (gray, CON) and incongruent (red, INC) conditions. pN, No-
Prediction; pC, Predict-Congruent; pI, Predict-Incongruent; Neu, Neutral; Neg, Negative; Pos, Positive. (B) Congruency 
effect (INC-CON) in mean inverse efficiency score (IES) in milliseconds (ms) by task context and age group. Bars depict 
the mean across participants ± within-subject standard error; ns, non-significant; *, p < 0.05.
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stimulus was expected [t(42) = 2.25, p = 0.03, d = 0.34], or 
no congruency prediction could be made [t(42)  =  2.44, 
p = 0.02, d = 0.37]. Conversely, performance was lower in 
the incongruent condition when the congruent condition 
was predicted compared to when an incongruent stimu-
lus was expected [t(42) = 2.72, p = 0.01, d = 0.41] or con-
gruency could not be predicted [t(42) = 2.08, p  = 0.04, 
d = 0.32]. While the effects of Congruency and Age Group 
were replicated in the affective context [F(1,41) = 89.70, 
p  <  0.001, ηp²  =  0.69, and F(1,41)  =  20.96, p  <  0.001, 
ηp²  =  0.34, respectively], there were no effects of Cue 
Type (Fs ≤ 1.43).

A between-context ANOVA was performed to disentan-
gle the global impact of strategic cues (which were neutral 
images repeated over trials) and affective cues (which var-
ied in valence and were unique on each trial within a block). 
The analysis replicated the Congruency and Age Group 
effects described above [F(1,41) = 89.32, p < 0.001, ηp² = 
0.69, and F(1,41) = 25.34, p < 0.001, ηp² = 0.38, respec-
tively]. We also observed a significant Task Context effect 
[F(1,41) = 4.97, p = 0.03, ηp² = v0.11], which was qualified 
by Age Group [F(1,41) = 8.61, p < 0.001, ηp² = 0.17] and 
Congruency [F(1,41) = 5.61, p = 0.02, ηp² = 0.69]. Interest-
ingly, there was also a three-way interaction between 
these factors [F(1,41) = 6.42, p = 0.01, ηp² = 0.14]. While 
younger participants did not differ significantly in the con-
gruency effect (incongruent minus congruent) between 
task contexts [t(20)  =  0.20, p  >  0.05], older participants 
demonstrated a reduced congruency effect in the affective 
versus strategic context [t(21) = 2.74, p = 0.01, d = 0.58] 
(Fig. 2B), that was driven by their faster and more accurate 
responses in the affective-incongruent versus strategic-
incongruent condition [t(21) = 3.19, p < 0.001, d = 0.68]. 
Consequently, there was no significant between-group dif-
ference in the congruency effect in the affective context 
[t(28) = 1.15, p > 0.05].

To investigate why older adults performed better in the 
affective compared to the strategic context, we tested the 
Age Group × Task Context × Congruency interaction on 
trials with neutral cues only (“no-prediction” cues from the 
strategic context and neutral cues from the affective con-
text). These cues differed in terms of novelty (same on 
every trial in a strategic block vs. unique on every trial in 
an affective block) but were comparable in terms of 
valence (all neutral) and task relevance (all unpredictive). A 
three-way interaction was observed for this limited (neu-
tral only) cue set [F(1,41) = 6.72, p = 0.01, ηp² = 0.14], 
bolstering the interpretation that the greater contextual 
variability and novelty introduced by repeatedly changing 
cues in the affective context supports the cognitive per-

formance of older adults. This interpretation is further cor-
roborated by the absence of significant effects of cue 
valence in the affective ANOVA (see above), as well as the 
absence of block order or arousal effects in the follow-up 
analyses (see also Footnote 2 in Bowie et al., 2021).

3.2.  Cue-related changes in aperiodic background activity above 
and beyond the contribution of ERPs

Consistent with our previous work (Gyurkovics et  al., 
2022), slope values were significantly reduced (i.e., were 
less negative, flatter spectrum) when the frequency spec-
trum of the ERPs was removed in each of the three post-
cue windows [F(1,42)  ≥  76.18, p  <  0.001, ηp²  ≥  0.64], 
indicating that the ERPs contribute to the shape of the 
event-locked EEG spectrum and must be removed before 
estimating aperiodic parameters (Fig. 3A). Further analy-
ses focused on the post-cue estimates after ERP removal 
(Fig. 3B-C).

Cue-induced slope changes were observed in two of 
the three post-cue windows. Compared to the pre-cue 
window, the post-cue-1 slope was more negative (steeper), 
indicating a clockwise rotational shift [Shift1; F(1,42) = 28.48, 
p < 0.001, ηp² = 0.40], whereas the post-cue3 slope was 
less negative (flatter), indicating a counterclockwise shift 
[Shift3; F(1,42) = 4.61, p = 0.04, ηp² = 0.10]. The absence of 
a significant difference between the pre-cue and post-
cue-2 slopes indicates that there was no detectable group-
level shift in the mid-interval, relative to the pre-cue period 
[Shift2; F(1,42) = 0.89, p > 0.05].

Considering the pre-cue (baseline) activity, no effects 
of Cue Type or Task Context were found [Fs < 1], indicat-
ing that the pre-cue activity provided an unbiased base-
line for post-cue comparisons. At the same time, 
consistent with research showing an age-related decrease 
in ongoing (baseline) aperiodic activity (for a review, see 
Ostlund et al., 2022), the pre-cue slope was less negative 
(flatter) for older compared to younger adults [F(1,41) ≥ 
21.43, p < 0.001, ηp² ≥ 0.34].

3.3.  Dynamic nature of aperiodic background activity  
and age-related changes

Figures  3D and 4A present an overview of cue-induced 
spectral shifts, referred to as Shift1 (post-cue-1 minus pre-
cue), Shift2 (post-cue-2 minus pre-cue), and Shift3 (post-
cue-3 minus pre-cue) (a figure presenting the aperiodic 
component before baseline subtraction can be found in 
the Supplementary Materials). These spectral shifts were 
subjected to strategic, affective, and between-context 
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ANOVAs. As mentioned, Shift2 was excluded, as we did 
not find a group-level slope difference in the post-cue-2 
versus pre-cue comparison. Statistics are shown in 
Table 1. Since Age Group and Time Window effects were 
consistent across these analyses, the follow-up tests are 
reported for the between-context ANOVA only.

All analyses showed a significant Age Group effect. 
Compared to younger adults, older adults demonstrated 
a less negative spectral shift, suggesting a counterclock-
wise spectral rotation and an increased E:I ratio. A Time 
Window effect was also significant across all analyses, 
indicating changes in the time course of cue-locked ape-
riodic activity. The initially negative spectral shift (signify-
ing a clockwise spectral rotation and a decreased E:I 
ratio for Shift1) decreased over time to become a positive 
spectral shift before the target appeared (counterclock-

wise rotation and an increased E:I ratio for Shift3). More-
over, Age Group interacted significantly with Time 
Window across all analyses (Fig. 4A). Interestingly, Shift1 
did not differ between younger and older participants, 
t(38.67)  =  0.61, p  >  0.05. Instead, what differentiated 
older from younger adults was their greater counterclock-
wise rotation in time (suggesting an increased E:I ratio 
and a decreased inhibition), which emerged as a signifi-
cant Age Group difference for Shift3, t(39.77)  =  3.56, 
p < 0.001, d = 1.08.

The interaction between Age Group and Time Window 
was further qualified by significant effects for Electrode 
Cluster in the between-context and affective-context 
analyses. While most spectral shifts showed a wide-
spread distribution in both age groups (no significant dif-
ferences between fronto-central and centro-parietal 

Fig. 3.  Aperiodic component overview. (A) Average slope before (black) and after (gray/green) removal of the ERP 
spectrum (ERPs IN and ERPs OUT, respectively) by time window. (B) Average slope (after ERP removal) by time window. 
The red dashed line indicates the mean value of the pre-cue/baseline period. (C) Scalp distribution of the absolute slope 
values in each time window. (D) Cue-induced spectral shifts (post-cue aperiodic components after subtracting the pre-
cue/baseline component) across frequencies in each time window, termed Shift1, Shift2, and Shift3. For all panels, dark 
gray refers to the slope values before ERP subtraction (irrespective of time window), while dark, medium, and light green, 
as well as light gray, denote the post-cue-1, post-cue-2, post-cue-3, and pre-cue time windows, respectively, all following 
ERP removal. For both (A) and (B), error bars depict the mean across participants ± within-subject standard error. ns, 
nonsignificant, *, p < 0.05. For (B), (C), and (D), the post-cue slope values are after ERP removal. For panels (A-C), more 
negative values indicate steeper spectra.
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Fig. 4.  Dynamic nature of the aperiodic component. (A) Average cue-induced spectral shifts (post-cue after the ERP 
removal minus pre-cue slope) by age group, task block, and time window, termed Shift1, Shift2, and Shift3. Error bars 
depict the mean across participants ± within-subject standard error. (B) Average cue-induced spectral shifts by age group, 
time window, and electrode cluster. Fronto-central (light gray) and centro-parietal (dark gray) electrode clusters are depicted 
on the scalp above the line plot. ns, non-significant, *, p < 0.05. (C) Scalp distribution of the cue-induced spectral shifts by 
time window for younger (left) and older participants (right). For all panels, more negative values indicate steeper spectra.

Table 1.  Summary of ANOVA results for between-context, strategic, and affective effects.

Effects

Between-context Strategic Affective

F p ηp² F p ηp² F p ηp²

Age group 7.85 0.010 0.16 12.34 0.00 0.23 2.81 0.090 ---
Task 13.58 0.001 0.25 0.71 0.49 --- 2.08 0.120 ---
Age group × task 0.77 0.400 --- 0.80 0.46 --- 0.95 0.380 ---
Time 59.13 0.001 0.59 34.34 0.00 0.46 50.29 0.001 0.55
Age group × time 17.31 0.001 0.30 13.59 0.00 0.25 12.63 0.001 0.24
Cluster 0.00 0.950 --- 1.00 0.32 --- 0.87 0.330 ---
Age group × cluster 2.72 0.110 --- 5.09 0.03 0.11 0.66 0.410 ---
Task × time 4.49 0.040 0.10 0.19 0.82 --- 2.42 0.080 ---
Age group × task × time 0.02 0.900 --- 1.22 0.30 --- 1.34 0.250 ---
Task × cluster 3.31 0.080 --- 2.51 0.09 --- 0.42 0.660 ---
Age group × task × cluster 0.91 0.360 --- 1.32 0.27 --- 0.00 1.000 ---
Time × cluster 6.20 0.020 0.13 6.21 0.02 0.13 2.18 0.130 ---
Age group × time × cluster 5.98 0.020 0.13 3.28 0.08 --- 5.07 0.020 0.11
Task × time × cluster 1.06 0.310 --- 1.07 0.35 --- 0.24 0.790 ---
Age group × task × time × cluster 0.04 0.840 --- 0.21 0.82 --- 0.14 0.870 ---

Note. Task refers to the task context (levels: strategic, affective) or to the strategic/affective cue type (levels: predict-congruent, no-
prediction, predict-incongruent/positive, neutral, negative); degrees of freedom (dfs) for all effects are (1,41) except for task effects in the 
strategic context and affective context, for which dfs are (2,82).
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clusters, t  ≤  0.69, p  >  0.05), Shift3 was larger at the 
fronto-central than centro-parietal cluster in older adults, 
t(21)  ≥  2.55, p  <  0.01, d  ≥  0.54 (Fig.  4B). Collectively, 
these results point to the dynamic nature of stimulus-
related changes in the aperiodic component, indicating 
that the feature distinguishing older from younger adults 
is a greater counterclockwise power redistribution over 
time. This suggests an increasing E:I ratio and decreas-
ing inhibition with advancing age.

3.4.  Attention-dependent changes in the aperiodic  
background activity

Although the ANOVAs did not show any Cue Type effects 
when strategic and affective contexts were considered 
separately (see Table 1), we did observe a significant Task 
Context effect in the between-context ANOVA, with a 
more negative spectral shift (i.e., a more clockwise spec-
tral rotation suggesting increased inhibition) in the affec-
tive compared to the strategic context. This effect was 
not qualified by Age Group in the between-context com-
parison. However, a significant Age Group × Task Context 
interaction was observed when comparing the neutral 
cues from the two task contexts [F(1,41) = 6.71, p < 0.001, 
ηp² = 0.50]. While the spectral shift was less negative in 
response to repetitive neutral cues in older compared to 
younger adults (strategic context: t(35.48)  =  3.20, 
p < 0.001, d = 0.98), there was no significant difference 
between the age groups in response to more novel neu-
tral cues (affective context: t(35.73) = 0.64, p > 0.05; see 
Fig.  4A). This suggests that the difference in the cue-
induced spectral shift between younger and older adults 
diminished in response to the more novel cues presented 
in the affective context. This effect is consistent with the 
behavioral data, showing improved performance in the 
affective context in older adults, and further indicates 
that increased contextual variability may support cogni-
tive performance in older adults.

3.5.  Neuro-behavioral relationships

To further understand the relationships between aging, 
aperiodic activity, and behavior, we performed a series of 
neuro-behavioral correlations (Figs. 5 and 6). Consistent 
with the ANOVA results, older age was associated with a 
less negative pre-cue (baseline) slope, further supporting 
the notion that aging is accompanied by an overall 
increase in the E:I ratio, indicating reduced inhibitory 
function (Ostlund et  al., 2022; Voytek & Knight, 2015). 
Interestingly, however, when considering the cue-induced 
spectral shifts, age significantly correlated with Shift2 

and Shift3 but not Shift1 (Fig. 5A). These results comple-
ment the ANOVA findings (significant age-group effect for 
Shift3 but not Shift1), further suggesting that the initial 
aperiodic response to the cue (indexed by Shift1) was not 
associated with age-related changes in the E:I balance, 
and that age only began to contribute to the cue-induced 
spectral shift after some time (middle and late post-cue 
periods in this study, indexed by Shift2 and Shift3, 
respectively).

To determine how the aperiodic activity and aging 
contributed to overall performance (indexed by IES) and 
to the congruency effect (incongruent minus congruent 
IES), we fit a series of rank-based regression models. 
Regarding overall performance (Fig.  5B-C), a simple 
model including the pre-cue slope or post-cue shift as a 
predictor of IES was significant across all time windows, 
indicating that the more negative the baseline slope or 
the more negative the post-cue shifts (all suggesting 
increased inhibition), the higher the task performance. 
Models including age as an additional predictor (additive 
models, hereafter) were also significant in each time win-
dow and indicated that older age was associated with 
lower behavioral outcomes. Importantly, when age was 
added to the models, the pre-cue slope and Shift3 no 
longer significantly predicted IES, indicating that their 
associations with IES observed in the simple models 
could be fully explained by age-related changes in aperi-
odic activity. At the same time, Shift1 and Shift2 contin-
ued to be significant predictors after the addition of age, 
indicating that the cue introduced changes in the aperi-
odic activity that predicted subsequent performance 
regardless of age.

Regarding the efficiency of resolving the flanker-
induced response conflict, indexed by the congruency 
effect (Fig. 6), a simple model including the post-cue shift 
as a predictor of the congruency effect in IES was signif-
icant across all post-cue time windows: the more nega-
tive the post-cue shift (i.e., the greater the shift towards 
inhibition), the smaller the subsequent congruency effect. 
The additive model was significant for Shift2 and Shift3, 
but the age effect was non-significant. Neither model 
was significant for the pre-cue window [Fs < 1], indicating 
that baseline aperiodic activity, similarly to age, is unre-
lated to the magnitude of the congruency effect.

In summary, the analyses reported here suggest that 
aperiodic neural activity substantially affects subse-
quent performance on the flanker task. Specifically, 
while age contributed to overall performance (simple 
model; Fig. 5), it did not correlate with the congruency 
effect. However, cue-induced spectral shifts not only 
predicted overall performance but also influenced the 
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magnitude of the congruency effect (both simple and 
additive models; Figs.  5 and 6). Furthermore, results 
suggest that the cue-induced spectral shift is a mixture 
of age-dependent and age-independent processes, 
whose relative contribution to performance depends on 
the information processing timescale (Fig. 5B). Specifi-
cally, since Shift1 did not correlate with age and the 
addition of age to the IES model hardly changed its esti-
mate (∆ β = 0.009), the spectral shift immediately follow-
ing the cue appears to reflect age-invariant stimulus 
processing. Conversely, the relationship between the 
latest shift (Shift3) and overall performance was can-
celed out when age was added to the IES model, indi-
cating that it was entirely driven by age-dependent 

changes in information processing. In line with this 
logic, age-dependent and age-invariant stimulus pro-
cessing co-contributed to the shift in the mid-interval, 
as shown by the additional model in which Shift2 still 
significantly predicted IES after regressing out either 
age or Shift1 (the latter representing age-invariant stim-
ulus processing). Yet, the explained variance substan-
tially dropped in both cases (∆ R2  =  17% and 15%, 
respectively). Notably, after regressing out both age and 
Shift1, this model ceased to be significant [F(1,41) = 1.84, 
p > 0.05], indicating that there was no additional vari-
ance in Shift2 that would explain IES over and above the 
effect of age-dependent and age-invariant cue process-
ing present in the first time window.

Fig. 5.  Overall performance as a function of the spectral slope. (A) Spearman’s rho correlations between continuous age, 
pre-cue slope, and post-cue spectral shifts (post-cue slope after subtracting the pre-cue value). Non-significant estimates 
(p > 0.05) were crossed out. (B) Inverse efficiency score (IES) in milliseconds (ms) as a function of absolute pre-cue slope 
(upper) and spectral shifts (post-cue slopes after subtracting the pre-cue slope; lower). Coefficients are Spearman’s 
rhos. (C) Outcomes of rank-based regressions for each time window. The left panel shows regression coefficients 
(betas, β s) ± standard error for the simple model (m1, gray) and additive model (m2, black). The right panel displays the 
scalp distribution of regression coefficients (β s) for the effects of age and slope from m2 (p-values on the scalp maps 
uncorrected for multiple comparisons).
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4.  DISCUSSION

This study provides an in-depth analysis of stimulus- and 
age-related changes in the spectral slope, an overarching 
measure of aperiodic background neural activity, indicat-
ing rotational shifts in broadband power. To this end, we 
analyzed scalp-recorded EEG data from younger and 
older adults who completed a cued flanker task. In this 
task, the pictorial cues were either repetitive, neutral, and 
task-related (creating a strategic context) or relatively 
novel, of varying valence, and unrelated to the task (affec-
tive context). This study extends our knowledge of 
stimulus-induced changes in the spectral slope (see 
Gyurkovics et al., 2022) by showing that cues, signaling 
upcoming targets, trigger systematic changes in EEG 
background activity independently from the ERPs elicited 
by the same stimuli. In addition to the experimental effects, 

we also observed significant individual variations in slope 
in relation to age, stimulus processing phase, and subse-
quent behavioral performance. Collectively, the findings 
extend our current knowledge of the neural dynamics 
underlying aging and cognitive processing and bring these 
phenomena together within a unified framework.

4.1.  Contextual variability supports the cognitive functioning  
of older adults by altering aperiodic neural activity

The behavioral analyses revealed some novel, hitherto 
unreported findings: overall, performance was higher 
when pictorial cues were relatively novel (affective con-
text) than when they were repeated (strategic context). At 
the same time, cue valence itself had no detectable effect 
on behavior. This novelty (task-context) effect was further 

Fig. 6.  The magnitude of the congruency effect as a function of the spectral slope. (A) Congruency effect (INC-CON) in 
inverse efficiency score (IES) in milliseconds (ms) as a function of absolute pre-cue slope (upper) and spectral shifts (post-
cue slopes after subtracting the pre-cue slope; lower). Coefficients are Spearman’s rhos. (B) Outcomes of rank-based 
regressions for each post-cue window (note that the models with the pre-cue slope were non-significant and are therefore 
omitted). The left panel shows regression coefficients (betas, β s) ± standard error for the simple model (m1, gray) and 
additive model (m2, black). The right panel displays the scalp distribution of regression coefficients (β s) for the effect of 
slope from m1 (p-values on the scalp maps uncorrected for multiple comparisons).
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qualified by age group, indicating that presenting rela-
tively more novel and varied cues made older adults more 
efficient and, thus, behaviorally more comparable to 
younger adults (Fig. 2B). Importantly, follow-up analyses 
showed that these effects could not have been attributed 
to valence, arousal, or block presentation order. The data 
we report, therefore, suggest that the presentation of rel-
atively novel and variable pictorial cues created a task 
context that helped older adults to maintain increased 
engagement throughout the task, which consequently 
resulted in their more efficient performance. In contrast, 
younger adults were able to maintain high-level perfor-
mance regardless of cue characteristics.

The EEG data showed systematic cue-induced changes 
in the ongoing background aperiodic activity (i.e., cue-
induced spectral shifts) that varied depending on task 
context. Specifically, the cue induced a more pronounced 
clockwise rotation (i.e., more negative, steeper post-cue 
vs. pre-cue slope) in the affective than in the strategic con-
text. Consistent with previous findings (Gyurkovics et al., 
2022), this task-context effect suggests increased inhibi-
tion in more novel and variable settings, which require 
more frequent updating of active representation status 
(Gratton, 2018; see also Zhang et al., 2023). Interestingly, 
the observed task-context effect was further qualified by 
age group when only neutral cues were considered. There 
was a significant age group difference in the spectral shift 
for repeated neutral cues used in the strategic context but 
not for the more novel and variable neutral cues used in 
the affective context. These findings are consistent with 
the behavioral results and, within the E:I balance frame-
work, suggest that the relatively greater inhibition induced 
by more novel cues may have helped older participants to 
overcome, at least in part, the age-related E:I imbalance 
towards excitation (Merkin et  al., 2023; Ostlund et  al., 
2022; Thuwal et al., 2021; Voytek & Knight, 2015), making 
their cue-induced aperiodic response, as well as their sub-
sequent performance, more comparable to that of younger 
adults. Consistent with our previous work (Gyurkovics 
et al., 2022), the observed cue-induced spectral shifts in 
the aperiodic component showed broad scalp distribu-
tions (no significant effects of electrode cluster were 
observed), further suggesting that the alternations in the 
E:I balance involve widespread changes in cortical activity.

4.2.  Dynamics of aperiodic neural activity and their consequences 
for behavior

This study was the first to examine the temporal dynam-
ics of the aperiodic component related to different 

phases of stimulus processing. The results revealed 
that, compared to the pre-cue (baseline) period, the 
cue initially induced a clockwise shift in the ongoing 
power spectrum (Shift1), which became counterclock-
wise over time (Shift3), pointing to the transient nature 
of the aperiodic neural activity. Notably, there was no 
difference between age groups in the early phase of 
cue processing (Shift1). However, older adults (com-
pared to younger adults) demonstrated a greater coun-
terclockwise rotation in the late processing phase 
(Shift3) (Fig. 4). These experimental findings were fur-
ther supported by significant correlations between age 
and spectral shifts in the middle and late but not early 
processing phase (Fig. 5A).

Similar to the task-context effects discussed in the 
previous section, the observed temporal effects can also 
be explained within the E:I balance framework. The 
clockwise rotation immediately following the cue (Shift1) 
appears consistent with a shift towards inhibition that 
temporarily halts ongoing processing to allow for new 
representations to be established (Gratton, 2018; 
Gyurkovics et  al., 2022). Younger and older adults did 
not differ in the early phase of stimulus processing 
(Shift1), suggesting that they engage these early inhibi-
tory mechanisms to a similar degree. Notably, the cue-
induced spectral shift in the late processing phase 
(Shift3) was still negative (albeit to a lesser extent) in 
younger adults, suggesting that the momentary inhibi-
tion was followed by disinhibition (return to baseline) in 
this group, which may reflect their need to prepare to 
shift attention to the upcoming target. Conversely, in 
older adults, this later change was positive, suggesting 
an increased excitation following the early phase of inhi-
bition. Shift1 showed broad scalp distribution in both 
age groups. In contrast, Shift3 showed a more fronto-
central distribution in older adults (Fig. 4C), suggesting 
that the age-related excitation in the late processing 
phase involves changes in cortical activity that are more 
local and can be captured only at fronto-central sites in 
scalp-recorded EEG.

A series of regression analyses shed further light on 
the mechanisms through which aperiodic activity is 
related to aging, stimulus processing, and behavior. Cue-
induced spectral shifts predicted upcoming performance, 
with a more clockwise shift related to higher overall per-
formance (as indexed by IES) and more efficient conflict 
resolution (as indexed by the congruency effect). As 
such, the regressions converge with the ANOVA findings, 
further supporting the interpretation of aperiodic activity 
as a viable marker of information processing that 
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substantially contributes to subsequent behavior. Impor-
tantly, the strength of the relationship between the 
cue-induced spectral shifts and overall performance 
decreased when age was included in the models (Fig. 5C). 
This indicates that event-related spectral shifts can be 
considered a mixture of individual differences related to 
stimulus processing and aging, which additively shape 
overall performance (cf. Voytek et al., 2015).

4.3.  Theoretical and methodological implications

The novel properties of the aperiodic background EEG 
reported here have important theoretical and method-
ological implications. First and foremost, the present 
results contribute to current theories of age-related cog-
nitive decline (for reviews, see Fabiani et  al., 2021; 
Grady, 2012; Jiang et al., 2023). In particular, the neural 
noise hypothesis of aging (Cremer & Zeef, 1987; 
Salthouse & Lichty, 1985; Voytek & Knight, 2015) posits 
that disrupted neural communication with advancing 
age and related inhibitory deficits—indexed by greater 
E:I ratio—become more pronounced after stimulus pre-
sentation, thereby reducing older adults’ ability to main-
tain newly formed representations. While several studies 
have attempted to address this hypothesis by investi-
gating aperiodic activity (Dave et  al., 2018; Ribeiro & 
Castelo-Branco, 2022; Tran et  al., 2020; Voytek et  al., 
2015), none are conclusive as they have not examined 
event-related changes in aperiodic activity, which limits 
their interpretation in terms of information processing. In 
this study, we replicated the age-related decrease in 
spectral slope in the pre-cue window, suggesting an 
increase in E:I ratio at baseline. However, older adults 
did not show a further decrease in spectral slope in the 
early phase of stimulus processing compared to younger 
adults (no age-group difference for Shift1). This sug-
gests that there is no apparent deficit in the initial inhib-
itory response in older individuals, raising the possibility 
that the mechanism of age-related cognitive decline 
speculated so far may require some revision. Based on 
the observed age-related temporal changes in aperiodic 
activity and their relationships with performance, we 
propose that the greater reduction in spectral slope 
(possibly indexing post-inhibitory excitation) observed 
in the late phase of information processing in older 
adults could be indicative of an excessive (i.e., greater 
than baseline) rebound after inhibition (i.e., overexci-
tation). While more research is needed to understand 
the functional implications of this finding, the observed 
post-inhibitory excitation could be interpreted as a form 

of anticipation, where the neural system prepares to 
respond to incoming imperative stimuli. This is consis-
tent with the E:I framework (Gao et al., 2017; Gyurkovics 
et al., 2022; Waschke et al., 2021) and could potentially 
shed new light on the origins of neural noise associated 
with stimulus processing (Voytek & Knight, 2015; Voytek 
et al., 2015).

Relatedly, the ANOVA results also suggest that age-
related increases in the E:I ratio could be experimentally 
counteracted by providing older adults with greater con-
textual diversity and novelty (frequently changing cues in 
this study), which appears to trigger a heightened level of 
performance. It will be important for future research to 
test how long event-induced aperiodic changes persist 
and what other forms of experimental manipulations can 
help overcome the age-related E:I imbalance towards 
excitation. As here we focused on cue-induced (proac-
tive) processes and the target-locked EEG was deliber-
ately excluded (as it was contaminated with manual 
responses), future research would also benefit from 
tracking the dynamics of aperiodic activity in response to 
an imperative stimulus, provided that contamination from 
motor activity can be excluded. Summing up, the present 
findings align with the concept of E:I balance, offering 
new insights into some of the neural mechanisms under-
lying age-related cognitive decline. Nevertheless, it is 
important to acknowledge that this research is still 
emerging, and that the neural bases of aperiodic activity 
are part of an ongoing debate, with some evidence sug-
gesting that this phenomenon may be partially related to 
cardiac activity (Ahmad et al., 2022; Schmidt et al., 2022). 
Therefore, some caution in interpretation is advisable, 
until further research elucidates the origins of aperiodic 
activity in more detail.

At the methodological level, this study reinforces the 
notion that the ERPs contribute to the broadband EEG 
background activity (Gyurkovics et al., 2022), emphasiz-
ing the need for their removal before estimating the 1/fx 
(aperiodic) parameters. Furthermore, our findings greatly 
extend the current understanding of event-related shifts 
in aperiodic activity by revealing their temporal variability 
and offering a viable methodological framework for 
studying dynamic changes in the E:I balance over time. 
Although the ideal length of the time window for quantify-
ing spectrograms is still an open research question, we 
demonstrated that a 500-ms temporal integration win-
dow provides a robust and effective method for quantify-
ing temporal aperiodic changes in scalp EEG. Moreover, 
to ensure the highest data quality, we employed rigorous 
EEG quality control, including careful assessment of 
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spectrograms and spectral parameterization outcomes. 
We also utilized a relatively large sample size (compared 
to typical studies in this field), which further increases the 
statistical power of the analyses and improves the gener-
alizability of our findings. Collectively, the results pre-
sented here indicate that a 500-ms temporal integration 
window, along with strict data quality control and a rela-
tively large sample size, offer a robust and effective 
framework for quantifying temporal aperiodic changes in 
the scalp EEG recordings, thus providing a promising 
avenue to better understand the brain dynamics underly-
ing information processing.

Finally, the evidence for dynamic changes in the aperi-
odic component reconciles seemingly conflicting reports 
regarding attention-dependent spectral changes in scalp-
recorded EEG. While Gyurkovics et al. (2022) reported an 
attention-dependent slope increase, Waschke et al. (2021) 
reported an attention-dependent slope decrease. One of 
the methodological differences between these studies is 
that they focused on the aperiodic activity from different 
post-stimulus periods. Gyurkovics and colleagues focused 
on the immediate response to the stimulus, whereas 
Waschke and colleagues quantified the spectrum several 
hundred milliseconds after stimulus onset and did not 
control for any lingering ERP contributions. The current 
results suggest that the discrepancy between these two 
previous studies may only be coincidental. Here, com-
pared to the pre-event period, the slope was more nega-
tive/steeper immediately after the stimulus, consistent 
with Gyurkovics et al., and less negative/flatter in the fur-
thest time window, consistent with Waschke et al. (Fig. 3A). 
Given this apparent discrepancy and the risk of misinter-
pretation, future studies should account for the dynamic 
nature of aperiodic activity or at least carefully address the 
period over which they quantify the spectra. This seems all 
the more important given that the regression analyses 
showed that the slope can convey different information 
depending on the time window in which it is quantified. 
Although more research is needed on this topic, aperiodic 
neural activity immediately after the stimulus seems to be 
the most sensitive to experimental effects, whereas later 
activity may also reflect the contribution of individual dif-
ferences, such as those due to aging.

4.4.  Conclusions

To our knowledge, this study is the first to investigate the 
temporal dynamics of broadband (aperiodic) EEG back-
ground activity during stimulus processing in younger 
and older adults. Our findings show that the spectral 

slope (or exponent when in linear space)—an overarching 
measure of the shape of the broadband EEG—is not a 
stationary feature of electrophysiological signals but a 
dynamically changing phenomenon that provides insights 
into the neural bases of stimulus processing and its 
changes with aging. From a theoretical standpoint, these 
data contribute to neuroscientific models of cognitive 
processing and age-related cognitive decline. From a 
methodological standpoint, the study provides a viable 
framework for investigating the temporal dynamics of 
aperiodic activity and the alternation of excitation and 
inhibition in neural circuits, providing cross-scale links 
with single- and multiple-unit activity and imaging 
research.
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