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Abstract 

The dynamics of object recognition are intricate, particularly when under challenging visual 

conditions, such as occlusion. Current models of vision often fall short in explaining the human 

visual system's remarkable ability to represent occluded objects. Previous studies have 

predominantly employed simple shapes as occluders, limiting the understanding of real-world 

occlusion scenarios. Chapter 2 delves into neural representations by investigating occlusion 

with realistic stimuli—objects occluding other objects. Using event-related fMRI, participants 

engaged in a one-back task while viewing objects in isolation, occluded by other objects, or 

cut out by silhouettes. Decoding analyses in early visual cortex (EVC) revealed a reliance on 

visible features, while inferotemporal cortex (IT) exhibited robust representations, 

incorporating both visible and inferred features. Competition effects across multiple objects 

were evident in EVC but notably weaker in IT, highlighting IT's capacity to disentangle neural 

responses amidst competing stimuli. Chapter 3 expands the exploration to behavioural aspects, 

unveiling the impact of occlusion magnitude on recognition difficulty. IT displayed a linear 

increase of beta weights in processing allocation with recognition difficulty. Behaviourally, 

unoccluded conditions showed enhanced accuracy and faster response times, with unique 

recognition patterns emerging when objects served as both occluders and occluded objects. 

Chapter 4 uses fMRI to examine the theoretical perspective of predictive processing, 

employing expectation suppression in EVC during occlusion, motivated by high-level 

occlusion responses found previously. Multivariate pattern analysis indicated an expectation 

suppression effect aligning with the sharpening account of predictive processing. The 

concluding chapter synthesises these findings, emphasising the practical and theoretical 

implications. Notably, the thesis underscores the importance of utilising ecological visual 

information in visual neuroscience studies and highlights the differing capabilities of EVC and 

IT. Collectively, our research contributes valuable insights into the neural mechanisms 

underlying object recognition in challenging visual conditions, paving the way for future 

research avenues. 
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CHAPTER 1 

 
2 

1.1.  Object recognition 

Visual object recognition is defined as the ability to accurately discriminate named 

objects across a range of materials, textures, and other visual stimuli (DiCarlo & Cox, 2007). 

This process is computationally taxing, considering the multitude of potential variations across 

object position, scale, illumination and visual clutter identified by the early visual cortex (EVC) 

where we will very rarely see the same image of an object twice (Carlson et al., 2011; Spratling, 

2016). Despite this, the visual system is highly equipped to deal with this task. Neural signals 

are able to reflect object recognition within 150ms of initial presentation (DiCarlo, Zoccolan 

& Rust, 2012). Given the complexity of the processing required by the brain, multidisciplinary 

collaboration has been required to attempt this feat of understanding the visual system, thus 

combined work from psychophysics, cognitive neuroscience, computer vision and machine 

learning, among others have approached the question of how object recognition occurs 

(DiCarlo et al., 2012). 

The propagation of visual signals in the visual stream work to increase the specificity 

of object understanding as signals move into higher visual areas, or the inferotemporal (IT) 

cortex. The primary visual cortex (V1) is one of the most widely studied parts of the cortex, 

and like much of the cortex, it is divided into six distinct laminar layers, each comprising 

different cell-types and functions. Layer I is known to be the most superficial layer. Layer IV 

is thought to contain the highest concentration of simple cells and is responsible for receiving 

information from the lateral geniculate (LGN; Jia et al., 2023; Lawrence et al., 2019). Layer V 

provides the main output of the cortex, projecting information to other areas of the cortex via 

long neuron axons (Ramachandran, 2002). The primary visual cortex responds to simple visual 

components such as orientation and direction. However the summation of this information 

allows for the basis of much more complicated pattern analysis to occur further along the visual 
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stream (Horwitz & Hass, 2012; Hubel & Wiesel, 1959). V2 is known to respond more to colour, 

spatial frequency, and object orientation, sending feedback connections to V1 as well as 

maintaining feedforward connections with V3-5 and onwards along the visual system 

(Eickenberg et al., 2017). Together, these areas help to identify features of an object, leading 

to fast and accurate recognition along this well-equipped pathway. These brain regions then 

lead into higher visual regions which have been collated by researchers into a more overarching 

object-selective cortex containing a number of functionally defined regions of interest (ROIs), 

including the lateral occipital complex, fusiform regions and IT regions (Haushofer et al., 2008; 

Kaiser et al., 2019; Sayres & Grill-Spector, 2006; Wischnewski & Peelen, 2021).  

Beyond basic visual features, semantic categories are a prominent way in which people 

classify objects, especially when the exact object is novel. For example, people have been 

shown to infer the full object ‘car’ from just composite parts such as a wheel, which can be 

attributed to the internal representations predicted from previous experiences (Wang et al., 

2017). Rosch et al. (1976) first introduced the concept of levels of abstractions across 

categories. These range from superordinate (i.e., animate), to basic (i.e., faces) and subordinate 

(i.e., female face). This concept cemented the belief that hierarchical categorisation is vital in 

visual object recognition (Peelen & Downing, 2022). Contextual cues are also incredibly 

important for object recognition, as demonstrated by Liang and Hu (2015) who showed one 

black curved line, along with white lines which added context (Figure 1.1). When the extra 

lines were added, it became clear that a face was created and the black curved line represented 

a nose, yet without these contextual factors, participants were unable to categorise the black 

curved line correctly. Contextual cues are vitally important in object recognition, with prior 

knowledge shaping the categorical groups people utilise during perception (O’Reilly et al., 

2013).  
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Figure 1.1.  

Additional lines adding context to the initial black curved line to allow the correct representation. From 

Liang and Hu (2015). 

 

 

 

 

 

 

To understand the superordinate categorisation of objects, studies with both humans 

and primates have frequently utilised animate and inanimate objects (Kriegeskorte et al., 2008; 

Mur et al., 2013; Pollicina et al., 2022). This shared top-level division relates to findings 

supporting the evolutionary benefits of recognising living beings from inanimate objects, as 

well as predator or prey to ensure survival (Conway, 2018; Mur et al., 2013). Clusters created 

from activity patterns found in the inferior temporal (IT) cortex represent these well-known 

object categories including animate and inanimate objects (Mur et al., 2013). Within the 

animate category, additional distinctions can be observed between human and non-human 

objects or images, with the human category further grouped into bodies and faces. Within the 

inanimate category there are subclusters of natural and artificial objects (Kriegeskorte et al., 

2008). Mur et al. (2013) posited that the IT cortex categorised groupings in this way due to a 

fundamental drive to survive and reproduce across all human and primate species. The IT has 
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been shown to process higher-level information relative to V1 and is located along the ventral 

stream of perception (Goodale & Milner, 1992). There is, however, more to be done to 

comprehend additional categorical and the areas of increasing processing complexity that 

information propagates through along the ventral stream between early visual and higher visual 

areas. Exploring categorical patterns of object recognition may provide useful insight into how 

objects are recognised overall. 

The representation and categorisation of objects has been identified in the IT cortex 

(Bao & Tsao, 2018). Measuring single cell responses has allowed a clearer view of how 

receptive fields differ across the ventral, or perceptual, visual areas. Larger receptive field sizes 

and more complex feature preferences as well as longer latencies to visual presentation occur 

in the IT compared to V1. Where V1 receptive fields are responsive to orientation, IT responses 

show high selectivity to complex objects (Kreiman, 2008). It is unknown exactly which 

features are preferred by IT neurons as they are known to remain relatively invariant to changes 

in scale and position (Kreiman, 2008). Primate studies have been used to observe the role of 

IT in object recognition, with one study into macaque IT indicating that category selectivity 

was successful up until 60 per-cent of the object was obscured (Emadi & Esteky, 2013). 

Though Emadi and Esteky's (2013) stimuli did not contain large amounts of ‘clutter’, instead 

using noise to obscure varying percentages of the stimulus image, the results still support the 

robust nature of object recognition and the important role of IT in this process. 

The processing speed of visual object recognition has been evidenced to be incredibly 

fast, with Agam et al. (2010) using single-cell recording on patients with epilepsy, finding 

evidence of rapid feed-forward visual recognition within 100-200ms of stimulus presentation. 

This was identified by presenting one single object or two objects from the same or different 

categories (across animals, chairs, human faces, cars and houses). They report that IT can 
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support object recognition even in the presence of a second image. This finding has been 

complemented by additional visual work in primates. Even over very short time intervals IT 

was able to determine identity and category information robustly and accurately on object 

information ranging from position to scale, with classifiers able to decode even novel stimuli 

(Hung et al., 2005). In humans, magnetoencephalography (MEG) has been used to demonstrate 

that recognition of intact objects could occur from as quickly as 70ms, while decoding the 

category identity of stimuli (for example faces versus cars) could still be reliably determined 

by 135ms (Carlson et al., 2011). These studies demonstrate that object recognition and 

representation occur rapidly within the visual cortex, but the exact temporal dimensions vary 

dependent on specific task constraints.  

The visual system exhibits a hierarchical organisation, with distinct anatomical areas 

each serving specific visual functions (Felleman & Van Essen, 1991; Rao & Ballard, 1999). 

These areas connect through multiple projections; ascending feedforward, descending 

feedback, and those from the same hierarchical level (Kafaligonul et al., 2015). One account 

for top-down feedback is previous experience driving effects, with expectations facilitating 

prediction with which external stimuli are judged and categorised (Kafaligonul et al., 2015; 

Layher et al., 2014). However, other accounts of feedback suggest that it plays a modulatory 

role based on attention rather than past experience, as attention is critical to high-level 

cognition (Thiele & Bellgrove, 2018). Bottom-up mechanisms are thought to be responsible 

for processing external outputs, automatically and involuntarily selecting the most visually 

salient stimuli, presumably as they are more likely to require immediate consideration (Sobel 

et al., 2007). Though the review paper by Khorsand et al. (2015) postulates that stimulus-

dependent processing requires connections from top-down signals in addition to bottom-up 

mechanisms. These bottom-up signals relate to top-down modulatory effects in predictive 
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processing through the ability to pass predictions and errors, thus saving mental resources as 

only the error is passed on instead of the whole representation. 

Still, there are conflicting theories of these mechanisms within the literature. Clarke et 

al. (2014) argued that traditional distinctions of feedback or feedforward are too simplistic, and 

instead the focus should be on understanding the details that the visual system is representing. 

A visual crowding experiment was used to explore this, where stimuli of lines, rectangles and 

lines with X shapes were placed around a central target line with an offset line that participants 

had to identify the offset direction of. The different conditions provided differing levels of 

crowding, with the results highlighting the limitations of separating local versus global as well 

as feedback versus feedforward processes. Clarke and colleagues’ (2014) results demonstrated 

that these distinctions may not fully capture the complexities of visual perception, with their 

discrimination tasks showing that even when holding local information constant, global 

stimulus information influenced thresholds. Their findings suggest that local information must 

be processed globally to achieve this, suggesting that feedback and recurrent processes played 

a role in this, and that the inherent connectivity of the brain representation should not be 

underestimated.  

Visual clutter is more reminiscent of real-world object variation and thus a good way 

to measure visual processes (DiCarlo & Cox, 2007), though there are still improvements to be 

made. Additionally, Wyatte et al. (2014) proposed that object recognition requires early short-

distance recurrent processing as well as later attention-related processing. Therefore, it has 

become clear that viewing object recognition as a purely feedforward process is limited, with 

visual recognition requiring interactive connections from both feedforward and feedback 

mechanisms (Bracci & Op de Beeck, 2023; Keshvari & Rosenholtz, 2016; Khorsand et al., 

2015; Kietzmann et al., 2019; Thorat et al., 2023).  
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The dorsal and ventral streams are proposed to be visual pathways that branch off from 

the occipital cortex, each processing distinct types of visual information (Goodale & Milner, 

1992). The dorsal stream is thought to be aligned towards vision for action, including how to 

carry out actions, judge spatial locations of objects and tools as well as pantomiming and using 

tools. This pathway is thought to be implicated in neurodevelopmental disorders like dyslexia 

and dyspraxia (Grinter et al., 2010) and encompasses the occipitoparietal cortex and posterior 

inferior parietal lobule (Sakreida et al., 2016). Conversely, the ventral visual stream is aligned 

to vision for perception and is involved in specific object recognition, concerning shape, size, 

colour and texture judgements, with specificity for these factors evident by 6 months of age 

(Gazzaniga et al., 2018). This pathway, like the dorsal stream, starts in V1, before diverging 

towards the IT cortex and is thought to be impacted in disorders such as Attention Deficit 

Hyperactivity Disorder (ADHD; Corbetta & Shulman, 2002; Helenius et al., 2011). Object 

recognition as a process is highly dynamic and reliant on the coordination of numerous brain 

areas throughout the ventral visual system (Wyatte et al., 2012). This intricate system is thought 

to house critical circuitry for core object recognition (Sorooshyari et al., 2020). Organised 

hierarchically, it contains huge amounts of both feedforward and feedback projections (Janssen 

et al., 2018). This visual stream, which culminates in the IT cortex, is key for processing 

information on object recognition (DiCarlo & Cox, 2007).  

Researchers have been attempting to understand these complex processes, with 

computational models being utilised to try to model the brain network. This research often 

draws from knowledge of the hierarchical nature of primate visual cortex. The rhesus monkey 

is currently the most successful non-human model of the human system, with approximately 

50 percent of the neocortex being devoted to visual processing (DiCarlo & Cox, 2007; 

Felleman & Van Essen, 1991; Gazzaniga et al., 2018; Serre et al., 2005). Primate studies have 
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revealed that even within 150ms of stimulus onset, neurons in areas of the ventral stream such 

as IT cortex have encoded object information in a form robust to differences in scale and 

position, which is predictive of the behavioural responses of humans in terms of both object 

‘category’ and ‘identity’ (Hung et al., 2005). This research enables greater confidence in the 

understanding of the processes of object recognition in the human brain, where hierarchical 

approaches in primate visual cortex have influenced the nature of human object recognition 

tasks (Serre et al., 2005). This primate-centred research, alongside human behavioural studies 

(Wyatte et al., 2012), indicates the central role of the ventral visual stream in invariant object 

recognition, which facilitates the rapid and accurate recognition of objects in the presence of 

variations such as size, rotation and position (DiCarlo & Cox, 2007; Karimi-Rouzbahani et al., 

2017). The robust ability of humans to recognise objects across states, differences in 

orientation, contrast, visibility and variety speaks to the importance of the process and demands 

additional research to further this understanding. The ability to advance our knowledge on 

object representation and recognition could be important in creating better computational 

models. As well as this, the possibility of being able to better understand the visual world of 

those with different visual processing needs to create interventions would be influential, but 

this requires a thorough understanding of the visual object recognition process.  

1.2. Predictive processing 

The sensory cortex has been previously presented as a unidirectional system, passively 

receiving sensory signals in a hierarchy that extracts increasingly complex features (Kok & De 

Lange, 2015). However, predictive processing theories posit that the brain is constantly 

constructing an internal model of the world using prior knowledge as well as sensory input 

(Clark, 2013; de Lange et al., 2018). The relationship between brain areas may even be thought 

to be heterarchical rather than hierarchical. A heterarchy does not assume a fixed or static top-
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down relationship between brain regions, instead processing information in a flexible, 

functional bi-directional manner (Lee et al., 2021).  

The predictive processing theory purports a unified account of sensory perception, 

where the overarching task of the brain is to minimise surprise, even across sensory modalities 

(Melloni et al., 2011; Ransom et al., 2020; Vetter et al., 2014). This theory is a synthesis of 

several other theories including: Bayesian decision theory (BDT), the Free Energy Principle 

and predictive coding (Ransom et al., 2020). BDT provides a mathematical framework for 

decision-making under uncertainty. The theory places the formal representation of visual 

information, for example a visual scene, against an internal model predicting what that scene 

is expected to look like based on prior expectations. This expected representation is then 

compared to the image noise and unexpected details to estimate the likelihood of the actual 

representation of the scene appearing (Knill & Richards, 1996). The Free Energy Principle was 

proposed to account for action, perception and learning, with expectation in reward or utility 

optimised against surprise (prediction error or expected cost). This principle is based on the 

mathematical idea that free energy within a self-organising system must be minimised to 

improve adaptation (Friston, 2010). Predictive coding is a strategy for minimising information 

transmission, whereby the difference between an input and the prediction creates a prediction 

error and only this is transmitted (Elias, 1955; Ransom et al., 2020). While often used 

interchangeably in the literature, predictive coding was initially developed as a data 

compression strategy, where only ‘unexpected’ variations were encoded, meaning the signal 

was compressed by only transmitting the prediction error (Clark, 2013). Top-down connections 

are proposed to convey predictions about lower-level activity while bottom-up processes 

transmit prediction error to higher order levels (Boutin et al., 2021).  
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Predictive processing synthesises these theories, positing that the brain can better 

explain sensory input by actively minimising error in the predictions put forward (Clark, 2013; 

Williams, 2018). Overall, predictive processing allows the brain to process incoming 

information efficiently by transmitting upwards only the mismatched, unpredicted portions of 

the signals, filtering the predicted details (Mills et al., 2021). These mismatched prediction 

errors provide excitatory feedforward input, while prediction units themselves provide 

inhibitory feedback to minimise the error and create a more precise expectation of the visual 

stimuli (Walsh et al., 2020).   

The predictions, according to Kok and De Lange (2015), play a pivotal role in updating 

the sensory hierarchy by incorporating both prior experiential expectations and discrepancies. 

This implies that sensory regions aren't simply passive, awaiting stimulation; instead, they 

engage in continuous interactions to convey information about predictions regarding the future 

and associated prediction errors, with each area engaging their populations of error and 

prediction neurons (Figure 1.2). Kok and De Lange (2015) propose that predictive processing 

models should prompt experimenters to carefully consider the roles of prediction and 

prediction error, along with temporal and cortical effects, shifting away from perceiving each 

trial as an independently attended event by keeping in mind the interplay of errors and signals 

being propagated constantly. 

  



CHAPTER 1 

 
12 

Figure 1.2.  

A visual representation of the predictive process occurring in human cortex. At each hierarchical level, 

feedback pathways carry predictions of the lower levels while feedforward pathways take forward the 

residual errors between prediction and the actual neural activity. The prediction errors (PE) at every 

level are used to correct and update the estimate of the input and then generate the next prediction. 

Taken from Rao & Ballard (1999). 

 

1.2.1. Expectation suppression 

Expectation suppression is known to be a reduction in the measure of neural activity 

following the presentation of an expected, or predicted, stimulus (Feuerriegel et al., 2021).  

Stimuli are thought to drive feed-forward processing, while prior knowledge may be driving 

feedback, so expectation suppression tasks can be used to examine predictive processing 

mechanisms. It has been well established that there is less visual cortex activation for expected 

stimuli (Alink & Blank, 2021; Kok & De Lange, 2015; Williams, 2018). Kok et al. (2012) 

presented subjects with visual grating stimuli differing in contrast, spatial frequency, or 

orientation but all were preceded by an auditory cue which predicted the correct grating 75 per-
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cent of the time. Expectation based suppression in this task was present in V1, V2 and V3 when 

an expected stimulus was repeated due to the tone signalling the grating. This can be attributed 

to the prediction error being minimised, as the prediction and stimulus matched.  

This expectation-suppression effect, where there are reduced stimulus-evoked 

responses to expected stimuli, is considered an important empirical hallmark of reduced 

prediction errors and offers key support to predictive processing (Alink & Blank, 2021). 

Researchers have used expectation suppression methods involving functional magnetic 

resonance imaging (fMRI; Richter et al., 2018; Summerfield & de Lange, 2014) and MEG 

(Todorovic & Lange, 2012) to demonstrate the presence of predictive processes, showing that 

expected stimuli cause less activation across both visual and auditory modalities. Additionally, 

though expected stimuli led to lesser activation, multivariate pattern analysis (MVPA) revealed 

that more decodable information about the stimuli features was available in the early visual 

areas (Kok & De Lange, 2015). This suggests that prior expectation may sharpen the 

representation of the expected stimulus in some cases (Kok et al., 2012).  

Research has been conducted using fMRI to test whether predictive processing 

accounts for visual effects across the whole ventral visual stream using expectation suppression 

methods. Richter et al. (2018) found that when shown pairs of sequentially presented objects 

where the first was indicative of the identity of the second, there was strong suppression of the 

neural responses for expected compared to unexpected stimuli in areas from V1, LOC and 

onward. As has been previously demonstrated by de Lange and colleagues (2018), expectation 

strongly modulates what people perceive, with less activation when something is expected. 
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1.2.2. Dampening or sharpening theories of predictive processing  

There is an ongoing debate regarding the exact neural mechanism via which predictive 

processing could give rise to expectation suppression, specifically within the EVC. The debate 

centres largely on whether the reduced stimulus-evoked responses to expected stimuli result 

from dampening neural representations for predictable inputs, or sharpening, where increased 

neural representations result from predictable stimuli (Alink & Blank, 2021).  

In an expectation suppression task, the sharpening account predicts a sharper 

representation of the valid condition by suppressing the activity in neurons not tuned to the 

expected stimuli (de Lange et al., 2018). This creates a higher contrast and leads to a more 

distinct representation at the population level, with neurons selective to predicted features more 

likely to fire than the neurons without this specific selectivity. This account of predictive 

processing posits a benefit by decreasing the likelihood that noise in the incoming sensory 

stream is processed, with resources remaining focused on the key predictable elements. This 

leads to sharper, more detailed perceptual representations of expected features when they occur 

(Friston, 2005; Kok et al., 2012). Conversely, the dampening account suggests that predicted 

features are encoded by the inhibition and subsequent decrease in contrast due to the 

suppression of voxels tuned to the expected stimuli as their activity is ‘explained away’ (de 

Lange et al., 2018). This account would benefit the visual system by allowing an overall faster 

processing speed for unexpected stimuli due to fast propagation through the visual system from 

early visual areas to higher (Richter et al., 2018; Richter & de Lange, 2019; Walsh & 

McGovern, 2018). Expectation suppression in the LOC has been shown to scale positively with 

image preference and voxel selectivity, supporting this dampening account of expectation 

suppression (Richter et al., 2018). See Figure 1.3 for a visual example of these processes.  
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Figure 1.3. 

Expectation suppression is thought to manifest in either dampening or sharpening of neural responses. 

Dampening predominantly suppresses neurons attuned to the expected stimulus, resulting in a reduction 

of contrast in activity patterns at the population level. In contrast, sharpening primarily influences 

neurons not aligned with the expected stimulus, leading to an increase in activity pattern contrast. 

Adapted from De Lange, Heilbron & Kok (2018). 

 

Methods with high temporal resolution (e.g., EEG) have revealed both sharpening and 

dampening at different time points (Xu et al., 2020), and techniques like MVPA of fMRI data 

have been used to distinguish between these two accounts when observing expected stimuli 

(Kok, Jehee, et al., 2012; Richter et al., 2018). If predictive processing was utilising the 

sharpening method, we would expect valid conditions, where an expectation was validated, to 

contain a large amount of information while inhibiting unexpected features. Conversely, in the 

dampening account, conditions where expectations are validated would be suppressed and 
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patterns of activation would contain only sparse information related to the stimuli, creating 

poorer decoding accuracy in the classifier regarding the stimuli itself. This would be the 

opposite in invalid conditions where expectations were violated, and decoding accuracy would 

be higher due to the lack of suppression of stimulus specific features. Looking at the results of 

a grating study at a neuronal level, where a sharpening account reflects an expectation-induced 

reduction of neural activity, the strongest effects would be observed in those neurons preferring 

the conflicting orientations, while neurons preferring the presented orientation would be 

unsuppressed in comparison (Kok et al., 2012). There is selectivity across individual voxels, 

as indicated by reduced activity for predicted stimuli in V1 – a finding that persists even when 

prediction is task-irrelevant (Kok & De Lange, 2015).  

Moreover, Xu et al. (2020) revealed that sharpening and dampening effects are 

observable in EEG data at different time points. Specifically, that N1 demonstrated a 

sharpening effect while N2 indicated a dampening effect. They achieved this by training 

participants on a double-flash task. Here, an auditory cue preceded a pair of oncoming flashes 

of light with unpredictable stimulus onset asynchrony (SOA) between the cue and flashes 

(1000/1500/2000ms) and between the flashes themselves (400/600/900ms). Participants were 

required to hold a temporal template in their mind for each block, representative of the SOA 

between the flashes. They were then required to press a response button after each double-flash 

to make a judgement on whether the SOA time they had experienced in that trial was matched 

or mismatched to their prediction of the time (e.g., if asked to recall the 400ms double-flash 

SOA in their mind, did the double-flash they saw also have a 400ms gap, or was it 600/900ms). 

Their results revealed an expectation suppression effect as well as demonstrations of both 

sharpening and dampening effects of prediction. These effects occurred in distinct processing 

stages with an opposing trend, providing evidence for an opposing processing theory which 
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provides a potential resolution for the sharpening and dampening accounts of prediction (Press 

et al., 2020). These findings suggest that both sharpening and dampening predictions of 

processing in expectation suppression co-exist, doing so in different temporal windows.  

Xu et al. (2020) also claim that differences in attention cannot account for these results, 

addressing another key debate in the field of expectation suppression studies of predictive 

processing. The task itself required continued attention to both flashes in each trial. 

Additionally, the researchers monitored the alpha band oscillation which is relevant to the 

allocation of attention, and theta band oscillation which is implicated in timing prediction. They 

observed no changes in alpha across trials, while theta oscillations were present, indicating no 

differences in attention towards expected and unexpected flashes but differences in prediction 

for the 2nd of the flashes. These sharpening and dampening accounts of predictive processing 

provide a nuance that calls for careful methodological consideration. Though they have 

opposite effects, the accounts both imply some amount of reduced neural activity when 

predictions are accurate. 

1.2.3. Attention versus prediction  

Attention boasts a wide array of definitions, which some have argued makes the concept 

“ill-defined” (Alink & Blank, 2021). However, the core qualities of attention across these 

definitions include acting as flexible control for limited computational resources (Lindsay, 

2020). Within vision, attention has been investigated at length, with processes like selective 

visual attention examined, which include looking out for specific visual information such as 

colour or shape (Lindsay, 2020). In the past, the terms ‘attention’ and ‘expectation’ have even 

been used interchangeably (Kok et al., 2012). There are those who suggest that as researchers, 

we must differentiate attention from prediction to avoid misclassifying effects (Alink & Blank, 
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2021; Cao, 2020). This misclassification may be the result of predictive processing theories 

being challenged by the view that prediction sometimes seems to amplify sensory signals rather 

than diminishing them, as observed in attention cueing experiments. The conventional 

explanation of predictive processing attributes this phenomenon to the intertwining of 

prediction (indicating the likelihood of a stimulus) with attention (reflecting task relevance), 

wherein attention can enhance these signals. However, recent research is proposing more 

nuance in this interplay, suggesting that attention and prediction collaboratively enhance the 

precision of perceptual inference (Kok et al., 2012).  

According to the model by Kok et al. (2012), there exists an elevated weighting of 

sensory evidence influenced by attention, leading to a reversal of the typical sensory silencing 

associated with prediction. Kok and colleagues (2012) used predictable cued grating-word 

pairings in an fMRI study to analyse the interplay of attention and prediction on their neural 

activation results. Unattended stimuli produced a reduction in activation in EVC for predicted 

over unpredictable stimuli, consistent with expectation suppression and thus theories of 

predictive processing. In response to attended stimuli, there was a larger neural response in 

EVC for predicted compared with unpredicted stimuli, which is inconsistent with the main 

effects of prediction and attention but would be explained by a synergistic relationship between 

the two. Although seeming counterintuitive, these findings align with the predictive processing 

framework. As research demonstrates that mechanisms of predictive processing and attention 

can comfortably exist within the same model, with attention reflecting the precision of 

perceptual inference (Alink et al., 2010; Friston & Kiebel, 2009; Rao & Ballard, 1999). Under 

this account, attention is modulated on the synaptic gain of neurons representing sensory data 

(or, equivalently, prediction error), which are weighted according to the strength of the 

prediction. Thus this study demonstrated empirical support for predictive processing through 
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the demonstration of attention reversing sensory silencing effects of prediction. Which may 

also go some way to explain the contradictory findings within the literature regarding the 

interplay between attention and prediction (Kok et al., 2012).   

Many perceptual processes are driven by attention. Studies using visual tasks have 

found that attending one visual stimuli over another when a pair is presented can account for a 

30 percent shift in representation showing a bias towards the attended compared to the 

unattended stimuli (Reddy et al., 2009). Reddy and colleagues’ (2009) method was based on 

the biased-competition theory of attention, where targets and non-targets compete for 

processing capacity within visual search (Desimone & Duncan, 1995). Stimuli from various 

visual categories were presented in pairs from various visual categories and participants were 

told to attend to one, both or neither. The patterns of representation showed that when projected 

into a vector plane, it was possible to determine the weighted average of the pair of stimuli 

when averaging the sum of the two isolated objects in a linear combination. This study showed 

that when projected onto a weighted average line, there was approximately a 30 percent shift 

in weights when the stimuli was attended to.  

Reddy and colleagues (2009) showed that split attention works along a continuum, 

which presents an interesting nuance to processing stimuli under visually challenging 

conditions. MacEvoy and Epstein (2009) found that under conditions of distributed attention, 

voxel wise patterns of activity in object selective regions of the cortex evoked by pairs of 

objects are the average of the patterns evoked by the individual component objects, which 

could be decoded with incredibly high accuracy. However, the weighted average model has 

recently been argued to be less effective than a normalisation model in some areas of the visual 

stream, such as the primary visual cortex, whose complexities may be better captured by a 

weighted sum model than weighted average. This is perhaps due to higher sensitivity of 
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neurons in V1 to contrast effects, potentially triggered by an attentional shift towards higher 

visual contrast causing increased attention. However, findings in macaques have been 

previously demonstrated neuron-to-neuron variability driven by the ability to process multiple 

stimuli, rather than simply the differences in top-down attentional signals. Thus, it is clear that 

there is an attentional effect on visual representation, but not exactly how this is distinct from 

and interacts with prediction.  

In their review exploring top-down influences on visual processing, Gilbert and Li 

(2013) state that attention and expectation are among the rich and varied influences carried 

between cortical areas. They assert that receptive fields are dynamic and adapt to carry 

information relevant to the perceptual demands of a specific task. In terms of attention versus 

prediction they find that attentional effects are more prevalent when there are multiple stimuli, 

particularly in V1 where contextual influences are involved. In terms of neuronal activity, 

neurons change their tuning in accordance with the demands of the specific task, implying that 

neurons are adaptive processors. They describe a primate study where neurons in V1 could 

alter selectivity both individually and at a population level dependent on the expectation of the 

observed shape (McManus et al., 2011). This finding indicates that expectation employs top-

down processes in object recognition to create a set of filters more selective to the task-based 

stimuli, ensuring vision is an active process discernible from attention alone. Thus it becomes 

clear that there is a determinable difference in both computational and non-human primate 

studies that suggests attention and prediction are discriminable from each other (Doostani et 

al., 2023; McManus et al., 2011; Ni et al., 2012). This differentiation between prediction and 

attention was also observed in a prediction error study, while larger neural responses to 

surprising stimuli could be explained by attention, attention alone fails to explain why there is 
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larger activity in omission studies (where a stimulus is predicted but withheld) due to the 

absence of a stimuli present to attend to (Den Ouden et al., 2012).  

As touched upon previously, there is debate on whether attention or prediction is 

responsible for the results in expectation suppression tasks. Some suggest that predictive 

processing theories attempt to account for too much of a unified account of mental functioning 

(Ransom et al., 2020). Furthermore, this debate is extended further with the ongoing discussion 

of whether the neural mechanisms underlying expectation suppression could result from 

reduced attention to predictable stimuli (Aitchison & Lengyel, 2017; Alink & Blank, 2021). 

Ransom et al. (2020) suggests that a more flexible version of predictive processing, one that 

allows other factors to account for some effects, and incorporates more from Bayesian decision 

theory, may be better equipped to accommodate attention. This nuanced approach suggests that 

to truly grasp their roles, we must acknowledge and accommodate the unique and 

distinguishable contributions of each process. 

Alink and Blank (2021) argue against relying solely on the prediction-based response, 

where attention increases the responsiveness of neurons sensitive to the discrepancy between 

sensory input and expected stimulus. They posit that this effect could be explained by an 

attention-based explanation instead. This explanation suggests expectation suppression 

because of reduced saliency of an expected stimuli. They state that the theory of predictive 

processing proposes that attention is a facilitatory mechanism of error coding (Richter & de 

Lange, 2019), while the attention-based explanation purports that results are a response to 

attention from stimulus saliency (Kanan et al., 2009). The difference in how attention is 

explained across these schools of thought seems to hinge on the view that attention is a cause 

of prediction error coding within the predictive processing framework, whereas it is seen as an 

effect of the saliency of stimulus in the explanation of attention. 
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Though this research certainly supports the need to be thorough when designing studies 

so that effects of prediction are not confounded with attention, there have been effects that 

support prediction as a parsimonious explanation. Some have demonstrated the necessity for 

additional research here, showing that at times of sensory input ambiguity conscious awareness 

is required to activate the predictive mechanisms and alter prediction and perception (Reddy et 

al., 2009; Vetter et al., 2014). Questions remain regarding whether the sensory attenuation 

process to predicted stimuli is automatic or if this is only the case when predictable stimuli are 

attended (Richter & de Lange, 2019). To try to understand this, research has been undertaken 

focusing on the interplay between attention and prediction. Repetition effects in fMRI BOLD 

responses have also been used to dissociate attention from prediction experimentally (Larsson 

& Smith, 2012; Summerfield et al., 2008).  

One such fMRI study discovered that a normalisation model of object recognition could 

predict responses at the voxel level from primary visual cortex and across the visual hierarchy 

with and without the influence of attention, using conditions of isolated or cluttered stimuli 

(Doostani et al., 2023). Their study categorised stimuli as preferred or null in each ROI and 

analysed voxel responses to isolated houses and bodies. Preferred stimuli showed increased 

voxel responses to isolated houses or bodies compared to null stimuli. Interestingly, when 

attending to a preferred-category stimulus, a winner-takes-all effect was observed, reducing 

the impact of null stimuli on ROIs. This suggests that attention alone cannot account for 

recognition mechanisms, highlighting the role of categorical changes in stimulus 

representations.  

EEG studies have also been utilised to measure predictive effects against attention 

effects. In one such study which involved timing precision, researchers found that N1 indicated 

a sharpening effect while N2 indicated a dampening effect (Xu et al., 2020). This may suggest 
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that both accounts of predictive processing in expectation suppression co-exist but do so in 

different time windows. They also successfully showed that attention was not responsible for 

their results, as participants paid equal attention to the presented stimuli driving the effects. 

Additionally, the work of Kok et al. (2012) also speaks to a modulation between attention and 

prediction that allows both processes to occur. Consistently, we see an ability to observe effects 

of prediction that cannot be attributed to elevated attention effects.  

Additionally, the review of Schröger et al. (2015) examined the attention and prediction 

literature around EEG auditory studies. They confirmed that while attention often increases 

various parameters of brain activity and prediction often results in the attenuation of brain 

activity, the predictive processing framework allows for the two to be related by noting their 

differing effects, rather than trying to ignore the presence of one or the other. To account for 

this within studies the authors suggest ensuring methodological rigor when designing 

manipulations of tasks measuring these effects. This will enable a better understanding of the 

interplay of these two key concepts and allow predictive processing to be successfully 

measured.  

1.3. Recurrence and computational methods 

Recurrent processing, where neurons influence each other through direct, bidirectional 

interactions, is essential to visual understanding (O’Reilly et al., 2013). This type of processing 

is said to be responsible for the ability to solve certain visual tasks when a feedforward sweep, 

or feedback connections alone are not sufficient, and it is recurrent processing that determines 

visual awareness of the features of an object (Lamme & Roelfsema, 2000). Recurrent 

processing occurs where interconnected sensory systems involve both feedforward and 

feedback connections. These connections enable adjacent layers to interact locally and 
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recurrently to refine representations and give rise to a dynamically extended network that can 

activate both local and widespread areas (Han et al., 2018; Wu et al., 2020; Wyatte et al., 2014). 

Flexible communication of top-down and bottom-up influences has been found to allow 

enhanced representations of objects, bringing them into conscious perception (Lamme & 

Roelfsema, 2000; Yan et al., 2023). This recurrent processing can strengthen bottom-up signals 

when objects are viewed under conditions of occlusion, poor lighting, shadows, and other 

variable factors. Thus, facilitating the creation of a strong, stable representation of an object 

that allows robust recognition (Wyatte et al., 2012).  

Recent research has further investigated recurrent processing networks, for example, 

using ultra-high field (7T) functional imaging to look at sub-millimetre resolution, Jia et al. 

(2023), determined that the multiple laminar layers play different roles in the orientation-

specific representations of visual recognition. They showed that the superficial layers of V1 

are more influenced by recurrent plasticity mechanisms connected horizontally. Prior 

expectations have also been found to show selective activation in deeper layers of V1, 

consistent with feedback processing in the context of predictive processing (Aitken et al., 

2020). This combination of multiple processing mechanisms speaks to the incredible 

complexity of the visual system encompassing parallel as well as hierarchical features (Lamme 

& Roelfsema, 2000; Wyatte et al., 2014).  

Furthermore, vision is a highly dynamic process reliant on multiple areas of the ventral 

stream for different perceptual processes across the massive amount of information input (Li 

et al., 2023). Accordingly, recurrent connections have become a plausible way to predict visual 

features of heavily occluded objects. These connections have been shown to successfully 

capture the physiological delays observed throughout the ventral visual stream, suggesting 

indirect evidence for object completion occurring in the IT cortex (Tang et al., 2018). 
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Anatomical findings indicate the massive prevalence of recurrent and feedback connectivity 

throughout the visual streams (Felleman & Van Essen, 1991; Gurney, 2003; Sporns & Zwi, 

2004).  

Employing recurrent networks to examine processing within digit clutter and crowding 

scenarios has informed computational models, with these networks outperforming simpler 

feedforward models when recognising occluded stimuli. Spoerer et al. (2017), used images of 

digits occluding each other in cluttered scenes to effectively validate that occluding objects in 

more realistic ways was more applicable to real-world situations. Using recurrent methods to 

emphasise this they found more effective representations using recurrence than purely 

feedforward models, however there is still a way to go in creating tasks which occlude 

completely naturalistically. Digits themselves are simplistic stimuli to use, but a valuable 

starting point for future development. The authors have since scaled up the size of the dataset 

using ImageNet and ecoset to train deep neural networks (DNNs) on more ecologically relevant 

categories to see whether recurrence improves recognition accuracy, successfully observing a 

better explanation for representations of complex visual objects. These studies only used 

isolated, whole stimuli, however they specifically note that the increased visual diet that came 

with the more ecologically accurate dataset was responsible for the effects found (Deng et al., 

2009; Mehrer et al., 2017; Russakovsky et al., 2015; Spoerer et al., 2019; Spoerer et al., 2017).  

This work allows greater understanding of how visual recognition is undertaken, creating a 

logical next step of occlusion examined using this breadth of more ecologically valid and varied 

stimuli.  

There is a known interaction between recurrent connectivity and learning, which 

predicts that high-level visual representations could be influenced by error signals from 

proximal brain areas throughout visual learning (O’Reilly et al., 2013). The robust way in 
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which visual clutter or degradation is compensated for in the ventral visual stream may be 

attributed to recurrent connectivity, depending on the dynamic nature of the brain (Wyatte et 

al., 2012). Modelling of the network connections in the human ventral stream by Kietzmann et 

al. (2019) established that information processing is best accounted for by recurrence for 

recognition into object categories.  

Artificial neural networks are incredibly popular methods for analysing data within 

computational neuroscience and beyond, being thought of as simplified models of the vast 

networks of neurons occurring natural in the brain (Gurney, 2003). Artificial intelligence (AI) 

has created incredible advances in complex problem solving in these networks, becoming a 

theoretical vehicle aiding in the understanding of the processing of neural information (van 

Gerven & Bohte, 2017). Feed-forward convolutional neural networks (CNNs) have been used 

in order to explore object classification, emerging as a quantitatively accurate model of primate 

visual cortex (Nayebi et al., 2018).  

Deep convolutional neural networks (DCNNs), that mimic the major principles of the 

visual pathway have been able to represent how visual information is transformed from a 2D 

image using feed-forward layer connections to analyse the image. Research has found that 

early layers of these models correspond with retinotopic areas, whereas later layers capture 

aspects of the higher-level representations present in IT (Bracci & Op de Beeck, 2023). The 

formation of these layers is conceptually similar to the increase in receptive field size that 

characterises successive processing stages in the human visual system (Bracci & Op de Beeck, 

2023; LeCun et al., 2015). When trained for object recognition, they have been successful at 

representing objects of the same category as being similar even when there is variation across 

the category, that is that they are able to generalise well across differences in low level features 

(Konkle & Alvarez, 2022).  



CHAPTER 1 

 
27 

These models have been generally improved by the addition of feedback, recurrent 

connections, and even by considering topography across the human cortex (Ali et al., 2022; 

Karapetian et al., 2023; Kietzmann et al., 2019; Lu et al., 2023; Spoerer et al., 2019; Thorat et 

al., 2023). Recurrent neural networks (RNNs) have been found to be more neurobiologically 

realistic than feedforward counterparts and more robust in their ability to recognise objects, 

especially under challenging visual conditions (Spoerer et al., 2017; Tang et al., 2018; Yan et 

al., 2023). From advances in these goal-driven models, convolutional recurrent neural networks 

(ConvRNNs) were created to explain dynamics within the visual system using layers to process 

and transform inputs to produce outputs (Nayebi et al., 2018). There have also been recurrent 

CNNs (RCNNs) that have computationally demonstrated a successful model of scene 

processing, effectively predicting categorisation more efficiently and accurately than 

feedforward models alone (Karapetian et al., 2023; Lu et al., 2023; Spoerer et al., 2019; Thorat 

et al., 2023). As scenes often include vast amounts of visually challenging information, the 

findings of these studies may be helpful in advancing the field of object recognition too.  

RNNs and beyond align effectively with predictive processing models, more 

efficiently coding information than other kinds of models (Ali et al., 2022). Prediction errors 

are a key element of predictive processing and have largely been found to relay information 

in a bottom-up manner, establishing more computationally efficient recognition, especially 

when combined with top-down sensory input (Richter et al., 2023). The incorporation of 

prediction error in the models leads to more efficient RNNs, which may be primed by the 

predictions from prior visual experience and further split into subpopulations of prediction 

and error units respectively (Ali et al., 2022). The field of computer vision has embraced the 

use of AI and neural networks, including ConvRNNs which are task-optimised for 

sophisticated object recognition at a more human-like level (Kriegeskorte, 2015; Nayebi et 
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al., 2018).  However, ignoring the role of cross-disciplinary research would be short-sighted, 

as fields like neuroscience may allow for benefits in this research as well as the other way 

around, with respect to tackling more complex visual functions beyond categorisation. 

Aspects of attention, visual search and image segmentation, with the ability to align neural 

networks with measures of brain and behaviour data (Kriegeskorte, 2015), could paint an 

increasingly elucidating picture of how the visual system works and can be applied to AI.  

1.4. The role of occlusion in visual processing  

Occlusion is an ever-present feature in natural, three-dimensional scenes, with some 

degree of obstruction from one object to another generally unavoidable. The human brain can 

account for occlusion effectively using amodal completion (Kanizsa, 1976), where partially 

occluded objects are successfully and accurately recognised (Zhu et al., 2019). For example, 

when a cat’s body is hidden behind a fence with only a head visible, humans still perceive the 

cat as a complete animal, being able to represent the appearance of the occluded section (Ao et 

al., 2023). This is done incredibly successfully and quickly, with delays of approximately 

100ms observed for the recognition of occluded compared to unoccluded objects (Tang et al., 

2018). Recognition capabilities of the brain for heavily occluded or even deleted objects are 

still extremely robust (Rajaei et al., 2019; Tang et al., 2018). As object recognition is heavily 

reliant on being able to ‘fill in’ missing information, using occlusion may be a useful measure 

to investigate predictive processing, as predictions are likely to be vitally important in this kind 

of recognition task.  

The ability to recognise an occluded object is said to require a degree of prior 

knowledge about the object itself (Wyatte et al., 2014). The brain not only has to compensate 

for missing information about the object, but also process the object identity, the occluder and 
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the scene context to create a full picture. The brain areas implicated in these processes by prior 

research include: V4, which in human vision is implicated in colour processing as well as 

luminance (Tootell & Hadjikhani, 2001); IT cortex, a higher order visual area known to be 

highly interconnected and associated with object categorisation and classification; as well as 

prefrontal cortex (PFC) which is known to play an important role in cognitive control, 

specifically within thought and action. It has been found that the ventrolateral region of PFC 

may be implicated in higher form visual processing, where there is evidence of functional 

interactions between this area and V4 as well as IT (Fyall et al., 2017). Consequently, there are 

theories that PFC may have input in perceptual processing of visual stimuli when the 

recognition is made more difficult by conditions such as partial occlusion. There are also 

interesting effects in the primary visual cortex (V1) when observing scenes with occluded 

quadrants. V1 is shown to contain information about the missing section, even without 

receiving direct sensory input (Smith & Muckli, 2010).  

Tang et al. (2018) demonstrated that the brain has a robust ability to recognise an object 

category even when objects were heavily obscured. This work combined behavioural, 

neurophysiological and modelling insights to determine how recurrent connections may allow 

the brain to carry out pattern completion on partial information. Using a backward masking 

task to disrupt recognition, objects in conditions of whole, partially visible (missing sections) 

or partially occluded (black screen with cut out shapes showing parts of the object) were shown 

to participants, followed by a blank screen or a noise mask. Performance was significantly 

degraded by the masking as they expected, successfully disrupting the presumably recurrent 

processing of the original image. Overall results determined that inferences of object identity 

were possible when only 10-20% of the object was visible, even for novel objects. Though this 

study’s stimuli were not occluded per se, as the occluded condition images were partially 
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visible but not ‘blocked’ by another object. In computational modelling, performance increased 

with the visible percentage of the object, though this was still demonstrably lower than a human 

level in both RNN and Alexnet models (Krizhevsky et al., 2012). Tang et al. (2018) suggests 

that delays in recognition for occluded objects are a result of recurrent connections to influence 

pattern completion, using time to recruit lateral connections and/or top-down signals from areas 

higher in the ventral visual stream.  

Masking tasks have been leveraged in multiple object recognition studies. Wyatte et al. 

(2012) manipulated objects, including cannon, car, fish, gun, key and trumpet, into conditions 

of control (low occlusion, full contrast), high occlusion (high occlusion, full contrast) and low 

contrast (low occlusion and 25 percent contrast). The mask was constructed from patches of 

the original images. The occlusion in this study was created using a filter made up of a circle 

5 percent of the image size with edges softened with a Gaussian filter. This was applied at 

random locations of the image, with the amount of occlusion determined by the condition, with 

the control trials having a small amount of occlusion and the occlusion trials having the filter 

applied more often. They found that the decoding in the occluded condition was much less 

accurate than control and contrast conditions, with the masking condition universally less 

accurate across conditions. With regards to feedforward and feedback dynamics and how these 

give rise to object recognition, the authors noted the influence of recurrent processing in 

recognition of degraded stimuli. Backwards masking was determined to be a successful 

measure of interrupting recurrent processing, as masking creates a mismatch between 

feedforward and feedback responses (Lamme & Roelfsema, 2000). 

It is important to develop this understanding of how the propagation of information 

through the ventral stream occurs in challenging visual conditions. Wyatte and colleagues 

(2012) successfully demonstrated that recurrent processing during object recognition creates a 
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strong and stable representation of the object in question, even when the viewing condition of 

the object is degraded, which is frequently the case in real-world vision. They note that the 

highly interactive and dynamic visual processes depend on multiple brain areas at different 

levels of ventral visual hierarchy and that more needs to be done to understand exactly what 

mechanisms are being used during degraded visual conditions. However, the occlusion 

condition within this study is not very representative of true vision, with fragmented masking 

and blurred occlusion patches used to create the experimental stimuli instead of object 

occluding other objects. This may cause important processes within visual object 

representations to be missed when trying to compare these findings to how humans see in the 

real-world, necessitating further study. 

Though ‘partially visible’ stimuli have been utilised in a variety of paradigms, most 

studies observing the effects of occlusion also occlude with masks or black ‘blocks’ which lack 

naturalistic relevance (Smith & Muckli, 2010; Tang et al., 2018). Johnson and Olshausen 

(2005) presented participants with images of real-world objects occluded or deleted with ovals 

obscuring an increasing percentage of missing pixels. They found that occluded trials were 

more easily recognised than deleted trials. However, the ovals can be argued to not be 

representative of the natural visual world, limiting the ecological validity and generalisation of 

their results. It would be important to expand this research avenue by using real-world objects 

as both occluders and occluded objects. This may reveal variations in how accurately people 

judge deleted and occluded object pairs. By introducing an extra layer of visual complexity, 

where two meaningful objects appear in the occluded condition as opposed to just one, a cut-

out like in the deleted condition, or ovals as in the original study, we could gain insights into 

how our visual processing handles these situations. 
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Currently, much present visual object recognition research focuses on single presented 

objects, however this may prove unwise. Examining exactly how the brain processes the 

occluded, as well as occluding, object should be a critical consideration. Occlusion research 

tends to use either a black box or a scrambled noise mask as an occluder (DiCarlo & Cox, 

2007; Johnson & Olshausen, 2005; O’Reilly et al., 2013; Smith & Muckli, 2010; Tang et al., 

2018), which lacks the nuance that the visual system processes in daily life. Novel studies 

exploring more complex visual scenarios, such as multiple object presentations and occlusion 

are building upon research into single objects. This line of research has gone some way to 

reveal that the representation of an object may be altered by the presence of other objects, even 

un-occluded, though the exact mechanisms are still unknown (Baeck et al., 2013; Chelazzi et 

al., 1998; Li et al., 1993; Reddy & Kanwisher, 2007; Rolls & Tovee, 1995; Zoccolan et al., 

2005, 2007). These works contribute to the overarching object recognition literature with added 

complexity and argue for researchers to take this further to explore more ecological multiple 

object presentations such as occlusion. It is known that most objects in natural scenes adhere 

to meaningful structures and locations, predictable in terms of location, viewpoints and sizes 

relative to one another, which has been demonstrated to enhance recognition (Kaiser & Peelen, 

2018; Võ et al., 2019). Thus, it is important to consider how the representation of multiple 

objects, particularly when occluded may offer insight into visual processing throughout the 

ventral stream.  

As previously mentioned, focusing on the role of the occluder, Spoerer et al. (2017) 

used numerical digits as stimuli for both the occluder and occluded objects. Digits, while not 

real-world objects themselves, are frequently observed within the natural environment and can 

be argued to be similar to real-world objects. Manipulating visual clutter, this study 

demonstrated that when multiple objects require identification at once, recurrent networks, but 
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not feedforward mechanisms, were most successful. Spoerer et al. (2017) found that delays in 

processing may be caused by the identification of the occluding object in addition to the 

occluded object. This nuance may have been missed in trials where a non-meaningful occluder 

was the only occluding feature, ignoring the role of the occluding object. The digits themselves 

are simple stimuli that provide a useful starting point for occlusion studies which are more 

applicable to real-world visual experience.  

Early sensory brain areas, like V1, have been studied extensively and it was thought 

that V1 was primarily responsible for basic early-cortical computation by means of orientation-

tuned neurons arranged in a retinotopic map (Ng et al., 2006). However, more recently there 

have been findings implicating V1 in higher cognitive functions, with the activity of V1 being 

modulated by cortical feedback from multiple brain areas (Smith & Muckli, 2010). Scenes with 

occluded sections have been used to demonstrate, using fMRI tasks, that even when primary 

visual cortex areas do not receive direct sensory input, there is internal communication in these 

areas that allows visual context to be known (Muckli et al., 2015).  

Perceptual illusions such as the Kanizsa illusion provide an example of perceptual 

inference through the distinction between modal and amodal contour completion (Kanizsa, 

1976; Kok & De Lange, 2015). Amodal completion is the ability to perceive an entire object 

despite it being occluded, by ‘filling-in’ the missing details based on prior experience of 

perceiving and understanding objects or scenes (Scherzer & Ekroll, 2015). The illusion seen in 

Figure 1.4, presents four ‘Pac-man’ figures yet gives the illusion of four black circles with an 

overlaid white square (Kok & De Lange, 2015), representing amodal completion as a square is 

represented and perceived to be occluding four whole disks. The brain infers the simplest 

‘gestalt’ of the objects presented, relying on prior experience of the world. As occlusion is 

commonplace in the visual world, using inference in this way is key to successful perception. 
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These illusory figures have also been tested in primates, with evidence of neurons in V1 and 

V2 responding to the illusory contours (Lee & Nguyen, 2001).  

Figure 1.4. 

The Kanizsa square illusion. Four ‘Pac-man’ figures or a white square overlaying black circles? 

Adapted from Kok & De Lange (2015). The image appears to contain a solid white square, with well-

defined contours, however this shape is subjective and lacks any physical basis. 

 

 

 

 

 

Illusory stimuli have also been used in studies using high field fMRI methods to build 

a non-invasive laminar profile of feedback, feedforward and recurrent connections between the 

layers of cortical areas. Researchers hypothesised that the feedback mediated activity in V1 

during perception of the illusory shapes would result in a distinct laminar activity profile 

compared to bottom-up stimulation as the illusion causes a perceived representation of a shape 

that is not derived from bottom-up stimulation. Thus across the laminar layers of V1 they 

revealed that top-down activation initiated by a perceptual illusion activates the deeper cortical 

layers of V1, known to be responsible for output and projection to other areas of the cortex 

(Ramachandran, 2002). Whilst neural responses to bottom-up stimuli are usually evident across 

all layers, with the strongest activation in the middle and superficial layers, which are generally 
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associated with receiving information from the LGN (Jia et al., 2023; Lawrence et al., 2019). 

High field scanning affords higher resolution than typical fMRI which allows the analysis of 

additional fine-grained detail that contributes to our understanding of the interplay between 

feedback and feedforward mechanisms in the visual system and beyond. The interaction 

between top-down and bottom-up signals during perception can be observed clearly using 

techniques such as this. 

Research has indicated that V1 not only holds information about visual objects but also 

plays a crucial role in the visual processing when these objects are occluded (Muckli et al., 

2015; Smith & Muckli, 2010). These findings highlight the significance of studying V1 to 

unravel the mechanisms behind occluded object identification, with potential implications for 

enhancing computational models that currently face challenges in achieving robust recognition 

under occlusion (Tang et al., 2018). Morgan et al. (2019) further delved into the role of V1 in 

occlusion using a scene viewing task involving a partially occluded quadrant. Their fMRI study 

analyses then compared occluded V1 activity with line drawings of the occluded area and 

revealed that these drawings more successfully matched the observed activity than standard 

computational models. This underscores the robust processes within the visual system that 

facilitate the perception of occluded scenes. 

1.5. Aims and objectives of this thesis  

Overall, as detailed above, visual object recognition in humans is a complex multi-stage 

process, often outperforming artificial networks, especially under conditions of occlusion 

(Cichy et al., 2016; Guo et al., 2015). It remains unclear whether predictive processing best 

explains object recognition in humans across different levels of the visual system, particularly 

when objects are also used as occluders.  



CHAPTER 1 

 
36 

As consolidated by the literature from this chapter, research in recent years has 

established that visual object recognition uses feedback and feedforward projections to update 

visual information, from bottom-up stimuli information on size, shape and constancy to top-

down predictions of the expected scene category and object identity (DiCarlo et al., 2012; 

Wyatte et al., 2012). As well as this, lateral, recurrent connections are also vital in recognising 

objects, particularly when the visual situation is challenging, for example when a stimuli is 

degraded (by blur, clutter, high contrast or occlusion among other factors that make recognition 

more difficult) and it is believed that amodal pattern completion is aided by these recurrent 

projections (Kietzmann et al., 2019; Wyatte et al., 2012).  

The theory of predictive processing has been influential in how researchers seek to 

‘solve’ object recognition, offering a neat explanation for the recognition of highly diverse 

scenes and objects while conserving neural resources by only propagating the differences - 

prediction errors – from an expected stimuli or scene (Clark, 2013; Kok & De Lange, 2015; 

Rao & Ballard, 1999; Richter et al., 2018).  A measure of predictive processing, particularly in 

neuroimaging studies is expectation suppression, which works from the assumption that a 

predictable stimulus requires less activation than an unpredictable one. However according to 

the sharpening account, when decoding, a predictable stimulus will be more accurately 

represented due to increased knowledge compared to an unpredictable stimulus (Alink & 

Blank, 2021; Feuerriegel et al., 2021), while dampening would produce a less contrasting 

effect. Though there are arguments throughout the literature that the predictive effects are 

simply due to attention, there have been successful efforts to dissociate expectation from 

attention to ensure the correct measure is being recorded (Doostani et al., 2023; Ransom et al., 

2020; Xu et al., 2020).  



CHAPTER 1 

 
37 

Computational models have been increasingly used to explore this field, with access to 

huge visual datasets and a growing reliance on recurrent computations creating more successful 

models of vision (Ali et al., 2022; Kietzmann et al., 2019). However, this field would arguably 

benefit from continued multidisciplinary collaboration, with neuroscience aligning with 

computer science and beyond to link the neural processes of the human visual system with the 

huge computational power and speed of analysis from RNNs/DNNs. Understanding the 

process and mechanisms behind occlusion could particularly benefit computational models as 

the human ability to pattern complete objects even when incredibly occluded is remarkable. 

Hence more human-like models of computational vision may be able to further improve 

recognition of complex objects and scenes within computer science. From the literature, there 

are several questions left unanswered that this thesis has sought to address.  

First, prior studies investigating occlusion, a core visual process, have been 

significantly limited by the stimuli they are using. There is a need to examine more naturalistic 

methods to represent real-world object occlusion. Real objects do not appear in isolation, 

constantly overlapping and occluding in a variety of dynamic shapes and patterns. In fact, we 

see more objects that are partially occluded than are not. Using only deletion or occluding using 

unnatural occluders, provide fascinating results (Johnson & Olshausen, 2005; Smith & Muckli, 

2010; Tang et al., 2018), yet do not represent the same level of object detail present in realistic 

vision. It is currently unclear how V1 and higher visual areas engage with realistic occlusion, 

when objects are occluding other objects, inspiring my motivation to research this. 

Secondly, while some researchers view predictive processing theories as a unified 

account of mental functioning, there is still some doubt over whether predictive processing is 

the best account of visual processing (Alink & Blank, 2021; Ransom et al., 2020), particularly 

under challenging visual conditions such as occlusion. We know from previous studies that 
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context effects exist in V1 without visual stimulation (Smith & Muckli, 2010), however it is 

unclear from these results whether these effects are due to predictive processing. Using 

expectation suppression could help to answer these questions.  

Therefore, this thesis has sought to address these gaps in the literature to extend the 

knowledge of visual object recognition and what mechanisms may be responsible for this 

process, using stimuli that have more complexity and ecological validity. Specifically, these 

experiments aim to add insight into mechanisms which have been neglected by studies so far 

by examining multiple object representations within occlusion, with particular attention paid 

to the EVC and IT. The experiments within this thesis make use of a novel stimuli set created 

to observe how single object presentations compare to multiple objects – by using objects as 

both occluding and occluded objects. In Chapter 2, fMRI was leveraged to investigate whether 

there are differences in decoding when observing objects versus when they were occluded by 

other objects. Chapter 3 sought to take this further, combining the fMRI data from Chapter 2 

with a behavioural experiment using the same stimuli to understand how behavioural reaction 

time (RT) and accuracy data relate to neural representations of occluded objects. Chapter 4 

takes a different approach to this, using fMRI and eye tracking with an expectation suppression 

design to understand whether predictive processing-like mechanisms implicated in processing 

of occluded objects in EVC. Finally, the general discussion will attempt to collate all evidence 

from the experimental chapters as well as the wider literature to speak on the findings and how 

the thesis has addressed the question of object recognition under occlusion. 
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Chapter 2. Neural representation of occluded and deleted objects in visual cortex  
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2.1. Abstract 

The ability of the human visual system to recognize occluded objects is striking, but exactly 

how this is completed is unclear, particularly when multiple complex objects are presented. 

Previous studies investigating occlusion at both the behavioural and neural levels typically 

used simple shapes or cut-outs as occluders, rather than other objects. The goal of the present 

study was to understand what best explains neural representations of occluded objects under 

more realistic occlusion i.e., when objects occlude other objects. We approached this by 

explicitly relating activity patterns of occluded objects (e.g., a cup occluding a face) with those 

generated when viewing the same objects in isolation (the cup or the face). In an event-related 

fMRI design, participants (N=12) performed a one-back task while being presented with 

objects presented in isolation (un-occluded), occluded by another object, or cut out by a 

corresponding object silhouette. We defined anatomical regions of interest in EVC (V1-V3), 

mid-visual regions (V4/LO1-3) and IT. Decoding analyses showed that EVC responses to 

occluded objects were better determined by the visible features whereas in IT inferred features 

also explained the responses well. Our data also showed strong effects of competition across 

multiple object representations in EVC, although these were significantly weaker in IT. In sum 

our results demonstrate that IT better decouples responses to real-world occluded objects with 

robust representations evident across multiple competing objects. Thus, our data support the 

importance of investigating neural mechanisms underlying object recognition under more 

complex and naturalistic occlusion scenarios.  
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2.2. Neural representation of occluded objects in visual cortex  

2.2.1. Significance of occlusion 

Occlusion is constant in natural, three-dimensional scenes, with some degree of 

obstruction from one object to another being almost unavoidable. Partially occluded objects 

are recognised easily in the human brain, though Tang et al. (2014) noted there were delays of 

approximately 100ms for partial objects in contrast with whole objects. Evidence of robust 

object recognition under conditions of occlusion is not just unique to humans. There has been 

documented evidence in mammals, birds and even fish, possibly all inherited from early 

vertebrate ancestors (Sovrano & Bisazza, 2008). 

The ability to identify the mechanisms of visual object recognition under occlusion will 

allow improvement in computer vision models. These often fall short in their ability to combat 

the multitude of variations occlusion involves, even when modified to handle mask occlusion 

(Zhu et al., 2019). Partial occlusions pose a challenge due to the reduction of visual evidence 

available. The human visual system is required to not only process the identity of the object 

under the condition of occlusion, but also the occluder and scene context to create a full 

understanding. This process is thought to require signals from the prefrontal cortex, V4 and the 

IT cortex (Fyall et al., 2017). The visual system is adept at compensating for the missing 

information in scenes that results from occlusion, but how this is done is not fully understood. 

In particular, the role of the occluding object in visual processing and its effect on the 

subsequent recognition of the occluded object is unclear. These ventral stream areas (Goodale 

& Milner, 1992), particularly the higher order visual areas, remain selective to occluded 

stimuli. Even when there is as little as nine percent of the original image available through 
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occluding Gaussian ‘bubbles’ (Tang et al., 2014), incredibly robust neural selectivity is 

demonstrated.  

However, many previous studies investigating occlusion at both the behavioural and 

neural levels (Johnson & Olshausen, 2005; Smith & Muckli, 2010; Tang et al., 2018) have 

typically used simple shapes or cut-outs as occluders rather than other objects (but see Spoerer 

et al., 2017), lacking some naturalistic or ecological validity. Teichmann et al. (2022) utilised 

more dynamic object occlusion methods, where a shape seemingly disappears briefly behind 

an occluding quadrant area. They found that object identity and luminance information is less 

important than the object position information, which was represented during occlusion for up 

to 200ms in predictable and unpredictable movement conditions. Thus, suggesting that the 

nature of object representation during dynamic occlusion is different from static perceptual 

visual recognition, further enforcing that research must strive to look at more naturalistic 

methods of presenting stimuli as far as possible. There is a body of research now that is seeking 

to move from reliance on the presentation of single objects, revealing that the representation of 

an object may be altered by the presence of other objects, though the exact mechanisms are 

still unknown, particularly within visual circumstances such as occlusion (Baeck et al., 2013; 

Chelazzi et al., 1998; Li et al., 1993; Reddy & Kanwisher, 2007; Rolls & Tovee, 1995; 

Zoccolan et al., 2005, 2007). 

Amodal completion, a process in which missing parts of a shape are ‘completed’, linking 

the disconnected parts to a single ‘gestalt’, has been suggested as a potential explanation for 

occlusion recognition (Nanay, 2018a; Rauschenberger et al., 2006; Thielen et al., 2019; 

Weigelt et al., 2007). Contour information has been associated with early visual areas, while 

the IT cortex has been implicated in overall recognition. Amodal completion represents the 

occluded parts of objects we see, with the visual system completing the objects using visual 
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contours and prior, predictive experience, employing top-down feedback driven by previous 

experience as well as recurrent bidirectional influences (Kafaligonul et al., 2015; Nanay, 

2018a; Tang & Kreiman, 2017). EEG evidence indicates that early amodal completion effects 

are observed when recognising partially visible objects, facilitated when missing object 

information is replaced by an occluder rather than being completely removed (Johnson & 

Olshausen, 2005). Amodal completion is thought to be more applicable to natural images than 

the artificial images used in many lab-based studies (Nanay, 2018a). 

Unsurprisingly, there have been prevalent effects across the lifespan regarding 

occlusion, with predictive mechanisms evolving to encompass the sensory experience which 

with aging may lead people to rely strongly on predictive processes based on prior experience 

and expectations of what they are perceiving (Rossel et al., 2022). There is also additional 

evidence to suggest that even infants perceive that objects persist during occlusion (Teichmann 

et al., 2022), emphasising the prominence of object recognition under occlusion and the need 

to understand this important process.   

2.2.2. Importance of recurrent processing models 

While object identity was previously considered to be extracted in a hierarchical process 

along the ventral object vision pathway (Baeck et al., 2013), in their review, Wyatte, Jilk and 

O’Reilly (2014), claimed that object recognition would not be possible if only top-down or 

bottom-up processing was utilised, requiring input from recurrent processing. Recurrent 

processing occurs where interconnected sensory systems involve both feedforward and 

feedback connections. These connections enable adjacent layers to interact locally and 

recurrently to refine representations and give rise to a dynamically extended network that can 

activate both local and widespread areas (Han et al., 2018). Flexible communication of top-
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down and bottom-up influences has been found to allow enhanced representations of objects 

(Yan et al., 2023). This recurrent processing can strengthen bottom-up signals when objects 

are viewed under conditions of occlusion, poor lighting, shadows, and other variable factors. 

Thus, facilitating the creation of a strong, stable representation of an object that allows robust 

recognition (Wyatte et al., 2012).  

Furthermore, vision has been confirmed to be a highly dynamic process reliant on 

multiple areas of the ventral stream for different perceptual processes. Accordingly, recurrent 

connections have become a plausible way by which to predict visual features of heavily 

occluded objects. These connections have been shown to successfully capture the physiological 

delays observed throughout the ventral visual stream, suggesting indirect evidence for object 

completion occurring in the IT cortex (Tang et al., 2018). Tang et al. (2018) demonstrated the 

presence of pattern completion when objects are poorly visible or occluded. Even when objects 

were occluded, or had sections cut-out, using gaussian bubbles until they were less than 15 per-

cent visible, recognition was still robustly successful. However, participants were worse at 

recognising occluded objects when a backwards masking task was employed, presumably 

through the interruption of recurrent processing. In addition, the researchers determined that 

while standard feed-forward models were not robust to occlusion, using recurrent neural 

networks enabled much better recognition when objects were occluded or obscured. Their 

recurrent computational model, adapted from feed-forward AlexNet architecture (Krizhevsky 

et al., 2012), was used to determine the difficulty humans would have in recognising occluded 

stimuli, accounting for physiological delays along the visual stream, with or without the added 

difficulty of a backwards mask. There have been anatomical findings to indicate massive levels 

of recurrent feedback connectivity throughout the visual streams (Felleman & Van Essen, 
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1991; Sporns & Zwi, 2004). Therefore, recurrent connectivity should be considered when 

determining the mechanisms driving object recognition when pattern completion is required. 

Several tasks have been developed with occlusion in mind, Spoerer, McClure and 

Kriegeskorte (2017), utilised a computational modelling method to create tasks demonstrating 

that recurrent networks outperformed feedforward control models during occlusion. They used 

digits occluding each other using whole or fragmented forms of meaningful digit stimuli for 

both occluder and occluded object, hypothesising that recurrent dynamics improved the 

recognition performance in conditions of occlusion. This work successfully demonstrated that 

recurrent networks outperformed feedforward models when performing tasks under conditions 

of occlusion. However, though these tasks effectively validated that occluding objects in more 

realistic ways was more applicable to real-world situations, there is still a way to go in creating 

tasks which occlude completely naturalistically. The digits themselves are simple stimuli to 

use, but a valuable starting point for future development. Spoerer et al., (2020) have since used 

ImageNet – a large dataset with natural images (Deng et al., 2009; Russakovsky et al., 2015) - 

to observe recurrent network model performance on this varied dataset. However, the stimuli 

were isolated objects, so recognition under occlusion is still yet to be determined by this.  

Additionally, there are interactions between recurrent connectivity and learning, which 

predicts that high-level visual representations could be influenced by error signals from 

proximal brain areas throughout visual learning (O’Reilly et al., 2013). The robust way in 

which visual clutter or degradation is compensated for in the ventral visual stream may be 

attributed to recurrent connectivity, depending on the dynamic nature of the brain (Wyatte et 

al., 2012). Modelling of network connections in the human ventral stream by Kietzmann et al. 

(2019) established that information processing is largely affected by recurrence for the 

understanding of categorical divisions of objects.  
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Deep convolutional neural networks (DCNNs), that mimic the major principles of the 

visual pathway have been able to represent how the visual information is transformed from 2D 

image using feed-forward layer connections to analyse images. Bracci & Op de Beeck (2023) 

found that early layers of models correspond with retinotopic areas, whereas later layers 

capture aspects of higher-level representations. These models have been generally improved 

by the addition of feedback and recurrent connections. Recurrent neural networks (RNNs) are 

more neurobiologically realistic than feedforward counterparts and more robust in their ability 

to recognise objects, especially under challenging visual conditions (Spoerer et al., 2017; Tang 

et al., 2018; Yan et al., 2023). RNNs align effectively with predictive processing models, more 

efficiently coding information than other kinds of models (Ali et al., 2022). These networks 

establish more computationally efficient recognition, especially when combined with lateral 

connections (Richter et al., 2023), leading to more efficient RNNs. These would be primed by 

the predictions from prior visual experience and further split into subpopulations of prediction 

and error units respectively (Ali et al., 2022). The field of computer vision is arguably 

benefitting from continued use of recurrent convolutional connections.   

2.2.3. Our motivation 

Previous work demonstrated that it is possible to decode the identity of objects from 

the patterns of brain activity when viewed in isolation. However, objects almost never appear 

in isolation in daily life, therefore it is important to understand how the visual system 

simultaneously processes several objects. A study by MacEvoy and Epstein (2009) examined 

this, using MVPA to observe whether the lateral occipital cortex evoked activity patterns to 

pairs of objects that related to the activity patterns evoked by the same objects presented 

singularly. They observed, using searchlight analysis, that classifiers could significantly predict 

object pairs from averages of single-object patterns. Their results showed that the human lateral 
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occipital cortex (LOC) and higher visual areas may be important in the ability to average 

responses and normalise them to support the coding and recognition of multiple objects 

simultaneously. Their ability to determine that pair patterns were decoded with high accuracy 

to synthetic patterns created from single objects inspires the question of whether the same 

would occur with occluded object pairs compared to single objects.  

Thus, the results of MacEvoy and Epstein (2009) motivate the present study, as if 

objects were overlapping each other, the results may be even more informative about the 

process by which objects are recognised simultaneously in a scene.  A similar pattern of results 

from this study may represent a process by which the hidden features of an object within an 

occluded pair are ‘completed’ by the higher visual areas, influenced by context clues from the 

visible objects and the prior experience and expertise of the visual system associated with the 

information available. Being able to evaluate the location of the activity in the visual system 

would shed light on whether the higher visual areas are responsible for this completion and 

under what conditions this is expected.  

A study by Reddy et al. (2009) demonstrated that the multivoxel patterns of two objects 

presented simultaneously could be determined by averaging the sum of  the two objects when 

each is presented in isolation. Specifically, that the activation seen for two objects presented as 

a pair was well-predicted by the summation of the activation of the two objects within the 

pairing each being shown separately. The biased competition theory proposes that objects 

compete for cortical representation in a network of mutual inhibition where there is a bias 

towards the attended item (Proulx & Egeth, 2008). This theory provided the basis for Reddy 

and colleagues’ (2009) research, where they found that the overall influence of attention is 

largely independent of the category selectivity, but that attention can bias weightings in favour 

of an attended stimuli at the neural level. The researchers presented objects in four categories 
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(faces, houses, shoes, and cars) individually or in pairs, where each category was either 

attended, unattended or with attention divided between the object images. They found that 

attention shifted the weight by approximately 30 per cent in favour of the attended stimuli, 

following the biased-competition framework and in line with primate literature (Fallah et al., 

2007; Ramezanpour & Fallah, 2022).  

Moreover, the average response to a pair of stimuli approximating the sum of the 

individually presented responses generates questions for the occlusion literature (Reddy et al., 

2009). As a result, our study seeks to observe whether this phenomenon is present when the 

simultaneously presented objects are layered so that one occludes another. This recognition 

would require the visual system to ‘fill in’ gaps, necessitating increased attention. We approach 

this question by explicitly relating the activity patterns generated for objects under occlusion 

to those generated when viewing the same objects in isolation. The current study tests the 

assumption that when observing an occluded pair of objects, or one with a deleted ‘cut out’ 

section, that the approximate responses of the pair would correspond to the responses of the 

individually presented objects, as if the two images were presented side by side.  

In our research, we employ a novel stimuli set comparing single object displays with 

occluded object pairings, aiming to shed light on the neural representation of occluded objects. 

Our primary idea is that when we analyse the neural activity using cross decoding, the IT cortex 

will represent occluded objects in a way that's more similar to how it represents unoccluded 

objects, having successfully utilised pattern completion. We do not expect to see this similarity 

in EVC, with the region being more susceptible to the competition effects of multiple objects 

being represented at once.  
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2.3. Methods 

2.3.1. Participants 

Self-reported right-handed healthy participants (N = 12; 4 Male, mean age = 28.25, SD 

= 5.34) participated in this fMRI experiment. All participants reported normal or corrected to 

normal vision and were deemed eligible after meeting MRI screening criteria. Informed 

consent was obtained in accordance with approval from the Research Ethics Committee of the 

MRC Cognition & Brain Sciences Unit. Participants received £22.50 for their time.  

2.3.2. Stimuli and design 

The study utilised a rapid event-related fMRI design where participants were presented 

with a set of object images presented either in isolation, occluded by another object or by a ‘cut 

out’ object silhouette (see Figure 2.1).  

Building on previous research object recognition of multiple objects at once (MacEvoy 

& Epstein, 2009), this stimuli set has been specifically created to measure how occluded object 

pairs relate to single object presentations (Mansfield et al., 2023). The novel stimuli were made 

up of eight objects; banana, dog bowl, mug, human face, monkey face, human hand, monkey 

hand and watermelon, where these eight stimuli were unoccluded and represented the single 

object trials. These objects span various salient semantic categories (e.g., animate/inanimate, 

human/non-human, natural/artificial), which are easily recognised in human vision (Mur et al., 

2013). There were 56 occluded and 56 deleted images comprised of all possible pairs of the 

eight whole objects visible in the occluded stimulus image. PNG images were presented in 

colour on a grey background at 799x799 pixels.   
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Figure 2.1.  

The composite stimuli for the occluded (left) and deleted (right) conditions. The unoccluded images are 

visible in the diagonal of the occluded stimuli condition.  

 

2.3.3. Procedure 

Before the study commenced, participants saw an information sheet and gave informed 

consent to take part in the study. They each completed an MRI eligibility checklist to ensure 

their safety in the scanner and were talked through safety protocols and their ability to stop the 

scanning at any point if they were in discomfort. If they were eligible and happy to proceed, 

they were taken to the scanning room to begin the task. They performed some practise trials to 

ensure they understood the task required. 

Participants saw a fixation cross which they were instructed to look at continuously. 

During each block, a stimulus was displayed on the screen for 1 second, followed by 2.5 

seconds of fixation (3.5 ITI). The task involved a one-back repetition detection task using two 

response buttons on a button box, where one button should be pressed when any object in trial 
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N was shown on trial N-1 and the other button should be pressed when there were no repeated 

objects (front or back objects were both to be considered in occluded pairs). Null events 

accounted for 20 percent of trials.   

Participants took part in up to 6 runs of the main experiment (M = 5.83), with each run 

lasting 9 minutes 44 second (128 trials per run: 56 occluded object pairs, 56 deleted pairs and 

8 single objects repeated twice, see Figure 2.2). In a localiser scan, participants viewed colour 

images of faces, places, objects and scrambled versions in a block design. Stimuli were 

presented on a uniform grey background. Each block lasted 16s (444ms stimulus duration, no 

gap) interspersed with 16s fixation blocks. Four blocks of each stimulus type were presented 

within the run. This resulted in a total run time of 6 minutes 40s. Participants were also asked 

to lie still while an anatomical scan was run to allow clearer analysis of the areas of the cortex 

of interest. A 5-volume scan that lasted 30 seconds was acquired in the opposite phase encode 

direction (posterior to anterior) for every participant. Participants were debriefed after the 

completion of the scanning. The entire scanning session, including behavioural training, the 

localiser run and anatomical scan, lasted no more than two hours. 
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Figure 2.2.  

An example of an occluded object pair, a deleted object pair and the two single objects both pairs are 

comprised of. 

 

2.3.4. MRI data acquisition 

Structural and functional MRI data was collected using a high-field 3-Tesla MR scanner 

(3T Siemens Prisma, MRC Cognition and Brain Sciences Unit). High resolution T1 weighted 

anatomical images of the brain were obtained with a three-dimensional magnetisation-prepared 

rapid-acquisition gradient echo (3D MPRAGE) sequence (192 Volumes, 1mm isotropic). 

Blood-oxygen level dependent (BOLD) signals were recorded using a multiband each-planar 

imaging (EPI) sequence: 471 volumes, TR = 1240ms; TE = 30ms; flip angle 74; 34 slices, 

matrix 78 x 78; voxel size = 2X2X2; slice thickness 2mm; no interslice gap; field of view 192; 

multiband factor 2, Partial Fourier = 7/8, no Grappa. The visual display was rear projected onto 

a screen behind the participant via an LCD projector. A 5-volume scan was acquired in the 
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opposite phase encode direction (posterior to anterior) for every participant to allow distortion 

correction to be completed.  

2.3.5. MRI data pre-processing 

Functional data for each experimental run, in addition to localiser runs was pre-

processed in Brain Voyager 20.4 (Brain Innovation, Maastricht, The Netherlands; Goebel et 

al., 2006), using defaults for slice scan time correction, 3D body motion correction and 

temporal filtering. Functional data were intra-session aligned to the pre-processed functional 

run closest to the anatomical scan of each participant. 

Distortion correction was applied using COPE 1.0 (Breman et al., 2020; Fritz et al., 

2014), using the 5-volume scan acquired for each participant. Voxel displacement maps 

(VDMs) were created for each participant, which were applied for EPI distortion correction to 

each run in turn.  

Functional data were then coregistered to the participant’s ACPC anatomical scan. Note 

no Talairach transformations were applied, since such a transformation would remove valuable 

fine-grained pattern information from the data that may be useful for MVPA analysis (Argall 

et al., 2006; Fischl et al., 1999; Goebel et al., 2006; Kriegeskorte & Bandettini, 2007). For the 

main MVPA analyses (described further below) we conducted a GLM analysis independently 

per run per participant, with a different predictor coding stimulus onset for each trial (N=128: 

56 occluded object pairs, 56 deleted pairs and 8 single objects repeated twice) presentation 

convolved with a standard double gamma model of the haemodynamic response function (see 

(Greening et al., 2018; Smith & Muckli, 2010). The resulting beta-weight estimates are the 

input to the pattern classification analyses described below (see multivariate pattern analysis). 

A GLM with 128 trials per run was used, with separated GLMs by run for decoding.  
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2.3.6. Anatomical regions of interest 

Anatomical regions were created in Free Surfer using the Glasser Parcellation (Glasser 

et al., 2016) for early visual cortex (V1-3), mid-visual regions (V4/LO1-3) and IT as in 

Kietzmann et al. (2019) from each participant’s anatomical MRI scan in ACPC space. The top 

1600 voxels showing the strongest response from each bilateral region of interest were defined 

by an independent functional localiser (Faces, Places, Objects – see Charest et al., 2014) and 

were used in subsequent analysis. The BrainVoyager co-registration procedure was used  to 

align the native space anatomy from FreeSurfer with that of the functional data in ACPC space 

(Bailey et al., 2023). See Figure 2.3 for a visual representation. 

Figure 2.3.  

An example of a surface from FreeSurfer with labels for the areas EVC (green), mid-visual regions 

(purple) and IT (red), for one hemisphere of one participant in this study.  
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2.3.7. Multivariate pattern analysis 

Analysis involved testing hypotheses by extracting single trial response patterns in 

specific regions of interest (IT, EVC, mid visual regions) and analysing these patterns with 

multivariate pattern analysis (MVPA; e.g., Haynes, 2015) decoding. A linear support vector 

machine (SVM) was trained and tested on independent data, using a leave one run out cross-

validation procedure (Smith & Goodale, 2015; Smith & Muckli, 2010) to decode object 

identity in each condition (Single Objects, Occluded Front, Occluded Back, Deleted) for a basic 

decoding analysis as well as in cross-decoding and synthetic decoding analyses. The classifier 

always received single trial brain patterns of activity (beta weights) from one of the three ROIs, 

and the independent test data was tested on single trial activity patterns.  

The LIBSVM toolbox (Chang & Lin, 2011) was used to implement the linear SVM 

algorithm, using default parameters (C = 1), which uses the 1vs1 method for multiclass 

classification. The activity pattern estimates (beta weights) within each voxel in the training 

data were normalised between -1 to 1, before being used in the SVM (Bailey et al., 2023; 

Greening et al., 2018; Knights et al., 2021; Muckli et al., 2015). 

The test data were also normalised using the same parameters as in the training set, to 

optimise classification performance. To test whether group level decoding accuracy was 

significantly above chance, non-parametric Wilcoxon signed-rank tests were performed on all 

MVPA analyses, against the computed empirical chance level (Formisano et al., 2008; 

Greening et al., 2018), with all significance values reported two-tailed. We used a permutation 

approach – randomly permuting the mapping between each condition and each label, 

independently per run, to calculate the empirical chance level for each participant and each 
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decoding analysis separately. We note here that the average empirical chance level across all 

participants, regions, and analyses was 0.126, with a standard deviation of .002.  

Main effects and interactions with the ROIs were tested using a permutation ANOVA 

which was implemented using the permuco package in R Studio (Kherad-Pajouh & Renaud, 

2015; RStudio, 2021). This procedure generated a distribution of parameter averages using 

10,000 permutations of individual parameter values (Avery et al., 2021). Wilcoxon tests were 

used to follow up significant differences from the permutation ANOVA results. Graphs of the 

data were created using ggplot2 (Wickham, 2016). Tables of specific values from Wilcoxon 

tests can be viewed in the Appendices. 

2.3.8. Basic decoding  

In the basic decoding analysis, the classifier was trained and tested separately for each 

main condition (single, occluded back, occluding front and deleted). This provides a simple 

gauge of how different the conditions are to the single objects presented in isolation.  

2.3.9. Cross decoding 1: Comparing single presentations with remaining conditions. 

The classifier was trained on single object presentations and tested on the remaining 

objects (front, back and deleted) (see Figure 2.4). This provides an index of how much the 

response present to single objects in isolation is present in each other condition. It allows an 

index of completion to be collected, as if there is completion occurring; for example, if the 

single to back condition had a higher decoding accuracy in IT than EVC it would suggest that 

there is more completion occurring in this area, perhaps having a higher reliance on the inferred 

features over the visible features.  
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Figure 2.4.  

A visual representation of the first cross decoding condition, where the classifier was trained on single 

objects and tested on the remaining object conditions.  

 

2.3.10. Cross decoding 2: Decoding the back object using single or deleted objects. 

The classifier in this case was trained independently on single object presentations or 

deleted objects and tested on the back object for both conditions. This allows the classifier to 

be tested on two differing types of visual information: either the single object or the deleted 

pairing back object (see Figure 2.5). The rationale here is to test what best predicts the occluded 

object: the whole back object or just the visible part of it, as in the deleted trial. Testing this on 

the same information allows a demonstration of how capable the components of the visual 

system, from early visual to higher order, are at making these inferences of object identity when 

some visual object information is missing.  
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Figure 2.5. 

A visual representation of the second cross decoding test and train data.  

 

2.3.11. Synthetic decoding  

For synthetic decoding, the values for either two single objects or front plus deleted 

object sections were used to create synthetic patterns (see Figure 2.6). Synthetic decoding 

analysis has been specifically motivated by the findings of MacEvoy and Epstein (2009) where 

decoded activation patterns of multiple simultaneous image presentations were directly 

comparable to those of the summed averages of the activation to the single objects (e.g. an 

image pair showing a cup and hand together - though not occluding each other - would have 

comparable activation to the summed activation of both an image of a cup and a separate image 

of a hand).  

As well as this, MacEvoy and Epstein (2009) used synthetic decoding to great effect. 

They found that if they replaced pair pattern classification (which had previously demonstrated 

robust ability to predict multiple objects from their single objects) for half of the data with 
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synthetic patterns created through the averages of the corresponding single objects, these 

synthetic patterns for pairs of objects were successfully recognised, particularly when using 

the mean of the composite objects. Therefore, to build on this within occlusion, rather than two 

simultaneously presented but distinct objects, synthetic decoding allows us to target what best 

explains the activity patterns that account for occluded pairs. The front plus deleted condition 

represents what specific visual features are visible while the two single objects represent both 

the visible parts of each object, and what is potentially being inferred to ‘complete’ the object 

recognition.   

Figure 2.6.  

Visual representation of the synthetic decoding.   
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2.4. Results 

2.4.1. Basic decoding 

To assess the baseline decoding performance in each condition, the classifier was 

trained and tested separately for each main condition.  

2.4.1.1. Wilcoxon  

To test whether group-level decoding accuracy was significantly above chance we used 

Wilcoxon signed-rank tests against empirically derived chance levels (Bailey et al., 2023; 

Formisano et al., 2008; Greening et al., 2018), all significance levels two-tailed. This revealed 

decoding of object identity as significantly different from chance in each condition (single, 

occluded front, occluded back and deleted) in each brain region (EVC, MID, IT), with all p’s 

≤ .001, all d’s >= .884, using signed rank two-tailed tests versus subject-specific empirical 

chance levels. 

2.4.1.2. ANOVA 

A permutation ANOVA on condition (single, occluded front, occluded back and 

deleted) and region (EVC, Mid-visual regions, IT) was run (see Figure 2.7 for visual 

representation of each condition across regions). This revealed a significant effect of condition 

F(3,33) = 27.65, p < .001, as well as a significant effect of region, F(2,22) = 32.13, p < .001. 

There was also a significant interaction between brain region and condition, F(6,66) = 9.77, p 

< .001.  
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Figure 2.7. 

Violin plot showing the basic decoding accuracy across either single objects, the occluding front, 

occluded back or deleted back objects in areas of visual cortex. The classifier was trained and tested 

separately for each main condition. Lines between conditions represent significant differences within 

regions as determined by pairwise wilcoxon tests, FDR corrected.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 

2.4.1.3. Post-hoc tests 

After observing the results from the main analysis, post-hoc tests were conducted to 

further examine the differences between decoding conditions across brain regions. Wilcoxon 
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signed rank tests were performed for each pair of decoding conditions, and the significant 

pairings, were corrected for multiple comparisons using FDR adjustments. The non-parametric 

Wilcoxon test was used as a result of completing the permutation ANOVA.  

Among the significantly different pairs, the pairing of Occluded Back – Deleted 

remained significant in each brain region, as was Occluded Back – Occluded Front. 

Additionally, the Occluded Front – Deleted pairing was found to be significant in the EVC, but 

not in the higher visual region of IT. 

2.4.2. Cross decoding 1: Comparing single presentations with remaining conditions. 

The first cross decoding used the classifier was trained on single image presentations 

and tested on each of the remaining conditions (back, front and deleted).  

2.4.2.1. Wilcoxon  

Wilcoxon signed rank tests against empirically derived chance levels revealed decoding 

of object identity as significantly different from chance in each cross-decoding condition 

(single to front, single to back, single to deleted (visible) object) in across brain regions. This 

revealed decoding of object identity as significantly different from chance in each condition, 

across each brain region, with all p values ≤ .001, all d’s >= 2.12; signed rank two-tailed test 

versus subject-specific empirical chance level, FDR corrected 

2.4.2.2. ANOVA 

A permutation ANOVA on condition (single to front, single to back, single to deleted 

back object) region (EVC, Mid-visual regions, IT) was run (see Figure 2.8 for visual 

representation of each condition across regions). This revealed a significant effect of condition 
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overall, F(2,22) = 20.13, p < .001. There was also a significant effect of region found, F(2,22) 

= 11.35, p < .001. There is a significant interaction between brain region and condition overall, 

F(4,44) = 6.28, p < .001.  

2.4.2.3. Post-hoc tests 

The statistical analysis involved conducting Wilcoxon signed rank tests for each pair 

of decoding conditions across brain regions. The results, presented in Figure 2.8 show that 

specifically in EVC, the pairings of single to deleted – single to front and single to back – single 

to deleted were both found to be significant. This may be due to a competition effect where in 

the occluded pairings there are multiple object representations to reconcile, causing lower 

decoding accuracy, whereas the deleted condition only has one visible object and thus less 

competition visual information to be recognised. In the IT region, there are no such significant 

pairings from the deleted object condition, suggesting a higher tolerance to multiple object 

representations. The only significant pairing was single to back – single to front, perhaps 

simply due to the easier recognition of the front – unoccluded – object compared to the 

occluded back object. No significant pairings were observed in the mid-visual region. 
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Figure 2.8.  

Violin plot showing the cross-decoding accuracy when the classifier was trained on single objects and 

tested on either front object, back object, or deleted object presentations. These are split across areas of 

visual cortex. Lines between conditions represent significant differences within regions.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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2.4.3. Cross decoding 2: Decoding the back object using single or deleted objects 

In the second cross-decoding, the classifier was trained on the single or deleted objects 

and tested on the back objects.  

2.4.3.1. Wilcoxon  

Wilcoxon signed rank tests against empirically derived chance levels revealed decoding 

of object identity as significantly different from chance in each cross-decoding condition 

(single to back and deleted to back (visible) object) across brain regions. This revealed 

decoding of object identity as significantly different from chance in each condition, across each 

brain region, with all p values ≤ .001 and all d’s >= 2.12; signed rank two-tailed test versus 

subject-specific empirical chance level. 

2.4.3.2. ANOVA 

  A permutation ANOVA on condition (single to deleted back object and deleted to 

back object) and region (EVC, Mid-visual regions, IT) was run (see Figure 2.9 for visual 

representation of each condition across regions). This revealed no significant effect of 

condition overall, F(1,11) = .768, p = .400. There was a significant effect of region found, 

F(2,22) = 10.62, p < .001. Results revealed a significant interaction between brain region and 

condition overall F(2,22) = 10.00, p < .001.  
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Figure 2.9.  

Violin plot showing the cross-decoding accuracy when the classifier was trained on single or deleted 

object images and tested on occluded back objects to predict back object identity. They are split across 

areas of visual cortex. Lines between conditions represent significant differences within regions from 

Wilcoxon tests, FDR corrected for pairwise errors.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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2.4.3.3. Post-hoc tests 

Pairwise Wilcoxon tests were conducted for each pair of decoding conditions across 

brain regions, with significant pairings expanded in the Appendices. The significantly different 

pairings were observed between the conditions of single to occluded and deleted to occluded 

in EVC and in IT. These results emerge in opposing patterns between the regions. In EVC there 

is a higher decoding accuracy in the deleted to occluded condition, where the classifier was 

trained on only the visible visual information from the back, occluded object. Whereas this 

pattern is flipped for the higher visual regions. In IT we discover the single to occluded 

condition boasts higher accuracy, suggesting that this region is better able to activate the full 

object representation from a partially occluded stimulus, using the inferred details successfully.  

2.4.4. Synthetic decoding  

This decoding condition used either two single objects or front plus deleted object 

sections. This allowed the analysis of whether analysis of single objects or the front plus deleted 

sections that made up the occluded pair yielded more accurate representations of the occluded 

back object. 

2.4.4.1. Wilcoxon  

Wilcoxon signed rank tests against empirically derived chance levels revealed decoding 

of object identity as significantly different from chance in each synthetic-decoding condition 

(two single objects and front plus deleted objects) in each brain region (EVC, MID, IT).  All 

p’s ≤ .012, all d’s >= 1.34; signed rank two-tailed test versus subject-specific empirical chance 

level. 
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2.4.4.2. ANOVA 

A permutation ANOVA was conducted to examine the effects of condition (two single 

objects and front plus deleted objects) and region (EVC, Mid-visual regions, IT). The visual 

representation of each condition across regions can be found in Figure 2.10. The results 

revealed a significant main effect of condition, F(1, 11) = 58.32, p < .001, and region, F(2, 22) 

= 9.28, p = .001. Additionally, there was a significant interaction between condition and region, 

F(2,22) = 7.71, p = .003. 

2.4.4.3. Post-hoc tests 

The statistical analysis involved conducting pairwise t tests for each pair of decoding 

conditions across brain regions. The results show significant differences (Figure 2.10). 

Specifically, there were significant differences in the EVC and mid-visual regions where the 

front plus deleted condition was more accurately decoded than the two single condition. There 

was no difference in the IT region. These results demonstrate the largest differences between 

the accuracy in conditions are in the early visual areas, with these differences diminishing by 

the time they reach IT. This may be indicative of the visual visible features being crucial to 

EVC, while in IT the higher-level models can also predict occluded object identity well, with 

decoding relatively stable in this ROI whether there were inferred features to contend with or 

not.  
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Figure 2.10. 

Violin plot showing the synthetic decoding accuracy when training a model on two single objects as 

well as the front occluding object plus the back object in the deleted condition. These are split across 

the early visual cortex, mid-visual regions, and higher visual regions. Lines between conditions 

represent significant differences within regions from Wilcoxon tests, FDR corrected. 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 

  

** 

*** 
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2.5. Discussion 

In the present study, we reveal how visual object representation takes place under 

conditions of occlusion and deletion. The results first demonstrated using Wilcoxon signed 

rank tests that each decoding condition was significantly different from chance. In line with 

our hypothesis, we found differences between EVC and IT visual areas, where IT was more 

tolerant of the presence of multiple objects than EVC. As determined by our first cross 

decoding analysis, the differences in accuracy in EVC when multiple objects were present were 

not observed in IT. Supporting our second hypothesis, we show that in IT, it is possible to 

decode the identity of multiple objects using both visible and inferred features. This finding 

was displayed using our second cross decoding condition, where IT demonstrated higher 

decoding accuracy after training on the single objects, which included inferred features, as 

opposed to the deleted condition that showed only the visible features from the back, occluded 

object. We also see this distinction in differences between visible and inferred features in 

synthetic decoding, where EVC could decode significantly more accurately when the pattern 

was created using only the visible visual information that would be seen in the occluded 

pairing. The pattern of results in IT differed from EVC, showing a relatively stable decoding 

accuracy across both the inferred and visible features.  

The basic condition, where the classifier was trained and tested separately for each main 

condition on the occluded and deleted objects, demonstrated an effect of condition on 

decoding. The occluded back condition was significantly less accurate than any other 

condition, followed by occluded front and single then deleted back, particularly in EVC. There 

is a significant difference across brain regions, with EVC showing much higher decoding than 

higher visual areas which are more uniform and show smaller differences between conditions. 

The significantly higher decoding accuracy for the deleted condition compared to the occluded 
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back condition in each region of interest, which both seek identification for the same amount 

of visible back object, represent the effect the visual clutter has on the computational effects of 

the brain when faced with multiple objects. The most significant difference between these two 

conditions was present in EVC, suggesting a greater reliance on lower-level visual components 

and less ability to segregate the two objects in the occluded pairing. The difference in the 

occluded pairing front object and deleted object condition is present in EVC but non-significant 

in IT. We posit that this is due to the additional information present in the occluded pairing, 

regardless of whether the front or back object is being recognised, is more computationally 

taxing for the EVC to process, leading to this lower accuracy in the front compared to deleted 

condition. In IT, this is not the case, with the ability to process multiple object representations 

at one time being more stable across conditions in IT.  

This finding is partially in line with Johnson & Olshausen (2005), where occluders 

reduce the ability to accurately decode object identity. However, they found that the deleted 

condition was less accurate than the occluded condition. While their method still utilised the 

depth cue of having multiple shapes presented at once, they used ovals as the occluders and 

cut-out sections. Therefore, lacking meaningful visual information that an additional object 

brings to the object pairings. Our findings present multiple objects, increasing the amount of 

visual object data, causing competition effects across multiple object identities to emerge. 

Perhaps playing a critical role in the recognition of partially visible objects in challenging 

visual conditions across brain areas. 

Using cross-decoding, we found that when comparing the single object condition to the 

conditions of occluding front, occluded back, and deleted back, EVC showed better decoding 

for the single to deleted condition than either of the others. This may reveal that the early visual 

areas were more affected by the presence of multiple object categories, as the deleted object 
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condition was the only condition here showing a single object. This could represent impaired 

processing facilitated by the presence of additional object information. This effect is not seen 

across the higher visual areas, where only the front to back occluded conditions is significantly 

different in IT. This may represent a more robust tolerance to the competition effect of multiple 

object representations in the higher visual compared to the early visual areas, where in the 

higher areas there is the successful representation of higher level shape information rather than 

simple image features (Kourtzi & Kanwisher, 2001). This difference in IT between the front 

and back conditions may simply reflect the occluded front condition being easier to process 

than the back object due to the lack of occlusion over the front object.  

The second cross decoding condition, investigated if occluded trial object identity was 

best predicted by the visible stimulus features or inferred features, demonstrating significant 

differences between conditions in EVC and IT. However, the direction of the effects differed, 

with higher decoding in the deleted to back condition – representing the visible information – 

in the early visual areas. While in the IT region, higher decoding is revealed in the single to 

occluded condition. In line with research on simple object recognition (Haushofer et al., 2008; 

Kaiser et al., 2019; Sayres & Grill-Spector, 2006; Wischnewski & Peelen, 2021), as the 

information is processed further along the ventral stream, higher visual areas are better able to 

activate the full object representation from a partially occluded stimulus. Leveraging the 

present occlusion results against prior studies focusing on object recognition of separate objects 

is beneficial to ensure our results capture the complexity of object recognition as well as adding 

additional knowledge regarding challenging visual conditions.  

Synthetic decoding revealed significant differences between conditions in EVC, with 

the front plus deleted condition being more accurately decoded than the sum of the two single 

objects. This is not the case in the higher visual areas, with IT having a nearly identical 
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decoding accuracy for both conditions. This may imply that in EVC there is a greater reliance 

on visible features, whereas in IT the higher-level model involving the implied or ‘hidden’ 

visual features from the occluded pair was also found to predict occluded object identity well. 

Weigelt et al.’s (2007) research suggested that local contour information is processed in the 

EVC, while regions of IT cortex represent a more completed shape. Though their research 

primarily used 2D line drawings of shapes, our findings are comparable, with amodal 

completion potentially being evoked in IT to allow back object recognition despite the 

complexity of the occluding front object. 

This suggests that, in line with MacEvoy & Epstein (2009), single object responses can 

be used to model occluded object pairs, specifically in higher ventral visual areas. This 

confirms that occlusion is robustly accounted for, with higher visual areas able to ‘complete’ 

occluded objects despite not having all the visual information present. These findings also align 

with the work of Reddy et al. (2009), where the ability to share attention between the two 

simultaneously presented object categories reflected an average pattern between the two 

individual object activity patterns. However, our data show that when predicting the identity 

of the back object of the occluded pair, this ability is impaired by the presence of additional, 

inferred, visual information in early and mid-visual regions. 

In addition, as in Tang et al. (2018), we find that pattern completion – here the ability 

to recognise the occluded and deleted objects despite incomplete visual information – occurs 

throughout the mid visual and higher visual areas. This can relate to recurrent connections 

within the visual system, necessitating the combination of top-down predictions as well as 

bottom-up visual features and lateral connections. The shape representation of a completed 

object is better processed by the IT cortex, with richer responses completed across multiple 

objects. This competition within the recognition of multiple objects presented simultaneously 
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requires the visual system to detect multiple overlapping contours, determining what contours 

belong to any one object (Ao et al., 2023).  

The results found in the present study may benefit from future research which adds in 

an additional condition relating specifically to the missing part of the occluded object in 

isolation, e.g., the hidden section of the occluded object. Currently, without this condition, 

inferences are being made regarding the completion of objects and while they make logical 

sense, having a condition to support this experimentally would allow greater understanding of 

the visual system response to the missing section of an occluded object (Smith & Muckli, 

2010). In addition, to add to the naturalistic method of stimuli presentation, having 3D images 

or videos displayed would aid in the ability to determine additional cues of depth, luminance 

and motion which have been found to represent important factors in recognition (Johnson & 

Olshausen, 2005; Teichmann et al., 2022).  

Amodal completion requires a mix of feedforward, recurrent and feedback processes 

(Thielen et al., 2019). Therefore, adding in computational RNN models to this dataset would 

allow the greater knowledge of the ability of the visual system to recognise these challenging 

visual conditions to extend and improve computational methods when engaging in object 

completion (Ao et al., 2023; Wyatte et al., 2014).  This could be achieved by training networks 

to both propagate information from layer to layer whilst also utilising lateral connections within 

convolutional layers to improve the proportion of correctly recognised objects as has been done 

previously by Spoerer et al. (2020). Creating a larger dataset of occluded pairs, perhaps created 

from image databases such as ImageNet could also add extra utility to this method, facilitating 

much greater numbers of stimuli to be processed than a human sample would have the attention 

for (Deng et al., 2009; Russakovsky et al., 2015). The field of object recognition under 

conditions of occlusion is key in the improvement of computational models of object 
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recognition, having potential impact on technological advancements such as self-driving cars 

(Cheng et al., 2020; de Oliveira et al., 2023; Tang et al., 2014; Wu et al., 2020).  

2.5.1. Conclusion 

Overall, our results expose much poorer decoding of object identity when objects are 

occluded by other realistic objects compared to when the same information is rendered absent 

via deletion. Analyses reveal that EVC responses were better determined by visible features, 

whereas in IT the inferred features also explained responses well, a result particularly visible 

in the second cross decoding analyses where opposing patterns of decoding accuracy occur 

from EVC to IT. Our data for EVC demonstrates higher similarity between isolated single 

object presentations and deleted object presentations, rather than those under occlusion. These 

results reflect effects of competition across multiple object representations in EVC, though 

these are significantly weaker in IT. In sum our results demonstrate that IT better decouples 

responses to real-world occluded objects with robust representations evident across multiple 

competing objects, relying less on the lower-level visual features that seem to drive recognition 

in EVC. Recognising multiple objects presented simultaneously suggests an enhanced capacity 

to interpret and predict complex visual information, drawn from previous understanding. Our 

data support the importance of investigating neural mechanisms underlying object recognition 

under more naturalistic occlusion scenarios where complex visual processing is required. 
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Chapter 3. Determining the effects of occlusion and deletion on object recognition 
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3.1. Abstract 

Occlusion is unavoidable in the visual world. Previous work using occluded stimuli has missed 

some of the nuance of viewing multiple objects simultaneously. Object recognition is known 

to be facilitated by the ventral stream. As objects are almost never shown in isolation, it is 

important to consider how simultaneously presented objects are encoded and recognised, 

particularly when one object occluded another. This study sought to use behavioural and 

neuroimaging methods to investigate how perception of occluded objects relates to neural 

activity evoked from single objects. We aimed to measure behavioural recognition as well as 

tying this to neuroimaging data to gain greater insight in to the process. Using an online study 

(N = 33) measuring RT and accuracy regarding recognition of occluded objects revealed a cost 

of processing multiple objects at once, where performance was significantly worse when 

multiple objects were present compared to the deleted condition, where the same features were 

instead cut out. Using linear regression to further expand on previous fMRI data (N = 12) 

combined with the results of the behavioural study demonstrated differences in early and higher 

visual stream areas. Where beta weights to occluded objects in EVC scale with the amount of 

the occluded object visible, IT areas are demonstrably better equipped to having multiple 

objects presented at once, correlating greater weights with more difficult recognition 

conditions, while this is not the case in EVC. This provides interesting insight into how 

multiple-object occlusion and recognition is processed in the visual system that future research 

could build upon. 
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3.2. Determining the effects of occlusion and deletion on object recognition 

3.2.1. Visual object recognition 

Visual object recognition, the ability to accurately discriminate named objects across a 

range of materials, size, positions, textures, and in the presence of other visual stimuli, is an 

important characteristic of human vision, with objects virtually never appearing in isolation 

(DiCarlo & Cox, 2007; MacEvoy & Epstein, 2009). This process is computationally taxing, 

with infinite possibilities of position, scale, illumination, and visual clutter to account for 

(Spratling, 2016). Despite this, the visual system is highly equipped to deal with this task, 

correctly identifying objects within 150ms of initial presentation (DiCarlo et al., 2012). 

The visual system is hierarchically organised in distinct anatomical areas each 

functioning differently for specific roles (Felleman & Van Essen, 1991). The connections 

between these areas occur in several ways, using ascending feedforward, descending feedback, 

and lateral connections from the same hierarchical level (Kafaligonul et al., 2015). Although 

object processing has been commonly regarded as a feedforward process (Kietzmann et al., 

2019), Wyatte et al.'s (2014) review claims that object recognition would not be possible if 

only top-down or bottom-up processing was utilised. Wyatte et al. (2012) also suggest that the 

incredible ability of the brain to recognise stimuli even when they are degraded, for example 

by occlusion or low contrast, stems from the recurrent connectivity of the ventral visual stream. 

Amodal completion is the ability to represent parts of a perceived object that have no sensory 

stimulation, for example when parts of an object are occluded (Nanay, 2018b). Using object 

stimuli spanning identities such as keys, cars, cannons, and fish, that were visually degraded 

using Gaussian filtering, Wyatte et al. (2012) carried out a visual study illustrating the limits 

of feedforward processing during object recognition. The completion effects harnessed in their 
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study suggest that recurrent processing effects aid in identification of objects, as purely 

feedforward models do not explain effects in this manner (Ernst et al., 2019; Kietzmann et al., 

2019). 

Recent advances in machine learning have allowed DNNs to become more reliable 

models of object recognition, rivalling the representational performance of the IT cortex 

(Cadieu et al., 2014). The models are known to be the best current models of biological vision, 

inspired by the primate brain (Spoerer et al., 2019). There are discrepancies in the methods by 

which computer models and the human or primate brain recognises an image, with DNNs 

relying more on texture while humans rely on shape information (Kubilius et al., 2016). DNNs 

are also commonly feedforward and trained on a huge array of labelled images. RCNNs have 

been inspired by recent work on recurrent processes within the visual system and more 

similarly match the biological visual systems. They outperform purely feedforward models, 

with reaction times much more like primate visual cortex reactions in terms of the trade-off 

between accuracy and speed (Nayebi et al., 2018; Spoerer et al., 2019). Additionally, when 

looking into laminar brain circuits, it becomes clear that recurrent processing is a huge driver 

of learning and perceptual understanding (Jia et al., 2023).  

 In an MEG study by Kietzmann et al. (2019), where participants viewed a diverse set 

of object categories (human and non-human, faces and bodies, natural and manmade inanimate 

objects), results showed using both representational dissimilarity matrices (RDM) and DNN 

models that ventral stream visual dynamics arose from recurrent connections. They sought to 

utilise this technology to understand ventral stream dynamics, discovering that recurrent DNNs 

significantly outperformed feedforward architectures across all levels of the ventral stream, 

from early visual areas including V1-3, to LO and IT. Other works involving DNNs have 
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maintained that even in rapid object identification, recurrent connections are critical (Kar et al., 

2019; Kar & DiCarlo, 2021). 

3.2.2. Occlusion 

Occlusion is an ever-present feature in natural, three-dimensional scenes, with some 

degree of obstruction from one object to another generally unavoidable. The human brain can 

account for occlusion effectively, with studies showing partially occluded objects are 

successfully and accurately recognised (Zhu et al., 2019). There are delays of approximately 

100ms for the recognition of partially visible objects compared to unoccluded objects (Tang  

et al., 2018). Though recognition capabilities of the brain for heavily occluded or even deleted 

objects are still extremely robust (Johnson & Olshausen, 2005; Rajaei et al., 2019; Tang et al., 

2014; Tang et al., 2018). 

The ability to recognise an occluded object or scene is said to require a degree of prior 

knowledge about the object itself (Wyatte et al., 2014). The visual system not only has to 

compensate for missing information about the object, but also process the object identity, 

occluder identity (dependent on whether an occluded object has been used or if information 

has been cut-out by simple deletion) and the scene context to create a fuller understanding. The 

brain areas implicated in these processes by prior research include the prefrontal cortex, V4 

and IT cortex (Fyall et al., 2017). There are also interesting effects in V1 when observing scenes 

with occluded quadrants, where information regarding the missing section is observable, even 

without receiving direct feedforward input from that area (Morgan et al., 2019; Smith & 

Muckli, 2010).  

Current research often focuses on objects presented in isolation, however this may 

prove unwise. Tang et al. (2018) demonstrated that the brain has a robust ability to recognise 
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an object category even when objects were heavily obscured. Though this was not occlusion 

per se, as the images were partially visible but not ‘blocked’ by another object.  Examining 

exactly how the brain processes the occluded, as well as occluding, object may be a critical 

consideration. Occlusion research tends to use either a black box or a scrambled noise mask as 

an occluder (DiCarlo & Cox, 2007; Johnson & Olshausen, 2005; O’Reilly et al., 2013; Smith 

& Muckli, 2010; Tang et al., 2018), which lacks some of the nuance that the visual system 

processes in daily life.  

Consequently, there is a need to examine more naturalistic ways to represent real-world 

object occlusion. Real objects are rarely – if ever – seen in isolation, constantly overlapping 

and occluding in a variety of dynamic shapes and patterns. Using only deletion, or occluding 

using meaningless occluders, has provided important insights (Johnson & Olshausen, 2005; 

Smith & Muckli, 2010; Tang et al., 2018), yet does not represent realistic vision, generating 

limitations. It has been unclear how V1 and higher visual areas deal with realistic occlusion 

scenarios, incentivising research in this area. In Chapter 2, we demonstrated that occlusion was 

robustly processed in IT, but that in EVC there was a much larger cost of processing multiple 

object representations. In IT, we found that the visible features as well as the inferred features 

from multiple object representations predicted the occluded pairs well. 

Johnson and Olshausen (2005) presented participants with images of real-world objects 

occluded or deleted with ovals obscuring an increasing percentage of missing pixels (see Figure 

3.1). The occluded trials involved a cut-out object placed behind ovals that occluded a specified 

percentage of the image pixels. The deleted trials involved a similar partially visible object 

placed in front of colourful ovals while other oval shapes had been cut-out of the visible object. 

One occluded and one deleted version of each source object was created for their experiment. 



CHAPTER 3 

 
82 

The salient difference in the makeup of trials was created by the inferred depth of the occluded 

and deleted trials. They found that occluded trials were more easily recognised than deleted 

trials. Consequently, the results of this study suggest that the depth effect created by these 

inferences may be playing a critical role in the recognition of partially occluded objects, 

perhaps guided by amodal completion (Rauschenberger et al., 2006). Thus, researchers have 

suggested that depth cues may enable amodal completion prior to recognition, with figure-

ground segregation being facilitated by grouping elements in the visual scene by proximity, 

common regions and connectedness (Rashal & Wagemans, 2022). However, the ovals Johnson 

and Olshausen (2005) employed as occluders are not fully representative of the natural visual 

world, being two dimensional, monochromatic, and meaningless, where there is ordinarily a 

great deal of competing visual information to perceive simultaneously. 
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Figure 3.1. 

Examples of the stimuli used by Johnson & Olshausen (2005) for their experiments looking at occlusion 

and deletion.  

By using masking to interrupt recurrent processing, Wyatte et al. (2012) found that 

occluded trials were significantly less accurately recognised than the less-occluded control 

condition, particularly when a mask was applied. The authors suggest that recurrent processing 

is important in recognising degraded stimuli and backwards masking acted as a successful 

measure of interruption for this process due to the mismatch that is created between 

feedforward and feedback responses (Lamme & Roelfsema, 2000). Whilst investigating 

category recognition in partially visible stimuli, Tang and colleagues (2018) used deletion of 

sections of objects, as well as a condition of occlusion (see Figure 3.2). They also used 

backwards masking to interrupt recurrent processing, seeing significantly decreased 

recognition speed in masking conditions. Even when 80 percent of an item was occluded, 

recognition was still found to occur in human participants, whereas using computational 

models, they saw an increase in performance that aligned with an increase in the visible 
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percentage of an object. Between the deleted and occluded conditions, they found that 

performance was higher for the occlusion condition than the deleted, both with and without a 

mask. These studies demonstrate masking effects and show how pattern completion may be 

employed by the visual system using recurrent connections. While the occlusion in these 

studies was again very simplistic, it is useful to note the potential effects of recurrence and how 

masking could be reliably employed to interrupt this.  

Figure 3.2.  

Tang and colleagues (2018) presented stimuli presented whole and unaltered, rendered partially visible 

using deletion, or partially visible by occlusions using a black square with cut-outs to reveal some of 

the image. 
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Therefore, expanding this research using real-world objects as both occluders and 

occluded objects is key. This may present some differences in the accuracy of the judgements 

people make between deleted and occluded object pairs. Here the visual system must process 

two full objects in the occluded condition instead of just one and a cut-out created using ovals 

or Gaussian noise as in previous studies (Johnson & Olshausen, 2005; Tang et al., 2018; Wyatte 

et al., 2012). 

In a study attempting to focus on the role of the occluder Spoerer et al. (2017) used 

numerical digits as stimuli for both the occluder and occluded objects. Digits, while not real-

world objects themselves, are constantly observed and can be argued to be a useful comparison 

to real-world objects due to their frequency. A visual clutter study, where a digit was occluded 

by another digit, demonstrated that recurrent networks, but not feedforward mechanisms, were 

most successful when multiple object identification was required. Spoerer and colleagues 

(2017) found that delays in processing may be due to the necessity of identifying the occluding 

object as well as the occluded object. This nuance may have been missed in scenes where a 

meaningless occluder was used, ignoring the role of the occluding object. Therefore, while 

previous occlusion research has yielded interesting results (Johnson & Olshausen, 2005; Tang 

et al., 2018; Wyatte et al., 2012), the findings, particularly those regarding the differences 

between deletion and occlusion, may not be accurately representing visual capabilities in 

ecological conditions.    

3.2.3. Our motivation 

Here, we extend this type of paradigm to real-world objects as both occluded and 

occluding objects. Behaviourally, our goal was to determine whether performance was better 

for occluded or deleted trials when real objects were both the occluded and occluding objects, 
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building on the work of Spoerer et al. (2017). The present study will use a recognition 

backwards masking study with the goal of interrupting recurrent processing to test whether 

recognition is superior under occlusion or deletion when images of real-world objects act as 

both the occluders and occluded. Using Gorilla, an online experiment builder with highly 

sensitive timing effects (Anwyl-Irvine et al., 2021), met the restrictions of the COVID-19 

pandemic while still allowing a high-fidelity study to be carried out.  

Our second goal was to determine how behaviour relates to neural representation of 

occluded objects by relating our data to that from Chapter 2 (Mansfield et al., 2023), expanding 

these analyses using linear regression. Reddy and colleagues (2009) utilised a method of 

combining the patterns of responses to each of two object categories presented in isolation 

across a plane in multidimensional space to predict the response when a pair of objects are 

presented simultaneously. They found that the paired object presentations could be expressed 

as a linear combination of the existing patterns from the original two stimuli. The use of this 

approach to model the occluded trials in terms of the constituent objects has been influential in 

the present study. Here we sought to predict each occluded trial activity pattern from the linear 

combination of the activity patterns of each of the constituent objects that made up that trial in 

isolation to get a beta weight value. We then utilised this to correlate with behavioural data for 

RT and accuracy to determine the effects on occluded object pairs.  
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3.3. Experiment 1 

To address the question of how occlusion and deletion affect object recognition we 

presented participants with the same stimuli as in Chapter 2, but instead asked them to 

recognise object identity across conditions (single object, occluded pair front object, occluded 

pair back object or deleted pair back object). We measured both the reaction time (RT) and the 

accuracy of the object judgements. The stimuli were presented at presentation speeds of 33ms, 

50ms and 100ms to maximise the effects of the masking design (Tang et al., 2018). We predict 

that the single and occluded pair front object conditions will be faster and more accurately 

recognised, as here there is not information to ‘fill in’ in order to recognise the object as is the 

case in the occluded back object and deleted conditions. It is also anticipated that increased 

presentation time will be associated with greater accuracy and faster RTs.  

Specifically informed by the work of Johnson and Olshausen (2005) and Spoerer et al. 

(2017), we will test whether performance is better for occluded back object or deleted back 

object trials, to see whether adding multiple object representations changes the pattern of 

results. Prior research found that deleted images were less accurately recognised than occluded 

images, though these studies used meaningless occluders, hence the present study seeks to 

explore if this is the case when processing two types of objects simultaneously in object pairs. 

If there is in fact a cost to processing multiple objects at once (Spoerer et al., 2017), 

demonstrated through slower RT and lower accuracy, we would expect greater accuracy and 

speed in deleted over occluded trials.  



CHAPTER 3 

 
88 

3.3.1. Methods 

3.3.1.1. Design and participants 

Data collection was completed using Gorilla, an online experiment builder with highly 

sensitive timing effects (Anwyl-Irvine et al., 2021). Single, occluded, and deleted stimuli were 

presented in four separate blocks (where occluded pairs were used in two separate blocks, one 

where the front object was the focus and one where the back object was the focus). Participants 

(N = 40)  were told what object was of interest at the start of each block and reminded at each 

response screen. The participants were recruited through Prolific, where they received £8 an 

hour. Data was excluded for participants with an overall accuracy of less than 75 per cent across 

all trials (N = 7). The final sample included 33 participants (Mean age = 26.82, SD = 9.24, 17 

Female). The study received full ethical approval from the UEA Psychology Ethics Committee.  

3.3.1.2. Stimuli 

The stimuli from Chapter 2 were used again for the online study, presented in colour 

(see Figure 3.3). A masking stimulus was created as in Tang et al. (2018) by scrambling the 

phase of these images, while retaining spectral coefficients. 
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Figure 3.3.  

The stimuli in the occluded (left) and deleted (right) conditions. The eight images making up the single 

condition are seen in the diagonal of the occluded objects square.  

 

3.3.1.3. Procedure 

Using Gorilla experiment builder, the participants first read through an information 

sheet and clicked through a consent form before starting the task. The experiment involved 

three different configurations of stimuli (single, occluded and deleted). There were four 

different counterbalanced blocks in this study, one for every task condition where the occluded 

back and front objects were presented as the focus in two different blocks. Each object in every 

condition was presented three times, once for each of the three presentation speeds. The single 

condition block contained 24 randomised- order trials (eight objects at each of three 
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presentation speeds) and required participants to select the object they had just seen. The 

occluded configuration images were used in two separate blocks, both containing the same 56 

images. The occluded front block required participants to select the object they recognised at 

the front of the object pair (168 trials, 56 objects at each of the three presentation speeds), the 

occluded back block required participants to select the occluded, back object from the object 

pair presented (168 trials). The deleted block required participants to look at the object pair 

with the front object ‘cut out’ of the back object and select the identity of the back object (168 

trials). 

For each trial, a fixation cross was presented for 500ms, followed by a stimulus, 

presented for either 33, 50 or 100ms (see Figure 3.4). Informed by Tang et al. (2018), 33ms 

was chosen as the fastest speed due to suggestions that conscious awareness of a stimulus takes 

at least 30ms (Schräder et al., 2023). Tang et al. (2018) successfully found effects using 

variable image presentation times (25ms, 50ms, 75ms, 100ms and 150ms). Therefore, we were 

confident in our choices that there would not be significant floor or ceiling effects at these 

times. The scrambled masking stimuli was presented for 500ms. Participants were asked after 

each trial to select the object that they had seen in accordance with the instructions provided at 

the start of each block regarding which condition they were completing. There were 528 trials 

over the course of the experiment to show every object in each condition and speed.  

After completing these trials, participants were asked to complete the Autism Quotient 

questionnaire (Baron-Cohen et al., 2001) and the Schizotypal Personality questionnaire (Raine, 

1991) to measure traits of ASD and SPD. It has been suggested in the literature that these 

groups may have differences in their ability to undertake predictive processing and object 

encoding (Sterzer et al., 2018; Van de Cruys et al., 2014), hence there are differences expected 
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in the results of backward masking interrupting recurrent processing (Sterzer et al., 2018; Van 

de Cruys et al., 2014). However, these questionnaires were not analysed further in this study. 

Figure 3.4.  

An example of a trial in the occluded front condition block. Participants were instructed to select the 

front object of this pairing.  

 

3.3.1.4. Analysis software 

Data were analysed using SPSS statistics (29.0) as well as R (RStudio 2022.02.1), 

where the latter was also used for data visualisation and graphs. The mean RTs and accuracy 

values for each condition were analysed. Extreme outliers (>±2SD of the mean per condition) 

were removed from further analyses. Analysis of variance was run on presentation speed and 

500ms  

500ms  

33/50/100ms  
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display condition to observe interactions with reaction time and accuracy respectively. Pairwise 

t tests were used for post hoc testing. 

3.3.2. Results 

3.3.2.1. Accuracy 

ANOVA 

A two-way ANOVA was performed to analyse the effect of presentation speed 

(33/50/100ms) and display condition (single, occluded pair front, occluded pair back and 

deleted) on accuracy. The results indicated significant main effects for condition, F(1.91, 

60.97) = 51.60, p < .001, η² = .621, and presentation speed, F(1.58, 50.57) = 49.16, p < .001, 

η² = .618. As well as this we see a significant interaction between the presentation speed and 

display condition, F(3.78,121.09) = 22.71, p < .001, ηp2 = .429. Mean accuracies per condition 

are displayed in Table 3.1.  
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Table 3.1.  

The mean accuracy for each condition separated by speed. 

 

To further investigate the main effect of condition pairwise t tests of conditions showed 

significant differences between all pairs (p < .011). The lowest accuracy was found in the back 

condition (81.71 percent), followed by deleted (89.20 percent), front (93.66 percent) with the 

highest accuracy in the single condition (96.97 percent).  

In presentation speeds, pairwise comparisons revealed that all pairs were significantly 

different (p < .001). With the pattern of highest accuracy in the 100ms presentation speed 

(98.15 percent) followed by 50ms (90.96 percent) and then 33ms (82.10 percent).  

 Condition and Presentation Speed Mean (ms) SD (ms) 

 33 Single  93.36 8.39 

 33 Front  88.28 11.89 

 33 Back 66.13 20.00 

 33 Deleted 78.91 14.64 

 50 Single 97.27 7.60 

 50 Front 94.64 7.20 

 50 Back 81.19  15.67 

 50 Deleted 90.07 9.04 

 100 Single 100.00 .000 

 100 Front 98.05 4.22 

 100 Back 96.93 2.77 

 100 Deleted 97.77 3.01 
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Post-hoc tests 

Pairwise t tests were used to analyse the significant pairings within the conditions and 

presentation speeds (see Figure 3.5). These tests reveal a similar pattern for front, back and 

deleted conditions across speeds, but not single objects, where recognition is notably more 

accurate. 

Figure 3.5. 

Violin plots of accuracies for each condition and speed. Significant post hoc tests (pairwise t tests, fdr 

corrected) are represented by a connecting line, with significance denoted using asterisks.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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The results demonstrate that across speeds, there are significant variations (Figure 3.6). 

At 33ms speed, significant differences were observed between the single condition and all other 

conditions, suggesting that the rapid presentation time accentuates distinctions in task 

processing. Similarly, at 50ms and 100ms, a similar pattern emerged between single and other 

conditions. Though at 100ms, the deleted condition is not significantly different to the occluded 

pairing front condition, whereas at 50 and 33ms it is, which may be due to the easier recognition 

of the front object than the deleted object with its cut-outs until 100ms where recognition is 

easier to achieve robustly. Additionally, at all speeds there were significant differences found 

between front and back conditions, suggesting that there is a distinct difference in ability to 

recognise the occluded and unoccluded objects.  
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Figure 3.6. 

Violin plot of speed and condition within that. Significant post hoc tests (pairwise t tests, fdr corrected) 

are represented by a connecting line, with significance denoted using asterisks.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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3.3.2.2. Reaction time 

ANOVA 

A second ANOVA was conducted to look at the effect of presentation speed and display 

condition on mean reaction time and revealed significant main effects for condition, F(2.21, 

70.59) = 6.937, p = .001, η² = .178, and presentation speed, F(1.96, 62.76) = 43.10, p < .001, 

η² = .574. Additionally, there was a significant interaction between condition and presentation 

speed, F(3.90, 124.81) = 5.001, p = .001, η² = .135. Mean speeds for each condition and 

presentation speed pairing can be seen in Table 3.2. 

To examine the main effect of presentation speed further post-hoc pairwise t tests 

indicated significant differences between all three pairs of conditions (33ms-50ms, 50ms-

100ms, 33ms-100ms; all p’s < .001). Overall, the slowest RTs were found in the 33ms 

condition (806.56ms) followed by 50ms (754.39ms) and 100ms (712.64) had the fastest RTs.  

The effects of condition were further measured using post-hoc pairwise t tests, 

indicating a significant difference between reaction times for back (819.08ms) and front 

(757.61ms), (p < .001), back and single (750.81ms), (p = .008) as well as back and deleted 

(712.47ms), (p < .001). 
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Table 3.2.  

The mean RTs for each condition separated by speed. 

 

Post-hoc tests 

Pairwise t tests compared the conditions across speeds and vice versa to examine any 

significant differences for the interaction effect between speed and condition (see Figure 3.7). 

We demonstrate here that there is always a significant difference between speeds in the deleted, 

back and front conditions, whereas in the single condition there is no difference between any 

conditions. It is also worth noting that the significant differences between some of the front 

 Condition and Presentation Speed (ms) Mean (ms) SD (ms) 

 33 Single 782.00 271.89 

 33 Front 795.13 235.91 

 33 Back 882.27 232.67 

 33 Deleted 766.15 220.41 

 50 Single 734.89 271.97 

 50 Front 737.13 237.55 

 50 Back 826.09 256.69 

 50 Deleted 717.02 225.52 

 100 Single 735.54 291.47 

 100 Front 713.43 227.72 

 100 Back 748.22 260.53 

 100 Deleted 653.36 226.61 
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conditions are more marginal than those in the deleted and back conditions, perhaps suggesting 

more challenge in recognition for the latter two conditions.  

Figure 3.7.  

Reaction times for each condition and speed. Significant post hoc tests (pairwise t tests, fdr corrected) 

are represented by a connecting line. 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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When looking at the pairwise comparisons, with condition split across speeds (Figure 

3.8), we show that at every speed the back condition has the slowest reaction time, particularly 

when compared to the deleted condition. At 33ms and 50ms presentation times there were also 

significantly faster reaction times for the single condition than the back condition, which is in 

line with our expectations.  

Figure 3.8.  

Reaction times for each condition across presentation speeds. Significant post hoc tests (pairwise t tests, 

fdr corrected) are represented by a connecting line.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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3.3.3. Discussion 

The study conducted a comprehensive examination of the impact of presentation speed 

and display condition on both accuracy and RTs. We found that there are significant main 

effects for both display and presentation speed as well as interactions between the two factors.  

Within accuracies, as predicted, the single condition was the most accurate, maintaining 

high levels of accuracy across all participants at all speeds of object presentation. The other 

conditions were revealed by post-hoc tests to be less accurate. The front condition, where 

participants identified the occluding front object of an object-pair stimuli, was still highly 

accurate, which is expected, as the object of interest was not occluded in any way. However, 

the back condition was significantly less accurate than all other conditions. All conditions were 

the most accurate at the 100ms presentation speed and were less accurate at 50ms and 33ms in 

turn.  

When looking at post-hoc tests for accuracy, faster presentation speeds demonstrated 

large variations in accuracy, with a variation of 2.23 percent between conditions at 100ms, 

rising to 27.23 percent at 33ms. This may be due to participants having less time to properly 

process the correct object identity, especially when in the occluded pairing conditions (front 

and back) there was more visual data to contend with, whereas in the deleted condition there 

was missing detail from the central part of the image. In the 100ms presentation speed, we see 

the most significant post-hocs are between the single and other conditions, speaking to the ease 

of recognition for participants in the single condition at this presentation speed.  

The data also showed that the accuracy in the deleted condition was significantly more 

accurate (7.49 percent higher) than the back condition overall. This does not align with the 

findings of Johnson & Olshausen (2005), however it can be argued that this is due to the 
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differences between the real-world occluders we used compared to their meaningless 

occluders. These ovals did preserve the dimension of depth within the trials, which has proved 

important in providing visual cues necessary to facilitate recognition. The ovals providing the 

depth information to the object image were solidly coloured and lacked the complexity of the 

occlusion of objects in natural scenes that humans encounter every day, which speaks to this 

cost of processing two objects simultaneously. Much like in the digit clutter tasks employed 

by Spoerer et al. (2017) where recurrent mechanisms were implicated when digits also acted 

as occluders, we show that additional objects to represent increases error in recognition. 

Examining RT results, we show a significant interaction between condition and 

presentation speed. Delving further, results revealed that 100ms presentation speeds led to 

significantly faster RTs then the other conditions, followed by 50ms, with 33ms presentation 

speed leading to the slowest RTs. Across conditions, the back condition yielded significantly 

slower RTs than all other conditions, indicating the most challenging object recognition. This 

may be explained by the required increase in processing needed to identify the objects in the 

back, occluded condition compared to the relatively simpler single stimuli. The front condition 

having slower RTs than the single condition, but faster than back aligns with this, speaking to 

the distraction to the object recognition that having a second object to represent plays, when 

that object is not relevant to the task for that condition. The two real-world objects in either of 

the conditions using occluded pairs may both have been identified before the target object, 

either front or back depending on specific condition, was able to be selected individually.  

Post hoc tests found within RTs, the most significantly different conditions across 

presentation times were those in the back and deleted conditions, where all pairings were highly 

significant. This is as expected as the visual system would need to process more visual 

information – taking more time for the back and deleted conditions. These conditions were also 
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significantly different across each presentation speed, with the deleted condition showing faster 

RTs at every presentation speed than the back condition, which was not the case across speeds 

for other conditions. 

As previous research demonstrated, visual clutter causes interference in object 

processing (Spoerer et al., 2017), which may explain why the single condition had faster RTs 

than the front condition, where despite the lack of occlusion in the target object, there was still 

an additional object to represent. In the pattern of Johnson & Olshausen (2005), the deleted 

condition was predicted to have slower RTs than all other conditions, particularly the back 

condition, but this was not the case. The deleted condition has significantly faster RTs than the 

back condition, perhaps suggesting that the multiple object representations requiring 

processing in the occluded object pairing had a detrimental effect on RTs. Whereas in the 

deleted condition, participants only had the cut-out silhouette of the front object, which lacked 

the ‘real’ object detail and did not elicit this competition effect.  

There is a growing body of literature suggesting that computational principles such as 

recurrence allow better understanding of the dynamics of the visual system (Ernst et al., 2019; 

Spoerer et al., 2019). Other researchers in the neurocomputing domain who have created object 

tracking and recognition models, have found them to be more successful when accounting for 

occlusion (Wu et al., 2020). They achieved this by programming their model to treat a single 

visual scene as a combination of objects and occlusion regions rather than simply ignoring 

anything other than the main focal object. This allows occluders, often dynamic parts of a 

visual scene, to be recognised and provide added contextual detail. This understanding aligns 

with the work on DNNs and RCNNs taking place suggesting recurrent connections are critical 

in achieving a more human-like ability to process occluded objects (Kar et al., 2019; Spoerer 

et al., 2020; Tang et al., 2018). Compared to models only using feedforward connections, 
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recurrent models can identify objects in increasingly difficult visual search tasks with only a 

small loss of speed for a near-perfect degree of accuracy (Nicholson & Prinz, 2020). This 

demonstrates the need for multidisciplinary collaboration between neuroscience and 

computational science to be taken to further understanding of occlusion and object recognition.  

Using the real-world objects for occlusion and deletion was important to maximise the 

ecological validity and best mirror the conditions the visual system contends with daily. There 

is known to be a highly diverse and dynamic computational process as information travels 

along the ventral stream as well as within the ventral stream regions themselves, emphasising 

intra-area computations (Kietzmann et al., 2019). This makes it clear that recurrent network 

connections and associated models are a key way to enable greater understanding of how 

occlusion is so robustly managed by the visual system in both humans and primates.  

Adapting the present study paradigms to utilise computer models would perhaps 

provide more clarity on the differences between the occluded and deleted conditions. This 

would allow a much larger and more varied set of objects to be employed to train DNN models, 

across additional categories, to show whether an ability to account for occlusion can improve 

an artificial neural network. One way this could be approached is by training an RNN to 

recognise objects in conditions similar to these, incorporating recurrent connections to account 

for occlusion (Spoerer et al., 2019; Spoerer et al., 2017). The model could be designed to treat 

visual stimuli as a combination of objects and occlusion regions, mirroring the dynamic of real-

world vision. By simulating occluded and deleted conditions, the RNN could provide insights 

into the computational principles underlying object recognition. Additionally, having human 

behavioural data to compare this to would allow a quantitative benchmark for assessing the 

recurrent computations in this process. Multidisciplinary approaches are crucial at present to 
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contribute a more nuanced understanding of the visual system so this could be a key future 

approach.  

Overall, this experiment has revealed that presentation speed and condition have 

important effects on the RTs and accuracy by which people can recognise objects. The single 

condition consistently exhibited high accuracy, while the occluded back condition, was 

considerably less accurate. Faster presentation speeds led to larger variations in accuracy, 

though the single condition exhibited perfect performance at the slower 100ms presentation 

speed. Interestingly, in the deleted condition, where details were missing, we found 

unexpectedly higher accuracy than the occluded back condition, suggesting that having 

multiple objects displayed at once makes recognition harder. Reaction times mirrored accuracy 

patterns, with the back condition exhibiting significantly slower responses than the other 

conditions. The pairings of real-world objects used allowed the difference between the back 

and deleted conditions to be displayed. This is because even when recognition of only the back 

object is required in the task, the nature of visual processing means that the irrelevant front 

object is processed in addition to the target back object in this condition. Future research should 

utilise objects as occluders to obtain more natural results, as well as embracing computational 

methods to further understand the processes involved in visual object recognition.  
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3.4. Experiment 2 

Our previous fMRI study left us with the question of how neural representations of 

objects under occlusion relate to human perception of the same objects. We know that neural 

processing in IT typically maps to human perception, responding selectively to specific objects 

and categories, while EVC is often tied to lower level visual processes (Groen et al., 2017). 

Here we combine our previous fMRI data (Chapter 2) with novel MVPA analyses to improve 

our understanding of the mechanisms of object recognition under challenging visual 

conditions. Creating weight scores from the fMRI data collected for the same stimuli as 

Experiment 1, allows us to analyse the behavioural data regarding neural patterns. A weight 

was created for each occluded object to reveal how well the full object pattern was present 

from this. Based on prior research (MacEvoy & Epstein, 2009; Reddy et al., 2009) we are able 

to relate these weights to the accuracy achieved for each occluded object in our behavioural 

experiment.  

As we know that performance has been found to improve with higher percentage of an 

object visible (Tang et al., 2018), we would also predict that as EVC is implicated in low level 

properties, the magnitude of occlusion should influence the ability to recognise the occluded 

back object. However, based on our prior work (Mansfield et al., 2023), we believe that this 

will show a more pronounced effect in early visual areas, which are more susceptible to 

changes related to multiple object representations and competition effects. In IT, the 

expectation would be that the weights would relate more to behaviour than low level features. 
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3.4.1. Methods 

3.4.1.1. MRI data acquisition 

The pre-processed fMRI data is the same as Chapter 2. The MVPA analysis pipeline 

differed in this study, with linear regression applied instead of decoding to better mirror the 

work of Reddy et al. (2009).  

3.4.1.2. Analysis software 

Data were analysed using SPSS statistics (29.0) as well as R (RStudio 2022.02.1), 

where the latter was also used to create figures for data visualisation. MATLAB (v.2020b) was 

used to complete the linear regression to calculate the beta weights.  

3.4.1.3. Weights analysis 

To expand on the findings from the decoding analyses in Chapter 2, where the object 

category of the occluded object was predicted, we looked at the activity patterns themselves. 

These beta weights were defined using standard linear regression in the manner of Reddy et 

al., (2009). Linear regression was used to predict each occluded trial activity pattern from the 

linear combination of the activity patterns of each of the constituent objects that made up that 

trial in isolation (i.e. the single object patterns that correspond to the front and back objects of 

that trial). We used leave one run out cross-validation to compute this from the single object 

patterns estimated from N-1 runs. The occluded trial activity was predicted on the left out run, 

which was then cycled and averaged. Accuracies and RTs (median) computed across 

participants per occluded item when recognising the back (occluded) object at the quickest 

presentation speed of 33ms were used. This was under the rationale that this speed is the most 

challenging and hence would offer more variance. It is important to note that in the following 
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analyses we only looked at the beta weights for the back object. These weights were related to 

the accuracy and RT scores. This enabled us to keep the scope of the study focused on the most 

challenging visual object to recognise, the occluded back object.  

Magnitude of occlusion was computed by calculating the ratio of how many pixels were 

present in the back object of an occluded trial, as a percentage of how many were present on 

the whole trial. This measure was inverted to provide an index of the degree of occlusion.  

3.4.2. Results 

Spearman’s correlations were run to determine any effects between the weights of the 

back object in the occluded object pair in either early visual areas or IT cortex with reaction 

times and accuracies respectively. These analyses show there to be non-significant results in 

EVC for both accuracy, r (54) = -.001, p = .992, and RT, r (54) = .020, p = .884. However, in 

IT there were significant correlations found, with a negative correlation in accuracy, r (54) = -

.462, p < .001, as well as a positive correlation in RT, r (54) = .45, p < .001 (see Figure 3.9). 
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Figure 3.9. 

Correlations of the back object weight in EVC for accuracy (A) and RTs (B) as well as IT object weights 

with the mean accuracy (C) and median RTs (D) for the back object of the occluded pairings. Medians 

were used for RTs as they are more robust to outliers. 

 

A B 

C D 
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When correlating the proportion of occluded pixels across brain regions of interest we 

have found that there is a significant negative correlation between back object weight in EVC 

and the proportion of occluded pixels, r (54) = -.488, p < .001. As well as this, there is a 

marginally significant spearman’s correlation between IT weight and the proportion of 

occluded pixels, r (54) = -.267, p = .047, (see Figure 3.10). 

Figure 3.10.  

Correlations of the back object weight for (A) EVC and (B) IT against the proportion of occluded pixels. 

In order to control for magnitude of occlusion in IT back object weights, we ran a partial 

correlation on IT back object weights against back object mean accuracies and median RTs, 

controlling for proportion of occluded pixels a found that correlations were still significant for 

both accuracy (r (54)  = .547, p < .001) and RT (r (54) = .461, p < .001). Thus, demonstrating 

statistically that the results are not simply due to the proportion of occluded pixels. The 

relationship between the back weight and IT is not dependent on how many pixels are present, 

suggesting higher level functioning is at play here.  
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3.4.3. Discussion 

In this study we tested the effects of occluded pair back object weights against 

behavioural RT and accuracy scores to understand how the representation of the back object in 

IT and EVC relate to behaviour versus magnitude of occlusion. The correlations between the 

beta weights for the back objects in EVC and IT reveal differences between how these brain 

regions handle the presence of occluders. In EVC there were no significant correlations in 

either RT or accuracy. However, in IT there was evidence to suggest that when RTs are slower, 

and when accuracies are lower, there is a greater weight assigned to the back object. In other 

words, when recognition is more difficult, a higher weight, and thus more processing, is 

assigned in IT. This may be indicative of the recognition process taking more cycles of 

recognition to complete the pattern under more challenging visual conditions (Kar et al., 2019). 

These delays in recognition suggest the need for additional computations to interpret partially 

visible images. In line with the existing literature, it is clear that there is a robust ability within 

the visual system to successfully recognise objects even when they are highly occluded (Rajaei 

et al., 2019; Tang et al., 2018; Zhu et al., 2019).  

Both EVC and IT have significant correlations with occluded pixel proportion, with 

EVC featuring a larger correlation. The correlation value in IT is around half of that of the 

EVC value. This demonstrates that the early visual areas are more attuned to the proportion of 

occluded pixels, with the weight of the back object decreasing dramatically when exposed to 

greater occlusion. This may be indicative of the focus on the front object (and thus less weight 

on the back object) of an occluded pairing instead of the back object when more pixels of the 

back object are occluded. Though an alternative view may be that EVC processing is increased 

when there is a higher proportion of the back object present. This is representative of the 

smaller scale of focus V1 receptive fields are able to represent (DiCarlo & Cox, 2007). Whereas 
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in IT, there is greater ability to untangle more of the representation and disambiguate multiple 

objects represented simultaneously (DiCarlo & Cox, 2007), irrelevant to the proportion of 

occluded pixels. Thus, we argue that IT is better able to process these complex object stimuli, 

which are shown to scale with difficulty, suggestive of specific mechanisms well equipped for 

this challenging visual process, whereas this is not the case in EVC.  

These results potentially provide insight into how visual recognition may be taking 

place in the visual world. The constant presence of multiple objects in our visual fields means 

that the visual system is highly adapted to cope with this, perhaps using amodal and pattern 

completion mechanisms (Ao et al., 2023; Tang et al., 2018). The challenge for researchers is 

understanding the process by which these complex visual conditions are recognised and 

understood.  
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3.5. General discussion 

Overall, across both behavioural and neural methods we have explored how the 

presence of additional objects affects recognition. Neurally, we show that occlusion affects the 

neural processing assigned to each object in IT, and behaviourally we find that IT responses to 

occluded objects relate to the participant’s recognition of the same object (Johnson & 

Olshausen, 2005; Smith & Muckli, 2010; Spoerer et al., 2017; Tang et al., 2018), where the 

magnitude of occlusion has larger effects on EVC. Behaviourally, multiple objects and a 

behavioural masking task enabled us to reveal a greater accuracy and faster RT of judgement 

for objects in unoccluded conditions. However, diverging from previous occlusion research 

(Johnson & Olshausen, 2005; Spoerer et al., 2017; Tang et al., 2018; Wyatte et al., 2012), we 

discovered that when objects act as both the occluding and occluded factors, there are 

differences in the recognition of the back, occluded object dependent on the presence of an 

object or cut-out. Specifically, that the deleted condition was more easily recognised than the 

back condition, despite the visible information of the object of interest being identical across 

these two conditions, the only difference being the presence of the second object representation 

in the occluded pairs and the cut-out in the deleted.  

A cost of processing multiple representations was demonstrated in Spoerer et al. (2017) 

digit clutter paradigm where the error for more digits, and thus more visual clutter, was 

significantly higher than for fewer digits. This reflected particularly high errors in feedforward 

compared to recurrent models. In our study, where sections of multiple objects are displayed 

simultaneously, this split within visual resources may explain why the deleted condition leads 

to greater recognition than the occluded back object condition.  
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The observed increase in beta weight for the back object in IT, coupled with the slower 

reaction times and decreased accuracy, suggests a unique processing pattern under challenging 

recognition conditions. We discern that when accuracy is lower and RTs are slower, there is 

an effect on the beta weight derived for the back object of the pair where this weight is increased 

linearly with the difficulty of recognition. This phenomenon speaks to the adaptability and 

resource allocation within IT, allowing for a more comprehensive object recognition process 

(Conway, 2018). In contrast, the non-significant correlations in EVC suggest that there is more 

consideration for the visible features, with processing power being devoted as a function of 

this visibility. We posit here that this finding implies that IT invests more processing cycles in 

recurrent processing when faced with challenges, such as occlusion. The ability to combine 

behavioural and neuroimaging data allows an extra layer of depth, as even though the groups 

of participants were different, the stimuli remained the same throughout, allowing 

comprehensive comparisons of the effects of each stimulus pairing. The trends and interactions 

we find present a clear picture of how object recognition under occlusion could be occurring 

and how research has to adapt to more ecological methods to capture the nuance of vision.  

While this study has successfully used both behavioural and neuroimaging data to 

investigate the underlying processes of object recognition under occlusion, there are still 

advances that could be made to further our understanding. The analysis of experiment 2 largely 

used the back object weight, which misses a layer of complexity regarding the front object. We 

see in the behavioural results that there is a still a cost associated with the presence of the back 

object when compared to the single, unoccluded object condition. Therefore, looking 

specifically at the results for the front object of the occluded pair may offer additional 

understanding into the result of there being increased visual input, even if the back object does 
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not require recognition itself for the task. This may provide insight that highlights the roles of 

attention and prediction within recognition and would be a useful route for additional analysis.   

In line with the pivotal role of recurrence in object recognition (Han et al., 2018; Jia et 

al., 2020; Kietzmann et al., 2019; Lamme & Roelfsema, 2000; Wyatte et al., 2014), leveraging 

computational methods becomes crucial for developing our understanding. The vast datasets 

accessible through these methods offer the opportunity to explore diverse objects and degrees 

of occlusion, shedding light on the intricate interplay of feed-forward, feedback, and recurrent 

mechanisms in recognition processes.  

DNNs provide a promising avenue to grow our knowledge, especially when adopting 

a predictive coding objective during training where generally, these networks learn to predict 

future occurrences, with network layers making recurrent, local connections and only feeding 

forward the deviations, or prediction errors, to subsequent network layers (Lotter et al., 2017). 

This process has been successfully utilised, where through the use of an iterative ‘predictive’ 

training method, convolutional DNNs have even been able to solve some illusory contours 

whereas this was not the case prior to this advance (Pang et al., 2021). Ali et al. (2022) also 

emphasises that recurrent neural networks inherently engage in prediction as a consequence of 

the efficiency of recognition. Furthermore, in the future DNNs could be used to test what occurs 

during the processing of occluded objects in this experiment. One potential avenue would be 

to look into how many cycles a recurrent net takes to recognise an occluded object, compared 

to the results of a feedforward neural network and linking these findings back to behavioural 

results and neural results in IT specifically.  
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3.5.1. Conclusion  

Overall, in this Chapter we first of all built on prior work, exploring the behavioural 

recognition of objects under conditions of occlusion, demonstrating that lower accuracy and 

slower RTs in occluded back conditions than deleted conditions. This suggests an effect of 

competition across multiple object representations. To take this further, we explored the link 

between this data and neural representations using linear regression. Here, we determined beta 

weights for each occluded pair of objects in the stimuli set and found a rich pattern of results 

suggesting that representations in IT relate to behavioural difficulty, while this is not the case 

in EVC. This is because there are strong correlations between the back object weight with 

accuracy and RT in IT but not in EVC. In EVC we find more reliance on the visibility of the 

objects, but after confirming that the IT differences were not due to a simple change in 

magnitude of occlusion, we were able to confirm that there are higher weights assigned in IT 

when recognition was more difficult. In summary, we determine that occlusion is a challenge 

that is better solved in the IT cortex where resource allocation can be more complex.  
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Chapter 4. Does predictive processing explain responses to occluded objects in primary 

visual cortex? 
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4.1. Abstract 

Previous studies have determined that visual details can be found in early visual cortex even 

when sections of a scene are occluded. Expectation suppression has been used in prior studies 

of EVC to measure prediction, though this requires the combination of decoding and univariate 

analysis. The goal of the present study was to utilise expectation suppression to determine how 

these visual effects may be explained when multiple object representations are presented and 

occluded, and whether sharpening or dampening accounts of predictive processing better 

represent this. Participants (N=18) in this event-related fMRI study saw cue-target pairs of 

images of objects, first with an occluded bar and then a matching or mismatching bar 

representing the occluded area while performing a colour response task. Mapping 

checkerboards at the end of each run allowed us to define our ROIs in EVC as those areas 

which responded more to the occluded bar section (the target area) or the remaining area 

(known as the surround) respectively. Decoding analyses demonstrated an effect of expectation 

suppression where matching trials were represented more accurately than mismatching trials 

in both target and surround ROIs. Our decoding data showed support for the sharpening 

account of predictive processing. Whilst the univariate data demonstrated a more surprising 

picture, exhibiting no traditional expectation effect in line with either sharpening or dampening. 

Instead, the data show a large effect of the neutral (noise) condition, particularly in the surround 

region. Overall, our results reveal that expectation suppression may be occurring across cue-

target pairings of objects even when a section of a stimulus is occluded.  
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4.2. Does predictive processing explain responses to occluded objects in primary visual 

cortex? 

4.2.1. Predictive processing and expectation suppression 

Sensory processing was thought to be a feedforward process, however more recent 

findings suggest that the brain constantly constructs an internal model of the world that 

incorporates prior knowledge alongside sensory input (Clark, 2013; de Lange et al., 2018). 

This prior knowledge is used within the theory of predictive processing, which proposes a 

unified account of mental functioning that is primarily focused on minimising surprise (Melloni 

et al., 2011; Ransom et al., 2020). Within the cortex, top-down connections are purported to 

convey predictions about lower-level activity while bottom-up processes are thought to 

transmit prediction error to the higher order areas (Boutin et al., 2021).  

The overarching theory of predictive processing suggests that the brain works to 

optimise processing efficiency by actively minimising prediction errors. This is achieved 

through the transmission of only the unpredicted portion of a signal, filtering through predicted 

details. This process is facilitated by feedforward, feedback and recurrent connections (Mills 

et al., 2021; Tang et al., 2018; Williams, 2018). Predictive processing models suggest that 

sensory regions are not passive recipients of signals, but instead continuously engage in 

conveying predictions and associated errors throughout the visual stream (Kok & De Lange, 

2015).  

Motivated by the desire to unravel the roots of predictive processing in object 

recognition, our study builds on prior findings (Smith & Muckli, 2010) to explore the 

connection between observed effects and the theory of predictive processing. Smith and Muckli 

(2010) found that activity patterns of an occluded quadrant of a scene were significantly related 



CHAPTER 4 

 
120 

to feed-forward stimulation and were driven largely by V1. Thus, providing motivation to 

further look into the effects of occlusion in early visual areas including V1 to shed light on the 

processes responsible for this. The recognition of objects under conditions of occlusion poses 

a computational challenge, with recurrent neural networks emerging as a fitting model to 

address the associated energy constraints (Ali et al., 2022). This computational knowledge 

aligns with the brains strategy of inhibiting predictable sensory input to conserve resources. 

Ali and colleagues (2022) found this proficiency was mirrored in computational models, which 

developed distinct error and prediction units when trained for efficiency.  

Computational vision research aligns with the unified account of predictive processing 

(de Lange et al., 2018). Here, efficient connections are steered by the predictability of stimuli. 

It is clear that the challenge of recognising objects under conditions of occlusion is addressed 

more successfully with the addition of recurrent connections into visual models (Ernst et al., 

2021; Han et al., 2018; Tang et al., 2018). Therefore, a logical next step in deciphering the 

complexities of predictive processing in object recognition is to introduce more intricate visual 

stimuli, especially those with occluded sections.  

In parallel, expectation suppression serves as a measure to comprehend predictive 

processing. The effect is, in its simplest terms, explained by a reduction of neural response to 

an expected stimulus (Feuerriegel et al., 2021). To diminish stimulus activation, it stands to 

reason that there is a process to determine the expected features from the feedforward 

information. The rationale of expectation suppression is built here, asserting that prior 

knowledge enables the propagation of prediction errors instead of an entire object 

representation, thereby requiring fewer neural resources due to the expected nature of the 

representation (Alink & Blank, 2021; Feuerriegel et al., 2021; Kok & De Lange, 2015). This 

perspective aligns with what is commonly known as the sharpening account of expectation 
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suppression (Kok et al., 2012). In this framework, suppressed neurons represent unpredictable 

stimuli, emphasising a selective mechanism that refines neural responses to expected features, 

creating a greater contrast between the expected and unexpected stimuli. Ongoing debate 

surrounding sharpening versus dampening effects in predictive processing add complexity to 

our understanding. Studies supporting both mechanisms across different temporal windows 

introduce nuances that challenge a straightforward classification (Xu et al., 2021).  

Dampening is thought to predominantly suppress neurons that are attuned to an 

expected stimulus, resulting in a reduction of contrast in activity patterns, sharpening has more 

of an effect on the neurons not aligned with an expected stimulus, causing an increased activity 

pattern contrast (Alink & Blank, 2021; de Lange et al., 2018). There have been studies that 

supported both the sharpening (González-García & He, 2021; Jiang et al., 2013; Kok et al., 

2012) and dampening (Walsh & McGovern, 2018) accounts. Thus, showcasing the richness of 

neural responses to expected stimuli. Further complexity arises in the consideration of visual 

state conditions, as demonstrated by (Rossel et al., 2022), who observed a sharpening effect in 

lower perceived blurriness of a predictable image compared to an unpredictable one. The 

interplay of sharpening and dampening effects becomes apparent when exploring decoding 

results, where the correlation between reduced activation and decoding accuracy reveals 

distinctive patterns for each account.  

Decoding results in the sharpening account showcase an association in which the 

reduction of activation is inversely correlated with the accuracy of decoding, where a more 

predictable stimuli is represented by lower activation but a greater decoding accuracy (Kok & 

De Lange, 2015; Richter & de Lange, 2019; Summerfield & de Lange, 2014). In contrast, the 

dampening account anticipates a flatter overall picture in decoding results, with less contrast 
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between conditions due to the selective suppression of neurons attuned to predictable stimuli 

(Kok & De Lange, 2015; Walsh & McGovern, 2018).  

However, more complexity arises with studies suggesting that both mechanisms 

operate, just across differing time points. Xu et al. (2021) in an EEG study, presented evidence 

for sharpening effects during N1 and dampening effects during N2. This was achieved by 

employing a double-flash task involving an auditory cue preceding a pair of oncoming flashes 

of light with unpredictable stimulus onset asynchrony (SOA) values (1000/1500/2000ms) both 

between the cue and flashes and between the flashes themselves (400/600/900ms). The 

participants held a temporal template in their minds for each block, reflecting the SOA between 

the flashes, and subsequently pressed a response button after each double-flash to judge 

whether the experienced SOA matched or mismatched their temporal prediction. Their results 

showed an expectation suppression effect, where evoked EEG energy was lower for matching 

than mismatching predictions. Though the authors did not use MVPA as is the norm in 

neuroimaging expectation suppression analysis, in ERP analyses the N1 period showed 

suppression in the unexpected condition, in line with sharpening. However, the N2 was 

enhanced for the unexpected compared to the expected condition, which is indicative of the 

dampening account of expectation suppression. This temporal element shown through the 

amplitude changes in evoked potentials supports the suggestion that both accounts could be 

active but working in differing temporal windows.  

The impact of expected responses is robust even across various experimental designs 

and methods. Aitken et al. (2020) used MEG, asking participants to observe moving dots 

following an auditory cue. Researchers found using decoding that the anticipated direction of 

the dots influenced the neural representation merely 150ms after their appearance, highlighting 

the incredible predictive abilities of the human brain and the influence recurrent processing 
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may have in modulating this prediction. An fMRI study using face and house stimuli to analyse 

the Fusiform Face Area (FFA) presented a colourful frame that briefly preceded the stimuli 

throughout a task that required participants to respond to the presence of an inverted stimulus 

using a speeded button press (Egner et al., 2010). The prediction was driven by the colour of 

the frame (blue, yellow or green) and strongly supported a predictive processing model of 

visual cognition. Specifically, Egner and colleagues (2010) found that using fMRI and 

computational simulations showed that the predictive processing model incorporated the 

expectation of the faces with the surprise responses of houses more effectively than a feature 

detection model was able to. Feature detection acts as a low level processing step engaged in 

the identification of features such as points, lines and curves among others (Li et al., 2015). 

Thus, demonstrating that predictive processing does possess an important effect in visual 

understanding and recognition. The array of methods showing specific effects of expectation 

highlight the importance of neural resource allocation and predictive ability in the visual cortex. 

The ability to represent objects is therefore key where novel occlusion stimuli are used to study 

these prediction effects. 

In previous expectation suppression studies using grating stimuli, EVC demonstrated 

expectation suppression effects related to attention and task-relevance (John-Saaltink et al., 

2015; Kok, Jehee, et al., 2012). John-Saaltink et al. (2015) used auditory tones to predict 

gratings, where tasks were either to predict the spatial frequency of the grating stimuli, to 

perform a 1-back letter repetition task with added noise increasing difficulty, or a working 

memory task where targets were 2-back colour repetitions with no noise but higher difficulty 

for the working memory system. The authors suggest that expectation suppression is not an 

automatic phenomenon, instead dependent on attentional state and cognitive resources, where 

an irrelevant task led to greater expectation suppression, particularly when compared with a 
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working memory task. Therefore, future designs to capture the most information on expectation 

suppression abilities should use irrelevant task designs as to not overload perceptual resources. 

Additionally, in Kok et al. (2012), their findings of expectation suppression suggest that 

prediction and attention interact in EVC. When predicted stimuli are unattended and task-

irrelevant, reduced neural activity in these stimuli are representative of expectation 

suppression. Though they show that when stimuli are attended and task-relevant, the findings 

are reversed, with attention then modulating the effects of expectation. This aligns with the 

idea that attention can counteract or modify suppression effects, allowing for a more detailed 

and precise processing of predicted stimuli. Hence, it is clear from these studies that to 

sufficiently capture the nuances of expectation suppression, care must be taken with the task 

design to ensure that the task is irrelevant from the stimuli so as not to draw too much attention.   

4.2.2. Visual occlusion 

Occlusion, where an object is blocked by another, is a process which requires the ability 

to ‘fill in’ missing information in order to comprehend a visual scene. This amodal pattern 

completion is thought to again be a response of recurrent computations within the cortex 

passing efficiently via feedback and lateral connections (Kietzmann et al., 2019; Wyatte et al., 

2012). Amodal contour completion is well-suited to deal with occluded regions of objects or 

scenes, perceptually representing occluded regions based on previous experience (Scherzer & 

Ekroll, 2015). This ability to infer the missing object information, relying on previous visual 

experience aligns well with predictive processing where the whole object is predicted and only 

missing information is coded as the prediction error. In this manner, rich occlusion related 

responses have been determined from occlusion research. It has been determined through 

multiple studies that rich visual responses are present in the earlier visual areas (e.g., V1-V4) 
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even when a visual scene has been occluded, which is argued to align with prediction (Morgan 

et al., 2019; Muckli et al., 2015; Smith & Muckli, 2010).  

In occlusion research, investigations have revealed the remarkable capability of the IT 

cortex to fill in occluded information, enabling the recognition of intricate stimuli despite 

substantial obstruction (Mansfield et al., 2023; Tang et al., 2018). Contrary to traditional 

perspectives that attribute only low-level features to EVC, studies, such as those by Kok et al. 

(2016) and Lee (2003) have unveiled the surprising proficiency of the EVC in processing rich 

and challenging stimuli. Notably, in the context of illusory contours, where simple bottom-up 

information is lacking, the EVC demonstrated remarkable processing capabilities. The 

extension of these findings to 7T scanning, particularly in response to illusory contours like the 

Kanizsa illusion (Kanizsa, 1976), reveals a laminar profile of the BOLD response in EVC. This 

profile highlights distinctions between bottom-up stimulation and top-down activity, 

illustrating that in V1, bottom-up stimulation activates all cortical layers, whereas feedback 

induced from illusory figures selectively activates deeper cortical layers (Kok et al., 2016). 

These insights challenge conventional views of EVC function and provide a nuanced 

understanding of its involvement in processing complex visual stimuli, necessitating further 

research.  

Subsequent research delved deeper, illustrating V1 activity patterns in fMRI effectively 

filling in occluded regions, aligning even with line drawings of the absent sections (Morgan et 

al., 2019). They found that this elucidated the internal models of V1, revealing the extraction 

of scene category information in the early brain regions. The interplay between behavioural 

and neural insights underscores the importance of comprehending internal models that drive 

recognition in the presence of occluded sections within the visual environment.  
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Interestingly, there has been a surge of research into how occlusion is represented in 

movement. One area where this has been largely popularised is in self-driving cars, where 

safety features would require cars to be able to recognise obstacles and people in the path of 

the car even when they may be partially occluded (Cheng et al., 2020; Wu et al., 2020). 

Automated tracking in sports has also benefitted from this work. For instance, Video Assistant 

Referees (VAR) have been used in football to help referees make correct decisions, but this 

requires the ability to recognise the different players, who may be occluded, as well as the ball 

itself, often at speed (de Oliveira et al., 2023). This also is addressed in the scene understanding 

literature where work into recognising many people all with partial occlusions in circumstances 

such as crowds have also been analysed through use of models refined by scene layout and 

temporal reasoning (Tang et al., 2014). Therefore, real-world implications of a more 

comprehensive understanding of occlusion are vast.  

These additional fields seeking to comprehend and account for occlusion again suggest 

the necessity for multidisciplinary work that allows these advances in knowledge to be collated 

to a greater overall understanding of how occlusion works in more naturalistic settings. As 

spatial and temporal integration are known to plan an important role in pattern completion 

mechanisms (Tang et al., 2018; Wyatte et al., 2014) it makes sense that movement and temporal 

features of stimuli are a key aspect to investigate. Though the present study does not involve 

directly moving stimuli, there is a temporal and spatial dimension demonstrated through 

showing cue-target pairs that have different spatial constraints across different time points. This 

may enable opportunity to understand how the early visual areas respond to managing 

expectations across temporal and spatial factors.  
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4.2.3. Our motivation 

The overarching goal of the project is to advance from previous research that 

established the EVC’s reception of contextual, predictive information even in the absence of 

visual stimulation (Morgan et al., 2019; Smith & Muckli, 2010). In doing this, our focus shifts 

towards investigating whether predictive processing mechanisms are at play in response to 

occluded visual objects within V1. Departing from the paradigm employed in previous 

chapters, we maintain the use of eight single-object stimuli to delve into occlusion and assess 

the potential occurrence of expectation suppression and predictive processing. Unlike chapters 

2 and 3 where multiple objects were presented across space in pairs, this study introduces a 

temporal dimension, revealing entire objects across time through cue-target combinations.  

While BOLD response amplitudes alone may not provide insights into sharpening and 

dampening effects, the pattern of activation gained through decoding analyses should be 

enlightening. For instance, when a cue image featuring a face with an occluding bar is 

presented, predictive theories posit that the visual system should complete the image by filling 

in the missing section based on prior visual experience. Subsequent presentation of the target 

condition, revealing the missing section, allows us to validate or invalidate prior knowledge 

through a matching or mismatching image respectively (i.e., a section of a cup).  

Decoding outcomes will unveil whether expectation suppression changes the 

representation in EVC by examining the representations in the target section. According to 

sharpening studies, successful prediction is characterised by lower activation but higher 

decoding accuracy. Specifically, greater pattern discrimination for matching cue-target 

combinations compared to neutral and mismatching conditions would be demonstrative of a 

sharpening effect. Conversely, evidence of diminished pattern discrimination for matching 
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cue-target combinations compared to neutral and mismatching conditions would be indicative 

of a dampening effect (Kok & De Lange, 2015). This study aims to determine whether 

predictive processing underlies the processing of visual information under occlusion, and, if 

so, which account of expectation suppression more accurately represents these effects.    
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4.3. Methods 

4.3.1. Participants 

Self-reported right-handed healthy participants (N = 18, 7 Male, 2 Non-Binary, 9 

Female, mean age = 25.17, SD = 5.74) participated in this fMRI experiment. All participants 

reported normal or corrected to normal vision and were deemed eligible after meeting MRI 

screening criteria. Informed consent was obtained in accordance with approval from the 

Research Ethics Committee of the University of East Anglia School of Psychology. 

Participants were reimbursed for their time at a rate of £12 an hour.  

4.3.2. Stimuli and design 

The study utilised a rapid event-related fMRI method where participants were presented 

with a cue object followed by a matching or mismatching target stimulus. Participants 

performed a recognition task requiring a button press when any cue object was shown in red. 

This occurred once for each of the objects and once for the neutral condition (9 total). These 

response trials were not included in subsequent analysis.  

The stimuli were made up of eight objects of roughly the same real-world size: banana, 

dog bowl, mug, human face, monkey face, human hand, monkey hand and watermelon. These 

objects spanned various salient semantic categories (e.g., animate/inanimate, human/non-

human, natural/artificial), which are easily recognisable in human vision (Rosch et al., 1976). 

PNG images were presented in greyscale on a grey background at 799x799 pixels, the visual 

angle was presented at 11 degrees high, with the occluded section measuring 2.75 degrees high. 

Cue images featured an opaque black bar occluding the central third of the image, such 

that only the top and bottom thirds of the image were visible. The target stimuli were comprised 
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of the central third of the objects. The target stimuli related to the cue by either matching (e.g., 

the cue showed the banana with a missing block and the target was the central upright strip of 

the banana image) or mismatching. The mismatches were either caused by orientation 

differences (the same image as the cue but inverted) or by object (a different target image to 

the cue, either upright or inverted) (see Figure 4.1 for examples). A neutral condition was 

created where the cue was not an object, but instead made up of noise, which was followed by 

a target that would be either upright or inverted.  
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Figure 4.1. 

A) The eight whole stimuli. B) Examples of trial stimuli. Cue stimuli have an occluding block across 

them, green boxes represent match trials. Red and purple outlines represent mismatch trials, either by 

object or orientation. Neutral trials have noise occluded using a bar as a cue, followed by a target as 

normal. Mapping stimuli allows specific analysis of the occluded section as well as the surround section. 

4.3.3. Procedure 

Before the study commenced, participants saw an information sheet and gave informed 

consent to take part in the study. They each completed an MRI eligibility checklist to ensure 

their safety in the scanner. If eligible and happy to proceed, they were taken to the scanning 

room to begin the task. Prior to the task, the eye tracker was calibrated for the participant using 

calibration and validation settings on the EyeLink 1000 Plus. Participants saw a fixation cross 

A 

B 



CHAPTER 4 

 
132 

which they were asked to look at continuously. The use of eye tracking allows us to ensure that 

any results are not due to different looking behaviour during certain trials or conditions. We 

can ensure sure that participants were staying fixated on the cross so the visual experience 

would be identical across participants.  

For each trial, participants saw a cue comprised of one of the whole objects or a neutral 

stimulus with an occluding bar for 750ms, which was then followed by a target stimulus which 

was always one of the 8 cut out regions for 750ms. These cue-target pairs constituted either 

matching, mismatching or neutral pairings, see Figure 4.2. An attention-checking task involved 

participants pressing a response button when a red-hued version of the cue stimulus was 

presented, these trials were not included in subsequent analysis. There were nine red stimuli in 

total, one for each object and one for the neutral condition. Participants took part in 4 runs of 

the main experiment, with each run lasting approximately 9.5 minutes. There were 89 total 

trials per run: 9 red trials (excluded from further analysis), match 32 trials (each object four 

times); mismatch 16 trials (each object twice); and neutral 32 trials (each object four times). 

Half of each condition’s trials were upright and the other half were inverted. Each trial took 

4.5 seconds. Mapping checkerboards were displayed at the end of each block, with 12s of 

checkerboard in the location of the target stimuli and 12s in the surround area with 12s fixation 

between each (see Figure 4.1). Using this method allowed us to functionally define the areas 

in EVC that were more active when viewing the target compared to the surround, which helped 

us to define our ROIs. 
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Figure 4.2. 

An example of a matching trial and associated timings. 

 

 

 

 

 

 

 

Participants were also asked to lie still while an anatomical scan was run to allow clearer 

analysis of the areas of the cortex of interest. Additionally, they completed a localiser scan run, 

which used an N-back task in images from the categories of faces, houses, bodies and 

scrambled requiring them to press a response button when they saw the same stimuli presented 

in trial N and N-1. A debrief was completed at the end of the scanning session, with the entire 

scanning session lasting no longer than 90 minutes.  

4.3.4. MRI data acquisition 

Structural and functional MRI data was collected using a high-field 3-Tesla MR scanner 

(Siemens Prisma). High resolution T1 weighted anatomical images of the brain were obtained 
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with a three-dimensional magnetisation-prepared rapid-acquisition gradient echo (3D 

MPRAGE) sequence (34 Volumes, 1mm isotropic). BOLD signals were recorded using a 

multiband echo-planar imaging (EPI) sequence: (444 volumes, TR = 1268ms; TE = 30ms; flip 

angle 74; 34 slices, matrix 78 x 78; voxel size = 2X2X2; slice thickness 2mm; no interslice 

gap; field of view 192; multiband factor 2, Partial Fourier = 7/8, no Grappa). Slices were 

positioned to cover occipital and temporal lobes. The visual display was rear projected onto a 

screen behind the participant via an LCD projector, participants observed the screen through a 

mirror attached to the head coil. Eye movements were recorded using an EyeLink 1000 Plus to 

ensure fixation. This eye tracker was mounted onto the display screen, using the mirror to 

observe eye movements throughout, calibration and validation for each participant was 

completed at the start of the experimental runs. 

A short 5-volume posterior-anterior opposite phase encoding direction scan was 

acquired before main functional scans, to allow for EPI distortion correction (Fritz et al., 2014; 

Jezzard & Balaban, 1995). An independent functional localiser (Faces, Places, Objects and 

Scrambled – see (Charest et al., 2014) was run, which utilised a block design where a one-back 

task kept participant attention. Two runs of this localiser were run per participant, taking 

approximately 15 minutes.  

4.3.5. MRI data pre-processing 

Functional data for each experimental run, in addition to localiser runs was pre-

processed in Brain Voyager 20.4 (Brain Innovation, Maastricht, The Netherlands; Goebel et 

al., 2006), using defaults for slice scan time correction, 3D body motion correction and 

temporal filtering. Functional data were intra-session aligned to the pre-processed functional 

run closest to the anatomical scan of each participant.  
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Each participant’s T1 weighted anatomical image was pre-processed to extract the brain 

from the head-volume. Functional data were then coregistered to the participant’s ACPC 

anatomical scan. Note no Talairach transformations were applied, since such a transformation 

would remove valuable fine-grained pattern information from the data that may be useful for 

MVPA analysis (Argall et al., 2006; Dale et al., 1999; Fischl et al., 1999; Goebel et al., 2006; 

Kriegeskorte & Bandettini, 2007). For the main MVPA analyses (described further below) we 

conducted a GLM analysis independently per run per participant, with a different predictor 

coding stimulus onset for each stimulus presentation convolved with a standard double gamma 

model of the haemodynamic response function (Greening et al., 2018; Smith & Muckli, 2010). 

The resulting beta-weight estimates are the input to the pattern classification algorithm 

described below (see multivariate pattern analysis). A GLM with one predictor per unique 

image (89) with separated GLMs by run was used for decoding.  

Deconvolution analysis was used for univariate analysis due to the increased ability to 

model the BOLD response in event-related designs, representing the hemodynamic response 

function effectively (HRF; Chen et al., 2023). This was computed first of all within 

participants, then the specific time points of interest and tested across participants for 

significant differences. The time point analysed was between 3-6 volumes for each of the six 

conditions (match-upright, match-inverted, neutral-upright, neutral-inverted, mismatch-

upright, mismatch-inverted). ANOVAs were run through R studio to analyse the effects of the 

conditions against potential effects of hemisphere (left or right), orientation (upright or 

inverted) and ROI (target or surround). Note that if orientation was used as a separate variable, 

that condition was collapsed into match, mismatch and neutral.  
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4.3.6. Anatomical regions of interest 

These ROIs were created in each hemisphere by using the mapping checkerboards to 

define which area of EVC had higher activation to the target area (here the occluded bar) and 

the surround area (the unoccluded area). A contrast of target minus surround was applied and 

the resulting areas were defined as the target ROI (where there was higher activation for the 

target over surround areas) and surround ROI (where there was less activation for the target 

than the surround), which then created our ROIs (see Figure 4.3). 

Figure 4.3.  

An example of the ROI allocation for one participant from BrainVoyager. Red and blue indicate 

surround and green and yellow represent the target. The contrast of target minus surround was applied 

across averaged runs for each participant to ascertain the areas in EVC that had more activation for the 

target area than the surround area, as defined using mapping checkerboards.  
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4.3.7. Multivariate pattern analysis 

Linear SVM decoding (leave one run out cross-validation) used to decode object 

identity of target patches separate for each condition (match-upright, match-inverted, neutral-

upright, neutral-inverted, mismatch-upright and mismatch-inverted). Trials were subsampled 

in the match and neutral condition (16 upright, 16 inverted) to equal the number of trials in the 

mismatch condition (8 upright, 8 inverted) for decoding, which was then iterated 10 times. The 

LIBSVM toolbox (Chang & Lin, 2011) was used to implement the linear SVM algorithm, 

using default parameters (C = 1), which uses the 1vs1 method for multiclass classification. The 

activity pattern estimates (beta weights) within each voxel in the training data were normalised 

between -1 to 1, before being used in the SVM (Bailey et al., 2023; Greening et al., 2018; 

Knights et al., 2021; Muckli et al., 2015). 

Test data were normalised using the same parameters as the training set, to optimise 

classification performance. To test whether group level decoding accuracy was significantly 

above chance, we performed non-parametric Wilcoxon signed-rank tests using exact method 

on all MVPA analyses, against the computed empirical chance level (Formisano et al., 2008; 

Greening et al., 2018), with all significance values reported two-tailed. We used a permutation 

approach – randomly permuting the mapping between each condition and each label, 

independently per run, to calculate the empirical chance level for each participant and each 

decoding analysis separately (Bailey et al., 2023). 
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4.4. Results 

4.4.1. Univariate deconvolution analysis 

4.4.1.1. Time course 

Deconvolution analysis run through BrainVoyager allowed a time course to be plotted 

for each ROI (pooled across hemispheres) averaged across participants. These informed our 

decision to use time points three to six for our analyses as this time frame contained the peak 

amplitude across conditions and regions, see Figure 4.4.  
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Figure 4.4. 

HRF time course plots for all participants split across Conditions for the A) Target and B) Surround 

region of interest. Error bars represent standard error.  
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4.4.1.2. ROI validation 

We completed a simple circular analysis of the target and surround ROIs to check they 

had been correctly selected. To do this, we analysed the differences between the mapping 

conditions using pairwise t tests, FDR corrected. As expected, the target ROI boasted a 

significantly higher amplitude for the target over surround condition and vice versa in the 

surround ROI (W = 595, p  < .001)., see Figure 4.5. the target and surround conditions were 

not analysed in our main ANOVAs.  

Figure 4.5. 

Violin plot of the differences between the target and surround conditions in each ROI.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. FDR corrections applied.  

**** 

**** 
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4.4.1.3. ANOVA  

ANOVA testing of condition (matching, mismatching and neutral), orientation (upright 

and inverted), hemisphere (left and right) and ROI (target and surround) found a significant 

main effect of condition, F(2, 32) = 14.00, p < .001 as well as ROI F(1,16) = 21.08, p < .001. 

There was also a significant interaction between condition and ROI, F(1.38, 22.15) = 41.93, p 

< .001. As well as this, a significant interaction emerged between condition, hemisphere and 

ROI, F(2, 32) = 4.40, p = .02.  

The interaction between condition, ROI and orientation, while marginally non-

significant, is still interesting to consider, F(1.35, 21.55) = 3.31, p = .072. Thus, post-hoc tests 

have also been utilised here to analyse these effects for exploratory purposes.  

First of all, we explored where the interaction between condition and ROI arose from. 

Collapsing across inversion, we sought to explore these factors. We found that when pooled 

across hemispheres, an ANOVA on the target ROI had no significant findings, whereas the 

Surround ROI showed a significant main effect of condition, F(2, 32) = 31.00, p < .001. Post-

hoc tests revealed significance between conditions across the surround area (see Figure 4.6) 

where the neutral condition had significantly higher amplitudes than both the match and 

mismatch conditions. There were also differences between ROIs when split across condition 

(see Figure 4.7), where match and mismatch conditions both had significantly higher 

amplitudes in target than in surround ROIs.  
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Figure 4.6.  

A violin plot of the deconvolution amplitude of each condition, split across ROI (target and surround). 

Significant paired t tests indicated by asterisks.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. FDR corrected.  
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Figure 4.7. 

A violin plot of the deconvolution amplitude of each ROI, split across condition. Significant paired t 

tests indicated by asterisks.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. FDR corrected.  

To follow up the condition, ROI and hemisphere interaction, we ran an ANOVA of 

these three variables, collapsed across orientation and found effects of condition and ROI as 

before and a main effect of condition and ROI. To try to unpick why the hemisphere interaction 

had occurred in the large ANOVA, we ran additional ANOVAs of condition and ROI 

separately for each hemisphere. It was discovered that the left hemisphere had an effect of 
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condition, F(2,32) = 15.24, p < .001, as well as ROI, F(1,16) = 7.69, p = .014, and an interaction 

between condition and ROI, F(2,32) = 17.23, p < .001. In the right hemisphere this pattern was 

mirrored, with a main effect of condition, F(2,32) = 9.92, p < .001, ROI, F(1,16) = 12.96, p = 

.002, and an interaction between condition and ROI, F(2,32) = 47.89, p < .001. In FDR 

corrected post-hoc t test analyses, the left hemisphere showed significant pairings in the 

surround ROI split across conditions: match – neutral (p < .001) and neutral – mismatch (p < 

.001). In the right hemisphere surround ROI there were also significant pairings: match - 

neutral  (p < .001) and neutral – mismatch (p < .001), see Appendix J for visual representation. 

Though this pattern is reflected in both hemispheres, the more significant effects in the right 

hemisphere may be responsible for the initial interaction of hemisphere, condition and ROI.  

4.4.2. Decoding accuracies 

4.4.2.1. Wilcoxon  

Before completing further analysis, we first tested whether group-level decoding 

accuracy was significantly above chance we used Wilcoxon signed-rank tests against 

empirically derived chance levels (Bailey et al., 2023; Formisano et al., 2008; Greening et al., 

2018), all significance levels two-tailed. This revealed decoding of object identity as 

significantly different from chance (0.125) in 19 of 24 conditions (p < .025) (pairings 

comprised of each of the four regions of interest - target and surround for left and right - across 

the six conditions), with the five non-significant pairings all being within the mismatch 

condition (p > .177). Thus, we used non-parametric Wilcoxon methods and did not analyse the 

mismatch condition separately.   
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4.4.2.2. ANOVA 

A permutation ANOVA test with 10000 permutations was computed on variables of 

condition (match, mismatch and neutral), orientation (upright and inverted) and ROIs (target 

and surround) on decoding. There was a significant main effect of condition F(2,34) = 11.15, 

p < .001,  as well as ROI F(1,17) = 30.85, p < .001. There was a significant interaction between 

condition and ROI, F(2,34) = 4.40, p = .02.  

4.4.2.3. Post-hoc tests 

Following this, we collapsed the results across orientation and one way-ANOVAs were 

carried out to determine the effects of condition on each region of interest. Testing the effect 

of condition in each region, we revealed target to be marginally non-significant, F(2,34) = 2.5, 

p = .09, while surround was significant, F(2,34) = 13.07, p < .001. Subsequently, Wilcoxon 

signed rank tests were computed between each decoding condition, and the significant pairings, 

as seen in Figure 4.8, were corrected for pairwise errors using FDR. The significant differences 

between the match and mismatching conditions in each ROI suggest an expectation 

suppression effect, where expected – or predictable – stimuli are better represented in EVC 

than unexpected stimuli. Comparing between the ROIs when split across conditions (see Figure 

4.9) we reveal that decoding in the target ROI is greater than the surround ROI for all 

conditions. 

  



CHAPTER 4 

 
146 

Figure 4.8. 

Plot of the decoding accuracy of the decoding conditions split across target (TAR) and surround (SUR) 

regions of interest.   

Note. * p<.05, ** p<.01, *** p<.001, ***p<.0001. FDR corrections applied.  
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Figure 4.9.  

Plot of the decoding accuracy of the target (TAR) and surround (SUR) regions of interest split across 

conditions (match, mismatch and neutral).   

Note. * p<.05, ** p<.01, *** p<.001, ***p<.0001. FDR corrections applied.  
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4.5. Discussion 

In this study, our aim was to unravel predictive processing in occlusion, specifically 

through the lens of expectation suppression. Our interpretation of MVPA decoding results 

leans towards expectation suppression, particularly the sharpening effect. The consistently 

higher decoding accuracy in the matching, expected condition compared to the mismatching, 

unexpected condition, in both target and surround regions, supports this view. However, the 

univariate analyses paint a more surprising picture, showing no effect of match versus 

mismatch as would be expected in a traditional picture of expectation suppression. We found 

the neutral condition had significantly higher amplitudes than the match or mismatch condition 

in the surround region particularly.   

More specifically, our decoding analysis revealed an effect consistent with expectation 

suppression, exhibited through the higher decoding accuracy in the match compared to the 

mismatch condition across both ROIs. This is as expected, supporting the view that an expected 

stimulus would be more accurately decoded due to the increased predictability (González-

García & He, 2021; Kok et al., 2012; Summerfield & de Lange, 2014; Walsh & McGovern, 

2018). Therefore, we can argue that there is evidence of predictive processing occurring 

throughout this experiment, where the propagation of object representation information and 

prediction errors cause this effect. This dynamic updating of predictions within trials to explain 

away expected changes even aligns with results in eye-tracking that discovered V1 activity for 

updating apparent motion predictions (Edwards et al., 2017), making it clear how robust the 

mechanisms for prediction are across multiple sensory modalities and paradigms. In the present 

study, as the representation of the expected match condition is decoded more accurately than 

the mismatch condition, this aligns with the sharpening account, where neurons attuned for the 

unexpected stimuli have their activity suppressed (Kok et al., 2012), creating this heightened 
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contrast. The dampening account would have demonstrated a lower contrast between 

conditions in decoding analyses, where the response for the expected, matching condition 

would be suppressed relative to the unexpected mismatching condition (Kok & De Lange, 

2015).  

Our results regarding the ROIs were somewhat unexpected, as we found huge effects 

in the surround ROI across all analyses, where we primarily expected to find effects in the 

target ROI. However, these differences may suggest that the surround ROI is more affected by 

the spatial context shaping the visual processing in early visual areas. It has been determined 

that temporal and spatial context do play a role in object recognition, specifically when 

undertaking pattern completion, thus we suggest that these surround findings may be a result 

of this (de Haas & Schwarzkopf, 2018; Tang et al., 2018; Wyatte et al., 2014). The surround 

region initially receives full stimulation with high contrast, which is not simply ignored as the 

trial continues from the cue occluded image to the target bar image. 

Additionally, these somewhat unexpected results between the target and surround 

regions may also be the result of the higher complexity of our stimuli and paradigm. This is 

because where previous expectation suppression research tends to only use one complex visual 

scene, image or motion stimuli per trial paired with a colour or auditory cue to investigate the 

ability to investigate effects of expectation (Edwards et al., 2017; Egner et al., 2010; Smith et 

al., 2018; Smith & Muckli, 2010; Walsh & McGovern, 2018), our trials contain a cue-target 

pair subject to occlusion that may contain two object identities the visual system is required to 

parse. This may be the cause of the match versus mismatch effects as there are two different 

object identities in the mismatch but not the match trials. We are aware that in higher visual 

areas, there are improved abilities to recognise multiple objects simultaneously, while this is a 

more taxing process in early visual areas (Mansfield et al., 2023). Thus, this added complexity 
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may offer an alternative explanation for the effects we found in the univariate analysis. We 

may have unlocked some insight here into how prior context shapes the surround region, even 

when there is not a stimulus being processed in the target section of the cue-target pair.   

Deconvolution analysis first ensured that our target and surround regions were correctly 

representative. Our analyses then moved towards investigating the specifics of the interactions 

between condition and ROI, as well as the significant condition, ROI and hemisphere 

interaction and the marginally non-significant interaction of condition, ROI and orientation to 

determine what was driving these effects. The results of the deconvolution analysis did not 

yield the expected trend of mismatching conditions showing higher amplitudes. However, as 

the decoding is much more statistically powerful than the univariate analyses it may be that the 

complexity of the paradigm, with multiple ways to mismatch in addition to the neutral 

condition and potential multiple object representations across trials caused the effects only to 

occur statistically when more powerful analyses were used.  

The findings regarding the time course analyses for the univariate analyses paint an 

intriguing picture of the data, where in the target ROI the amplitudes peak at around 0.6 for the 

task conditions, whereas in the surround ROI the amplitudes for the main conditions peak 

around 0.3, whilst the amplitudes for only the neutral condition peak around 0.6. Findings 

suggest a differing effect between how the neutral stimulus condition was processed and 

demands additional thought to try to unpick the implications of this in the surround versus 

target regions. It may be that the neutral stimulus pattern of the prime acted as a highly 

mismatched and unpredictable cue-target pair, with the expectation never able to be fulfilled. 

It may be due to the difference in low level statistics where the very visually different neutral 

stimuli could be driving the effects. But these speculative arguments would need additional 

research to compare them to the match and mismatch conditions, as there was no control for 
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the neutral condition. Perhaps future research could use neutral patterns as cue and target so 

that the expectation could be fulfilled on occasion and the neutral condition is more controlled 

for. Or we could utilise blurred target patches to increase the chances of finding an effect due 

to increased difficulty in potential prediction.  

The interaction between condition, ROI and hemisphere introduces additional 

complexity, suggesting nuanced hemispheric involvement in processing these conditions 

within the target and surround regions. Intriguingly, post-hoc tests conducted separately for 

each hemisphere revealed a consistent pattern of results, indicating that the observed nuances 

may be due to the larger effect in the right hemisphere in the initial interaction.  

To address the unexpected findings within the univariate analysis, there has been some 

consideration of limitations of the paradigm. While this is a novel project for looking at this 

topic, this has meant that several of the methodological choices were made from best guesses 

based on previous, similar but not matched, research. Looking at previous fMRI studies 

utilising expectation suppression methods, they often train using arbitrary pairings for 

predictions, for example, a certain auditory beep signals a grating at a 45 degree angle whereas 

a different one signals a grating at 145 degrees (Kok et al., 2012). In the present study we used 

recognisable objects and relying on the implicit associations that participants already had to 

these objects so did not teach a new association. This difference may go some way in explaining 

why a pattern of results in the univariate analyses is different to the previous expectation 

suppression results.  

We could argue that the differences between the potential expectation suppression 

results in the decoding analyses and the lack thereof in the univariate could come down to the 

high contrast stimuli of the target object. As participants saw this high contrast stimuli in all 
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conditions, it may be that the responses are all equal in the target ROI because of this. This 

could be due to the high contrast saturating the neurons within the visual system to a higher 

extent than had been anticipated. The pattern of results in the decoding does align with 

expectation suppression, which is statistically more powerful than univariate analysis, however 

without the combination of the decoding and univariate analyses it is not possible to determine 

for definite that expectation suppression is responsible for these effects.  

However, results from Smith and Muckli’s (2010) occlusion study determined 

interesting early visual effects even without being able to test for expectation suppression 

effects as their results only used MVPA and not univariate analysis. Showing that robust effects 

of spatial context still enabled advancement in understanding of the early visual cortex, 

specifically V1, even without being able to test for expectation suppression. In future research, 

we may be better placed to do some computational modelling to try to grasp the patterns found 

here, particularly using recurrent neural networks as these connections are thought to be 

effective in challenging recognition scenarios (Nayebi et al., 2018). 

Moreover, the bar section in the cue currently aligns with the whole target image which 

is only comprised of the bar. This may be the reason that the surround region has rich effects. 

So, to keep a clear focus on the target section alone, the surround area of the target stimuli of 

the cue-target pair could be the same throughout the cue-target pair, with just the target bar 

area changing, rather than being blank. This would perhaps cause neurons to suppress the 

expected surround section, as there would always be a validated expectation there, causing less 

of an effect in the surround region.  

Considering the findings within IT from previous studies (Mansfield et al., 2023; Tang 

et al., 2018), it would be a beneficial avenue to pursue to analyse the results here in the higher 
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visual areas to see if there is a particular point in the ventral stream that enables expectation 

suppression to occur with this occlusion stimuli. Maybe the additional visual complexity of 

representing two objects is more robustly represented in the higher order areas which are more 

equipped to allow overall pattern completion from both inferred and visible object information. 

This could explain to us whether the surround region of the stimulus is particularly affecting 

the EVC specifically or whether the paradigm itself just did not account for the spatial 

representation of the surround region across time to cause such large effects in the neutral 

condition in the univariate results.  

It may be the case in the current study that the surround area, with its high contrast, 

clear visual information, was exhibiting its own type of predictive effect, albeit in a different 

order to the cue-target pairing we has designed. It may be that the participants were drawing 

across the spatial representation of the surround sections of the objects across the time of the 

trial and predicting what should be carried across to complete the object. For example, if in one 

cue-target pair, the cue was the face with the occluded bar, the representation of the face may 

be filling in the occluded bar, but across time the representation of the cue stimulus would still 

shape the representation in the surround area even during the target bar. This is similar to the 

face paradigm employed by Smith et al. (2018) that used sections of faces to look for predictive 

processes occurring. Therefore, it would be an interesting avenue to approach this paradigm 

with EEG, which has a better ability to gain fine-grained temporal data. This may allow us a 

more thorough understanding of how the representations within prediction and amodal 

completion take place across time in the early visual areas. There is currently a clearer view of 

how this is achieved in higher order areas such as lateral occipital cortex and fusiform face area 

than early visual cortex which is generally regarded as unclear (Thielen et al., 2019).  
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4.5.1. Conclusion 

In combination, it appears as if there is tentative evidence for a sharpening account of 

predictive processing due to the superior representation for matching versus mismatching in 

both ROIs across decoding, with the matching condition even having higher decoding accuracy 

than neutral in the surround ROI, where decoding is statistically more powerful than the 

univariate analysis. However, the lack of expectation suppression-like patterns appearing in 

the univariate analysis demonstrates a need to improve the paradigm to better capture the 

intricacies of expectation suppression across object recognition. This could perhaps be 

addressed by the surround section of the cue image being showed again in the target section of 

the cue-target pair so the occluding bar section would be the only part of the stimulus pair that 

changed.  
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5.1. Thesis overview  

The overarching goal of this thesis was to advance our knowledge of the processes 

underlying object recognition, particularly in challenging visual scenarios such as occlusion. 

To achieve this, we employed both neural and behavioural measures, delving into two key 

areas. Firstly, we explored the impact of utilising multiple objects as occlusion stimuli, 

employing real object images to serve as both the occluding and occluded objects (discussed 

in Chapters 2 and 3). Secondly, we investigated whether predictive processing mechanisms 

play a pivotal role in facilitating recognition across objects with occluded sections (explored 

in Chapter 4).  

This concluding chapter serves as a comprehensive synthesis of the prior chapters, 

analysing the outcomes of the three experimental chapters. It not only examines the practical 

implications of our findings but also delves into the theoretical underpinnings. Furthermore, 

this chapter will address potential limitations, discuss methodological considerations, and 

propose potential avenues for future research. Through this, we aim to contribute to a deeper 

understanding of the mechanisms involved in object recognition and representation under 

challenging visual conditions.  

5.2. Summary of findings 

5.2.1. Summary of Chapter 2 results 

In this study on visual object recognition under conditions of occlusion and deletion, 

we investigated the differential impact on EVC and IT across different decoding methods. Our 

results revealed significant differences between EVC and IT in terms of their responses to 
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multiple objects. Notably, IT exhibited greater tolerance to the presence of multiple objects 

compared to EVC.  

Cross-decoding analyses illuminated the distinctions in processing the visible and 

inferred features of object pairs in IT, demonstrating its ability to decode the identity of 

multiple objects simultaneously with great efficiency, even if features were only inferred rather 

than visible. This differed in EVC where a higher reliance on visible features was observed. 

Comparisons with Johnson and Olshausen’s (2005) work underscored the effects of multiple 

objects when recognising occluded objects, showing potential competition effects in 

recognising multiple object identities.  

Synthetic decoding, motivated by multiple object presentations being decodable from 

the combination of activity patterns to each stimulus in isolation, was extended to work here 

with occlusion rather than two simultaneously presented (but separate) objects (MacEvoy & 

Epstein, 2009). Our findings in EVC again indicated a reliance on the visible visual features of 

objects, while IT demonstrated similar decoding accuracies for both visible and inferred 

features. This suggests that IT employs a higher-level model involving hidden visual features 

for predicting occluded object identity. The study supports the concept of pattern completion 

through the visual stream (Kanizsa, 1976; Tang et al., 2018; Zhu et al., 2019), with IT 

processing completed object representations well.  

In summary, our study contributes valuable insights into the neural mechanisms 

underlying object recognition in challenging visual conditions, emphasising the importance of 

including additional visual information as occluders and highlights the differing processing 

capabilities of EVC and IT.  
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5.2.2. Summary of Chapter 3 results 

This chapter provided an exploration into the impact of occlusion and multiple objects 

on both behavioural and neural aspects of recognition. The behavioural and neural results 

combined highlight the differential effects between IT and EVC, with EVC in particular being 

more affected by the magnitude of occlusion and the associated challenges of representation of 

occluded objects, while this was not the case in IT. In IT the correlations reflected a linear 

increase in beta weights with recognition difficulty, which is potentially representative of more 

processing being allocated, when the recognition was more difficult. Specifically, when 

accuracy was lower or RTs were slower.  

Behaviourally, the study revealed enhanced accuracy and faster RTs for unoccluded 

conditions. When objects served as both the occluding and occluded objects, recognition 

differences appeared for the occluded back object, with the deleted condition being more 

successfully recognised. This departure from previous research (Johnson & Olshausen, 2005) 

suggested a unique aspect of recognition when multiple objects are being perceived at once.  

The integration of the behavioural and neuroimaging data provided a more 

comprehensive understanding of how object recognition takes place under occlusion. This 

study emphasises the importance of adapting research methods to capture the nuances of vision 

in more ecological contexts. It also makes it clear that approaching the same question from a 

number of different methods or analysis types offers greater insight and speaks to a 

multidisciplinary approach in neuroscience and vision being worthwhile to pursue.  

Overall, this chapter has gone some way to extend prior research by examining both 

behavioural and neural representations of objects under challenging visual conditions of 

occlusion. The observed behavioural difficulties in the occluded back condition, coupled with 
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distinct neural patterns in IT provide valuable insights into the intricate interplay of factors 

influencing object recognition when objects are occluded or deleted. These include the ability 

to of IT to adjust resource allocation and processing in the face of increased difficulty, as 

reflected in lower accuracy and slower reaction times. Furthermore, the behavioural differences 

in recognising the occluded back object condition in the presence of both occluding and 

occluded objects provide novel perspectives. The finding that the deleted condition is more 

accurately identified than the occluded back condition highlights the complexity of object 

recognition when perceiving multiple objects simultaneously.  

5.2.3. Summary of Chapter 4 results 

Chapter 4 delved into the theory of predictive processing, specifically looking at this 

with regards to occlusion, using expectation suppression in EVC. Decoding results from 

MVPA indicate an expectation suppression effect, which aligns particularly with the 

sharpening account of predictive processing. Consistently higher decoding accuracy in the 

expected, matching, condition compared to the mismatch condition, in both target and surround 

ROI supports the anticipated predictive processing pattern (González-García & He, 2021; Kok, 

Jehee, et al., 2012; Summerfield & de Lange, 2014; Walsh & McGovern, 2018).  

Univariate analyses did not reveal results in line with expectation suppression, instead 

showing a substantial influence of the surround ROI on observed effects. These findings 

suggest a potential impact of spatial context on visual processing in the early visual areas. This 

was a novel task, using complex stimuli involving recognisable objects which hold implicit 

associations and having the potential to show multiple object representations across time and 

space in each trial. Thus, even as more questions arise about exactly how these effects occur, 
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there have still been valuable insights garnered into how context shapes the surround region, 

even without a stimulus present in the target section of the image.  

Overall, this study offers tentative evidence for a sharpening account of predictive 

processing during occlusion in EVC. The fact that univariate results did not differ highlights 

the need for paradigm improvements to capture the intricate dynamics of expectation 

suppression during object recognition under conditions of occlusion. 

5.3. Integrating findings and relation to the broader literature  

Our ability to recognise highly occluded objects in busy visual scenes is striking. 

Relying on the interplay of areas of the visual cortex provides detail from the broad spatial and 

feature-based facets of objects to the specific contextual and categorical details informed by 

prior experience (Kok & De Lange, 2015; Schyns et al., 1998; Tang et al., 2014). Using 

multiple objects appearing together in paired occluded configurations was our attempt at 

increasing the ecological validity of object recognition, where we very rarely – if ever – see an 

isolated object. This complexity within the novel stimulus set created for use in Chapters 2 and 

3 added some additional detail to the knowledge of occlusion, particularly when multiple 

objects are being represented simultaneously. This gave us valuable information regarding the 

brain regions that were particularly implicated in this process, specifically allowing the 

assessment of how higher order and early visual areas represented occluded compared to 

deleted objects. Though previous studies had looked at occlusion and visual clutter (Johnson 

& Olshausen, 2005; Reddy & Kanwisher, 2007; Spoerer et al., 2017; Tang et al., 2018), there 

was little research that had looked at how the impact of another object as the occluder was 

mitigated visually.  
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Grounded in ecological validity, Chapters 2 and 3 underscore the necessity of adapting 

research methods to capture the intricacies of vision in real-world scenarios. This 

methodological shift helps to both refine our experimental approach as well as contributing to 

a broader trend in neuroscience toward more ecologically valid research. In the realm of vision 

where variations in size, shape, luminance, contrast and visual occlusion abound (Carlson et 

al., 2011), viewing one stimulus at a time falls short of capturing these nuances appropriately. 

The contrast between the findings of the present study in Chapter 2 and Johnson and 

Olshausen’s (2005) work further emphasises the significance of ecological context. The 

inclusion of an ecologically valid multiple object pairing revealed a cost for simultaneously 

processing multiple objects, even when the focus was only one object in the task itself. This 

finding diverged from Johnson and Olshausen (2005) where the occluded condition was better 

recognised than the deleted condition, potentially influenced by their use of two-dimensional 

ovals for occluding and deleting the target object which lacked additional visual information. 

It became clear when examining the literature that areas within the ventral visual stream 

were key for visual object recognition and classification (DiCarlo & Cox, 2007; Fyall et al., 

2017; Gazzaniga et al., 2018; Goodale & Milner, 1992; Sorooshyari et al., 2020; Wyatte et al., 

2012). A specific area of focus was V1, the primary visual cortex is implicated in studies where 

grating stimuli can be predicted based on learned associations (Kok et al., 2012), as well as in 

more complex occlusion paradigms (Morgan et al., 2019; Smith & Muckli, 2010). This 

research necessitated the exploration of EVC under more challenging visual conditions to 

determine the complexity of the object representation and categorisation that could be achieved 

here. Additionally, higher order visual areas such as IT have been determined to represent 

highly complex objects incredibly accurately (Kreiman, 2008; Mur et al., 2013). Thus, our 

comparisons of visual occlusion across these two areas of the ventral visual stream have 
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allowed us to determine benchmarks of processing. Chapters 2 and 3 allowed comparison of 

EVC with IT and mid-visual regions to understand how the ability to process occluded objects 

changed along the visual stream, whereas Chapter 4 had a focus specifically on EVC to better 

understand potentially impacts of predictive processing in early vision. Consistent with prior 

findings we discovered that representations of occluded objects were still created in EVC, but 

IT was more tolerant to multiple object representations. 

The concept of predictive processing has emerged as a guiding principle throughout 

our exploration of object recognition. The idea that the brain better explains sensory input by 

minimising any error in the predictions propagated along the visual stream provides an efficient 

theory for challenging conditions of object recognition among other concepts (Clark, 2013; 

Mills et al., 2021). Whilst we can argue that the effects in Chapters 2 and 3 may be due to 

predictive effects, it was not possible to quantify directly. Thus, Chapter 4 was dedicated to 

specifically investigating predictive effects during occlusion in order to reinforce and expand 

upon the consistent previous findings across EVC (Morgan et al., 2019; Smith & Muckli, 

2010). Using expectation suppression methods allowed this, with the understanding that a 

reduction in the measure of neural activation following predicted stimuli represents predictive 

processing (Feuerriegel et al., 2021), though our univariate results did not show this. The 

sharpening account aligns with the heightened decoding accuracy in the expected condition, 

contributing empirical weight to the theoretical framework introduced in the literature review 

of Chapter 1 (González-García & He, 2021; Kok, et al., 2012; Kok & De Lange, 2015).  

Throughout the thesis it has been clear that there is much to be gained by utilising an 

interdisciplinary approach. The combination of both behavioural and neural measures has not 

only improved our understanding of the intricacies of object recognition under challenging 
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visual conditions but has also emphasised the importance of employing varied methodologies 

(Kriegeskorte, 2015). Chapter 3 in particular displayed the importance of integrating 

neuroimaging and behavioural data. By examining both aspects, we not only unravel the 

differential effects of activation in IT and EVC, but also glean insights into the cognitive 

processes involved in recognising occluded objects. This holistic perspective surpasses the 

confines of our specific investigations, offering a broader understanding of the interplay 

between neural mechanisms and behavioural outcomes in the realm of object recognition. 

Taking a step further, the integration of computational methods like CNNs using complex 

stimuli like those presented in our studies could enhance the analysis of visual cognition 

processes (Bracci & Op de Beeck, 2023; Nayebi et al., 2018). This combination may empower 

us to simulate the brain’s processing of occluded objects, facilitating hypothesis testing and 

refinement of theoretical frameworks, Such advancements build upon foundational insights 

derived from human neural and behavioural studies (Kriegeskorte, 2015). In essence, the 

multidisciplinary approach allows us to grasp the complexities of vision more 

comprehensively, leading to richer insights that go beyond the confines of individual research 

methodologies alone.  

Amodal completion was a focus within Chapter 2 and beyond, showing how 

mechanisms unfold during the representation of occluded objects (Tang et al., 2018). The 

nuanced exploration of visible and inferred features in IT hints at a higher-level model involved 

in predicting occluded object identity, where IT better accessed the whole object representation 

from the parts available. This contributes not only to our specific study but integrates with 

broader discussions on how the visual stream engages in pattern completion (Ao et al., 2023; 

Nanay, 2018b; Thielen et al., 2019; Weigelt et al., 2007). The ability to link missing parts of 

an object and still robustly recognise this within a short time frame has been well-researched 
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as an explanation for object recognition under occlusion. In the current work, we have found 

that objects may be ‘completed’, that is, they are still able to be accurately represented even 

when another object is occluding them.  

These results suggesting EVC lacks significant ability to complete objects contrasts 

with the findings of Smith and Muckli (2010), who observed more prominent EVC effects. It’s 

key to note that the difference in results may be attributed to methodological distinctions. Smith 

and Muckli (2010) employed natural scenes with rich details, occluding the lower right 

quadrant with a white box. In contrast, our study introduced a layer of additional complexity 

with occluding front objects, potentially influencing neural processing in a different way. The 

increase in low-level visual properties increased for the paired object representations, meaning 

there was a potential increase in attentional demand due to the additional visual components 

requiring understanding to process the identity of the target object. It is also worth noting that 

Smith and Muckli (2010) found distinctions between V1 and V2 effects in this study, with V1 

acting as the driving force for context effects, with V2 showing less evidence for this. As our 

EVC region encompassed V1-3, it may be that the overall EVC effects are somewhat averaged 

across regions. Their findings alongside the present results so make it clear that the context 

surrounding the target object and the attention allocated to that is a key topic of future study.  

The cost of processing multiple objects has been well-observed in Chapters 2 and 3, 

and potentially Chapter 4. Competition has been found to be an integral part of visual 

recognition, as there is no way to look at everything in a scene simultaneously (Trapp & Bar, 

2015), which aligns well with an associated cost of processing multiple objects at once in the 

case of occluded or cluttered objects (Spoerer et al., 2017). In Chapter 2 this can be observed 

in the first cross decoding analysis, where the presence of more than one object in the occluded 
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pairing causes significantly reduced decoding accuracy when compared to the single object 

showing in the EVC during the deleted condition. This differed from the research by Johnson 

and Olshausen (2005) where deleted objects were more poorly recognised than occluded 

objects due to the relative lack of meaningful object information and thus competition that the 

two dimensional ovals introduced in the occluded condition compared to our meaningful object 

occluders. In early visual areas we revealed a competition effect that was not seen in IT, which 

is known to be more tolerant to the presence of multiple object representations simultaneously.  

Additional decoding enhanced our understanding of the potential mechanisms of neural 

elicitation of object representations across these regions of interest, with the finding that EVC 

responses to occluded objects were better determined by the visible visual features, while in 

synthetic decoding IT the visible and inferred features were equally successful at predicting 

the identity of the occluded back object. Though in the second cross decoding condition, there 

were further differences in the pattern of decoding between IT and EVC, where there were 

significant differences in IT as well as EVC, though these findings were in opposing directions. 

In EVC, again the lower level model explanation where visible visual information was shown 

presented a higher decoding accuracy. But in IT, there was a significantly higher decoding 

accuracy for inferred over visible features. This may demonstrate that the ability to predict an 

object using conceptual prior experience and top-down predictions is incredibly robust within 

IT. 

In Chapter 3 this was compounded by the combination of neural and behavioural 

results. In IT, the increase in beta weight for the back occluded object couples with slower 

reaction times and decreased accuracy to suggest that there is more room to adapt resources in 

this area when difficult visual conditions occur (Jozwik et al., 2023; Spoerer et al., 2019). 
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Whereas in EVC this was not the case, which may explain why there is more of an effect of 

the magnitude of occlusion. Here we instead discovered that when more visible visual 

information was present, the ability to correctly represent the object was better, while this effect 

was not as prevalent in IT.  

Chapter 4 underscores the impact of spatial context, demonstrating particular effects in 

the surround region of stimuli. This exploration introduced layers of additional complexity to 

visual perception, challenging conventional approaches that often create simple arbitrary 

associations across trials in expectation suppression research (Aitken et al., 2020; Egner et al., 

2010; Kok et al., 2012). Previous paradigms often lacked the nuance of using existing 

associations for objects that could be carried across time and space during trials, despite the 

integration of spatial and temporal features often playing an important role in pattern 

completion mechanisms (Tang et al., 2018; Wyatte et al., 2014). Thus, this study prompts a re-

evaluation of existing models, highlighting the pivotal role of contextual information in 

shaping early visual representations, impacting predictive processing and object recognition.  

In light of the need for paradigm improvements, particularly in the context of predictive 

processing, Chapter 4 urges us to refine our experimental approaches. To capture intricate 

dynamics of expectation suppression during object recognition under occlusion, we 

acknowledge the evolving nature of experimental design. Whilst creating novel tasks generates 

challenges, being able to add new understanding regarding the spatial influence of the target 

and surround areas in object recognition and expectation suppression is important to keep 

developing the field of vision. Here we added extra understanding to previous work that 

showed V1 activation in occluded sections using MVPA decoding (Smith and Muckli, 2010), 

and were able to measure expectation suppression through our method using MVPA, though 
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not univariately. Additionally, the stimuli from Chapter 2 and 3, utilising pairs of occluded 

stimuli and the deleted counterpart tells us a lot about how more naturalistic research can be 

achieved and what we stand to gain from this. That is, more ecologically valid stimuli will 

potentially be able to inform us about how the human brain processes real-world objects much 

more efficiently than the same study not using real-world object images would have done. 

While simple stimuli like gratings are informative in exploring basic processes, it is important 

that we can conceptualise this and take it further where it may have real-world applications in 

fields like computer vision. Our findings would then hold broader implications for existing 

cognitive models of object recognition. This thesis has demonstrated that to improve our 

cognitive understanding of object recognition we should be utilising more life-like visual 

scenarios to prompt more life-like visual responses, which in turn could improve understanding 

at human levels as well as beyond.  

5.4. Limitations and future directions 

In striving for high quality research, we acknowledge areas where improvements could 

be made, particularly when using novel stimuli and paradigms. Though each study in this thesis 

was developed with prior research firmly in mind, there is a novel aspect to each. In Chapters 

2 and 3, this provided an additional avenue to measure neural mechanisms of occlusion 

compared to deletion in a way similarly employed by other researchers (Johnson & Olshausen, 

2005; Tang et al., 2018), while Chapter 4 took a slightly different approach. When measuring 

expectation suppression, previous research often did not have an occlusion basis (Egner et al., 

2010), used very different stimuli such as gratings or scenes (Aitken et al., 2020; Kok et al., 

2012), and often created arbitrary expectation pairs (Xu et al., 2021). This meant that it was 

hard to develop the task and stimuli to ensure the best data collection, knowing that task 

relevance plays a part in the attentional basis of expectation (Kok et al., 2016; Kok, Rahnev, et 
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al., 2012). Our novel data decoding results still paint a picture that suggests an effect of 

prediction, specifically presenting a sharpening account; however, the lack of a univariate 

result in line with expectation suppression suggest that there could be improvements to the 

paradigm and method to better capture the nuances of recognition.  

There was a substantial difference of contrast in the target and surround area of the cue 

stimuli, with the black bar and the clearly presented object which may have caused a saturation 

or even supersaturation of the EVC neuron receptive fields due to the high contrast. Nonlinear 

in nature, the response of some neurons to being faced with high contrast can cause the neural 

response to plateau or even decrease, though research on supersaturation is not common and is 

largely based in non-human samples (Peirce, 2007). This pattern may suggest that areas of high 

contrast like the occluding bar compared to the surround region may have incredibly distinctive 

patterns of activation, which is the case in our Chapter 4 results where the surround region 

presents large effects. To combat this, future studies could benefit from visually degrading 

stimuli, potentially through techniques like blurring, as demonstrated by Rossel et al. (2022). 

Another way to do this could be through visual degradation of the target region while leaving 

the cue intact, in a way similar to Blank & Davis (2016), who in a sound study used degraded 

words to measure how prior expectations affected perception of degraded speech. In vision, 

this adjustment of including visually degraded stimuli would aim to prevent the saturation of 

visual processing resources within EVC, allowing greater power to detect differences in 

univariate analysis. 

Temporal dynamics are pivotal in understanding recognition and expectation processes 

(Rohenkohl & Nobre, 2011). As Xu et al. (2020) demonstrated through their temporally distinct 

measures of predictive processing accounts, being able to understand the time points at which 

these processes of recognition and expectation occur is beneficial, particularly when noting the 
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short time frame complex recognition occurs in (Tang et al., 2014). To offer a more 

illuminating picture of how the temporal effects of trials in Chapter 4 may have affected the 

expectation suppression we could see in fMRI, it would be important to run an MEG study as 

a counterpoint using the same stimuli structure. Measuring the influence of these occluded 

stimuli, with particular interest paid to early visual areas, would allow us to better understand 

the way that prediction or expectation could be manifesting across time when implicit 

expectation associations were being called upon. Previous research by Doherty et al. (2005) 

demonstrated effects of spatial and temporal attention working in combination to modulate 

perceptual attention in a 2D occluded motion task where a 2D ball image seemingly moved 

behind a grey occluding strip and appeared on the other side either at the expected trajectory 

and speed of motion or not. Therefore, while their 2D movement occlusion task is not the same 

paradigm as Chapter 4, it is noteworthy that their effects of spatial and temporal orientation 

increase performance accuracy and change ERP modulations. This could provide some insight 

into the effects that we observed in the surround region for the neutral condition, where there 

were significantly higher amplitudes here over the match and mismatch conditions. In addition 

to improvements within the stimulus presentation as mentioned above, this combination of 

methods to create a broader and more comprehensive view of the process would enhance our 

understanding of how predictive processing could be affecting object recognition under 

occlusion. 

Using an online study to conduct the behavioural study for Chapter 3 was a necessity 

of the COVID-19 pandemic and allowed us to collect a useful behavioural counterpart to the 

fMRI study of Chapter 2. This meant greater opportunity for distraction with less ability to 

control how the task was carried out. To attempt to mitigate this, we did include catch trials 

and those who did not pass these were disregarded from further analysis. We also narrowed 
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down the devices and browsers that participants could use to ensure that the timing was as 

accurate as possible. This required participants to use Firefox as a browser on a desktop or 

laptop, not a mobile device. Gorilla, the platform itself, was determined to have the highest 

degree of timing accuracy under these conditions (Anwyl-Irvine et al., 2021). We did find 

reliable comparisons between the behavioural data and independently measured fMRI signals 

in IT, which suggests we were successful in capturing the attention and effort of our 

participants. Though if we were to run this as a lab-based study in the future, an advantage 

would be that we would be able to use incredibly fast masking which links highly to 

interrupting recurrent processing which has been implicated in the ability to represent object 

identities (Tang et al., 2018). 

Additionally, while Chapter 4 has revealed much about the early visual areas and how 

they may process expected versus unexpected cue-target pairings, it would be remiss to not 

suggest a future plan to analyse the activation in IT. In light of our findings from earlier 

Chapters, IT has an incredible ability to represent occluded object pairs, often in a different 

way to EVC. Thus, being able to measure and directly compare this potential expectation 

suppression and prediction effect in terms of early and higher visual areas we could learn how 

the spatial and temporal context and implicit associations affect IT. While expectation 

suppression has been measured largely in the EVC (Aitken et al., 2020; de Lange et al., 2018; 

Egner et al., 2010; Kok et al., 2013), the ability to understand what is occurring in the higher 

visual areas would improve our knowledge of the overall picture of processing challenging 

visual conditions like occlusion. Based on our previous research and the associated literature, 

it would be expected that using this paradigm, we would see an effect of prediction in the IT 

cortex, where the expected results had lower amplitude and higher decoding accuracy. This 
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would be due to the prediction of the cue target pair being easily inferred in IT from the visual 

context available in the cue stimulus.  

In emphasising the move towards naturalistic and ecological validity in science, it is 

crucial to acknowledge the intricate nature of visual processes influenced by factors like 

contrast, size and luminance (Pinto et al., 2008). While understanding the fundamental aspects 

of these processes is essential, the integration of dynamic stimuli, such as videos in fMRI 

studies (Lahner, 2022) or interactive experience in virtual reality and mobile EEG setups could 

offer significant benefits in measuring neural and behavioural responses to occlusion. 

Therefore, by introducing elements like moving objects and occlusion, researchers gain new 

insights into the complex dynamics of visual experience providing more of a bridge between 

controlled experiments and the intricacies of everyday visual encounters, which have up until 

now not been considered or measured in this way. This approach not only enhances our 

comprehension of neural and behavioural responses, but also aligns with the capabilities of 

comprehensive artificial neural networks and classifiers, where it is easier than it has ever been 

to test and refine theories. 

It has become abundantly clear that the use of computational modelling can account 

well for findings regarding visual processes. The ability to train and test theories and models 

on huge datasets provide results that can unlock more knowledge about how the human visual 

system is working. Being able to model computational visual systems on the brain overcomes 

challenges like occlusion can help to overcome computational hurdles. It has been determined 

that recurrence within convolutional neural networks has improved recognition capabilities 

even when objects are occluded (Spoerer et al., 2017; Tang et al., 2018). This process has been 

achieved by combining expertise from neuroscience and computer science and adopting a 

predictive processing objective during training where networks learn to predict future 
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occurrences efficiently (Ali et al., 2022; Lotter et al., 2017; Pang et al., 2021). However, there 

are still improvements to be made in this way.  

A potential avenue from the work of this thesis involves examining how many cycles 

an RNN needs to recognise an occluded object, specifically in later layers which correspond to 

the IT region of the human visual system. The goal would be to correlate patterns of 

representations in this layer and the weights assigned in IT, as measured by fMRI. This 

approach could thus extend our previous findings linking recognition difficulty to higher beta 

weights in IT, with the overarching goal to connect occluded object recognition cycles in the 

model with the corresponding neural activity in IT, emphasising the mapping of these cycles 

to fMRI-measured weights. When observing our results of more ecologically valid occlusion, 

where objects act as both the occluded and occluding objects, it became clear that further 

research would benefit from using computational models to improve this knowledge. The 

incorporation of ecologically valid stimuli in our study is particularly advantageous. By using 

stimuli that closely mirror real-world scenarios, we can gain insights into how object 

representations are attended in natural environments. The ability of ANNs to use large datasets 

incredibly quickly for testing and training phases in computational methods allows hypotheses 

to be tested rapidly and with the opportunity to refine paradigms with much more ease than 

when testing participants. This resulting increase in knowledge and ecological validity could 

lead to refinements across predictive models, creating more efficient models utilising 

predictive effects (Lotter et al., 2017) based on the observed neural mechanisms implicated in 

challenging visual conditions.  

It is worth considering that there are individual differences in how predictions from 

prior experiences are utilised. These may be a result of expertise, where an expert in a topic is 

less likely to have large errors in prediction than those without the expertise (Richler et al., 
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2019). There are also hypothesised differences in the precision of encoding in those with autism 

spectrum disorder (ASD) and psychosis (Takahashi et al., 2021; Utzerath et al., 2018). In 

relatively unambiguous situations, those with ASD can successfully learn and apply 

contingencies, yet when the predictive value is altered, for example in a new and volatile 

environment, the possibility for optimal processing becomes limited (Van de Cruys et al., 

2014). It may be such that weaker top-down integration of prior and current information, results 

in stronger local, but weaker global processing (de Lange, Heilbron & Kok, 2018). 

Furthermore, those with psychosis may have difficulty distinguishing reality from delusion 

because of a decreased precision in encoding prior beliefs relative to sensory data (Sterzer et 

al., 2018; Kok & de Lange, 2015). It would be interesting to complete the studies from this 

thesis again, particularly the task from Chapter 4, with clinical groups compared to 

neurotypical populations. Providing a measure of how the results differed, as understanding 

how different populations navigate challenging visual conditions can have implications for 

tailored interventions as well as computational improvements. 

Though the studies in this thesis were exploratory and novel in nature, they establish 

connections between our research objectives and broader literature concerning the potential 

implications and applications of object recognition and processing. In specific AI domains, 

such as object or person tracking, addressing occlusion challenges for ANNs holds immense 

value. This proficiency could yield widespread benefits, ranging from enhancing safety 

features in self-driving cars (Cheng et al., 2020; Wu et al., 2020), to refining sports event 

tracking technologies like VAR (de Oliveira et al., 2023). Moreover, it could contribute to 

bolstering security and surveillance systems, allowing for better adaptation to crowds and 

occlusions (Tang et al., 2014). A comprehensive understanding of how the visual system 

adeptly handles partial occlusion empowers us to apply this knowledge to computational 
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methods and technologies, mitigating potential pitfalls. Employing more ecologically valid 

stimuli represents a crucial step towards elucidating these effects. Collaborations across 

disciplines in academia and beyond, particularly with industries engaged in augmented reality 

and object recognition technology, could yield tangible real-world implications for the 

handling and comprehension of object recognition. 

5.5. General conclusion  

The research presented in this thesis provides both a behavioural and neuroimaging 

perspective of object perception under conditions of occlusion. Following the use of novel 

stimuli pairs to compare occluded and deleted pairings where real-object images acted as 

occluded and occluding variables, we demonstrated robust occlusion effects. These differed 

across EVC and IT, showing more tolerance for multiple object representations in higher order 

visual areas compared to EVC. In these early visual areas, visible visual information was key 

in recognition while in IT the inferred features predicted the object identity well. When 

combining neuroimaging and behavioural study data we determined that when recognition is 

more difficult, IT assigns higher weights to allow for recognition, whereas in EVC this is not 

the case, perhaps explaining the lessened ability to tolerate this complexity brought by multiple 

objects presented simultaneously. When looking specifically at predictive processing via 

expectation suppression, we found some evidence from decoding results regarding an 

expectation suppression effect that aligned with the sharpening account of prediction, though 

univariate results of this novel stimulus set were less clear and demand further consideration 

and refinement.  

This thesis has addressed the lack of realistic occlusion scenarios and whether 

predictive processing may be responsible for these effects. This was achieved by utilising 
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object images of occluding and occluded objects, with a deleted condition to compare directly 

with how multiple object representations affect neural representations and recognition. We 

demonstrated differences in EVC and IT patterns that differed from previous research without 

meaningful occluders (Johnson & Olshausen, 2005; Spoerer et al., 2017). Additionally, to 

provide more insight into whether predictive processing is a suitable account for visual 

processing we tested these effects on recognition under occlusion in EVC. We found support 

for predictive processing effects in the sharpening account. Overall, due to the prevalence of 

occlusion in everyday life and our robust ability to process even heavily obscured objects, 

understanding these processes enables better ability to teach us about how we learn and adapt 

to our surroundings as well as to build better AI systems. It enforces the belief that more 

ecologically valid stimuli can reveal more to us about the dynamics of human visual processes. 
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Appendices 

Chapter 2 

Appendix A. 

Significant pairings from wilcoxon signed ranks tests split across each brain region, adjusted for 

pairwise comparisons using FDR corrections. 

Brain Region Decoding Condition Pairing W value 

EVC Single - Front 71* 
 Single - Back 77** 

 Single - Deleted 6** 

 Front - Back 76** 
 Front - Deleted 0** 
 Back - Deleted 0** 

MID Single - Back 77* 

 Front - Back 70* 
 Back - Deleted 2** 

IT Single - Back 71* 
 Front - Back 63* 
 Back - Deleted 2** 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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Appendix B. 

Significant pairings from wilcoxon tests for the first cross decoding condition split across each brain 

region, FDR corrected.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 

 

  

Brain Region Decoding Condition Pairing W value 

EVC Single to Front – Single to Deleted 0*** 

 Single to Back – Single to Deleted 0*** 

IT Single to Front – Single to Back 74* 
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Appendix C.  

Significant pairings from pairwise wilcoxon tests for the second cross decoding condition split across 

each brain region, FDR corrected. 

Brain Region Decoding Condition Pairing W value 

EVC Single to Occluded – Deleted to Occluded 2** 

IT Single to Occluded – Deleted to Occluded 69* 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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Appendix D. 

Significant pairings from wilcoxon tests for the synthetic decoding condition split across each brain 

region, FDR corrected. 

Brain Region Decoding Condition Pairing W value 

EVC Front Plus Deleted - Two Single 78*** 

MID Front Plus Deleted - Two Single 74** 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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Chapter 3 

Appendix E. 

Significant pairings from paired t tests for the accuracy condition, split across condition, adjusted using 

FDR corrections.  

Condition Speed pair t value  

Single 100 - 30 4.44*** 

Front 33 - 50 -3.91*** 

 

 

 

 

100 - 33 4.81*** 

 100 - 50 3.16** 

Back 33 - 50 -5.89**** 

 100 - 33 8.59**** 

 100 - 50 5.69**** 

Deleted 33 - 50 -5.63**** 

 100 - 33 7.05**** 

 100 - 50 4.71**** 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 
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Appendix F. 

Significant pairings from paired t tests for the accuracy condition, split across speed, adjusted using 

FDR corrections. 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. 

 

 

  

Speed (ms) Condition t value  

33 Front – Single -2.44* 

 Back – Single  -7.84**** 

 Deleted – Single  -5.36**** 

 Back – Front -10.15**** 

 Deleted – Front -4.22*** 

 Back – Deleted  -5.80**** 

50 Back – Single  -6.05**** 

 

 

 

 

Deleted – Single -4.40*** 

 
Back – Front  -6.50**** 

 
Deleted – Front  -3.90*** 

 
Back - Deleted -5.11**** 

100 Front – Single -2.61* 

 
Deleted – Single  -4.30*** 

 
Back – Single  -6.52**** 
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Appendix G. 

Significant pairings from paired t tests for the RT presentation speeds split across conditions, adjusted 

for pairwise comparisons using FDR corrections. 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001 

 

 

 

 

 

  

Condition Speed pair  t value  

Front 33 - 50 4.48*** 

 100 - 33 -6.64**** 

 100 - 50 -2.23* 

Back 33 - 50 3.82*** 

 100 - 33 -8.22**** 

 100 - 50 -4.35*** 

Deleted 33 - 50 4.75**** 

 100 - 33 -8.43**** 

 100 - 50 -5.70**** 
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Appendix H.  

Significant pairings from paired t tests for the RT conditions split across speeds, adjusted for pairwise 

comparisons using FDR corrections.  

Speed Condition Pair t value  

33 Back – Single 3.162** 

 
Back – Front 4.55*** 

 
Back – Deleted 5.32**** 

50  Back – Single  2.64* 

 
Back – Deleted 5.38**** 

 
Back – Front 4.25*** 

100  Deleted – Single -2.74* 

 
Deleted – Front -2.96* 

 
Back - Deleted 5.01*** 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001 
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Chapter 4 

Appendix I. 

Significant pairings from Wilcoxon signed rank tests on decoding data. 

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. FDR corrections applied to avoid pairwise 

error.  

 

 

  

Region of Interest Decoding Condition Pairing W value 

Target Match - Mismatch 3244* 

Surround Match – Mismatch 3920**** 

 Match – Neutral 3744**** 

 Neutral – Mismatch 3188* 
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Appendix J. 

Amplitudes of conditions in target and surround ROIs (orange is match, red shows neutral and blue 

represents mismatch) split across hemisphere.  

Note. * p<.05, ** p<.01, *** p<.001, ****p<.0001. FDR corrected. 

 

*** 
*** 

**** 
**** 


