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Chapter One: Introduction 
 

Over the last two decades, financial technology, sometimes known as Fintech, has emerged 

as a disruptive force in the world of business and finance. The dynamic convergence of cutting-

edge technology and financial services reshapes established business structures and financial 

transactions. Because of its potential to transform the financial landscape, this phenomenon has 

attracted the interest of scholars, legislators, and corporations alike. Therefore, Fintech refers to a 

wide range of innovative products and services that use technology to improve and optimize 

financial operations. Mobile banking applications and digital payment systems, as well as 

blockchain-based cryptocurrency and automated investment advising services, are examples of 

these solutions. Its importance in business cannot be understated since Fintech has impacted 

conventional financial institutions and opened new channels for firms to acquire money, manage 

finances, and communicate with consumers. The link between Fintech and business is complex 

and ever-changing, causing scholars to investigate many elements of this phenomenon. A great 

deal of published research shines a light on the complicated relationship between Fintech and 

business, giving insights into the potential and problems this dynamic industry brings. 

Furthermore, regarding the impact of Fintech on Business, the influence of Fintech on firms 

is extensively established in the study literature. Fintech solutions have considerably boosted 

financial inclusion by providing access to financial services to underserved and unbanked people. 

According to a World Bank analysis (2022), Fintech has played a critical role in closing the 

financial inclusion gap, allowing firms to enter previously unreachable areas. Fintech has also 

transformed company funding. Crowdfunding platforms, online marketplace financing, and peer-

to-peer lending have offered start-ups and small enterprises alternate sources of money. One of the 

most important results in fintech research in improving efficiency and customer focus is its 

capacity to improve corporate operational efficiency. Accounting and payroll administration have 

been automated, which has not only eliminated human mistakes but also optimized resource 

allocation. Different case studies and industry reports illustrate that this results in cost savings and 

increased organizational competitiveness. Furthermore, businesses may now acquire more 

profound insights into consumer behaviour, preferences, and trends thanks to artificial intelligence 

and data analytics. As a result, personalized marketing methods, product suggestions, and 
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customized financial advice have grown more widely available, resulting in higher consumer 

satisfaction and loyalty. 

Also, Fintech has changed the way people think about money, payments, and financial 

services. Cryptocurrency, a digital and decentralized currency, is at the heart of this change. Since 

the turn of the millennium, cryptocurrency has been regarded as one of the most inventive financial 

trading vehicles. Nakamoto introduced Bitcoin as a new financial asset in 2008. Bitcoin, according 

to Nakamoto (2008), is a peer-to-peer transaction that employs an electronic currency system to 

allow users to transfer online payments to each other directly without the involvement of 

intermediary financial organizations. 

Furthermore, cryptocurrencies have no connection to regulators or political entities, and 

Bitcoin has no physical presence. Cryptocurrencies enable consumers to send payments online by 

building a secure electronic currency system (Cheah and Fry, 2015). In 2009, Bitcoin was first 

traded. Since then, Bitcoin has been the most renowned digital money on the cryptocurrency 

market. Therefore, traditional banking systems have been challenged by Fintech and 

cryptocurrencies, which provide efficient and borderless alternatives. Blockchain technology is 

used by fintech businesses to generate cryptocurrencies such as Bitcoin and Ethereum, 

revolutionizing the way individuals transact, invest, and store value. Fintech and cryptocurrency 

have a complicated connection since these digital assets serve as both a crucial application and a 

driver for innovation in the financial field. New possibilities and challenges develop on a regular 

basis in this restricted environment, changing the future of finance. 

Likewise, Bitcoin and cryptocurrencies have developed as critical financial innovations, 

providing significant benefits to businesses and society as a whole. They simplify cross-border 

transactions while lowering costs and time delays, making them especially useful for global 

business and financial inclusion. The security characteristics of the blockchain technology that 

underpins cryptocurrencies improve supply chain transparency and prevent fraud, both of which 

benefit businesses. Furthermore, cryptocurrencies have revolutionized fundraising through Initial 

Coin Offerings and Security Token Offerings, making capital raising more accessible. Smart 

contract implementation automates complicated business procedures, increasing operational 

efficiency and confidence in business interactions. Cryptocurrencies, as decentralized digital 

assets, also function as hedges against traditional financial instability and provide new investment 

options. These developments, however, carry with them problems such as regulatory uncertainty 
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and security dangers, demanding cautious navigation while maximizing their transformational 

potential. 

In addition, several new cryptocurrencies have entered the financial markets. 

Consequently, several academics have attempted to simplify and clarify their actions. 

Cryptocurrencies were separated from other traditional financial assets by Kyriazis, Daskalou, 

Arampatzis, and Prassa (2019). Cryptocurrencies have also been employed as new financial tools 

for creative investments. Therefore, many individuals are interested in investing in 

cryptocurrencies. The popularity of cryptocurrencies continues to expand, attracting the interest of 

academics, financial market participants, and professionals in high-frequency data processing 

techniques. Given its novel characteristics and unpredictable swings, Bitcoin has also generated 

considerable literature.  

For example, Corbet, Lucey, and Yarovaya (2018), Cheah and Fry (2015), and Cheung, 

Roca, and Su (2015) all found bubbles in the Bitcoin market. According to their findings, Bitcoin 

values are prone to speculative bubbles. Some researchers have argued that Bitcoin is a money or 

an asset. As a result, Luther and White (2014) believe Bitcoin has the potential to become a means 

of exchange. However, Wu and Pandey (2014) determined that, while Bitcoin is not beneficial as 

a currency, it may be useful and play an essential role in boosting the efficiency of an investor's 

portfolio. Baur, Hong, and Lee (2018) validated that study by demonstrating that Bitcoin accounts 

are predominantly utilized as an investment tool rather than an alternative currency. Furthermore, 

Kristoufek (2015) discovered that Bitcoin exhibits characteristics of both traditional and 

speculative financial assets. Therefore, Bitcoin and cryptocurrencies have strongly altered the 

financial sector, enclosing two characteristics of digital currency and new investment tools. 

Nevertheless, throughout their history, Bitcoin and cryptocurrencies have been 

characterized by high price volatility. This volatility results from several causes, including 

speculation, market sentiment, and a lack of thorough regulation. Speculative trading, driven by 

investors looking for quick returns, frequently results in rapid and unpredictable price movements. 

Furthermore, the sensitivity of the cryptocurrency market to news, social media trends, and market 

emotion can result in significant price movements in response to excellent or flawed occurrences. 

The lack of comprehensive regulation in cryptocurrency makes it vulnerable to manipulation and 

market abuse, exacerbating volatility. Furthermore, many cryptocurrencies have shallow trading 

volumes compared to traditional financial markets, making them more disposed to excessive price 
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changes. Because cryptocurrencies are a relatively new technology with little mainstream use, their 

value is speculative and prone to a fast shift as the technology evolves and becomes more broadly 

recognized. Price volatility gets worse by external variables such as regulatory declarations, 

security breaches, and macroeconomic developments. Despite their development and promise of 

growth, addressing and reducing volatility remains a concern, providing dangers and possibilities 

for investors, firms, and regulators equally.  

As a result, unlike traditional currencies, cryptocurrencies are characterized by a high 

amount of volatility, which has drawn the attention of academics to developing reliable assessment 

and prediction models. These models best capture the most recent and exact findings for the 

variables of interest. The volatility GARCH model is most commonly used by researchers in 

conditional variance studies, which are directly relevant to the cryptocurrency market. When 

analyzing IBM returns, Hansen and Lunde (2005) verified the model's effectiveness by comparing 

GARCH to superior predicting ability (SPA) and the reality check (RC) for data snooping, which 

showed to be less accurate in evaluations. Their investigation of currency rates found no indication 

that more complicated models outperform a GARCH(1,1). Nonetheless, in their research of IBM 

returns, the GARCH(1,1) is inferior to models that can handle a leverage effect. 

Furthermore, Caporale and Zekokh (2019) highlighted the idea of utilizing over 1,000 

different GARCH models to discover the most effective model for volatility for four 

cryptocurrencies: Bitcoin, Ethereum, Ripple, and Litecoin. According to the study findings, the 

Model Confidence Set approach for the loss functions provided the best support for the Value-at-

Risk and Expected Shortfall projections. Caporale and Zekokh (2019) stated that traditional 

GARCH models provide mistaken VaT and ES forecasts and inadequate risk management. The 

findings of Caporale and Zekokh (2019) contradict Hansen and Lunde's (2005) work, suggesting 

the applicability of GARCH models to forecast the volatility of cryptocurrency returns. In contrast, 

Caporale and Zekokh (2019) proposed adopting models that allow asymmetries and regime shifts. 

The conflicting findings regarding the efficiency of various models indicate a gap between 

researchers concerning which model is most suitable and applicable to forecast the volatility 

analysis of cryptocurrencies, implying a potential inefficiency of GARCH models applied to 

volatility estimation for cryptocurrencies.  

These studies and findings clearly outlined the potential gap found in the literature to 

investigate and answer the question of the best-fitted model to predict the volatility of 
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cryptocurrency returns. The previous literature suggested conflicting findings on which model can 

accurately forecast the volatility of cryptocurrency market. Therefore, Chapter Two aims to answer 

that question by applying six models on twelve cryptocurrency returns. The cryptocurrency returns 

span from the most dominant cryptocurrency to less dominant cryptocurrencies in terms of market 

capitalization. Not only that, but also different frequencies have been examined to understand 

better which model is the best-fitted model to predict the volatility of cryptocurrency returns in 

terms of each frequency: daily, weekly, and monthly.  

The findings of the univariate regressions utilizing the Mincer and Zarnowitz (1969) 

regressions with the Newey-West (1987) heteroskedasticity and autocorrelation consistent 

standard errors are shown in Chapter Two. It analyses the outcomes of six models: GARCH, 

EGARCH, IGARCH, GJR-GARCH, LRE, and HAR. Each model has its justifiable reason to be 

applied in Chapter Two. For example, the Lagged Realized Volatility model assumes that volatility 

occurs within a Markov process, which signifies that its period is predictive of future data (Kourtis 

et al. 2016). Also, the GARCH model can capture the clustering in volatility (Bollerslev, 1986). 

Furthermore, the EGARCH model can tolerate the asymmetric effects of negative and 

positive innovations (Nelson, 1991). Too, the IGARCH model accounts for the influences of past 

squared shocks with persistent data that remain essential to forecasting future time horizons 

(Bentes, 2015). Moreover, the GJR-GARCH model's main advantage of this model rests on its 

ability to analyze asymmetric behaviours (Nugroho et al., 2019). Lastly, the Heterogeneous 

Autoregressive model can estimate the long memory behaviour and describe the sign and size 

asymmetries (McAleer and Medeiros, 2008). 

The univariate regressions results of Chapter Two for 1-day horizons show that the HAR 

model outperforms the other models. However, the univariate regressions for 7-day horizons, on 

the other hand, demonstrate that the EGARCH model has the best explanatory power of all the 

investigated models. Furthermore, the univariate regressions for 30-day horizons show that the 

EGARCH model has the most significant explanatory power of all the study models. In addition, 

the study reported the outcomes of the encompassing regressions. The encompassing regressions 

enable a direct comparison of two sets of predictions to determine if one's beneficial information 

dominates the other, making it redundant (Cook, 2014). The HAR + EGARCH models have the 

best explanatory power among the different pairings of models, according to the comprehensive 

regressions with Newey-West Standard Errors for a 1-day prediction horizon.  
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Similarly, for the 7-day prediction horizon, the encompassing regressions with Newey-

West Standard Errors show that the HAR + EGARCH pair has the best explanatory power among 

the other pairings of models. Furthermore, the encompassing regressions with Newey-West 

Standard Errors for the 30-day prediction horizon demonstrate that the HAR + EGARCH models 

have the most significant explanatory power of the other pairings of models. The out-of-sample 

analysis was performed.  

Shifting the focus on which is the best-fitted model to predict the volatility of 

cryptocurrency retunes to examining the exogenous factors that might affect the returns of the 

cryptocurrency market. One of the critical elements for investors to consider when making 

investment decisions has been the economic uncertainty affecting the cryptocurrency market. The 

economic uncertainty has a tremendous impact on investors, affecting both ordinary market 

participants and cryptocurrency investors. Also, risk aversion rises among investors during times 

of uncertainty, causing a shift towards secure assets such as government bonds or gold while 

decreasing exposure to risky assets such as equities. Therefore, diversification is becoming 

increasingly important as investors attempt to spread risk across several asset classes, including 

alternative assets such as real estate and cryptocurrency. Economic uncertainty also influences 

corporate decision-making, causing companies to postpone investments or slash expenses. 

Likewise, central banks frequently modify interest rates in response to such uncertainty, which can 

influence the returns on fixed-income assets. 

Economic uncertainty can push cryptocurrency supporters to head to safety, with some 

investors perceiving cryptocurrencies, particularly Bitcoin, as "digital gold" and a store of value 

resistant to government manipulation. However, the volatile nature of cryptocurrencies might 

increase during economic instability, providing difficulties for investors. During difficult 

economic times, regulatory monitoring of cryptocurrencies may increase, possibly impacting 

market stability and investor trust. Also, because of their limited supply, some cryptocurrency 

investors see these digital assets as hedges against economic instability and inflation. However, 

the association between cryptocurrencies and traditional markets is not always stable, and they 

may not always act as a solid hedge during extreme market shocks. For instance, Bouri et al. (2017) 

investigated whether Bitcoin may be used to hedge global uncertainty, as assessed by the first 

primary component of the VIXs of 14 established and emerging equities markets. After 

decomposing Bitcoin returns into multiple frequencies, they used quantile regression and provided 
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evidence of heavy tails. They show that Bitcoin functions as a hedge against uncertainty, 

responding favourably to uncertainty at higher quantiles and shorter frequency fluctuations of 

Bitcoin returns. 

Nevertheless, Mokni et al. (2021) examined Bitcoin, contradicting the aggregate and 

categorical EPU in the United States. They utilized monthly data from September 2011 to 

December 2019. The empirical findings demonstrate that Bitcoin is not a way to hedge against the 

aggregate US EPU. Furthermore, Bitcoin's hedging behaviour may be seen at the bottom and top 

of the Bitcoin return curve. Similarly, Balcilar et al. (2017) used a quantile-based model to assess 

the predictability of cryptocurrency (Bitcoin). With the exception of bear and bull market 

conditions, their statistics suggest that trade volume has predictive potential over cryptocurrencies. 

Demir et al. (2018) show that the EPU index positively impacts Bitcoin returns and can predict 

Bitcoin price returns. According to Demir et al. (2018), uncertainty regarding government policies 

may cause investors to lose trust in their fiat currencies or be anxious about the larger economy, 

especially in the aftermath of the 2008 financial crisis. As a result, a change in the EPU may cause 

investors to review their portfolios to reduce future value loss. The effect and connectedness of the 

uncertainty indices on cryptocurrency returns have not been thoroughly investigated. 

Therefore, economic uncertainty throws a wide net across traditional and cryptocurrency 

investors, impacting risk tolerance, diversification tactics, and investment decisions. While some 

investors consider cryptocurrencies a potential safe haven, their volatility and complicated 

connection with traditional assets show the multiple nature of economic uncertainty's influence on 

the financial landscape. Managing the consequences of economic uncertainty remains a top 

priority for investors in various financial markets. Therefore, nowadays, economic uncertainty 

factors have contributed directly and indirectly to investors' behaviours and shaped their 

investment decisions. These economic uncertainty factors vary between economy, policy, price, 

attention, and environmental attention uncertainty indices. Consequently, the relationship between 

cryptocurrency and various uncertainty indices, such as geopolitical risk (Aysan et al., 2019), the 

volatility index (Akyildirim et al., 2020), news implied volatility (Manela and Moreria., 2017), 

and sentiment index (Corbet et al., 2020), has already been studied in the current finance literature.  

Some studies aim to determine the hedging and forecasting capabilities of certain assets. 

For example, Hasan et al. (2022) used the Quantile-on-Quantile approach to explore the hedging 

and safe-haven qualities of cryptocurrency policy uncertainty (UCRY). According to their results, 
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the UCRY index hedges against gold and the DJ Islamic Index. The UCRY index, on the other 

hand, does not hedge Bitcoin returns in different quantiles. Furthermore, Shang et al.'s (2022) 

research analyzed and compared the UCRY Policy's predictive potential with numerous standard 

predictors for the gold market using a newly created cryptocurrency policy uncertainty index 

(UCRY Policy) and an efficient forecasting approach called Dynamic Occam's Window (DOW). 

Their empirical findings show that the UCRY Policy has a significant predictive capacity in 

estimating weekly gold returns, surpassing several commonly used predictors from 2014 to 2022. 

Lucy et al. (2022) created the UCRY Policy index that they employed. Furthermore, in forecasting 

weekly gold returns, the DOW approach with different thresholds beats dynamic model 

averaging/selection (DMA/DMS) and other standard econometric models.  

Shaikh (2020) examined the Bitcoin market and EPU. His study assessed the economic 

policy uncertainty (EPU) in the US, the UK, Japan, China, and Hong Kong, equity market-specific 

uncertainty (EMPU), and the global MPU indices of other vital economies. Furthermore, the model 

incorporates control variables, such as VIX and SPX returns. The robust assessments from the 

quantile regression and Markov regime-switching models reveal that EPU affects Bitcoin returns. 

This effect can be described by one of the study's critical conclusions that Bitcoin returns are more 

sensitive to EPU in the United States, China, and Japan, while the uncertainty in the Bitcoin returns 

and equity market are negatively associated. 

Focusing on EPU indices on cryptocurrency returns only, Nguyen and Nguyen (2023) also 

evaluated the short- and long-term effects of crypto-specific policy uncertainty and overall 

economic policy uncertainty (EPU) on Bitcoin exchange inflows. Their study found that crypto-

specific policy uncertainty has short-term and long-term effects on BTC exchange inflows, but the 

general EPU explains these inflows only in the short run. The authors also found that BTC 

"Granger" exchange inflows exacerbate price volatility. Furthermore, the authors demonstrate that 

BTC volatility responds strongly and persistently to shocks to its exchange inflows.  

Xia et al. (2023) further explored the relationship between the Economic Policy 

Uncertainty (EPU) and Cryptocurrency Uncertainty (UCRY) indices and BTC volatility. 

According to their findings, in-sample calculations reveal that the worldwide EPU index 

significantly negatively impacts long-term Bitcoin volatility. The UCRY indexes, on the other 

hand, have a beneficial impact on long-term Bitcoin volatility. Out-of-sample validation reveals 

that the One-Side Asymmetric GARCH-MIDAS with UCRY price index is the best-performing 
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model, and forecasting models, including the UCRY indices, outperform models with global and 

national EPUs. Despite their restricted breadth, UCRY indices have emerged as a credible data 

source for driving Bitcoin trading behaviours. 

These researches and findings outlined the potential gap in the literature that need to be 

investigated. The questions of which uncertainty index can strongly affect the returns of the 

cryptocurrency market? Which uncertainty indices pair can strongly affect the returns of the 

cryptocurrency market during bear market periods? Which uncertainty indices pair can strongly 

affect the returns of the cryptocurrency market during bull market periods? have been picked to be 

explored to bridge the gap in the literature. Chapter Three aims to answer those questions by 

measuring the relationships between cryptocurrency's returns with multiple indices. Each index 

has its measurement and concentrates on a different aspect of possible linkages that might affect 

the returns of the cryptocurrency market. The first and second indices are the Cryptocurrency 

Policy Uncertainty Index (UCRY Policy) and the Cryptocurrency Price Uncertainty Index (UCRY 

Price). The two indices have been generated from 726.9 million data text mining. The third index 

is "the Cryptocurrency Environmental Attention (ICEA) Index, which aims to capture the relative 

extent of media discussion around the environmental impact of cryptocurrencies based on 778.2 

million data". The fourth and fifth indices are "Based on 663.9 million news stories from 

LexisNexis News & Business, we provide two new indices for central bank digital currency 

(CBDC) analysis: the CBDC Uncertainty Index (CBDCUI) and CBDC Attention Index 

(CBDCAI)".  

The sixth index is the Economic Policy Uncertainty Index for Europe, an indicator created 

using newspaper stories about policy uncertainty from major newspapers. It calculates the number 

of newspaper stories containing uncertain or uncertain, economic or economy, and one or more 

policy-relevant words. The seventh index is the Twitter Economic Uncertainty (TEU) index, 

derived from tweets from June 2011 to the present. Thomas Renault (University Paris 1 Panthéon-

Sorbonne) created it with the help of Scott R. Baker (Northwestern), Nicholas Bloom (Stanford), 

and Steve Davis (University of Chicago). The models applied in this research will be the Quantile 

Regression and the Granger Causality model.  

In this chapter, the analysis results show that the daily and weekly data of the Twitter-based 

Economic Uncertainty (TEU) index has insignificant effects on cryptocurrency returns across all 

quantiles, which are consistent with Aharon et al. (2022) study findings. Therefore, the Twitter-
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based Economic Uncertainty (TEU) index exhibits a lack of short and long-term effects on 

cryptocurrency returns. However, the weekly data of the Cryptocurrency Policy Uncertainty index 

significantly affects bear periods for cryptocurrency returns across some quantiles, which 

contradicts the results of Karaömer (2022) research findings. On the other hand, the 

Cryptocurrency Price Uncertainty index exhibited less effects on cryptocurrency returns. The 

findings During the crisis period supported these results by revealing more evidence of the effect 

of the Cryptocurrency Policy Uncertainty index on cryptocurrency returns for the 10%, 80%, and 

90% quantiles. Although they study only BTC volatility, these results support the research findings 

of Xia et al. (2023) study that the UCRY indices have positive effects on long-term Bitcoin 

volatility. 

Correspondingly, the Central Bank Digital Currency Uncertainty Index, the Central Bank 

Digital Currency Attention Index, the Cryptocurrency Environmental Attention (ICEA) index, and 

the monthly data of the Economic Policy Uncertainty Index for Europe index have an insignificant 

relationship on most cryptocurrency returns across most of the quantiles. These results support the 

research findings of Ayadi et al. (2023) for the first two indices. However, the result of the ICEA 

index contradicts the findings of Wang et al. (2022) 's study. Also, the results of the EPUIE index 

contradict the findings of Shaikh's (2020) research findings. During the crisis period, the findings 

confirm the full sample results of an insignificant relationship between those indices and the 

returns for almost all cryptocurrency returns. Therefore, investors in the cryptocurrency market 

have trust concerns with some uncertainty indices and shape their investment decisions based on 

other external and internal factors. 

The Multivariate Quantile Regression model was applied as well. Unexpected results have 

been obtained. The results of the multi-indices effect on cryptocurrency returns showed that the 

early quantile (quantile = 5) exhibits insignificant impact across most cryptocurrency returns, 

which means that these indices have less effect when the market experiences a bull period wave. 

These results supported the findings of (Aharon et al. 2022, Xia et al. 2023, Ayadi et al. 2023, and 

Shaikh, 2020). For the rest of the quantiles, the results show no evidence of a significant impact 

of the indices on most of the returns of cryptocurrencies, except for the 95% quantiles for The 

UCRY Price Index and the Cryptocurrency Environmental Attention (ICEA) index.  

Also, the pairs effects approach has been applied, and it has been found that the UCRY 

Policy Index + Central Bank Digital Currency Attention Index pair was the most influential pair 
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when the bull period wave hit the market. These results contradict the results of Karaömer (2022) 

research findings that reveal that the UCRY Policy negatively influences cryptocurrency returns 

throughout significant events. At the same time, the UCRY Policy Index + the Central Bank Digital 

Currency Attention Index pair is the least influential pair on cryptocurrency returns when the bear 

period wave hits the market. Nonetheless, when accounting for only the bear period wave, the 

UCRY Policy Index + the Cryptocurrency Environmental Attention (ICEA) index pair is the most 

influential on cryptocurrency returns under study. At the same time, the UCRY Policy Index + the 

Cryptocurrency Environmental Attention (ICEA) index pair is the least influential pair on 

cryptocurrency returns when the bull wave period hits the market.  

Moreover, the Granger Causality Test was performed and applied. The results of the daily 

data of the Twitter-based Economic Uncertainty (TEU) index and cryptocurrency returns at lagged 

order (LO) = 1 reveal an insignificant relationship. This result is consistent with Aharon et al. 

(2022) study. In contrast, the weekly data show significant and strong relationships between the 

index and all the cryptocurrency returns except for XLM returns, which contradict the results of 

the Aharon et al. (2022) study. Also, for the LO = 6, there is a significant relationship for all 

cryptocurrency returns except for EOS, XLM, and ETC returns in the full sample results and 

except for XRP, LTC, EOS, XLM, DASH, and ETC returns during crisis period results while the 

weekly data show there is a significant relationship for all cryptocurrency returns. These results 

indicate the long-term effect of the daily and weekly data of the Twitter-based Economic 

Uncertainty (TEU) index on cryptocurrency returns.  

The UCRY Policy Index and the UCRY Price Index Granger Causality Test results 

significantly affect all cryptocurrency returns except for BTC returns at LO =1, which support the 

results of Karaömer (2022) research findings. Also, there is no evidence of a significant impact of 

cryptocurrency returns on the UCRY Policy Index and UCRY Price Index. Still, XRP, LTC, and 

ETC returns significantly affect the UCRY Policy Index, and BCH and DASH returns significantly 

affect the UCRY Price Index. During the crisis period, results confirmed these results. Too, there 

is no evidence of a significant impact of cryptocurrency returns on the UCRY Policy Index and 

the UCRY Price Index. 

Nevertheless, for the UCRY Policy Index, XRP, LTC, and ETC returns significantly affect 

the UCRY Policy Index, while BTC and XMR returns showed no evidence of any impact from 

the UCRY Policy Index at LO = 6. Also, for the UCRY Price Index, BCH and DASH returns 
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significantly affect the UCRY Price Index, while all cryptocurrency returns showed strong 

evidence of impact from the UCRY Price Index at LO = 6. This result supports Xia et al.'s (2023) 

study that the UCRY indices positively affect long-term Bitcoin volatility. 

The Central Bank Digital Currency Uncertainty Index (CBDCUI) Granger Causality Test 

results show a significant effect between the CBDCU Index and ETH, XRP, BCH, EOS, XLM, 

DASH, ETC, and the rest of the cryptocurrencies reveal no evidence of a significant effect at the 

LO = 1. Also, there is no evidence of a significant impact of cryptocurrency returns on the CBDCU 

Index. Nevertheless, there are significant effects for the CBDCU Index on all the cryptocurrency 

returns at LO = 6, and there are significant effects from BTC, LTC, EOS, DASH, and ETC returns 

on the CBDCU Index, and the rest of the cryptos show no effect at all. The results during the crisis 

period confirmed most of the full sample results. 

The Central Bank Digital Currency Attention Index and the Cryptocurrency Environmental 

Attention (ICEA) index Granger Causality Test results reveal significant effects between the 

indices index and all the cryptocurrency returns except for BTC. This result supports the findings 

of Wang et al. (2023) 's study. They found that CBDC attention significantly influences 

cryptocurrency markets. Similarly, the result supports the findings of Wang et al. (2022) 's study. 

The ICEA shows stronger correlations between environmental attention, Bitcoin, and UCRY 

indexes during big events that significantly affect the values of digital assets. 

Furthermore, there is no evidence of a significant impact between cryptocurrency returns 

and the two indices at LO =1. Likewise, there is a significant effect on all cryptocurrency returns 

from the Central Bank Digital Currency Attention Index. Correspondingly, there is a significant 

effect from XRP, LTC, BCH, EOS, and ETC returns on the CBDCA Index. Similarly, the ICEA 

index significantly affects all cryptocurrency returns. Only XRP, LTC, and EOS significantly 

affect the ICEA index. The results during the crisis period confirmed most of the full sample 

results. 

The Monthly data of the Economic Policy Uncertainty Index for Europe index and 

Cryptocurrencies returns Granger Causality Test results show no evidence of a significant impact 

from the index on cryptocurrencies returns, which contradicts the findings of Shaikh's (2020) 

research findings. However, there is an apparent significant effect from the cryptocurrency returns 

on the Economic Policy Uncertainty Index for Europe index. After considering the LO = 6, the 

results show that there is still a limited effect on some cryptocurrency returns, such as the LTC, 
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XLM, and DASH. The rest of the cryptocurrency returns show no effect from the Economic Policy 

Uncertainty Index for Europe index. Also, cryptocurrency returns significantly affect the 

Economic Policy Uncertainty Index for Europe index at a 1% significant level. The results during 

the crisis period confirmed the full sample results. 

It is crucial also to consider the risk in the cryptocurrency market. Therefore, covariance 

forecasting is becoming increasingly crucial in cryptocurrency funds and portfolios as the digital 

asset market becomes more complicated. With cryptocurrencies infamous for their high volatility 

and varied array of assets, there is an obvious need for accurate risk management and 

diversification measures. Hence, accurate covariance analysis enables investors to assess the risk 

of owning numerous cryptocurrencies in their portfolios, allowing them to build portfolios that 

strike an optimal balance of risk and return. In addition, investors may limit the effect of significant 

price changes in individual portfolios by diversifying based on covariance insights, enhancing 

portfolio stability and resilience. 

Additionally, covariance forecasts are critical in optimizing asset allocation techniques, 

allowing investors to adapt their cryptocurrency mix to specific risk-return objectives. This 

strategy discovers assets with low or negative correlations, which might provide considerable 

hedging benefits during periods of market turmoil. Covariance analysis may also help with the 

effective management of volatility, which is a feature of cryptocurrency markets and may 

contribute to enhanced portfolio performance by directing asset selection and rebalancing choices. 

Furthermore, these forecasts are useful in analyzing risk-adjusted returns, an essential 

criterion for measuring portfolio performance in the cryptocurrency industry. Covariance analysis 

enables bespoke methods linked with individual risk tolerance and financial goals, becoming 

increasingly important as investors seek personalized investment strategies. Accurate covariance 

forecasting is the foundation of successful risk management, portfolio optimization, and navigating 

the complex and unexpected world of digital assets in the ever-changing cryptocurrency market. 

Therefore, based on the literature on the cryptocurrency connectedness within the 

cryptocurrency market, Bouri et al. (2019) employ a frequency domain Granger causality approach 

to discover that Bitcoin is not the only source of volatility, emphasizing the importance of other 

prominent cryptocurrencies in the network of volatility spillovers. Koutmos (2018) reveals that 

spillovers change over time and point to the increasing interconnection of cryptocurrencies, 

implying a higher level of contagion risk. The report also emphasizes Bitcoin's critical role in the 
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return and volatility spillover network. Corbet et al. (2018) investigate the volatility and return 

spillovers of three prominent cryptocurrencies (Bitcoin, Ripple, and Litecoin). Using time-domain 

connectivity measures, they discover that Bitcoin returns significantly influence Ripple and 

Litecoin returns, whereas the response impact is negligible. This result reveals Bitcoin's dominance 

in the return connectedness network. However, the authors' conclusions about volatility spillovers 

differ from those of Koutmos (2018). They found that Litecoin and Ripple influence Bitcoin, but 

Bitcoin has limited influence on Litecoin and Ripple. Furthermore, Ripple and Litecoin are 

inextricably connected through return and volatility channels. Corbet et al. (2018) go on to 

demonstrate that the three digital assets are distinct from traditional assets, signalling that they 

have the potential to function as diversifiers. 

The literature on interrelationships and volatility dynamics in bitcoin markets is still in its 

early stages. Return and volatility spillovers measure intermarket links, which are essential in 

international finance and have considerable implications for portfolio and hedging decisions. This 

topic has received much attention in empirical studies, including increased market integration due 

to market openness, globalization, financialization, and technological improvements. Any 

evidence of high return and volatility spillovers between Bitcoin and other asset classes has the 

potential to affect asset selection and allocation, as well as regulators' policies to maintain the 

global financial system's stability. Bouri et al. (2018a) investigated the return and volatility 

spillover among Bitcoin, equities, currencies, stocks, bonds, and commodities. They found 

empirical evidence that Bitcoin is mainly associated with the commodities market and not isolated, 

while Ji et al. (2018) showed that the Bitcoin market is disconnected from other assets; as such, no 

asset plays an essential role in the Bitcoin market. Still, there appears to exist lagged and significant 

correlations. Bouri et al. (2018b) argued that Bitcoin price movements can be correctly predicted 

using data from the aggregate commodities index and gold prices. However, according to these 

researchers, Bitcoin is connected to some investment possibilities, such as commodities, but it is 

not linked to other investment opportunities, such as bonds and shares. Ji et al. (2019b) investigated 

commodities linkages with prominent cryptocurrencies and observed that cryptocurrency 

connectivity fluctuates over time and becomes increasingly intertwined in the system. They also 

noted that cryptocurrency price dynamics influence energy commodities. 

Similarly, Hayes (2017) showed a significant connection between cryptocurrencies and the 

energy market (electricity market) in terms of the requirement for electricity for cryptocurrency 
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mining. Furthermore, Adebola et al. (2019) report significant degrees of mean reversion 

movements in the values of Gold and some Cryptocurrencies with cointegrations. Gold prices and 

aggregate commodity price information can be used to forecast Bitcoin prices (Bouri et al., 2018a, 

2018b). However, according to Shahzad et al., 2019, Bitcoin, gold, and the commodities index 

could be better safe-haven assets for investors, although their performance fluctuates over time 

across stock market indices. Bitcoin not only exhibited these traits, but it also has hedging potential 

with stocks, according to Okorie (2019). 

Furthermore, Al-Yahyaee et al. (2019) revealed that when paired with crude oil and the 

S&P GSCI, Bitcoin and gold are capable of diversifying and hedging a portfolio, whilst Okorie 

(2019) highlighted the relevance of Bitcoin and the S&P500 for portfolio balance and 

diversification. As a result, Guesmi et al. (2019) demonstrate significant volatility spillovers 

between Bitcoin and other financial instruments such as gold and stocks and that an investment 

portfolio composed of gold, oil, Bitcoin, and equities can reduce portfolio risk. Furthermore, 

Cebrian-Hernandez and Jimenez-Rodriguez (2021) used Engle's (2002) Dynamic Conditional 

Correlation (DCC) model on a varied portfolio that included Bitcoin and ten other assets. The 

obtained findings demonstrate some variation in the fit of the various variables, emphasizing the 

uncorrelation concerning classic safe-haven assets such as gold and oil. When the CC-MGARCH 

model is used, the dynamic conditional correlation behaves better than the constant conditional 

correlation. 

The emphasis on predicting the covariance matrix for equities market returns has received 

much attention. Many types of research have lately been published. Multivariate GARCH models 

are commonly used to model and forecast covariance matrices for any market, particularly equities 

markets. Scholars' primary attention has yet to be on exploiting high-frequency data. Forecasting 

the covariance matrix is critical to portfolio design and strategy. Chou et al. (2009) proposed a 

range-based dynamic conditional correlation (DCC) model, which is a hybrid of the return-based 

DCC model and the conditional autoregressive range (CARR) model. According to them, a 

considerable improvement in volatility estimation efficiency can enhance the accuracy of 

estimating time-varying covariances. They examined the in-sample and out-of-sample results for 

six models, including MA100, EWMA, BEKK, CCC, range-based DCC, and return-based DCC, 

using the S&P 500 stock index and 10-year government bond futures. 
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The range-based DCC model surpasses all other models regarding the estimation and 

forecasting of covariance matrices. However, Fiszeder et al. (2019) noted that Engle's (2002) 

dynamic conditional correlation (DCC) model is exclusively dependent on closing prices. 

Consequently, they suggested a model incorporating high and low pricing into the DCC 

framework. They applied the novel approach to currency, equity, and commodity exchange-traded 

fund datasets. Their findings reveal that the novel model approach outperforms the standard DCC 

and range-based DCC models in three tests: in-sample fit, covariance predictions, and value-at-

risk forecasts. 

In addition, Bauwens et al. (2012) developed a similar DCC approach for realizing 

covariance modelling with the Wishart density. The proposed technique's mechanism to update 

the time-varying parameters differs. However, Vassallo et al. (2021) incorporated the conditional 

density score that defines the update rule into their system (Creal, Koopman, & Lucas, 2013). In 

the case of the Wishart density, scaling the score by the inverse of the Fisher information matrix 

produces the same updating algorithm as Bauwens et al. (2012). On the other hand, the two-scale 

sub-sampler proposed by Zhang et al. (2005), the multi-scale version proposed by Zhang (2006), 

the realized kernel introduced by Barndorff-Nielsen et al. (2008), which depends on 

autocovariance-based corrections, and the pre-averaging estimator proposed by Podolskij and 

Vetter (2009) and Jacob et al. (2009) are the main univariate approaches that the damage triggered 

by the noise is fixed. 

On the other hand, Callot et al. (2017) used penalized vector autoregressive models to 

describe and forecast large realized covariance matrices. They applied Lasso-type estimators to 

reduce dimensionality. They suggested that the dynamics were unstable when the data was 

aggregated from daily to lesser frequency. Furthermore, BEKK-GARCH models were utilized by 

Katsiampa, Corbet, and Lucey (2019) to demonstrate the existence of bi-directional positive shock 

transmission impacts between Bitcoin and both Ether and Litecoin as well as uni-directional shock 

transmission from Ether to Litecoin. It was discovered that a cryptocurrency's historical shocks 

and volatility have a major impact on its current conditional variance. However, they discovered 

evidence of bi-directional shock transmission effects throughout Bitcoin and Ether, as well as 

throughout Bitcoin and Litecoin, as well as uni-directional shock spillover from Ether to Litecoin. 

Furthermore, they discovered bi-directional volatility spillover effects between all three 
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cryptocurrency pairings. At last, it was demonstrated that time-varying conditional correlations 

exist, with positive correlations predominating.  

Also, Katsiampa et al. (2019) tested eight cryptocurrencies using the Diagonal BEKK 

(Engle and Kroner 1995) and its asymmetric variation. Although it was discovered that all of the 

examined cryptocurrencies exhibit high levels of persistence of volatility over time, diagonal 

BEKK and asymmetric diagonal BEKK models revealed that cryptocurrency investors pay 

attention to news concerning Neo and the least attention to news relating to Dash. Meanwhile, 

Shocks in OmiseGo remain the most minor shocks, while shocks in Bitcoin remain the most 

shocks. Using both methodologies, identical results were obtained for conditional covariances, 

which were heavily influenced by cross-products of earlier error terms and previous conditional 

covariances, showing high dependency across cryptocurrencies. Because of its greater log 

probability value and lower information criteria values, the Asymmetric Diagonal BEKK model 

was also proved to be a superior strategy. 

These studies and findings drew the potential new gap in the literature to investigate the 

forecasting of the covariance matrix of cryptocurrency returns. Chapter Four aims to answer the 

question of the best-fitted model to forecast the covariance matrix of cryptocurrency returns by 

using five models on ten cryptocurrency returns to forecast the covariance matrices. Then, forecast 

evaluation criteria are applied to evaluate each model's forecast by applying three loss functions 

as the first phase: the Euclidean distance (Le), the Frobenius distance (Lf), and the multivariate 

quasi-likelihood loss function (LQ). Then, a statistical comparison of the forecast approach is 

applied by evaluating the forecast and determining the best model to provide accurate forecasting 

ability. The Mean Squared Error (MSE) and Mean Absolute Error (MAE) were used in this 

approach as the second phase. The cryptocurrency returns span from the most dominant 

cryptocurrency to less dominant cryptocurrencies in terms of market capitalization. Not only that, 

but also different frequencies have been examined to understand better which model is the best-

fitted model to forecast the covariance of cryptocurrency returns in terms of daily and weekly 

frequency. 

The results of the first phase reveal that the Lagged Realized Volatility model is the best-

fitted model across all three multivariate loss functions for the daily and weekly cryptocurrency 

returns. The results of this phase support the findings of Huang et al. (2019) study. Also, The result 

is supported by most of the second-phase findings. The second phase findings reveal that the best-
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fitted model to forecast the daily covariance matrix is the Lagged Realized Volatility model when 

applying the Mean Squared Error measures, which support the findings of Huang et al. (2019) 

study. Also, it supports the fact obtained from several empirical evidence that historical volatility 

estimators derived from daily data are inferior to their high frequency-based data (Andersen and 

Bollerslev, 1998; Andersen, Bollerslev, and Diebold, 2007; Blair et al., 2001). However, when 

using the Mean Absolute Error measures, only the multivariate quasi-likelihood loss function 

endorses the finding of the forecast evaluation criteria results for the daily returns. The other two 

loss functions reveal that the Asymmetric DCC model is the best-fitted model to forecast the daily 

covariance matrix, supporting Asai and McAleer, (2015) 's study. 

 Also, when applying the Mean Squared Error measures, the best-fitted model to forecast 

the weekly covariance matrix is the Lagged Realized Volatility model based on the LE and LF 

loss functions. This finding supports the forecast evaluation criteria results for the weekly returns. 

However, the LQ loss function reveals different results than the forecast evaluation criteria for 

weekly returns. It shows that the Asymmetric DCC model is the best-fitted model. However, when 

applying the Mean Absolute Error measures, the Asymmetric DCC model is the best-fitted model 

to forecast the covariance matrix for weekly returns. This finding does not support the weekly 

results of the forecast evaluation criteria across all three multivariate loss functions. Instead, the 

Asymmetric DCC is the best-fitted model to forecast the covariance matrix for weekly 

cryptocurrency returns. 

Overall, this thesis is designed to predict the volatility of cryptocurrencies using high-

frequency data, examine the relationships and effects of diverse economic policy uncertainty 

indices on cryptocurrency market returns, and forecast the covariance matrices in the 

cryptocurrency market. Different models have been used, and various robustness checks have been 

applied to validate the empirical findings of each stage of this thesis. Finally, the conclusion 

summarizes the results and the suggested potential areas for future scholars to study and explore. 
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Chapter Two: Predicting the Volatility of Cryptocurrencies Using 
High Frequency Data 

 
 

1. Abstract 
This study seeks to identify the best model for forecasting the volatility of cryptocurrency 

returns that can predict the volatility of dominant and less prominent cryptocurrencies using high-

frequency data. The GARCH, IGARCH, EGARCH, GJR-GARCH, HAR, and LRE models have 

been examined, and the univariate and encompassing regression have been applied. For the 

univariate regression findings, the HAR model outperformed the other models when aiming to 

forecast one day ahead while the EGARCH model outperformed the rest of the models when 

forecasting the seven and thirty days ahead. Also, the HAR + EGARCH pair outperformed the rest 

of the model pairs when forecasting the one, seven, and thirty days ahead. The out-of-sample 

analysis revealed mixed results apart from the primary analysis. These findings will significantly 

help investors, portfolio managers, and financial firms. 

 

 

2. INTRODUCTION 
 

Cryptocurrencies are often considered among the most innovative financial trading 

instruments since the turn of the millennium. In 2008, Nakamoto proposed Bitcoin as a new 

financial asset. According to Nakamoto (2008), Bitcoin is a peer-to-peer transaction that uses an 

electronic cash system permitting users to send online payments to each other directly without the 

need for intermediate financial institutions. Also, cryptocurrencies are not linked to regulators or 

authorities, and Bitcoin has no material representation. Bitcoin was first traded in 2009. Since then, 

Bitcoin has been the most prominent digital currency on the cryptocurrency market. 

Also, a massive number of new cryptocurrencies have been introduced in the financial 

markets. As a result, many scholars have sought to simplify and clarify their behavior. By forming 

a secured electronic cash system, cryptocurrencies permit people to transfer payments online 

(Cheah and Fry, 2015). Kyriazis, Daskalou, Arampatzis, and Prassa (2019) distinguished 

cryptocurrencies from other traditional financial assets. The cryptocurrency's value is not based on 

tangible assets or the country's economy, but instead, its value relies on the security of an algorithm 
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that tracks all transactions. The low transaction costs, peer-to-peer cash system, and not being 

associated with government authorities are the factors that have contributed to the growth in the 

use of cryptocurrencies. Digital currencies have been used as a new medium of payment yet fully 

digitalized. Although the initial perception of cryptocurrencies has been digital, they have different 

characteristics than traditional currencies. Not only that, but also cryptocurrencies have been used 

as new financial instruments for innovative investments. 

Focusing on its essential and rapid use as a new investment tool by investors and financial 

institutions, this chapter aims to evaluate the capability of six models to forecast the volatility of 

twelve cryptocurrency returns. Also, it focuses on examining these models in three horizons, daily, 

weekly, and monthly, to see if they might impose different results when they experience or 

examine more extended periods as inputs.  
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3. LITERATURE REVIEW 
Interest in cryptocurrencies is not fading, which, in turn, triggers the attention of scholars, 

financial market agents, and experts in high-frequency data analysis techniques. Also, a significant 

body of literature on Bitcoin has been developed, given its innovative features and massively 

volatile swings. To illustrate, Corbet, Lucey, and Yarovaya (2018); Cheah and Fry (2015); and 

Cheung, Roca, and Su (2015) identified the existence of bubbles in the Bitcoin market. Their 

studies concluded that Bitcoin prices are disposed to speculative bubbles. Some authors have 

focused on whether Bitcoin is a currency or an asset. As such, Luther and White (2014) contend 

that Bitcoin can become a medium of exchange. However, Wu and Pandey (2014) concluded that 

although Bitcoin is not valuable as a currency, it can be useful and play an essential role in 

increasing an investor's portfolio's efficiency. That study was supported by Baur, Hong, and Lee 

(2018), who demonstrated that Bitcoin accounts are primarily used as an investment tool rather 

than an alternative currency. Also, Kristoufek (2015) found that Bitcoin reveals properties of both 

traditional and speculative financial assets. Therefore, it is essential to investigate 

cryptocurrencies' volatility and portfolio selection to benefit investors to make wise and clever 

decisions when investing in cryptocurrency markets. 

Moreover, unlike traditional currencies, cryptocurrencies are characterized by a high level 

of volatility, which has attracted scholars' attention to identifying accurate estimation and 

prediction models. These models are used to best capture the most available and accurate results 

with regard to the chosen variables. Researchers most frequently employ the volatility GARCH 

model in the context of studies into conditional variance, which is directly correlated to the 

cryptocurrency market. Hansen and Lunde (2005) confirmed the efficiency of the model when 

analyzing IBM returns, comparing GARCH against superior predictive ability (SPA) and the 

reality check (RC) for data snooping, which proved to be less accurate in assessments. On the other 

hand, aiming to identify the most effective model for volatility for four cryptocurrencies, namely 

Bitcoin, Ethereum, Ripple, and Litecoin, Caporale and Zekokh (2019) mentioned the possibility 

of using over 1,000 diverse GARCH models. Based on the study findings, the Value-at-Risk and 

Expected Shortfall predictions were best supported by the Model Confidence Set procedure for the 

loss functions. Caporale and Zekokh (2019) concluded that standard GARCH models tend to yield 

incorrect VaT and ES predictions and ineffective risk management. Caporale and Zekokh (2019) 

findings contradict Hansen and Lunde (2005) 's study indicating the applicability of GARCH 
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models for cryptocurrencies. Instead, Caporale and Zekokh (2019) suggested using models that 

allow asymmetries and regime-switching. Hypothesizing the potential inefficiency of GARCH 

models applied to volatility estimation for cryptocurrencies, the conflicting findings for the 

efficiency of diverse models demonstrate a lack of agreement among researchers regarding which 

model is most suitable and applicable to the volatility analysis of cryptocurrencies. 

Similarly, Chu, Chan, Nadarajah, and Osterrieder (2017) evaluated several models and 

concluded that the combination of IGARCH and GJRGARCH models provided the optimal fit. 

One of the observations reported by Chu, Chan, Nadarajah, and Osterrieder (2017) is the varying 

scope of the robustness of different models when applied to different cryptocurrencies. This 

finding implies that there is no universal model suitable for all cryptocurrencies. For example, with 

regard to Bitcoin, Dash, Litecoin, Maidsafecoin, and Monero, Chu, Chan, Nadarajah, and 

Osterrieder (2017) found that the IGARCH (1, 1) model offers the best fit. Nevertheless, 

GJRGARCH (1, 1) is the best-fitted model for Dogecoin, and GARCH (1, 1) is Ripple's best-fitted 

model. However, in terms of goodness-of-fit, Katsiampa (2017) found that the AR-CGARCH was 

the best-fitted model for Bitcoin. Katsiampa (2017) applied the optimal conditional 

heteroskedasticity model and provided evidence that the AR-CGARCH model was effective in 

conditional variance analysis for both short-run and long-run components for Bitcoin.  

A closer analysis of studies focusing on high-frequency data for cryptocurrencies revealed 

a lack of consistency among researchers regarding the use of specific methodologies and prediction 

tools. The diversity of instruments researchers and scholars use indicates the relative absence of 

agreement and solid evidence of the most efficient tools. For example, Katsiampa, Corbet, and 

Lucey (2019) applied Diagonal BEKK and Asymmetric Diagonal BEKK methodologies to intra-

day data for eight cryptocurrencies. The researchers assessed conditional volatility dynamics and 

co-movements among the cryptocurrencies. With a few studies exploring cryptocurrencies other 

than Bitcoin and Ethereum, the report revealed that investors are paying increasing attention to 

news related to less popular cryptocurrencies, namely Neo. In line with the findings reported by 

Catania and Sandholdt (2019), Katsiampa, Corbet, and Lucey (2019) provided evidence of the 

high level of persistence of volatility over time for cryptocurrencies. Katsiampa, Corbet, and Lucey 

(2019) concluded that the Asymmetric Diagonal BEKK methodology is the superior model but 

did not specify the other models with which this method was compared. 
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Also, Mensi, Al-Yahyaee, and Kang (2019) studied the long memory and structural breaks 

and their impact on Bitcoin and Ethereum price returns. The study applied four different GARCH 

models: ARFIMA-GARCH, ARFIMA-FIGARCH, ARFIMA-FIAPARCH, and ARFIMA-

HYGARCH. The study results explained the dual long memory property of Bitcoin and Ethereum, 

along with contrasting the market efficiency and random walk hypothesis. The study also found 

that the long memory in the mean and variance decreases significantly when accounting for 

structural breaks indicating shifts in mean and variance. The study concludes that not taking into 

account the long memory and structural breaks when using GARCH model estimations would lead 

to volatility persistence overestimating the Bitcoin market and delaying the prediction process. 

Also, in the out-of-sample analysis, the FIGARCH model with structural breaks variables provides 

a superior forecasting accuracy performance compared to the other models. The study findings 

would greatly benefit investors when accounting for future volatility and implementing hedging 

strategies.  

Another study by Abakah, Gil-Alana, Madigu, and Romero-Rojo (2020) analyzed the 

volatility persistence in 12 leading cryptocurrencies with accounting for the possibility of 

structural breaks. The study findings indicate that both squared and absolute returns exhibit long 

memory features. Nevertheless, when taking into account the structural breaks, it appeared that 

there was a reduction in the degree of persistence in the cryptocurrency market. Furthermore, 

Catania and Grassi (2022) provide a novel dynamic model that takes into account long memory 

and asymmetries in the volatility process, as well as time-varying skewness and kurtosis. The 

empirical research conducted on 606 cryptocurrencies demonstrates that an accurate screening for 

cryptocurrency volatility is essential. Forecasting results show that incorporating time-varying 

skewness improves density, volatility, and quantile projections over a range of time horizons. 

Mensi, Sensoy, Aslan, and Kang (2019) also used the asymmetric volatility model to trace 

similarities between the volatility of Bitcoin and major precious metal markets. Using high-

frequency data, Mensi, Sensoy, Aslan, and Kang (2019) confirmed the presence of significant 

volatility spill-over effects between cryptocurrency and metals. With these studies and findings, 

scholars could explore cryptocurrencies further using the recent best-fitted models that have been 

identified and recognized.  

Researchers have discussed Other factors shaping cryptocurrency returns volatility: the 

central bank monetary policy announcements, the uncertainty of future values, high inflation, 
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significantly high risks, fear of sizeable losses, and tax treatment lifts. In a study of central bank 

monetary policy announcements, Corbet, McHugh, and Meegan (2017) relied on the GARCH 

estimation model and confirmed the direct but insignificant correlation between monetary policy 

and cryptocurrency returns. Researchers concluded that cryptocurrencies are subject to the same 

economic factors as traditional fiat currencies. Using the GARCH-MIDAS framework to forecast 

the daily, weekly, and monthly volatility of Bitcoin, Ethereum, Litecoin, and Ripple, Walther, 

Klein, and Bouri (2018) concluded that the most powerful driver of volatility is the Global Real 

Economic Activity factor. However, researchers admitted that the average forecast combination 

results are necessary for lower loss functions. Focusing on Bitcoin and Ether in investigating the 

volatility dynamics, Katsiampa (2019) provided evidence of the interdependencies of these two 

principal cryptocurrencies using the bivariate Diagonal BEKK model. Another important finding 

by Katsiampa (2019) is the significant effect of major news on conditional volatility and 

correlation. 

Despite the common opinion among scholars that cryptocurrency volatility follows the 

patterns of more traditional currencies, an increasing number of studies suggest the opposite and 

advocate an atypical analysis of cryptocurrency volatility. In particular, Baur and Dimpfl (2018) 

analyzed asymmetric volatility effects for 20 cryptocurrencies and revealed different asymmetries 

compared to equity markets. Specifically, it was reported that positive shocks tend to increase 

volatility to a greater extent than negative shocks. Similarly, Conrad, Custovic, and Ghysels (2018) 

relied on the GARCH-MIDAS model to extract cryptocurrencies' long-term and short-term 

volatility elements. The researchers confirmed the negative and significant effect of the S&P 500 

on the long-term volatility of the principal cryptocurrencies. This finding is irregular for volatility 

co-movements in financial markets. The atypical movement further suggested a close correlation 

between Bitcoin volatility and global economic activity, which provides a rationale for 

constructing improved forecasts of cryptocurrency volatility, which supports the findings of 

Walther, Klein, and Bouri (2018)' study. Although Corbet, Meegan, Larkin, Lucey, and Yarovaya 

(2018) provided evidence for the relative isolation of cryptocurrencies from traditional economic 

and financial assets and suggested that cryptocurrencies offer a short-term diversification benefit 

for investors. Other studies discuss the importance of the choice of analysis when predicting the 

volatility of cryptocurrencies. For example, Gurrib, Kweh, Nourani, and Ting (2019) analyzed 

returns associated with leading capitalized digital currencies. The researchers advised paying 
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attention to the distinction between currency movements and world macroeconomic news because 

one of these factors could affect the behavior of cryptocurrencies. They also compared the efficacy 

of various models, concluding that autoregression models were more effective than vector 

autoregressive models in predicting one day ahead, whereas random walk approaches were the 

least effective. 

Additionally, Trucíos (2019) explained that few researchers had questioned the 

predictability of risk measures. The study demonstrated that robust methods are more likely than 

non-robust ones to predict volatility and estimate the value at risk. The study emphasized that in 

forecasting and modelling Bitcoin risk measures, the presence of outliers plays an essential role 

that needs to be considered. Thus, identifying and recognizing the exogenous factors that affect 

cryptocurrencies will result in precise conclusions and findings.  

Focusing on the predictability of volatility, Hafner (2018) applied time-varying volatility 

principles to cryptocurrencies and correlated volatility to the recent nature of ICO. In particular, 

Hafner (2018) discovered that more mature cryptocurrencies tend to be less volatile than those that 

have been launched relatively recently. Hafner (2018) assumed that cryptocurrencies have 

stochastic volatility changes that are typical for financial markets, even though high volatility 

alternates with low volatility in a random manner. The hypothesis tested by Hafner (2018) was 

based on a spline-GARCH model using the long-return of cryptocurrencies for analysis. 

Additionally, using high-frequency data (thirty-minute returns), Akyildirim et al. (2019) 

analyzed the relationship between the price volatility of cryptocurrencies and the implied volatility 

of financial markets. The results confirmed the existence of strong correlations during periods of 

heightened financial market stress. However, in terms of informational efficiency, Bariviera, 

Zunino, and Rosso (2018) used high-frequency data to test whether cryptocurrencies have different 

unobservable dynamical structures compared to more traditional financial assets. Using 

permutation information theory quantifiers, Bariviera, Zunino, and Rosso (2018) noted the 

different dynamical structures of cryptocurrencies. 

Correspondingly, the literature review revealed results relating to multifractality and 

financial environments. Mensi, Lee, Al-Yahyaee, Sensoy, and Yoon (2019) contributed to the 

existing scholarly knowledge by exploring high-frequency asymmetric multifractality, long 

memory, and the weak-form efficiency of Bitcoin and Ethereum. They adapted and combined the 

generalized Hurst exponent with the asymmetric multifractal detrended fluctuation analysis that 
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took into account different market conditions. They used high-frequency data at 5, 10, and 15 

minutes. The study findings suggested that Bitcoin and Ethereum markets have structural breaks 

and asymmetric multifractality for upward and downward-trending. In turn, Zhang, Chan, Chu, 

and Sulieman (2020) offered an interesting perspective on the functioning of cryptocurrencies in 

the complex bull and bear market. They employed specific algorithms to locate turning points 

associated with bull and bear phases in high-frequency environments. The researchers explained 

that market efficiency and the liquidity of cryptocurrencies play a role during turbulent periods in 

the market. Detrended-fluctuation analysis was one of the frameworks of choice for the researchers 

to arrive at their conclusions. The study emphasized the importance of the efficiency of 

cryptocurrency markets to determine the profit potential of trading strategies. Hence, considering 

the efficiency of cryptocurrency markets, structural breaks, and asymmetric multifractality 

enhances the scholar's understanding of the functioning of cryptocurrency markets. 

A separate field of research on cryptocurrency volatility focuses on the correlation among 

specific cryptocurrencies and how they shape the volatility of each other. Using the three digital 

currencies with the highest capitalization (Bitcoin, Ethereum, and Ripple), Kyriazis, Daskalou, 

Arampatzis, Prassa (2019) observed and modeled the impact on other virtual currencies for the 

bearish market conditions from 1st January 2018 to 16th September 2018. The findings confirmed 

the complementarity of the majority of cryptocurrencies with Bitcoin, Ethereum, and Ripple. 

Furthermore, Katsiampa (2019) confirmed that Ether offers an effective hedge against Bitcoin.  

Bitcoin is the main cryptocurrency of interest for researchers and scholars, as evidenced by 

the largest number of studies devoted to this digital asset (Catania & Sandholdt, 2019; Aysan et 

al., 2019). In a recent study, Catania and Sandholdt (2019) explored the behavior of Bitcoin returns 

at different sample frequencies. They concluded that high-frequency returns are accompanied by 

a smooth intra-daily seasonality pattern and abnormal trade/volatility intensity on Thursdays and 

Fridays. Reflecting on high-frequency data analysis, the researchers found no evidence to predict 

Bitcoin returns at or above one day, even though the researchers succeeded in tracing patterns for 

frequencies up to 6 hours. Among the important conclusions reached, the researchers mentioned 

that cryptocurrency volatility has a long memory, leverage effect, and lagged jumps have no 

impact. Catania and Sandholdt (2019) emphasized that Bitcoin volatility has become easier to 

predict since 2017, but prediction accuracy strongly depends on the length of the forecast horizon. 

They relied on several heterogeneous autoregressive specifications to build models on three 
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different types of volatility. The results showed that long-term volatility had a significant impact 

on short-term traders. Also, seasonality has been explored in other research studies describing the 

field of cryptocurrencies. Specifically, Petrov, Golub, and Olsen (2019) study took seasonality into 

account to detail the newly developed intraday instantaneous volatility measure. The instantaneous 

volatility measure is based on draw-downs and draw-ups that serve as indicators of high-

frequencies functioning within financial markets. Relying on weekly data, the study applied the 

described assessment to detect the volatility seasonality patterns of EUR/USD, EUR/JPY, and 

EUR/GBP rates, Bitcoin exchange rates, and the S&P 500 index. Computed in directional-change 

intrinsic time, the study demonstrates evidence of long memory related to instantaneous volatility. 

Exploring new patterns in cryptocurrency trading encourages scholars to investigate and focus on 

the factors that affect or influence cryptocurrency volatility. 

 

3.1. REALIZED VOLATILITY: 
 Using the realized GARCH model to estimate Bitcoin returns' volatility better, 

Hung, Liu, and Yang (2020) provided some new exciting findings. Their first finding is that the 

jump-robust realized measure is more relevant and efficient in estimating Bitcoin volatility, and 

the realized measures deliver additional information on future volatility. Second, the Rational 

GARCH (RGARCH) model generates superior forecasting performance than the Standard 

GARCH (SGARCH) model for most cases, regardless of the volatility proxies. This finding 

supports Caporale and Zekokh (2019) 's study findings. Third, the RGARCH model leads to a 

substantial forecast error reduction relative to the GARCH model. Since the Mean Squared Error 

penalizes under/over predictions heavily, the forecast gains (benefit) of RGARCH models linked 

with the Mean Squared Error are marginally lower than those with the Mean Absolute Error. 

Fourth, the superior predictive ability test shows that the RGARCH model with tri-power variation 

generates a recovering performance in forecasting out-of-sample for Bitcoin volatility, especially 

during the increasing and decreasing markets. Fifth, because of the Bitcoin markets' recurrent 

jumps during the bearish market, the RGARCH model with jump-robust realized measures could 

provide stable forecasting performance. With these findings, it can be concluded that RGARCH 

with Mean Absolute Error can forecast better than the standard GARCH model when accounting 

for a better forecast for Bitcoin volatility. 
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Catania, Grassi, and Ravazzolo (2019) forecasted the prices of many cryptocurrencies, 

including Bitcoin, Litecoin, Ripple, and Ethereum, by evaluating the predictive abilities of several 

univariate and multivariate models. The study results show significant gains in forecasting two 

cryptocurrencies (Bitcoin and Ethereum) using combinations of univariate models and density 

predictions for all four cryptocurrencies depending on the time-varying multivariate models used.  

Ma, Liang, Ma, and Wahab (2020) used the MRS-MIADS model to increase the prediction 

accuracy of Bitcoin's realised variance and validate whether or not the relevance of leaps for 

realised variance forecasting varies over time. The researchers wanted to improve the conventional 

Mixed-data sampling model (MIADS) by characterising distinct jump volatility regimes. They 

also wished to offer a time-varying jump-driven transition probability between the two regimes. 

In the in-sample estimate, their analysis indicated that the leaps had another predictive capacity 

for the future realised variance (RV) of Bitcoin for the Time-Varying Transition Probability-

MIDAS-LCJ model. The predictive power shows high and low volatility regimes. The leverage 

effect has a detrimental impact on the one-step-ahead of Bitcoin realised variance in the low 

volatility regime. 

Furthermore, in the out-of-sample evaluation, the Markov Regime-Switching-MIDAS 

model exhibits statistically significant improvement in forecasting the RV of Bitcoin. The 

researchers discovered that the jump-volatility predictive link had high and low volatility. 

Furthermore, the frequent occurrence of jumps considerably increases the persistence of the high-

volatility regime and the transition between high and low-volatility regimes. As a result, while 

analysing cryptocurrency volatility, the jump-volatility predictive connection has to be accounted 

for and taken into account. They tested numerous multistep-ahead out-of-sample predictions and 

discovered that the suggested model significantly improved for 10-day-ahead (2 weeks) and 22-

day-ahead (1 month) horizons. Furthermore, at the 5-day and 66-day timeframes, the FTP-MRS-

MIDASLCJ model provides more precise out-of-sample forecasting performance.  

Using five models, namely HAR-RV, HAR-CJ, LHAR-CJ, HAR-CJ-EPU, and LHAR-CJ-

EPU, Yu (2019) found that the leverage effect has significantly impacted future Bitcoin volatility. 

Simultaneously, the jumps and economic policy uncertainty (EPU) did not influence the future 

volatility in-sample period. As a consequence, the Model Confidence Set (MCS) test findings show 

that the leverage effect outperforms jump components in forecasting Bitcoin volatility. As a result, 

the leverage effect offers useful predictive information for forecasting Bitcoin volatility. 
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Furthermore, incorporating the leverage effect and EPU into the benchmark model can boost 

prediction ability greatly. Thus, taking into account both the leverage impact and EPU can aid in 

forecasting Bitcoin volatility. 

Another study that relied on realized volatility to evaluate the Bitcoin market's 

predictability has been conducted by Hattori (2019). The study relied on mean squared predictive 

error (MSE) and QLIKE measures to make forecast accuracy robust to noise in the imperfect 

volatility proxy. In contrast, different standards such as Mean Absolute Error (MAE), Theil 

Inequality Coefficient (TIC), and R-square (R2) are also used for the robustness check. The study 

findings show that asymmetric volatility models such as APARCH and EGARCH have additional 

predictive power, and the normal distribution is likely to fit the Bitcoin data better. Nevertheless, 

to improve the prediction accuracy, analysis of other models, such as the Heterogeneous 

Autoregressive (HAR) model, is essential in future research to predict cryptocurrency volatility. 

Jha and Baur (2020) separated the realized volatility into good and bad volatility and a 

continuous and jump component within a HAR–QR framework. The researchers found that bad 

volatility is less significant than good volatility in predicting future volatility on average but not in 

all volatility regimes in 1-day ahead forecast horizons. However, in 7-day ahead forecast horizons, 

the bad volatility increases volatility more than good volatility. Also, the strength of the asymmetry 

increases with volatility as well. Moreover, the unstable asymmetric volatility and the relatively 

poor predictive power of the models compared with the equity market indicates that the excess 

volatility is an incomplete characterization of Bitcoin. The researchers also addressed that excess 

volatility is less of a problem if it is persistent and predictable. Still, they found that volatility is 

too high and volatile, and the drivers of volatility do not have a stable influence over different 

volatility regimes.  

Soylu, Okur, Çatıkkas, and Altintig (2020) study took into consideration the long-memory 

properties of these cryptocurrencies and examined the market efficiency. The study findings show 

that the cryptocurrency market has a long memory. Therefore, long memory indicates inefficiency 

in the cryptocurrency market, where the estimated memory in volatility can help investors capture 

speculative profits. The study also found that the HYGARCH model appears to be the best-fitted 

model for Bitcoin, as testified by the AIC, SW, SB, and H-Quinn criteria and Log-likelihood. 

Moreover, to improve the performance of modelling cryptocurrencies with GARCH models, long 

memory should be considered. On the other hand, for Ethereum, the FIGARCH model with 
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skewed student distribution delivers better estimations. Also, the excellent fit for Ripple returns is 

the FIGARCH model with student distribution. As a result, the models that consider volatility 

clustering, asymmetry, and long memory in the cryptocurrency volatilities can more accurately 

predict the VaR and ESF for short and long trading positions. 

Wang, Liu, Chiang, and Hsu's (2019) study used realised volatility derived from high-

frequency data to evaluate model performance as a proxy for Bitcoin volatility rather than daily 

squared returns. The researchers next investigated the models' capacity to anticipate rolling sample 

volatility for Bitcoin returns using ARJI, GARCH, EGARCH, and CGARCH. According to the 

study results, the ARJI model with jump dynamics delivers comparatively improved in-sample 

goodness-of-fit and out-of-sample predictive performance. However, the GARCH-employed 

models can marginally explain the Bitcoin prices' realized volatility because of the exceptionally 

volatile swings in the cryptocurrency market. Moreover, by applying Bayesian VAR, Bayesian 

VAR-SV, Bayesian VAR-GARCH, and Bayesian VAR-SVt models, Bohte and Rossini (2019) 

found that using a combination of stochastic volatility and a Student-t distribution, there are 

statistically significant improvements in point of forecasting for all the cryptocurrencies. Also, the 

stochastic volatility model provides the best predictability in density forecasting for all 

cryptocurrencies. 

 

3.2. PORTFOLIO SELECTIONS: 
 Cryptocurrencies have exhibited remarkable performance in financial markets due 

to their main advantages: the investors control them exclusively of any regulatory rules in 

transactions. Also, third-party costs on transactions can be significantly reduced. That has been the 

main reason for the rapid development of the cryptocurrency market over the past ten years. 

Therefore, cryptocurrencies have gained enormously in market value through enormous inflows 

of capital and strong price fluctuations. Thus, cryptocurrency markets have become gradually 

attractive to investors considering cryptocurrencies as a novel class of alternative investments. In 

fact, as mentioned before, Wu and Pandey (2014) concluded that although Bitcoin is not useful as 

a currency, it can be useful and play an essential role in increasing an investor's portfolio's 

efficiency. That study was supported by Baur, Hong, and Lee (2018), who demonstrated that 

Bitcoin accounts are primarily used as an investment tool rather than an alternative currency. Also, 

Kristoufek (2015) found that Bitcoin reveals properties of both traditional and speculative financial 
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assets. Nevertheless, the potential role of Cryptocurrencies in investors' portfolios has not been 

fully understood and remains controversial. 

Petukhina, Trimborn, Härdl, and Elendner (2020) consider the benefit for different types 

of investors when adding cryptocurrencies to a well-diversified portfolio of conventional financial 

assets. At different frequencies, namely daily, weekly, and monthly, the researchers have 

considered risk-averse, return-maximizing, and diversification-seeking investors. In their study, 

the researchers aimed to analyze standard asset allocation models' performance based on historical 

prices and trading volumes of 52 cryptocurrencies combined with 16 traditional assets. The 

researchers found that traditional risk-minimizing strategies, such as minimum-variance and 

minimum-CVaR, did not significantly improve investment performance because of the volatility 

structure of cryptocurrencies. On the other hand, approaches with high target returns, such as 

diversification-seeking portfolios, reach higher expected returns for investors through broader 

cryptocurrency exposure. 

Moreover, the study shows that constraints mitigating liquidity risks of cryptocurrencies 

(LIBRO) can significantly affect strategies that rely on a larger cross-section of cryptocurrencies. 

Similarly, the out-of-sample performance drops considerably for portfolios as small as USD 10. 

Simultaneously, the diversification benefits persist coherently across all frameworks. 

Mba, Edson, and Koumba (2018) stated that It is essential to develop portfolio optimization 

methods to assist cryptocurrency investors in controlling their exposure risk while maximizing 

their returns. The researchers applied two approaches that were obtained from the traditional 

Differential Evolution (DE) method: the GARCH Differential Evolution (GARCH-DE) and the 

GARCH Differential Evolution t-copula (GARCH-DE-t-copula). The researcher then contrasts 

these two models with the Differential Evolution (DE) method (benchmark) in single and multi-

period optimization on a portfolio containing five crypto-assets under the coherent risk measure 

CVaR constraint. The study findings show that GARCH-DE-t-copula outperforms the Differential 

Evolution and GARCH-DE approaches in single and multi-period frameworks. The researchers 

also used the GARCH Differential Evolution t-copula method (GARCH-DE-t-copula) to confirm 

the power of regular rebalancing of portfolio assets to adapt to market changes. Also, the tail 

dependence modeling through t-copula and extreme value distribution (GPD) has revealed a 

significant positive impact on the portfolio returns across all multi-period optimization periods and 

in the control of the risk because of the high volatility that illustrates cryptocurrencies. 
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By analyzing the daily returns of the common cryptocurrencies: Bitcoin, Ethereum, Bitcoin 

Cash, XRP, Litecoin, and NEM, Hrytsiuk, Babych, and Bachyshyna (2019) confirm 

cryptocurrency returns are not subject to normal distribution, yet the Cauchy distribution can 

describe their returns. The study aimed to use the Cauchy distribution function to get the analytical 

expressions for VaR risk measures and performed calculations of cryptocurrency risk assessment 

utilizing the VaR approach. Therefore, sets of optimal cryptocurrency portfolios were built. Also, 

using the modified Markowitz model, the efficient frontiers of cryptocurrency portfolios were 

constructed. Bitcoin prearranges its dominance in the cryptocurrency portfolio due to its high 

return and low risk. 

Liew, Li, Budavári, and Sharma (2019) have examined the most extensive 100 

cryptocurrency returns ranging from 2015 to early 2018. They focused on analyzing daily returns 

and found several interesting stylized facts. The first fact is that principal components analysis 

provides a complicated daily return-generating process. Surprisingly, The researchers found that 

more than one principal component explains the cross-sectional variation. The second fact is that 

cryptocurrency returns suffer from the "beta-in-the-tails" hidden risk similar to hedge fund returns. 

Third, the researchers found that using machine learning and artificial intelligence algorithms to 

predict cryptocurrency movements is slightly attractive with the disparity in predictability power 

for each cryptocurrency. Fourth, cryptocurrencies with lower volatility are marginally more 

predictable than cryptocurrencies with higher volatility. Fifth, predictability might be more 

complicated given a set of machine learning algorithms when the ability of distinct information 

sets differs across machine learning algorithms. Finally, near-term cryptocurrency markets are 

semi-strong form efficient because the predictability is very weak for the short term. Therefore, 

trading cryptocurrencies would be challenging for investors lacking experience in investing and 

evaluating investment opportunities.  

Yang and Zhao (2020) employed ten criteria, including the Log of the last day of market 

capitalization, to analyze daily data from the 100 biggest cryptocurrencies. To construct the 

efficient sorting portfolios and the quantile-based sorting portfolios, the previous day's low 

price,  the maximum price during the previous week, one-week momentum, two-week momentum, 

three-week momentum, one-month momentum, Log of average daily volume during the previous 

week, Log of average daily volume times price, and Log of average daily volume times price 

scaled by market capitalization were used. The researchers discovered that just two criteria, the 
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most outstanding price over the previous week and the close price of the previous day, adequately 

capture cross-sectional variations and anticipate future returns. 

Liu (2019) aimed to examine the inevitability and the role of diversification in 

cryptocurrencies as an alternative investment asset class. The researcher also applied the portfolio 

selection theory to determine if there is an advantage in the cryptocurrency market. The study 

findings show that diversification among cryptocurrencies significantly improves the Sharpe ratio 

and utility. By comparing the out-of-sample performance of six classical asset allocation models, 

namely the 1/N rule, Minimum variance, Risk parity, Markowitz, Maximum Sharpe, and 

Maximum utility, it is found that the minimum variance model is less risky with the most negligible 

maximum drawdown. Also, the maximum utility model holds higher returns and utility. However, 

most models cannot outperform the naïve 1/N rule under the Sharpe ratio criterion. These findings 

can be an excellent help for investors to make more informed decisions.  

Using daily data from September 2015 to June 2018, Boako, Tiwari, and Roubaud (2019) 

applied vine copula approaches to model six cryptocurrencies' co-dependence and portfolio value-

at-risk (VaR), namely Bitcoin, Ethereum, Litecoin, Dash, Ripple, and Stellar. The study findings 

show that using the efficient frontier, Ethereum provides the best optimal and economically risk-

reward trade-off dependent on a no-shorting constraint for portfolio investors. Also, the study 

findings show strong dependencies between Bitcoin and Ethereum. Additionally, the study shows 

that the most connected cryptocurrencies to Bitcoin are Litecoin, Ripple, and Dash. Essentially, 

Litecoin has the only direct dependence on Bitcoin. The researchers modelled the portfolio VaR 

based on the dependencies obtained from depending on the R-vine copula's ability and the majority 

of the Student-t copula family in modelling dependence. The results show that the Value at Risk 

forecasts closely follow the daily returns with limited violations. 

Moreover, the researchers conclude that their vine copula models are the best-suited 

models to compute the portfolio VaR during the considered period. The study analysis proposes 

the best optimal and economically risk-reward trade-off dependent on portfolio investors' shorting 

limitation using the efficient frontier. The study also offers new useful insights for investors willing 

to speculate or hedge positions using cryptocurrencies, not only for investors but also for regulators 

such as financial market authorities, central banks, or policymakers willing to reduce the systemic 

risks. 
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Platanakis and Urquhart (2019) compared the performance of naive diversification, 

Markowitz diversification, and the advanced Black–Litterman model and variance-based 

constraints that control estimation errors in a cryptocurrency portfolio. The study findings show 

that using the advanced Black–Litterman model with variance-based constraints yields superior 

out-of-sample risk-adjusted returns with lower risks. This finding indicates that when managing 

cryptocurrency portfolios, applying sophisticated techniques that control estimation errors is 

prioritized, especially with transaction costs and short-selling. 

By using six optimization strategies, namely MinVar, MinCVaR, MaxSR, MaxSTARR, 

MaxUT, and MaxMean, TOMIĆ (2020), study findings show limited exposure to changes in the 

value of BTC presented as a systematic factor can lead to having higher returns and Sharpe Ratios 

in four of the six implemented optimization strategies. However, in terms of absolute risk, five of 

the six portfolios reached an overall lower risk. Therefore, achieving a higher cumulative return, 

lower risk, and better overall portfolio performance is possible by controlling the portfolio 

exposure based on the systematic factor represented by Bitcoin cryptocurrency. From that result, 

it is possible to conclude that it would be perfect for portfolio managers to hedge their position at 

negative returns and make the most of the factor's dependence during its positive momentum. 

Kurosaki and Kim (2020) investigate four major cryptocurrencies' portfolio optimization: 

BTC, ETH, LTC, and XPR. In their study, the researchers applied generalized autoregressive 

conditional heteroscedasticity (GARCH) model with multivariate normal tempered stable 

(MNTS). Also, they have optimized the portfolio in terms of Foster-Hart risk. The study findings 

show that introducing the multivariate normal tempered stable (MNTS) distribution enhances the 

illustrative power of the GARCH-type model for cryptocurrency return and risk forecasting. As a 

result, the multivariate normal tempered stable (MNTS) distribution GARCH model fits better 

with cryptocurrency returns than the competing GARCH-type models. The study findings confirm 

that combining the multivariate normal tempered stable (MNTS) distributed GARCH model and 

Foster-Hart risk aims at desirable portfolio optimization concerning risk-return balance and 

cumulative returns. 
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4. RESEARCH GAP AND CONTRIBUTION  
Because cryptocurrencies are still relatively new compared to traditional financial 

instruments, there remains limited empirical research concerning their trading and volatility. 

Although some research studies emphasize the additional risk such investments might pose to 

investors in developing economies, numerous researchers recognize the various benefits 

cryptocurrencies offer. Thus, understanding and predicting the volatility of cryptocurrencies using 

high-frequency data will reveal the usefulness and benefits for potential investors. Therefore, this 

research will examine the capability and accuracy of forecasting and prediction abilities of six 

different models. These models have been selected based on the recommendations of previous 

literature and studies. Each model captures and accounts for different aspects. It sets out to confirm 

which models offer the best fit to forecast the volatility of cryptocurrencies. This study's 

contribution focuses on applying the most prominent volatility forecasting models based on 

previous studies, where the study compares models across models to identify the models that 

outperform in predicting the volatility of cryptocurrency returns. Also, more contributions go 

towards high-frequency data of the dominant cryptocurrency returns that have the highest market 

cap and less dominant cryptocurrency returns to provide valuable insights to investors, portfolio 

managers, financial firms, and regulators.   

Additionally, the research field has a gap in the scientific literature because insufficient 

attention has been devoted to cryptocurrencies other than Bitcoin, Ethereum, Litecoin, and Ripple. 

As such, there is inadequate knowledge about the volatility of less dominant cryptocurrencies. 

Therefore, the current research will strive to contribute to the literature by testing the less dominant 

cryptocurrencies. It provides significant insights into possible price movements, allowing investors 

and traders to make more educated decisions and efficiently manage risk. Also, it contributes to 

boosting market efficiency by increasing awareness of the underlying dynamics of less dominant 

cryptocurrencies, resulting in better price discovery. Not only that but also it contributes to 

enabling the development of risk management techniques customized to the specific features of 

these cryptocurrencies, which improves overall portfolio performance. Finally, anticipating 

volatility in less dominant cryptocurrencies leads to a more mature and stable crypto-system, 

attracting a broader spectrum of investors and promoting long-term sustainability. This will help 

scholars with future investigations and assist investors and corporations in shaping their 

investment decisions. 
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4.1. Research Question  
What is the best-fitted model to predict the volatility of cryptocurrencies? 

4.2.  Research objectives 
1. Identify the best-fitted model to predict cryptocurrency volatility. 

2. Predict the volatility of both the dominant and less dominant cryptocurrencies. 

3. Predict cryptocurrency volatility using high-frequency data. 

 

5. METHODOLOGY 

5.1.  RESEARCH DESIGN 
Predicting cryptocurrency volatility using high-frequency data depends on 

selecting a suitable methodology that produces valuable and accurate findings. The 

extensive use of academic resources that support analytical approaches contributes to 

producing and communicating results that can be used in the real world. Specifically, 

lagged realized volatility (LRE), the GARCH model, the IGARCH model, the EGARCH 

model, the GJR-GARCH model, and the heterogeneous autoregressive (HAR) model are 

the frameworks applied in the current study. These models have been chosen based on 

previous literature and the contribution of Kourtis, Markellos, and Symeonidis's (2016) 

study. Their study has inspired the research's methodology design. Although their study 

has been applied to 13 international equity indices, some of the models they used apply to 

the research dataset and field. Some models they used do not apply to our study since they 

used option prices. Some models they used do not apply to our study since they used option 

prices. Therefore, three models have been adapted and inspired by different studies such 

as the GARCH and IGARCH models from Chu, Chan, Nadarajah, and Osterrieder (2017) 

research and the EGARCH model from Petrică and Stancu's (2017) research. Each model 

has advantages and characteristics that improve the research's primary aim to find the best-

fitted model to forecast the volatility of cryptocurrency returns. Each model will be 

explained in detail in the following sections. 
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5.2.  DATA COLLECTION  
This research uses daily, weekly, and monthly historical data computed from 5-

minute log returns for the following 10 cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), 

Ripple (XRP), Litecoin (LTC), Bitcoin Cash (BTH), Eos (EOS), Monero (XMR), Stellar 

(XLM), Dash (DASH), and Ethereum Classic (ETC) between 1st September 2018 to 30th 

September 2020 (Table A). These cryptocracies have chosen based on market 

capitalizations that vary from dominant to less dominant cryptocurrencies. The data were 

obtained from https://www.kraken.com.  Here are the cryptocurrency returns figures. 

 

https://www.kraken.com/
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5.3.  VOLATILITY FORECAST MODELS  

5.3.1. Lagged Realised Volatility (LRE) Model  

LRE is one of the methods used for financial instrument predictions. For this 

reason, its consideration in the present research is justified by the necessity to predict the 

volatility of cryptocurrencies. Kaminska and Roberts-Sklar (2018) explained that the LRE 

model considers the regular array of short-term predictive aspects, including a variable 

representing volatility persistence. Also, Sensoy and Omole (2018) point out that volatility 

becomes persistent when lagged realized volatility is significant.  

Moreover, the ability of LRE to explain high-frequency data has been confirmed in 

recent academic research. Huang, Tong, and Wang (2019) emphasized that the findings of 

their study supported the hypothesis that taking into account realized volatility contributes 

to producing superior predictions. In particular, quarterly and yearly data on lagged 

realized volatility describe the long-term dynamics of volatility. Periods of high volatility 

are particularly well explained with the help of the LRE framework. Given that the model 

is gaining momentum among financial academics, its use for analyzing cryptocurrency 

behavior will likely improve our understanding of innovative currencies. Because the 

cryptocurrency market experiences high levels of volatility, the capacity of LRE to analyze 

such data makes the model a relevant and justifiable approach to employ. According to 

Kourtis, Markellos, and Symeonidis (2016), the realized volatility is calculated as follows: 

 

RVt = !∑ 𝑟!
"#$ %"

&         (1) 

 

Therefore, the lagged realized volatility can be calculated: 

 

LRE =  !∑ 𝑟!
"#$ %'$

&         (2) 
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As Kourtis, Markellos, and Symeonidis (2016) explained, these variables are crucial 

because they are based on the assumption that volatility occurs within a Markov process, 

which signifies that its period is predictive of future data.  

 

5.3.2. GARCH Model 

 The Autoregressive Conditional Heteroskedasticity (GARCH) model can capture 

the clustering in volatility. Although the GARCH model has been criticized by many 

studies, as mentioned in the literature review section, it would be wise to consider it when 

comparing the research models since we are using the GARCH models. The GARCH 

model equation is as follows (Bollerslev, 1986): 

 
 

s%& = 	w+ 𝛼$Z%'$& + 𝛽$s%'$&        (3) 
 
 

 
The 𝛼$ +	𝛽$ coefficients accounts for the sum of volatility clustering that is captured by 

the model. Also, when considering the 𝛼$ +	𝛽$ < 1, that means there is a weak stationarity.  

 

5.3.3. EGARCH Model 

The development of the GARCH model created a foundation for similar 

frameworks to appear as financial scientists sought to avoid the limitations of the original 

model. In particular, Nelson (1991) proposed the Exponential Generalised Autoregressive 

Conditionally Heteroscedastic (EGARCH) model to tolerate the asymmetric effects of 

negative and positive innovations, make the conditional variance positive by construction 

and include exogenous variables in the volatility equation. Also, the development of the 

EGARCH equation was required due to restrictions related to non-negativity found in the 

original model because EGARCH could provide information about the volatility of 

currencies from the perspective of asymmetry. Brandt and Jones (2006) emphasized that 

the EGARCH model has important features capable of capturing the negative correlation 

with returns, time-series clustering, lognormality, and under certain specifications, long 

memory. Whereas some equational processes generate data based on symmetry, EGARCH 

specifically uses asymmetrical concepts. Petrică and Stancu (2017) explained that the 
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exponential nature of this GARCH model creates the logarithm of conditional variance that 

considers asymmetric information related to good news and bad news. The EGARCH 

model equation is expressed as follows (Petrică and Stancu, 2017): 

 

													log(s%&) = 	w	 + ∑ 𝛼(
)
(#$ 	 |	e!"#|

s!"#
+	∑ g,

-
,#$ 	 	e!"$

s!"$
+	∑ 𝛽"

.
"#$ log	(s%'"& )   (4) 

 

The g,  signifies the asymmetry parameter which is the leverage effect. If the g, 	do not 

equal to zero that indicates the presence of asymmetry. However, if the  g, 	< 0 that means 

the volatitiy increases more after bad news that is represented in (e%'$ < 0	) and good news 

represented in (e%'$ > 0	) 

 

5.3.4. Integrated GARCH Model 

The Integrated GARCH (IGARCH) model offers additional insights into 

forecasting the behavior of cryptocurrencies with the help of high-frequency data. Like 

EGARCH, the IGARCH framework relies on the original GARCH model, and the unit-

root nature of GARCH models is seen in IGARCH. Also, Bentes (2015) emphasized that 

IGARCH accounts for the influences of past squared shocks with persistent data that 

remain essential to forecasting future time horizons. Chu, Chan, Nadarajah, and Osterrieder 

(2017) state that structural changes, such as policy changes, have not been accounted for, 

which might justify why the IGARCH model can be a good fit for several cryptocurrencies. 

Moreover, Kumar and Anandarao (2019) used the IGARCH model in their study to capture 

the persistence in volatility for cryptocurrency returns. 

Mikosch and Starica (2004) express the IGARCH equation as follows: 

 

𝛼% = s%𝑍%           

s%& =	𝛼/ + 𝛼$𝛼%'$& + 𝛽$s%'$&        (5) 

𝑡	 ∈ 	ℤ,  

 



 
 

 
 

54 

54 

5.3.5. GJR-GARCH Model  

The GJR-GARCH model is another approach capable of predicting the 

cryptocurrency market's volatility using high-frequency data. The framework assumes that 

forecasts should depend on time-conditional variance. The original use of GJR-GARCH 

focused on multiple functions, including the volatility of stock returns. Innovations in the 

financial field require future studies to embrace the applicability of GJR-GARCH for the 

cryptocurrency market. Typically, investors use the GJR-GARCH to explore compensation 

opportunities for holding volatile assets. The original GARCH model underwent multiple 

alterations to meet the needs of financial researchers, whereas GJR-GARCH created a 

platform for the current variance with a different response to the returns of the past 

(Nugroho et al., 2019). GARCH models have been extensively used to examine the 

behaviour of volatile markets. 

Furthermore, the main advantage of this model rests on its ability to analyze 

asymmetric behaviours (Nugroho et al., 2019). Asymmetric volatility may play a role in 

cryptocurrency markets. Klein, Thu, and Walther (2018) claimed that the property occurs 

when negative and positive returns are connected to upward and downward revisions of 

conditional volatility, respectively. Also, Klein, Thu, and Walther (2018) observed that 

although cryptocurrencies (specifically Bitcoin) exhibit a low leverage effect, an inverse 

leverage effect, and substantial long memory are typical of the leading digital currencies. 

Importantly, exploring the property of asymmetric volatility will be possible based on 

applying the GJR-GARCH model.. 

 

The GJR-GARCH model is as the following equations by Kourtis, Markellos, and 

Symeonidis (2016): 

 

ℎ% = 	𝜔 + 	𝛼𝑒%'$& + 	𝛾𝐼{1!"%2/}1!"%& + 	𝛽ℎ%'$   (6)  

 

The 𝑒% is the residuals from the mean equation 𝑟% = 𝑢 +	𝑒% . Also, 𝑢 is the 

unconditional mean of the return series. The conditional variance of the residuals is ℎ%. The 

𝐼{1!"%2/} is marker function that equivalents to 1 if the prior period innovation is negative 

and zero otherwise.  
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5.3.6. Heterogeneous Autoregressive Model 

Ultimately, using the HAR model could also make a valuable contribution to efforts 

to reveal the future outlook for cryptocurrencies. Audrino and Knaus (2016) pointed out 

that the HAR model can estimate long memory and highlight good out-of-sample 

performance. Also, McAleer and Medeiros (2008) emphasized that the HAR model can 

estimate the long memory behavior and describe the sign and size asymmetries. These 

qualities have made the model popular among financial researchers. The ease with which 

the approach can be applied is its primary advantage when researching volatile markets. 

Correspondingly, the HAR model has succeeded in exploring realized volatility.  

Researchers can employ multiple datasets when studying volatility based on 

Kourtis, Markellos, and Symeonidis (2016) work. The results can potentially model the 

long-term behaviour of volatility that confirms the success of forecasting properties. 

Kourtis, Markellos, and Symeonidis (2016) used the HAR model to apply additive 

elements created by utilizing high-frequency data for daily, weekly, and monthly 

volatilities. This approach ensures that long-memory behaviours are noted. While the 

model has been used to analyze stock markets, its insightful use in volatile fields makes 

the model a feasible option for exploring cryptocurrency markets. At the same time, the 

HAR model is known for using historical high-frequency data for model specification, 

while its simplicity can also be considered a limitation. Other models provide 

comprehensive data to address this limitation because focusing on three methods would 

constitute a holistic approach. The daily HAR-RV model is expressed as the following 

equation by Kourtis, Markellos, and Symeonidis (2016): 

 

 

𝑅𝑉%:%5, = 	𝜔 + 𝛽6𝑅𝑉% +	𝛽7𝑅𝑉%'8:% +	𝛽!𝑅𝑉%'9/:% + 𝑒%5,   (7) 
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6. Information Content of The Volatility Forecasts 
6.1.  Univariate Regressions  

In the univariate regressions, the Mincer and Zarnowitz (1969) regressions have 

been applied to the 10 cryptocurrencies using the total sample for each research model to 

evaluate each model's ability to forecast the volatility accurately. Also, Mincer and 

Zarnowitz (1969) regressions can evaluate the information content of individual volatility 

forecasts (Kourtis, Markellos, and Symeonidis, 2016). The Mincer and Zarnowitz (1969) 

regressions formula can be as follows:   

 

𝑅𝑉%:%5, = 	𝛼 + 𝛽𝐹>%:%5, + 𝑒%       (8) 

 

The 𝐹>%:%5,  stands for the 𝑘-day ahead forecast from the respective volatility forecasting 

model to evaluate the in-sample fit. If the regression Equation (8) coefficient is statistically 

different from zero, a forecast is instructive about future volatility. With Mincer and 

Zarnowitz (1969) regressions, the Newey–West (1987) heteroskedasticity and 

autocorrelation consistent standard errors have been used for all forecast horizons. 

Table 1 shows the results of the Mincer-Zarnowitz Regression with Newey-West 

Standard Errors for a 1-day forecast horizon. In the table, the 𝛼 + 𝛽 + 𝑎𝑑𝑗. 𝑅'  coefficient 

estimates, which are presented along with the t-statistic in parenthesis. The aggregate 

estimations for each model's coefficient are presented at the table's end. 

The results of the 1-day horizon regression table show that all slope coefficient 

estimates for the 10 cryptocurrency returns are statistically significant at the 5% level. 

Hence, it can be indicated that all forecasts have informative information about future 

volatility. Also, the results show different coefficient values for each cryptocurrency. Three 

different models outperformed and fit several cryptos, namely GARCH, EGARCH, and 

HAR models. When considering only the adjusted 𝑅& values, it can be noticed that only 

three models dominated the explanatory power for different cryptos. The HAR model has 

the most explanatory power among the three models, with 4 out of 10 cryptocurrency 

returns (40%). That means the HAR model has superiority over the remaining models. this 

result supports the results of the 1-day forecast of Kourtis et al., 2016 study. However, their 

study examined the equity indices.  
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Subsequently, the GARCH model has explanatory power for 2 of the 10 

cryptocurrency returns (20%). Finally, the EGARCH and GJR-GARCH models have 

explanatory power for the remaining cryptos, 2 out of 10 cryptocurrency returns (20%), 

respectively. These results support the outcome that many studies have emphasized the 

need for more agreement among researchers regarding which model is most suitable and 

applicable to the volatility analysis of cryptocurrencies. 

Table 2 displays the results of the Mincer-Zarnowitz Regression with Newey-West 

Standard Errors for a 7-days forecast horizon. In the table, the 𝛼  + 𝛽  +  

𝑎𝑑𝑗. 𝑅' coefficient estimates, which are presented along with the t-statistic in parenthesis. 

The aggregate estimations for each model's coefficient are presented at the table's end. 

The results of the 7-day horizon regression table show that all slope coefficient 

estimates for the 10 cryptocurrencies are statistically significant at the 5% level. Therefore, 

it can be indicated that all forecasts have informative information about future volatility. 

Also, the results show different coefficient values for each cryptocurrency in terms of the 

𝑎𝑑𝑗. 𝑅!. Only three of the six models have outperformed and fit several cryptos: EGARCH, 

GJR-GARCH, and HAR. To illustrate, when considering only the adjusted 𝑅& values, it 

can be observed that three models dominated the explanatory power for all the 

cryptocurrencies. The EGARCH model has the most explanatory power among the three 

models for 7 out of 10 cryptocurrency returns (70%). That means the EGARCH has 

superiority over the remaining models. This result challenge the study’ findings of Kourtis 

et al., 2016. They have found that the an implied models are more accurate for longer 

periods when forecasting the volatility of equity indices. Then, the HAR model lies second 

with 2 out of 10 cryptocurrency returns (20%). Finally, the GJR-GARCH model has 

explanatory power for only 1 out of 10 cryptocurrency returns (10%). 

Table 3 reveals the results of the Mincer-Zarnowitz Regression with Newey-West 

Standard Errors for a 30-day forecast horizon. The coefficient estimates are presented in 

parentheses along with the t-statistic. The aggregate estimations for each model's 

coefficient are presented at the table's end. 

Unlike the 1-day and 7-day horizons, the 30-day horizon regression table results 

show that most slope coefficient estimates for the 10 cryptocurrencies are statistically 

significant at the 5% level. Thus, it can be indicated that all forecasts have informative 
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information about future volatility. Also, the results show different coefficient values for 

each cryptocurrency in terms of the 𝑎𝑑𝑗. 𝑅!. Only three out of six models outperformed and 

fit several cryptos, namely EGARCH, IGARCH, and HAR models. To demonstrate, when 

accounting only for the adjusted values, it can be noticed that three models controlled the 

explanatory power for different cryptos. The EGARCH model has the most explanatory 

power among the three models, with 8 out of 10 cryptocurrency returns (80%). That means 

the EGARCH has superiority over the remaining models. This result contradict the study’ 

findings of Kourtis et al., 2016. They have found that the an implied models are more 

accurate for longer periods when forecasting the volatility of equity indices. Then, the HAR 

model lies second with 1 out of 10 cryptocurrency returns (10%). Lastly, the IGARCH 

model has the explanatory power for only 1 out of 10 cryptocurrency returns (10%).  

 

6.2.  Encompassing Regressions 
The encompassing regression is an extension of the univariate regression equation. 

The encompassing regressions replace the individual forecasts on the right side of Equation 

(8) to have a duo of forecasts from two different volatility models in these regressions. The 

encompassing regression equation can be expressed as follows: 

 

𝑅𝑉%:%5, = 	𝛼 + 𝛽$𝐹>%:%5, + 𝛽&𝐹>%:%5, +	𝑒%     (9) 

 

The 𝛽$𝐹>%:%5, stands for the 𝑘-day ahead forecast for the first model from the respective 

volatility forecasting models in the research to evaluate the in-sample fit. Also, The 

𝛽&𝐹>%:%5,  stands for the 𝑘 -day ahead forecast for the second model from the separate 

volatility forecasting models. As Cook (2014) stated, forecasting encompassing allows a 

direct comparison of two sets of projections to see if one is informative content outweighs 

the other, making it redundant. The dominating set of projections is said to forecast the 

other in such circumstances. As a result, using forecast-encompassing regressions as a 

supplement to evaluation statistics gives an alternative and essential additional source of 

information. Whereas assessment statistics can provide a rating of predictions, forecast-

encompassing tests can be used to determine the extent to which one group of projections 

is superior to another. 
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Table 4 shows the results of the encompassing regressions with Newey-West 

Standard Errors for a 1-day forecast horizon. In the table, the 𝛼  + 𝛽$  + 𝛽&  + 𝑎𝑑𝑗. 𝑅' 

coefficients estimates are presented along with the t-statistic in parenthesis. The aggregate 

estimations for each model's coefficient are presented at the table's end. Table 4 contains 

two panels of models. The first panel combines the Lagged Realized Volatility model 

(LRE) with the rest except the HAR model. The LRE and HAR models are related to each 

other. The second panel combines the Heterogeneous Autoregressive (HAR) model with 

the rest except the LRE model. It can be observed from Table 4, encompassing regressions 

results for 1-day horizons, that most of the slope coefficient estimates are statistically 

significant at a 5% level. 

Consequently, it can be indicated that all forecasts have informative information 

about future volatility. Furthermore, the results show different coefficient values for each 

combination of models in terms of 𝑎𝑑𝑗. 𝑅&. When considering only the adjusted 𝑅& values, 

it can be observed that model diversity dominated the explanatory power for all the 

cryptocurrencies. To illustrate, the HAR + EGARCH models have the most explanatory 

power among the other pairs of models, with 4 out of 10 cryptos (40%). That means the 

HAR + EGARCH pair has superiority over the remaining pairs of models. Then, LRE + 

GARCH models lay second with 2 out of 10 cryptos (20%). The HAR + GJR-GARCH rest 

third with 2 out of 10 cryptos (20%). Finally, LRE + EGARCH pair and LRE + GJR-

GARCH pairs come last with 1 out of 10 cryptos each (10%). It is worth noticing that if 

the analysis were divided into two clusters and evaluated separately, the outcomes for the 

dominations pairs would be almost the same pairs across all cryptocurrency returns with 8 

out of 10 cryptos (80%). For example, if the LRE + EGARCH pair is the dominant pair for 

BTC in terms of 𝑎𝑑𝑗. 𝑅&. The second group would also be HAR + EGARCH pair. 

Table 5 shows the results of the encompassing regressions for 7-day horizons. Most 

slope coefficient estimates are statistically significant at the 5% level. Hence, it can be 

implied that all forecasts have informative information about future volatility. Besides, the 

results show different coefficient values for each combination of models in terms of 

𝑎𝑑𝑗. 𝑅& . When considering only the adjusted 𝑅&  values, it can be observed that model 

diversity dominated the explanatory power for all the cryptocurrencies. However, the 

variety in models that dominated the explanatory power is less than the results presented 
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in Table 4 (1-day horizons). To illustrate, the HAR + EGARCH pair has the most 

explanatory power among the other pairs of models, with 7 out of 10 cryptocurrency returns 

(70%). That means the HAR + EGARCH pair has superiority over the remaining pairs of 

models. Then, LRE + EGARCH pair follows with 2 out of 10 cryptocurrency returns 

(20%). The HAR + GJRGARCH set third with 1 out of 10 cryptocurrency returns (10%).  

 Same as in Table 4, it is worth noticing that if the analysis were divided into two 

clusters and evaluated separately, the outcomes of the dominations of pairs would be 

almost the same across all cryptos, with  8 out of 10 cryptos (80%). For example, if the 

LRE + EGARCH pair is the dominant pair for BTC in terms of 𝑎𝑑𝑗. 𝑅&, the second group 

would also be HAR + EGARCH pair. 

Table 6 shows the results of the encompassing regressions for 30-day horizons. 

Almost half of the slope coefficients are statistically significant at the 5% level. Therefore, 

it can be implied that all forecasts have instructive information about future volatility. 

Further, the results show different coefficient values for each combination of models in 

terms of the 𝑎𝑑𝑗. 𝑅&. When considering only the adjusted 𝑅& values, t can be seen that there 

is diversity in models that dominated the explanatory power for all the cryptocurrencies. 

However, the diversity in models that dominated the explanatory power is less than the 

results presented in Table 4 (1-day horizons) and the same as Table 5 (7-day horizons) with 

only one difference. To illustrate, the HAR + EGARCH pair has the most explanatory 

power among the other pairs of models, with 5 out of 10 cryptocurrency returns (50%). 

That means the HAR + EGARCH pair has superiority over the remaining pairs of models. 

Then, LRE + EGARCH and HAR + IGARCH pairs follow with 4 out of 10 cryptocurrency 

returns (40%) and 1 out of 10 cryptocurrency returns (10%), respectively.    

Unlike Table 4 (1-day horizon) and Table 5 (7-day horizons) results, table 6 results 

have an interesting similarity in the dominating pairs across all cryptos if the analysis is 

divided into two clusters and evaluated separately. The outcomes of the dominations of 

pairs are the same across all cryptos, with 9 out of 10 cryptocurrency returns (90%). For 

example, if the LRE + EGARCH pair is the dominant pair for BTC in terms of the adjusted 

𝑅&, the second group would also be HAR + EGARCH pair.



7. Out of Sample Forecasts Evaluation: 
The out-of-sample forecast evaluations will validate the results generated from the 

univariate and encompassing regressions. For this step, examining the competing models' 

out-of-sample predicting accuracy will be performed. In order to do so, the two commonly 

utilized loss functions are the root mean squared error (RMSE), and the quasi-likelihood 

loss function (QLIKE) will be used. These are described as follows: 

 

RMSE = !'
(
∑ (𝑅𝑉):)+,(
)-' −	𝐹)):)+,).     (10) 

 

QLIKE = '
(
∑ +log 𝐹)):)+, +

/0":"$%
12":"$%

0(
)-'      (11) 

 

The N accounts for the number of out-of-sample volatility forecasts. These two-

loss functions have been chosen based on previous studies. Patton (2011) stated that the 

Quasi-Likelihood (QLIKE) loss function can be robust to the existence of noise in the 

volatility proxy. Also, the root-mean-square error (RMSE) is a wide choice in an empirical 

application. The Diebold–Mariano (DM) predictive accuracy test has been applied to 

determine the forecast errors between the applied models and whether they are statistically 

significant (Diebold & Mariano, 1995).  

In this analysis, the researcher applied the rolling window approach of 300 

observations to forecast the out-of-sample volatility for all 10 cryptocurrencies. Table 7 

shows the results of the out-of-sample forecasting performance for 1-Day Horizon. The 

table consists of two panels. The first panel is the root mean squared errors (RMSE) loss 

function, and the second is the Quasi-Likelihood (QLIKE) loss function. The lowest 

forecast error results for RMSE and QLIKE have been highlighted in bold. Also, based on 

the DM test, the models with higher forecast errors and are more statistically significant 

than the best models are signaled with one, two, and three asterisks (10%, 5%, and 1%). 

From the table, it can be observed that the Heterogeneous Autoregressive Model (HAR) is 

the superior model among the other models, with 6 out of 10 (10 out of 10) cryptocurrency 

returns for RMSE (QLIKE) loss functions. This result supports  Bergsli, Lind, Molnár, and 
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Polasik (2021) study’s findings. Based on daily data, they concluded that the HAR models 

based on realized variance outperform the GARCH models. The lowest forecast error 

results for RMSE and QLIKE have been highlighted in bold. All the models are inferior to 

the HAR model for LTC, BCH, EOS, XLM, DASH, and ETC cryptos. The HAR model 

yields the lowest forecast errors compared to the other models. However, for BTC, ETH, 

and XMR cryptos, the EGARCH model is the superior model among the different models 

and yields the lowest forecast errors. At the same time, the IGARCH model has the worst 

performance among the other models for both the RMSE and QLIKE performances, 

followed by LRE and GJR-GARCH models with equally divided between the 10 cryptos 

for RMSE and GJR-GARCH model for most of the cryptos in terms of QLIKE. It is worth 

noticing that when observing the worst models for RMSE, the dominant cryptos have the 

LRE as a common model that has the worst forecast errors after the IGARCH, while the 

less dominant cryptos have the GJR-GARCH as the common model that has the worst 

forecast errors after the IGARCH in terms of RMSE performance. Therefore, as a result of 

all of the above analysis, it can be observed that the HAR model yields the best forecast 

errors when predicting most of the less dominant cryptocurrencies, while the EGARCH 

model yields the best forecast errors when predicting the dominant cryptocurrencies such 

as the BTC, ETH, and XRP. 

However, when comparing the results of Table 7 with Table 8, which presents out-of-

sample forecasting performance: 7-Day Horizon, it can be seen that there is a slight change 

in the superior model among the other models for RMSE and QLIKE. To illustrate, the 

superior model for the RMSE is still a Heterogeneous Autoregressive Model (HAR). The 

HAR model is considered the best model when considering the lowest forecast errors for 

them. It has insufficient forecast errors for ETH, XRP, BCH, XLM, DASH, and ETC. The 

EGARCH model for LTC, EOS, XMR, and GARCH model for BTC follows them. In 

comparison, the IGARCH model has the worst performance among the other models for 

both the RMSE and QLIKE performances, followed by LRE (GJR-GARCH) for RMSE 

and GJR-GARCH (LRE) for QLIKE. It is worth noticing that when observing the worst 

models for RMSE, the LRE model dominated most of them. Therefore, it can be stated that 

when considering only the historical prices, the forecasting errors would be higher than the 
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other model subject to this study regarding RMSE performance. These results primarily 

support the 1-day horizon performance for the RMSE and QLIKE.  

Interestingly, the results for Table 9 show the Out-of-Sample Forecasting Performance: 

30-Day Horizon, indicating similar outcomes as Tables 7 and 8 with a slight difference. 

All the models are inferior to the HAR model for BTC, ETH, XRP, XMR, XLM, DASH, 

and ETC cryptos. The HAR model yields the lowest forecast error compared to the other 

models for RMSE, followed by GJR-GARCH for BCH and EOS and EGARCH for LTC 

regarding the RMSE performance. With a slight change, the ETH, EOS, XRP, XMR, 

XLM, DASH, and ETC cryptos have the HAR model as the superior model in terms of 

QLIKE, followed by LRE for BCH, GJR-GARCH for LTC, and GARCH for BTC. 

Nonetheless, the IGARCH exhibits the lowest forecast error for both performance criteria, 

followed by LRE, GJR-GARCH, GARCH, and HAR for RMSE performance. Also, for 

QLIKE performance, the LRE, GJR-GARCH, GARCH, and EGARCH have the worst 

forecast errors. Therefore, it can be stated that the HAR model is the best model when 

forecasting the volatility for most of the cryptos in this research, with the lowest forecast 

errors for the RMSE and QLIKE.  
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8. Limitations 
When examining the breadth of research, it is critical to recognize some limitations. While 

the dataset is extensive, it does not include data from the during-COVID-19 and post-COVID-19 

periods. A dataset containing the COVID-19 pandemic would acquire a more thorough 

understanding of how the COVID-19 pandemic, as an external factor, affects the volatility of 

cryptocurrency returns. In addition, for analyzing realized volatility, the research focused on six 

models from the GARCH family. Future studies might go beyond this selection, perhaps revealing 

innovative methods for more accurate prediction of cryptocurrency return volatility. It is also 

worth noting that the research looked particularly at 10 cryptocurrency results only. The dataset 

should be expanded to cover a larger spectrum of cryptocurrency returns. Adding more 

cryptocurrency returns to the dataset offers the potential to improve the precision of our findings. 

The large amount of data, which exceeded 100 million observations, created considerable time 

limitations. As a consequence, we chose only 10 cryptocurrency returns for the research.  

 

9. Conclusion 
 

This study evaluates the performance of different models regarding the best-fitted model 

to predict the volatility forecasts of 10 cryptocurrencies with different Market capitalizations. The 

study presents the results of the univariate regressions using the Mincer and Zarnowitz (1969) 

regressions with the Newey–West (1987) heteroskedasticity and autocorrelation consistent 

standard errors. It compares the results of six different models: GARCH, IGARCH, EGARCH, 

GJR-GARCH, LRE, and HAR. The univariate regressions for 1-day horizons indicate the 

superiority of the HAR model over the remaining models. However, the univariate regressions for 

7-day horizons show that the EGARCH model has the most explanatory power among all the 

research models. Also, the univariate regressions for 30-day horizons reveal that the EGARCH 

model has the most explanatory power among all the research models. Also, the study presented 

the results of the encompassing regressions. The encompassing regressions allow a direct 

comparison of two sets of projections to see if one is informative content outweighs the other, 

making it redundant (Cook, 2014). The encompassing regressions with Newey-West Standard 

Errors for a 1-day forecast horizon show that the HAR + EGARCH models have the most 

explanatory power among the other pairs of models. Similarly, the encompassing regressions with 
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Newey-West Standard Errors for the 7-day forecast horizon reveal that the HAR + EGARCH pair 

has the most explanatory power among the other pairs of models. Too, the encompassing 

regressions with Newey-West Standard Errors for the 30-day forecast horizon show that the HAR 

+ EGARCH models have the most explanatory power among the other pairs of models. 

 The study also performed the out-of-sample regressions using the RMSE and QLIKE loss 

functions. The result of the out-of-sample regressions for 1-day horizons indicated that the HAR 

model has the lowest forecast errors among the research's models for both the RMSE and QLIKE 

loss functions. Also, the results are almost the same for 7-days horizons. Nevertheless, the out-of-

sample regressions for 30 days revealed a slight difference from the daily and weekly results. The 

HAR model mostly outperformed the other models yielding the lowest forecast errors for RMSE 

and QLIKE loss functions. These findings support Bergsli, Lind, Molnár, and Polasik (2021) 

study's findings. Further studies should measure the prediction of cryptocurrency volatility and its 

effect on market performance. 
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 Chapter Two Research Tables 
Table A: List of the Cryptocurrencies: Start and End dates. 

 

Cryptocurrency Symbol Start Date End Date Number of observations in 
 5-min 

Number of 
observations in days 

Bitcoin BTC 9/1/2018 9/30/2020 219,200 761 

Ethereum ETH 9/1/2018 9/30/2020 219,200 761 

Ripple  XRP 9/1/2018 9/30/2020 219,200 761 

Litecoin LTC 9/1/2018 9/30/2020 219,200 761 

Bitcoin Cash BCH 9/1/2018 9/30/2020 219,200 761 

EOS EOS 9/1/2018 9/30/2020 219,200 761 

Monero XMR 9/1/2018 9/30/2020 219,200 761 

Stellar XLM 9/1/2018 9/30/2020 219,200 761 

Dash DASH 9/1/2018 9/30/2020 219,200 761 

Ethereum Classic ETC 9/1/2018 9/30/2020 219,200 761 

 
  



Table B: Descriptive Analysis of the Daily Data 

  Mean Median SD Kurtosis Skewness Range 

BTC 0.030 0.024 0.024 35.91 4.20 0.32 

ETH 0.041 0.035 0.025 25.36 3.30 0.32 

XRP 0.040 0.032 0.028 23.31 3.74 0.29 

LTC 0.044 0.038 0.025 28.44 3.53 0.33 

BCH 0.049 0.039 0.034 15.66 3.07 0.36 

EOS 0.045 0.037 0.029 28.50 3.78 0.36 

XMR 0.041 0.035 0.022 37.80 4.00 0.31 

XLM 0.046 0.039 0.025 19.16 3.09 0.30 

DASH 0.045 0.038 0.027 24.06 3.59 0.30 

ETC 0.046 0.039 0.028 16.30 2.88 0.32 
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Table C: Descriptive Analysis of the Weekly Data 

  Mean Median SD Kurtosis Skewness Range 

BTC 0.086 0.075 0.054 12.26 2.74 0.43 

ETH 0.115 0.103 0.055 8.18 2.09 0.42 

XRP 0.115 0.099 0.060 6.50 2.12 0.41 

LTC 0.124 0.116 0.053 9.18 2.05 0.43 

BCH 0.137 0.120 0.078 5.05 2.05 0.46 

EOS 0.128 0.113 0.061 7.01 1.91 0.46 

XMR 0.112 0.099 0.047 11.80 2.59 0.38 

XLM 0.129 0.115 0.052 5.34 1.81 0.38 

DASH 0.125 0.109 0.061 7.06 2.27 0.41 

ETC 0.129 0.113 0.061 4.43 1.67 0.39 
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Table D: Descriptive Analysis of the Monthly Data 

  Mean Median SD Kurtosis Skewness Range 

BTC 0.188 0.169 0.092 3.05 1.55 0.51 

ETH 0.246 0.226 0.087 2.50 1.29 0.53 

XRP 0.246 0.223 0.090 1.15 0.96 0.50 

LTC 0.264 0.256 0.085 2.33 0.89 0.53 

BCH 0.297 0.255 0.129 0.55 1.06 0.63 

EOS 0.275 0.269 0.094 1.48 0.71 0.55 

XMR 0.236 0.219 0.079 2.83 1.44 0.47 

XLM 0.274 0.261 0.077 1.07 0.74 0.46 

DASH 0.265 0.243 0.103 1.00 1.08 0.55 

ETC 0.277 0.256 0.097 0.11 0.76 0.50 
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Table 1: Mincer-Zarnowitz Regression with Newey-West Standard Errors for 1-day forecast horizon. 
 Cryptocurrency GARCH IGARCH EGARCH GJR-GARCH LRE HAR 

 
BTC  

𝛼 -0.022 (-4.14) -0.007 (-1.99) -0.029 (-4.89) -0.0193 (-3.70) 0.011 (4.81) 0.000 (-0.000)  
𝛽 1.474 (9.14)  0.955 (9.27) 1.672 (9.46) 1.394 (8.93) 0.637 (7.56) 1.000 (9.38) 

  𝑎𝑑𝑗. 𝑅' 47.45% 48.53% 50.08% 47.51% 40.49% 43.74% 
ETH   

𝛼 -0.028 (-3.59) -0.004 (-0.92) -0.039 (-4.45) -0.024 (-3.05) 0.016 (5.46) 0.000 (-0.000)  
𝛽 1.464 (8.38) 0.876 (8.25) 1.701 (8.76) 1.378 (7.86) 0.606 (7.74) 1.000 (8.48) 

  𝑎𝑑𝑗. 𝑅' 41.04% 36.18% 40.89% 40.21% 36.60% 38.40% 
XRP   

𝛼 -0.013 (-2.14) 0.000 (0.03) -0.015 (-2.48) -0.010 (-1.68) 0.018 (7.61) 0.000 (0.000)  
𝛽 1.247 (8.07) 0.867 (8.20) 1.303 (8.43) 1.183 (7.57) 0.531 (7.95) 1.000 (7.74) 

  𝑎𝑑𝑗. 𝑅' 33.43% 31.99% 33.30% 32.05% 28.15% 26.50% 
LTC  

𝛼 -0.029 (-2.80) 0.000 (0.07) -0.039 (-3.58)  -0.026 (-2.55) 0.019 (6.14) 0.000 (0.000)  
𝛽 1.464 (6.73) 0.809 (6.70) 1.662 (7.35) 1.406 (6.56) 0.551 (7.02) 1.000 (7.85) 

  𝑎𝑑𝑗. 𝑅' 33.97% 20.31% 35.74% 34.29% 30.31% 32.58% 
BCH  

𝛼 -0.029 (-3.06) -0.003 (-0.60) -0.030 (-4.07) -0.029 (-3.09) 0.015 (5.15) 0.000 (0.000)  
𝛽 1.367 (7.64) 0.823 (8.28) 1.385 (9.68) 1.372 (7.67) 0.674 (9.66) 1.000 (10.85) 

  𝑎𝑑𝑗. 𝑅' 37.32% 34.33% 36.88% 37.62% 45.37% 47.43% 
EOS  

𝛼 -0.048 (-3.68) -0.003 (-0.50) -0.051 (-4.42) -0.047 (-3.28) 0.023 (6.62) 0.000 (-0.000)  
𝛽 1.767 (6.89) 0.855 (6.81) 1.841 (7.99) 1.743 (6.25) 0.482 (5.81) 1.000 (6.66) 

  𝑎𝑑𝑗. 𝑅' 23.75% 15.80% 22.90% 24.43% 23.11% 24.87% 
XMR  

𝛼 -0.005 (-0.91) 0.005 (1.32) -0.007 (-1.17) -0.004 (-0.70) 0.015 (4.70) 0.000 (0.000)  
𝛽 1.038 (7.52) 0.732 (7.60) 1.083 (7.54) 1.010 (7.39) 0.613 (6.94) 1.000 (8.50) 

  𝑎𝑑𝑗. 𝑅' 40.84% 40.63% 39.64% 41.10% 37.59% 40.37% 
XLM  

𝛼 -0.012 (-1.76) 2.632 (2.51) -0.021 (-2.65) -0.014 (-1.98) 0.020 (7.88) 0.000 (0.000)  
𝛽 1.214 (7.85) -52.985 (-2.46) 1.409 (7.98) 1.257 (7.91) 0.546 (8.90) 1.000 (8.92) 

  𝑎𝑑𝑗. 𝑅' 31.31% 1.11% 31.27% 31.56% 29.78% 30.72% 
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Table 1 (Continued) 

 
 Cryptocurrency GARCH IGARCH EGARCH GJR-GARCH LRE HAR 

 
DASH   

𝛼 0.001 (0.24) 0.006 (1.87) -0.004 (-0.99) 0.000 (0.17) 0.014 (5.20) 0.000 (-0.000)  
𝛽 0.890 (9.51) 0.729 (9.54) 1.016 (9.90) 0.900 (9.29) 0.667 (9.33) 1.000 (10.27) 

  𝑎𝑑𝑗. 𝑅' 43.16% 40.99% 39.90% 41.39% 44.50% 45.86% 
ETC 
 𝛼 -0.013 (-2.09) 0.004 (1.19) -0.024 (-3.65) -0.013 (-2.17) 0.018 (7.09) 0.000 (0.000) 
 𝛽 1.168 (8.95) 0.730 (9.18) 1.403 (9.92) 1.177 (9.07) 0.596 (9.69) 1.000 (11.00) 

  𝑎𝑑𝑗. 𝑅' 33.45% 33.83% 34.25% 33.14% 35.52% 38.29% 
Aggregate Results  
 Average     	𝛼 -0.020 0.263 -0.026 -0.019 0.017 0.000 
 Average      𝛽 1.309 -4.561 1.448 1.282 0.590 1.000 
 Average  𝑎𝑑𝑗. 𝑅' 36.57% 30.37% 36.49% 36.33% 35.14% 36.88% 
        

Table 1 shows the results from the Mincer-Zarnowitz (1969) Regression. The forecast horizon is 1 trading day. Each panel corresponds to a different cryptocurrency. 
Each column shows the estimation results for each forecasting model. α and  β stands for the intercept and slope of the regression, while the row 𝑎𝑑𝑗. 𝑅' shows the 
adjusted 𝑅' coefficient of the regression. t-statistics estimations are reported in parentheses. The average values of the intercepts, slopes, and adjusted R squared 
across cryptocurrencies for each forecasting model are reported at the end of the table. Significant coefficients at the 5% level are highlighted in bold. Newey–
West (1987) heteroskedasticity and autocorrelation consistent standard errors was used for all the regressions. Forecasts are based on the GARCH model, the 
IGARCH model, the EGARCH model, the GJR-GARCH model, the lagged realized volatility (LRE), and the Heterogeneous Autoregressive (HAR) model.  
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Table 2: Mincer-Zarnowitz Regression with Newey-West Standard Errors for 7-day forecast horizon.  
 

 Cryptocurrency GARCH IGARCH EGARCH GJR-GARCH LRE HAR 
       

BTC 
 𝛼 -0.012 (-1.43) 0.014 (2.31) -0.026 (-2.94) -0.007 (-1.12) 0.042 (7.60) 0.000 (-0.000) 
 𝛽 1.047 (10.89) 0.683 (10.98) 1.200 (11.59) 0.996 (14.59) 0.499 (10.28)  1.000 (14.32) 

  𝑎𝑑𝑗. 𝑅' 32.13% 33.35% 34.62% 32.58% 24.54%  29.25% 
ETH 
 𝛼 -0.006 (-0.48) 0.034 (3.29) -0.027 (-1.67) 0.001 (0.13) 0.063 (9.53)  0.000 (0.000) 
 𝛽 0.963 (9.51) 0.580 (7.31) 1.138 (8.30) 0.903 (10.37) 0.443 (8.82)  1.000 (11.05) 

  𝑎𝑑𝑗. 𝑅' 26.42% 23.58% 27.18% 25.68% 19.50%  24.91% 
XRP 
 𝛼 0.026 (2.49) 0.047 (5.51) 0.019 (1.83) 0.030 (2.71) 0.073 (10.35) 0.000 (-0.000) 
 𝛽 0.779 (8.00) 0.547 (7.46) 0.848 (8.26) 0.745 (7.28) 0.354 (6.82) 1.000 (7.72) 

  𝑎𝑑𝑗. 𝑅' 19.99% 19.50% 21.59% 19.45% 12.33% 14.93% 
LTC 
 𝛼 0.005 (0.29) 0.046 (2.89) -0.016 (-0.78) 0.008 (0.57) 0.077 (9.11) 0.000 (-0.000) 
 𝛽 0.885 (6.39) 0.539 (4.61) 1.047 (6.64) 0.859 (7.43) 0.373 (6.86) 1.000 (8.56)  

  𝑎𝑑𝑗. 𝑅' 19.64% 14.23% 22.45% 20.29% 13.58%  18.58% 
BCH 
 𝛼 0.002 (0.09) 0.044 (2.61) -0.010 (-0.42) 0.001 (0.07) 0.070 (7.56) 0.000 (-0.000) 
 𝛽 0.892 (4.73) 0.553 (4.99) 0.970 (5.68) 0.896 (4.76) 0.481 (7.28) 1.000 (8.33)  

  𝑎𝑑𝑗. 𝑅' 21.89% 21.41% 24.95% 22.11% 22.83%  30.58% 
EOS 
 𝛼 -0.031 (-1.09) 0.045 (2.38) -0.058 (-1.92) -0.029 (-0.97) 0.083 (8.97)  0.000 (0.000) 
 𝛽 1.141 (5.46) 0.553 (4.29) 1.340 (5.94) 1.127 (5.10) 0.340 (5.65) 1.000 (6.96)  

  𝑎𝑑𝑗. 𝑅' 16.04% 10.70% 19.68% 16.53% 11.24% 15.20% 
XMR 
 𝛼 0.023 (2.44) 0.043 (6.03) 0.016 (1.42) 0.025 (2.96) 0.056 (8.49)  0.000 (0.000) 
 𝛽 0.757 (8.53) 0.536 (8.33) 0.819 (7.47) 0.738 (9.28) 0.492 (9.15) 1.000 (13.21) 

  𝑎𝑑𝑗. 𝑅' 31.45% 31.54% 32.81% 31.76% 24.26%  29.38% 
XLM 
 𝛼 0.042 (3.46) 8.498 (2.01) 0.032 (2.24) 0.039 (3.16) 0.087 (10.07) 0.000 (-0.000) 
 𝛽 0.675 (6.76) -64.821 (-1.98) 0.755 (6.20) 0.701 (6.93) 0.319 (5.26) 1.000 (8.11)  

  𝑎𝑑𝑗. 𝑅' 15.83% 2.92% 14.70% 16.06% 9.99% 15.36% 
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Table 2 (Continued) 
 

Cryptocurrency GARCH IGARCH EGARCH GJR-GARCH LRE HAR 
       

DASH 
 𝛼 0.041 (3.76) 0.050 (5.14) 0.025 (1.98) 0.040 (3.32) 0.062 (7.64)  0.000 (0.000) 
 𝛽 0.636 (6.84) 0.531 (6.61) 0.769 (6.72) 0.649 (6.31) 0.491 (7.16)  1.000 (11.12) 

  𝑎𝑑𝑗. 𝑅' 30.66% 30.20% 31.79% 29.95% 23.88% 30.04%  

Table 2 shows the results from the Mincer-Zarnowitz (1969) Regression. The forecast horizon is 7 trading days. Each panel corresponds to a different 
cryptocurrency. Each column shows the estimation results for each forecasting model. α and  β stands for the intercept and slope of the regression, while the row 
𝑎𝑑𝑗. 𝑅' shows the adjusted 𝑅' coefficient of the regression. t-statistics estimations are reported in parentheses. The average values of the intercepts, slopes, and 
adjusted R squared across cryptocurrencies for each forecasting model are reported at the end of the table. Significant coefficients at the 5% level are highlighted 
in bold. Newey–West (1987) heteroskedasticity and autocorrelation consistent standard errors was used for all the regressions. Forecasts are based on the GARCH 
model, the IGARCH model, the EGARCH model, the GJR-GARCH model, the lagged realized volatility (LRE), and the Heterogeneous Autoregressive (HAR) 
model.  
  

ETC 
 𝛼 0.026 (2.15) 0.057 (6.43) 0.003 (0.23) 0.025 (1.92) 0.069 (8.73) 0.000 (-0.000) 

 𝛽 0.765 (8.46) 0.481 (8.47) 0.943 (8.68) 0.777 (8.03) 0.454 (7.75) 1.000 (10.35)  
  𝑎𝑑𝑗. 𝑅' 21.80% 22.36% 23.54% 21.98% 20.42%  26.05% 
 
Aggregate Results  
Average       𝛼 0.012 0.042 -0.006 0.012 0.065 0.000 
Average       𝛽 0.820 0.554 0.989 0.843 0.442 1.000 
Average 𝑎𝑑𝑗. 𝑅' 23.59% 23.84% 27.14% 25.21% 19.68% 24.83% 
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Table 3: Mincer-Zarnowitz Regression with Newey-West Standard Errors for 7-day forecast horizon. 
 

 Cryptocurrency GARCH IGARCH EGARCH GJR-GARCH LRE HAR 
 
BTC 
 𝛼 0.097 (3.55) 0.122 (5.52) 0.079 (3.10) 0.099 (4.05) 0.158 (5.32) 0.000 (-0.000) 

 𝛽 0.464 (5.15) 0.304 (5.38) 0.557 (5.58) 0.455 (6.36) 0.172 (1.80) 1.000 (4.76)  
  𝑎𝑑𝑗. 𝑅' 9.26% 9.75% 10.99% 10.03% 2.72%  8.16% 
ETH 
 𝛼 0.143 (4.72) 0.178 (7.31) 0.114 (2.80) 0.150 (5.54) 0.205 (7.13)  0.000 (0.000) 

 𝛽 0.394 (3.49) 0.235 (2.87) 0.507 (3.01) 0.367 (3.74) 0.159 (1.50) 1.000 (3.66)  
  𝑎𝑑𝑗. 𝑅' 7.45% 6.52% 9.14% 7.15% 2.22% 8.95% 
XRP 
 𝛼 0.171 (6.05) 0.189 (7.72) 0.164 (5.56) 0.177 (6.20) 0.193 (6.40)  0.000 (0.000) 

 𝛽 0.319 (3.33) 0.226 (3.13) 0.354 (3.24) 0.294 (3.16) 0.175 (1.74) 1.000 (2.47)  
  𝑎𝑑𝑗. 𝑅' 6.36% 6.33% 7.17% 5.75% 3.51% 5.77% 
LTC 
 𝛼 0.148 (3.24) 0.178 (4.22) 0.113 (2.26) 0.151 (3.77) 0.214 (5.27)  0.000 (0.000) 

 𝛽 0.418 (2.82) 0.288 (2.24) 0.545 (3.13) 0.407 (3.15) 0.190 (1.35)  1.000 (3.21) 
  𝑎𝑑𝑗. 𝑅' 7.35% 6.84% 10.22% 7.63% 3.03% 9.50%  
BCH 
 𝛼 0.167 (2.83) 0.200 (4.38) 0.136 (2.15) 0.166 (2.81) 0.208 (3.98)  0.000 (0.000) 

 𝛽 0.416 (2.36) 0.280 (2.38) 0.513 (2.66) 0.419 (2.37) 0.298 (1.95)  1.000 (3.19) 
  𝑎𝑑𝑗. 𝑅' 7.27% 8.39% 10.70% 7.39% 8.10%  13.97% 
EOS 
 𝛼 0.130 (1.92) 0.209 (4.21) 0.078 (1.04) 0.120 (1.84) 0.250 (6.52)  0.000 (0.000) 

 𝛽 0.501 (2.24) 0.212 (1.46) 0.682 (2.63) 0.535 (2.45) 0.089 (0.77) 1.000 (2.82)  
  𝑎𝑑𝑗. 𝑅' 5.46% 2.71% 9.08% 6.60% 0.56% 7.47%  
XMR 
 𝛼 0.152 (6.04) 0.171 (8.48) 0.135 (4.98) 0.151 (6.32) 0.199 (6.36) 0.000 (-0.000) 

 𝛽 0.342 (3.54) 0.243 (3.53) 0.415 (3.55) 0.348 (3.85) 0.153 (1.30) 1.000 (4.11)  
  𝑎𝑑𝑗. 𝑅' 9.76% 9.92% 12.87% 10.74% 2.03% 11.10%  
XLM 
 𝛼 0.220 (8.46) 20.812 (1.92) 0.212 (7.46) 0.218 (8.20) 0.276 (7.97)  0.000 (0.000) 

 𝛽 0.201 (2.20) -76.83 (-1.90) 0.232 (2.20) 0.208 (2.21) -0.021 (-0.20) 1.000 (2.54)  
  𝑎𝑑𝑗. 𝑅' 2.70% 8.44% 2.66% 2.73% -0.10%  3.88% 
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Table 3 (Continued) 
 

Cryptocurrency GARCH IGARCH EGARCH GJR-GARCH LRE HAR 
 
DASH 
 𝛼 0.164 (6.10) 0.173 (6.99) 0.138 (4.83) 0.162 (5.77) 0.198 (5.51)  0.000 (0.000) 

 𝛽 0.369 (4.46) 0.318 (4.45) 0.474 (4.52) 0.381 (4.31) 0.248 (2.12)  1.000 (4.20) 
  𝑎𝑑𝑗. 𝑅' 15.58% 16.40% 18.23% 15.60% 5.50% 12.93% 
ETC       
 𝛼 0.175 (5.22) 0.204 (8.05) 0.146 (3.74) 0.174 (5.05) 0.238 (5.57)  0.000 (0.000) 
 𝛽 0.366 (3.48) 0.233 (3.56) 0.472 (3.58) 0.368 (3.42) 0.151 (1.04)  1.000 (3.56) 
 𝑎𝑑𝑗. 𝑅' 8.35% 8.83% 9.93% 8.28% 2.11% 8.39%  
Aggregate Results       
Average       𝛼 0.157 2.244 0.132 0.157 0.214 0.000 
Average       𝛽 0.379 -7.449 0.475 0.378 0.161 1.000 
Average 𝑎𝑑𝑗. 𝑅' 7.95% 8.41% 10.10% 8.19% 2.97% 9.01% 
       

Table 3 shows the results from the Mincer-Zarnowitz (1969) Regression. The forecast horizon is 30 trading days. Each panel corresponds to a different 
cryptocurrency. Each column shows the estimation results for each forecasting model. α and  β stands for the intercept and slope of the regression, while the row 
𝑎𝑑𝑗. 𝑅' shows the adjusted 𝑅' coefficient of the regression. t-statistics estimations are reported in parentheses. The average values of the intercepts, slopes, and 
adjusted R squared across cryptocurrencies for each forecasting model are reported at the end of the table. Significant coefficients at the 5% level are highlighted 
in bold. Newey–West (1987) heteroskedasticity and autocorrelation consistent standard errors was used for all the regressions. Forecasts are based on the GARCH 
model, the IGARCH model, the EGARCH model, the GJR-GARCH model, the lagged realized volatility (LRE), and the Heterogeneous Autoregressive (HAR) 
mod
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Table 4: Encompassing regressions for volatility forecasts: 1-day forecast horizon with Newey-West Standard Error (1-lag) 
 

CC LRE+GARCH LRE+IGARCH LRE+EGARCH LRE+GJR HAR+GARCH HAR+IGARCH HAR+EGARCH HAR+GJR 
 
BTC 
 𝛼 -0.015 (-2.85) -0.004 (-1.30) -0.023 (-2.88) -0.013 (-2.14) -0.017 (-2.44) -0.006 (-1.79) -0.025 (-2.55) -0.015 (-2.03) 
 𝛽( 0.218 (2.38) 0.188 (2.11) 0.140 (1.32) 0.206 (1.90) 0.329 (1.63) 0.281 (1.45) 0.199 (0.79) 0.332 (1.30) 
 𝛽' 1.092 (5.48) 0.741 (5.64) 1.393 (4.53) 1.047 (4.30) 1.057 (3.01) 0.727 (3.26) 1.401 (2.86) 1.000 (2.43) 
 𝑎𝑑𝑗. 𝑅'  48.97% 49.57% 50.62% 48.80% 48.52% 49.34% 50.84% 48.72% 
ETH 
 𝛼 -0.016 (-2.02) 0.000 (0.14) -0.023 (-2.41) -0.013 (-1.47) -0.020 (-1.94) -0.005 (-1.05) -0.027 (-2.05) -0.017 (-1.58) 
 𝛽( 0.264 (2.96) 0.354 (4.26) 0.266 (2.90) 0.276 (2.80) 0.439 (2.00) 0.656 (3.88) 0.454 (2.03) 0.494 (2.05) 
 𝛽' 0.988 (4.46) 0.495 (4.86) 1.143 (4.31) 0.902 (3.67) 0.920 (2.40) 0.371 (2.27) 1.052 (2.33) 0.800 (1.97) 
 𝑎𝑑𝑗. 𝑅'  43.60% 41.78% 43.48% 42.99% 42.06% 40.14% 41.93% 41.69% 
XRP 
 𝛼 -0.006 (-1.10) 0.002 (0.76) -0.008 (-1.34) -0.004 (-0.73) -0.013 (-2.33) -0.004 (-1.02) -0.014 (-3.10) -0.013 (-2.61) 
 𝛽( 0.222 (3.49) 0.253 (4.01) 0.235 (3.39) 0.256 (3.80) 0.421 (2.55) 0.496 (3.10) 0.508 (3.32) 0.489 (3.16) 
 𝛽' 0.887 (4.81) 0.585 (5.12) 0.916 (4.91) 0.798 (4.50) 0.868 (3.60) 0.532 (3.65) 0.812 (4.82) 0.803 (4.12) 
 𝑎𝑑𝑗. 𝑅'  35.53% 34.92% 35.83% 35.12% 30.98% 30.21% 31.02% 30.68% 
LTC 
 𝛼 -0.016 (-1.51) 0.005 (1.24) -0.026 (-1.99) -0.014 (-1.21) -0.022 (-1.82) -0.004 (-0.82) -0.031 (-2.11) -0.020 (-1.58) 
 𝛽( 0.249 (3.19) 0.435 (5.61) 0.198 (2.31) 0.238 (2.63) 0.464 (2.38) 0.875 (6.04) 0.350 (1.57) 0.447 (1.88) 
 𝛽' 0.981 (3.85) 0.367 (5.27) 1.219 (3.87) 0.958 (3.23) 0.904 (2.41) 0.181 (2.14) 1.194 (2.54) 0.889 (2.04) 
 𝑎𝑑𝑗. 𝑅'  36.40% 33.09% 37.05% 36.40% 36.17% 33.00% 37.07% 36.32% 
BCH 
 𝛼 -0.005 (-0.71) 0.004 (1.08) -0.007 (-1.18) -0.006 (-0.73) -0.012 (-1.39) -0.003 (-0.86) -0.012 (-1.91) -0.012 (-1.39) 
 𝛽( 0.493 (5.01) 0.521 (5.82) 0.494 (5.12) 0.490 (4.94) 0.799 (5.13) 0.864 (6.08) 0.803 (5.08) 0.794 (5.04) 
 𝛽' 0.536 (2.67) 0.297 (3.14) 0.558 (3.38) 0.543 (2.66) 0.385 (1.55) 0.165 (1.38) 0.388 (1.84) 0.394 (1.56) 
 𝑎𝑑𝑗. 𝑅'  47.79% 47.48% 48.07% 47.83% 48.39% 47.87% 48.36% 48.43% 
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Table 4 (Continued) 

 

CC LRE+GARCH LRE+IGARCH LRE+EGARCH LRE+GJR HAR+GARCH HAR+IGARCH HAR+EGARCH HAR+GJR 
 
EOS 
 𝛼 -0.026 (-2.47) 0.002 (0.63) -0.027 (-3.22) -0.025 (-2.02) -0.032 (-2.67) -0.008 (-1.49) -0.033 (-3.42) -0.032 (-2.20) 
 𝛽( 0.286 (3.88) 0.376 (4.62) 0.300 (3.78) 0.274 (3.76) 0.613 (3.84) 0.826 (4.91) 0.643 (3.75) 0.585 (3.46) 
 𝛽' 1.103 (4.97) 0.443 (4.79) 1.130 (5.91) 1.105 (4.12) 0.939 (3.23) 0.296 (2.65) 0.939 (3.76) 0.961 (2.65) 
 𝑎𝑑𝑗. 𝑅' 28.51% 26.18% 28.41% 28.57% 27.73% 25.92% 27.51% 27.85% 
XMR 
 𝛼 -0.001 (-0.25) 0.005 (1.43) -0.002 (-0.40) -0.0005 (-0.10) -0.006 (-1.14) -0.0006 (-0.15) -0.007 (-1.30) -0.005 (-1.04) 
 𝛽( 0.308 (3.08) 0.310 (3.16) 0.327 (3.42) 0.302 (2.87) 0.537 (2.54) 0.541 (2.67) 0.576 (3.05) 0.524 (2.28) 
 𝛽' 0.666 (3.80) 0.468 (3.90) 0.671 (3.87) 0.654 (3.53) 0.572 (2.09) 0.401 (2.17) 0.566 (2.16) 0.569 (1.95) 
 𝑎𝑑𝑗. 𝑅' 45.12% 45.02% 44.60% 45.15% 44.06% 44.03% 43.79% 44.24% 
XLM 
 𝛼 -0.003 (-0.39) 1.377 (1.84) -0.008 (-1.00) -0.004 (-0.53) -0.013 (-1.87) 0.710 (0.96) -0.019 (-2.33) -0.014 (-1.91) 
 𝛽( 0.288 (3.50) 0.541 (8.72) 0.292 (3.88) 0.283 (3.37) 0.549 (3.34) 0.998 (8.89) 0.562 (3.86) 0.539 (3.18) 
 𝛽' 0.745 (3.30) -27.792 (-1.81) 0.865 (3.59) 0.779 (3.28) 0.707 (2.73) -14.556 (-0.96) 0.820 (3.07) 0.740 (2.70) 
 𝑎𝑑𝑗. 𝑅' 34.82% 30.02% 35.06% 34.90% 35.14% 30.71% 35.53% 35.19% 
DASH 
 𝛼 0.004 (1.17) 0.007 (2.35) 0.001 (0.40) 0.004 (1.20) -0.002 (-0.68) -0.001 (-0.22) -0.005 (-1.36) -0.002 (-0.75) 
 𝛽( 0.391 (4.25) 0.426 (4.82) 0.441 (5.33) 0.421 (4.78) 0.642 (3.87) 0.712 (4.56) 0.724 (5.15) 0.698 (4.52) 
 𝛽' 0.464 (3.98) 0.351 (4.10) 0.486 (4.66) 0.438 (4.02) 0.378 (2.37) 0.260 (2.23) 0.363 (2.67) 0.335 (2.30) 
 𝑎𝑑𝑗. 𝑅' 48.63% 48.17% 48.49% 48.25% 47.81% 47.26% 47.46% 47.40% 
ETC 
 𝛼 -0.002 (-0.37) 0.007 (1.82) -0.009 (-1.37) -0.002 (-0.44) -0.010 (-1.58) -0.002 (-0.67) -0.016 (-2.35) -0.010 (-1.72) 
 𝛽( 0.371 (4.54) 0.366 (4.47) 0.359 (4.60) 0.376 (4.79) 0.688 (4.58) 0.678 (4.57) 0.657 (4.72) 0.695 (4.96) 
 𝛽' 0.618 (3.57) 0.390 (3.67) 0.766 (4.29) 0.620 (3.86) 0.489 (2.20) 0.313 (2.34) 0.637 (2.86) 0.489 (2.42) 
 𝑎𝑑𝑗. 𝑅' 39.78% 39.82% 40.11% 39.83% 40.40% 40.51% 40.79% 40.41% 
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Table 4 (Continued) 
 

Table 5 shows the results of the encompassing regressions for 1 trading day horizon with Newey-West Standard  Error (1986). Each column represent the results 
generated from the encompassing regressions for each due of models. The LRE+GARCH column has the results of the lagged realized volatility model with 
GARCH model . LRE+IGARCH column has the results of the lagged realized volatility model with Integrated GARCH model . LRE+EGARCH column has the 
results of the lagged realized volatility model with Exponential GARCH model. LRE+GJR column has the results of the lagged realized volatility model with GJR-
GARCH model . Also, the HAR+GARCH column has the results of the Heterogeneous Autoregressive (HAR) model with GARCH model. the HAR+IGARCH 
column has the results of the Heterogeneous Autoregressive (HAR) model with Integrated GARCH model. the HAR+EGARCH column has the results of the 
Heterogeneous Autoregressive (HAR) model with Exponential GARCH model. the HAR+GJR column has the results of the Heterogeneous Autoregressive (HAR) 
model with GJR-GARCH model. All the Significant coefficients at the 5% level are highlighted in bold. Also, the average values of the intercepts, slopes, and 
adjusted R squared across cryptocurrencies for each forecasting model are reported at the end of the table. 
  

 
Aggregate Results    

Average       𝛼 -0.009 0.141 -0.013 -0.008 -0.015 0.068 -0.019 -0.014 
Average       𝛽( 0.309 0.377 0.305 0.312 0.548 0.693 0.548 0.560 
Average       𝛽' 0.808 -2.366 0.915 0.784 0.722 -1.131 0.817 0.698 

Average 𝑎𝑑𝑗. 𝑅' 40.92% 39.61% 41.17% 40.78% 40.13% 38.90% 40.43% 40.09% 
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Table 5: Encompassing regressions for volatility forecasts: 7-day forecast horizon with Newey-West Standard Error (7-
lag) 

 
CC LRE+GARCH LRE+IGARCH LRE+EGARCH LRE+GJR HAR+GARCH HAR+IGARCH HAR+EGARCH HAR+GJR 
 
BTC 
 𝛼 -0.012 (-0.99) 0.014 (2.09) -0.025 (-1.81) -0.005 (-0.59) -0.012 (-1.48) 0.010 (1.28) -0.026 (-2.66) -0.009 (-1.29) 
 𝛽( 0.002 (0.02) 0.006 (0.05) 0.028 (0.26) 0.042 (0.35) 0.287 (1.21) 0.199 (0.85) 0.100 (0.34) 0.258 (0.83) 
 𝛽' 1.045 (4.17) 0.679 (4.41) 1.156 (4.49) 0.936 (4.31) 0.788 (2.94) 0.569 (3.28) 1.109 (3.08) 0.781 (2.63) 
 𝑎𝑑𝑗. 𝑅'  32.13% 33.40% 34.73% 32.69% 32.58% 33.65% 35.10% 33.16% 
ETH 
 𝛼 -0.008 (-0.55) 0.035 (2.89) -0.030 (-1.22) 0.004 (0.37) -0.011(-0.88) 0.006 (0.57) -0.024 (-1.36) -0.007 (-0.63) 
 𝛽( -0.024 (-0.27) 0.040 (0.35) -0.026 (-0.23) 0.054 (0.59) 0.475 (2.10) 0.668 (3.28) 0.426 (1.61) 0.550 (2.18) 
 𝛽' 1.002 (5.17) 0.539 (3.06) 1.186 (3.85) 0.822 (4.76) 0.564 (2.44) 0.232 (1.58) 0.722 (2.01) 0.467 (2.00) 
 𝑎𝑑𝑗. 𝑅'  26.42% 23.77% 27.14% 25.74% 26.71% 25.72% 27.08% 26.43% 
XRP 
 𝛼 0.023 (1.89) 0.046 (5.21) 0.018 (1.55) 0.028 (2.37) 0.011 (0.81) 0.025 (1.76) 0.004 (0.30)  0.007 (0.53) 
 𝛽( -0.068 (-0.64) -0.078 (-0.68) -0.028 (-0.31) -0.034 (-0.34) 0.316 (1.43) 0.372 (1.76) 0.355 (2.07) 0.394 (2.15) 
 𝛽' 0.879 (4.40) 0.631 (3.91) 0.888 (4.91) 0.792 (4.35) 0.588 (3.06) 0.377 (2.84) 0.610 (3.96) 0.543 (3.37) 
 𝑎𝑑𝑗. 𝑅'  20.09% 19.68% 21.57% 19.44% 17.80% 17.47% 18.67% 17.60% 
LTC 
 𝛼 0.007 (0.31) 0.052 (3.31) -0.017 (-0.66) 0.010 (0.55) -0.006 (-0.34) 0.002 (0.15) -0.019 (-0.99) -0.003 (-0.18) 
 𝛽( 0.021 (0.19) 0.192  (1.95) -0.011 (-0.10) 0.023 (0.20) 0.443 (1.69) 0.808 (5.05) 0.157 (0.49) 0.395 (1.29) 
 𝛽' 0.851 (3.21) 0.329 (1.85) 1.070 (3.65) 0.825 (3.53) 0.559 (2.18) 0.150 (1.15) 0.925 (2.43) 0.583 (2.15) 
 𝑎𝑑𝑗. 𝑅'  19.56% 15.60% 22.40% 20.24% 20.53% 18.90% 22.57% 20.98% 
BCH 
 𝛼 0.028 (0.98) 0.064 (2.70) 0.008 (0.23) 0.024 (0.93) -0.006 (-0.33) 0.000 (0.01) -0.014 (-0.72) -0.007 (-0.35) 
 𝛽( 0.376 (3.95) 0.461 (4.10) 0.354 (3.78) 0.363 (4.17) 0.895 (4.51) 0.938 (4.63) 0.764 (3.24) 0.888 (4.47) 
 𝛽' 0.424 (1.54) 0.059 (0.25) 0.597 (1.80) 0.465 (1.88) 0.136 (0.70) 0.050 (0.40) 0.307 (1.24) 0.146 (0.73) 
 𝑎𝑑𝑗. 𝑅'  23.78% 22.77% 24.61% 24.19% 30.66% 30.54% 31.22% 30.68% 
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Table 5 (Continued) 
CC LRE+GARCH LRE+IGARCH LRE+EGARCH LRE+GJR HAR+GARCH HAR+IGARCH HAR+EGARCH HAR+GJR 

 
EOS 
 𝛼 -0.019 (-0.52) 0.052 (2.85) -0.060 (-1.36) -0.021 (-0.50) -0.035 (-1.35) -0.004 (-0.20) -0.060 (-1.99) -0.034 (-1.25) 
 𝛽( 0.072 (0.77) 0.210 (2.70) -0.005 (-0.05) 0.054 (0.47) 0.515 (2.47) 0.799 (4.58) 0.299 (1.40) 0.470 (1.76) 
 𝛽' 0.989 (2.82) 0.318 (1.91) 1.356 (3.29) 1.019 (2.50) 0.697 (2.20) 0.196 (1.36) 1.075 (2.84) 0.730 (1.90) 
 𝑎𝑑𝑗. 𝑅'  16.23% 13.07% 19.67% 16.66% 17.40% 15.82% 20.07% 17.62% 
XMR 
 𝛼 0.024 (2.15) 0.042 (6.29) 0.017 (1.23) 0.026 (2.58) 0.005 (0.56) 0.019 (1.53) 0.001 (0.17) 0.007 (0.69) 
 𝛽( 0.078 (0.51) 0.078 (0.52) 0.071 (0.45) 0.079 (0.50) 0.457 (1.83) 0.447 (1.80) 0.402 (1.45) 0.437 (1.57) 
 𝛽' 0.666 (2.79) 0.472 (2.78) 0.734 (2.61) 0.650 (2.83) 0.472 (2.17) 0.340 (2.18) 0.562 (2.07) 0.474 (2.11) 
 𝑎𝑑𝑗. 𝑅'  31.47% 31.68% 32.90% 31.88% 32.74% 32.91% 33.97% 33.00% 
XLM 
 𝛼 0.042 (3.51) 6.358 (1.70) 0.034 (2.41)  0.039 (3.25) 0.008 (0.49) 4.119 (1.21) -0.002 (-0.13) 0.007 (0.43) 
 𝛽( 0.121 (1.61) 0.305 (5.54) 0.147 (2.07) 0.115 (1.51) 0.512 (2.73) 0.994 (8.54) 0.604 (3.53) 0.494 (2.56) 
 𝛽' 0.553 (4.29) -48.557 (-1.68) 0.590 (4.04) 0.579 (4.34) 0.425 (2.86) -31.894 (-1.21) 0.412 (2.52) 0.450 (2.88) 
 𝑎𝑑𝑗. 𝑅'  16.75% 11.52% 16.07% 16.88% 18.00% 15.94% 17.33% 18.07% 
DASH 
 𝛼 0.041 (3.79) 0.050 (5.08) 0.026 (1.92) 0.040 (3.39) 0.015 (1.25) 0.019 (1.47) 0.007 (0.60) 0.012 (1.07) 
 𝛽( 0.071 (0.59) 0.057 (0.40) 0.033 (0.21) 0.082 (0.64) 0.514 (2.20) 0.544 (2.37) 0.457 (2.00)  0.565 (2.60) 
 𝛽' 0.562 (3.48) 0.480 (3.05) 0.724 (3.05) 0.561 (3.14) 0.344 (1.80) 0.272 (1.68) 0.468 (2.11) 0.320 (1.66) 
 𝑎𝑑𝑗. 𝑅'  30.46% 29.98% 31.41% 29.75% 31.84% 31.67% 32.91% 31.56% 
ETC 
 𝛼 0.035 (2.59) 0.053 (5.86) 0.016 (1.04) 0.033 (2.46) -0.002 (-0.18) 0.009 (0.69) -0.012 (-0.88) -0.003 (-0.24) 
 𝛽( 0.232 (2.64) 0.223 (2.60) 0.205 (2.73) 0.229 (2.69) 0.748 (4.14) 0.720 (3.99) 0.656 (4.12) 0.736 (4.39) 
 𝛽' 0.480 (3.23) 0.313 (3.41) 0.650 (4.13) 0.493 (3.34) 0.262 (1.63) 0.181 (1.78) 0.424 (2.45) 0.279 (1.84) 
 𝑎𝑑𝑗. 𝑅'  24.01% 24.48% 25.34% 24.14% 26.86% 27.07% 27.62% 26.99% 
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Table 5 (Continued) 
 

Table 5 shows the results of the encompassing regressions for 7 trading days horizon with Newey-West Standard  Error (1986). Each column represent the results 
generated from the encompassing regressions for each due of models. The LRE+GARCH column has the results of the lagged realized volatility model with 
GARCH model . LRE+IGARCH column has the results of the lagged realized volatility model with Integrated GARCH model . LRE+EGARCH column has the 
results of the lagged realized volatility model with Exponential GARCH model. LRE+GJR column has the results of the lagged realized volatility model with GJR-
GARCH model . Also, the HAR+GARCH column has the results of the Heterogeneous Autoregressive (HAR) model with GARCH model. the HAR+IGARCH 
column has the results of the Heterogeneous Autoregressive (HAR) model with Integrated GARCH model. the HAR+EGARCH column has the results of the 
Heterogeneous Autoregressive (HAR) model with Exponential GARCH model. the HAR+GJR column has the results of the Heterogeneous Autoregressive (HAR) 
model with GJR-GARCH model. All the Significant coefficients at the 5% level are highlighted in bold. Also, the average values of the intercepts, slopes, and 
adjusted R squared across cryptocurrencies for each forecasting model are reported at the end of the table. 
  

 
Aggregate Results    

Average       𝛼 0.016 0.677 -0.001 0.018 -0.003 0.421 -0.014 -0.003 
Average       𝛽( 0.088 0.149 0.077 0.101 0.516 0.649 0.422 0.519 
Average       𝛽' 0.745 -4.474 0.895 0.714 0.483 -2.953 0.661 0.477 

Average 𝑎𝑑𝑗. 𝑅' 24.09% 22.60% 25.58% 24.16% 25.51% 24.97% 26.65% 25.61% 
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Table 6: Encompassing regressions for volatility forecasts: 30-day forecast horizon with Newey-West Standard Error (30-lag) 
 

CC LRE+GARCH LRE+IGARCH LRE+EGARCH LRE+GJR HAR+GARCH HAR+IGARCH HAR+EGARCH HAR+GJR 
 
BTC 
 𝛼 0.103 (3.49) 0.128 (4.52) 0.083 (3.10) 0.103 (3.65) 0.074 (1.16) 0.108 (1.54) 0.108 (1.62) 0.100 (1.25) 
 𝛽( -0.024 (-0.19) -0.017 (-0.14) -0.044 (-0.36) -0.010 (-0.09) 0.245 (0.49) 0.131 (0.27) -0.229 (-0.44) 0.025 (0.04) 
 𝛽' 0.478 (4.00) 0.309 (4.02) 0.600 (3.99) 0.461 (5.10) 0.362 (1.65) 0.268 (2.03) 0.656 (2.56) 0.444 (2.13) 
 𝑎𝑑𝑗. 𝑅'  9.10% 9.56% 11.28% 10.01% 9.16% 9.56% 11.25% 10.00% 
ETH 
 𝛼 0.139 (4.19) 0.180 (6.37) 0.106 (2.44) 0.146 (4.70) 0.025 (0.31) 0.017 (0.21) 0.058 (0.92) 0.015 (0.17) 
 𝛽( -0.026 (-0.24) -0.082 (-0.67) -0.072 (-0.71) 0.008 (0.08) 0.788 (1.54) 0.892 (2.01)  0.389 (0.75) 0.874 (1.56) 
 𝛽' 0.438 (3.20) 0.304 (2.71) 0.611 (2.82) 0.377 (3.41) 0.105 (0.48) 0.035 (0.25) 0.359 (0.99) 0.060 (0.28) 
 𝑎𝑑𝑗. 𝑅'  7.80% 7.30% 9.77% 7.28% 8.94% 8.87% 9.78% 8.87% 
XRP 
 𝛼 0.163 (4.49) 0.178 (5.47) 0.158 (4.09) 0.165 (4.41) 0.036 (0.36) 0.047 (0.49) 0.055 (0.63) 0.029 (0.31) 
 𝛽( 0.090 (0.96) 0.079 (0.83) 0.083 (0.89) 0.092 (0.98) 0.756 (1.68) 0.728 (1.69) 0.611 (1.53) 0.803 (1.98) 
 𝛽' 0.228 (1.95) 0.164 (1.81) 0.262 (1.76) 0.220 (1.82) 0.096 (0.74) 0.073 (0.72) 0.167 (0.97) 0.080 (0.64) 
 𝑎𝑑𝑗. 𝑅'  5.41% 5.38% 5.93% 5.16% 5.80% 5.82% 6.19% 5.75% 
LTC 
 𝛼 0.145 (2.98) 0.181 (4.34) 0.110 (2.13) 0.147 (3.23) 0.010 (0.10) 0.027 (0.34) 0.071 (0.82) 0.018 (0.16) 
 𝛽( 0.048 (0.34) -0.232 (-1.05) 0.002 (0.02) 0.055 (0.41) 0.913 (1.74) 0.793 (1.99) 0.285 (0.55) 0.856 (1.54) 
 𝛽' 0.391 (2.47) 0.496 (2.22) 0.559 (2.94) 0.377 (2.89) 0.047 (0.22) 0.094 (0.56) 0.429 (1.41) 0.075 (0.37) 
 𝑎𝑑𝑗. 𝑅'  7.67% 8.21% 10.65% 7.96% 9.40% 9.71% 10.83% 9.44% 
BCH 
 𝛼 0.153 (2.62) 0.184 (3.46) 0.130 (2.10) 0.152 (2.59) -0.011 (-0.11) -0.015 (-0.14) 0.019 (0.18) -0.010 (-0.10) 
 𝛽( 0.194 (1.13) 0.158 (0.83) 0.100 (0.53) 0.193 (1.13) 1.139 (2.51) 1.099 (2.47) 0.775 (1.47) 1.128 (2.49) 
 𝛽' 0.280 (1.74) 0.196 (1.61) 0.445 (1.97) 0.285 (1.77) -0.098 (-0.59) -0.043 (-0.36) 0.156 (0.58) -0.091 (-0.54) 
 𝑎𝑑𝑗. 𝑅'  10.29% 10.30% 12.33% 10.38% 13.98% 13.90% 14.11% 13.96% 
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Table 6 (Continued) 
CC LRE+GARCH LRE+IGARCH LRE+EGARCH LRE+GJR HAR+GARCH HAR+IGARCH HAR+EGARCH HAR+GJR 

 
EOS 
 𝛼 0.117 (1.61) 0.208 (4.22) 0.023 (0.27) 0.112 (1.61) 0.009 (0.10) 0.006 (0.07) 0.002 (0.02) 0.019 (0.21) 
 𝛽( -0.114 (-0.74) -0.132 (-0.73) -0.321 (-1.85) -0.105 (-0.73) 0.741 (1.92) 0.913 (2.50) 0.440 (1.08) 0.624 (1.61) 
 𝛽' 0.661 (2.03) 0.342 (1.45) 1.198 (2.90) 0.671 (2.18) 0.217 (0.81) 0.057 (0.38) 0.533 (1.55) 0.293 (1.11) 
 𝑎𝑑𝑗. 𝑅'  6.45% 3.54% 13.89% 7.54% 7.86% 7.49% 10.47% 8.25% 
XMR 
 𝛼 0.160 (5.15) 0.183 (6.12) 0.145 (4.96) 0.159 (5.17) 0.041 (0.61) 0.052 (0.73) 0.074 (1.05) 0.056 (0.77) 
 𝛽( -0.092 (-0.71) -0.093 (-0.72) -0.177 (-1.30) -0.087 (-0.72) 0.681 (1.81) 0.657 (1.72) 0.369 (0.84) 0.573 (1.41) 
 𝛽' 0.409 (3.68) 0.292 (3.55) 0.559 (3.48) 0.407 (4.16) 0.145 (0.94) 0.110 (0.98) 0.314 (1.45) 0.186 (1.21) 
 𝑎𝑑𝑗. 𝑅'  10.26% 10.49% 14.76% 11.22% 11.57% 11.67% 13.72% 12.00% 
XLM 
 𝛼 0.230 (5.55) 17.731 (1.43) 0.223 (5.13) 0.228 (5.43) 0.045 (0.47) 17.227 (1.49) 0.035 (0.35) 0.046 (0.48) 
 𝛽( -0.082 (-0.88) -0.038 (-0.38) -0.077 (-0.82) -0.082 (-0.88) 0.741 (1.89) 0.996 (2.75) 0.777 (1.90) 0.736 (1.85) 
 𝛽' 0.240 (2.60) -65.276 (-1.41) 0.264 (2.46) 0.248 (2.59) 0.093 (0.93) -64.439 (-1.49) 0.096 (0.80) 0.097 (0.91) 
 𝑎𝑑𝑗. 𝑅'  3.42% 5.42% 3.11% 3.45% 4.08%  9.28% 4.03% 4.08% 
DASH 
 𝛼 0.165 (4.62) 0.179 (5.15) 0.148 (4.41) 0.165 (4.58) 0.152 (1.28) 0.188 (1.53) 0.180 (1.67) 0.147 (1.28) 
 𝛽( 0.012 (0.09) -0.034 (-0.25) -0.109 (-0.75) -0.008 (-0.06) 0.079 (0.13) -0.069 (-0.12) -0.237 (-0.40) 0.089 (0.15) 
 𝛽' 0.363 (3.92) 0.336 (3.83) 0.558 (3.85) 0.387 (3.71) 0.346 (1.91) 0.337 (2.09) 0.562 (2.30) 0.355 (1.90) 
 𝑎𝑑𝑗. 𝑅'  15.48% 16.45% 19.08% 15.53% 15.49% 16.40% 18.65% 15.55% 
ETC 
 𝛼 0.176 (4.08) 0.205 (5.01) 0.148 (3.29) 0.176 (4.09) 0.076 (0.75) 0.109 (0.97) 0.100 (1.14) 0.072 (0.74) 
 𝛽( 0.023 (0.15) 0.020 (0.13) -0.009 (-0.06) 0.022 (0.14) 0.519 (1.08) 0.446 (0.91) 0.251 (0.55) 0.538 (1.15) 
 𝛽' 0.354 (3.18) 0.228 (3.28) 0.492 (3.42) 0.356 (2.98) 0.213 (1.18) 0.153 (1.32) 0.398 (1.75) 0.209 (1.16) 
 𝑎𝑑𝑗. 𝑅'  8.53% 9.04% 10.62% 8.41% 9.26% 9.58% 10.80% 9.23% 
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Table 6 (Continued) 
 

Table 6 shows the results of the encompassing regressions for 30 trading days horizon with Newey-West Standard  Error (1986). Each column represent the results 
generated from the encompassing regressions for each due of models. The LRE+GARCH column has the results of the lagged realized volatility model with 
GARCH model . LRE+IGARCH column has the results of the lagged realized volatility model with Integrated GARCH model . LRE+EGARCH column has the 
results of the lagged realized volatility model with Exponential GARCH model. LRE+GJR column has the results of the lagged realized volatility model with GJR-
GARCH model . Also, the HAR+GARCH column has the results of the Heterogeneous Autoregressive (HAR) model with GARCH model. the HAR+IGARCH 
column has the results of the Heterogeneous Autoregressive (HAR) model with Integrated GARCH model. the HAR+EGARCH column has the results of the 
Heterogeneous Autoregressive (HAR) model with Exponential GARCH model. the HAR+GJR column has the results of the Heterogeneous Autoregressive (HAR) 
model with GJR-GARCH model. All the Significant coefficients at the 5% level are highlighted in bold. Also, the average values of the intercepts, slopes, and 
adjusted R squared across cryptocurrencies for each forecasting model are reported at the end of the table. 
  

 
Aggregate Results    

Average       𝛼 0.155 1.936 0.127 0.155 0.046 1.777 0.070 0.049 
Average       𝛽( 0.003 -0.037 -0.062 0.008 0.660 0.659 0.343 0.625 
Average       𝛽' 0.384 -6.261 0.555 0.379 0.153 -6.335 0.367 0.171 

Average 𝑎𝑑𝑗. 𝑅' 8.44% 8.57% 11.14% 8.69% 9.55% 10.23% 10.98% 9.71% 
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Chapter Three: Examining The Relationships and Effects of Diverse 
Economic Policy Uncertainty Indices on Cryptocurrency Market 
Returns 

 
 

1. Abstract 
The purpose of this research is to investigate the relationship between cryptocurrency 

market returns and uncertainty indices by assessing the impact of the Covid-19 pandemic 

period on both indices and cryptocurrency returns, determining which index has the most 

impact on cryptocurrency market results, and determining which indices pair has the most 

influence on cryptocurrency market findings. Ten cryptocurrency returns and Eight uncertainty 

indices have been examined. The Quantile Regression, the Multivariate-Quantile Regression, 

and the Granger Causality test have been applied. The Quantile Regression findings revealed 

that the Cryptocurrency Policy Uncertainty index and the Cryptocurrency Price Uncertainty 

index significantly affect cryptocurrency returns. However, the rest of the indices show no 

effect on cryptocurrency returns. The Multivariate-Quantile Regression findings revealed that 

when the bull wave hits the cryptocurrency market, the UCRY Policy Index + Central Bank 

Digital Currency Attention Index pair significantly affects cryptocurrency returns. 

Nevertheless, when the bull wave hits the cryptocurrency market, the UCRY Policy Index + 

the Cryptocurrency Environmental Attention (ICEA) index pair significantly affects 

cryptocurrency returns. The results during the crisis period confirmed most of the total sample 

results. These findings will significantly help investors, portfolio managers, and policymakers. 
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2. INTRODUCTION 
The development of the cryptocurrency markets has been one of the primary factors for 

investors to consider when making investment decisions. Cryptocurrency markets have been 

sharing the financial industry by relying on innovative technologies that prize them over 

traditional investment tools. Therefore, many investors, individuals, and firms have changed 

their investment pools to include cryptocurrencies to diversify their investments and avoid 

risks. Not only that, but also individuals and firms' investors have been cautious and pay 

attention to every factor that might affect them when they make their investment decisions. 

Therefore, nowadays, economic uncertainty factors have contributed directly and indirectly to 

investors' behaviors and shaped their investment decisions. These economic uncertainty factors 

vary between economy, policy, price, attention, and environmental attention uncertainty 

indices. Some of them were Twitter-based Economic Uncertainty. Other ones have been 

generated from 726.9 million data text mining. Others captured the relative extent of media 

discussion around the environmental impact of cryptocurrencies based on 778.2 million data. 

Also, some indices were generated Based on 663.9 million news stories from LexisNexis News 

& Business. These indices will influence the investment decision, mainly when focusing on 

the calm and turmoil period. As a result, this research will investigate and focus on measuring 

and examining the relationships of the various economic uncertainty indices and their effect 

on the cryptocurrency market returns considering ten cryptocurrencies. These cryptocurrencies 

vary from the most dominant cryptocurrency to less dominant cryptocurrencies. 
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3. LITERATURE REVIEW: 
 

Uncertainty indices play an important role in financial markets by highlighting current 

economic and geopolitical issues influencing investor behaviors. These indices are frequently 

produced from various sources, including economic statistics, news sentiment analysis, and 

events related to geopolitics. In the context of traditional financial assets like stocks and bonds, 

uncertainty indices act as vital indicators of market risk and volatility. High degrees of 

uncertainty can result in higher market volatility, altering investor behavior and trading 

methods. During uncertain times, investors prefer to seek safe-haven assets, which causes 

adjustments in asset allocations and has an influence on market dynamics. 

Because cryptocurrency markets are relatively new and active, uncertainty indices are 

significant. Cryptocurrencies have demonstrated vulnerability to macroeconomic insecurities 

and global financial surroundings. Cryptocurrencies have been perceived as a speculative safe 

haven while also experiencing higher volatility during moments of extreme uncertainty. 

Cryptocurrencies' decentralized and global character means they are impacted not just by 

traditional economic uncertainty but also by legislative changes, technology improvements, 

and market emotion. The interaction between uncertainty indices and cryptocurrency markets 

emphasizes the dynamic and linked nature of these digital assets in a more significant financial 

environment. 

The impact of uncertainty indices on traditional financial assets and cryptocurrencies 

demonstrates the mutual dependence on global markets. Investors regularly follow uncertainty 

indices to identify risks and make intelligent choices regarding their investments when 

geopolitical and economic uncertainties indices change. Understanding how uncertainty 

affects different asset classes is critical for portfolio diversification, risk management, and 

establishing successful investing strategies in today's rapidly shifting financial world. The 

energetic nature of uncertainty indices underlines market players' need to be observant, adapt 

to changing conditions, and use creative tools to negotiate the complex dynamics of today's 

financial markets. 

Consequently, it is critical to thoroughly assess the influence and impact of various 

uncertainty indices on the returns of cryptocurrency markets. The interconnection of these 

indices and cryptocurrency market dynamics underlines the need to understand how economic, 
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geopolitical, and sentiment concerns influence cryptocurrency prices and investor behaviors. 

This evaluation is vital for market players such as investors, financial analysts, and legislators 

since it gives substantial insights into the risk indicators and market sentiment influencing the 

cryptocurrency environment. As the global financial ecosystem evolves, monitoring and 

analyzing the influence of uncertainty indices on cryptocurrencies becomes an increasingly 

important part of risk management and strategic decision-making in the fast-evolving and 

interrelated world of finance. 

 

3.1.  Uncertainty Indices for Cryptocurrency and Other Financial Assets. 
 

Many studies have focused on the effects of economic policy uncertainty 

between cryptocurrency and traditional asset markets. It helps identify the hedging and 

forecasting capabilities between those assets. For example, Hasan et al. (2022) 

investigated the hedging and safe-haven properties of UCRY using the Quantile-on-

Quantile technique. Their findings show that the UCRY index hedges against gold and 

the DJ Islamic Index. However, the UCRY index does not hedge Bitcoin returns in 

various quantiles. Also, Shang et al. (2022) research analyzed and compared the 

predictive potential of the UCRY Policy with numerous standard predictors for the gold 

market using a newly created cryptocurrency policy uncertainty index (UCRY Policy) 

and an efficient forecasting approach called Dynamic Occam's Window (DOW). Their 

empirical findings revealed that UCRY Policy has a strong predictive ability in 

projecting weekly gold returns, outperforming numerous frequently used predictors 

throughout a data set spanning 2014 to 2022. The UCRY Policy index that they used 

was developed by Lucy et al. (2022). Furthermore, the DOW technique with varied 

thresholds in forecasting weekly gold returns outperforms dynamic model 

averaging/selection (DMA/DMS) and several other traditional econometric models.  

Likewise, Fang et al. (2019) investigated whether economic policy uncertainty 

affects Bitcoin's and other global assets' volatility and hedging effectiveness. The 

findings suggest that EPU has a considerable impact on Bitcoin's long-term volatility, 

and Bitcoin has poor hedging efficacy against EPU. These empirical investigations 

demonstrated that the relationship between Bitcoin and uncertainty change in upper 
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quantiles means that Bitcoin functions as a hedge only during periods of greater 

uncertainty and risk. 

Also, Mokni et al. (2020) investigate the effect of EPU on the Bitcoin-US stock 

connection and demonstrate the value of mixing Bitcoin and U.S. equities in the same 

portfolio. They investigate the impact of economic policy uncertainty (EPU) on the 

dynamic conditional correlations between Bitcoin and the U.S. stock markets, taking 

into consideration the accounting for price structural changes in Bitcoin. The findings 

demonstrate that EPU has a detrimental influence on the dynamic conditional 

correlations between Bitcoin and the U.S. stock markets only following the December 

2017 Bitcoin meltdown. Additional investigation reveals that an increase in the EPU 

level is related to an increase in the ideal weight of Bitcoin in the portfolio prior to the 

Bitcoin crash. Nevertheless, EPU has had a negative (positive) influence on the hedging 

ratio during low (high) uncertainty levels after the Bitcoin crash. 

However, Mokni et al. (2021) examined Bitcoin, contradicting the aggregate 

and categorical EPU in the United States. They used data from September 2011 to 

December 2019. The empirical results show that Bitcoin is not a good strategy to hedge 

against the overall US EPU. Furthermore, when the Bitcoin market is negative, it acts 

as a significant safe haven for this overall measure of uncertainty. Nonetheless, 

analyses incorporating categorical EPU data show Bitcoin's ability to function as a 

powerful hedge and safe haven against specific risks related to fiscal policy, taxation, 

national security, and trade policy when exploring deeper into the disaggregated level 

of US EPU data. 

Nevertheless, Hernandez et al. (2021) examined the short- and long-term 

implications of U.S. economic policy uncertainty (EPU) on Bitcoin, gold, and the 

implied volatility of the U.S. stock market (VIX). They used an autoregressive 

distributed lag model (ARDL) on monthly data. Their findings indicated that the EPU 

has a considerable negative (positive) influence on Bitcoin across short (long) time 

periods. Contrary to previous research, they show that the intensity of the influence of 

EPU on Bitcoin returns diminishes over longer time horizons. 

Furthermore, Fang et al. (2019) examine whether global economic policy 

uncertainty affects the long-run volatility of Bitcoin, global stocks, commodities, and 
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bonds. Other than the case of bonds, empirical findings confirm this hypothesis. The 

findings suggest that Bitcoin investors will be able to utilize information about the level 

of global economic uncertainty to improve their predictions of Bitcoin volatility. They 

also investigate whether global economic policy uncertainty affects the correlation 

between Bitcoin and global stocks, commodities, and bonds. Empirical findings show 

that global economic policy uncertainty does have a significant negative impact on the 

Bitcoin-bonds correlation but a positive impact on the Bitcoin-equities and Bitcoin-

commodities correlations, implying that Bitcoin can act as a hedge under certain 

economic uncertainty conditions. Also, surprisingly, when the extent of global 

economic policy uncertainty is taken into account, the hedging efficacy of Bitcoin for 

both global stocks and global bonds improves marginally. With such a minimal 

influence of global economic uncertainty on Bitcoin's hedging capacity, investors 

cannot significantly improve Bitcoin's hedging performance under diverse economic 

uncertainty situations. 

Also, Wu et al. (2019) investigate the safe-haven features of gold and Bitcoin 

in the face of economic policy uncertainty. Gold and Bitcoin's hedging and safe-haven 

qualities are calculated using the GARCH model and quantile regression with dummy 

variables. Gold and Bitcoin, on average, cannot serve as an effective hedge or safe 

haven for economic policy uncertainty (EPU). In addition, the researchers observed 

that Bitcoin is more vulnerable to EPU shocks, whereas gold maintains stability despite 

having lower hedge and safe-haven coefficients. In most cases, gold and Bitcoin can 

act as a weak hedge and safe haven against EPU during extreme bearish and bullish 

markets, and they can also be considered for portfolio diversification under stable 

market conditions. However, the study of  Bilgin et al. (2018) does not support the gold 

results of the previous study. They explored the gold pricing determinants in depth by 

considering the unique scenario of global economic instability and political 

disagreements using a nonlinear ARDL model. Empirical research indicated that rising 

economic policy uncertainty would eventually lead to an increase the gold prices. 

Moreover, Papadamou et al. (2021) investigate the nonlinear causal link 

between economic policy uncertainty and gold in bull and bear market scenarios with 

cryptocurrency markets. They found that the EPU index influences the averages of over 
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50% of the digital currencies studied in bull and bear markets and volatility in all 

quantiles. Similar conclusions are discovered in the case of gold, which is more 

prominent during bear markets because of its hedging capabilities. In both bull and bear 

markets, there is evidence that causality in variance is significant in all except the upper 

quantile for both EPU and gold estimations.  

Additionally, Raheem (2021) investigates Bitcoin's safe-haven characteristics 

against uncertainty measures (VIX, EPU, and oil shock) from 2019 to 2020. According 

to the literature, cryptocurrencies, notably Bitcoin, provide investors with safe haven 

benefits. The emergence of the COVID-19 pandemic provides an ideal chance to test 

this concept. Their study attempts to confirm this assumption by comparing Bitcoin's 

safe haven ability to uncertainty measurements (VIX, EPU, and Oil Shock). In addition, 

they compare pre- and post-COVID-19 analyses. The findings show that Bitcoin 

remained able to keep its generally recognized properties prior to COVID-19. 

Nevertheless, the post-COVID-19 release reversed the previously documented trends. 

Also, Choi and Shin (2022) explore the link between inflation, uncertainty, Bitcoin, 

and gold prices using two uncertainty measures (VIX and US EPU) and determined 

that financial uncertainty shocks cause Bitcoin prices to fall dramatically, whereas 

policy uncertainty shocks have little effect.  

A limited number of research investigate whether economic policy uncertainty 

(EPU) affects cryptocurrency returns. A review of the literature reveals that the study 

undertaken by Bouri et al. (2017) investigated whether Bitcoin may be used to hedge 

global uncertainty, as assessed by the first primary component of the VIXs of 14 

established and emerging equities markets. After decomposing Bitcoin returns into 

multiple frequencies, they used quantile regression and provided evidence of heavy 

tails. They show that Bitcoin functions as a hedge against uncertainty, responding 

favorably to uncertainty at both higher quantiles and shorter frequency fluctuations of 

Bitcoin returns. Moreover, they employ quantile-on-quantile regression to show that 

hedging occurs at both the lower and upper ends of Bitcoin returns and global 

uncertainty. 

Matkovskyy and Jalan (2019) also considered that risk-averse investors avoided 

investing in Bitcoin markets, particularly during times of crisis. They investigated the 
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EPU's influence on the Bitcoin connection as well as traditional financial markets. 

Their research found that volatility spillovers between Bitcoin and traditional markets 

are typically more significant than volatility spillovers between conventional markets. 

In addition to these findings, these volatility dynamics suggest a complicated trend that 

spans time and culminates in December 2017, with a frenzied price phase after the 

announcement of Bitcoin's future. The findings revealed that the EPU had uneven 

impacts on the conventional assets chosen.  

 

3.2.  Uncertainty Indices within Cryptocurrency Markets 
 

The Economic Policy Uncertainty Index is the uncertainty surrounding 

government and regulatory choices, and changes influence it in political and economic 

decisions. That means that EPU controls macroeconomic factors such as employment, 

consumption, and future investment (Demir et al., 2018; Yen and Cheng., 2021). 

However, the relationship between cryptocurrency and various uncertainty indices, 

such as geopolitical risk (Aysan et al., 2019), the volatility index (Akyildirim et al., 

2020), news implied volatility (Manela and Moreria., 2017), and sentiment index 

(Corbet et al., 2020), has already been investigated in the current finance literature. 

Lucey et al. (2022) recently developed the UCRY index as a new uncertainty index for 

cryptocurrencies. Their UCRY Index tracks cryptocurrency price uncertainty (UCRY 

Price) and cryptocurrency policy uncertainty (UCRY Policy). They demonstrate that 

the created index displays different fluctuations in response to crucial occurrences in 

the Bitcoin field. 

Nguyen and Nguyen (2023) investigated the short-term and long-term influence 

of crypto-specific policy uncertainty and overall economic policy uncertainty (EPU) 

on Bitcoin exchange inflows. Their findings revealed that the crypto-specific policy 

uncertainty has both short-term and long-term effects on BTC exchange inflows, but 

the general EPU solely explains these inflows in the near run. Furthermore, the authors 

discover that BTC "Granger" exchange inflows increase price volatility. Additionally, 

the authors show that BTC volatility has an intense and rather persistent reaction to 

shocks to its exchange inflows.  
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Also, Xia et al. (2023) investigated the anticipation of the Economic Policy 

Uncertainty (EPU) and Cryptocurrency Uncertainty (UCRY) indices with  BTC 

volatility. Their research results show that in-sample calculations show that the global 

EPU index has considerable adverse effects on long-term Bitcoin volatility. However, 

the UCRY indices positively affect long-term Bitcoin volatility. Furthermore, out-of-

sample validation shows that the One-Side Asymmetric GARCH-MIDAS with UCRY 

price index is the best-performing model, and forecasting models, including the UCRY 

indices, beat models with global and national EPUs in out-of-sample forecasting. Given 

their limited scope, UCRY indexes have emerged as a viable data source for directing 

Bitcoin trading behaviors. 

Karaömer (2022) investigated the time-varying connection between 

cryptocurrency policy uncertainty (UCRY Policy) and cryptocurrency returns.  He 

analyses whether these relationships differ depending on the uncertainty generated by 

essential events such as cryptocurrency exchange incidents, the Coronavirus (COVID-

19) pandemic situation, China's ICO prohibition, and the Security and Exchange 

Commission's (SEC) statement concerning Ripple. Using weekly data and the DCC-

GARCH model, the study found negative connections between the UCRY Policy and 

the returns of BTC, ETH, LTC, XRP, XLM, DASH, and XMR. As a consequence, an 

increase in the volatility of the UCRY Policy may reduce the volatility of the returns 

of BTC, ETH, LTC, XRP, XLM, DASH, and XMR. Additionally, the research's results 

demonstrate that the projected DCC varies over time and is strongly sensitive to key 

events like as China's ICO ban, the Covid-19 outbreak, cryptocurrency exchange 

breaches, and the SEC's Ripple statement. Furthermore, empirical findings show that 

the UCRY Policy has had a negative impact on cryptocurrency returns during key 

events like as China's ICO ban, the Covid-19 crisis, and the cryptocurrency exchange 

hack, signaling that they are useless as a hedge or safe-haven asset. 

Wang et al. (2023) investigated time- and frequency-domain spillover effects 

across cryptocurrency markets and a newly constructed central bank digital currencies 

attention index (CBDCAI). They applied two TVP-VAR-based spillover models. The 

research's findings show that CBDC's attention substantially influences cryptocurrency 
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prices. Furthermore, they found that most Bitcoin investors want to trade in the short 

term.  

Furthermore, Ayadi et al. (2023) explore the relationship and directional 

predictability of central bank digital currencies (CBDCs) with leading cryptocurrencies 

and stablecoins returns. They applied the "Cross-Quantilogram" model to investigate 

how and whether traditional digital currencies react to CBDC uncertainty and attention 

shocks. According to the research, the CBDC uncertainty index negatively connects 

cryptocurrency and stablecoin returns. In addition, the CBDC attention index 

negatively correlates with Bitcoin, Ethereum, XPR, and Terra USD. Nevertheless, it 

positively correlates with Tether, USD Coin, Binance, and Dai.  

 Another area of study pursued by Bouri et al. (2017) is the forecasting 

capability of the uncertainty index over cryptocurrency using a wavelet-based 

technique. Their findings demonstrate that Bitcoin can hedge against uncertainty over 

shorter periods. Furthermore, Bitcoin's hedging behavior is reflected at the bottom and 

upper ends of the Bitcoin return. Likewise, Balcilar et al. (2017) evaluated the 

predictability of cryptocurrency (Bitcoin) using a quantile-based model. Except for 

bear and bull market environments, their data show that trading volume has predictive 

potential over cryptocurrency. Demir et al. (2018) demonstrate that the EPU index has 

a favorable influence on bitcoin returns and may anticipate bitcoin price returns. 

According to Demir et al. (2018), ambiguity about government actions might cause 

investors to lose faith in their fiat currencies or be concerned about the broader 

economy, particularly following the 2008 financial crisis. As a result, a change in the 

EPU may prompt investors to reassess their portfolio in order to minimize future wealth 

loss. 

Shaikh (2020) continued the investigation by expanding on the previous study 

and investigating the Bitcoin market and EPU. His research examined the EPU, EMPU, 

and EPU and worldwide MPU indices of other vital economies. The model also 

includes control variables such as VIX and SPX returns. The quantile regression and 

Markov regime-switching models' robust assessments show that EPU affects Bitcoin 

returns. One of the study's main results is that Bitcoin returns are more sensitive to EPU 

in the United States, China, and Japan. Uncertainty harms the Bitcoin market in the 



 
 

 
 

101 

101 

United States and Japan but benefits China. Understanding Bitcoin exchange rates also 

requires an understanding of global MPU uncertainty. Furthermore, the Bitcoin market 

suffers from uncertainty in the Federal Open Market Committee (FOMC), the gross 

domestic product, and other macroeconomic indicators. Uncertainty in the stock market 

and Bitcoin returns are inversely related.  

These results are supported by the findings of the study of Cheng and Yen 

(2020). They used the predictive regression model to examine the influence of China's 

EPU index on forecasting the returns of critical cryptocurrencies (such as Bitcoin, 

Ethereum, Litecoin, and Ripple). According to the data, the China EPU index has 

strong prediction potential for Bitcoin returns, but the EPU indices of the United States, 

Korea, and Japan have limited predictive power. Also, these results are supported by 

the study of Cheng and Yen (2020). They emphasized that the U.S. EPU index results 

demonstrate no substantial capacity to anticipate Bitcoin returns and stated that their 

findings contradict Demir et al. (2018). Also, according to Cheng and Yen (2020), 

concentrating on the long-term effect of utilizing monthly data, the U.S. EPU index has 

no predictive potential for monthly Bitcoin returns for the U.S. or other Asian countries, 

whereas China's EPU index can predict the monthly returns. These studies show the 

possible mixed influence of economic policy uncertainty on cryptocurrency markets. 

Panagiotidis et al. (2020) investigate the importance of forty-one possible 

determinants of bitcoin returns from 2010 to 2018. (2872 daily observations). The 

freshly developed principle component-guided sparse regression method is used. They 

discover that economic policy uncertainty and stock market volatility are two of 

Bitcoin's most critical variables. 

Gozgor et al. (2019) evaluated the relationship between the trade policy 

uncertainty index and Bitcoin returns in the United States using several models and 

indices. The study findings reveal that Bitcoin is positively connected with the trade 

policy uncertainty index using Wavelet Power Spectrum, Wavelet Coherency, and 

Cross-Wavelet Techniques. Nonetheless, at times of extreme uncertainty, Bitcoin fails 

to act as a hedging mechanism against other financial assets.  

Through another lens, it has been discovered that investment sentiments could 

be used to forecast cryptocurrency volatility and returns. Corbet et al. (2020b) created 
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a sentiment index using news reports on four macroeconomic indicators: GDP, 

unemployment, Consumer Price Index (CPI), and durable goods. The findings revealed 

that Bitcoin returns reacted differently to news than stock market returns. Additionally, 

it was shown that the reaction of cryptocurrency prices to news and announcements 

varies based on the kind of digital assets. Consequently, according to Corbet et al. 

(2020), currency-based digital assets are likely more vulnerable to U.S. monetary 

policy pronouncements, whereas application- or protocol-based digital assets are 

resistant to similar shocks. Corresponding variances are identified for mineable and 

non-mineable currencies, implying that certain digital assets' responses to various 

sources of uncertainty would differ from Bitcoin's.  

Also, Wu et al. (2021) use the dynamic Granger causality test to examine the 

impact of economic policy uncertainty (EPU), Twitter-based economic uncertainty 

(TEU), and Twitter-based market uncertainty (TMU) on the returns of Bitcoin, 

Ethereum, Litecoin, and Ripple from August 9, 2015, to July 7, 2020, and their results 

indicate that there is causality from the EPU indices to significant cryptocurrencies for 

some periods, excluding the COVID19 period. On the other hand, changes in the 

Twitter-based EPU indices for these periods are positively related to Bitcoin returns. 

Similarly, French (2021) examines the effect of the Twitter-based market 

uncertainty index on Bitcoin returns using data from 2013 to 2020 covering the period 

before and after COVID-19 and reveals that TMU is a leading indicator of Bitcoin 

returns only during the pandemic, and people's uncertain tweets have a major impact 

on Bitcoin price and conditional volatility. The study results imply that information 

provided in virtual communities like Twitter significantly influences bitcoin prices due 

to COVID-19.  

Aharon et al. (2022) investigate the connection between Twitter-based 

economic and market uncertainty with the movement of Bitcoin, Ethereum, Bitcoin 

Cash, and Ripple. They discover a substantial link between the uncertainty metrics 

utilized and cryptocurrency returns, and the impact is most noticeable for Bitcoin and 

towards the tails of return distributions. 

Furthermore, Lehrer et al. (2021) conducted an out-of-sample experiment. They 

found that using social media sentiment may enhance the prediction accuracy of a 
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popular volatility index, particularly in the near run. High-frequency data has been 

proven to be beneficial for predicting. Furthermore, Tumasjan et al. (2021) contend 

that a positive relationship exists between signaling and venture capital valuation. Still, 

Twitter sentiment is not shown to be connected to long-term investment performance.  

Philippas et al. (2019) analyze if Bitcoin price surges are connected to Twitter 

and Google Trends informative signals in a series of relevant publications focusing on 

the implications of Twitter-based investor sentiment on cryptocurrencies. The dual 

diffusion model results show that the momentum of media attention in social networks 

drives Bitcoin market prices, and investors seek information to make investment 

decisions. Likewise, Li et al. (2021) discovered bi-directional causalities and spillovers 

between the majority of the twenty-seven cryptocurrencies studied and investor 

interest. These interlinkages are highlighted when investor sentiment is based on a mix 

of Twitter and Google search data. Huynh (2021) examined the influence of President 

Trump's tweets on Bitcoin price and trading activity, claiming that negative sentiment 

tweets are far more potent than good sentiment tweets in terms of predicting returns, 

trading volume, realized volatility, and surges in Bitcoin markets. Kraaijeveld and De 

Smedt (2020) investigate the predicting abilities of Twitter sentiment using lexicon-

based sentiment analysis and bilateral Granger causality on the nine significant 

cryptocurrencies. It has been discovered that Twitter considerably impacts the returns 

of Bitcoin, Bitcoin Cash, and Litecoin, as well as EOS and TRON if a bullishness ratio 

is used. 

In some conditions, a study initiated by Bermpei et al., (2022) indicated that the 

link between economic uncertainty and Bitcoin market crashes is negative. Hence, 

investors may prefer to keep their Bitcoin holdings in order to prevent this uncertainty. 

Walther et al. (2019) forecast cryptocurrency volatility using 17 distinct economic and 

financial indices. They emphasize that it is fueled by global commerce and a network 

of interconnected driving variables. The Financial Stress Index and the Chinese Policy 

Uncertainty Index are valuable and influential indicators of cryptocurrency volatility, 

although the Global Real Economic Activity Index dominates them. The 

unpredictability size in the bitcoin price is measured by cryptocurrency price 

uncertainty. 
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Bouri and Gupta (2021) examine the prediction efficacy of newspaper- and 

internet-based uncertainty measures for Bitcoin returns using different indices and 

measures. They show that Bitcoin is a hedge against both indicators using monthly 

data. Nevertheless, the predictive ability of the internet-based economic uncertainty-

related queries index in predicting Bitcoin returns is statically significantly more 

extraordinary than the measure of uncertainty derived from newspapers. This is 

possible because individual investors acquire the former measure of uncertainty based 

on searching the internet for words related to uncertainty.  

Umar et al. (2021) use the wavelet-based quantile-on-quantile approach and the 

quantile-based Granger causality method to evaluate the influence of political and 

economic uncertainty in the United States on the Bitcoin price from 2010/06 to 

2020/10. The results suggest that political and economic concerns impact Bitcoin 

values both adversely and favorably during times of increasing uncertainty in the U.S. 

Therefore, the safe-haven characteristics tend to fluctuate in the short and long run.  

Aysan et al. (2019) investigated how geopolitical risk affects Bitcoin returns 

and volatility. The authors employed Caldara and Iacoviello's (2018) Geopolitical 

Uncertainty Index (GPR) to quantify worldwide terrorism, conflicts, and state tensions. 

Aysan et al. (2019) discovered that GPR has predictive power on price volatility and 

Bitcoin returns using the Bayesian graphical structural vector autoregressive model, 

indicating Bitcoin's capacity to operate as a beneficial hedging tool during periods of 

heightened global geopolitical risks. Further, Conlon et al. (2020) evaluated the effects 

of the Global Economic Policy Uncertainty Index (GEPU) and GPR index on 

cryptocurrency returns. However, they found insignificant safe-haven or hedging 

capabilities of cryptocurrencies against either uncertainty indices, with the exception 

of a limited capacity to hedge against GEPU during a bull market. Their findings are 

compatible with previous studies in this field, such as (Wu et al., 2019; Al Mamun et 

al., 2020).  

Su et al. (2020) demonstrate how investors may use the Bitcoin market to 

optimize their portfolio investments during times of elevated geopolitical risk. Gozgor 

et al. (2019) discover a substantial association between U.S. Trade Policy Uncertainty 

(TPI) and Bitcoin returns and additional evidence of regime changes between 2010-11 
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and 2017-18. During regime changes, this relationship is revealed to be powerful. 

Baker et al. (2021) extend their Economic Policy Uncertainty index by relying on 

tweets to determine market sentiment. They develop four unique economic mood 

indices and four market sentiment indices based on tweets, proposing that Twitter users' 

risk and uncertainty views are pretty comparable to journalist opinions.  

Fang et al. (2020) investigated the effect of the News-based Implied Volatility 

index (NVIX) on cryptocurrency returns, showing that the NVIX, developed by Manela 

and Moreira (2017), is a better predictor of long-term volatility in selected 

cryptocurrencies than the Davis (2016) proposed Global Economic Policy Uncertainty 

index.  

Finally, a thorough evaluation of the current literature reveals significant gaps 

in the analysis of various uncertainty indices on cryptocurrency market returns. This 

key discovery serves as a catalyst for this chapter, which is intentionally aimed to close 

these gaps and provide new insights to investors knowledge of the relationship between 

uncertainty indices and cryptocurrency market behaviors. The chapter seeks 

to examine the complex effect of multiple uncertainty indices on cryptocurrency 

market returns, recognizing the importance of such indices in affecting investor attitude 

and market behaviors. This study aims to extend the scholarly discussion on the 

complex link between uncertainty and the cryptocurrency environment by measuring 

and analyzing the impact of these variables on cryptocurrency market returns. 
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4. RESEARCH GAP AND CONTRIBUTION: 
 

Because cryptocurrencies are still relatively new compared to traditional financial 

instruments, there remains limited empirical research concerning the linkage between their 

returns and uncertainty indices. Although some studies emphasize the additional risk such 

investments might pose to investors in developing economies, numerous researchers recognize 

the various benefits of cryptocurrencies. Thus, understanding and predicting the connectedness 

of cryptocurrency returns and uncertainty indices using high-frequency data will reveal the 

usefulness and benefits of improving the decision-making for potential investors, portfolio 

managers, and policymakers. Each index accounts for different risks and uncertainties. For 

example, the Economic Policy Uncertainty Index for Europe, the Cryptocurrency Policy 

Uncertainty Index (UCRY Policy), and the Cryptocurrency Price Uncertainty Index (UCRY 

Price) focus on the uncertainty associated with the new policies globally and in Europe 

specifically that have been imposed on cryptocurrency markets globally and the factors that 

might affect the price fluctuations of cryptocurrency markets. 

Conversely, the Cryptocurrency Environmental Attention (ICEA) Index aims to 

capture the environmental attention devoted to cryptocurrency market investors and non-

investors that might affect investment intentions and market prices. On the contrary, the CBDC 

Uncertainty Index (CBDCUI) and the CBDC Attention Index (CBDCAI) capture the 

uncertainty, risks, and attention that central banks' digital currencies impose on cryptocurrency 

markets as major competitors backed by central banks. Also, the Twitter Economic 

Uncertainty (TEU) index provides insights into how tweets from investors and non-investors 

might affect economic uncertainty in general. Therefore, this research's contribution sets out 

to measure the relationship between the cryptocurrency market returns and different 

uncertainty indices and determine which index (pairs) affects the most of the returns of 

cryptocurrencies. Furthermore, this research will compare the indices and their effect on 

cryptocurrency returns. Not only that, but this research will also focus on the COVID-19 

pandemic period and will account for and test for its effects as a crisis period on the chosen 

indices and cryptocurrency returns. These contributions have differentiated the current study 

from previous studies by examining the effect of multiple uncertainty indices on more than ten 

cryptocurrency returns. 
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Additionally, the research field currently has a gap in the scientific literature because 

more attention needs to be devoted to cryptocurrencies other than Bitcoin, Ethereum, Litecoin, 

and Ripple. As such, there is inadequate knowledge about the retunes of the less dominant 

cryptocurrencies. Therefore, the current research will strive to contribute to the literature by 

testing the less dominant cryptocurrencies. Thus, this research will help scholars with future 

investigations and assist investors, financial corporations, portfolio managers, and 

policymakers shape their investment decisions. 

Wang et al. (2022) introduced two of these indices. The first index is the Central Bank 

Digital Currency Attention Index. The second index is the Central Bank Digital Currency 

Uncertainty Index. Also, there is another Cryptocurrency Uncertainty Index (UCRY) 

introduced by Lucey et al. (2022) that covers two forms of uncertainty: cryptocurrency policy 

uncertainty (UCRY Policy) and cryptocurrency price uncertainty (UCRY Price).  

Furthermore, the Cryptocurrency Environmental Attention Index will be applied to 

cryptocurrency returns to measure its effect and connectedness. To the best of the researcher's 

knowledge, that index has not been applied to cryptocurrency returns. Also, few studies have 

used the Central Bank Digital Currency Uncertainty Index effect on cryptocurrency returns, 

and it is an immense contribution to this paper since the index was proposed in 2022 by Wang 

et al. Moreover, the daily and weekly Twitter Economic Uncertainty (TEU) indices and the 

Economic Policy Uncertainty Index for Europe index will be investigated. Therefore, this 

research will contribute to the empirical literature measuring the dataset's relationship to eight 

indices in two frequencies. 

 

4.1. Research Questions:  
1- Which uncertainty index can strongly affect the returns of the cryptocurrency 

market? 

2- Which uncertainty indices pair can strongly affect the returns of the 

cryptocurrency market during bear market periods? 

3- Which uncertainty indices pair can strongly affect the returns of the 

cryptocurrency market during bull market periods? 
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4.2. Research objectives: 
1- Identify the relationship between the cryptocurrency market returns and 

uncertainty indices. 

2- Measuring the effect of the Covid-19 pandemic period on both the indices and 

cryptocurrency returns. 

3- Determine the positive and negative relationship between the cryptocurrency 

market returns and uncertainty indices. 

4- Determine which index has the most substantial effect on cryptocurrency 

market returns. 

5- Determine which indices pair has the most significant impact on cryptocurrency 

market returns. 

6- Measuring the effect of the uncertainty indices on ten different cryptocurrency 

returns.  

 
5. METHODOLOGY 

 
5.1. Research Design: 

 
This research measures the relationships between cryptocurrency’s returns with 

multiple indices. Each index has its own measurement and concentrates on a different 

aspect of possible linkages that might affect the returns. The first and second indices 

are the Cryptocurrency Policy Uncertainty Index (UCRY Policy) and the 

Cryptocurrency Price Uncertainty Index (UCRY Price). The two indices have been 

generated from 726.9 million data text mining. The third index is “the Cryptocurrency 

Environmental Attention (ICEA) Index aims to capture the relative extent of media 

discussion around the environmental impact of cryptocurrencies based on 778.2 million 

data”. The fourth and fifth indices are “Based on 663.9 million news stories from 

LexisNexis News & Business, we provide two new indices for central bank digital 

currency (CBDC) analysis: the CBDC Uncertainty Index (CBDCUI) and CBDC 

Attention Index (CBDCAI)”. The sixth index is Economic Policy Uncertainty Index 

for Europe which is an indicator created using newspaper stories about policy 
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uncertainty from major newspapers. It calculates the number of newspaper stories 

containing uncertain or uncertain, economic or economy, and one or more policy-

relevant words. The seventh index is the Twitter Economic Uncertainty (TEU) index, 

derived from tweets from June 2011 to the present. Thomas Renault (University Paris 

1 Panthéon-Sorbonne) created it with the help of Scott R. Baker (Northwestern), 

Nicholas Bloom (Stanford), and Steve Davis (University of Chicago). The models that 

will be applied in this research will be the Quantile Regression and the Granger 

Causality model. 

 
5.2.  Data Collection: 

 
This research uses daily, weekly, and monthly historical data 

computed from 5-minute log returns for the following ten cryptocurrencies: 

Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Litecoin (LTC), Bitcoin 

Cash (BTH), Eos (EOS), Monero (XMR), Stellar (XLM), Dash (DASH), and 

Ethereum Classic (ETC) between 1st September 2018 to 31st December 

2021 (Table A). These cryptocracies have different market capitalizations 

varying from dominant to less dominant cryptos. The data were obtained 

from https://www.kraken.com. Weekly data on the Cryptocurrency Policy 

Uncertainty index, Cryptocurrency Price Uncertainty index are obtained 

from https://sites.google.com/view/cryptocurrency-indices/the-

indices/crypto-uncertainty?authuser=0. Weekly Cryptocurrency 

Environmental Attention (ICEA) index data is obtained from 

https://sites.google.com/view/cryptocurrency-indices/the-indices/crypto-

environemntal. Weekly data of the Central Bank Digital Currency 

Uncertainty Index (CBDCUI) and Central Bank Digital Currency Attention 

Index are obtained from https://sites.google.com/view/cryptocurrency-

indices/the-indices/cbdc-indices. Monthly data of the Economic Policy 

Uncertainty Index for Europe index is obtained from 

https://fred.stlouisfed.org/series/EUEPUINDXM. Daily Twitter-based 

Economic Uncertainty (TEU) index data is obtained from Economic Policy 

https://www.kraken.com/
https://sites.google.com/view/cryptocurrency-indices/the-indices/crypto-uncertainty?authuser=0
https://sites.google.com/view/cryptocurrency-indices/the-indices/crypto-uncertainty?authuser=0
https://sites.google.com/view/cryptocurrency-indices/the-indices/crypto-environemntal
https://sites.google.com/view/cryptocurrency-indices/the-indices/crypto-environemntal
https://sites.google.com/view/cryptocurrency-indices/the-indices/cbdc-indices
https://sites.google.com/view/cryptocurrency-indices/the-indices/cbdc-indices
https://fred.stlouisfed.org/series/EUEPUINDXM
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Uncertainty https://www.policyuncertainty.com/twitter_uncert.html. Here are 

the indices and cryptocurrency returns figures of the research dataset.

https://www.policyuncertainty.com/twitter_uncert.html
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Monthly Data 

 
Weekly Data 
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5.3. Research Models: 

 
5.3.1. Quantile Regression Model  

The quantile regression (QR) approach, proposed by Koenker and Bassett (1978), 

predicts the effect of an independent variable on the varied quantiles of the conditional 

mean of the dependent variable. The t = quantile range of this study will be from t = 0.10 

to t = 0.9.  

 

Q (τ | X) = Xβ (τ) 

 
The Q (τ | X) denotes the τ-th quantile of the response variable providing the predictor X, 

and the β (τ) represents the vector of the coefficients. The t = quantile range of this study 

that will be from t = 0.10 to t = 0.9. This model will test the hypothesis of whether there 

is a  relationship between each index and cryptocurrency returns or not for each chosen 

quantile. 

 

5.3.2. Multivariate Quantile Regression Model 
In this model, additionally referred to as joint quantile regression, is an extension 

of the classic quantile regression model in which several quantiles of the response variable 

are estimated concurrently given the predictor variables. The main objective for utilizing 

multi-quantile regression is to increase estimating efficiency, provide smoother coefficient 

estimates, and more completely represent all of the distributions of the response variable. 

The multivariate quantile regressions have been applied by using six independent variables. 

The seven weekly indices are the Cryptocurrency Policy Uncertainty index, 

Cryptocurrency Price Uncertainty index, the Cryptocurrency Environmental Attention 

(ICEA) Index, the Central Bank Digital Currency Uncertainty Index (CBDCUI), the 

Central Bank Digital Currency Attention Index, the Cryptocurrency policy uncertainty 

index (UCRY Policy), and the cryptocurrency price uncertainty index (UCRY Price). Also, 

the daily data of the Twitter-based Economic Uncertainty (TEU) index were added after 
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converting the dataset to weekly data by accounting for the last value of the week (Fridays’ 

values) to be consistent with the other three indices. This model will test the hypothesis of 

whether there is a relationship between the indices and cryptocurrency returns or not for 

each chosen quantile. 

 

5.3.3. Granger Causality Model 
The Granger causality model was produced by Granger (1969)’s. Before the 

Granger causality model is applied, the Vector autoregressive model should be applied to 

set the specifications of the GC test. Furthermore, to determine the best-lagged order to 

include in the VAR model to find the best accurate results for each variable, the AIC criteria 

have been chosen to determine the best-lagged order in each variable to apply the VAR 

model. Then,  the lagged order was applied to all the research variables to be consistent. 

The lagged order that has been taken into consideration based on the AIC criteria is lag = 

6. Therefore, the results of the Granger Causality test consist of two results for the majority 

of cryptocurrencies, and the rest have three lag orders. The first result considers only the 

first lagged  (lag = 1), and the second result consists of only the sixth lagged (lag = 6).  

Also, the results show the two-sided effects that showed whether the null hypothesis is 

rejected or accepted.  

The null hypothesis is that the chosen index lagged 1 (6) does not cause the chosen 

CC, and the alternative hypothesis is that the chosen index lagged 1 (6) does cause the 

chosen CC. Also, vis-versa, the null hypothesis is that the chosen CC does not cause the 

chosen index lagged 1 (6), and the alternative hypothesis is that the chosen CC does cause 

the chosen index lagged 1 (6). For the Cryptocurrency Environmental Attention (ICEA) 

index and  Monthly data of the Economic Policy Uncertainty Index for Europe index, the 

AIC criteria showed different lag order than the other indices. For the Cryptocurrency 

Environmental Attention (ICEA) index, the AIC criteria showed a lag order = 7, and for 

the Monthly data of the Economic Policy Uncertainty Index for Europe index, the AIC 

criteria showed a lag order = 10. All indices results include the lag 1 and 6 in addition to 

the two added lags of 7 and 10 for the last two indices, respectively.   
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6. THE EMPERICAL RESULTS: 

6.1. Full Sample Results:  

 
The results contain three phases. Each phase shows the results of a one approach 

that has been applied.  
 

6.1.1. Quantile Regression Results:  
 

The daily and weekly data of the Twitter-based Economic Uncertainty (TEU) index 

exhibited insignificant effects on cryptocurrency returns across all quantiles chosen for 

most cryptocurrencies, as Table 1 and Table 4 indicated. These results are consistent with 

Aharon et al. (2022) study. They found no evidence of a significant coexistent or lagged 

relationship between the four cryptocurrencies, namely BTC, ETH, XRP, and BCH, and 

the Twitter-Based Economic Uncertainty (TEU) or Twitter-Based Market Uncertainty 

(TMU). The results show the positive and negative relationships across all cryptocurrency 

returns for all quantile levels.  

However, the Cryptocurrency Policy Uncertainty index has significant effects on 

bear periods for cryptocurrency returns across some quantiles, as shown in Table 2. ETH 

is the most affected cryptocurrency by the Cryptocurrency Policy Uncertainty index, 

followed by XRP and LTC, with fewer effects than ETH. Also, the index influences the 

prices of BTC, XRP, LTC, EOS, and XLM on the bull period of the 10 and 20 quantiles. 

These results contradict the results of Karaömer (2022) research findings that reveal that 

the UCRY Policy negatively influences cryptocurrency returns throughout significant 

events. Nevertheless, the Cryptocurrency Price Uncertainty index exhibited fewer effects 

on cryptocurrency returns, as Table 3 revealed. For instance, there are no effects on ETH 

for the bear periods. However, the index has significant effects on the BTC, XRP, LTC, 

XMR, EOS, and DASH returns on the bear market. Although they study only BTC 

volatility, these results support the research findings of Xia et al. (2023) study that the 

UCRY indices have positive effects on long-term Bitcoin volatility. UCRY indices have 

emerged as a viable data source for directing Bitcoin trading behaviors. 

Also, Tables 5 and 6 exhibited the quantile regression results of the Central Bank 

Digital Currency Uncertainty Index and the Central Bank Digital Currency Attention Index 
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effect across all quantiles on cryptocurrency returns. The results reveal the insignificant 

relationship between the index and the returns for most cryptocurrencies. These results 

support the research findings of Ayadi et al. (2023). According to the research, the CBDC 

uncertainty index has a negative connection to cryptocurrency and stable-coin returns. 

Nevertheless, the XRP result shows a significant effect in early quantiles (10, 20, and 30 

quantiles at 5%, 1%, and 1%, respectively), meaning there is a significant relationship 

between the index and the XRP in the bull period. Also, the ETH result indicates a 

significant effect in late quantiles ( 60, 70, and 80 quantiles at a 5% significant level). That 

means a significant positive relationship between the index and the ETH in the bear period. 

Also, according to the research's results, the CBDC attention index has a negative 

correlation with Bitcoin, Ethereum, XPR, and Terra USD, but it has a positive correlation 

with Tether, USD Coin, Binance, and Dai. Table 6 shows that the XRP result has a 

significant effect in early quantiles (20 and 30 quantiles at 1%), which means a significant 

relationship between the index and the XRP in the bull period. Also, the ETH result 

indicates a significant effect in late quantiles (70 and 80 quantiles at 10% and 5% 

significant levels). That means a significant relationship in the bear period between the 

index and the ETH. The results show the positive and negative relationships across all 

cryptocurrency returns for all quantile levels. The results show the positive and negative 

relationships across all cryptocurrency returns for all quantile levels. 

The results of the Cryptocurrency Environmental Attention (ICEA) index effect 

across all quantiles on cryptocurrency returns disclose the insignificant relationship 

between the index and the returns for the majority of the cryptocurrencies, as shown in 

Table 7. Nevertheless, the XRP result confirms the significant effect in early quantiles (10, 

20, and 30 quantiles at 5%, 1%, and 1%, respectively), which means a significant 

relationship exists between the index and the XRP in the bull period. The results show the 

positive and negative relationships across all cryptocurrency returns for all quantile levels.  

Also, Table 8 shows the Economic Policy Uncertainty Index for Europe index 

effect across all quantiles on cryptocurrency returns. The results reveal the insignificant 

relationship between the index and the returns for most cryptocurrencies. This result 

oppose the findings of Shaikh's (2020) research findings. With a one-period lag in both 

bull and bear regimes, he concludes that policy uncertainty in Europe adds favorably to the 
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Bitcoin market. This index is the only index that shows almost no connections with 

cryptocurrency returns quantile regressions. However, the results show the positive and 

negative relationships across all cryptocurrency returns for all quantile levels.  

These results highlight the intense volatility in the cryptocurrency market and 

identify the effect of the indices studied in the current research. Some results were 

unexpected and unanticipated. However, some effects cannot be deducted since they 

exhibit indirect relationships. These indirect relationships can be captured when measuring 

the multivariate quantile regressions and causality tests. 

 

6.1.2. Multivariate Quantile Regression Results: 
Before explaining the interpretations of the results of Table 9, it is worth 

mentioning that the Twitter-based Economic Uncertainty (TEU) index was converted from 

daily to weekly data to compare the index with the other weekly indices. Table 9 revealed 

the results of the multi-indices effect on cryptocurrency returns. The table showed that the 

early quantile (quantile = 5) exhibits insignificant impact across most cryptocurrency 

returns, which means that these indices have the miner effect when the market experiences 

a bull wave. These results supported the findings of (Aharon et al. 2022, Xia et al. 2023, 

Ayadi et al. 2023, and Shaikh, 2020), 

For the rest of the quantiles, the results show no evidence of a significant impact of 

the indices on most of the returns of cryptocurrencies, except for the 95% quantiles for The 

UCRY Price Index and the Cryptocurrency Environmental Attention (ICEA) index. The 

Cryptocurrency Environmental Attention (ICEA) index significantly affects BTC, XRP, 

XLM, and DASH with a 5% significant level and LTC and  XMR with a 1% significant 

level. The UCRY Price Index substantially affects XLM with a 1% significant level, LTC, 

EOS, DASH, and ETC with a 5% significant level, and XMR with a 10% significant level. 
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The research indices were divided into pairs for the following table to test and 

measure their effects on cryptocurrency returns. Four pairs were chosen due to their strong 

effects on cryptocurrency returns in the bull and bear market periods. The four pairs are: 

• The UCRY Policy Index + Central Bank Digital Currency Attention Index 

• The UCRY Policy Index + the Cryptocurrency Environmental Attention 

(ICEA) index 

• The UCRY Price Index + Central Bank Digital Currency Attention Index 

• The UCRY Price Index + the Cryptocurrency Environmental Attention 

(ICEA) index 

Table 10 shows that the UCRY Policy Index + the Central Bank Digital Currency 

Attention Index pair strongly affects all the cryptocurrency retunes at the 5% significant 

level (bull market) except BTC returns. However, It strongly affects BTC returns in the 

75% and 95% quantiles. These results contradict the results of Karaömer (2022) research 

findings that reveal that the UCRY Policy negatively influences cryptocurrency returns 

throughout significant events. Also, these results contradict the research findings of Ayadi 

et al. (2023) for the Central Bank Digital Currency Attention Index. 

Conversely, the UCRY Policy Index and the Cryptocurrency Environmental 

Attention (ICEA) index pair considerably affect the bear period more than the bull period. 

For example, Table 11 reveals that the effect of the pair is powerful on BTC returns for the 

50%, 75%, and 95% quantiles. It also has fewer effects on XRP, LTC, XMR, and XLM 

retunes.  

Like Table 10, Table 12 shows that the UCRY Price Index + the Cryptocurrency 

Environmental Attention (ICEA) index pair strongly affects all the cryptocurrency retunes 

at the 5% significant level (bull market). It also strongly affects BTC in the 75% and 95% 

quantiles.  

Nevertheless, the UCRY Price Index + the Cryptocurrency Environmental 

Attention (ICEA) index pair substantially affects the bear period more than the bull period. 

For example, Table 13 discovered that the impact of the pair is powerful on BTC returns 

for the 50%, 75%, and 95% quantiles. Also, the pair strongly affects ETH, XMR, and XLM 

returns at the 95% significant level.   

To rank these pairs for the bull and n, the following ranks have been identified: 
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For the bull periods, the pairs ranking is as follows: 

1. The UCRY Policy Index + Central Bank Digital Currency Attention 

Index. 

2. The UCRY Price Index + Central Bank Digital Currency Attention Index. 

3. The UCRY Price Index + the Cryptocurrency Environmental Attention 

(ICEA) index. 

4. The UCRY Policy Index + the Cryptocurrency Environmental Attention 

(ICEA) index. 

 

For the bear periods, the pairs ranking is as follows: 

1. The UCRY Policy Index + the Cryptocurrency Environmental Attention 

(ICEA) index. 

2. The UCRY Price Index + the Cryptocurrency Environmental Attention 

(ICEA) index. 

3. The UCRY Price Index + Central Bank Digital Currency Attention Index. 

4. The UCRY Policy Index + Central Bank Digital Currency Attention 

Index. 

 
6.1.3. Granger Causality Test Results: 

 
The results of the Granger Causality Test at lagged order (LO) = 1 show 

insignificant relationships between the daily data of the Twitter-based Economic 

Uncertainty (TEU) index and cryptocurrency returns as Table 14 reveals. This result is 

consistent with Aharon et al. (2022) study. However, the results exhibited a significant 

relationship between the daily data of the TEU index on cryptocurrency returns at LO = 6 

as Table 15 indicated. This result contradict the results of Aharon et al. (2022) study. Also, 

the result indicates the long-term effect of all the cryptocurrency returns except EOS, XLM, 

ETC. The tables also show no evidence of significant effect of cryptocurrency returns on 

the TEU index. These results support the findings of Kraaijeveld and De Smedt's 2020 

study. However, they used Twitter data manually for each cryptocurrency in their research. 

Also, the maximum lagged order that they applied was = 5. Moreover, the result supports 
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the Gök et al. (2022) study. Correspondingly, these results supported the findings of Wu et 

al. (2021) study. They studied the influence of economic policy uncertainty (a Twitter-

based uncertainty measure) on the top four cryptocurrencies and discovered a significant 

causality between cryptocurrencies and cryptocurrencies. Utilizing the Rolling Window 

technique and the Granger Causality test, they found a positive relationship between 

Twitter-based uncertainty, VIX, and Cryptocurrencies. 

Table 16 shows the results of the Granger Causality Test at LO = 1 for the weekly 

data of the UCRY Policy Index and Cryptocurrencies returns for the two-sided effects. 

There is a significant effect between the UCRY Policy Index and ETH, XRP, LTC, BCH, 

EOS, XMR, XLM, DASH, and ETC returns. These results support the results of Karaömer 

(2022) research findings that reveal that the UCRY Policy negatively influences 

cryptocurrency returns throughout significant events. Yet, BTC showed an insignificant 

effect at the LO = 1. Also, there is no evidence of a significant impact of cryptocurrency 

returns on the UCRY Policy Index. Nevertheless, XRP, LTC, and ETC returns have 

significant effects on the UCRY Policy Index, while BTC and XMR returns showed no 

evidence of any impact from the UCRY Policy Index at LO = 6 that Table 17 displays.  

The results of the Granger Causality Test at LO = 1 for the weekly data of the 

UCRY Price Index and Cryptocurrencies returns for the two-sided effects are similar to the 

results of the UCRY Policy Index in Table 15, Table 18 shows. There is a significant effect 

between the UCRY Price Index and ETH, XRP, LTC, BCH, EOS, XMR, XLM, DASH, 

and ETC returns. Still, BTC shows an insignificant effect at the LO = 1. Also, there is no 

evidence of a significant effect of cryptocurrency returns on the UCRY Price Index. 

Nevertheless, BCH and DASH returns have significant effects on the UCRY Policy Index, 

while all cryptocurrencies returns showed strong evidence of impact from the UCRY Price 

Index at LO = 6 that Table 19 exhibited. This result supports the research findings of Xia 

et al. (2023) study that the UCRY indices have positive effects on long-term Bitcoin 

volatility. 

Table 20 shows the results of the Granger Causality Test at LO = 1 for the weekly 

data of the Twitter-based Economic Uncertainty (TEU) index and cryptocurrency returns 

for the two-sided effects. The results show significant and strong relationships between the 

index and all the cryptocurrency returns except for XLM returns. This result disagrees with 
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Aharon et al. (2022) study. However, there is no evidence of any effects from 

cryptocurrency returns on the index. Surprisingly, Table 21 reveals the same results for LO 

= 6. That results indicate the long-term effect of the weekly Twitter-based Economic 

Uncertainty (TEU) index on cryptocurrency returns. 

The results of the Granger Causality Test at LO = 1 for the weekly data of the 

Central Bank Digital Currency Uncertainty Index (CBDCUI) and Cryptocurrencies returns 

for the two-sided effects show a significant effect between the CBDCU Index and ETH, 

XRP, BCH, EOS, XLM, DASH, ETC, and the rest of the cryptocurrencies reveal no 

evidence of significant effect in Table 22. Also, there is no evidence of a significant impact 

of cryptocurrency returns on the CBDCU Index. Yet, there are significant effects for the 

CBDCU Index on all the cryptocurrency returns at LO = 6 that Table 23 displays. Also, on 

the other side, there are significant effects from BTC, LTC, EOS, DASH, and ETC returns 

on the CBDCU Index, and the rest of the cryptos show no effect at all. 

Table 24 reveals the results of the Granger Causality Test at LO = 1 for the weekly 

data of the Central Bank Digital Currency Attention Index and Cryptocurrencies returns 

for the two-sided effects. At LO = 1, there is a significant effect between the CBDCA Index 

and all the cryptocurrency returns except for BTC. This result supports the findings of 

Wang et al. (2023)’s study. They found that CBDC attention significantly influences 

cryptocurrency markets. Yet, there is no evidence of a significant effect of cryptocurrency 

returns on the ICEA index. Still, the is no evidence of a significant impact between 

cryptocurrency returns and the CBDCA Index at lagged order = 1. Table 25 discloses that 

at LO = 6, there is a significant effect for all cryptocurrency returns from the Central Bank 

Digital Currency Attention Index. Correspondingly, there is a significant effect from XRP, 

LTC, BCH, EOS, and ETC returns on the CBDCA Index. 

Table 26 displayed the results of the Granger Causality Test at LO = 1 for the 

weekly data of the Cryptocurrency Environmental Attention (ICEA) index and 

Cryptocurrencies returns for the two-sided effects. Like the Central Bank Digital Currency 

Attention Index, the ICEA index significantly impacts all cryptocurrency returns except 

for BTC at LO = 1. This result supports the findings of Wang et al. (2022)’s study. The 

ICEA shows stronger correlations between environmental attention, Bitcoin, and UCRY 

indexes during big events that significantly affect the values of digital assets. However, 
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table 27 revealed that the ICEA index significantly affects all cryptocurrency returns. 

Nevertheless, only XRP, LTC, and EOS significantly affect the ICEA index. The results 

exhibit a short and long-period effect of the ICEA index on cryptocurrency returns except 

for BTC in the short period. 

Furthermore, Table 28 displays the results of the weekly data of the Cryptocurrency 

Environmental Attention (ICEA) index and Cryptocurrencies returns for the two-sided 

effects at LO = 7. The LO = 7 was chosen because the AIC criteria deducted lagged 7 to 

best fit the Granger Causality Test. The tables reveal the same results as the results of LO 

= 6 on the effect of the ICEA index on cryptocurrency returns. Nevertheless, all 

cryptocurrency returns show no evidence of a significant impact on the ICEA index.  

Table 29 contains the results of the Granger Causality Test for both-sided at LO = 

1 for the Monthly data of the Economic Policy Uncertainty Index for Europe index and 

Cryptocurrencies returns. It shows no evidence of a significant impact from the Economic 

Policy Uncertainty Index for Europe index on cryptocurrencies returns. This result 

contradict the findings of Shaikh's (2020) research findings. However, there is an apparent 

significant effect from the cryptocurrency returns on the Economic Policy Uncertainty 

Index for Europe index. The results indicate the ability of the cryptocurrency markets to 

influence the Economic Policy Uncertainty Index for Europe index in the short period. It 

is worth noticing that Table 30 revealed the results after considering the LO order = 6. The 

results show that there is still a limited effect on some cryptocurrency returns, such as the 

LTC, XLM, and DASH. The rest of the cryptocurrency returns show no effect from the 

Economic Policy Uncertainty Index for Europe index. Also, cryptocurrency returns 

significantly affect the Economic Policy Uncertainty Index for Europe index at a 1% 

significant level.  

After applying the AIC criteria between the Economic Policy Uncertainty Index for 

Europe index on Cryptocurrencies returns, the LO = 10 was chosen. Table 31 revealed 

evidence of a significant effect of the Economic Policy Uncertainty Index for Europe index 

on all the cryptocurrency returns except for EOS. Correspondingly, there is a significant 

effect at a 1% significant level for all cryptocurrency returns on the Economic Policy 

Uncertainty Index for Europe index. This result supports the findings of the Cheema et al. 

(2020) study. They used different approaches (OLS, Multivariate Augmented regression, 
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and Quantile regression) and determined that EPU has better predictive power over Bitcoin 

returns in the long run, six and twelve months, than in the short run, one month.  

That means that the cryptocurrency markets significantly affect the Economic 

Policy Uncertainty Index for Europe index in the short and long periods. Yet, the Economic 

Policy Uncertainty Index for Europe index can affect cryptocurrency returns and markets 

in the long term. 

 
6.2. During crisis period Results (Covid-19 Period):  

The results contain three phases. Each phase shows the results of a one approach 

that has been applied.  
 

6.2.1. Quantile Regression Results During Crisis Period:  
 

Table 32 and Table 35 confirm the previous results of the full sample analysis. The 

daily and weekly Twitter-based Economic Uncertainty (TEU) indices have insignificant 

effects on cryptocurrency returns across all quantiles chosen for most cryptocurrencies. It 

shows no evidence of any influence factors that covid-19 pandemic might impose. These 

results are aligned with the full sample results. However, there is more evidence on the 

effect of the Cryptocurrency Policy Uncertainty index on cryptocurrency returns for the 

10%, 80%, and 90% quantiles that Table 33 reveals. The index significantly affects all 

cryptocurrency returns' bull period (10% quantile). These results further challenge the 

results of Karaömer (2022) research findings as mentioned in the full sample analysis.  

However, ETH returns are not affected by the Cryptocurrency Policy Uncertainty index as 

in the full sample analysis. Also, Table 34 exhibits more evidence on the effect of the 

Cryptocurrency Price Uncertainty index on cryptocurrency returns. For instance, The index 

significantly affects all cryptocurrency returns' bull period (10% quantile). These results 

support the research findings of Xia et al. (2023) study and are aligned with the full sample 

results. However, the index has insignificant effects on BTC and XRP returns at the 80% 

and 90% quantiles.    

Likewise, there is a slight negative difference in the effectiveness of the relationship 

between the Central Bank Digital Currency Uncertainty Index and the cryptocurrency 
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returns for most cryptocurrencies that Table 36 shows. For example, the index affected all 

cryptocurrency returns except LTC, BCH, and ETC returns at the 10% quantile, with 5% 

and 1% significant levels. These results are aligned with the full sample results.  

During crisis period results of the Central Bank Digital Currency Attention Index, 

the Cryptocurrency Environmental Attention (ICEA) index, and the Economic Policy 

Uncertainty Index for Europe index effect across all quantiles on cryptocurrency returns 

that Tables 37, 38, and 39 reveal. The results confirm the full sample results of an 

insignificant relationship between the index and the returns for almost all cryptocurrencies.  

The Quantile Regression results during crisis period show the positive and negative 

relationships across all cryptocurrency returns for all quantile levels and support the results 

of the full sample analysis. 

 
6.2.2. Multivariate Quantile Regression Results During Crisis Period:  

The results of the multi-indices effect on cryptocurrency returns are shown in Table 

40. The table shows and confirms that the early quantile (quantile = 5) exhibits insignificant 

impact across most cryptocurrency returns, which means that these indices have the miner 

effect when the market experiences a bull wave. For the rest of the quantiles, the results 

show and confirm no evidence of a significant impact of the indices on most of the returns 

of cryptocurrencies, even for the 95% quantile. 

The UCRY Policy Index + the Central Bank Digital Currency Attention Index pair 

strongly affects all the cryptocurrency retunes at the 5% quantile at a 1% significant level 

(bull market), as Table 41 displays. Also, It strongly affects BTC returns at the 75% and 

95% quantiles. On the contrary, the UCRY Policy Index and the Cryptocurrency 

Environmental Attention (ICEA) index pair considerably affect the bear period more than 

the bull period. For example, Table 42 confirms and shows that the effect of the pair is 

influential on BTC returns for the 75% and 95% quantiles. However, the pair generally has 

fewer effects on cryptocurrency returns during crisis period than in the full-sample 

analysis.   

The UCRY Price Index + the Cryptocurrency Environmental Attention (ICEA) 

index pair has less effect on the cryptocurrency retunes at the 5% significant level (bull 

market) than the full sample results, even for the BTC returns at the 75% and 95% quantiles 
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as Table 43 shows. Nevertheless, the UCRY Price Index + the Cryptocurrency 

Environmental Attention (ICEA) index pair substantially affects the bull period more than 

the bear period. For example, Table 44 reveals that the impact of the pair is powerful on 

cryptocurrency returns at the 5% quantile.  

To rank these pairs for the bull and bear market, the following ranks have been 

identified: 

For the bull periods, the pairs ranking of during crisis period results is as follows: 

1. The UCRY Policy Index + Central Bank Digital Currency Attention 

Index 

2. The UCRY Price Index + the Cryptocurrency Environmental Attention 

(ICEA) index 

3. The UCRY Price Index + Central Bank Digital Currency Attention Index 

4. The UCRY Policy Index + the Cryptocurrency Environmental Attention 

(ICEA) index 

 

For the bear periods, the pairs ranking of during crisis period results is as follows: 

1. The UCRY Policy Index + the Cryptocurrency Environmental Attention 

(ICEA) index 

2. The UCRY Price Index + the Cryptocurrency Environmental Attention 

(ICEA) index 

3. The UCRY Policy Index + Central Bank Digital Currency Attention Index 

4. The UCRY Price Index + Central Bank Digital Currency Attention Index 

 
 
 

6.2.3. Granger Causality Test Results During Crisis Period: 
Confirming the result of the full sample, table 45 shows the insignificant 

relationships of the Granger Causality Test at lagged order = 1 between the daily data of 

the Twitter-based Economic Uncertainty (TEU) index and cryptocurrency returns. 

However, the results of Table 46 show a significant relationship between the daily data of 

the TEU index on cryptocurrency returns at lagged order  = 6 for BTC, ETH, BCH, and 
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XMR returns. This result indicates the long-term effect of all the cryptocurrency returns 

except XRP, LTC, EOS, XLM, DASH, and ETC returns. The tables also show no evidence 

of significant cryptocurrency returns on the TEU index.  

Table 47 confirms the significant relationships of the Granger Causality Test at 

lagged order = 1 between the UCRY Policy Index and Cryptocurrencies returns for the 

one-sided effects. There is a significant effect from the UCRY Policy Index on all 

cryptocurrency returns except BTC returns. Also, there is no evidence of a significant 

impact of cryptocurrency returns on the UCRY Policy Index. Also, Table 48 shows the 

exact outcomes of the results of lagged order = 1. Nevertheless, XRP, LTC, DASH, and 

ETC returns significantly affect the UCRY Policy Index, while BTC and XMR returns 

showed no evidence of any impact from the UCRY Policy Index at lagged order = 6.  

The results confirm the full sample results and exhibit a significant effect between 

the weekly data of the UCRY Price Index and ETH, LTC, BCH, EOS, DASH, and ETC 

returns at lagged order = 1 in Table 49. Still, BTC, XRP, XMR, and XLM returns show an 

insignificant effect. Also, there is no evidence of a significant effect of cryptocurrency 

returns on the UCRY Price Index. Nevertheless, BCH XMR, DASH, and ETC returns have 

significant effects on the UCRY Policy Index, while all cryptocurrencies returns showed 

strong evidence of impact from the UCRY Price Index at lagged order = 6 except XMR 

returns that Table 50 exhibits.  

The results of the Granger Causality Test at LO = 1 for the weekly data of the 

Twitter-based Economic Uncertainty (TEU) index and Cryptocurrencies returns show a 

significant relationship between the index and cryptocurrency returns for all the 

cryptocurrency returns except for XPR, XLM, and ETC returns in Table 51. This result is 

not consistent with Aharon et al. (2022) study. However, the results of Table 52 show a 

strong insignificant relationship between the weekly data of the TEU index on 

cryptocurrency returns at LO  = 6 for all the cryptocurrency returns. This result supports 

the results of Aharon et al. (2022) study. This result indicates the lack of long-term effect 

of all the cryptocurrency returns. Also, there is an insignificant relationship between 

cryptocurrency returns on the TEU index weekly data at LO  = 1 and 6. 

Table 53 confirms most of the full sample results of the Granger Causality Test at 

LO = 1 for the weekly data of the Central Bank Digital Currency Uncertainty Index 
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(CBDCUI), and Cryptocurrencies returns for the two-sided effects. There is a significant 

effect between the CBDCU Index and ETH, XRP, LTC, BCH, EOS, XLM, DASH, ETC 

returns, and the rest of the cryptocurrencies reveal no evidence of significant effects at the 

LO = 1. These results deny the research findings of Ayadi et al. (2023). According to the 

research, the CBDC uncertainty index has a negative connection to cryptocurrency and 

stable-coin returns. Also, there is no evidence of a significant impact of cryptocurrency 

returns on the CBDCU Index. Yet, there are significant effects for the CBDCU Index on 

all the cryptocurrency returns at LO = 6 that Table 54 displays, except for ETH and XMR 

returns. Also, on the other side, there are significant effects from all cryptocurrency returns 

on the CBDCU Index except XRP returns. 

The results of the Granger Causality Test at LO = 1 for the weekly data of the 

Central Bank Digital Currency Attention Index and Cryptocurrencies returns for the two-

sided effects are shown in Table 55. At LO = 1, there is a significant effect between the 

CBDCA Index and all the cryptocurrency returns except for BTC and ETH returns. This 

result supports the findings of Wang et al. (2023)’s study. They found that CBDC attention 

significantly influences cryptocurrency markets. Still, the is no evidence of a significant 

impact between cryptocurrency returns on the CBDCA Index at LO = 1 except for BTC 

and XLM returns. Table 56 reveals that at lagged order = 6, there is a significant effect for 

all cryptocurrency returns from the Central Bank Digital Currency Attention Index except 

for XLM returns. Correspondingly, there is a significant effect from all cryptocurrency 

returns except ETH returns on the CBDCA Index. 

Table 57 confirms most of the full sample results of the Granger Causality Test at 

LO = 1 for the weekly data of the Cryptocurrency Environmental Attention (ICEA) index, 

and Cryptocurrencies returns for the two-sided effects. The ICEA index significantly 

impacts all cryptocurrency returns except BTC, XRP, and XLM returns at LO = 1. This 

result supports the findings of Wang et al. (2022)’s study. The ICEA shows stronger 

correlations between environmental attention, Bitcoin, and UCRY indexes during big 

events that significantly affect the values of digital assets. Nevertheless, there is no 

evidence of a significant effect of cryptocurrency returns on the ICEA index except for 

BTC, LTC, and XLM. However, table 58 reveals that the ICEA index significantly affects 

all cryptocurrency returns except for XLM returns at LO = 6. Nevertheless, only XMR 
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returns significantly affect the ICEA index. Also, Table 59 shows almost the same results 

as Table 58. The ICEA index significantly impacts all cryptocurrency returns at LO = 7. 

However, only XRP and XMR returns significantly affect the ICEA index. 

During crisis period results of the Granger Causality Test at LO = 1 for the Monthly 

data of the Economic Policy Uncertainty Index for Europe index and Cryptocurrencies 

returns confirm that there is no evidence of a significant impact from the index on 

cryptocurrencies returns in Table 60. Nonetheless, there are significant effects from all 

cryptocurrency returns except for BTC and XLM returns on the Economic Policy 

Uncertainty Index for Europe index. The results indicate the ability of the cryptocurrency 

markets to influence the Economic Policy Uncertainty Index for Europe index in the short 

period. Surprisingly, Table 61 reveals the results after considering the LO = 6. The results 

show significant effects from the index on all cryptocurrency returns except DASH and 

ETC returns. Also, most cryptocurrency returns significantly affect the Economic Policy 

Uncertainty Index for Europe index at a 1% significant level. That means that the 

cryptocurrency markets significantly affect the Economic Policy Uncertainty Index for 

Europe index in the short and long periods. Yet, the Economic Policy Uncertainty Index 

for Europe index can affect cryptocurrency returns and markets in the long term. 

 
 

7. EXECTIVE RESULTS SUMMARY: 
  

In this research, an enormous number of results have been generated. Therefore, 

this summary will aim to highlight the most important outcomes of this research. The 

quantile regression model has been applied to all the research variables. The daily and 

weekly data of the Twitter-based Economic Uncertainty (TEU) index has insignificant 

effects on cryptocurrency returns across all quantiles. These results have been supported 

by Covid-19 pandemic period results. The results show insignificant effects from the 

indices on cryptocurrency returns across all quantiles. These results are consistent with 

Aharon et al. (2022) study. They found no evidence of a significant contemporaneous or 

lagged relationship between BTC, ETH, XRP, and BCH and the Twitter-Based Economic 

Uncertainty (TEU) or Twitter-Based Market Uncertainty (TMU). 
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However, the weekly data of the Cryptocurrency Policy Uncertainty index 

significantly affects bear periods for cryptocurrency returns across some quantiles. Those 

findings contradict the results of Karaömer (2022) research findings that reveal that the 

UCRY Policy negatively influences cryptocurrency returns throughout significant events. 

On the other hand, the Cryptocurrency Price Uncertainty index exhibited fewer effects on 

cryptocurrency returns. During crisis period results supported these results by revealing 

more evidence of the effect of the Cryptocurrency Policy Uncertainty index on 

cryptocurrency returns for the 10%, 80%, and 90% quantiles. The index has a significant 

impact on the bull period (10% quantile) for all cryptocurrency returns as well. Also, there 

is more evidence of the effect of the Cryptocurrency Price Uncertainty index on 

cryptocurrency returns. For example, the index significantly affects all cryptocurrency 

returns' bull period (10% quantile). However, the index has insignificant effects on BTC 

and XRP returns at the 80% and 90% quantiles. Though they study only BTC volatility, 

these results support the research findings of Xia et al. (2023) study. They found that the 

UCRY indices positively affect long-term Bitcoin volatility, and UCRY indices have 

emerged as viable data sources for directing Bitcoin trading behaviors. 

Also, the Central Bank Digital Currency Uncertainty Index, the Central Bank 

Digital Currency Attention Index, the Cryptocurrency Environmental Attention (ICEA) 

index, and monthly data of the Economic Policy Uncertainty Index for Europe index have 

an insignificant relationship on most cryptocurrency returns across most of the quantiles. 

The results during crisis period confirm the full sample results of an insignificant 

relationship between the Central Bank Digital Currency Uncertainty Index, the Central 

Bank Digital Currency Uncertainty Index, the Cryptocurrency Environmental Attention 

(ICEA) index, and monthly data of the Economic Policy Uncertainty Index for Europe 

index and the returns for almost all of the cryptocurrency returns. These results support the 

research findings of Ayadi et al. (2023) study for the Central Bank Digital Currency 

Uncertainty Index, Ayadi et al. (2023) study for the Central Bank Digital Currency 

Attention Index, and Shaikh's (2020) study for the Economic Policy Uncertainty Index for 

Europe index.  

Regarding the Multivariate Quantile Regression model, unexpected results have 

been obtained. The results of the multi-indices effect on cryptocurrency returns showed 
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that the early quantile (quantile = 5) exhibits insignificant impact across most 

cryptocurrency returns, which means that these indices have less effect when the market 

experiences a bull wave. For the rest of the quantiles, the results show no evidence of a 

significant impact of the indices on most of the returns of cryptocurrencies, except for the 

95% quantiles for The UCRY Price Index and the Cryptocurrency Environmental Attention 

(ICEA) index.  

Also, the pairs effects approach has been applied, and it found that the UCRY 

Policy Index + Central Bank Digital Currency Attention Index pair was the most influential 

pair when the bear period wave hit the market. At the same time, the UCRY Policy Index 

+ the Cryptocurrency Environmental Attention (ICEA) index is the least influential pair on 

cryptocurrency returns when the bear period wave hit the market. Nevertheless, when 

accounting for only the bull period wave, the UCRY Policy Index + the Cryptocurrency 

Environmental Attention (ICEA) index pair is the most influential on cryptocurrency 

returns under study. At the same time, the UCRY Policy Index + Central Bank Digital 

Currency Attention Index is the least influential pair on cryptocurrency returns under study 

when the bull wave period hit the market. These results contradict the results of Karaömer 

(2022) research findings that reveal that the UCRY Policy negatively influences 

cryptocurrency returns throughout significant events. Too, these results contradict the 

research findings of Ayadi et al. (2023) for the Central Bank Digital Currency Attention 

Index. 

Regarding the Granger Causality Test results, during crisis period results show 

different results on some indices. The results of the daily data of the Twitter-based 

Economic Uncertainty (TEU) index and cryptocurrency returns at lagged = 1 reveal an 

insignificant relationship. In contrast, the weekly data show significant and strong 

relationships between the index and all the cryptocurrency returns except for XLM returns. 

Also, for the lagged = 6, there is a significant relationship for all cryptocurrency returns 

except for EOS, XLM, and ETC returns in the full sample results and except for XRP, 

LTC, EOS, XLM, DASH, and ETC returns during crisis period results while the weekly 

data show there is a significant relationship for all cryptocurrency returns. These results 

indicate the long-term effect of the daily and weekly data of the Twitter-based Economic 

Uncertainty (TEU) index on cryptocurrency returns. Also, these results support the findings 
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of Kraaijeveld and De Smedt's 2020 study, Gök et al. (2022) study, and Wu et al. (2021) 

study. 

The UCRY Policy Index and the UCRY Price Index Granger Causality Test results 

significantly affect all cryptocurrency returns except for BTC returns at lagged order =1. 

Also, there is no evidence of a significant impact of cryptocurrency returns on the UCRY 

Policy Index and UCRY Policy Index. Still, XRP, LTC, and ETC returns significantly 

affect the UCRY Policy Index, and BCH and DASH returns significantly affect the UCRY 

Policy Index. During crisis period results confirmed these results. 

The results of the Granger Causality Test for the weekly data of the Central Bank 

Digital Currency Uncertainty Index (CBDCUI) show a significant effect between the 

CBDCU Index and ETH, XRP, BCH, EOS, XLM, DASH, ETC, and the rest of the 

cryptocurrencies reveal no evidence of significant effect at the lagged order = 1. Also, there 

is no evidence of a significant impact of cryptocurrency returns on the CBDCU Index. Yet, 

there are significant effects for the CBDCU Index on all the cryptocurrency returns at 

lagged order = 6, and there are significant effects from BTC, LTC, EOS, DASH, and ETC 

returns on the CBDCU Index, and the rest of the cryptos show no effect at all. The results 

during crisis period confirmed most of the results of the full sample results. 

The Central Bank Digital Currency Attention Index and the Cryptocurrency 

Environmental Attention (ICEA) index Granger Causality Test results reveal significant 

effects between the indices index and all the cryptocurrency returns except for BTC. Also, 

the is no evidence of a significant impact between cryptocurrency returns and the two 

indices at lagged order = 1. Likewise, there is a significant effect on all cryptocurrency 

returns from the Central Bank Digital Currency Attention Index. Correspondingly, there is 

a significant effect from XRP, LTC, BCH, EOS, and ETC returns on the CBDCA Index. 

Similarly, the ICEA index significantly affects all cryptocurrency returns. Only XRP, LTC, 

and EOS significantly affect the ICEA index. The results during crisis period confirmed 

most of the results of the full sample results. 

The results of the Granger Causality Test for both-sided at lagged order = 1 for the 

Monthly data of the Economic Policy Uncertainty Index for Europe index and 

Cryptocurrencies returns show no evidence of a significant impact from the index on 

cryptocurrencies returns. However, there is an apparent significant effect from the 
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cryptocurrency returns on the Economic Policy Uncertainty Index for Europe index. After 

considering the lagged order = 6, the results show that there is still a limited effect on some 

cryptocurrency returns, such as the LTC, XLM, and DASH. The rest of the cryptocurrency 

returns show no effect from the Economic Policy Uncertainty Index for Europe index. 

Also, cryptocurrency returns significantly affect the Economic Policy Uncertainty Index 

for Europe index at a 1% significant level. The results during crisis period confirmed the 

results of the full sample results. Also, the results support the findings of the Cheema et al. 

(2020) study. 

 
 

8. LIMITATIONS  
In Chapter Three, the research encounters specific limitations. the dataset lacks 

information for the years 2022 and 2023 due to data unavailability during the study's 

conclusion. Furthermore, due to time limits in this chapter, as well as the additional effort 

necessary for data cleaning and filtering, it was difficult to expand the dataset to include 

2022. As a result, future researchers should investigate increasing the dataset in order to 

obtain more thorough results. Also, future examination should extend on this work by 

investigating the impact of the COVID-19 period on these indices and their impact on 

cryptocurrency returns. Researchers might investigate how these uncertainty indices 

impact cryptocurrency returns before, during, and after COVID-19. Furthermore, the 

research did not include other economic uncertainty indices, especially those used by 

important nations such as China. Therefore, investigating other economic uncertainty 

indices, such as China, might provide useful information. Furthermore, the research only 

used three regressions. Therefore, future research might look at the link between 

uncertainty indices and cryptocurrency returns using a wide range of models that take into 

account a variety of elements and viewpoints. Exploring new uncertainty indices may also 

help us better understand bitcoin markets and the external forces that influence their 

performance. 
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9. CONCLUSION: 
This chapter investigated the relationships and effects of eight different indices, 

namely the daily and weekly Twitter-based Economic Uncertainty (TEU) index, the UCRY 

Policy Index, the UCRY Price Index, the Central Bank Digital Currency Uncertainty Index 

(CBDCUI), the Central Bank Digital Currency Attention Index (CBDCAI), the 

Cryptocurrency Environmental Attention (ICEA) index, and the Economic Policy 

Uncertainty Index for Europe index on cryptocurrency returns. The quantile regressions, 

multivariate quantile regressions, and Granger causality tests were applied.  

The quantiles 10% to 90% were chosen and tested for the quantile regressions. 

Quantiles 5%, 25%, 50%, 75%, and 95% were selected and tested for the multivariate 

quantile regressions. The quantile regressions revealed insignificant effects for the TEU, 

CBDCU, CBDCA, ICEA, and EPUIE indices on cryptocurrency return for most of the 

quantiles. However, there is evidence of effects for some cryptocurrencies' returns on bear 

periods for the UCRY Policy Index and the UCRY Price Index. 

However, the research results show that the effectiveness of the indices can be more 

vital when accounting for two indices together to get accurate results better, Piratically, 

when considering two different indices. Each index focuses on different aspects, such as 

the UCRY Policy Index + Central Bank Digital Currency Attention Index pair. The first 

index focuses on the policy aspect, and the second focuses on the attention to investor 

behavior. With that focus, the results could be much more accurate and effective because 

they account for a broader and bigger image of external factors that might affect and chape 

the investor's decisions. These findings were further and deeper tested. Most of the Covid-

19 pandemic period results supported the results of the entire sample analysis.  

Nonetheless, the multivariate quantile regression results revealed different results 

when considering testing all the indices together. The results showed that the early quantile 

(quantile = 5) exhibits insignificant impact across most cryptocurrency returns, which 

means that these indices have the miner effect when the market experiences a bull wave. 

For the rest of the quantiles, the results show no evidence of a significant impact of the 

indices on most of the returns of cryptocurrencies, except for the 95% quantiles for The 

UCRY Price Index and the Cryptocurrency Environmental Attention (ICEA) index. The 

Cryptocurrency Environmental Attention (ICEA) index significantly affects BTC, XRP, 
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XLM, and DASH with a 5% significant level and LTC and  XMR with a 1% significant 

level. The UCRY Price Index substantially affects XLM with a 1% significant level, LTC, 

EOS, DASH, and ETC with a 5% significant level, and XMR with a 10% significant level.  

The Granger causality test results show insignificant relationships between the TEU 

index and cryptocurrency returns in the short term (lagged order =1) for both side effects. 

However, there are significant relationships in the long term (lagged order = 6) for the TEU 

index on cryptocurrency returns only. Furthermore, the Granger causality test results show 

significant relationships between the UCRY Policy Index and Cryptocurrencies returns in 

the short term (lagged order =1) for all cryptocurrency returns except BTC returns. Still, 

there are insignificant relationships between the Cryptocurrencies returns and the UCRY 

Policy Index for all cryptocurrency returns. However, BTC and XMR returns showed no 

evidence of any impact from the UCRY Policy Index at lagged order = 6. Also, there is no 

evidence of a significant effect of cryptocurrency returns on the UCRY Policy Index lagged 

order = 1. Nevertheless, XRP, LTC, and ETC returns significantly affect the UCRY Policy 

Index. 

Also, the results are similar to the results of the UCRY Policy Index. There is a 

significant effect between the UCRY Price Index and ETH, XRP, LTC, BCH, EOS, XMR, 

XLM, DASH, and ETC returns. Still, BTC showed an insignificant effect at the lagged 

order = 1. Also, there is no evidence of a significant effect of cryptocurrency returns on the 

UCRY Price Index. Nevertheless, BCH and DASH returns significantly affect the UCRY 

Price Index, while all cryptocurrencies returns showed strong evidence of impact from the 

UCRY Price Index at lagged order = 6. 

Also, there is a significant effect between the CBDCU Index and ETH, XRP, BCH, 

EOS, XLM, DASH, ETC. The rest of the cryptocurrencies reveal no evidence of significant 

effect at the lagged order = 1. Also, there is no evidence of a significant impact of 

cryptocurrency returns on the CBDCU Index. Yet, there are significant effects for the 

CBDCU Index on all the cryptocurrency returns at lagged order = 6. Also, on the other 

side, there are significant effects from BTC, LTC, EOS, DASH, and ETC on the CBDCU 

Index, and the rest of the cryptos show no effect at all.  

Furthermore, At lagged order = 1, there is a significant effect between the CBDCA 

Index and all the cryptocurrency returns except for BTC. Still, the is no evidence of a 
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significant effect between cryptocurrency returns and the CBDCA Index at lagged order = 

1. In fact, at lagged order = 6, there is a significant effect for all cryptocurrency returns 

from the Central Bank Digital Currency Attention Index. Correspondingly, there is a 

significant effect from XRP, LTC, BCH, EOS, and ETC on the CBDCA Index. 

Corresponding to the Central Bank Digital Currency Attention Index, the ICEA index 

significantly impacts all cryptocurrency returns except for BTC at lagged order = 1. Still, 

there is no evidence of a significant effect of cryptocurrency returns on the ICEA index. 

However, tables 21 and 22 revealed that the ICEA index significantly affects all 

cryptocurrency returns. 

Nevertheless, only XRP, LTC, and EOS significantly affect the ICEA index. The 

results exhibit a short and long-period effect of the ICEA index on cryptocurrency returns 

except for BTC in the short period. Investigating in-depth, the lagged order = 7 was chosen 

because the AIC criteria deducted lagged 7 to fit the Granger Causality Test best. The tables 

reveal the same results as the results of lagged order = 6 on the effect of the ICEA index 

on cryptocurrency returns. Nevertheless, all cryptocurrency returns show no evidence of a 

significant impact on the ICEA index. Also, the Monthly data of the Economic Policy 

Uncertainty Index for Europe index and Cryptocurrencies returns for the two-sided effects 

were tested. It shows no evidence of a significant impact from the EPUIE index on 

cryptocurrency returns. However, there is an apparent significant effect from the 

cryptocurrency returns on the EPUIE index. The results indicate the ability of the 

cryptocurrency markets to influence the Economic Policy Uncertainty Index for Europe 

index in the short period. The results of the lagged order = 6 show that there is still a limited 

effect on some cryptocurrency returns, such as the LTC, XLM, and DASH. The rest of the 

cryptocurrency returns show no effect from the Economic Policy Uncertainty Index for 

Europe index. However, cryptocurrency returns significantly affect the Economic Policy 

Uncertainty Index for Europe index at a 1% significant level. To examine the effectiveness 

of the Economic Policy Uncertainty Index for Europe index on Cryptocurrencies returns 

over a more extended period, the lagged order = 10 was chosen after applying the AIC 

criteria. The results reveal evidence of significant effects of the Economic Policy 

Uncertainty Index for Europe index on all the cryptocurrency returns except for EOS. 
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Similarly, there is a significant effect at a 1% significant level for all cryptocurrency returns 

on the Economic Policy Uncertainty Index for Europe index. 

The findings of this study can assist investors and financial institutions in avoiding 

investment risks, mitigating losses, and forecasting the return of specific cryptocurrencies. 

Also, they will help policymakers better understand the impact of market structures and 

policies and serve as a reference for them when formulating policies. 
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Chapter Three Research Tables 
Table A: Descriptive Analysis for the Daily Data and Index 

  Mean Median SD Kurtosis Skewness Range Observation 

TEPU 176.19 144.94 100.50 4.16 1.85 679.29 1218 

BTC 0.002 0.001 0.04 6.19 -0.52 0.49 1218 

ETH 0.002 0.001 0.05 6.86 -0.72 0.65 1218 

XRP 0.001 -0.001 0.06 11.73 -0.22 0.91 1218 

LTC 0.001 -0.001 0.05 6.85 -0.63 0.68 1218 

BCH 0.000 0.001 0.06 9.84 -0.04 0.89 1218 

EOS -0.001 0.000 0.06 7.28 -0.49 0.77 1218 

XMR 0.001 0.001 0.05 8.77 -1.00 0.64 1218 

XLM 0.000 -0.001 0.06 11.38 0.88 0.84 1218 

DASH 0.000 0.000 0.06 9.38 0.10 0.87 1218 

ETC 0.001 0.000 0.06 9.41 0.46 0.82 1218 
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Table B: Descriptive Analysis for the Weekly Data and Indices 

  Mean Median SD Kurtosis Skewness Range Observation 

UCRY Policy Index 101.124 100.135 1.896 1.086 1.320 8.987 174 

UCRY Price Index 101.194 100.174 1.977 1.492 1.441 9.853 174 

TEPU 175.557 141.392 105.118 3.294 1.736 598.238 174 

CBDC Uncertainty Index 100.662 100.001 1.428 2.122 1.631 6.857 174 

CBDC Attention Index 100.873 99.916 1.788 0.408 1.404 6.444 174 
CC Environmental 

Attention Index 101.666 100.057 2.803 0.865 1.409 12.277 174 

BTC 0.011 0.012 0.100 3.893 -0.828 0.789 174 

ETH 0.015 0.022 0.133 4.530 -0.953 1.055 174 

XRP 0.005 -0.009 0.152 4.277 0.666 1.186 174 

LTC 0.005 0.013 0.140 3.362 -0.672 1.026 174 

BCH -0.001 0.000 0.175 6.112 -0.205 1.536 174 

EOS -0.004 0.008 0.155 4.485 -0.978 1.184 174 

XMR 0.004 0.015 0.124 5.057 -1.230 0.935 174 

XLM 0.001 -0.005 0.151 7.444 1.249 1.268 174 

DASH -0.002 0.001 0.165 5.778 0.033 1.441 174 

ETC 0.006 0.003 0.174 13.797 1.999 1.699 174 
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Table C: Descriptive Analysis for the Monthly Data and Index 

  Mean Median SD Kurtosis Skewness Range Count 

EURO-EPU-Index 234.2 229.9 45.8 0.7 0.6 220.0 40 

BTC 0.045 0.019 0.228 1.445 -0.829 1.121 40 

ETH 0.058 0.098 0.284 1.037 -0.564 1.375 40 

XRP 0.026 -0.058 0.344 0.650 0.129 1.678 40 

LTC 0.022 0.033 0.294 0.929 -0.872 1.262 40 

BCH -0.002 -0.024 0.359 1.666 -0.549 1.797 40 

EOS -0.011 -0.030 0.311 1.402 -0.554 1.560 40 

XMR 0.018 0.031 0.284 3.072 -1.215 1.520 40 

XLM 0.006 0.003 0.318 0.064 -0.020 1.511 40 

DASH -0.004 0.018 0.343 1.981 -0.371 1.952 40 

ETC 0.033 -0.011 0.432 7.019 1.648 2.734 40 
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First: the results of the Quantile Regressions. 
Table 1: Effects of the Daily data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate  -0.0000183 -0.0000198 0.0000276 0.0000073 0.0000039 0.0000294 -0.0000138 -0.0000019 0.0000152 0.0000108 
P-value 0.444 0.534 0.311 0.867 0.913 0.305 0.718 0.949 0.654 0.753 

20 
Estimate  -0.0000067 -0.0000024 0.0000186 -0.0000047 -0.0000046 0.0000150 -0.0000048 0.0000112 0.0000068 0.0000245 
P-value 0.751 0.903 0.088* 0.809 0.839 0.444 0.822 0.568 0.773 0.084* 

30 
Estimate  -0.0000082 0.0000003 0.0000112 0.0000057 0.0000114 0.0000154 0.0000044 0.0000190 0.0000133 0.0000029 
P-value 0.489 0.964 0.230 0.677 0.495 0.208 0.819 0.300 0.398 0.854 

40 
Estimate  -0.0000010 -0.0000045 0.0000009 -0.0000004 0.0000035 0.0000026 0.0000227 0.0000058 0.0000019 -0.0000097 
P-value 0.921 0.602 0.904 0.971 0.750 0.732 0.143 0.664 0.893 0.525 

50 
Estimate  -0.0000052 -0.0000111 -0.0000021 -0.0000045 -0.0000016 -0.0000113 0.0000160 0.0000057 0.0000012 -0.0000068 
P-value 0.538 0.398 0.856 0.792 0.909 0.180 0.182 0.744 0.936 0.584 

60 
Estimate  -0.0000023 -0.0000066 -0.0000085 -0.0000066 -0.0000111 -0.0000331 0.0000036 -0.0000032 -0.0000117 -0.0000129 
P-value 0.816 0.740 0.523 0.747 0.380 0.002*** 0.795 0.847 0.390 0.421 

70 
Estimate  0.0000005 0.0000008 -0.0000227 -0.0000175 -0.0000152 -0.0000349 0.0000035 -0.0000087 -0.0000352 -0.0000282 
P-value 0.960 0.976 0.197 0.424 0.228 0.033** 0.839 0.640 0.011** 0.143 

80 
Estimate  -0.0000042 0.0000070 -0.0000341 -0.0000314 -0.0000189 -0.0000219 0.0000178 -0.0000176 -0.0000167 -0.0000194 
P-value 0.852 0.812 0.064* 0.311 0.408 0.285 0.513 0.354 0.503 0.338 

90 
Estimate  0.0000149 0.0000148 -0.0000524 -0.0000149 -0.0000101 -0.0000286 0.0000213 0.0000033 -0.0000257 0.0000027 
P-value 0.540 0.625 0.072* 0.767 0.795 0.395 0.425 0.930 0.598 0.960 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 2: Effects of the Weekly data of the Cryptocurrency policy uncertainty index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate  -0.015 -0.013 -0.029 -0.028 -0.016 -0.038 -0.016 -0.025 -0.028 -0.013 

P-value 0.062* 0.571 0.032 **  0.078* 0.429 0.064* 0.181 0.009 ***  0.060 0.476 

20 
Estimate  -0.011 -0.006 -0.020 -0.018 -0.013 -0.026 -0.005 -0.015 -0.012 -0.016 

P-value 0.037 **  0.544 0.025 **  0.179 0.460 0.077* 0.733 0.263 0.377 0.270 

30 
Estimate  -0.009 -0.002 -0.011 -0.016 -0.002 -0.014 -0.007 -0.003 -0.015 -0.011 

P-value 0.150 0.779 0.211 0.142 0.876 0.209 0.480 0.788 0.260 0.373 

40 
Estimate  -0.003 0.008 -0.003 -0.009 -0.007 0.001 -0.004 0.000 0.002 -0.003 

P-value 0.711 0.376 0.685 0.409 0.580 0.925 0.540 0.974 0.861 0.731 

50 
Estimate  0.004 0.009 0.001 0.001 0.004 0.003 0.003 0.001 0.008 0.002 

P-value 0.551 0.038 **  0.871 0.931 0.675 0.645 0.612 0.816 0.228 0.876 

60 
Estimate  0.006 0.012 0.006 0.005 0.003 0.003 0.007 0.006 0.008 0.009 

P-value 0.352 0.031 **  0.466 0.448 0.776 0.658 0.243 0.383 0.204 0.276 

70 
Estimate  0.012 0.012 0.012 0.012 0.002 0.010 0.010 0.007 0.012 0.014 

P-value 0.076* 0.055 **  0.317 0.245 0.812 0.084* 0.109 0.260 0.247 0.054* 

80 
Estimate  0.009 0.016 0.035 0.031 0.012 0.012 0.015 0.014 0.019 0.011 

P-value 0.214 0.007 ***  0.012 **  0.002 ***  0.375 0.060* 0.078* 0.164 0.128 0.209 

90 
Estimate  0.012 0.006 0.050 0.018 0.012 0.007 0.016 0.007 0.033 0.018 

P-value 0.295 0.552 0.009 ***  0.082* 0.378 0.631 0.134 0.590 0.014 0.251 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively.  
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Table 3: Effects of the Weekly data of the Cryptocurrency Price Uncertainty Index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.017 -0.012 -0.026 -0.031 -0.022 -0.039 -0.015 -0.022 -0.035 -0.012 

P-value 0.107 0.425 0.024 **  0.016 **  0.247 0.159 0.416 0.096* 0.072* 0.468 

20 
Estimate -0.010 -0.006 -0.020 -0.016 -0.013 -0.023 -0.005 -0.014 -0.011 -0.019 

P-value 0.727 0.444 0.517 0.428 0.515 0.962 0.765 0.866 0.669 0.088* 

30 
Estimate -0.009 -0.002 -0.009 -0.016 -0.002 -0.013 -0.007 -0.003 -0.015 -0.009 

P-value 0.236 0.765 0.219 0.073* 0.835 0.349 0.144 0.631 0.130 0.313 

40 
Estimate -0.002 0.005 -0.005 -0.007 -0.006 0.001 -0.002 0.001 0.005 -0.003 

P-value 0.727 0.444 0.517 0.428 0.515 0.962 0.765 0.866 0.669 0.765 

50 
Estimate 0.002 0.009 0.001 0.001 0.005 0.003 0.003 0.001 0.008 0.001 

P-value 0.673 0.039 **  0.895 0.892 0.549 0.732 0.598 0.802 0.283 0.875 

60 
Estimate 0.006 0.009 0.004 0.005 0.003 0.006 0.003 0.007 0.006 0.009 

P-value 0.111 0.050 **  0.662 0.447 0.725 0.502 0.526 0.295 0.399 0.157 

70 
Estimate 0.005 0.010 0.012 0.011 0.003 0.010 0.008 0.008 0.011 0.015 

P-value 0.382 0.059* 0.240 0.165 0.656 0.179 0.190 0.146 0.295 0.062* 

80 
Estimate 0.010 0.013 0.031 0.025 0.011 0.013 0.014 0.015 0.020 0.011 

P-value 0.031 **  0.112 0.045 **  0.010 ***  0.301 0.015 **  0.066* 0.330 0.109 0.118 

90 
Estimate 0.021 0.007 0.043 0.015 0.017 0.007 0.017 0.015 0.035 0.023 

P-value 0.022 **  0.683 0.030 **  0.085* 0.178 0.587 0.138 0.342 0.001 ***  0.157 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 4: The Effects of the Weekly data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate 0.00014 0.00021 0.00021 0.00018 0.00039 0.00040 0.00030 0.00006 0.00033 0.00032 

P-value 0.341 0.520 0.162 0.650 0.521 0.000*** 0.365 0.726 0.081* 0.237 

20 
Estimate 0.00014 0.00013 0.00019 0.00013 0.00031 0.00033 0.00027 0.00007 0.00025 0.00017 

P-value 0.117 0.896 0.235 0.639 0.190 0.867 0.387 0.669 0.605 0.088* 

30 
Estimate 0.00004 0.00007 0.00012 0.00015 0.00020 0.00011 0.00020 0.00005 0.00015 0.00010 

P-value 0.534 0.252 0.035** 0.163 0.001*** 0.490 0.026** 0.643 0.038** 0.330 

40 
Estimate 0.00010 -0.00002 0.00008 0.00005 0.00010 0.00002 0.00010 0.00004 0.00003 0.00002 

P-value 0.117 0.896 0.235 0.639 0.190 0.867 0.387 0.669 0.605 0.783 

50 
Estimate 0.00006 0.00006 0.00004 -0.00004 0.00002 0.00002 0.00004 0.00002 -0.00006 0.00001 

P-value 0.353 0.513 0.443 0.704 0.830 0.837 0.674 0.814 0.547 0.876 

60 
Estimate 0.00005 0.00001 0.00000 0.00001 -0.00008 0.00000 0.00008 -0.00001 -0.00012 -0.00003 

P-value 0.476 0.871 0.994 0.858 0.303 0.972 0.309 0.861 0.202 0.641 

70 
Estimate 0.00005 -0.00002 -0.00008 -0.00005 -0.00004 -0.00005 0.00005 -0.00004 -0.00006 -0.00007 

P-value 0.461 0.781 0.184 0.460 0.424 0.593 0.471 0.604 0.651 0.409 

80 
Estimate 0.00003 -0.00010 -0.00015 -0.00014 -0.00006 -0.00017 -0.00001 0.00001 -0.00016 -0.00007 

P-value 0.826 0.159 0.025** 0.052** 0.534 0.038** 0.955 0.954 0.496 0.270 

90 
Estimate 0.00000 -0.00023 -0.00033 -0.00029 0.00005 -0.00016 -0.00008 -0.00013 -0.00024 -0.00027 

P-value 0.960 0.008*** 0.091* 0.007*** 0.733 0.080* 0.616 0.462 0.398 0.007*** 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively.  
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Table 5: Effects of the Weekly data of the Central Bank Digital Currency Uncertainty Index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate  -0.022 -0.013 -0.038 -0.026 -0.023 -0.051 -0.007 -0.023 -0.043 -0.013 

P-value 0.111 0.605 0.012 **  0.374 0.494 0.099* 0.689 0.354 0.062* 0.628 

20 
Estimate  -0.020 -0.006 -0.019 -0.023 -0.012 -0.038 -0.013 -0.011 -0.022 -0.023 

P-value 0.031 **  0.493 0.008 ***  0.235 0.482 0.139 0.258 0.417 0.203 0.195 

30 
Estimate  -0.012 -0.003 -0.018 -0.013 -0.003 -0.021 -0.009 -0.003 -0.019 -0.018 

P-value 0.229 0.776 0.001 ***  0.240 0.839 0.275 0.403 0.766 0.295 0.117 

40 
Estimate  -0.005 0.003 -0.014 -0.014 -0.007 -0.002 -0.006 0.000 -0.005 -0.017 

P-value 0.455 0.824 0.198 0.182 0.530 0.883 0.631 0.967 0.744 0.205 

50 
Estimate  0.000 0.010 -0.006 -0.002 -0.006 -0.002 0.003 0.000 0.009 -0.007 

P-value 0.956 0.303 0.687 0.845 0.495 0.830 0.734 0.972 0.523 0.603 

60 
Estimate  0.004 0.016 0.008 0.004 0.003 0.006 0.005 0.001 0.003 0.008 

P-value 0.626 0.025 **  0.504 0.696 0.757 0.498 0.574 0.931 0.765 0.443 

70 
Estimate  0.000 0.013 0.015 0.015 0.000 0.013 0.012 0.006 0.010 0.014 

P-value 0.981 0.047 **  0.144 0.125 0.994 0.150 0.137 0.546 0.462 0.136 

80 
Estimate  0.010 0.018 0.023 0.018 0.011 0.016 0.016 0.005 0.016 0.012 

P-value 0.288 0.017 **  0.078* 0.300 0.448 0.007 ***  0.116 0.705 0.252 0.203 

90 
Estimate  0.006 0.003 0.045 0.027 0.011 0.007 0.019 0.002 0.027 0.033 

P-value 0.638 0.758 0.030 **  0.091* 0.589 0.697 0.017 **  0.889 0.052* 0.398 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively.  
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Table 6: The Effects of the Weekly data of the Central Bank Digital Currency Attention Index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate  -0.013 -0.006 -0.015 -0.017 -0.009 -0.015 -0.006 -0.011 -0.024 -0.010 

P-value 0.112 0.397 0.333 0.073* 0.727 0.464 0.728 0.601 0.324 0.400 

20 
Estimate  -0.013 -0.004 -0.017 -0.014 -0.012 -0.026 -0.010 -0.002 -0.014 -0.017 

P-value 0.079* 0.479 0.001 ***  0.241 0.196 0.05 **  0.369 0.841 0.050 **  0.010 ***  

30 
Estimate  -0.007 -0.002 -0.014 -0.011 -0.001 -0.010 -0.006 -0.001 -0.016 -0.010 

P-value 0.219 0.661 0.001 ***  0.245 0.855 0.498 0.311 0.813 0.235 0.317 

40 
Estimate  -0.004 0.003 -0.008 -0.011 -0.006 -0.001 -0.005 0.000 -0.002 -0.010 

P-value 0.457 0.597 0.248 0.133 0.261 0.950 0.374 0.962 0.850 0.371 

50 
Estimate  -0.004 0.002 -0.001 -0.002 -0.004 -0.001 0.002 0.000 0.009 -0.004 

P-value 0.466 0.744 0.909 0.777 0.437 0.882 0.779 0.978 0.251 0.728 

60 
Estimate  0.001 0.008 0.006 0.003 -0.001 0.005 0.002 0.001 0.006 0.007 

P-value 0.918 0.205 0.500 0.667 0.905 0.578 0.775 0.908 0.375 0.549 

70 
Estimate  -0.001 0.010 0.010 0.008 0.001 0.012 0.008 0.004 0.006 0.010 

P-value 0.775 0.066 **  0.402 0.229 0.919 0.037 **  0.147 0.455 0.557 0.378 

80 
Estimate  -0.001 0.012 0.012 0.010 0.006 0.008 0.007 0.003 0.015 0.012 

P-value 0.915 0.022 **  0.439 0.339 0.483 0.240 0.298 0.739 0.286 0.417 

90 Estimate  -0.002 0.004 0.047 0.019 0.009 0.007 0.016 0.001 0.019 0.027 
P-value 0.828 0.501 0.022 **  0.072* 0.655 0.678 0.027 **  0.893 0.162 0.485 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 7: The Effects of the Weekly data of the Cryptocurrency Environmental Attention (ICEA) index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate  -0.006 -0.008 -0.016 -0.013 -0.006 -0.014 -0.012 -0.007 -0.012 -0.011 

P-value 0.431 0.519 0.033 0.324 0.682 0.524 0.321 0.505 0.464 0.240 

20 
Estimate  -0.008 -0.003 -0.009 -0.011 -0.008 -0.015 -0.006 -0.001 -0.011 -0.008 

P-value 0.056* 0.699 0.002 ***  0.178 0.168 0.068* 0.145 0.875 0.202 0.275 

30 
Estimate  -0.006 -0.001 -0.007 -0.008 -0.001 -0.005 -0.005 -0.001 -0.008 -0.007 

P-value 0.236 0.783 0.006 ***  0.136 0.892 0.466 0.342 0.891 0.157 0.299 

40 
Estimate  -0.002 0.004 -0.005 -0.005 -0.002 0.000 -0.004 0.001 0.001 -0.007 

P-value 0.583 0.461 0.219 0.239 0.405 0.945 0.442 0.852 0.793 0.241 

50 
Estimate  -0.002 0.006 0.000 -0.001 -0.003 0.000 0.002 0.002 0.005 -0.002 

P-value 0.611 0.083 0.962 0.792 0.518 0.980 0.700 0.580 0.229 0.765 

60 
Estimate  0.000 0.005 -0.002 0.002 0.001 0.003 0.001 0.003 0.002 0.005 

P-value 0.900 0.116 0.726 0.630 0.822 0.628 0.738 0.383 0.623 0.525 

70 
Estimate  -0.001 0.006 0.006 0.004 0.000 0.007 0.003 0.004 0.003 0.006 

P-value 0.891 0.160 0.324 0.465 0.956 0.165 0.382 0.301 0.370 0.271 

80 
Estimate  0.000 0.004 0.008 0.006 0.003 0.006 0.003 0.004 0.011 0.005 

P-value 0.938 0.360 0.448 0.549 0.533 0.102 0.592 0.416 0.144 0.252 

90 
Estimate  -0.001 0.003 0.031 0.005 0.007 0.002 0.007 0.001 0.015 0.014 

P-value 0.909 0.633 0.043 **  0.564 0.521 0.883 0.333 0.915 0.091 0.218 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 8: Effects of the Monthly data of the Economic Policy Uncertainty Index for Europe index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate  -0.002 0.000 0.002 -0.002 -0.001 0.002 0.000 -0.001 0.000 -0.003 

P-value 0.511 0.862 0.478 0.634 0.653 0.709 0.923 0.758 0.950 0.439 

20 
Estimate  -0.001 0.001 0.001 -0.001 -0.001 0.000 -0.002 0.000 -0.002 -0.002 

P-value 0.467 0.647 0.477 0.541 0.344 0.979 0.456 0.681 0.297 0.353 

30 
Estimate  -0.001 0.000 0.001 -0.001 -0.001 -0.001 -0.002 0.000 -0.003 -0.002 

P-value 0.149 0.841 0.616 0.246 0.271 0.581 0.160 0.956 0.059* 0.381 

40 
Estimate  -0.001 -0.001 0.000 -0.002 -0.002 -0.001 -0.001 -0.002 -0.003 -0.001 

P-value 0.418 0.466 0.835 0.123 0.011 0.679 0.368 0.473 0.018 **  0.518 

50 
Estimate  -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.003 -0.002 -0.001 

P-value 0.336 0.507 0.749 0.403 0.090 0.472 0.694 0.292 0.139 0.463 

60 
Estimate  -0.001 -0.001 -0.002 -0.002 -0.002 0.000 -0.001 -0.002 -0.002 -0.001 

P-value 0.208 0.709 0.199 0.291 0.172 0.836 0.676 0.407 0.238 0.444 

70 
Estimate  0.000 0.000 -0.002 -0.001 -0.001 -0.002 -0.001 0.000 -0.002 -0.003 

P-value 0.618 0.887 0.438 0.579 0.709 0.489 0.448 0.934 0.230 0.169 

80 
Estimate  0.000 0.001 -0.002 0.000 0.001 -0.003 0.000 0.000 -0.001 -0.002 

P-value 0.550 0.456 0.213 0.892 0.814 0.203 0.903 0.839 0.624 0.199 

90 
Estimate  -0.001 0.001 -0.002 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 

P-value 0.257 0.632 0.368 0.574 0.632 0.309 0.718 0.777 0.435 0.711 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Second: The Results of The Multivariate Quantile Regressions Model. 
Table 9: The effects of the UCRY Policy Index, the UCRY Price Index, the Central Bank Digital Currency Uncertainty Index (CBDCUI), the Cryptocurrency 
Environmental Attention (ICEA) index, the Cryptocurrency Environmental Attention (ICEA) index, and the Twitter-based Economic Uncertainty (TEU) index on 
Cryptocurrencies returns of the 5, 25, 50, 75, and 95 quantiles. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 

UCRY Policy Index 
0.003 0.045 -0.267 0.039 0.001 -0.036 0.078 -0.037 -0.011 0.013 
0.981 0.674 0.067* 0.790 0.997 0.763 0.605 0.710 0.940 0.931 

UCRY Price Index 
0.011 -0.059 0.191 -0.037 -0.048 0.044 -0.091 0.001 0.006 -0.007 
0.916 0.626 0.137 0.796 0.728 0.704 0.524 0.991 0.966 0.958 

CBDC Uncertainty Index 
-0.073 -0.060 -0.037 -0.079 -0.074 -0.140 0.011 -0.046 -0.116 -0.050 
0.152 0.504 0.587 0.117 0.494 0.040 **  0.839 0.508 0.132 0.507 

CBDC Attention Index 
0.067 0.115 0.079 0.097 0.136 0.137 0.081 0.048 0.126 0.091 
0.196 0.127 0.181 0.077* 0.089* 0.066* 0.198 0.474 0.054* 0.021 **  

CC Environmental 
Attention Index 

-0.021 -0.039 -0.001 -0.048 -0.022 -0.045 -0.056 0.003 -0.041 -0.050 
0.424 0.336 0.989 0.215 0.574 0.287 0.151 0.924 0.292 0.048 **  

TEU Index 
-0.0003 0.0000 -0.0002 -0.0008 0.0002 -0.0008 0.0001 -0.0003 -0.0005 -0.0006 

0.700 0.932 0.497 0.173 0.830 0.270 0.947 0.520 0.522 0.356 

25 

UCRY Policy Index 0.024 -0.057 -0.011 -0.001 -0.045 -0.094 0.001 -0.046 -0.014 -0.018 
0.675 0.282 0.822 0.989 0.424 0.222 0.981 0.343 0.875 0.760 

UCRY Price Index -0.027 0.052 0.006 -0.017 0.027 0.075 -0.001 0.042 0.006 0.018 
0.639 0.268 0.898 0.808 0.637 0.346 0.992 0.410 0.941 0.805 

CBDC Uncertainty Index -0.041 0.018 -0.029 -0.030 -0.029 -0.029 -0.025 -0.049 -0.017 -0.030 
0.207 0.605 0.420 0.416 0.485 0.617 0.336 0.277 0.683 0.324 

CBDC Attention Index -0.002 -0.017 0.003 -0.003 0.013 -0.015 0.020 0.029 -0.012 -0.003 
0.945 0.615 0.917 0.950 0.649 0.831 0.647 0.435 0.806 0.954 

CC Environmental 
Attention Index 

0.019 0.003 0.011 0.020 0.014 0.022 -0.006 0.002 0.011 0.010 
0.301 0.876 0.502 0.377 0.428 0.586 0.786 0.915 0.631 0.703 

TEU Index 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 
0.229 0.442 0.051* 0.120 0.006 ***  0.187 0.027 **  0.576 0.093* 0.486 
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t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

50 

UCRY Policy Index 
0.024 0.005 0.020 -0.022 -0.016 0.007 0.008 0.001 -0.004 -0.038 
0.372 0.851 0.634 0.704 0.796 0.892 0.849 0.981 0.910 0.304 

UCRY Price Index 
-0.007 0.011 -0.005 0.051 0.034 0.003 -0.011 0.001 0.037 0.057 
0.837 0.719 0.927 0.364 0.552 0.964 0.819 0.987 0.299 0.189 

CBDC Uncertainty 
Index 

0.007 -0.029 -0.037 -0.017 -0.015 -0.018 0.003 -0.008 -0.042 -0.036 
0.796 0.492 0.479 0.535 0.650 0.697 0.920 0.876 0.121 0.139 

CBDC Attention 
Index 

-0.017 -0.003 0.011 0.002 -0.008 -0.015 -0.015 -0.011 0.016 -0.016 
0.386 0.862 0.721 0.951 0.644 0.737 0.576 0.733 0.454 0.697 

CC Environmental 
Attention Index 

-0.003 0.008 -0.004 -0.015 0.000 0.014 0.010 0.010 -0.008 0.011 
0.841 0.251 0.828 0.602 0.995 0.624 0.520 0.594 0.700 0.625 

TEU Index 
0.0000 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 
0.767 0.186 0.613 0.411 0.419 0.668 0.528 0.837 0.792 0.386 

75 

UCRY Policy Index 
-0.003 0.023 0.033 -0.006 -0.029 -0.042 0.038 -0.043 0.024 -0.040 
0.930 0.639 0.641 0.892 0.322 0.341 0.356 0.542 0.553 0.396 

UCRY Price Index 
0.038 -0.003 0.023 0.057 0.059 0.042 -0.015 0.099 0.024 0.052 
0.226 0.964 0.736 0.096* 0.027 **  0.357 0.665 0.282 0.681 0.209 

CBDC Uncertainty 
Index 

0.013 0.014 0.000 -0.025 -0.015 -0.001 0.004 -0.029 -0.022 -0.007 
0.482 0.615 0.990 0.461 0.668 0.968 0.922 0.580 0.494 0.877 

CBDC Attention 
Index 

-0.015 0.003 0.026 0.034 0.030 0.023 0.026 -0.007 0.037 0.024 
0.509 0.937 0.472 0.413 0.231 0.561 0.400 0.758 0.160 0.604 

CC Environmental 
Attention Index 

-0.018 -0.011 -0.044 -0.040 -0.032 -0.008 -0.021 -0.012 -0.035 -0.015 
0.223 0.571 0.045 **  0.121 0.047 0.721 0.313 0.437 0.169 0.602 

TEU Index 
0.0000 0.0000 -0.0002 -0.0001 -0.0002 0.0000 0.0000 0.0000 -0.0001 0.0000 
0.781 0.787 0.224 0.158 0.102 0.728 0.710 0.991 0.739 0.882 
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t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

95 

UCRY Policy Index 
0.046 -0.052 0.095 -0.121 -0.152 -0.101 -0.014 -0.093 -0.056 -0.165 

0.265 0.543 0.419 0.278 0.243 0.101 0.746 0.222 0.391 0.074* 

UCRY Price Index 
0.004 0.093 0.045 0.176 0.166 0.134 0.059 0.188 0.260 0.156 

0.901 0.313 0.710 0.086* 0.130 0.083* 0.074* 0.004 ***  0.044 **  0.024 **  

CBDC Uncertainty 
Index 

0.037 -0.002 -0.091 -0.019 -0.016 -0.054 0.002 -0.026 -0.125 0.009 

0.125 0.934 0.225 0.657 0.846 0.481 0.963 0.640 0.024 **  0.923 

CBDC Attention 
Index 

-0.014 -0.005 0.152 0.086 0.095 0.092 0.037 0.029 0.083 0.137 

0.696 0.813 0.114 0.045 **  0.222 0.091* 0.182 0.486 0.003 ***  0.171 

CC Environmental 
Attention Index 

-0.037 -0.025 -0.115 -0.084 -0.053 -0.044 -0.050 -0.060 -0.082 -0.044 

0.039 **  0.126 0.041 **  0.009 ***  0.141 0.282 0.000 ***  0.011 **  0.027 **  0.501 

TEU Index -0.0001 -0.0005 -0.0001 -0.0005 0.0000 -0.0003 0.0001 0.0000 0.0001 0.0000 

0.499 0.015 **  0.735 0.154 0.982 0.022 **  0.628 0.913 0.669 0.869 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 

  



 
 

 
 

160 

160 

Table 10: The effects of the UCRY Policy Index and CBDC Attention Index on Cryptocurrencies returns. 
 
t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 
UCRY Policy Index 

-0.040 -0.094 -0.107 -0.105 -0.123 -0.093 -0.066 -0.062 -0.105 -0.083 
0.060* 0.012 **  0.033 **  0.000 ***  0.014 **  0.050 **  0.025 **  0.001 ***  0.020 **  0.041 **  

CBDC Attention Index 
0.023 0.074 0.068 0.079 0.112 0.050 0.045 0.045 0.064 0.073 
0.279 0.004 ***  0.123 0.001 ***  0.001 ***  0.236 0.130 0.040 **  0.165 0.060* 

25 
UCRY Policy Index 

-0.003 0.001 -0.003 -0.017 -0.018 -0.026 -0.008 -0.016 -0.012 -0.005 
0.901 0.948 0.845 0.435 0.548 0.214 0.770 0.434 0.669 0.824 

CBDC Attention Index 
-0.011 -0.005 -0.011 0.003 0.008 0.002 0.000 0.013 -0.004 -0.012 
0.566 0.763 0.482 0.878 0.725 0.898 0.988 0.343 0.858 0.499 

50 
UCRY Policy Index 

0.018 0.013 0.013 0.016 0.011 0.010 0.009 0.010 0.013 0.013 
0.122 0.181 0.315 0.403 0.164 0.547 0.510 0.561 0.367 0.277 

CBDC Attention Index 
-0.019 -0.011 -0.012 -0.019 -0.013 -0.008 -0.010 -0.008 -0.006 -0.018 
0.076* 0.373 0.446 0.361 0.216 0.574 0.430 0.579 0.680 0.086 

75 
UCRY Policy Index 

0.037 0.022 0.020 0.044 0.010 0.016 0.013 0.020 0.034 0.013 
0.022 **  0.231 0.447 0.002 ***  0.517 0.165 0.315 0.413 0.070* 0.391 

CBDC Attention Index 
-0.034 -0.011 0.000 -0.026 -0.001 -0.005 -0.004 -0.013 -0.014 -0.004 
0.030 **  0.578 0.988 0.145 0.929 0.646 0.683 0.589 0.477 0.839 

95 
UCRY Policy Index 

0.056 0.019 0.095 0.016 0.006 -0.022 0.031 0.052 0.027 -0.016 
0.000 ***  0.632 0.088* 0.542 0.692 0.491 0.171 0.471 0.581 0.652 

CBDC Attention Index 
-0.035 -0.017 -0.014 -0.005 0.020 0.058 -0.016 -0.044 0.000 0.099 

0.001 ***  0.571 0.811 0.835 0.382 0.165 0.465 0.442 0.992 0.237 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 

  



 
 

 
 

161 

161 

Table 11: The effects of the UCRY Policy Index and the Cryptocurrency Environmental Attention (ICEA) index on Cryptocurrencies returns. 
 
t = quantile   BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 
UCRY Policy Index 

-0.045 -0.061 -0.076 -0.129 -0.078 -0.076 -0.029 -0.081 -0.065 -0.072 
0.069* 0.250 0.121 0.016 **  0.185 0.139 0.362 0.019** 0.213 0.096* 

Cryptocurrency Environmental 
Index 

0.015 0.028 0.028 0.053 0.045 0.033 -0.001 0.040 0.027 0.027 
0.333 0.426 0.196 0.047 **  0.092* 0.339 0.963 0.024** 0.539 0.287 

25 
UCRY Policy Index 

-0.008 0.000 -0.002 -0.022 -0.022 -0.034 -0.003 -0.023 -0.013 -0.004 
0.634 0.995 0.891 0.272 0.344 0.221 0.884 0.095* 0.621 0.868 

Cryptocurrency Environmental 
Index 

-0.001 -0.004 -0.008 0.006 0.010 0.010 -0.005 0.014 -0.001 -0.007 
0.892 0.775 0.269 0.525 0.500 0.569 0.694 0.075* 0.927 0.580 

50 
UCRY Policy Index 

0.031 0.011 0.014 0.017 0.012 0.009 0.000 0.000 0.014 0.013 
0.011 **  0.538 0.389 0.215 0.474 0.560 0.994 0.972 0.547 0.491 

Cryptocurrency Environmental 
Index 

-0.016 -0.002 -0.007 -0.012 -0.008 -0.005 0.001 0.002 -0.004 -0.010 
0.009 ***  0.898 0.398 0.140 0.393 0.604 0.866 0.802 0.758 0.427 

75 
UCRY Policy Index 

0.040 0.021 0.050 0.048 0.018 0.018 0.023 0.024 0.037 0.015 
0.001 ***  0.167 0.021 **  0.000 ***  0.348 0.225 0.010*** 0.235 0.211 0.429 

Cryptocurrency Environmental 
Index 

-0.025 -0.007 -0.019 -0.019 -0.010 -0.005 -0.011 -0.009 -0.012 -0.004 
0.000 ***  0.439 0.074* 0.003 ***  0.356 0.577 0.019** 0.362 0.474 0.751 

95 
UCRY Policy Index 

0.058 0.024 0.121 0.017 0.009 0.042 0.044 0.110 0.101 -0.010 
0.000 ***  0.565 0.017 **  0.651 0.737 0.348 0.030** 0.091* 0.161 0.823 

Cryptocurrency Environmental 
Index 

-0.024 -0.015 -0.049 -0.006 0.005 -0.011 -0.026 -0.057 -0.039 0.065 
0.054* 0.504 0.131 0.803 0.849 0.758 0.087* 0.051* 0.286 0.356 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 12: The effects of the UCRY Price Index and the CBDC Attention Index on Cryptocurrencies returns. 
t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 

UCRY Price Index 
-0.029 -0.077 -0.125 -0.082 -0.098 -0.071 -0.072 -0.053 -0.078 -0.069 
0.027** 0.026** 0.004*** 0.025** 0.018** 0.034** 0.005*** 0.131 0.044** 0.078* 

CBDC Attention Index 
0.012 0.061 0.069 0.056 0.089 0.027 0.064 0.040 0.034 0.062 
0.421 0.027** 0.159 0.096* 0.055* 0.314 0.042** 0.246 0.400 0.115 

25 

UCRY Price Index 
-0.003 0.005 -0.002 -0.017 -0.004 -0.018 -0.007 -0.009 -0.012 -0.006 
0.865 0.768 0.880 0.396 0.835 0.424 0.720 0.656 0.613 0.784 

CBDC Attention Index 
-0.009 -0.008 -0.012 0.003 -0.003 -0.002 -0.001 0.007 -0.003 -0.012 
0.618 0.581 0.423 0.870 0.860 0.943 0.944 0.688 0.885 0.502 

50 

UCRY Price Index 
0.019 0.014 0.014 0.019 0.012 0.010 0.008 0.008 0.015 0.017 
0.264 0.111 0.415 0.348 0.157 0.405 0.469 0.599 0.258 0.091* 

CBDC Attention Index 
-0.018 -0.010 -0.012 -0.022 -0.013 -0.009 -0.009 -0.008 -0.011 -0.023 
0.226 0.456 0.489 0.300 0.174 0.542 0.499 0.652 0.544 0.044** 

75 

UCRY Price Index 
0.032 0.021 0.016 0.040 0.016 0.015 0.009 0.026 0.034 0.013 

0.008*** 0.334 0.415 0.005*** 0.224 0.234 0.565 0.252 0.096* 0.528 

CBDC Attention Index 
-0.034 -0.011 0.001 -0.022 -0.012 -0.003 -0.003 -0.021 -0.016 -0.003 
0.011** 0.591 0.937 0.306 0.516 0.812 0.894 0.433 0.439 0.882 

95 

UCRY Price Index 
0.035 0.052 0.128 0.011 0.009 0.019 0.025 0.118 0.026 0.007 

0.001*** 0.136 0.078* 0.769 0.743 0.547 0.137 0.113 0.685 0.784 

CBDC Attention Index 
-0.023 -0.039 -0.034 -0.002 0.021 0.040 -0.010 -0.074 0.003 0.087 

0.001*** 0.191 0.567 0.961 0.572 0.367 0.597 0.116 0.958 0.097* 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 13: The effects of the UCRY Price Index and the Cryptocurrency Environmental Attention (ICEA) index on Cryptocurrencies returns. 
t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 
UCRY Price Index 

-0.041 -0.074 -0.088 -0.081 -0.100 -0.089 -0.033 -0.059 -0.091 -0.045 
0.078* 0.045** 0.096* 0.030** 0.046** 0.011** 0.215 0.025** 0.023** 0.106 

CC Environmental Attention 
Index 

0.015 0.025 0.038 0.023 0.044 0.026 -0.003 0.024 0.026 0.010 
0.356 0.149 0.190 0.343 0.052* 0.171 0.888 0.133 0.262 0.543 

25 
UCRY Price Index 

-0.010 0.000 -0.002 -0.018 -0.022 -0.028 -0.003 -0.018 -0.012 -0.005 
0.487 0.994 0.911 0.362 0.368 0.202 0.855 0.268 0.551 0.789 

CC Environmental Attention 
Index 

-0.001 -0.004 -0.008 0.005 0.011 0.002 -0.004 0.010 -0.001 -0.007 
0.910 0.742 0.392 0.694 0.484 0.898 0.666 0.278 0.911 0.596 

50 
UCRY Price Index 

0.023 0.009 0.014 0.024 0.015 0.010 0.000 0.000 0.012 0.018 
0.175 0.375 0.357 0.384 0.404 0.578 0.990 0.986 0.581 0.314 

CC Environmental Attention 
Index 

-0.013 -0.001 -0.008 -0.015 -0.009 -0.006 0.001 0.002 -0.003 -0.013 
0.206 0.945 0.398 0.344 0.297 0.691 0.850 0.861 0.783 0.278 

75 
UCRY Price Index 

0.036 0.022 0.044 0.046 0.019 0.015 0.022 0.029 0.035 0.020 
0.000*** 0.176 0.016** 0.000*** 0.141 0.265 0.000*** 0.357 0.152 0.264 

CC Environmental Attention 
Index 

-0.022 -0.007 -0.016 -0.020 -0.010 -0.002 -0.011 -0.014 -0.011 -0.009 
0.002*** 0.407 0.131 0.026** 0.329 0.764 0.017** 0.352 0.441 0.560 

95 
UCRY Price Index 

0.049 0.062 0.164 0.011 0.007 0.035 0.055 0.123 0.113 0.024 
0.005*** 0.000*** 0.058* 0.825 0.739 0.323 0.001*** 0.084* 0.165 0.407 

CC Environmental Attention 
Index 

-0.018 -0.030 -0.074 -0.002 0.011 -0.007 -0.030 -0.064 -0.049 0.012 
0.149 0.000*** 0.188 0.941 0.570 0.841 0.017** 0.034** 0.268 0.840 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Third: The results of the Granger Causality Test. 
Table 14: The effects of the Daily data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies returns with lag = 1, and the 
effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.481 

BTC TEPU 
P-value 0.334 

lag 1 lag 1 

TEPU ETH 
P-value 0.675 

ETH TEPU 
P-value 0.484 

lag 1 lag 1 

TEPU XRP 
P-value 0.201 

XRP TEPU 
P-value 0.864 

lag 1 lag 1 

TEPU LTC 
P-value 0.167 

LTC TEPU 
P-value 0.685 

lag 1 lag 1 

TEPU BCH 
P-value 0.284 

BCH TEPU 
P-value 0.616 

lag 1 lag 1 

TEPU EOS 
P-value 0.322 

EOS TEPU 
P-value 0.752 

lag 1 lag 1 

TEPU XMR 
P-value 0.412 

XMR TEPU 
P-value 0.227 

lag 1 lag 1 

TEPU XLM 
P-value 0.836 

XLM TEPU 
P-value 0.466 

lag 1 lag 1 

TEPU DASH 
P-value 0.288 

DASH TEPU 
P-value 0.676 

lag 1 lag 1 

TEPU ETC 
P-value 0.682 

ETC TEPU 
P-value 0.642 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 15: The Effects of the Daily data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies returns with lag = 6, and the 
Effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) index with lag = 6. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.014 **  

BTC TEPU 
P-value 0.745 

lag 6 lag 6 

TEPU ETH 
P-value 0.030** 

ETH TEPU 
P-value 0.766 

lag 6 lag 6 

TEPU XRP 
P-value 0.075* 

XRP TEPU 
P-value 0.462 

lag 6 lag 6 

TEPU LTC 
P-value 0.041** 

LTC TEPU 
P-value 0.919 

lag 6 lag 6 

TEPU BCH 
P-value 0.012** 

BCH TEPU 
P-value 0.953 

lag 6 lag 6 

TEPU EOS 
P-value 0.137 

EOS TEPU 
P-value 0.952 

lag 6 lag 6 

TEPU XMR 
P-value 0.007*** 

XMR TEPU 
P-value 0.798 

lag 6 lag 6 

TEPU XLM 
P-value 0.365 

XLM TEPU 
P-value 0.42 

lag 6 lag 6 

TEPU DASH 
P-value 0.031** 

DASH TEPU 
P-value 0.792 

lag 6 lag 6 

TEPU ETC 
P-value 0.427 

ETC TEPU 
P-value 0.846 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 16: The effects of the Weekly data of the UCRY Policy Index on Cryptocurrencies returns with lag = 1, and the effects of Cryptocurrencies 
returns on the Weekly data of the UCRY Policy Index with lag = 1. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Policy 
Index BTC 

P-value 0.211 
BTC UCRY Policy 

Index 
P-value 0.650 

lag 1 lag 1 

UCRY Policy 
Index ETH 

P-value 0.000*** 
ETH UCRY Policy 

Index 
P-value 0.248 

lag 1 lag 1 

UCRY Policy 
Index XRP 

P-value 0.023** 
XRP UCRY Policy 

Index 
P-value 0.793 

lag 1 lag 1 

UCRY Policy 
Index LTC 

P-value 0.001*** 
LTC UCRY Policy 

Index 
P-value 0.962 

lag 1 lag 1 

UCRY Policy 
Index BCH 

P-value 0.008*** 
BCH UCRY Policy 

Index 
P-value 0.889 

lag 1 lag 1 

UCRY Policy 
Index EOS 

P-value 0.000*** 
EOS UCRY Policy 

Index 
P-value 0.704 

lag 1 lag 1 

UCRY Policy 
Index XMR 

P-value 0.056* 
XMR UCRY Policy 

Index 
P-value 0.406 

lag 1 lag 1 

UCRY Policy 
Index XLM 

P-value 0.028** 
XLM UCRY Policy 

Index 
P-value 0.884 

lag 1 lag 1 

UCRY Policy 
Index DASH 

P-value 0.002**** 
DASH UCRY Policy 

Index 
P-value 0.580 

lag 1 lag 1 

UCRY Policy 
Index ETC 

P-value 0.001*** 
ETC UCRY Policy 

Index 
P-value 0.171 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 17: The effects of the Weekly data of the UCRY Policy Index on Cryptocurrencies returns with lag = 6, and the effects of Cryptocurrencies 
returns on the Weekly data of the UCRY Policy Index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Policy 
Index BTC 

P-value 0.164 
BTC UCRY Policy 

Index 
P-value 0.163 

lag 6 lag 6 

UCRY Policy 
Index ETH 

P-value 0.004*** 
ETH UCRY Policy 

Index 
P-value 0.132 

lag 6 lag 6 

UCRY Policy 
Index XRP 

P-value 0.000*** 
XRP UCRY Policy 

Index 
P-value 0.064* 

lag 6 lag 6 

UCRY Policy 
Index LTC 

P-value 0.009*** 
LTC UCRY Policy 

Index 
P-value 0.096* 

lag 6 lag 6 

UCRY Policy 
Index BCH 

P-value 0.025** 
BCH UCRY Policy 

Index 
P-value 0.451 

lag 6 lag 6 

UCRY Policy 
Index EOS 

P-value 0.014** 
EOS UCRY Policy 

Index 
P-value 0.276 

lag 6 lag 6 

UCRY Policy 
Index XMR 

P-value 0.329 
XMR UCRY Policy 

Index 
P-value 0.127 

lag 6 lag 6 

UCRY Policy 
Index XLM 

P-value 0.002*** 
XLM UCRY Policy 

Index 
P-value 0.490 

lag 6 lag 6 

UCRY Policy 
Index DASH 

P-value 0.024** 
DASH UCRY Policy 

Index 
P-value 0.133 

lag 6 lag 6 

UCRY Policy 
Index ETC 

P-value 0.002*** 
ETC UCRY Policy 

Index 
P-value 0.095* 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 18: The effects of the Weekly data of the UCRY Price Index on Cryptocurrencies returns with lag = 1, and the effects of Cryptocurrencies 
returns on the Weekly data of the UCRY Price Index with lag = 1. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Price Index BTC 
P-value 0.164 

BTC UCRY Price Index 
P-value 0.916 

lag 1 lag 1 

UCRY Price Index ETH 
P-value 0.000 

ETH UCRY Price Index 
P-value 0.375 

lag 1 lag 1 

UCRY Price Index XRP 
P-value 0.052 

XRP UCRY Price Index 
P-value 0.940 

lag 1 lag 1 

UCRY Price Index LTC 
P-value 0.002 

LTC UCRY Price Index 
P-value 0.774 

lag 1 lag 1 

UCRY Price Index BCH 
P-value 0.016 

BCH UCRY Price Index 
P-value 0.958 

lag 1 lag 1 

UCRY Price Index EOS 
P-value 0.000 

EOS UCRY Price Index 
P-value 0.971 

lag 1 lag 1 

UCRY Price Index XMR 
P-value 0.183 

XMR UCRY Price Index 
P-value 0.565 

lag 1 lag 1 

UCRY Price Index XLM 
P-value 0.116 

XLM UCRY Price Index 
P-value 0.680 

lag 1 lag 1 

UCRY Price Index DASH 
P-value 0.006 

DASH UCRY Price Index 
P-value 0.606 

lag 1 lag 1 

UCRY Price Index ETC 
P-value 0.003 

ETC UCRY Price Index 
P-value 0.310 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 19: The effects of the Weekly data of the UCRY Price Index on Cryptocurrencies returns with lag = 6, and the effects of Cryptocurrencies 
returns on the Weekly data of the UCRY Price Index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Price Index BTC 
P-value 0.027** 

BTC UCRY Price Index 
P-value 0.171 

lag 6 lag 6 

UCRY Price Index ETH 
P-value 0.001*** 

ETH UCRY Price Index 
P-value 0.267 

lag 6 lag 6 

UCRY Price Index XRP 
P-value 0.000*** 

XRP UCRY Price Index 
P-value 0.173 

lag 6 lag 6 

UCRY Price Index LTC 
P-value 0.000*** 

LTC UCRY Price Index 
P-value 0.117 

lag 6 lag 6 

UCRY Price Index BCH 
P-value 0.006*** 

BCH UCRY Price Index 
P-value 0.510 

lag 6 lag 6 

UCRY Price Index EOS 
P-value 0.001*** 

EOS UCRY Price Index 
P-value 0.267 

lag 6 lag 6 

UCRY Price Index XMR 
P-value 0.138 

XMR UCRY Price Index 
P-value 0.285 

lag 6 lag 6 

UCRY Price Index XLM 
P-value 0.000*** 

XLM UCRY Price Index 
P-value 0.379 

lag 6 lag 6 

UCRY Price Index DASH 
P-value 0.013** 

DASH UCRY Price Index 
P-value 0.083* 

lag 6 lag 6 

UCRY Price Index ETC 
P-value 0.001*** 

ETC UCRY Price Index 
P-value 0.224 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 20: The effects of the weekly data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies returns with lag = 1, and the 
effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.004 

BTC TEPU 
P-value 0.505 

lag 1 lag 1 

TEPU ETH 
P-value 0.018 

ETH TEPU 
P-value 0.667 

lag 1 lag 1 

TEPU XRP 
P-value 0.098 

XRP TEPU 
P-value 0.930 

lag 1 lag 1 

TEPU LTC 
P-value 0.024 

LTC TEPU 
P-value 0.995 

lag 1 lag 1 

TEPU BCH 
P-value 0.023 

BCH TEPU 
P-value 0.717 

lag 1 lag 1 

TEPU EOS 
P-value 0.034 

EOS TEPU 
P-value 0.647 

lag 1 lag 1 

TEPU XMR 
P-value 0.003 

XMR TEPU 
P-value 0.456 

lag 1 lag 1 

TEPU XLM 
P-value 0.353 

XLM TEPU 
P-value 0.385 

lag 1 lag 1 

TEPU DASH 
P-value 0.03 

DASH TEPU 
P-value 0.777 

lag 1 lag 1 

TEPU ETC 
P-value 0.056 

ETC TEPU 
P-value 0.707 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 21: The effects of the weekly data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies returns with lag = 6, and the 
effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) index with lag = 6. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.009*** 

BTC TEPU 
P-value 0.785 

lag 6 lag 6 

TEPU ETH 
P-value 0.021** 

ETH TEPU 
P-value 0.800 

lag 6 lag 6 

TEPU XRP 
P-value 0.497 

XRP TEPU 
P-value 0.808 

lag 6 lag 6 

TEPU LTC 
P-value 0.064* 

LTC TEPU 
P-value 0.979 

lag 6 lag 6 

TEPU BCH 
P-value 0.063* 

BCH TEPU 
P-value 0.908 

lag 6 lag 6 

TEPU EOS 
P-value 0.022** 

EOS TEPU 
P-value 0.937 

lag 6 lag 6 

TEPU XMR 
P-value 0.009*** 

XMR TEPU 
P-value 0.613 

lag 6 lag 6 

TEPU XLM 
P-value 0.691 

XLM TEPU 
P-value 0.789 

lag 6 lag 6 

TEPU DASH 
P-value 0.024** 

DASH TEPU 
P-value 0.984 

lag 6 lag 6 

TEPU ETC 
P-value 0.076* 

ETC TEPU 
P-value 0.758 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 22: The effects of the Weekly data of the Central Bank Digital Currency Uncertainty Index (CBDCUI) on Cryptocurrencies returns with lag = 
1, and the effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital Currency Uncertainty Index (CBDCUI) with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC Uncertainty 
Index BTC 

P-value 0.715 
BTC CBDC Uncertainty 

Index 
P-value 0.357 

lag 1 lag 1 

CBDC Uncertainty 
Index ETH 

P-value 0.032** 
ETH CBDC Uncertainty 

Index 
P-value 0.877 

lag 1 lag 1 

CBDC Uncertainty 
Index XRP 

P-value 0.003*** 
XRP CBDC Uncertainty 

Index 
P-value 0.510 

lag 1 lag 1 

CBDC Uncertainty 
Index LTC 

P-value 0.025** 
LTC CBDC Uncertainty 

Index 
P-value 0.251 

lag 1 lag 1 

CBDC Uncertainty 
Index BCH 

P-value 0.058* 
BCH CBDC Uncertainty 

Index 
P-value 0.441 

lag 1 lag 1 

CBDC Uncertainty 
Index EOS 

P-value 0.023** 
EOS CBDC Uncertainty 

Index 
P-value 0.533 

lag 1 lag 1 

CBDC Uncertainty 
Index XMR 

P-value 0.105 
XMR CBDC Uncertainty 

Index 
P-value 0.693 

lag 1 lag 1 

CBDC Uncertainty 
Index XLM 

P-value 0.025** 
XLM CBDC Uncertainty 

Index 
P-value 0.319 

lag 1 lag 1 

CBDC Uncertainty 
Index DASH 

P-value 0.004*** 
DASH CBDC Uncertainty 

Index 
P-value 0.448 

lag 1 lag 1 

CBDC Uncertainty 
Index ETC 

P-value 0.001*** 
ETC CBDC Uncertainty 

Index 
P-value 0.469 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 23: The effects of the Weekly data of the Central Bank Digital Currency Uncertainty Index (CBDCUI) on Cryptocurrencies returns with lag = 
6, and the effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital Currency Uncertainty Index (CBDCUI) with lag = 6. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC 
Uncertainty Index BTC 

P-value 0.071* 
BTC CBDC 

Uncertainty Index 
P-value 0.067* 

lag 6 lag 6 

CBDC 
Uncertainty Index ETH 

P-value 0.059* 
ETH CBDC 

Uncertainty Index 
P-value 0.121 

lag 6 lag 6 

CBDC 
Uncertainty Index XRP 

P-value 0.000*** 
XRP CBDC 

Uncertainty Index 
P-value 0.215 

lag 6 lag 6 

CBDC 
Uncertainty Index LTC 

P-value 0.002*** 
LTC CBDC 

Uncertainty Index 
P-value 0.069* 

lag 6 lag 6 

CBDC 
Uncertainty Index BCH 

P-value 0.014** 
BCH CBDC 

Uncertainty Index 
P-value 0.276 

lag 6 lag 6 

CBDC 
Uncertainty Index EOS 

P-value 0.001*** 
EOS CBDC 

Uncertainty Index 
P-value 0.087* 

lag 6 lag 6 

CBDC 
Uncertainty Index XMR 

P-value 0.003*** 
XMR CBDC 

Uncertainty Index 
P-value 0.131 

lag 6 lag 6 

CBDC 
Uncertainty Index XLM 

P-value 0.023** 
XLM CBDC 

Uncertainty Index 
P-value 0.123 

lag 6 lag 6 

CBDC 
Uncertainty Index DASH 

P-value 0.001*** 
DASH CBDC 

Uncertainty Index 
P-value 0.074* 

lag 6 lag 6 

CBDC 
Uncertainty Index ETC 

P-value 0.000*** 
ETC CBDC 

Uncertainty Index 
P-value 0.034** 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 24: The effects of the Weekly data of the Central Bank Digital Currency Attention Index on Cryptocurrencies returns with lag = 1, and the 
effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital Currency Attention Index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC Attention 
Index BTC 

P-value 0.217 
BTC CBDC Attention 

Index 
P-value 0.148 

lag 1 lag 1 

CBDC Attention 
Index ETH 

P-value 0.063* 
ETH CBDC Attention 

Index 
P-value 0.762 

lag 1 lag 1 

CBDC Attention 
Index XRP 

P-value 0.000*** 
XRP CBDC Attention 

Index 
P-value 0.763 

lag 1 lag 1 

CBDC Attention 
Index LTC 

P-value 0.058** 
LTC CBDC Attention 

Index 
P-value 0.193 

lag 1 lag 1 

CBDC Attention 
Index BCH 

P-value 0.083* 
BCH CBDC Attention 

Index 
P-value 0.499 

lag 1 lag 1 

CBDC Attention 
Index EOS 

P-value 0.019** 
EOS CBDC Attention 

Index 
P-value 0.388 

lag 1 lag 1 

CBDC Attention 
Index XMR 

P-value 0.085* 
XMR CBDC Attention 

Index 
P-value 0.570 

lag 1 lag 1 

CBDC Attention 
Index XLM 

P-value 0.011** 
XLM CBDC Attention 

Index 
P-value 0.296 

lag 1 lag 1 

CBDC Attention 
Index DASH 

P-value 0.007*** 
DASH CBDC Attention 

Index 
P-value 0.332 

lag 1 lag 1 

CBDC Attention 
Index ETC 

P-value 0.000*** 
ETC CBDC Attention 

Index 
P-value 0.610 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 25: The effects of the Weekly data of the Central Bank Digital Currency Attention Index on Cryptocurrencies returns with lag = 6, and the 
effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital Currency Attention Index with lag = 6. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC Attention 
Index BTC 

P-value 0.014** 
BTC CBDC Attention 

Index 
P-value 0.261 

lag 6 lag 6 

CBDC Attention 
Index ETH 

P-value 0.062* 
ETH CBDC Attention 

Index 
P-value 0.226 

lag 6 lag 6 

CBDC Attention 
Index XRP 

P-value 0.001*** 
XRP CBDC Attention 

Index 
P-value 0.002*** 

lag 6 lag 6 

CBDC Attention 
Index LTC 

P-value 0.009*** 
LTC CBDC Attention 

Index 
P-value 0.028** 

lag 6 lag 6 

CBDC Attention 
Index BCH 

P-value 0.100 
BCH CBDC Attention 

Index 
P-value 0.092* 

lag 6 lag 6 

CBDC Attention 
Index EOS 

P-value 0.004*** 
EOS CBDC Attention 

Index 
P-value 0.035** 

lag 6 lag 6 

CBDC Attention 
Index XMR 

P-value 0.003*** 
XMR CBDC Attention 

Index 
P-value 0.105 

lag 6 lag 6 

CBDC Attention 
Index XLM 

P-value 0.030** 
XLM CBDC Attention 

Index 
P-value 0.391 

lag 6 lag 6 

CBDC Attention 
Index DASH 

P-value 0.001*** 
DASH CBDC Attention 

Index 
P-value 0.132 

lag 6 lag 6 

CBDC Attention 
Index ETC 

P-value 0.001*** 
ETC CBDC Attention 

Index 
P-value 0.000*** 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 26: The effects of the Weekly data of the Cryptocurrency Environmental Attention (ICEA) index on Cryptocurrencies returns with lag = 1, 
and the effects of Cryptocurrencies returns on the Weekly data of the Cryptocurrency Environmental Attention (ICEA) index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CC Environmental 
Attention index BTC 

P-value 0.428 
BTC CC Environmental 

Attention index 
P-value 0.257 

lag 1 lag 1 

CC Environmental 
Attention index ETH 

P-value 0.025** 
ETH CC Environmental 

Attention index 
P-value 0.733 

lag 1 lag 1 

CC Environmental 
Attention index XRP 

P-value 0.095* 
XRP CC Environmental 

Attention index 
P-value 0.701 

lag 1 lag 1 

CC Environmental 
Attention index LTC 

P-value 0.018** 
LTC CC Environmental 

Attention index 
P-value 0.186 

lag 1 lag 1 

CC Environmental 
Attention index BCH 

P-value 0.051* 
BCH CC Environmental 

Attention index 
P-value 0.416 

lag 1 lag 1 

CC Environmental 
Attention index EOS 

P-value 0.002*** 
EOS CC Environmental 

Attention index 
P-value 0.337 

lag 1 lag 1 

CC Environmental 
Attention index XMR 

P-value 0.053* 
XMR CC Environmental 

Attention index 
P-value 0.532 

lag 1 lag 1 

CC Environmental 
Attention index XLM 

P-value 0.101 
XLM CC Environmental 

Attention index 
P-value 0.241 

lag 1 lag 1 

CC Environmental 
Attention index DASH 

P-value 0.014 
DASH CC Environmental 

Attention index 
P-value 0.358 

lag 1 lag 1 

CC Environmental 
Attention index ETC 

P-value 0.000*** 
ETC CC Environmental 

Attention index 
P-value 0.766 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 27: The Effects of the Weekly data of the Cryptocurrency Environmental Attention (ICEA) index on Cryptocurrencies returns with lag = 6, 
and the Effects of Cryptocurrencies returns on the Weekly data of the Cryptocurrency Environmental Attention (ICEA) index with lag = 6. 

 
Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CC Environmental 
Attention index BTC 

P-value 0.003*** 
BTC CC Environmental 

Attention index 
P-value 0.276 

lag 6 lag 6 

CC Environmental 
Attention index ETH 

P-value 0.007*** 
ETH CC Environmental 

Attention index 
P-value 0.116 

lag 6 lag 6 

CC Environmental 
Attention index XRP 

P-value 0.000*** 
XRP CC Environmental 

Attention index 
P-value 0.039** 

lag 6 lag 6 

CC Environmental 
Attention index LTC 

P-value 0.002*** 
LTC CC Environmental 

Attention index 
P-value 0.090* 

lag 6 lag 6 

CC Environmental 
Attention index BCH 

P-value 0.000*** 
BCH CC Environmental 

Attention index 
P-value 0.477 

lag 6 lag 6 

CC Environmental 
Attention index EOS 

P-value 0.000*** 
EOS CC Environmental 

Attention index 
P-value 0.042** 

lag 6 lag 6 

CC Environmental 
Attention index XMR 

P-value 0.000*** 
XMR CC Environmental 

Attention index 
P-value 0.132 

lag 6 lag 6 

CC Environmental 
Attention index XLM 

P-value 0.020** 
XLM CC Environmental 

Attention index 
P-value 0.241 

lag 6 lag 6 

CC Environmental 
Attention index DASH 

P-value 0.000*** 
DASH CC Environmental 

Attention index 
P-value 0.686 

lag 6 lag 6 

CC Environmental 
Attention index ETC 

P-value 0.000*** 
ETC CC Environmental 

Attention index 
P-value 0.395 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 28: The Effects of the Weekly data of the Cryptocurrency Environmental Attention (ICEA) index on Cryptocurrencies returns with lag = 7, 
and the Effects of Cryptocurrencies returns on the Weekly data of the Cryptocurrency Environmental Attention (ICEA) index with lag = 7. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CC Environmental 
Attention index BTC 

P-value 0.003*** 
BTC CC Environmental 

Attention index 
P-value 0.350 

lag 7 lag 7 
CC Environmental 

Attention index ETH 
P-value 0.009*** 

ETH CC Environmental 
Attention index 

P-value 0.179 
lag 7 lag 7 

CC Environmental 
Attention index XRP 

P-value 0.000*** 
XRP CC Environmental 

Attention index 
P-value 0.020** 

lag 7 lag 7 
CC Environmental 

Attention index LTC 
P-value 0.001*** 

LTC CC Environmental 
Attention index 

P-value 0.159 
lag 7 lag 7 

CC Environmental 
Attention index BCH 

P-value 0.000*** 
BCH CC Environmental 

Attention index 
P-value 0.577 

lag 7 lag 7 
CC Environmental 

Attention index EOS 
P-value 0.000*** 

EOS CC Environmental 
Attention index 

P-value 0.082* 
lag 7 lag 7 

CC Environmental 
Attention index XMR 

P-value 0.000*** 
XMR CC Environmental 

Attention index 
P-value 0.106 

lag 7 lag 7 
CC Environmental 

Attention index XLM 
P-value 0.026** 

XLM CC Environmental 
Attention index 

P-value 0.350 
lag 7 lag 7 

CC Environmental 
Attention index DASH 

P-value 0.000*** 
DASH CC Environmental 

Attention index 
P-value 0.781 

lag 7 lag 7 
CC Environmental 

Attention index ETC 
P-value 0.000*** 

ETC CC Environmental 
Attention index 

P-value 0.496 
lag 7 lag 7 

Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 29: The effects of the Monthly data of the Economic Policy Uncertainty Index for Europe index on Cryptocurrencies returns with lag = 1, and 
the effects of Cryptocurrencies returns on the Monthly data of the Economic Policy Uncertainty Index for Europe index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

EUROEPU Index BTC 
P-value 0.826 

BTC EUROEPU Index 
P-value 0.054* 

lag 1 lag 1 

EUROEPU Index ETH 
P-value 0.810 

ETH EUROEPU Index 
P-value 0.003*** 

lag 1 lag 1 

EUROEPU Index XRP 
P-value 0.336 

XRP EUROEPU Index 
P-value 0.005*** 

lag 1 lag 1 

EUROEPU Index LTC 
P-value 0.964 

LTC EUROEPU Index 
P-value 0.010*** 

lag 1 lag 1 

EUROEPU Index BCH 
P-value 0.632 

BCH EUROEPU Index 
P-value 0.002*** 

lag 1 lag 1 

EUROEPU Index EOS 
P-value 0.723 

EOS EUROEPU Index 
P-value 0.003*** 

lag 1 lag 1 

EUROEPU Index XMR 
P-value 0.612 

XMR EUROEPU Index 
P-value 0.013** 

lag 1 lag 1 

EUROEPU Index XLM 
P-value 0.829 

XLM EUROEPU Index 
P-value 0.051* 

lag 1 lag 1 

EUROEPU Index DASH 
P-value 0.151 

DASH EUROEPU Index 
P-value 0.003*** 

lag 1 lag 1 

EUROEPU Index ETC 
P-value 0.641 

ETC EUROEPU Index 
P-value 0.000*** 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 30: The effects of the Monthly data of the Economic Policy Uncertainty Index for Europe index on Cryptocurrencies returns with lag = 6, and 

the effects of Cryptocurrencies returns on the Monthly data of the Economic Policy Uncertainty Index for Europe index with lag = 6. 

 
Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

EUROEPU 
Index BTC 

P-value 0.282 
BTC EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 
EUROEPU 

Index ETH 
P-value 0.119 

ETH EUROEPU 
Index 

P-value 0.000*** 
lag 6 lag 6 

EUROEPU 
Index XRP 

P-value 0.149 
XRP EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 
EUROEPU 

Index LTC 
P-value 0.065* 

LTC EUROEPU 
Index 

P-value 0.000*** 
lag 6 lag 6 

EUROEPU 
Index BCH 

P-value 0.432 
BCH EUROEPU 

Index 
P-value 0.001*** 

lag 6 lag 6 
EUROEPU 

Index EOS 
P-value 0.653 

EOS EUROEPU 
Index 

P-value 0.001*** 
lag 6 lag 6 

EUROEPU 
Index XMR 

P-value 0.405 
XMR EUROEPU 

Index 
P-value 0.005*** 

lag 6 lag 6 
EUROEPU 

Index XLM 
P-value 0.011** 

XLM EUROEPU 
Index 

P-value 0.000*** 
lag 6 lag 6 

EUROEPU 
Index DASH 

P-value 0.064* 
DASH EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 
EUROEPU 

Index ETC 
P-value 0.834 

ETC EUROEPU 
Index 

P-value 0.001*** 
lag 6 lag 6 

Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 31: The Effects of the Monthly data of the Economic Policy Uncertainty Index for Europe index on Cryptocurrencies returns with lag = 10, 
and the Effects of Cryptocurrencies returns on the Monthly data of the Economic Policy Uncertainty Index for Europe index with lag = 10. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

EUROEPU 
Index BTC 

P-value 0.000*** 
BTC EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index ETH 

P-value 0.033** 
ETH EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index XRP 

P-value 0.009*** 
XRP EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index LTC 

P-value 0.013** 
LTC EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index BCH 

P-value 0.005*** 
BCH EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index EOS 

P-value 0.279 
EOS EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index XMR 

P-value 0.000*** 
XMR EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index XLM 

P-value 0.002*** 
XLM EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index DASH 

P-value 0.003*** 
DASH EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

EUROEPU 
Index ETC 

P-value 0.024** 
ETC EUROEPU Index 

P-value 0.000*** 
lag 10 lag 10 

Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 



Chapter Four: Covariance Forecasting in Cryptocurrency Market 
 
 

1. ABSTRACT 
The primary objective of this research is to identify the most effective model for forecasting 

the covariance matrix of cryptocurrency returns. Five models were extensively analyzed to pursue 

this goal: BEKK, Diagonal BEKK, DCC, Asymmetric DCC, and LRE. Three fundamental criteria 

were used to measure predicting accuracy and capability: Euclidean distance (LE), Frobenius 

distance (LF), and the multivariate quasi-likelihood loss function (LQ). The LRE model 

outperformed the other models, demonstrating superior predicting accuracy for daily and weekly 

frequencies. Also,  further validation was performed using the Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) loss functions. With the exception of LQ, the results were consistent 

with the forecasted criterion. These findings hold much potential for investors and portfolio 

managers looking to improve their risk management strategies. They may make better-educated 

decisions to reduce portfolio risk by exploiting the information given. 

 

2. INTRODUCTION 
Cryptocurrencies are often considered among the most innovative financial trading 

instruments since the turn of the millennium. As Chapter Two mentioned, Nakamoto (2008) 

proposed Bitcoin as a new financial asset. According to Nakamoto, Bitcoin is a peer-to-peer 

transaction that uses an electronic cash system permitting users to send online payments to each 

other directly without the need for intermediate financial institutions. Also, cryptocurrencies are 

not linked to regulators or authorities, and Bitcoin has no material representation. Bitcoin was first 

traded in 2009. Since then, Bitcoin has been the most prominent digital currency on the 

cryptocurrency market. Also, technological development has contributed to advancing 

cryptocurrency concepts and perspectives. A massive number of new cryptocurrencies have been 

introduced in the financial markets. As a result, many scholars have sought to simplify and clarify 

their behaviour.  
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To link the chapters of this thesis together, this chapter aims to close the circle of 

investigations. The second chapter focused on addressing the gap found in the literature of 

examining the best-fitted model to forecast the volatility of cryptocurrency returns, followed by 

the second gap found in the literature that chapter three aimed to examine the relationship effects 

of various uncertainty indices with cryptocurrency returns. Then, aiming to understand their risk 

connectedness and linkage among other cryptocurrencies, this chapter aims to close the gap found 

in the literature that investigates the best model that can accurately predict the covariance matrices 

of cryptocurrency returns. 

 

3. LITERATURE REVIEW 
Cryptocurrency markets have considerably advanced over the last decade, and 

cryptocurrencies' use has increased and gained immense public interest in response to the observed 

issues that the monetary and payment systems have. Those issues arose during the financial market 

crisis of 2008 (Weber, 2014). Besides, the notable price increases of cryptocurrencies have led 

individual investors to believe that the cryptocurrency markets can reach exceptionally high profits 

in simply a few weeks or months (Kristoufek, 2013). Though, cryptocurrencies as a new financial 

tool pose many challenges, such as legal, ethical, and regulatory challenges to central authorities 

(Fry and Cheah, 2016). Therefore, it is worth studying and exploring the cryptocurrency market's 

immatureness. 

3.1. Cryptocurrencies Connectedness With Other Assets  
 

The literature on interlinkages and volatility dynamics in cryptocurrency markets is still 

immature. Return and volatility spillovers quantify intermarket linkages, which are significant in 

international finance and have substantial consequences for portfolio and hedging choices. 

Empirical research has given this subject much attention, including greater market integration due 

to market openness, globalization, financialization, and technology advancements. Any indication 

of large return and volatility spillovers between Bitcoin and other asset classes has the potential to 

influence asset selection and allocation and regulators' policies aimed at maintaining the global 

financial system's stability. . Bouri et al. (2018a) examined the return and volatility spillover 
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among Bitcoin, equities, currencies, stocks, bonds, and commodities and discovered empirical 

evidences that Bitcoin is mainly associated to commodities market and not really isolated, whereas 

Ji et al. (2018) reveal that the Bitcoin market is disconnected from other assets, as such no asset 

play an important role in the Bitcoin market but there appears to exist lagged and significant 

correlations. Bouri et al. (2018b) went on to say that Bitcoin price changes may be accurately 

anticipated using data from the aggregate commodities index and gold prices. However, these 

researchers demonstrate that, while bitcoin is linked to some investment alternatives such as 

commodities, it is not linked to other investment opportunities such as bonds and shares. Ji et al. 

(2019b) analyzed commodity links with key cryptocurrencies and discovered that cryptocurrency 

connectivity varies over time and gets more and more linked in the system. They also stated that 

the price dynamics of cryptocurrencies have an impact on energy commodities. 

Likewise, Hayes (2017) demonstrates a considerable link between cryptocurrencies and the 

energy market (electricity market) in terms of the need for electricity for cryptocurrency mining. 

Also, according to Adebola et al. (2019), there are some considerable degrees of mean reversion 

movements in the prices of Gold and certain Cryptocurrencies with cointegrations. Bitcoin prices 

may be predicted using gold prices and aggregate commodity price information (Bouri et al., 

2018a, 2018b). However, Shahzad et al., 2019, discovered that Bitcoin, gold, and the commodities 

index are poor safe haven investments for investors, although their performance varies over time 

across stock market indexes. Not only has Bitcoin demonstrated these characteristics, but it also 

has hedging capabilities with equities, Okorie, (2019). Furthermore, Al-Yahyaee et al. (2019) 

demonstrated that Bitcoin, and gold are capable of diversifying and hedging a portfolio when 

combined with crude oil and S&P GSCI, whereas Okorie (2019) demonstrated the importance of 

Bitcoin and the S&P500 for portfolio balancing and diversification. Consequently, Guesmi et al., 

(2019), show that considerable volatility spillovers exist between Bitcoin as well as other financial  

instruments such as gold and stocks, and an investment portfolio comprised of gold, oil, Bitcoin, 

and equities is capable of mitigating portfolio risk. Moreover, Cebrian-Hernandez and Jimenez-

Rodriguez (2021) applied Engle's (2002) 's Dynamic Conditional Correlation (DCC) model to a 

diverse portfolio containing Bitcoin and 10 other assets. 
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3.2.  Cryptocurrencies Connectedness within Cryptocurrency Market 
 

Cryptocurrencies have recently been a prominent topic in academic study, despite the fact that 

Bitcoin and other cryptocurrencies are expected to be interdependent due to Bitcoin's market 

dominance and that most altcoin orders are traded in Bitcoin (Ciaian et al., 2018). It's also crucial 

for governments to consider Bitcoin as part of their foreign reserves or experiment with their own 

cryptocurrency equivalents. Therefore, Katsiampa et al. (2019) investigate the conditional 

volatility dynamics and conditional correlations of Bitcoin, Ethereum, and Litecoin using bivariate 

GARCH models. They demonstrate that their own current shocks and volatility impact the future 

volatility of returns. They show that there are two-way return flows between Bitcoin and Ether and 

Litecoin, as well as a one-way flow from Ether to Litecoin. Katsiampa et al. (2019) reveal evidence 

of two-way volatility flows across all pairings of cryptocurrencies under analysis, as well as 

positive pairwise conditional correlations that fluctuate over time. 

Also, when it comes to research that looks at how efficient cryptocurrency markets are, 

Nadarajah and Chu (2017) employ eight different tests to show that the Bitcoin market is 

inefficient. Also, Caporale et al. (2018) take a similar approach and look at the markets for Bitcoin, 

Ripple, Litecoin, and Dash, finding evidence that they are inefficient since they are positively 

connected to past and future prices. In a similar vein, Charfeddine and Maouchi (2018) discover 

long-range reliance that leads to inefficiencies in Bitcoin, Litecoin, and Ripple markets, but not in 

the Ethereum market. Furthermore, Urquhart (2016), via a series of studies, concludes that Bitcoin 

is inefficient in the short term but tends to become efficient over time. Wei (2018) further claims 

that, despite the effectiveness of the Bitcoin markets, there are an enormous number of other 

cryptocurrencies whose present prices are based on their previous values. It has been discovered 

that greater liquidity leads to greater efficiency. Brauneis and Mestel (2018), on the other hand, 

look at a wide range of cryptocurrencies and conclude that liquid markets are much efficient. 

Bouri et al. (2019) use a Granger causality technique in the frequency domain to discover that 

Bitcoin is not the only presenter of volatility, emphasizing the significance of other significant 

cryptocurrencies in the network of volatility spillovers. Koutmos (2018) discovers that the 

spillovers fluctuate over time and point to the rising interconnectedness of cryptocurrencies, 

indicating a larger level of contagion risk. The study also highlights Bitcoin's essential position in 

the return and volatility spillover network. Corbet et al. (2018) examine the return and volatility 
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spillovers of three major cryptocurrencies (Bitcoin, Ripple, and Litecoin). Using time-domain 

connectivity measurements, they discover that Bitcoin returns greatly influence Ripple and 

Litecoin returns, whereas the response impact is minor. This result demonstrates Bitcoin's 

superiority in the network of return connectedness. The authors, however, present conclusions 

regarding volatility spillovers that differ from those of Koutmos (2018). They discover that 

Litecoin and Ripple have an impact on Bitcoin, whereas Bitcoin has little impact on Litecoin and 

Ripple. Additionally, Ripple and Litecoin are inseparably linked via both return and volatility 

channels. Corbet et al. (2018) further show that the three digital assets are differentiated from 

traditional assets, implying that they have the potential to operate as diversifiers. 

Yi et al. (2018), for example, examined the volatility connections between the 52 

cryptocurrencies and discovered a volatility transmission from Bitcoin to the others. Several other 

cryptocurrencies also transmit high levels of volatility; hence, Bitcoin is not the primary source of 

volatility for other cryptocurrencies. Ji et al. (2019a) examine the return and volatility of six major 

cryptocurrencies, and they show that Litecoin and Bitcoin are unquestionably the leaders in the 

network of returns. In contrast to the findings of Corbet et al. (2018), and in accordance with 

Koutmos (2018), they demonstrate that Bitcoin is important to the network of volatility spillovers. 

According to Yi, Xu, and Wang (2018), the connection within cryptocurrency markets fluctuates 

on a regular basis and has been rising since 2016. Kumar and Anandarao (2019) discovered 

consistent and same patterns, but with a focus on volatility spillovers after 2017.  

These heated debates focus on the interconnectedness of cryptocurrencies (Bitcoin being the 

most prominent) with other investing alternatives. Nevertheless, Baur, Hong, and Lee (2018) 

discovered inconsistent findings where transaction data backed the product's status as a highly 

speculative asset. BEKK-GARCH models were utilized by Katsiampa, Corbet, and Lucey (2019) 

to demonstrate the existence of bi-directional positive shock transmission impacts between Bitcoin 

and both Ether and Litecoin as well as uni-directional shock transmission from Ether to Litecoin. 

Also, the DCC model was applied to four cryptocurrencies by Mensi et al. (2020). They found 

that investors are encouraged to hold less BTC than LTC, ETH, and XRP in order to minimise risk 

while keeping consistent predicted portfolio returns. Katsiampa et al. (2019) tested eight 

cryptocurrencies using the Diagonal BEKK (Engle and Kroner 1995) and its asymmetric variation. 

Shi et al. (2020) studied the dynamic correlations among six cryptocurrencies using a multivariate 

factor stochastic volatility model in a Bayesian framework. They found a significant positive 
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correlation between Bitcoin and Litecoin price volatility levels. Furthermore, Ethereum's volatility 

levels show a positive link with both Ripple and Stellar. Also, there is a positive correlation 

between Ripple and Dash volatility values. Garcia-Medina and Chaudary (2020) estimated the 

multivariate transfer entropy to investigate the interconnections of cryptocurrencies in a network 

environment. For each subperiod, they investigated the clustering coefficient and node degree 

distributions. The clustering coefficient increases considerably in March, coinciding with the most 

severe drop in the current global stock market meltdown. Furthermore, in all cases, the log-

likelihood curved over a power law distribution, with a larger estimated power during the period 

of substantial financial contraction. Their findings imply that financial instability increases the 

flow of information on the bitcoin market, as measured by a higher clustering coefficient and 

network complexity. As a result, the complex features of the multivariate transfer entropy network 

may give early warning signs of increased systematic risk in cryptocurrency market turmoil. 

Excitingly, anytime there have been "black swans" connected with geopolitical turbulence or 

an economic meltdown, such as the Greek debt crisis (2009), Cyprus bailout (2013), and Brexit 

(2016), the price of Bitcoin has consistently risen. Furthermore, in currency crises, Bitcoin is 

employed as an alternative store of economic value and a viable monetary alternative (Brandvold 

et al., 2015; Weber 2016; Luther and Salter 2017). Identifying instruments that are not reliant on 

the performance of other asset classes during periods of market volatility is critical from a portfolio 

risk viewpoint. The time-varying return and volatility links between various cryptocurrencies have 

significant consequences for asset allocations, option pricing, and risk management, particularly 

during a crisis (Kou et al., 2014; Caporin and Malik 2020).  

Several researches in the relevant literature have looked at the return/volatility spillover 

between different cryptocurrencies. The diagonal BEKK model is used by Katsiampa (2019) to 

identify considerable volatility co-movement between Bitcoin and Ethereum. Canh et al. (2019) 

applied the DCC-MGARCH model to explore volatility dynamics among the seven main 

cryptocurrencies and find strong volatility transmission between all of them. Griffins and Shams 

(2018) investigated whether Tether affected Bitcoin and other cryptocurrency values and 

discovered that Tether purchases were timed to coincide with market downturns and resulted in 

considerable rises in Bitcoin price. Furthermore, less than 1% of the hours in which Tether had 

substantial transactions were linked to 50% of the increase in Bitcoin prices and 64% of the rise in 
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other prominent cryptocurrencies, implying that Tether was utilized to offer price support and 

influence cryptocurrency prices. 

To further this, it is a must to concentrate on the interdependencies that exist inside bitcoin 

marketplaces, which are yet primarily unexplored, despite the fact that the interconnectedness of 

cryptocurrencies has been studied by researchers such as Fry and Cheah (2016), Ciaian et al. 

(2018), Corbet et al. (2018b), Katsiampa (2017), Katsiampa et al. (2019), and Koutmos (2018). 

They all used daily data, and there has been little research on volatility interdependencies within 

cryptocurrency markets - especially when accounting for the asymmetric effects of a positive and 

negative shock. Although analyzing covariances and correlations is critical for estimating the risk 

of an investor's portfolio (Coudert et al., 2015), volatility modeling is vital for various option 

pricing, portfolio selection, and risk management applications (Fleming et al., 2003). 

Kristoufek (2013) claims that Bitcoin and search information such as Google Trends and 

Wikipedia have a substantial association. However, Kristoufek (2015) claims that typical basic 

elements such as use in trade, money supply, and price level have a role in Bitcoin pricing over 

time. Furthermore, Ciaian et al. (2018) 's major findings suggest that Bitcoin market fundamentals 

and the attractiveness of Bitcoin to investors have a considerable influence on Bitcoin price. 

Furthermore, using a quantiles-based method, Balcilar et al. (2017) show that while volume may 

be used to forecast returns, it cannot be used to estimate volatility. In a similar vein, Koutmos 

(2018) shows that while larger Bitcoin transactions lead to better profits, this impact is only 

transitory, and any gains eventually fade away. 

High degrees of volatility co-movements among cryptocurrencies can restrict the benefits of 

diversification, therefore, knowing covariances and correlation coefficients is critical for investors 

in order to estimate the risk of their portfolios (Coudert et al., 2015). As a result, analyzing 

volatility dynamics in cryptocurrency markets is critical for cryptocurrency users and traders to 

increase their awareness of interdependencies and make more educated decisions, especially when 

cryptocurrency consumers confront undifferentiated risks (Gkillas and Katsiampa, 2018). 
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3.3. Predicting Covariance Matrices In The Equity Market: 
 

The focus on forecasting the covariance matrix for the equity market returns has been widely 

noticed. Many studies have been published recently. Usually, the multivariate GARCH models 

have been used to model and predict the covariance matrices for any market, especially equity 

markets. However, using high-frequency data has not been the main focus of scholars. The 

covariance matrix forecasting is essential to the portfolio design and strategy. With the availability 

of high-frequency asset price data, covariance measurement has gotten better (Sharma and Vipul, 

2016). The realized estimators take advantage of this rich dataset to produce strong model-free 

estimates of the integrated variance and covariance. These estimators can yield exact estimates of 

the covariance matrix by increasing the sampling frequency (Sharma and Vipul, 2016). The 

authors applied three estimators to anticipate the daily realized covariance matrix, namely the two-

scale realized covariance estimator (TSC), the jump-resistant two-scale realized covariance 

estimator (RTSC), and the realized bi-power covariance estimator (BPC). They built three risk-

based portfolios based on these covariance matrix forecasts; the global minimal variance portfolio, 

the equal risk contribution portfolio, and the most diversified portfolio. They found evidence that 

utilizing TSC or RTSC estimators enhances portfolio performance compared to the daily returns-

based estimator. The performance benefits are robust to the risk-based portfolio strategy, time 

interval selection, market circumstances, and the degree of investor risk aversion. 

Nevertheless, Callot et al. (2017) applied the penalized vector autoregressive models for 

modeling and predicting large realized covariance matrices. They consider the Lasso-type 

estimators to minimize dimensionality. They produced strong theoretical assurances on their 

procedure's prediction capacity of the 30 Dow Jones equities. As the data is aggregated from daily 

to lower frequency, they indicated that the dynamics are unstable. Furthermore, they outperform 

their benchmark by a large amount. Examine the economic worth of their forecasting portfolio 

selection operation, and discover that, in some situations, an investor is prepared to pay a 

significant expanse to access their projections. 

Also, Anatolyev and Kobotaev (2018) claimed that the existing dynamic models for realized 

covariance matrices ignore the price direction asymmetry. To account for the leverage effect, they 

reformed the previously presented conditional autoregressive Wishart (CAW) model. The 

parameters influencing each asset's volatility and covolatility dynamics in the conditional 
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threshold autoregressive Wishart (CTAW) model and its variants are susceptible to switches that 

rely on the signs of past asset returns or prior market returns. They assessed the CTAW model's 

predictive performance and its limited and extended specifications from statistical and economic 

perspectives. They found evidence that numerous CTAW variants outperform the original CAW 

model and its alterations in terms of in-sample and out-of-sample predictive capabilities. 

Furthermore, while many academics have focused on developing more accurate volatility 

models, asset interdependence and consequent co-movements are extremely important in practice, 

e.g., asset allocation, risk management, and portfolio management. Based on covering and reading 

the literature review, the volatility models naturally extend to model the entire covariance structure 

of the provided assets. This leads to the creation of multivariate GARCH models. Although the 

shift from univariate to multivariate GARCH models appears simple, it is not without difficulties. 

Multivariate volatility modeling provides several research possibilities in the form of extending or 

innovating current procedures, as well as inventing ways to address the limitations of present 

approaches. Also, recent developments in financial econometrics and the availability of high-

frequency intraday data have permitted the direct measurement and modeling of covariance 

matrices. Barndorff-Nielsen and Shephard (2004) introduced the realized covariance (RC) matrix 

as the sum of the external products of intraday return vectors, making the covariance matrix visible 

for the first time. Christensen et al. (2010) proposed the pre-averaging method-based modulated 

realized covariance (MRC) estimator for high-dimensional applications with assets of varying 

liquidity.  

This model is favored since it assures positive definiteness, accuracy, and robustness to non-

synchronous trading and market microstructure noise. Corsi et al. (2015) treated non-synchronicity 

as a data lack problem. They proposed a positive-definite estimator based on Kalman smoother 

and expectation maximization (KEM) that takes into account all available intraday prices and is 

robust to non-synchronous trading and market microstructure noise. Using high-dimensional 

applications on US equities and comprehensive Monte Carlo simulations that simulate the liquidity 

and market microstructure features of the S&P 500, they demonstrated the performance of the 

KEM estimator. They found that KEM delivers extremely precise covariance matrix estimations 

and substantially exceeds competing methodologies recently proposed in the literature. 

Correspondingly, the multivariate heterogeneous autoregressive (MHAR) model is frequently 

used among the models that use high-frequency data to forecast the covariance matrix (Bauer and 
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Vorkink, 2011; Chiriac and Voev, 2011; Varneskov and Voev, 2013; Hautsch et al., 2015). The 

MHAR is a multivariate variant of the HAR-RV model proposed by Corsi (2009). The model can 

accurately characterize the long memory quality of the covariance matrix using a basic linear 

regression framework. It is worth noticing that before developing the MHAR model, the matrix 

logarithm transformation of Bauer and Vorkink (2011) and the Cholesky factorization of Chiriac 

and Voev (2011) can be applied to the covariance matrix estimator to confirm its positive-

definiteness. Furthermore, Qu and Zhang (2022) proposed the idea of incorporating asymmetry in 

the MHAR models. They wanted to examine if the volatility timing investors could achieve higher 

economic gains. They tested their concept on China's stock markets and found that they reached 

the highest economic values out-of-sample under various market conditions. Also, they found that 

the portfolios with diversified strategies are more effective when the market is calm, but the global 

minimal variance strategy is more effective when the market is unstable. 

Additionally, Chou et al. (2009) introduced the range-based dynamic conditional correlation 

(DCC) model that is combined with the return-based DCC model and the conditional 

autoregressive range (CARR) model. They stated that the significant improvement in volatility 

estimation efficiency can improve the accuracy of estimating time-varying covariances. Including 

MA100, EWMA, BEKK, CCC, range-based DCC, and return-based DCC, using the S&P 500 

stock index and 10-year government bond futures, they analyzed the in-sample and out-of-sample 

results for six models. The range-based DCC model outperforms all other models in terms of 

estimating and forecasting covariance matrices. However, Fiszeder et al. (2019) stated that the 

dynamic conditional correlation (DCC) model by Engle (2002) is based only on closing prices. As 

a result, they proposed a model that combines high and low prices into the DCC framework. Using 

the currencies, equities, and commodities exchange-traded funds datasets, they applied the new 

model. Their findings show that the new model approach beats the traditional DCC model and the 

range-based DCC model in the three tests: in-sample fit, covariance predictions, or value-at-risk 

forecasts. 

Furthermore, Bauwens et al. (2012) proposed a corresponding DCC technique to realize 

covariance modeling using the Wishart density. The mechanism utilized to update the time-varying 

parameters varies in the suggested methodology. However, Vassallo et al. (2021) added to their 

framework the conditional density score that determines the update rule (Creal, Koopman, & 
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Lucas, 2013). If the score is scaled by the inverse of the Fisher information matrix in the case of 

the Wishart density, our technique yields the same updating rule as Bauwens et al. (2012). 

On the other hand, the two-scale sub-sampler proposed by Zhang et al. (2005), the multi-scale 

version proposed by Zhang (2006), the realized kernel introduced by Barndorff-Nielsen et al. 

(2008), which depends on autocovariance-based corrections, and the pre-averaging estimator 

proposed by Podolskij and Vetter (2009) and Jacob et al. (2009) are the main univariate approaches 

that the damage triggered by the noise is fixed. 

 

4. Research Gap and Contribution 
Because cryptocurrencies are still relatively new compared to traditional financial instruments, 

there remains limited empirical research concerning the linkage between their returns and risk. 

Although some research studies emphasize the additional risk such investments might pose to 

investors in developing economies, numerous researchers recognize the various benefits of 

cryptocurrencies. Thus, understanding and forecasting the covariance matrices of cryptocurrency 

returns using high-frequency data will reveal the usefulness and benefits of improving the 

decision-making for potential investors. It was also inspired by Symitsi, Symeonidis, Kourtis, and 

Markellos's (2018) study that investigated the ability of different models to forecast the covariance 

matrices of equity markets. Therefore, this research contribution aims to find the best-fitted model 

to forecast the covariance matrices for ten cryptocurrency returns using five models. It also focuses 

on applying the most prominent volatility forecasting models based on previous studies, aiming to 

compare models across models to identify the models that outperform in predicting the covariance 

matrices of cryptocurrency returns. Also, more contributions go towards using high-frequency data 

of the dominant cryptocurrency returns that have the highest market cap and less dominant 

cryptocurrency returns to provide valuable insights to investors, portfolio managers, financial 

firms, and regulators. 
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4.1. Research Questions: 
What is the best-fitted model to forecast the covariance matrix of the

 cryptocurrency returns?   

 

4.2. Research objectives: 
1. Identify the best-fitted model to forecast the covariance matrix of the

 cryptocurrency returns. 

2. Forecast the covariance matrices of both the dominant and less dominant 

cryptocurrency returns. 

3. Forecast the covariance matrices of the cryptocurrency returns using high-frequency 

data. 

5. METHODOLOGY 

5.1. Research Design 
Forecasting cryptocurrency covariance using high-frequency data depends on 

selecting a suitable methodology that produces valuable and accurate findings. The 

extensive use of academic resources that support analytical approaches contributes to 

producing and communicating the results that can be used in the real world. Specifically, 

Lagged Realized Volatility model (LRE), the BEKK model (BEKK), the Diagonal BEKK 

model (D-BEKK), the Dynamic Conditional Correlations model (DCC), and the 

Asymmetric DCC model (A-DCC) are the frameworks applied in the current study. These 

models have been chosen based on previous literature and the contribution of Symitsi, 

Symeonidis, Kourtis, and Markellos's (2018) study. Their study has inspired the research’s 

methodology design. Although their analysis has been applied to five major European 

equity indices, some of the models they used apply to the research dataset and field. Some 

models they used do not apply to our study since they used option prices. Therefore, the 

Lagged Realized Volatility (LRE) model has been adapted from Kourtis, Markellos, and 

Symeonidis’s (2016) study. Also, the BEKK model has been chosen based on Katsiampa, 



 

 
 

194 

194 

Corbet, and Lucey's (2019) study. Each model has advantages and characteristics that 

improve the research's primary aim to find the best-fitted model to forecast the covariance 

matrix of cryptocurrency returns. Each model will be explained in detail in the following 

sections.  

5.2.  Data Collection  
This research uses daily and weekly historical data computed from 5-minute log 

returns for the following 10 cryptocurrency returns: Bitcoin (BTC), Ethereum (ETH), 

Ripple (XRP), Litecoin (LTC), Bitcoin Cash (BTH), Eos (EOS), Monero (XMR), Stellar 

(XLM), Dash (DASH), and Ethereum Classic (ETC) between 1st September 2018 to 31st 

December 2021 (Table A). These cryptocracies have different market capitalizations that 

vary from dominant and less dominant cryptos. The data were obtained from 

https://www.kraken.com.  Here are the visual figures of the cryptocurrency returns .

https://www.kraken.com/
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5.3.  Covariance Proxy 
The approach of producing the covariance matrix, since the true covariance matrix 

is not observable by Symitsi, Symeonidis, Kourtis, and Markellos (2018), has been 

adapted. The realized covariance matrices for intraday have been calculated by computing 

the intraday returns sample at equally-spaced intervals. The calculations of the covariance 

matrix can be expressed as follows. Presume that on day t a grid of  M + 1 equally-distant 

intraday prices is observed at times 𝑡/, 𝑡$, 𝑡&, … , 𝑡: with the 𝑝%) is the logarithmic price at 

time 𝑡" . The equivalent asset return for the 𝑟%)  in the 𝑗%;   intraday interval of day t is 

calculated as  𝑟%) = 𝑝%)- 𝑝%)'$. We denote the N X 1 vector demeaned asset returns for the 

𝑗%;  interval of day t, by  𝑟",%. The realized daily covariance matrix can be expressed as 

follows: 

 

∑𝑡 =  ∑ 	𝑟!,#$
!%& 		𝑟'!,#      (1) 

 
From Equation (1), it can be indicated that the equation consistently estimates the true 

unobserved covariance as the sampling frequency goes to in infinity (Andersen et al., 

2003). As the comment standard practice that Andersen et al., 2001, used, this research 

relies on the 5-minute returns for the calculation of t . Then, covariance over horizons of 

k days is given by the sum of daily realized covariances. 

 

5.4.  Research Models 

5.4.1. BEKK (BEKK) and Diagonal BEKK (DBEKK) Model 
This model has been developed by Engle and Kroner (1995). This model is widely 

utilized in the literature, particularly for modeling volatility spillovers. This is because the 

model's complete form permits conditional volatilities to be determined by their own 

historical values as well as the volatilities of other markets (Symitsi, Symeonidis, Kourtis, 

and Markellos, 2018). The BEKK model allows the conditional variances and covariances 
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of several time series to interact (Katsiampa et al., 2019). As a result, we can discover 

volatility transmission effects. The BEKK model ensures that the three-parameter matrices 

of the diagonal elements are restricted to be positive (Bekiros, 2014). The BEKK(1,1) 

model is described below (Katsiampa et al., 2019): 

 

𝐻% = 𝑊=𝑊 +	𝐴=𝑒%'$	𝑒′%'$𝐴 + 𝐵=𝐻%'$	𝐵    (2) 

 

Where W, A, and B are matrices of parameters with appropriate dimensions, with W 

being an upper triangular matrix and A and B being restricted to be diagonal. The diagonal 

components of matrices A and B represent the influence of the asset's own previous shocks 

and volatility, whereas the off-diagonal elements of matrices A and B record the cross-

market impacts of shocks and volatility (Li and Majerowska, 2008). These cross-market 

impacts are sometimes referred to as shock transmission and volatility spillover. 

 

5.4.2. Dynamic Conditional Correlations (DCC) Model 

Engle's dynamic conditional correlation model differs from Bollerslev's constant 

conditional correlation model only in that R has a structure that can change over time. In 

Engle's (2002) DCC model, the H matrix is as follows: 

 

𝐻) =	𝐷)𝑅)𝐷)            (3) 
 

Where 𝑅% denotes the correlation matrix containing dynamic conditional 

correlations and can be expressed as follows: 

 

𝑅) = 𝑑𝑖𝑎𝑔	(7𝑞'') …. 7𝑞(() ) 𝑄)	diag (7𝑞'') … . .7𝑞(()	)   (4) 

 

Where 𝑄%	 is a N x N symmetric positive definite matrix, 𝑄%	 =  𝑞(( and can be expressed 

as follows (Symitsi, Symeonidis, Kourtis, and Markellos, 2018): 

 

 𝑄)	= (	1 − 𝑎 − 𝛽	) 𝑄 + 𝑎𝑢)6'𝑢)6' + 𝛽𝑄)6'    (5) 
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Where 𝑢%  = ( 𝑢$%	𝑢&%  … 𝑢>%) and 𝑢(%  = 𝜀(%  / Oℎ(("	. 𝑄 is the unconditional variance 

matrix of standardized residuals 𝑢%. 𝑎 and 𝛽 are non-negative parameters. Providing the 

condition that  𝑎  + 𝛽  < 1 is fulfilled, the model would be mean-reverting. The quasi-

correlations are represented by the 𝑞(",% element of the 𝑄%	. Like the CCC model, the DCC 

model may be estimated using a two-step maximum likelihood technique that involves 

estimating univariate GARCH processes first, followed by estimating correlation 

parameters using Equation (4). As a result, the method is applicable in huge systems. One 

disadvantage of the typical DCC model is that, in order to decrease estimate complexity, 

parameters 𝑎 and 𝛽 in Equation (8) are vectors, implying that all correlations follow the 

same dynamics (Symitsi et al., (2018). 

 

5.4.3. Asymmetric DCC (A-DCC) Model 
The Asymmetric Dynamic Conditional Correlations are the extension of the DCC 

model. The A-DCC model permits leverage effects on dynamic conditional correlations. 

The A-DCC model can be expressed as follows:  

 

𝑄)	= [(	1 − 𝑎 − 𝛽	) 𝑄 − 	𝛾𝑁] + 𝑎𝑢)6'𝑢)6' + 𝛽𝑄)6' + 𝛾𝑧)6'𝑧′)6' (6) 

 

Where 𝑁  is the unconditional covariance matrix of the negative innovations ( 𝑧′%𝑠 ) 

(Symitsi, et al, 2018). 

 
 
5.4.4. Lagged Realized Volatility (LRE) Model  

LRE is one of the methods used for the purpose of financial instrument predictions. 

For this reason, its consideration in the present research is justified by the necessity to 

predict the volatility of cryptocurrencies. Kaminska and Roberts-Sklar (2018) explained 

that the LRE model considers the regular array of short-term predictive aspects, including 

a variable representing volatility persistence. Also, Sensoy and Omole (2018) point out that 

volatility becomes persistent when lagged realized volatility is significant.  
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Moreover, the ability of LRE to explain high-frequency data has been confirmed in 

recent academic research. Huang, Tong, and Wang (2019) emphasized that the findings of 

their study supported the hypothesis that taking into account realized volatility contributes 

to the production of superior predictions. In particular, quarterly and yearly data on lagged 

realized volatility describe the long-term dynamics of volatility. Periods of high volatility 

are particularly well explained with the help of the LRE framework. Given that the model 

is gaining momentum among financial academics, its use for the analysis of cryptocurrency 

behaviour is likely to improve our understanding of innovative currencies. Because the 

cryptocurrency market experiences high levels of volatility, the capacity of LRE to analyze 

such data makes the model a relevant and justifiable approach to employ.  According to 

Kourtis, Markellos, and Symeonidis (2016),  the realized volatility is calculated as follows: 

 

RVt = !∑ 𝑟7
8-' )8

.          (7) 

 

Therefore, the lagged realized volatility can be calculated: 

 

LRE =  !∑ 𝑟7
8-' )6'

.         (8) 

 

As Kourtis, Markellos, and Symeonidis (2016) explained, these variables are crucial 

because they assume that volatility occurs within a Markov process, which signifies that 

its period is predictive of future data.  
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6. FORECASTING EVALUATION CRITERIA:  
 

The forecast evaluation is adapted from the Symitsi et al., (2018) study. The 

forecast evaluation ability is based on combining three criteria multivariate loss functions.  

The Euclidean distance (Le), Frobenius distance (Lf), and the multivariate quasi-likelihood 

loss function (Lq) are the three loss functions that will be applied to evaluate the forecasting 

ability of the four models used in this research.  Symitsi et al. (2018) and Laurent et al. 

(2012) used and applied the Euclidean distance (Le). Also,  Symitsi et al. (2018) and 

Bollerslev et al. (2016) used and applied the Frobenius distance (Lf) and the multivariate 

quasi-likelihood loss function (Lq).  

 

These loss functions can be expressed as follows (Symitsi et al. 2018): 

 

𝐿9 = 𝑣𝑒𝑐ℎ(∑ 𝑡 −	𝐻))′𝑣𝑒𝑐ℎ(∑ 𝑡 −	𝐻))     (9) 

 

𝐿: = 𝑇;[(∑ 𝑡 −	𝐻))<(∑ 𝑡 −	𝐻))]      (10) 

 

𝐿= = 𝑙𝑜𝑔|𝐻)| + 	𝑇;[𝐻;6'∑ 𝑡]      (11) 

The 𝑣𝑒𝑐ℎ is the operator that accumulates all lower fractions of the covariance 

matrices to a vector. Also, the 𝑇- denotes the trace of a square matrix, which is the sum of 

all diagonal elements.  
 

6.1.  Statistical Comparison of the Forecasts 
Based on the forecasting criteria chosen above, further evaluation will be carried 

out to evaluate the forecast and determine the best model that could provide accurate 

forecasting ability. The Mean Squared Error (MSE) and Mean Absolute Error (MAE) 

forecasting measures have been applied. The Mean Squared Error measures the mean of 

the differences between the actual values and the forecasted values (Arnerić et al., 2018).  

These estimators provide more evidence on the best model to predict the covariance 

matrix for the cryptocurrency returns in the study. Mensi et al. (2014) applied these 
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measures to evaluate the forecasting performance and compare the forecasts of several 

models.    

The Mean Squared Error measure can be expressed as follows (Mensi et al., 2014): 

 

MSE = &
(
∑ (𝐹# − 𝐴#))(
#%& ,     (12) 

 
The Mean Absolute Error measure can be expressed as follows (Mensi et al., 2014): 

 

MAE = &
(
∑ |𝐹# − 𝐴#|(
#%& ,     (13) 

 
 

6.2. Model Fit: 
The assessment started by evaluating the models’ forecasting ability by three 

multivariate loss functions, namely Euclidean Distance (LE), Frobenius Distance (LF), and 

the multivariate quasi-likelihood loss function (LQ). The Euclidean distance loss function 

results show that the Lagged Realized Volatility model is the best-fitted model among the 

five models to forecast the covariance matrix. This findings supports the findings of Huang 

et al. (2019) study. Also, it supports the fact that obtained from several empirical evidence 

that historical volatility estimators derived from daily data are inferior than their high 

frequency-based data (Andersen and Bollerslev, 1998; Andersen, Bollerslev, and Diebold, 

2007; Blair et al., 2001). The Diagonal BEKK and DCC models are the second best-fitted 

models for the daily returns, followed by the BEKK and Asymmetric DCC models, 

respectively. This results contradict the findings of Lai, (2021)’s study. Based on the model 

specification that he stated, the BEKK model outperformed the DCC model in forecasting 

accuracy. It also supports the findings of Balter et al. (2015)’s study regarding the Diagonal 

BEKK model. When using the multivariate Realized GARCH model to forecast the 

covariance of exchange rates, the multivariate Realized GARCH model outperformed the 

traditional CCC, cDCC and diagonal BEKK models for  10 periods-ahead. 
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Similarly, the weekly returns' Euclidean distance loss function results reveal that 

the Lagged Realized Volatility model is the best-fitted model among the five models. Also, 

this result is alignment with the results of Huang et al. (2019) study. However, the 

Asymmetric DCC model is the second best-fitted model that forecasts the covariance 

matrix of the weekly cryptocurrency returns, followed by the Diagonal BEKK, BEKK, and 

DCC models, respectively. This results disagree with the findings of Yu and Huang, 

(2022)’s study. They found that among their forecasting model, the BEKK model has the 

highest turnover with a weekly rebalancing frequency. Furthermore, throughout weekly 

and monthly investment intervals, the DCC model is one of the top models in terms of 

portfolio concentration and selling position. They have tested these model for covariance 

forecasting. However, regarding the Asymmetric DCC model, the results of Asai and 

McAleer, (2015)’s study are confirmed by the results of the forecasts of the covariance 

matrix of the weekly cryptocurrency returns. Their empirical evidence of 7 financial asset 

returns for the US stock returns shows that the new fMSV models are superior to the current 

dynamic conditional correlation models when forecasting future covariances. They applied 

the DCC and Asymmetric DCC models in their study. 

 Corresponding, the daily and weekly Euclidean Distance loss function results, the 

Frobenius Distance loss function results show that the Lagged Realized Volatility model 

is the best-fitted model among the five models to forecast the daily returns covariance 

matrix. This is align with the findings of  Huang et al. (2019) study as well. The Diagonal 

BEKK and DCC models are the second best-fitted models for daily returns. 

Similarly, the weekly returns' Frobenius Distance loss function results uncover that 

the Lagged Realized Volatility model is the best-fitted model among the five models. 

However, the Asymmetric DCC model is the second best-fitted model that forecasts the 

covariance matrix of the weekly cryptocurrency returns, followed by the Diagonal BEKK, 

BEKK, and DCC models, respectively. these results contradict the findings of Yu and 

Huang, (2022)’s study as mentioned above. It also support the findings of Han and Park, 

(2022)’s study. The BEKK and DCC models were outperformed by their developed model 

named Geometric Covariance Dynamics ( GCD ). Furthermore, it supports the result of the 

Callot et al. (2017)’s study. They concluded that given their weak forecasts, the DCC and 

EWMA models performed profoundly. 
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Likewise, the results of the multivariate quasi-likelihood loss function reveal a 

different pattern than the previous two loss functions. The best-fitted model to forecast the 

covariance matrix for the daily cryptocurrency returns is Lagged Realized Volatility model. 

The Asymmetric DCC is the second best-fitted model for daily returns, followed by the 

BEKK, Diagonal BEKK, and DCC models, respectively. Regarding the DCC model being 

the least favourite model to forecast the covariance matrix, this result supports the findings 

of the Fiszeder and Orzeszko, (2021)’s study. Their empirical evidence of their proposed 

procedure suggested that the forecast of the entire covariance matrix and each individual 

covariance are more accurate than those provided by the DCC model. Alike, the best-fitted 

model to forecast the covariance matrix for the weekly cryptocurrency returns is Lagged 

Realized Volatility model. The Asymmetric DCC is the second best-fitted model for daily 

returns, followed by the BEKK, Diagonal BEKK, and DCC models, respectively.  

Then, the Mean Squared Error and Mean Absolute Error measures were applied to 

evaluate the loss function outcomes and compare the five models based on the three loss 

function criteria. The Mean Squared Error measures of the Euclidean Distance loss 

function results of the daily cryptocurrency returns reveal that the Lagged Realized 

Volatility model is the best-fitted model to forecast the covariance matrix among the five 

models which confirms the results of the forecasting criteria and support the findings of 

Huang et al. (2019). The Asymmetric DCC is the second best-fitted model for daily returns. 

However, the Mean Absolute Error measures show that the Asymmetric DCC model is the 

best-fitted model for daily returns, and the BEKK model is the second best-fitted model. 

this contradict the results of Huang et al. (2019) for the Asymmetric DCC model and Lai, 

(2021)’s study for the BEKK model. 

 Correspondingly, the Mean Squared Error measures of the Euclidean Distance loss 

function results of the weekly cryptocurrency returns discover that the Lagged Realized 

Volatility model is the best-fitted model to forecast the covariance matrix among the five 

models. The Asymmetric DCC is the second best-fitted model for weekly returns. The 

Mean Absolute Error measures also show that the Asymmetric DCC model is the best-

fitted model for daily returns. Yet, the Lagged Realized Volatility model is the second best-

fitted model for weekly returns which supports the findings of Huang et al. (2019). 
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Furthermore, similar to the Euclidean Distance loss function daily and weekly 

results, the Mean Squared Error measures of the Frobenius Distance loss function results 

of the daily cryptocurrency returns indicate that the Lagged Realized Volatility model is 

the best-fitted model to forecast the covariance matrix among the five models. The 

Asymmetric DCC model is the second best-fitted model for daily returns. However, the 

Mean Absolute Error measures show that the Asymmetric DCC model is the best-fitted 

model for daily returns, and the BEKK model is the second best-fitted model. 

Correspondingly, the Mean Squared Error measures of the Frobenius Distance loss 

function results of the weekly cryptocurrency returns show that the Lagged Realized 

Volatility model is the best-fitted model to forecast the covariance matrix among the five 

models. The Asymmetric DCC is the second best-fitted model for weekly returns. The 

Mean Absolute Error measures also show that the Asymmetric DCC model is the best-

fitted model for weekly returns. Still, the Lagged Realized Volatility model is the second 

best-fitted model for weekly returns. 

Finally, the Mean Squared Error measures of the multivariate quasi-likelihood loss 

function results of the daily cryptocurrency returns show that the Lagged Realized 

Volatility model is the best-fitted model to forecast the covariance matrix among the five 

models. The Asymmetric DCC model is the second best-fitted model for daily returns. 

However, the Mean Absolute Error measures show that the Lagged Realized Volatility 

model is the best-fitted model for daily returns, and the Asymmetric DCC model is the 

second best-fitted model.  

Also, the Mean Squared Error measures of the multivariate quasi-likelihood loss 

function results of the weekly cryptocurrency returns exhibit that the Asymmetric DCC 

model is the best-fitted model to forecast the covariance matrix among the five models. 

The LRE is the second best-fitted model for weekly returns. Also, the Mean Absolute Error 

measures reveal that the Asymmetric DCC model is the best-fitted model for weekly 

returns due to permitting leverage effects on dynamic conditional correlations. 

Nevertheless, the Lagged Realized Volatility, BEKK, and DCC models are the second best-

fitted model for weekly returns. 

Based on these results, it can be concluded that the best-fitted model to forecast the 

daily covariance matrix is the Lagged Realized Volatility model when applying the Mean 
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Squared Error measures. This finding supports the forecast evaluation criteria results for 

the daily returns. It also supports the results of Huang et al. (2019)’s study along with the 

supporting the fact that obtained from several empirical evidence mentioned before 

(Andersen and Bollerslev, 1998; Andersen, Bollerslev, and Diebold, 2007; Blair et al., 

2001). However, when using the Mean Absolute Error measures, only the multivariate 

quasi-likelihood loss function endorses the finding of the forecast evaluation criteria results 

for the daily returns. The other two loss functions reveal different conclusions than the 

forecast evaluation criteria results for the daily returns.   

Also, based on the LE and LF loss functions, it can be determined that the best-

fitted model to forecast the weekly covariance matrix is the Lagged Realized Volatility 

model when applying the Mean Squared Error measures. This finding supports the forecast 

evaluation criteria results for the weekly returns. However, the LQ loss function reveals 

different results than the forecast evaluation criteria for weekly returns. It shows that the 

Asymmetric DCC model is the best-fitted model, and the Lagged Realized Volatility model 

is the second-fitted model for the daily returns. Nonetheless, when applying the Mean 

Absolute Error measures, the Asymmetric DCC model is the best-fitted model to forecast 

the covariance matrix for weekly returns. This finding does not support the weekly results 

of the forecast evaluation criteria.  
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7. Limitations  
Chapter Four research has certain limitations that should be considered. The empirical 

findings included five models only. Therefore, future researchers should broaden their scope 

beyond these models to explore more models and seek better accuracy in forecasting the 

covariance matrices for cryptocurrency returns. Furthermore, the research included only 

cryptocurrency returns. Therefore,  future researchers might widen their reach by including 

additional financial assets and examining their influence on forecasting cryptocurrency return 

covariance matrices. 

Furthermore, the empirical findings of this research did not include the COVID-19 

pandemic period. Therefore, examining the impact of the COVID-19 pandemic on 

cryptocurrency returns at various stages, including pre-COVID-19, during-COVID-19, and 

post-COVID-19, is an exciting field for research. Extending the dataset to include this more 

prolonged period can give valuable insights into the implications of the pandemic on 

cryptocurrency returns. Finally, as noted in Chapter Three restrictions, future academics could 

investigate integrating data from 2022 and 2023 to expand these findings and ensure a more 

thorough study. 

8. CONCLUSION  
This research evaluates the forecasting ability to forecast the covariance matrix of five 

models: BEKK, Diagonal BEKK, DCC, Asymmetric DCC, and Lagged Realized Volatility. 

The evaluation process was obtained in two phases. The first phase contains the evaluation of 

the forecasting ability based on three multivariate loss functions: Euclidean Distance (LE), 

Frobenius Distance (LF), and the multivariate quasi-likelihood loss function (LQ). The second 

phase includes using two measures to evaluate the five models based on the findings of the 

first phase. These two measures are the Mean Squared Error and Mean Absolute Error 

measures.  

The results of the first phase reveal that the Lagged Realized Volatility model is the 

best-fitted model across all three multivariate loss functions for the daily and weekly 

cryptocurrency returns. This result is supported by most of the second-phase findings. The 

second phase findings reveal that the best-fitted model to forecast the daily covariance matrix 

is the Lagged Realized Volatility model when applying the Mean Squared Error measures.  
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However, when using the Mean Absolute Error measures, only the multivariate quasi-

likelihood loss function endorses the finding of the forecast evaluation criteria results for the 

daily returns. The other two loss functions reveal that the Asymmetric DCC model is the best-

fitted model to forecast the daily covariance matrix. 

 Also, when applying the Mean Squared Error measures, the best-fitted model to 

forecast the weekly covariance matrix is the Lagged Realized Volatility model based on the 

LE and LF loss functions. This finding supports the forecast evaluation criteria results for the 

weekly returns. However, the LQ loss function reveals different results than the forecast 

evaluation criteria for weekly returns. It shows that the Asymmetric DCC model is the best-

fitted model. However, when applying the Mean Absolute Error measures, the Asymmetric 

DCC model is the best-fitted model to forecast the covariance matrix for weekly returns. This 

finding does not support the weekly results of the forecast evaluation criteria across all three 

multivariate loss functions. Instead, the Asymmetric DCC is the best-fitted model to forecast 

the covariance matrix for weekly cryptocurrency returns.  
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Chapter Four Research Tables 
Table A: Cryptocurrencies List: Start and End dates, Number of observations in 5-min, days, and Weeks 

Cryptocurrency Symbol Start Date End Date Number of observations in 
5-min 

Number of 
observations in days 

Number of 
observations in Weeks 

Bitcoin BTC 9/1/2018 12/31/2021 350,786 1218 174 

Ethereum ETH 9/1/2018 12/31/2021 350,786 1218 174 

Ripple XRP 9/1/2018 12/31/2021 350,786 1218 174 

Litecoin LTC 9/1/2018 12/31/2021 350,786 1218 174 

Bitcoin Cash BCH 9/1/2018 12/31/2021 350,786 1218 174 

EOS EOS 9/1/2018 12/31/2021 350,786 1218 174 

Monero XMR 9/1/2018 12/31/2021 350,786 1218 174 

Stellar XLM 9/1/2018 12/31/2021 350,786 1218 174 

Dash DASH 9/1/2018 12/31/2021 350,786 1218 174 
Ethereum 

Classic ETC 9/1/2018 12/31/2021 350,786 1218 174 
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Table B: Descriptive Analysis of the Daily Data and Index 

  Mean Median SD Kurtosis Skewness Range 

BTC 0.002 0.001 0.04 6.19 -0.52 0.49 

ETH 0.002 0.001 0.05 6.86 -0.72 0.65 

XRP 0.001 -0.001 0.06 11.73 -0.22 0.91 

LTC 0.001 -0.001 0.05 6.85 -0.63 0.68 

BCH 0.000 0.001 0.06 9.84 -0.04 0.89 

EOS -0.001 0.000 0.06 7.28 -0.49 0.77 

XMR 0.001 0.001 0.05 8.77 -1.00 0.64 

XLM 0.000 -0.001 0.06 11.38 0.88 0.84 

DASH 0.000 0.000 0.06 9.38 0.10 0.87 

ETC 0.001 0.000 0.06 9.41 0.46 0.82 
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Table C: Descriptive Analysis of the Weekly Data and Indices 

  Mean Median SD Kurtosis Skewness Range 

BTC 0.011 0.012 0.100 3.893 -0.828 0.789 

ETH 0.015 0.022 0.133 4.530 -0.953 1.055 

XRP 0.005 -0.009 0.152 4.277 0.666 1.186 

LTC 0.005 0.013 0.140 3.362 -0.672 1.026 

BCH -0.001 0.000 0.175 6.112 -0.205 1.536 

EOS -0.004 0.008 0.155 4.485 -0.978 1.184 

XMR 0.004 0.015 0.124 5.057 -1.230 0.935 

XLM 0.001 -0.005 0.151 7.444 1.249 1.268 

DASH -0.002 0.001 0.165 5.778 0.033 1.441 

ETC 0.006 0.003 0.174 13.797 1.999 1.699 
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Table 1: The correlations as pairwise correlations using daily and weekly returns. 
 

   Panel A: Daily Returns    
  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

BTC                     
ETH 0.820                   
XRP 0.596 0.655                 
LTC 0.806 0.832 0.660               
BCH 0.765 0.791 0.644 0.823             
EOS 0.729 0.782 0.694 0.806 0.808           
XMR 0.750 0.746 0.586 0.743 0.710 0.702         
XLM 0.637 0.704 0.732 0.693 0.674 0.725 0.623       
DASH 0.702 0.722 0.621 0.755 0.761 0.744 0.736 0.648     
ETC 0.637 0.700 0.580 0.721 0.753 0.753 0.637 0.634 0.722   

      Panel A: Weekly Returns       
  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

BTC                     
ETH 0.786                   
XRP 0.511 0.600                 
LTC 0.819 0.803 0.563               
BCH 0.769 0.777 0.598 0.840             
EOS 0.719 0.820 0.654 0.829 0.837           
XMR 0.767 0.731 0.592 0.770 0.825 0.762         
XLM 0.578 0.689 0.755 0.624 0.676 0.695 0.585       
DASH 0.720 0.707 0.606 0.796 0.845 0.806 0.832 0.654     
ETC 0.591 0.686 0.552 0.726 0.756 0.782 0.684 0.598 0.757   
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Table 2: The descriptive statistics of the daily (panel A)  and weekly (panel B) returns. 
 

 Panel A: Daily Returns 
 Mean Range Median Standard Deviation Kurtosis Skewness 

BTC 0.0016 0.4854 0.0013 0.0378 6.1944 -0.5205 
ETH 0.0021 0.6480 0.0015 0.0495 6.8644 -0.7185 
XRP 0.0007 0.9056 -0.0011 0.0584 11.7265 -0.2184 
LTC 0.0007 0.6787 -0.0008 0.0550 6.8506 -0.6300 
BCH -0.0002 0.8863 0.0007 0.0597 9.8360 -0.0367 
EOS -0.0006 0.7692 0.0004 0.0592 7.2789 -0.4853 
XMR 0.0006 0.6354 0.0014 0.0489 8.7702 -0.9976 
XLM 0.0001 0.8408 -0.0014 0.0573 11.3846 0.8779 
DASH -0.0003 0.8732 -0.0001 0.0583 9.3755 0.0988 
ETC 0.0008 0.8160 -0.0001 0.0609 9.4067 0.4602 

 Panel A: Weekly Returns 
 Mean Median Range Standard Deviation Kurtosis Skewness 

BTC 0.0109 0.0120 0.7888 0.1001 3.8926 -0.8281 
ETH 0.0148 0.0216 1.0547 0.1325 4.5297 -0.9528 
XRP 0.0052 -0.0090 1.1856 0.1522 4.2767 0.6657 
LTC 0.0050 0.0131 1.0261 0.1403 3.3617 -0.6722 
BCH -0.0014 -0.0001 1.5362 0.1753 6.1122 -0.2050 
EOS -0.0042 0.0075 1.1842 0.1552 4.4852 -0.9783 
XMR 0.0040 0.0153 0.9355 0.1236 5.0573 -1.2304 
XLM 0.0010 -0.0050 1.2681 0.1514 7.4445 1.2485 
DASH -0.0021 0.0005 1.4406 0.1654 5.7782 0.0330 
ETC 0.0057 0.0035 1.6991 0.1741 13.7970 1.9987 
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Table 3: Report of the forecasts of the loss functions for daily and weekly returns. LE is the Euclidean distance, LF is the Frobenius
 distance, and LQ is the multivariate quasi-likelihood loss function. The LE and LF values are multiplied by 1000 to simplify
 the readability. An asterisk (*) means that the model is the best fit for cryptocurrency returns. 
 

 Panel A: Daily Returns Panel A: Weekly Returns 

 LE LF LQ LE LF LQ 

BEKK 0.397 0.10057 -0.14090 0.0411 0.0138 -0.19901 

D-BEKK 0.390 0.09748 -0.14096 0.0401 0.0132 -0.19929 

DCC 0.390 0.09748 -0.14096 0.0411 0.0138 -0.19901 

ADCC 0.434 0.10178 -0.13989 0.0370 0.0126 -0.19610 

LRE 0.262* 0.02975* -0.11915* 0.0175* 0.0028* -0.13724* 
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Table 4: Report of  the MSE and MAE of the LE Loss function for the daily and weekly returns. An asterisk (**) means that model best 
fits cryptocurrency returns. An asterisk (*) means that the model is the second-best model that fits cryptocurrency returns. 
 

 Panel A: Daily Returns 
 Mean Squared Error Mean Absolute Error 

BEKK 0.046399 0.213684* 
DBEKK 0.046401 0.213691 

DCC 0.046401 0.213691 
ADCC 0.046383* 0.213648** 
LRE 0.045719** 0.213819 

  Panel A: Weekly Returns 
 Mean Squared Error Mean Absolute Error 

BEKK 0.024750 0.016693 
DBEKK 0.022772 0.015941 

DCC 0.024750 0.016693 
ADCC 0.019509* 0.015542** 
LRE 0.001232** 0.015672* 
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Table 5: Report of the MSE and MAE of the LF Loss function for the daily and weekly returns. An asterisk (**) means that model best 
fits cryptocurrency returns. An asterisk (*) means that the model is the second-best model that fits cryptocurrency returns. 
  

 Panel A: Daily Returns 
 Mean Squared Error Mean Absolute Error 

BEKK 0.046524 0.213981* 
DBEKK 0.046525 0.213984 

DCC 0.046525 0.213984 
ADCC 0.046523* 0.213979** 
LRE 0.045818** 0.214051 

 Panel A: Weekly Returns 
 Mean Squared Error Mean Absolute Error 

BEKK 0.004181 0.016693 
DBEKK 0.003879 0.015941 

DCC 0.004181 0.016693 
ADCC 0.003360* 0.015542** 
LRE 0.000060** 0.015672* 
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Table 6: Report of the MSE and MAE of the LQ loss function for the daily and weekly returns. An asterisk (**) means that model best 
fits cryptocurrency returns. An asterisk (*) means that the model is the second-best model that fits cryptocurrency returns. 
 

 Panel A: Daily Returns 
 Mean Squared Error Mean Absolute Error 

BEKK 0.126860 0.354982 
DBEKK 0.126901 0.355040 

DCC 0.126901 0.355040 
ADCC 0.126114* 0.353972* 
LRE 0.111042** 0.333230** 

 Panel A: Weekly Returns 
 Mean Squared Error Mean Absolute Error 

BEKK 0.0426041 0.2050540* 
DBEKK 0.0427302 0.2053296 

DCC 0.0426041 0.2050540* 
ADCC 0.0413876** 0.2021404** 
LRE 0.0420472* 0.2050540* 
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Chapter Five: Conclusion 
 This thesis comprises three chapters investigating the cryptocurrency market's risk and 

uncertainty. The first chapter compares six models' ability to predict the volatility of 

cryptocurrency returns. At the same time, the second chapter focuses on examining the 

relationships and effects of eight uncertainty indices on cryptocurrency market returns. Focusing 

on the risk and connectedness among cryptocurrency returns, the third chapter examined the ability 

to forecast the covariance matrices of five models. High-frequency data have been used when 

conducting those studies. The dataset span from 09/01/2018 to 30/09/2020 for chapter two and to 

12/31/2021 for chapters two and three. The data was obtained from 5-minute historical data and 

computed to daily, weekly, and monthly data.  

Chapter Two reveals the capability and features of different models to predict 

cryptocurrency volatility. The Mincer-Zarnowitz Regression with Newey-West Standard Errors 

has been applied in two phases: univariate and encompassing regressions. The empirical evidence 

shows different effects of univariate regression and compassing regressions. Also, the empirical 

evidence confirms the different data frequencies' additional findings. To illustrate, the findings of 

the univariate regressions for 1-day horizons reveal that the HAR model outperforms the other 

models. The univariate regressions for 7-day horizons, on the other hand, show that the EGARCH 

model had the most significant explanatory power of all the models tested. 

Furthermore, the EGARCH model had the greatest significant explanatory power of all the 

research models in univariate regressions for 30-day horizons. Furthermore, the study revealed the 

results of the encompassing regressions. The encompassing regressions allow for a direct 

comparison of two sets of predictions to assess if one's useful information outweighs the other, 

rendering it obsolete (Cook, 2014). According to the comprehensive regressions with Newey-West 

Standard Errors for a 1-day prediction horizon., the HAR + EGARCH models had the most 

significant explanatory power among the various model combinations. 

Similarly, the encompassing regressions with Newey-West Standard Errors reveal that the 

HAR + EGARCH duo has the highest explanatory power among the other model pairs over the 7-

day prediction horizon. Furthermore, for the 30-day prediction horizon, the encompassing 

regressions with Newey-West Standard Errors show that the HAR + EGARCH models have the 
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most significant explanatory power of the other model combinations. The out-of-sample analysis 

was carried out. 

Chapter Three provides empirical evidence for investigating the relationships and effects 

of eight different indices, namely the daily and weekly Twitter-based Economic Uncertainty 

(TEU) index, the UCRY Policy Index, the UCRY Price Index, the Central Bank Digital Currency 

Uncertainty Index (CBDCUI), the Central Bank Digital Currency Attention Index (CBDCAI), the 

Cryptocurrency Environmental Attention (ICEA) index, and the Economic Policy Uncertainty 

Index for Europe index on cryptocurrency returns. The quantile regressions, multivariate quantile 

regressions, and Granger causality tests were applied.  

The study looks at the link between numerous indices of economic uncertainty and 

cryptocurrency returns. The daily and weekly data from the Twitter-based Economic Uncertainty 

(TEU) index demonstrate minimal effects on the virtual currency returns across quantiles. Weekly 

data from the Cryptocurrency Policy Uncertainty index substantially impact bear periods for 

particular quantiles. The Cryptocurrency Price Uncertainty index has fewer implications for 

cryptocurrency returns. These findings are supported by during the crisis period evidence, 

particularly for the Cryptocurrency Policy Uncertainty index. 

The Multivariate Quantile Regression model demonstrates that the analyzed indices have little 

influence during bull markets, except the 95% quantile when the UCRY Price Index and the 

Cryptocurrency Environmental Attention (ICEA) index exhibit significance. Pairings effects 

analysis finds the most significant and least influential pairings throughout bear and bull market 

waves, with the UCRY Policy Index + Central Bank Digital Currency Attention Index being the 

most and least effective, respectively. 

The Granger Causality Test reveals different correlations between indices and 

cryptocurrency returns. The TEU index exhibits long-term impacts. The UCRY Policy Index and 

UCRY Price Index have the most significant impact on returns. However, several cryptocurrencies 

also impact these indices. At lagged order = 6, the Central Bank Digital Currency Uncertainty 

Index (CBDCUI) has considerable implications. The Central Bank Digital Currency Attention 

Index and the Cryptocurrency Environmental Attention (ICEA) index significantly influence 

returns. However, the CBDCUI and the Economic Policy Uncertainty Index for Europe have a 

lesser impact. Ultimately, the study investigates the effect of several economic uncertainty indices 

on digital currency returns. While some indices have a considerable impact, their impact varies 
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depending on quantile and market conditions, shedding insight into the complicated link between 

economic uncertainty and cryptocurrency performance. 

Chapter Four provides empirical evidence of different models' capability to forecast the 

covariance matrices of cryptocurrency returns. This study assesses the efficacy of five models for 

predicting the covariance matrix: BEKK, Diagonal BEKK, DCC, Asymmetric DCC, and Lagged 

Realized Volatility. The examination was completed in two stages. The forecasting ability is 

evaluated in the first phase using three multivariate loss functions: Euclidean Distance (LE), 

Frobenius Distance (LF), and the multivariate quasi-likelihood loss function (LQ). Based on the 

findings of the first phase, the second step comprises applying two measures to evaluate the five 

models. The Mean Squared Error and Mean Absolute Error are the two metrics. 

The first phase findings show that the Lagged Realized Volatility model fits the daily and weekly 

cryptocurrency returns the best across all three multivariate loss functions. The majority of the 

second-phase outcomes corroborate this conclusion. When the Mean Squared Error measurements 

are used, the Lagged Realized Volatility model is shown to be the best-fitted model for forecasting 

the daily covariance matrix for all three loss functions. However, only the multivariate quasi-

likelihood loss function supports discovering the forecast assessment criteria outcomes for the 

daily returns when the Mean Absolute Error measurements are used. The other two loss functions 

show that the Asymmetric DCC model is the best match for forecasting the daily covariance 

matrix. 

  Also, when applying the Mean Squared Error measures, the best-fitted model to forecast 

the weekly covariance matrix is the Lagged Realized Volatility model based on the LE and LF 

loss functions. This finding supports the forecast evaluation criteria results for the weekly returns. 

However, the LQ loss function reveals different results than the forecast evaluation criteria for 

weekly returns. It shows that the Asymmetric DCC model is the best-fitted model. However, when 

applying the Mean Absolute Error measures, the Asymmetric DCC model is the best-fitted model 

to forecast the covariance matrix for weekly returns for the three loss functions. This finding does 

not support the weekly results of the forecast evaluation criteria across all three multivariate loss 

functions. Instead, the Asymmetric DCC is the best-fitted model to forecast the covariance matrix 

for weekly cryptocurrency returns. 
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1. Limitations and Directions for Future Research: 
The limitations of each chapter were mentioned in each chapter, but it is worth mentioning 

and expanding for future researchers. When examining the breadth of chapter two research, it is 

critical to recognize some limitations. While the dataset is extensive, it does not include data from 

the during-COVID-19 and post-COVID-19 periods. A dataset containing the COVID-19 

pandemic would acquire a more thorough understanding of how the COVID-19 pandemic, as an 

external factor, affects the volatility of cryptocurrency returns. Therefore, future scholars should 

consider this limitation and expand the dataset to obtain better and accurate findings. These 

findings could draw better understanding for investors and portfolio managers when they make 

educated-decisions regarding their portfolio assets choices. Additionally, for analyzing realized 

volatility, the research focused on six models from the GARCH family, HAR model, and LRE 

model. Future studies might go beyond this selection, possibly revealing innovative methods for 

more accurate prediction of cryptocurrency return volatility. Likewise, future scholars should 

apply simpler models and test such as Random Walk model as well. It is also worth noting that the 

research looked particularly at 10 cryptocurrency results only. In fact, the large amount of the 

original data before the cleaning and screening process, which exceeded 100 million observations, 

created considerable time limitations. As a consequence, only 10 cryptocurrency returns were 

chosen for the research. Therefore, future scholars should expand the dataset to cover a larger 

spectrum of cryptocurrency returns. Adding more cryptocurrency returns to the dataset offers the 

potential to improve the precision of research findings.  

In Chapter Three, the research encounters specific limitations. the dataset lacks information 

for the years 2022 and 2023 due to data unavailability during the study's conclusion. Furthermore, 

due to time limits in this chapter, as well as the additional effort necessary for data cleaning and 

filtering, it was difficult to expand the dataset to include 2022. As a result, future researchers 

should investigate increasing the dataset in order to obtain more thorough results. They also, 

should include more than 10 cryptocurrency returns as in chapter three research. Including more 

cryptocurrency returns will lead to more accurate and comprehensive findings. Additionally, future 

examination should extend on this work by investigating the impact of the COVID-19 pandemic 

period on these indices and their impact on cryptocurrency returns. Furthermore, future scholars 

could investigate how these uncertainty indices impact cryptocurrency returns before, during, and 

after COVID-19 pandemic period. Moreover, the research did not include other economic 
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uncertainty indices, especially those used by important nations such as China. Therefore, 

investigating other economic uncertainty indices could provide useful information. Furthermore, 

the research only used three regressions approach. Therefore, future research should look at the 

link between uncertainty indices and cryptocurrency returns using a wide range of models that take 

into account a variety of elements and viewpoints. Exploring new uncertainty indices may also 

help us better understand bitcoin markets and the external forces that influence their performance. 

Chapter Four research has certain limitations that should be considered. The empirical 

findings included five models only. Therefore, future researchers should broaden their scope 

beyond these models to explore more models and seek better accuracy in forecasting the 

covariance matrices for cryptocurrency returns. Furthermore, the research included only 10 

cryptocurrency returns. Including more cryptocurrency returns will lead to more accurate and 

comprehensive findings. Therefore, future research should investigate increasing the dataset 

variables in order to obtain more thorough results. Also, the research included only cryptocurrency 

returns. Therefore,  future researchers might widen their reach by including additional financial 

assets and examining their influence on forecasting cryptocurrency return covariance matrices. 

Furthermore, the empirical findings of this research did not include the COVID-19 

pandemic period. Therefore, examining the impact of the COVID-19 pandemic on cryptocurrency 

returns at various stages, including pre-COVID-19, during-COVID-19, and post-COVID-19, is an 

exciting field for research. Extending the dataset to include this more prolonged period can give 

valuable insights into the implications of the pandemic on cryptocurrency returns. Finally, as noted 

in Chapter Three restrictions, future academics could investigate integrating data from 2022 and 

2023 to expand these findings and ensure a more thorough study. 

 

2. Practical Implications: 
 Investigating and examining the risk and uncertainty of the cryptocurrency market offers 

significant benefits to a wide range of stakeholders, such as investors, portfolio managers, 

policymakers, and the broader economy.  

           Making informed decisions requires investors to understand the risk and uncertainty of the 

cryptocurrency market. The HAR model could help the investors to predict the volatility of 

cryptocurrency returns for one day ahead while the EGARCH model could help them to predict 
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the volatility of cryptocurrency returns for seven and thirty days ahead. Also, the HAR + EGARCH 

models together could yield accurate results in predicting the volatility of cryptocurrency returns 

for one day, seven, and thirty days ahead. Also, the Lagged Realized Volatility model could help 

the investors to forecast the covariance matrix and risk spillover among cryptocurrency retunes. 

These models offer the opportunity for investors to evaluate risk-reward profiles, and they can 

adjust their portfolios accordingly and potentially avoid significant losses. Also, by understanding 

the risk and uncertainty of the cryptocurrency market, they can apply the risk assessments to 

diversify their portfolios efficiently, reducing overall portfolio risk. Besides, by understanding the 

risks and uncertainty of the cryptocurrency market, the investors will identify risks that are 

imposed by security vulnerabilities or regulatory changes. Therefore, investors will be able to 

implement risk mitigation strategies, such as hedging strategies.  

           Furthermore, by understanding the risk and uncertainty of the cryptocurrency market and 

using the HAR and EGARCH models in their risk analysis, portfolio managers can include 

cryptocurrency risk assessments into their inclusive risk management strategies to make sure that 

their portfolios are well-balanced and resilient to market fluctuations. Similarly, the Lagged 

Realized Volatility model could help the investors to forecast the covariance matrix and risk 

spillover among cryptocurrency retunes. Also, they should pay attention to the uncertainty such as 

the UCRY Policy Index + Central Bank Digital Currency Attention Index when the bull wave hit 

the cryptocurrency market. Also, the should consider the UCRY Policy Index + the 

Cryptocurrency Environmental Attention (ICEA) index when the bear wave hit the cryptocurrency 

market. Moreover, the portfolio managers can decide the appropriate allocation of cryptocurrency 

into a broader investment portfolio. Similarly, they can make timely adjustments to optimize 

portfolio performance and minimize potential losses by monitoring the risks and uncertainties of 

the cryptocurrency market.  

            Moreover, policymakers can develop and improve more effective regulatory frameworks 

to help reduce market manipulation, protect investors, and promote market integrity by considering 

the the UCRY Policy Index and the UCRY Price Index along with the other uncertainty indices. 

However, these two indices show stronger connectedness with cryptocurrency returns. Also, they 

can foster trust in the financial system by using insights into market risks to implement measures 

that prevent high-risk cryptocurrency schemes and protect consumers against fraudulent. 

Correspondingly, by assessing systemic risks associated with cryptocurrency markets, 
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policymakers can identify and address the potential threats to financial stability. Also, they can 

help preventing market crashes and protecting the broader economy through timely interventions. 

Finally, job creation, increased economic activity in the blockchain and crypto-related 

sectors, and economic growth require a well-regulated and understood cryptocurrency market that 

attracts and interests innovative businesses and investments. Additionally, by providing access to 

financial services for underserved populations, cryptocurrencies have the potential to increase 

financial inclusion, which will lead to economic development by increasing economic 

participation and expanding the consumer base. Also,  to help restrict fraudulent and illegal 

activities in the cryptocurrency sector, practical risk assessment and regulatory measures are 

required. These measures will protect the economy from reputational damage and financial crimes.  

In conclusion, investigating and examining the risk and uncertainty of the cryptocurrency 

market offers significant benefits and advantages to investors, portfolio managers, policymakers, 

and the broader economy. It promotes a more secure and stable financial ecosystem, encourages 

responsible innovation, and supports informed decision-making. By controlling and reducing the 

risks connected with cryptocurrencies, stakeholders may secure the potential advantages while 

avoiding adverse outcomes, eventually contributing to the economy's long-term viability and 

growth. 
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Appendices  
Chapter Tow Out-of-Sample Forecasting Performance: 

Table 7: Out-of-Sample Forecasting Performance: 1-Day Horizon 
 

 Panel A: RMSE  Panel B: QLIKE 
 GARCH IGARCH EGARCH GJR-GARCH LRE HAR  GARCH IGARCH EGARCH GJR-GARCH LRE HAR 
BTC 0.0178 0.4248*** 0.0172 0.0180 0.0212 0.0188  -2.526 -0.982*** -2.511 -2.510 -2.523 -2.543 
ETH 0.0207 0.2998*** 0.0195 0.0255 0.0229 0.0200  -2.253 -1.463*** -2.257 -2.224** -2.266 -2.282 
XRP 0.0229 0.3778*** 0.0230 0.0258 0.0274 0.0233  -2.326 -1.120*** -2.332 -2.203 -2.314** -2.339 
LTC 0.0242*** 0.2731*** 0.0224 0.0222 0.0246 0.0214  -2.182*** -1.388*** -2.187 -2.184 -2.197 -2.211 
BCH 0.0306** 0.3446*** 0.0304* 0.0318** 0.0332 0.0291  -2.142** -1.223*** -2.130* -2.050** -2.160 -2.189 
EOS 0.0315 0.2226*** 0.0304 0.0331 0.0338** 0.0290  -2.144 -1.510*** -2.149 -2.062 -2.167** -2.189 
XMR 0.0179** 0.3029*** 0.0166 0.0176 0.0201 0.0177  -2.252 -1.359*** -2.256 -2.247 -2.258 -2.269 
XLM 0.0246** 0.3031*** 0.0218 0.0258** 0.0248 0.0216  -2.140** -1.339*** -2.160 -2.127** -2.160 -2.171 

DASH 0.0221 0.3828*** 0.0231 0.0297*** 0.0241 0.0216  -2.190 -1.028*** -2.188 -2.163*** -2.194 -2.207 
ETC 0.0278*** 0.2971*** 0.0271*** 0.0297*** 0.0276 0.0244  -2.078*** -1.229*** -2.073*** -2.056*** -2.098 -2.116 

              
This table presents out-of-sample forecasting errors for the 10 cryptocurrencies using the root mean squared error (RMSE) and the quasi-likelihood 
(QLIKE) loss functions for 1-day forecast horizon. Each columns resemble the forecasting models. The model with the lowest forecast errors is 
highlighted in bold. Forecasting is based on GARCH(1,1) model, IGARCH model, the EGARCH model, the GJR-GARCH model, the lagged 
realized volatility (LRE), and the Heterogeneous Autoregressive (HAR) model. All forecasts are obtained from 5-minutes returns. Also, based on 
the DM test, the models that have higher forecast errors and are more statistically significant than the best models are signaled with one, two, and 
three asterisks at 10%, 5%, and 1% significant levels. 
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Table 8: Out-of-Sample Forecasting Performance: 7-Day Horizon 
 

 Panel A: RMSE  Panel B: QLIKE 
 GARCH IGARCH EGARCH GJR-GARCH LRE HAR  GARCH IGARCH EGARCH GJR-GARCH LRE HAR 
BTC 0.0476 1.1230*** 0.0508** 0.0508*** 0.0592*** 0.0492  -1.469 0.019*** -1.434** -1.445*** -1.425*** -1.464 
ETH 0.0554*** 0.7935*** 0.0558* 0.0601*** 0.0605*** 0.0509  -1.210*** -0.458*** -1.213* -1.196*** -1.200*** -1.223 
XRP 0.0521 0.9958*** 0.0539 0.0575** 0.0644*** 0.0519  -1.252 -0.115*** -1.248 -1.131** -1.217*** -1.257 
LTC 0.0561*** 0.7219*** 0.0525 0.0565** 0.0645*** 0.0541  -1.146*** -0.385*** -1.153 -1.148** -1.127*** -1.147 
BCH 0.0692*** 0.9077*** 0.0694** 0.0726*** 0.0731*** 0.0655  -1.112*** -0.227*** -1.099** -1.032*** -1.102*** -1.126 
EOS 0.0663** 0.5845*** 0.0637 0.0683* 0.0796*** 0.0659  -1.086 -0.491*** -1.091 -1.050 -1.066*** -1.097 
XMR 0.0470*** 0.8015*** 0.0441 0.0492** 0.0528*** 0.0444  -1.227** -0.362*** -1.232 -1.222*** -1.219*** -1.234 
XLM 0.0540** 0.7980*** 0.0540* 0.0561*** 0.0645*** 0.0513  -1.097** -0.340*** -1.097* -1.089*** -1.066*** -1.105 

DASH 0.0635** 1.0105*** 0.0611** 0.0757*** 0.0681*** 0.0569  -1.138** -0.035*** -1.143** -1.121*** -1.131*** -1.148 
ETC 0.0654*** 0.7804*** 0.0670*** 0.0647*** 0.0710*** 0.0580  -1.026*** -0.232*** -1.006*** -1.017*** -1.025*** -1.050 

              
This table presents out-of-sample forecasting errors for the 10 cryptocurrencies using the root mean squared error (RMSE) and the quasi-likelihood 
(QLIKE) loss functions for 7-days forecast horizon. Each columns resemble the forecasting models. The model with the lowest forecast errors is 
highlighted in bold. Forecasting is based on GARCH(1,1) model, IGARCH model, the EGARCH model, the GJR-GARCH model, the lagged 
realized volatility (LRE), and the Heterogeneous Autoregressive (HAR) model. All forecasts are obtained from 5-minutes returns. Also, based on 
the DM test, the models that have higher forecast errors and are more statistically significant than the best models are signaled with one, two, and 
three asterisks at 10%, 5%, and 1% significant levels. 
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Table 9: Out-of-Sample Forecasting Performance: 30-Day Horizon 
 

 Panel A: RMSE  Panel B: QLIKE 
 GARCH IGARCH EGARCH GJR-GARCH LRE HAR  GARCH IGARCH EGARCH GJR-GARCH LRE HAR 

BTC 0.1013** 2.3338*** 0.1103** 0.1137*** 0.1253*** 0.0942  -0.682 0.782*** -0.646 -0.652*** -0.636*** -0.679*** 
ETH 0.1178*** 1.6518*** 0.1156 0.1096*** 0.1164*** 0.0972  -0.433*** 0.298*** -0.441 -0.441*** -0.434*** -0.451 
XRP 0.0946*** 2.0638*** 0.0970*** 0.0952*** 0.1009*** 0.0847  -0.464*** 0.641*** -0.456*** -0.393*** -0.462*** -0.476 
LTC 0.1091*** 1.5041*** 0.0988 0.1124** 0.1161*** 0.1069**  -0.380 0.373*** -0.389** -0.390 -0.379 -0.379 
BCH 0.1259 1.8871*** 0.1251 0.1245 0.1289 0.1521***  -0.347 0.527*** -0.329 -0.307 -0.348 -0.314*** 

EOS 0.1091** 1.2146*** 0.1096** 0.1041 0.1266*** 0.1092**  -0.316 0.271*** -0.312 -0.309** -0.303*** -0.319 
XMR 0.1047*** 1.6699*** 0.0959** 0.1063** 0.1083*** 0.0826  -0.467*** 0.392*** -0.476** -0.473** -0.468*** -0.484 
XLM 0.0917** 1.6530*** 0.0993*** 0.0930** 0.1023*** 0.0852  -0.329** 0.412*** -0.326*** -0.328** -0.320*** -0.336 

DASH 0.1373** 2.0922*** 0.1262** 0.1471*** 0.1356*** 0.1133  -0.355** 0.713*** -0.359** -0.343*** -0.340*** -0.362 
ETC 0.1211*** 1.6137*** 0.1256*** 0.1057 0.1343*** 0.1027  -0.250*** 0.516*** -0.230*** -0.257 -0.235*** -0.269 

              
This table presents out-of-sample forecasting errors for the 10 cryptocurrencies using the root mean squared error (RMSE) and the quasi-likelihood 
(QLIKE) loss functions for 30-days forecast horizon. Each columns resemble the forecasting models. The model with the lowest forecast errors is 
highlighted in bold. Forecasting is based on GARCH(1,1) model, IGARCH model, the EGARCH model, the GJR-GARCH model, the lagged 
realized volatility (LRE), and the Heterogeneous Autoregressive (HAR) model. All forecasts are obtained from 5-minutes returns. Also, based on 
the DM test, the models that have higher forecast errors and are more statistically significant than the best models are signaled with one, two, and 
three asterisks at 10%, 5%, and 1% significant levels. 
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Chapter Three: Quantile Regression Results During Crisis Period 
Table 32: The effects of during crisis period daily data (Covid-19 period) of the Twitter-based Economic Uncertainty (TEU) index on 
Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.00002 -0.00002 0.00005 0.00001 0.00001 0.00004 -0.00001 0.00000 0.00002 0.00002 
P-value 0.614 0.506 0.345 0.850 0.858 0.276 0.798 0.993 0.577 0.540 

20 
Estimate 0.00001 0.00000 0.00004 0.00002 -0.00001 0.00003 0.00001 0.00002 0.00002 0.00003 
P-value 0.825 0.757 0.466 0.715 0.966 0.360 0.323 0.270 0.739 0.088* 

30 
Estimate 0.00000 0.00001 0.00002 0.00001 0.00001 0.00002 0.00001 0.00003 0.00001 0.00003 
P-value 0.997 0.665 0.353 0.534 0.587 0.261 0.671 0.088* 0.626 0.116 

40 
Estimate 0.00000 0.00000 0.00001 0.00000 0.00000 0.00001 0.00002 0.00002 0.00001 0.00000 
P-value 0.825 0.757 0.466 0.715 0.966 0.360 0.323 0.270 0.739 0.985 

50 
Estimate -0.00001 -0.00002 0.00000 -0.00001 0.00000 -0.00001 0.00001 0.00002 -0.00001 -0.00001 
P-value 0.435 0.263 0.812 0.187 0.997 0.413 0.548 0.349 0.773 0.574 

60 
Estimate -0.00001 -0.00002 -0.00001 -0.00002 -0.00002 -0.00004 0.00000 0.00001 -0.00002 -0.00002 
P-value 0.749 0.313 0.560 0.164 0.296 0.009*** 0.933 0.667 0.385 0.255 

70 
Estimate -0.00002 -0.00002 -0.00003 -0.00005 -0.00002 -0.00004 -0.00001 -0.00001 -0.00005 -0.00003 
P-value 0.281 0.390 0.273 0.007*** 0.379 0.010*** 0.591 0.682 0.000*** 0.036** 

80 
Estimate -0.00003 -0.00001 -0.00005 -0.00003 -0.00002 -0.00003 0.00001 -0.00001 -0.00005 -0.00002 
P-value 0.263 0.786 0.087* 0.181 0.437 0.243 0.688 0.618 0.061* 0.362 

90 
Estimate 0.00001 0.00001 -0.00007 -0.00001 0.00003 -0.00002 0.00002 0.00000 -0.00001 0.00000 
P-value 0.709 0.731 0.122 0.782 0.371 0.461 0.485 0.961 0.870 0.908 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 

Table 33: The effects of during crisis period weekly data (Covid-19 period) of the Cryptocurrency policy uncertainty index on 

Cryptocurrencies returns. 
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t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.02774 -0.03141 -0.03455 -0.03903 -0.03715 -0.04877 -0.04150 -0.03368 -0.04581 -0.03237 

P-value 0.001*** 0.010*** 0.002*** 0.020** 0.079* 0.013** 0.001*** 0.002*** 0.002*** 0.024** 

20 
Estimate -0.01944 -0.01401 -0.02225 -0.02696 -0.01748 -0.02806 -0.01429 -0.01313 -0.02338 -0.01967 

P-value 0.301 0.942 0.401 0.296 0.385 0.964 0.415 0.410 0.928 0.088* 

30 
Estimate -0.01084 -0.01013 -0.01188 -0.01895 -0.01108 -0.01504 -0.01112 -0.00753 -0.01756 -0.01498 

P-value 0.134 0.402 0.234 0.002*** 0.166 0.276 0.078* 0.402 0.142 0.343 

40 
Estimate -0.00645 -0.00085 -0.00833 -0.01020 -0.00799 0.00056 -0.00609 -0.00674 -0.00111 -0.00570 

P-value 0.301 0.942 0.401 0.296 0.385 0.964 0.415 0.410 0.928 0.672 

50 
Estimate -0.00082 0.00471 -0.00525 -0.00349 0.00232 0.00545 -0.00474 -0.00357 0.00529 0.00106 

P-value 0.911 0.592 0.614 0.717 0.837 0.592 0.500 0.594 0.503 0.908 

60 
Estimate 0.00373 0.00251 0.00324 0.00281 0.00200 0.00264 0.00034 0.00335 0.00396 0.00959 

P-value 0.661 0.677 0.743 0.690 0.832 0.786 0.965 0.466 0.460 0.284 

70 
Estimate 0.00349 0.00701 0.00993 0.01120 0.00465 0.01151 0.00693 0.00390 0.01171 0.01128 

P-value 0.766 0.141 0.361 0.282 0.535 0.120 0.334 0.531 0.245 0.301 

80 
Estimate 0.00879 0.01035 0.03645 0.03255 0.01560 0.01544 0.01517 0.00834 0.01927 0.00936 

P-value 0.559 0.179 0.011** 0.003*** 0.071* 0.008*** 0.097* 0.643 0.043** 0.413 

90 
Estimate 0.00645 0.00652 0.04893 0.03760 0.03211 0.02198 0.02055 0.01098 0.04461 0.02886 

P-value 0.556 0.577 0.002*** 0.023** 0.001*** 0.212 0.249 0.553 0.000*** 0.143 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 34: The effects of during crisis period weekly data (Covid-19 period) of the Cryptocurrency Price Uncertainty Index on 

Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.02990 -0.02292 -0.03207 -0.04637 -0.03887 -0.05129 -0.04431 -0.03461 -0.06088 -0.02815 

P-value 0.000*** 0.240 0.000*** 0.000*** 0.073* 0.006*** 0.022** 0.000*** 0.005*** 0.035** 

20 
Estimate -0.02158 -0.01307 -0.02242 -0.02317 -0.01706 -0.02658 -0.01360 -0.01001 -0.01962 -0.02158 

P-value 0.553 0.926 0.252 0.390 0.418 0.944 0.530 0.880 0.858 0.144 

30 
Estimate -0.01053 -0.00791 -0.01005 -0.01879 -0.01269 -0.01054 -0.01095 -0.00756 -0.01653 -0.01022 

P-value 0.299 0.469 0.230 0.127 0.089* 0.269 0.138 0.493 0.257 0.384 

40 
Estimate -0.00528 0.00082 -0.00882 -0.00884 -0.00641 0.00053 -0.00470 -0.00142 0.00236 -0.00509 

P-value 0.553 0.926 0.252 0.390 0.418 0.944 0.530 0.880 0.858 0.684 

50 
Estimate -0.00088 0.00463 -0.00490 -0.00414 0.00279 0.00656 -0.00597 -0.00319 0.00725 0.00094 

P-value 0.918 0.465 0.576 0.728 0.810 0.487 0.259 0.706 0.428 0.944 

60 
Estimate 0.00413 0.00203 0.00251 0.00210 0.00224 0.00503 -0.00182 0.00190 0.00524 0.00961 

P-value 0.478 0.744 0.797 0.764 0.812 0.431 0.722 0.825 0.186 0.506 

70 
Estimate 0.00380 0.00746 0.01121 0.01073 0.00651 0.01160 0.00409 0.00404 0.01137 0.01604 

P-value 0.597 0.130 0.350 0.344 0.543 0.006*** 0.449 0.769 0.136 0.310 

80 
Estimate 0.00869 0.00985 0.03873 0.02633 0.01559 0.01486 0.01224 0.00882 0.02047 0.01197 

P-value 0.434 0.244 0.010*** 0.000*** 0.155 0.003*** 0.186 0.596 0.113 0.491 

90 
Estimate 0.00708 0.00976 0.03630 0.04113 0.02872 0.02404 0.02083 0.01762 0.04147 0.02608 

P-value 0.534 0.643 0.099* 0.000*** 0.000*** 0.121 0.113 0.608 0.000*** 0.155 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 35: The effects of during crisis period weekly data (Covid-19 period) of the Twitter-based Economic Uncertainty (TEU) index 

on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate 0.00014 0.00017 0.00037 0.00028 0.00036 0.00046 0.00039 0.00028 0.00033 0.00030 

P-value 0.386 0.067* 0.223 0.188 0.094* 0.423 0.221 0.232 0.569 0.600 

20 
Estimate 0.00016 0.00011 0.00020 0.00020 0.00026 0.00032 0.00017 0.00015 0.00031 0.00016 

P-value 0.253 0.508 0.307 0.181 0.369 0.655 0.662 0.513 0.694 0.088* 

30 
Estimate 0.00009 0.00003 0.00013 0.00016 0.00017 0.00016 0.00011 0.00012 0.00020 0.00010 

P-value 0.307 0.787 0.255 0.008*** 0.012** 0.060* 0.268 0.162 0.097* 0.470 

40 
Estimate 0.00010 0.00007 0.00008 0.00009 0.00009 0.00004 0.00004 0.00005 0.00005 0.00002 

P-value 0.253 0.508 0.307 0.181 0.369 0.655 0.662 0.513 0.694 0.876 

50 
Estimate 0.00004 -0.00001 0.00004 0.00002 -0.00002 0.00006 0.00000 -0.00001 -0.00011 0.00001 

P-value 0.593 0.841 0.584 0.740 0.853 0.546 0.949 0.924 0.149 0.943 

60 
Estimate 0.00000 -0.00001 -0.00004 -0.00004 0.00004 0.00000 0.00005 -0.00002 -0.00007 -0.00006 

P-value 0.958 0.889 0.572 0.424 0.667 0.986 0.524 0.806 0.295 0.612 

70 
Estimate 0.00005 -0.00009 -0.00010 -0.00010 0.00000 -0.00010 -0.00002 -0.00008 -0.00012 -0.00014 

P-value 0.669 0.185 0.133 0.089* 0.957 0.216 0.707 0.438 0.137 0.112 

80 
Estimate 0.00004 -0.00014 -0.00019 -0.00024 -0.00003 -0.00010 -0.00003 0.00000 -0.00028 -0.00017 

P-value 0.711 0.077* 0.131 0.001*** 0.824 0.031** 0.469 0.997 0.013** 0.213 

90 
Estimate -0.00004 -0.00023 -0.00046 -0.00035 0.00005 -0.00015 -0.00008 -0.00012 -0.00028 -0.00038 

P-value 0.631 0.068* 0.022** 0.175 0.812 0.096* 0.609 0.576 0.381 0.038** 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 36: The effects of during crisis period weekly data (Covid-19 period) of the Central Bank Digital Currency Uncertainty Index 

on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.027 -0.023 -0.046 -0.034 -0.032 -0.059 -0.045 -0.042 -0.054 -0.037 

P-value 0.024** 0.469 0.002*** 0.200 0.320 0.042** 0.031** 0.048** 0.018** 0.126 

20 
Estimate -0.026 -0.015 -0.024 -0.038 -0.018 -0.049 -0.025 -0.032 -0.037 -0.024 

P-value 0.244 0.674 0.126 0.100 0.458 0.844 0.283 0.370 0.271 0.088* 

30 
Estimate -0.015 -0.009 -0.023 -0.017 -0.018 -0.018 -0.021 -0.015 -0.023 -0.023 

P-value 0.086* 0.465 0.065* 0.247 0.159 0.360 0.095* 0.313 0.057* 0.073* 

40 
Estimate -0.010 -0.005 -0.022 -0.016 -0.011 -0.003 -0.013 -0.012 -0.017 -0.020 

P-value 0.244 0.674 0.126 0.100 0.458 0.844 0.283 0.370 0.271 0.063* 

50 
Estimate -0.007 0.001 -0.014 -0.006 -0.015 -0.003 -0.007 -0.005 0.002 -0.008 

P-value 0.310 0.942 0.317 0.658 0.220 0.864 0.526 0.513 0.847 0.590 

60 
Estimate -0.0003 0.0028 0.0041 0.0001 0.0021 0.0055 -0.0025 0.0019 -0.0002 0.0127 

P-value 0.966 0.729 0.803 0.990 0.870 0.682 0.817 0.825 0.981 0.374 

70 
Estimate -0.004 0.012 0.019 0.013 0.002 0.012 0.011 0.003 0.007 0.015 

P-value 0.673 0.026** 0.136 0.089* 0.885 0.229 0.254 0.806 0.652 0.166 

80 
Estimate 0.007 0.016 0.041 0.020 0.020 0.017 0.017 -0.004 0.027 0.009 

P-value 0.576 0.018** 0.010*** 0.291 0.010*** 0.056* 0.137 0.806 0.077* 0.616 

90 
Estimate -0.005 0.004 0.040 0.029 0.032 0.027 0.023 0.006 0.037 0.071 

P-value 0.722 0.517 0.096* 0.200 0.251 0.215 0.043** 0.696 0.113 0.217 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 37: The effects of during crisis period weekly data (Covid-19 period) of the Central Bank Digital Currency Attention Index on 

Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.018 -0.018 -0.027 -0.021 -0.025 -0.035 -0.022 -0.022 -0.034 -0.023 

P-value 0.175 0.033** 0.112 0.361 0.266 0.018** 0.343 0.153 0.001*** 0.037** 

20 
Estimate -0.017 -0.010 -0.020 -0.022 -0.018 -0.032 -0.017 -0.005 -0.020 -0.019 

P-value 0.211 0.279 0.122 0.199 0.222 0.987 0.259 0.519 0.754 0.088* 

30 
Estimate -0.010 -0.008 -0.017 -0.013 -0.008 -0.013 -0.009 -0.006 -0.017 -0.013 

P-value 0.236 0.349 0.021** 0.183 0.384 0.318 0.092* 0.621 0.059* 0.237 

40 
Estimate -0.009 -0.009 -0.013 -0.012 -0.008 0.000 -0.007 -0.006 -0.004 -0.011 

P-value 0.211 0.279 0.122 0.199 0.222 0.987 0.259 0.519 0.754 0.247 

50 
Estimate -0.007 -0.003 -0.009 -0.007 -0.009 -0.004 -0.006 0.001 0.002 -0.005 

P-value 0.262 0.720 0.174 0.446 0.135 0.701 0.389 0.925 0.892 0.617 

60 
Estimate -0.0056 0.0017 0.0021 -0.0001 -0.0025 0.0043 -0.0017 -0.0023 -0.0002 0.0056 

P-value 0.441 0.855 0.750 0.991 0.730 0.677 0.806 0.769 0.978 0.667 

70 
Estimate -0.006 0.006 0.010 0.006 0.002 0.012 0.003 0.002 0.003 0.011 

P-value 0.454 0.394 0.470 0.576 0.763 0.147 0.603 0.814 0.798 0.287 

80 
Estimate -0.007 0.007 0.012 0.012 0.011 0.010 0.008 -0.010 0.016 0.009 

P-value 0.347 0.253 0.653 0.385 0.257 0.212 0.249 0.534 0.241 0.561 

90 
Estimate -0.007 0.005 0.041 0.019 0.025 0.026 0.017 0.006 0.019 0.029 

P-value 0.395 0.533 0.042** 0.282 0.288 0.281 0.194 0.719 0.166 0.442 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 38: The effects of during crisis period weekly data (Covid-19 period) of the Cryptocurrency Environmental Attention (ICEA) 

index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.008 -0.015 -0.023 -0.017 -0.017 -0.019 -0.025 -0.012 -0.027 -0.021 

P-value 0.258 0.262 0.128 0.291 0.307 0.210 0.034 0.385 0.143 0.078* 

20 
Estimate -0.011 -0.007 -0.011 -0.014 -0.012 -0.019 -0.011 -0.003 -0.015 -0.009 

P-value 0.114 0.937 0.135 0.227 0.435 0.964 0.220 0.575 0.922 0.088* 

30 
Estimate -0.008 -0.005 -0.009 -0.007 -0.006 -0.007 -0.009 -0.004 -0.009 -0.010 

P-value 0.041** 0.570 0.119 0.240 0.329 0.440 0.073* 0.469 0.221 0.107 

40 
Estimate -0.005 -0.001 -0.008 -0.006 -0.003 0.000 -0.006 -0.003 -0.001 -0.009 

P-value 0.114 0.937 0.135 0.227 0.435 0.964 0.220 0.575 0.922 0.144 

50 
Estimate -0.0037 0.0020 -0.0032 -0.0041 -0.0060 -0.0012 -0.0008 0.0004 0.0028 -0.0026 

P-value 0.121 0.719 0.587 0.416 0.204 0.847 0.870 0.941 0.564 0.699 

60 
Estimate -0.0029 0.0012 0.0011 -0.0001 -0.0017 0.0021 -0.0022 0.0001 -0.0001 0.0047 

P-value 0.532 0.758 0.869 0.984 0.715 0.676 0.566 0.988 0.976 0.487 

70 
Estimate -0.0043 0.0040 0.0056 0.0014 -0.0002 0.0067 0.0007 0.0015 0.0006 0.0061 

P-value 0.372 0.379 0.310 0.807 0.969 0.050** 0.874 0.765 0.913 0.212 

80 
Estimate -0.008 0.002 0.007 0.008 0.005 0.007 0.001 -0.006 0.010 0.004 

P-value 0.301 0.677 0.588 0.551 0.352 0.082* 0.887 0.404 0.219 0.349 

90 
Estimate -0.004 0.003 0.027 0.004 0.017 0.015 0.010 0.001 0.015 0.020 

P-value 0.652 0.576 0.057* 0.742 0.144 0.242 0.250 0.938 0.194 0.402 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 39: The effects of during crisis period monthly data (Covid-19 period) of the Economic Policy Uncertainty Index for Europe 

index on Cryptocurrencies returns. 
t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

10 
Estimate -0.002 -0.003 -0.003 -0.006 -0.004 -0.003 -0.006 -0.001 -0.007 -0.007 

P-value 0.467 0.384 0.464 0.200 0.268 0.409 0.159 0.681 0.112 0.144 

20 
Estimate -0.0007 -0.0003 0.0022 -0.0005 -0.0006 0.0001 -0.0023 0.0005 -0.0024 -0.0024 

P-value 0.647 0.525 0.928 0.202 0.256 0.562 0.837 0.763 0.053* 0.088* 

30 
Estimate -0.0006 -0.0002 0.0009 -0.0012 -0.0008 -0.0002 0.0000 -0.0006 -0.0021 -0.0021 

P-value 0.716 0.870 0.801 0.602 0.532 0.870 0.991 0.867 0.194 0.271 

40 
Estimate -0.0005 -0.0010 0.0004 -0.0010 -0.0016 -0.0010 -0.0003 -0.0009 -0.0022 -0.0022 

P-value 0.647 0.525 0.928 0.202 0.256 0.562 0.837 0.763 0.053* 0.165 

50 
Estimate -0.00049 -0.00035 -0.00096 0.00002 -0.00212 -0.00035 -0.00049 -0.00124 -0.00151 -0.00151 

P-value 0.593 0.830 0.799 0.982 0.201 0.854 0.702 0.615 0.213 0.179 

60 
Estimate -0.00009 0.00062 -0.00232 0.00011 0.00002 0.00108 -0.00054 -0.00017 -0.00169 -0.00169 

P-value 0.905 0.717 0.532 0.921 0.990 0.666 0.510 0.949 0.048** 0.084* 

70 
Estimate -0.00005 0.00140 -0.00207 0.00066 0.00074 0.00163 0.00036 0.00014 -0.00044 -0.00044 

P-value 0.944 0.420 0.498 0.565 0.652 0.550 0.661 0.951 0.632 0.646 

80 
Estimate -0.0004 0.0016 -0.0023 0.0003 0.0006 -0.0020 0.0005 -0.0006 -0.0006 -0.0006 

P-value 0.681 0.367 0.370 0.830 0.756 0.368 0.610 0.701 0.507 0.582 

90 
Estimate -0.0015 0.0002 -0.0020 -0.0006 -0.0010 -0.0007 0.0005 -0.0016 -0.0002 -0.0002 

P-value 0.271 0.924 0.295 0.521 0.680 0.654 0.738 0.224 0.828 0.822 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Chapter Three: Multivariate Quantile Regressions Results During Crisis Period. 
Table 40: The effects of during crisis period weekly data (Covid-19 period)  of the UCRY Policy Index, the UCRY Price Index, the 
Central Bank Digital Currency Uncertainty Index (CBDCUI), the Cryptocurrency Environmental Attention (ICEA) index, the 
Cryptocurrency Environmental Attention (ICEA) index, and the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies 
returns of the 5, 25, 50, 75, and 95 quantiles. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 

UCRY Policy Index -0.036 0.076 -0.338 -0.020 0.013 -0.049 -0.003 -0.086 -0.033 -0.036 
0.534 0.521 0.009*** 0.806 0.904 0.694 0.972 0.321 0.732 0.770 

UCRY Price Index 0.019 -0.101 0.205 -0.037 -0.032 0.033 -0.048 0.017 0.004 0.019 
0.740 0.331 0.018** 0.662 0.757 0.801 0.552 0.828 0.965 0.866 

CBDC Uncertainty Index -0.036 -0.008 0.035 -0.020 -0.066 -0.103 0.041 -0.004 -0.083 -0.031 
0.505 0.925 0.667 0.794 0.233 0.338 0.452 0.947 0.356 0.572 

CBDC Attention Index 0.033 0.077 0.060 0.054 0.089 0.093 0.063 0.011 0.085 0.051 
0.356 0.251 0.222 0.536 0.137 0.216 0.242 0.861 0.326 0.250 

Cryptocurrency Environmental 
Attention Index 

-0.014 -0.054 0.000 -0.025 -0.049 -0.038 -0.051 0.009 -0.033 -0.039 
0.474 0.236 0.991 0.523 0.165 0.400 0.153 0.795 0.439 0.087 

TEU Index -0.0005 -0.0002 -0.0001 -0.0006 -0.0007 -0.0004 -0.0004 -0.0008 -0.0002 -0.0005 
0.494 0.827 0.841 0.392 0.470 0.635 0.719 0.171 0.809 0.552 

25 

UCRY Policy Index 0.004 -0.078 -0.010 -0.063 -0.030 -0.107 -0.003 -0.037 -0.035 -0.057 
0.953 0.126 0.916 0.513 0.618 0.352 0.968 0.643 0.680 0.432 

UCRY Price Index -0.016 0.074 0.006 0.048 0.014 0.083 0.000 0.032 0.028 0.048 
0.804 0.116 0.952 0.581 0.834 0.465 0.995 0.666 0.724 0.510 

CBDC Uncertainty Index -0.045 -0.002 -0.018 -0.038 -0.041 -0.011 -0.031 -0.052 -0.082 -0.039 
0.276 0.954 0.767 0.371 0.352 0.886 0.411 0.372 0.164 0.249 

CBDC Attention Index 0.032 0.002 -0.003 -0.004 0.007 -0.028 0.024 0.024 0.025 0.030 
0.166 0.969 0.957 0.939 0.897 0.472 0.501 0.663 0.721 0.462 

Cryptocurrency Environmental 
Attention Index 

-0.004 -0.007 0.001 0.018 0.018 0.024 -0.010 0.006 0.017 -0.008 
0.801 0.804 0.952 0.356 0.546 0.159 0.560 0.787 0.585 0.763 

TEU Index 0.0000 0.0000 0.0000 0.0001 0.0002 0.0002 0.0000 0.0001 0.0002 0.0000 
0.880 0.937 0.827 0.495 0.583 0.550 0.982 0.752 0.219 0.976 
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t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

50 

UCRY Policy Index 
0.015 -0.014 0.035 -0.039 0.027 -0.019 0.004 -0.003 -0.020 -0.032 
0.719 0.688 0.608 0.578 0.701 0.759 0.911 0.958 0.672 0.554 

UCRY Price Index 
-0.003 0.024 -0.030 0.058 -0.008 0.037 -0.007 0.005 0.057 0.056 
0.957 0.482 0.665 0.443 0.920 0.593 0.885 0.931 0.239 0.367 

CBDC Uncertainty Index 
0.015 -0.024 -0.013 -0.018 -0.028 -0.005 -0.001 -0.032 -0.037 -0.033 
0.614 0.544 0.799 0.511 0.505 0.907 0.975 0.564 0.330 0.421 

CBDC Attention Index 
-0.024 -0.003 0.015 -0.004 0.003 -0.006 -0.007 -0.008 0.014 -0.018 
0.122 0.882 0.745 0.920 0.919 0.843 0.792 0.823 0.529 0.443 

Cryptocurrency Environmental 
Attention Index 

-0.006 0.010 -0.013 -0.008 -0.001 0.005 -0.001 0.016 -0.018 0.007 
0.692 0.643 0.512 0.781 0.930 0.803 0.964 0.406 0.340 0.668 

TEU Index 
-0.0001 0.0001 0.0000 0.0000 0.0000 0.0002 -0.0001 0.0000 0.0000 0.0001 

0.511 0.405 0.804 0.747 0.836 0.172 0.631 0.961 0.851 0.682 

75 

UCRY Policy Index 
-0.006 -0.005 0.085 -0.001 -0.026 -0.034 0.028 0.020 0.055 -0.049 
0.874 0.902 0.217 0.984 0.400 0.447 0.245 0.825 0.415 0.249 

UCRY Price Index 
0.040 0.004 -0.016 0.046 0.052 0.039 -0.012 0.028 -0.024 0.050 
0.383 0.940 0.793 0.403 0.073* 0.433 0.698 0.762 0.725 0.163 

CBDC Uncertainty Index 
0.013 0.023 -0.015 -0.009 -0.014 0.002 0.020 -0.028 0.007 0.013 
0.582 0.363 0.758 0.649 0.731 0.951 0.448 0.598 0.875 0.763 

CBDC Attention Index 
-0.015 0.004 0.036 0.031 0.037 0.024 0.018 0.009 0.024 0.016 
0.436 0.864 0.385 0.514 0.034** 0.443 0.317 0.772 0.603 0.717 

Cryptocurrency Environmental 
Attention Index 

-0.018 -0.008 -0.058 -0.041 -0.024 -0.010 -0.022 -0.015 -0.028 -0.020 
0.330 0.731 0.056 0.118 0.104 0.526 0.057* 0.592 0.216 0.477 

TEU Index 
0.0000 -0.0001 -0.0003 -0.0002 0.0001 0.0000 0.0000 0.0000 -0.0001 -0.0002 
0.943 0.692 0.211 0.060* 0.706 0.588 0.953 0.866 0.852 0.234 
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t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

95 

UCRY Policy Index 
0.033 -0.080 0.086 0.115 0.040 -0.034 0.014 -0.081 0.019 -0.106 

0.600 0.290 0.351 0.276 0.607 0.592 0.874 0.585 0.894 0.079* 

UCRY Price Index 
0.011 0.110 0.047 -0.053 0.007 0.084 0.037 0.180 0.104 0.087 

0.844 0.256 0.567 0.458 0.937 0.216 0.625 0.134 0.519 0.285 

CBDC Uncertainty 
Index 

0.038 0.003 -0.090 0.005 0.009 -0.023 -0.005 -0.033 -0.019 0.105 

0.334 0.935 0.280 0.918 0.911 0.820 0.914 0.553 0.757 0.610 

CBDC Attention Index 
-0.031 -0.003 0.154 0.064 0.096 0.101 0.029 0.035 0.018 0.084 

0.270 0.901 0.183 0.095* 0.139 0.098* 0.575 0.579 0.704 0.459 

Cryptocurrency 
Environmental Attention 
Index 

-0.024 -0.025 -0.123 -0.085 -0.056 -0.041 -0.030 -0.064 -0.031 -0.047 

0.374 0.296 0.022** 0.041** 0.023** 0.216 0.349 0.353 0.501 0.154 

TEU Index -0.0001 -0.0004 -0.0002 -0.0006 0.0002 0.0000 0.0004 0.0000 0.0004 -0.0003 

0.466 0.126 0.464 0.002*** 0.389 0.822 0.225 0.978 0.305 0.069* 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 41: The effects of during crisis period weekly data (Covid-19 period) of the UCRY Policy Index and CBDC Attention Index on 
Cryptocurrencies returns. 
 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 
UCRY Policy Index 

-0.042 -0.089 -0.134 -0.103 -0.117 -0.098 -0.083 -0.058 -0.101 -0.073 
0.007*** 0.025** 0.000*** 0.001*** 0.008*** 0.004*** 0.063* 0.000*** 0.010*** 0.024** 

CBDC Attention Index 
0.016 0.047 0.084 0.059 0.074 0.033 0.042 0.018 0.042 0.036 
0.303 0.131 0.055** 0.120 0.030** 0.363 0.489 0.358 0.194 0.159 

25 
UCRY Policy Index 

-0.012 -0.010 -0.004 -0.018 -0.024 -0.018 -0.009 -0.010 -0.013 -0.010 
0.505 0.598 0.835 0.453 0.449 0.476 0.686 0.576 0.616 0.693 

CBDC Attention Index 
-0.003 0.002 -0.012 -0.001 0.009 -0.006 -0.002 0.004 -0.007 -0.009 
0.854 0.909 0.526 0.959 0.738 0.770 0.918 0.724 0.737 0.676 

50 
UCRY Policy Index 

0.015 0.009 0.001 0.014 0.010 0.010 -0.005 -0.005 0.013 0.017 
0.264 0.410 0.953 0.580 0.589 0.549 0.694 0.786 0.256 0.192 

CBDC Attention Index 
-0.016 -0.013 -0.010 -0.017 -0.013 -0.008 -0.001 0.004 -0.009 -0.023 
0.169 0.462 0.528 0.429 0.410 0.542 0.954 0.786 0.554 0.049** 

75 
UCRY Policy Index 

0.032 -0.001 0.020 0.044 0.011 0.016 0.011 0.029 0.033 0.020 
0.021** 0.963 0.549 0.054* 0.651 0.308 0.467 0.170 0.071* 0.482 

CBDC Attention Index 
-0.030 0.009 0.001 -0.026 0.001 -0.005 -0.004 -0.024 -0.014 -0.004 

0.008*** 0.662 0.966 0.321 0.979 0.753 0.818 0.247 0.375 0.867 

95 
UCRY Policy Index 

0.056 0.027 0.103 0.012 0.032 0.014 0.032 0.052 0.060 0.013 
0.001*** 0.609 0.139 0.820 0.076* 0.613 0.271 0.405 0.376 0.707 

CBDC Attention Index 
-0.035 -0.006 -0.014 -0.006 0.028 0.071 -0.015 -0.044 -0.007 0.088 

0.002*** 0.866 0.815 0.886 0.389 0.100 0.485 0.323 0.895 0.407 
Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 42: The effects of during crisis period weekly data (Covid-19 period) of the UCRY Policy Index and the Cryptocurrency 
Environmental Attention (ICEA) index on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 
UCRY Policy Index 

-0.046 -0.037 -0.081 -0.057 -0.053 -0.079 -0.039 -0.072 -0.072 -0.032 
0.007*** 0.235 0.110 0.123 0.114 0.079* 0.064* 0.000*** 0.046** 0.205 

Cryptocurrency 
Environmental Index 

0.010 0.002 0.027 0.010 0.006 0.014 -0.014 0.021 0.013 -0.012 
0.168 0.901 0.323 0.618 0.708 0.698 0.308 0.043** 0.529 0.363 

25 
UCRY Policy Index 

-0.013 -0.010 -0.003 -0.031 -0.023 -0.018 -0.007 -0.011 -0.014 -0.011 
0.411 0.520 0.899 0.117 0.166 0.560 0.715 0.591 0.546 0.626 

Cryptocurrency 
Environmental Index 

-0.001 0.002 -0.009 0.008 0.004 -0.003 -0.005 0.005 -0.003 -0.005 
0.913 0.866 0.429 0.501 0.666 0.826 0.709 0.705 0.801 0.638 

50 
UCRY Policy Index 

0.022 0.008 0.009 0.020 0.010 0.011 -0.006 -0.005 0.013 0.013 
0.286 0.652 0.677 0.261 0.619 0.602 0.739 0.827 0.632 0.435 

Cryptocurrency 
Environmental Index 

-0.013 -0.003 -0.009 -0.014 -0.008 -0.005 0.000 0.003 -0.006 -0.010 
0.201 0.770 0.463 0.157 0.338 0.650 0.965 0.841 0.669 0.355 

75 
UCRY Policy Index 

0.039 0.017 0.062 0.049 0.021 0.018 0.015 0.025 0.037 0.022 
0.001*** 0.343 0.042** 0.002*** 0.147 0.345 0.142 0.467 0.175 0.408 

Cryptocurrency 
Environmental Index 

-0.025 -0.005 -0.024 -0.019 -0.010 -0.005 -0.007 -0.013 -0.013 -0.004 
0.002*** 0.603 0.132 0.018** 0.188 0.665 0.271 0.488 0.428 0.807 

95 
UCRY Policy Index 

0.059 0.034 0.124 0.013 0.048 0.061 0.043 0.145 0.137 0.016 
0.001*** 0.496 0.173 0.743 0.127 0.031** 0.080* 0.011** 0.041** 0.588 

Cryptocurrency 
Environmental Index 

-0.024 -0.015 -0.050 -0.006 -0.013 -0.004 -0.023 -0.068 -0.047 0.036 
0.026** 0.494 0.386 0.832 0.721 0.905 0.206 0.025** 0.110 0.550 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 43: The effects of during crisis period weekly data (Covid-19 period) of the UCRY Price Index and the CBDC Attention Index 
on Cryptocurrencies returns. 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 
UCRY Price Index 

-0.031 -0.068 -0.058 -0.078 -0.095 -0.079 -0.067 -0.049 -0.081 -0.038 
0.379 0.012** 0.328 0.001*** 0.041** 0.003*** 0.065* 0.085* 0.020** 0.130 

CBDC Attention Index 
0.004 0.025 0.002 0.033 0.050 0.013 0.032 0.012 0.019 -0.012 
0.926 0.199 0.976 0.084* 0.316 0.519 0.545 0.638 0.693 0.735 

25 
UCRY Price Index 

-0.019 0.001 -0.003 -0.018 -0.023 -0.015 -0.008 -0.009 -0.011 -0.009 
0.345 0.966 0.867 0.466 0.344 0.588 0.774 0.586 0.724 0.687 

CBDC Attention Index 
0.004 -0.009 -0.015 0.000 0.007 -0.006 -0.003 0.002 -0.010 -0.011 
0.836 0.697 0.364 0.997 0.720 0.822 0.908 0.869 0.692 0.538 

50 
UCRY Price Index 

0.010 0.008 0.000 0.018 0.011 0.010 -0.006 -0.004 0.010 0.017 
0.559 0.560 0.989 0.373 0.544 0.634 0.500 0.807 0.439 0.100 

CBDC Attention Index 
-0.016 -0.012 -0.009 -0.023 -0.013 -0.010 0.000 0.004 -0.007 -0.023 
0.214 0.438 0.555 0.201 0.320 0.615 0.997 0.833 0.546 0.025** 

75 
UCRY Price Index 

0.032 -0.001 0.016 0.036 0.018 0.016 0.008 0.029 0.019 0.019 
0.002*** 0.953 0.436 0.108 0.182 0.332 0.586 0.150 0.374 0.256 

CBDC Attention Index 
-0.034 0.009 0.002 -0.019 -0.011 -0.003 -0.002 -0.024 -0.011 -0.005 

0.001*** 0.625 0.892 0.461 0.461 0.812 0.896 0.261 0.608 0.798 

95 
UCRY Price Index 

0.036 0.067 0.005 0.007 0.026 0.034 0.031 0.117 0.061 0.011 
0.063* 0.102 0.944 0.826 0.126 0.267 0.323 0.017 0.310 0.761 

CBDC Attention Index 
-0.032 -0.040 0.034 -0.003 0.026 0.061 -0.007 -0.075 -0.011 0.089 
0.036** 0.152 0.538 0.923 0.452 0.153 0.744 0.094 0.809 0.439 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 44: The effects of during crisis period weekly data (Covid-19 period) of the UCRY Price Index and the Cryptocurrency 
Environmental Attention (ICEA) index on Cryptocurrencies returns. 
 

t = quantile  BTC ETH XRP LTC BCH EOS XMR XLM DASH ETC 

5 
UCRY Price Index 

-0.038 -0.064 -0.078 -0.073 -0.084 -0.079 -0.030 -0.052 -0.081 -0.033 
0.016** 0.013** 0.002*** 0.002*** 0.016** 0.032** 0.358 0.001*** 0.008*** 0.109 

Cryptocurrency 
Environmental Index 

0.007 0.007 0.039 0.008 0.014 0.007 -0.012 0.009 0.009 -0.012 
0.496 0.522 0.036** 0.621 0.619 0.808 0.659 0.504 0.537 0.386 

25 
UCRY Price Index 

-0.019 -0.001 -0.003 -0.019 -0.024 -0.015 -0.006 -0.009 -0.014 -0.010 
0.305 0.969 0.865 0.302 0.170 0.523 0.771 0.686 0.363 0.627 

Cryptocurrency 
Environmental Index 

0.004 -0.007 -0.009 0.003 0.007 -0.004 -0.005 0.002 -0.002 -0.005 
0.762 0.601 0.458 0.737 0.573 0.760 0.705 0.908 0.799 0.659 

50 
UCRY Price Index 

0.022 0.006 0.010 0.023 0.013 0.014 -0.006 -0.005 0.010 0.018 
0.324 0.637 0.626 0.336 0.518 0.518 0.731 0.836 0.521 0.383 

Cryptocurrency 
Environmental Index 

-0.014 -0.003 -0.008 -0.016 -0.009 -0.005 0.001 0.003 -0.003 -0.014 
0.231 0.794 0.497 0.260 0.296 0.574 0.956 0.836 0.798 0.308 

75 
UCRY Price Index 

0.036 0.009 0.046 0.042 0.029 0.016 0.016 0.035 0.040 0.030 
0.010*** 0.639 0.035** 0.002*** 0.029** 0.481 0.239 0.373 0.044** 0.301 

Cryptocurrency 
Environmental Index 

-0.022 -0.002 -0.015 -0.017 -0.012 -0.002 -0.006 -0.019 -0.017 -0.009 
0.016** 0.866 0.241 0.073* 0.021** 0.828 0.410 0.371 0.216 0.579 

95 
UCRY Price Index 

0.034 0.068 0.168 0.008 0.046 0.051 0.058 0.126 0.128 0.025 
0.006*** 0.127 0.053* 0.894 0.052* 0.186 0.041** 0.027** 0.048** 0.559 

Cryptocurrency 
Environmental Index 

-0.013 -0.028 -0.074 -0.003 -0.010 0.002 -0.028 -0.067 -0.044 0.018 
0.216 0.198 0.220 0.931 0.721 0.956 0.108 0.018 0.169 0.818 

Note: the table contains the coefficient and p-value for each quantile. Also, the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Chapter Three: Results of the Granger Causality Test During Crisis Period. 
Table 45: The effects of during crisis period daily data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies 
returns with lag = 1, and the effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) 
index with lag = 1. 
 
Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.753 

BTC TEPU 
P-value 0.394 

lag 1 lag 1 

TEPU ETH 
P-value 0.756 

ETH TEPU 
P-value 0.854 

lag 1 lag 1 

TEPU XRP 
P-value 0.374 

XRP TEPU 
P-value 0.918 

lag 1 lag 1 

TEPU LTC 
P-value 0.492 

LTC TEPU 
P-value 0.930 

lag 1 lag 1 

TEPU BCH 
P-value 0.978 

BCH TEPU 
P-value 0.849 

lag 1 lag 1 

TEPU EOS 
P-value 0.833 

EOS TEPU 
P-value 0.876 

lag 1 lag 1 

TEPU XMR 
P-value 0.622 

XMR TEPU 
P-value 0.360 

lag 1 lag 1 

TEPU XLM 
P-value 0.686 

XLM TEPU 
P-value 0.550 

lag 1 lag 1 

TEPU DASH 
P-value 0.372 

DASH TEPU 
P-value 0.791 

lag 1 lag 1 

TEPU ETC 
P-value 0.499 

ETC TEPU 
P-value 0.456 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 46: The effects of during crisis period daily data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies 
returns with lag = 6, and the Effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) 
index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.030** 

BTC TEPU 
P-value 0.481 

lag 6 lag 6 

TEPU ETH 
P-value 0.056* 

ETH TEPU 
P-value 0.358 

lag 6 lag 6 

TEPU XRP 
P-value 0.239 

XRP TEPU 
P-value 0.077 

lag 6 lag 6 

TEPU LTC 
P-value 0.123 

LTC TEPU 
P-value 0.327 

lag 6 lag 6 

TEPU BCH 
P-value 0.078* 

BCH TEPU 
P-value 0.534 

lag 6 lag 6 

TEPU EOS 
P-value 0.386 

EOS TEPU 
P-value 0.785 

lag 6 lag 6 

TEPU XMR 
P-value 0.017** 

XMR TEPU 
P-value 0.769 

lag 6 lag 6 

TEPU XLM 
P-value 0.802 

XLM TEPU 
P-value 0.376 

lag 6 lag 6 

TEPU DASH 
P-value 0.158 

DASH TEPU 
P-value 0.483 

lag 6 lag 6 

TEPU ETC 
P-value 0.505 

ETC TEPU 
P-value 0.831 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 47: The effects of during crisis period weekly data of the UCRY Policy Index on Cryptocurrencies returns with lag = 1, and the 
effects of Cryptocurrencies returns on the Weekly data of the UCRY Policy Index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Policy Index BTC 
P-value 0.211 

BTC UCRY Policy Index 
P-value 0.880 

lag 1 lag 1 

UCRY Policy Index ETH 
P-value 0.001*** 

ETH UCRY Policy Index 
P-value 0.587 

lag 1 lag 1 

UCRY Policy Index XRP 
P-value 0.060** 

XRP UCRY Policy Index 
P-value 0.939 

lag 1 lag 1 

UCRY Policy Index LTC 
P-value 0.004*** 

LTC UCRY Policy Index 
P-value 0.931 

lag 1 lag 1 

UCRY Policy Index BCH 
P-value 0.002*** 

BCH UCRY Policy Index 
P-value 0.792 

lag 1 lag 1 

UCRY Policy Index EOS 
P-value 0.000*** 

EOS UCRY Policy Index 
P-value 0.583 

lag 1 lag 1 

UCRY Policy Index XMR 
P-value 0.078* 

XMR UCRY Policy Index 
P-value 0.566 

lag 1 lag 1 

UCRY Policy Index XLM 
P-value 0.072* 

XLM UCRY Policy Index 
P-value 0.412 

lag 1 lag 1 

UCRY Policy Index DASH 
P-value 0.002*** 

DASH UCRY Policy Index 
P-value 0.640 

lag 1 lag 1 

UCRY Policy Index ETC 
P-value 0.002*** 

ETC UCRY Policy Index 
P-value 0.206 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 48: The effects of during crisis period weekly data of the UCRY Policy Index on Cryptocurrencies returns with lag = 6, and the 
effects of Cryptocurrencies returns on the Weekly data of the UCRY Policy Index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Policy Index BTC 
P-value 0.133 

BTC UCRY Policy Index 
P-value 0.099* 

lag 6 lag 6 

UCRY Policy Index ETH 
P-value 0.000*** 

ETH UCRY Policy Index 
P-value 0.168 

lag 6 lag 6 

UCRY Policy Index XRP 
P-value 0.000*** 

XRP UCRY Policy Index 
P-value 0.052* 

lag 6 lag 6 

UCRY Policy Index LTC 
P-value 0.001*** 

LTC UCRY Policy Index 
P-value 0.083* 

lag 6 lag 6 

UCRY Policy Index BCH 
P-value 0.000*** 

BCH UCRY Policy Index 
P-value 0.188 

lag 6 lag 6 

UCRY Policy Index EOS 
P-value 0.000*** 

EOS UCRY Policy Index 
P-value 0.280 

lag 6 lag 6 

UCRY Policy Index XMR 
P-value 0.316 

XMR UCRY Policy Index 
P-value 0.012** 

lag 6 lag 6 

UCRY Policy Index XLM 
P-value 0.013** 

XLM UCRY Policy Index 
P-value 0.230 

lag 6 lag 6 

UCRY Policy Index DASH 
P-value 0.004*** 

DASH UCRY Policy Index 
P-value 0.033** 

lag 6 lag 6 

UCRY Policy Index ETC 
P-value 0.001*** 

ETC UCRY Policy Index 
P-value 0.037** 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 49: The effects of during crisis period weekly data of the UCRY Price Index on Cryptocurrencies returns with lag = 1, and the 
effects of Cryptocurrencies returns on the Weekly data of the UCRY Price Index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Price Index BTC 
P-value 0.209 

BTC UCRY Price Index 
P-value 0.800 

lag 1 lag 1 

UCRY Price Index ETH 
P-value 0.002*** 

ETH UCRY Price Index 
P-value 0.843 

lag 1 lag 1 

UCRY Price Index XRP 
P-value 0.121 

XRP UCRY Price Index 
P-value 0.897 

lag 1 lag 1 

UCRY Price Index LTC 
P-value 0.008*** 

LTC UCRY Price Index 
P-value 0.602 

lag 1 lag 1 

UCRY Price Index BCH 
P-value 0.004*** 

BCH UCRY Price Index 
P-value 0.961 

lag 1 lag 1 

UCRY Price Index EOS 
P-value 0.001*** 

EOS UCRY Price Index 
P-value 0.940 

lag 1 lag 1 

UCRY Price Index XMR 
P-value 0.265 

XMR UCRY Price Index 
P-value 0.809 

lag 1 lag 1 

UCRY Price Index XLM 
P-value 0.229 

XLM UCRY Price Index 
P-value 0.244 

lag 1 lag 1 

UCRY Price Index DASH 
P-value 0.009*** 

DASH UCRY Price Index 
P-value 0.712 

lag 1 lag 1 

UCRY Price Index ETC 
P-value 0.007*** 

ETC UCRY Price Index 
P-value 0.425 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 50: The effects of during crisis period weekly data of the UCRY Price Index on Cryptocurrencies returns with lag = 6, and the 
effects of Cryptocurrencies returns on the Weekly data of the UCRY Price Index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

UCRY Price Index BTC 
P-value 0.040** 

BTC UCRY Price Index 
P-value 0.099* 

lag 6 lag 6 

UCRY Price Index ETH 
P-value 0.000*** 

ETH UCRY Price Index 
P-value 0.263 

lag 6 lag 6 

UCRY Price Index XRP 
P-value 0.001*** 

XRP UCRY Price Index 
P-value 0.176 

lag 6 lag 6 

UCRY Price Index LTC 
P-value 0.000*** 

LTC UCRY Price Index 
P-value 0.149 

lag 6 lag 6 

UCRY Price Index BCH 
P-value 0.000*** 

BCH UCRY Price Index 
P-value 0.258 

lag 6 lag 6 

UCRY Price Index EOS 
P-value 0.000*** 

EOS UCRY Price Index 
P-value 0.369 

lag 6 lag 6 

UCRY Price Index XMR 
P-value 0.130 

XMR UCRY Price Index 
P-value 0.055* 

lag 6 lag 6 

UCRY Price Index XLM 
P-value 0.006*** 

XLM UCRY Price Index 
P-value 0.207 

lag 6 lag 6 

UCRY Price Index DASH 
P-value 0.006*** 

DASH UCRY Price Index 
P-value 0.024** 

lag 6 lag 6 

UCRY Price Index ETC 
P-value 0.000*** 

ETC UCRY Price Index 
P-value 0.096* 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 51: The effects of during crisis period weekly data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies 
returns with lag = 1, and the effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) 
index with lag = 1. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.022** 

BTC TEPU 
P-value 0.610 

lag 1 lag 1 

TEPU ETH 
P-value 0.009*** 

ETH TEPU 
P-value 0.896 

lag 1 lag 1 

TEPU XRP 
P-value 0.116 

XRP TEPU 
P-value 0.903 

lag 1 lag 1 

TEPU LTC 
P-value 0.045** 

LTC TEPU 
P-value 0.924 

lag 1 lag 1 

TEPU BCH 
P-value 0.018** 

BCH TEPU 
P-value 0.953 

lag 1 lag 1 

TEPU EOS re 
P-value 0.039** 

EOS TEPU 
P-value 0.900 

lag 1 lag 1 

TEPU XMR 
P-value 0.047** 

XMR TEPU 
P-value 0.380 

lag 1 lag 1 

TEPU XLM 
P-value 0.223 

XLM TEPU 
P-value 0.521 

lag 1 lag 1 

TEPU DASH 
P-value 0.062* 

DASH TEPU 
P-value 0.927 

lag 1 lag 1 

TEPU ETC 
P-value 0.242 

ETC TEPU 
P-value 0.523 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 52: The effects of during crisis period weekly data of the Twitter-based Economic Uncertainty (TEU) index on Cryptocurrencies 
returns with lag = 6, and the Effects of Cryptocurrencies returns on the Daily data of the Twitter-based Economic Uncertainty (TEU) 
index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

TEPU BTC 
P-value 0.736 

BTC TEPU 
P-value 0.965 

lag 6 lag 6 

TEPU ETH 
P-value 0.959 

ETH TEPU 
P-value 0.911 

lag 6 lag 6 

TEPU XRP 
P-value 0.683 

XRP TEPU 
P-value 0.856 

lag 6 lag 6 

TEPU LTC 
P-value 0.491 

LTC TEPU 
P-value 0.975 

lag 6 lag 6 

TEPU BCH 
P-value 0.667 

BCH TEPU 
P-value 0.917 

lag 6 lag 6 

TEPU EOS 
P-value 0.968 

EOS TEPU 
P-value 0.940 

lag 6 lag 6 

TEPU XMR 
P-value 0.907 

XMR TEPU 
P-value 0.978 

lag 6 lag 6 

TEPU XLM 
P-value 0.588 

XLM TEPU 
P-value 0.707 

lag 6 lag 6 

TEPU DASH 
P-value 0.909 

DASH TEPU 
P-value 0.900 

lag 6 lag 6 

TEPU ETC 
P-value 0.950 

ETC TEPU 
P-value 0.812 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 53: The effects of during crisis period weekly data of the Central Bank Digital Currency Uncertainty Index (CBDCUI) on 
Cryptocurrencies returns with lag = 1, and the effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital 
Currency Uncertainty Index (CBDCUI) with lag = 1. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC Uncertainty 
Index BTC 

P-value 0.739 
BTC CBDC Uncertainty 

Index 
P-value 0.159 

lag 1 lag 1 

CBDC Uncertainty 
Index ETH 

P-value 0.065* 
ETH CBDC Uncertainty 

Index 
P-value 0.717 

lag 1 lag 1 
CBDC Uncertainty 

Index XRP 
P-value 0.016** 

XRP CBDC Uncertainty 
Index 

P-value 0.460 
lag 1 lag 1 

CBDC Uncertainty 
Index LTC 

P-value 0.046** 
LTC CBDC Uncertainty 

Index 
P-value 0.243 

lag 1 lag 1 

CBDC Uncertainty 
Index BCH 

P-value 0.015** 
BCH CBDC Uncertainty 

Index 
P-value 0.394 

lag 1 lag 1 

CBDC Uncertainty 
Index EOS 

P-value 0.035** 
EOS CBDC Uncertainty 

Index 
P-value 0.652 

lag 1 lag 1 
CBDC Uncertainty 

Index XMR 
P-value 0.128 

XMR CBDC Uncertainty 
Index 

P-value 0.513 
lag 1 lag 1 

CBDC Uncertainty 
Index XLM 

P-value 0.078* 
XLM CBDC Uncertainty 

Index 
P-value 0.107 

lag 1 lag 1 

CBDC Uncertainty 
Index DASH 

P-value 0.006*** 
DASH CBDC Uncertainty 

Index 
P-value 0.324 

lag 1 lag 1 

CBDC Uncertainty 
Index ETC 

P-value 0.001*** 
ETC CBDC Uncertainty 

Index 
P-value 0.522 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 54: The effects of during crisis period weekly data of the Central Bank Digital Currency Uncertainty Index (CBDCUI) on 
Cryptocurrencies returns with lag = 6, and the effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital 
Currency Uncertainty Index (CBDCUI) with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC Uncertainty 
Index BTC 

P-value 0.058* 
BTC CBDC Uncertainty 

Index 
P-value 0.066* 

lag 6 lag 6 

CBDC Uncertainty 
Index ETH 

P-value 0.131 
ETH CBDC Uncertainty 

Index 
P-value 0.023** 

lag 6 lag 6 

CBDC Uncertainty 
Index XRP 

P-value 0.002*** 
XRP CBDC Uncertainty 

Index 
P-value 0.202 

lag 6 lag 6 

CBDC Uncertainty 
Index LTC 

P-value 0.003*** 
LTC CBDC Uncertainty 

Index 
P-value 0.008*** 

lag 6 lag 6 

CBDC Uncertainty 
Index BCH 

P-value 0.000*** 
BCH CBDC Uncertainty 

Index 
P-value 0.011** 

lag 6 lag 6 

CBDC Uncertainty 
Index EOS 

P-value 0.000*** 
EOS CBDC Uncertainty 

Index 
P-value 0.025** 

lag 6 lag 6 

CBDC Uncertainty 
Index XMR 

P-value 0.000*** 
XMR CBDC Uncertainty 

Index 
P-value 0.000*** 

lag 6 lag 6 

CBDC Uncertainty 
Index XLM 

P-value 0.191 
XLM CBDC Uncertainty 

Index 
P-value 0.026** 

lag 6 lag 6 

CBDC Uncertainty 
Index DASH 

P-value 0.000*** 
DASH CBDC Uncertainty 

Index 
P-value 0.013** 

lag 6 lag 6 

CBDC Uncertainty 
Index ETC 

P-value 0.000*** 
ETC CBDC Uncertainty 

Index 
P-value 0.017** 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 55: The effects of during crisis period weekly data of the Central Bank Digital Currency Attention Index on Cryptocurrencies 
returns with lag = 1, and the effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital Currency Attention 
Index with lag = 1. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC Attention 
Index BTC 

P-value 0.335 
BTC CBDC Attention 

Index 
P-value 0.041** 

lag 1 lag 1 

CBDC Attention 
Index ETH 

P-value 0.131 
ETH CBDC Attention 

Index 
P-value 0.316 

lag 1 lag 1 

CBDC Attention 
Index XRP 

P-value 0.001*** 
XRP CBDC Attention 

Index 
P-value 0.597 

lag 1 lag 1 

CBDC Attention 
Index LTC 

P-value 0.092* 
LTC CBDC Attention 

Index 
P-value 0.137 

lag 1 lag 1 

CBDC Attention 
Index BCH 

P-value 0.033** 
BCH CBDC Attention 

Index 
P-value 0.315 

lag 1 lag 1 

CBDC Attention 
Index EOS 

P-value 0.015** 
EOS CBDC Attention 

Index 
P-value 0.357 

lag 1 lag 1 

CBDC Attention 
Index XMR 

P-value 0.149 
XMR CBDC Attention 

Index 
P-value 0.310 

lag 1 lag 1 

CBDC Attention 
Index XLM 

P-value 0.035** 
XLM CBDC Attention 

Index 
P-value 0.076* 

lag 1 lag 1 

CBDC Attention 
Index DASH 

P-value 0.013** 
DASH CBDC Attention 

Index 
P-value 0.188 

lag 1 lag 1 

CBDC Attention 
Index ETC 

P-value 0.000*** 
ETC CBDC Attention 

Index 
P-value 0.805 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 56: The effects of during crisis period weekly data of the Central Bank Digital Currency Attention Index on Cryptocurrencies 
returns with lag = 6, and the effects of Cryptocurrencies returns on the Weekly data of the Central Bank Digital Currency Attention 
Index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

CBDC Attention 
Index BTC 

P-value 0.002*** 
BTC CBDC Attention 

Index 
P-value 0.057* 

lag 6 lag 6 

CBDC Attention 
Index ETH 

P-value 0.079* 
ETH CBDC Attention 

Index 
P-value 0.148 

lag 6 lag 6 

CBDC Attention 
Index XRP 

P-value 0.003*** 
XRP CBDC Attention 

Index 
P-value 0.005*** 

lag 6 lag 6 

CBDC Attention 
Index LTC 

P-value 0.006*** 
LTC CBDC Attention 

Index 
P-value 0.012** 

lag 6 lag 6 

CBDC Attention 
Index BCH 

P-value 0.002*** 
BCH CBDC Attention 

Index 
P-value 0.003*** 

lag 6 lag 6 

CBDC Attention 
Index EOS 

P-value 0.000*** 
EOS CBDC Attention 

Index 
P-value 0.009*** 

lag 6 lag 6 

CBDC Attention 
Index XMR 

P-value 0.000*** 
XMR CBDC Attention 

Index 
P-value 0.004*** 

lag 6 lag 6 

CBDC Attention 
Index XLM 

P-value 0.108 
XLM CBDC Attention 

Index 
P-value 0.098* 

lag 6 lag 6 

CBDC Attention 
Index DASH 

P-value 0.000*** 
DASH CBDC Attention 

Index 
P-value 0.076* 

lag 6 lag 6 

CBDC Attention 
Index ETC 

P-value 0.000*** 
ETC CBDC Attention 

Index 
P-value 0.000*** 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 57: The effects of during crisis period weekly data of the Cryptocurrency Environmental Attention (ICEA) index on 
Cryptocurrencies returns with lag = 1, and the effects of Cryptocurrencies returns on the Weekly data of the Cryptocurrency 
Environmental Attention index with lag = 1. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 
Cryptocurrency 
Environmental 
Attention index 

BTC 
P-value 0.478 

BTC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.091 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

ETH 
P-value 0.041 

ETH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.257 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

XRP 
P-value 0.156 

XRP 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.523 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

LTC 
P-value 0.047 

LTC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.099 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

BCH 
P-value 0.025 

BCH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.214 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

EOS 
P-value 0.003 

EOS 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.275 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

XMR 
P-value 0.078 

XMR 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.247 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

XLM 
P-value 0.182 

XLM 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.045 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

DASH 
P-value 0.020 

DASH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.174 

lag 1 lag 1 

Cryptocurrency 
Environmental 
Attention index 

ETC 
P-value 0.000 

ETC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.988 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 58: The effects of during crisis period weekly data of the Cryptocurrency Environmental Attention (ICEA) index on 
Cryptocurrencies returns with lag = 6, and the Effects of Cryptocurrencies returns on the Weekly data of the Cryptocurrency 
Environmental Attention index with lag = 6. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 
Cryptocurrency 
Environmental 
Attention index 

BTC 
P-value 0.001*** 

BTC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.276 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

ETH 
P-value 0.007*** 

ETH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.109 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

XRP 
P-value 0.001*** 

XRP 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.120 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

LTC 
P-value 0.001*** 

LTC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.114 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

BCH 
P-value 0.000*** 

BCH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.391 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

EOS 
P-value 0.000*** 

EOS 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.174 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

XMR 
P-value 0.000*** 

XMR 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.024** 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

XLM 
P-value 0.118 

XLM 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.123 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

DASH 
P-value 0.000*** 

DASH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.626 

lag 6 lag 6 
Cryptocurrency 
Environmental 
Attention index 

ETC 
P-value 0.000*** 

ETC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.480 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 59: The effects of during crisis period weekly data of the Cryptocurrency Environmental Attention (ICEA) index on 
Cryptocurrencies returns with lag = 7, and the Effects of Cryptocurrencies returns on the Weekly data of the Cryptocurrency 
Environmental Attention index with lag = 7. 
 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 
Cryptocurrency 
Environmental 
Attention index 

BTC 
P-value 0.001*** 

BTC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.291 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

ETH 
P-value 0.012** 

ETH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.212 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

XRP 
P-value 0.000*** 

XRP 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.057* 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

LTC 
P-value 0.001*** 

LTC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.171 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

BCH 
P-value 0.000*** 

BCH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.265 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

EOS 
P-value 0.000*** 

EOS 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.224 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

XMR 
P-value 0.000*** 

XMR 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.002*** 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

XLM 
P-value 0.153 

XLM 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.156 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

DASH 
P-value 0.000*** 

DASH 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.488 

lag 7 lag 7 
Cryptocurrency 
Environmental 
Attention index 

ETC 
P-value 0.000*** 

ETC 
Cryptocurrency 
Environmental 
Attention index 

P-value 0.225 

lag 7 lag 7 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 60: The effects of during crisis period Monthly data of the Economic Policy Uncertainty Index for Europe index on 
Cryptocurrencies returns with lag = 1, and the effects of Cryptocurrencies returns on the Monthly data of the Economic Policy 
Uncertainty Index for Europe index with lag = 1. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

EUROEPU Index BTC 
P-value 0.507 

BTC EUROEPU Index 
P-value 0.201 

lag 1 lag 1 

EUROEPU Index ETH 
P-value 0.636 

ETH EUROEPU Index 
P-value 0.014** 

lag 1 lag 1 

EUROEPU Index XRP 
P-value 0.588 

XRP EUROEPU Index 
P-value 0.044** 

lag 1 lag 1 

EUROEPU Index LTC 
P-value 0.596 

LTC EUROEPU Index 
P-value 0.038** 

lag 1 lag 1 

EUROEPU Index BCH 
P-value 0.765 

BCH EUROEPU Index 
P-value 0.011** 

lag 1 lag 1 

EUROEPU Index EOS 
P-value 0.892 

EOS EUROEPU Index 
P-value 0.013** 

lag 1 lag 1 

EUROEPU Index XMR 
P-value 0.993 

XMR EUROEPU Index 
P-value 0.085* 

lag 1 lag 1 

EUROEPU Index XLM 
P-value 0.917 

XLM EUROEPU Index 
P-value 0.166 

lag 1 lag 1 

EUROEPU Index DASH 
P-value 0.919 

DASH EUROEPU Index 
P-value 0.019** 

lag 1 lag 1 

EUROEPU Index ETC 
P-value 0.524 

ETC EUROEPU Index 
P-value 0.002*** 

lag 1 lag 1 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 
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Table 61: The effects of during crisis period Monthly data of the Economic Policy Uncertainty Index for Europe index on 
Cryptocurrencies returns with lag = 6, and the effects of Cryptocurrencies returns on the Monthly data of the Economic Policy 
Uncertainty Index for Europe index with lag = 6. 

Index Cryptocurrency Estimates Cryptocurrency Index Estimates 

EUROEPU 
Index BTC 

P-value 0.029** 
BTC EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 

EUROEPU 
Index ETH 

P-value 0.022** 
ETH EUROEPU 

Index 
P-value 0.002*** 

lag 6 lag 6 

EUROEPU 
Index XRP 

P-value 0.000*** 
XRP EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 

EUROEPU 
Index LTC 

P-value 0.000*** 
LTC EUROEPU 

Index 
P-value 0.003*** 

lag 6 lag 6 

EUROEPU 
Index BCH 

P-value 0.062* 
BCH EUROEPU 

Index 
P-value 0.007*** 

lag 6 lag 6 

EUROEPU 
Index EOS 

P-value 0.007*** 
EOS EUROEPU 

Index 
P-value 0.028** 

lag 6 lag 6 

EUROEPU 
Index XMR 

P-value 0.002*** 
XMR EUROEPU 

Index 
P-value 0.090* 

lag 6 lag 6 

EUROEPU 
Index XLM 

P-value 0.023** 
XLM EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 

EUROEPU 
Index DASH 

P-value 0.129 
DASH EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 

EUROEPU 
Index ETC 

P-value 0.498 
ETC EUROEPU 

Index 
P-value 0.000*** 

lag 6 lag 6 
Note: the table contains the lag order and p-value estimate, and the  ***, **,  and * denote the 1 %, 5%, and 10 % significance levels, respectively. 


