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QS-2lisapotent vaccine adjuvant and remains the only saponin-based adjuvant that
has been clinically approved for use in humans'?. However, owing to the complex
structure of QS-21, its availability is limited. Today, the supply depends on laborious
extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis**.
Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as
structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast
requires fine-tuning of the host’s native pathway fluxes, as well as the functional and
balanced expression of 38 heterologous enzymes. The required biosynthetic pathway
spans seven enzyme families—a terpene synthase, P450s, nucleotide sugar synthases,
glycosyltransferases, acoenzyme Aligase, acyl transferases and polyketide synthases—

from six organisms, and mimics in yeast the subcellular compartmentalization of
plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking
advantage of the promiscuity of certain pathway enzymes, we produced structural
analogues of QS-21 using this biosynthetic platform. This microbial production
scheme will allow for the future establishment of a structure-activity relationship,
and will thus enable the rational design of potent vaccine adjuvants.

Adjuvantsincrease the efficacy of vaccines by stimulating or augment-
ing the humanimmune response to pathogens or disease-specific anti-
gens’. Eversinceits discovery in the1920s, alum (aluminium hydroxide)
hasbeen the most widely used, clinically approved vaccine adjuvant®.
More recently, QS-21 has been shown to exhibit potent immuno-
activity>*”, and it is an active ingredient in the Adjuvant System ASO1
and Matrix M (refs. 1,2). These formulations have been approved for
GSK’s malaria (Mosquirix) and shingles (Shingrix) vaccines, as well as
for Novavax’s COVID-19 vaccines. Motivated by the potent immune
response and favourable safety profiles, researchers have since tested
QS-21in more than 120 clinical trials.

Despite major commercial interest, the availability of QS-21 remains
limited, owing mainly to its structural complexity®. QS-21 consists of
four distinct structural domains: (i) alipophilic triterpenoid core, quil-
laicacid (QA, Fig.1), flanked by (ii) abranched trisaccharide moiety on
the C3 position, (iii) alinear tetrasaccharide chain on the C28 position
and (iv) an unusual pseudodimericacyl chain capped by an arabinofura-
nose (Fig. 2). Owing to the structural similarity of two isoforms, QS-21

exists asa heterogeneous mixture of QS-21-Api and QS-21-Xylin a 65:35
ratio, with the sole difference being the C28 terminal sugar. Tradition-
ally, QS-21is extracted fromthe tree bark of the soapbark tree Quillaja
saponaria, which is native to Chile. Isolation is complicated because
the plant extract contains a multitude of different structurally related
Quillaja saponins, rendering the purification process highly laborious
and lowyielding’. Using an intermediate saponin as the starting mate-
rial, the total chemical synthesis of both the Xyl and the Api forms of
QS-21 has been achieved*®. However, the synthetic route requires 76
steps, and the overall yield is negligible. Thus, developing alternative
production processes that are more sustainable and scalable would
help to meet the ever-increasing demand for potent vaccine adjuvants,
and to address existing or emerging medical needs.

The genes and enzymes for the QS-21 biosynthetic pathway have only
been characterized from Q. saponaria recently®°. Here we report the
complete biosynthesis of QS-21-Api and QS-21-Xyl, as well as their struc-
tural derivativesin Saccharomyces cerevisiae, starting from only simple
sugars (glucose and galactose). Toaccomplish this, we firstupregulated
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Fig.1|Complete biosynthetic pathway for the de novo production of QS-21
inyeast from simple sugars. Native yeast genes and enzymes that have been
overexpressed are showninorange, and heterologous genes and enzymes
areshowninblack and navy. a, Pathways for the biosynthesis of the QS-21
precursors 2,3-oxidosqualene, UDP-sugars and acyl C9-CoA. DMAPP,

the yeast native mevalonate pathway to provide a high carbon flux
towards 2,3-oxidosqualene, which is then cyclized by a heterologous
B-amyrin synthase and site-selectively oxidized by plant cytochrome
P450stoyield QA, the aglycone of QS-21. We further introduced plant
nucleotide sugar synthetic pathways to make seven non-native uridine
diphosphate sugars (UDP-sugars), which are used to add sugars onto
the C3 hydroxy and C28 carboxy functional groups of QA through the
co-expression of QS-21 pathway glycosyltransferases (GTs)®. Further-
more, an engineered type I polyketide synthase (PKS), two type Il PKSs
and two stand-alone ketoreductases (KRs) were expressed in yeast
to form the dimeric acyl unit that constitutes the last step before the
terminal arabinofuranose addition to yield QS-21 (ref. 10) (Fig. 1a and
Fig.2b). Pathway enzymes, as well as their functional homologues from
various plants that produce structurally similar saponins (for example,
Saponariavaccaria), fungi (LovF from Aspergillus terreus) and bacteria,
were functionally expressed in the engineered yeast. This combinato-
rial approach allowed usto select the activities that function optimally
togetherinayeast cell, thereby enabling the production of QS-21. Owing
to the promiscuity of several enzymes, structural analogues of QS-21
were produced using the biosynthetic platform described here; this
willenable a structure-bioactivity relationship to be established in the
future, and will allow the rational design of potent vaccine adjuvants.

Biosynthesis of quillaic acid

The Saccharomyces cerevisiae strain JWy601 was chosen as the base
straintothe triterpene core, B-amyrin, of QS-21. The mevalonate-based
isoprenoid biosynthetic pathway in this strain had previously been
upregulated to produce sesquiterpenes'. InJWy601, all genes encod-
ing enzymes that convert acetyl-CoA to farnesyl pyrophosphate (FPP)
were placed under the control of galactose-inducible promoters
for controlled overexpression. The culture was grown at firstin a
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dimethylallyl pyrophosphate; GPP, geranyl pyrophosphate; IPP,isopentenyl
pyrophosphate; UXE, UDP-xylose epimerase. b, Pathways for the synthesis and
oxidation of B-amyrin (1) to QA (6) through six oxidation steps on -amyrin
carried out by three cytochrome P450s. The resulting QA (6) is functionalized
with C28 carboxylicacid, C23 aldehyde and C16 hydroxy functional groups.

glucose-containing rich medium, YPD, for 48 h to maximize the cell
mass before a 72-h production phase was initiated by the addition of
galactose. B-Amyrin synthases (BASs) of various plant origins (Arte-
misia annua, Arabidopsis thaliana, Glycyrrhiza glabra and Saponaria
vaccaria) were integrated into JWY601 to quantify the production of
B-amyrin from squalene by gas chromatography-mass spectrometry
(GC-MS). Among these candidates, the BAS homologue from S. vac-
caria (SuBAS) yielded the highest titre of B-amyrin (1), the production
of which was further confirmed by efficient consumption of squalene
compared to the parent strain, JWy601 (Extended Data Fig. 1a,b). Fur-
ther upregulation of mevalonate pathway genes encoding ERG20 and
ERGI (Fig.1a) ultimately resulted in a B-amyrin titre of 899.0 mg 1" over
aproduction period of three days (Extended Data Fig. 1c).
Expression cassettes containing cytochrome P450s identified in
Q.saponaria® aswell as the redox partner, cytochrome P450 reductase
(CPR, AtATR1from A. thaliana), were integrated sequentially into the
yeast genometo achieve the biosynthesis of the triterpenoid core, QA
(Fig.3a). Extraction of the culture medium and analysis by liquid chro-
matography-mass spectrometry (LC-MS) showed that the CPR was
sufficientas aredox partner to facilitate the three-step oxidation at the
C28position to the carboxylic acid carried out by CYP716A224, reach-
ing a titre of 263.4 mg ™ of oleanolic acid (3) by strain YL-1 (Extended
Data Fig. 3¢). By contrast, C23 oxidation required a Quillaja native
cytochrome b; (Qsb;) reductase for the hydroxy functional group to
be oxidized to an aldehyde to yield gypsogenin (5, strain YL-3; Sup-
plementary Fig.1). Cytochromes b; have long been known toincrease
the activities of cytochrome P450 through (i) direct electron transfer
from NADH-cytb, to P450s in a pathway independent of NADPH-CPR
and (ii) potentially faster transfer of the second electron as compared
with CPR?", Indeed, co-expression of cytochrome b, cytochrome
P450s and CPRs has yielded higher oxidation efficiencies, leading
to higher titres of the oxidized products in heterologous hosts™ .



a Glycosylation

UDP-GlcA UDP-Gal 0
OH
0 HO
CSLMT Ho GalT o R
al HO
CSLM2 oo 0™
OHC
HO 0o
HO OH
QA-G3-GlcA (7) QA-C3-GlcA-Gal (8)
HO
OH
UDP-Xyl O OH UDP-Fuc o Ho_ HO
HO o) o
& 0, HO
HO /B&HBO OHO O
XylT HO o 07 FucT HO %O
OH OHC” HO 0 0"
Ho O OH OHC
Ho OH HO o
QA-G3-GlcA-Gal-Xyl (9) HO OH  QA-C3-GlcA-Gal-Xyl-G28-Fuc (10)
HO
UDP-Rha
ho OH
o O?\Z\i UDP-Xyl
RhaT  po 0 y

o wo - WOH A—» 0
HO o e} OH 28XyIT3 HO
o)
R " WO
OH Ho %

0"
HO OH OHC
Ho, ©
HO OH
HO
QA-C3-GlcA-Gal-Xyl-C28-Fuc-Rham (11) Ho QA-C3-GlcA-Gal-Xyl-C28-Fuc-Rham-Xyl (12)

OH

UDP-Xyl 0 HO OH .0~
UDP-Api 0 03 Zofz R= QWOH or
HO OR AN
C28XyIT4 HMO o o
C28ApITA OH o 0 S
HO
HO OH
QA-C3-GlcA-Gal-Xyl-C28-Fuc-Rham-Xyl-Xyl (13) or -Api (14)
HO
b Acylation
o on " o on YT
] PN
2 C9-CoA NN OH
(¢} OH HO—O~OH
s X g or ne WIS o Y
HO OHO WOH i OH
HO o Xyl Api
OH
HO o
OH
HO QA-C3-GlcA-Gal-Xyl-C28-Fuc-Rham-Xyl-Xyl-C18 (17) or -Api-C18 (18)
HO
RY ot
O OoH Y O OoH Y
UDP-Araf )J\ 1 )J\ oH
o - o 0, {
ArafT 0 1 O>L
HO OH
HO OR
HO oHo 0 OWOH OH HO _ OH
mo .0~
HO HO
OH R= Lo OH or
HO 0 i OH
Xyl Api
o OH y
HO QS-21-Xyl or QS-21-Api

Fig.2|Functionalization of QA (6) to yield QS-21-Xyl and QS-21-Api. a, The with aterminal sugar of -D-Xyl or 3-D-Api. b, The fucose ester-linked to C28 is
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Fig.3|Functional expression of cytochrome P450s and pathway engineering
for QA.a, Three cytochrome P450s oxidize -amyrin (1) at the C28,C23 and C16
positions, resultingin a carboxylicacid, an aldehyde and a hydroxy group,
respectively, on QA (6). MW, molecular weight.b, When expressedin yeast, the
native sequence of C16 oxidase (CYP716A297) encodes a protein that has both
soluble and aggregated forms, whereas the C16 oxidase expressed from the
yeast codon-optimized sequenceis cytosolic. By fusing the TMD of C28 oxidase
tothe N terminus of C16, the TMD,s-C16 fusion protein was correctly anchored

For the C16 oxidation, despite a predicted transmembrane domain
at the N terminus of the C16 oxidase, subcellular localization studies
revealed that the yeast codon-optimized CYP716A297 (C-terminal
mCherry fusion) was cytosolic, and no oxidized product was detected.
A different localization pattern with more protein aggregation was
observed for the same protein expressed from a gene with the native
plantsequence, possibly owing to differencesinyeast and plant codon
frequencies and concomitant changes in protein translation efficiency
(Fig.3b). Tolocalize P450 to the endoplasmicreticulum (ER) membrane,
the predicted 22-amino-acid transmembrane domain (TMD) of the C28
oxidase was fused to the N terminus of the C16 oxidase, thereby creat-
ing the fusion protein TMD,s—C16 and resulting in the production of
QA (6) at 1.1 mg 1™ (strain YL-4) (Fig. 3c).

To optimize the P450 oxidation efficiency, we opted for the introduc-
tion ofamembrane steroid-binding protein (MSBP) to act as a scaffold
for co-localization of the P450s. Despite their spatial proximity on
the ER membrane, cytochrome P450s do not directly interact with
each other. In plants, MSBPs serve an important physiological role
inregulating lignin biosynthesis in A. thaliana by establishing physi-
cal interaction with and organizing the pathway P450s". Indeed, pro-
duction of the final oxidation product QA increased by fourfold after
the expression of a newly identified MSBP candidate from S. vaccaria
(Extended Data Fig. 2a,b, Supplementary Methods, Supplementary
Fig. 2 and Supplementary Table 5). Subcellular localization studies
revealed that SUMSBP1 co-localizes with both C28 and C23 oxidases on
the ERmembrane (Extended DataFig. 2¢,d). Such spatial proximity fur-
ther corroboratesits scaffolding function for non-lignin-related P450s
and thus constitutes an efficient and potentially universal strategy to
improve the activities of P450 in heterologous hosts. To identify the
bottleneck among the six oxidation steps with three P450 monoox-
ygenases, C28, C23 and TMD,s—C16 oxidases were overexpressed
individually in a strain that contained a single copy of each P450 and
ATRI1 integrated into the chromosome (YL-8 to YL-10), leading to a
fourfold, twofold and twofold increase, respectively, in QA production
(Extended Data Fig. 3). In addition, overexpressing a second copy of
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tothe ERmembrane.Imageswere acquired using aZeiss LSM 710 confocal
microscope. At least threeindependent experiments were performed. Scale
bars,10 pm. ¢, Functional expression of TMD,s-C16 leads to the conversion
of gypsogenin (5) to QA (6). d, Metabolic engineering strategies, including
the expression of a MBSP, as well as the overexpression of the cytochrome
P450s and their redox partners, improved thetitre of QA by 60-fold. Data are
mean +s.d.;n=3biologicallyindependent samples.

the CPRinthe C28-overexpressing strain (YL-11) increased the titre of 6
by eightfold, suggesting that the activities of all three P450s and their
redox partners are suboptimal. To optimize the production of 6, two
copies of the P450s, redox partners and MSBP were integrated into
the strain YL-15 to yield 65.2 mg 1™ of 6 in shake flask cultures (Fig. 3d
and Extended Data Fig. 3).

C3 and C28 O-glycosylation

The final product QS-21is a water-soluble triterpene glycoside with
an amphiphilic character—a prerequisite for homogenous mixtures
with soluble antigen in the vaccine formulation’. It is the sugar deco-
rations on the C3 hydroxy and C28 carboxylic acid groups that render
the non-polar triterpene core 6 hydrophilic. The complete glyco-
sylation of QS-21requires eight glycosylating steps, involving seven
different UDP-sugars (that is, UDP-D-glucuronic acid (UDP-GIcA),
UDP-D-galactose (UDP-Gal), UDP-D-xylose (UDP-Xyl), UDP-D-fucose
(UDP-Fuc), UDP-L-rhamnose (UDP-Rha), UDP-D-apiose (UDP-Api) and
UDP-L-arabinofuranose (UDP-Araf)). Among these, UDP-Gal is the only
UDP-sugar thatis native to yeast and can be obtained through galactose
metabolism or UDP-glucose isomerization (Fig.1a). Assuch, heterolo-
gous nucleotide sugar synthases were introduced into the yeast host*®
alongwith their corresponding GTs inastepwise manner. The detection
of each glycosylated product confirmed the functional expression of
both the sugar synthases and the transferases.

Two Q. saponaria GTs belonging to the cellulose synthase-like fam-
ily of enzymes have been identified that add glucuronic acid to QA to
give 3-0-{B-D-glycopyranosiduronic acid}-QA (CSLM1 and CSLM2)°.
After co-expression of a UDP-glucose dehydrogenase from A. thaliana
(AtUGD1) with CSLM1 (YL-16) or CSLM2 (YL-17), anew LC-MS peak that
corresponds to the exact mass of 7 was detected. We observed that
CSLM1 is more specific to the glucuronidation of 6, whereas CSLM2
canalso glucuronidate less oxidized intermediates suchas 3,4 and 5,
butis threefold more active towards 6 (Extended Data Fig. 4aand Sup-
plementary Fig. 3). Therefore, CSLM2 was chosen for further pathway
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Fig.4|Reconstitution of the glycosylation pathway by the functional
expression of nucleotide sugar synthases and corresponding GTs.

a, Sequential addition of the C3 branched trisaccharide (GlcA-Gal-Xyl)
beforealineartetrasaccharideis added stepwise to the C28 carboxylic acid
(Fuc-Rha-Xyl-Xyl or Fuc-Rha-Xyl-Api). b, LC-MS peak area of corresponding

engineering. The first glycosylation step takes place in the ER mem-
brane, along with the previous oxidation steps and the formation of
thetriterpenoid substrates (Extended Data Figs.2 and 4). Both CSLMs
were predicted to have seven transmembrane domains and confocal
microscopy studies in both yeast and tobacco further confirmed the
localizationin the ER. It was also observed, when preparing the stand-
ards, that the glucuronidation of 6 substantially increases its water
solubility. We speculate that 7 migrates to the cytoplasm, where the GTs
arelocalized, to carry out the subsequent six C3 and C28 glycosylation
steps (Extended Data Fig. 5).

The second glycosylation step of the C3 position is carried out by
the cytosolic enzyme UGT73CU3 (C3-GalT), which efficiently galacto-
sylates 7 by 1,2-glycosidic bond formation to yield 8 (Fig. 4, Extended
DataFig.4band Supplementary Fig.4). When expressed alone, CSLMs
cannotexhaust the pool of 6. However, expression of the downstream
C3-GalT increased the conversion of 6 by pushing the equilibrium
through the consumption of 7, thus leading to the production of 8
at24.3 mg 1™ (strain YL-18; Extended Data Fig. 4b). When UDP-xylose
synthase (AtUXS3) was expressed in conjunction with UGT73CX1 (XyIT)
and the unmodified AtUGD1, no glycosylated product (thatis, 7, 8 or
9) was observed (Supplementary Fig. 5a). This can be rationalized by
the common feedback mechanismin which UDP-Xyl strongly inhibits
UGDs to maintain the homeostasis of the intracellular UDP-Glc pool**?.
Toalleviate thisinhibitory effect, an A101L mutation?? was introduced
into AtUGDI (strain YL-20) to reduce feedback inhibition by UDP-Xyl,
thus allowing the xylosylation of 8 to yield 9 (Fig. 4 and Supplemen-
tary Fig. 5b).

products producedin yeast after the expression of the indicated enzymes and
thenecessarynucleotide sugar synthases. Thebarsinred and grey indicate the
ionabundance of the target molecules and intermediates, respectively. Data
aremean ts.d.; n=3biologicallyindependentsamples.

The C28linear tetrasaccharide assembly follows a sequential order
of D-fucose, L-rhamnose and D-xylose, as well as D-xylose or D-apiose
as the terminal sugar. The b-fucose is linked to the C28 carboxylic
acid functional group of QA by an esterification facilitated by a GT
belonging to the GT1 family (UGT74BX1, C28FucT), with a UDP-sugar
as the substrate. The biosynthetic pathway of UDP-D-Fuc, in which
UDP-glucose is converted to UDP-4-dehydro-6-deoxy-D-glucose
through UDP-glucose 4,6-dehydratase (SvUG46DH), has been reported
only recently?®. C28FucT adds the UDP-deoxy-sugar, which is then
reduced onceit has beenadded onto the 9 backbone by FucSyn®, lead-
ingto the C28-fucosylated product 10 after the expression of all three
enzymes (SvUG46DH, FucSyn and C28FucT in strain YL-25). Although
residual 9 was observedin the presence of UGT74BX1alone, the expres-
sion of a UDP-L-rhamnose synthase (AtRHM2) and the downstream
UGT91AR1(C28RhaT) helpedto fully convert10 to 11 (strain YL-27), thus
efficiently pulling the equilibrium of C28FucT and increasing pathway
flux (Fig. 4b). Pathway intermediates, in particular 8 and 11, started
to accumulate after the expression of UGT91AQ1 (C28XyIT3, strain
YL-29). The fact that they are substrates for two xylosyltransferases
(C3XyIT and C28XyIT3) indicated that UDP-Xyl was the limiting fac-
tor (Fig. 4b and Supplementary Fig. 6). As such, an additional copy of
AtUXS was integrated and expressed (strain YL-30), which effectively
relieved the accumulation of C3-glycosylated products and enabled
the production of12 as the major product. The last glycosylation step
on the C28 position suffers from the tendency of both UGT73CY3
(C28XyIT4) and UGT73CY2 (C28ApiT4) to misfold in yeast, leading
to only trace amounts of the fully glycosylated products 13 and 14 in
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strains YL-33 and YL-34, respectively (Supplementary Fig. 7). These two
enzymes have high protein sequence homology (94.89%) and thus,
might display similar stability when expressed in a heterologous host.
Subcellularlocalization studies of C-terminally GFP-tagged UGT73CY2
and UGT73CY3 revealed that although they are correctly localized to
the cytoplasm at early stages of expression, aggregated forms adja-
cent to the vacuole become the dominant species with culture time
(Supplementary Fig. 8c). However, when fresh carbon and nitrogen
resources are provided (that is, fresh YP galactose), the expression
of protein under galactose-inducible promoters is switched on when
an additional inducer (galactose) is added to the medium, leading to
higher cytosolic expression of UGT73CY3.

Biosynthesis and addition of the acyl unit

The specificimmunological role of the acyl group in QS-21 remains
unclear, but structure-activity relationship studies have shown that
itiscrucial to the potentactivity of QS-21in stimulating and soliciting
cytokine responses mediated by T helper 1 cells?**, The biosynthe-
sis of each of the dimeric C9 acyl chains requires two consecutive
decarboxylative Claisen condensation reactions of malonyl-CoA with
(5)-2-methylbutyryl-CoA (2MB-CoA; Fig. 5). This is catalysed by two
type lll polyketide synthases, PKS4 and PKSS5, with the keto intermedi-
atebeing reduced by two stand-alone ketoreductases, KR1and KR2, to
form the 3,5-dihydroxy moiety in C9-CoA (ref. 10) (Fig. 1b). No native
metabolic pathway inyeast involves 2MB-CoA, and free 2MB acid was
therefore first added exogenously to the culture mediumat 50 mg 17,
withthe heterologous expression of a Quillaja short chain fatty acid
CoAligase (QsCCL1), to yield 2MB-CoA in YL-QsCCL (Fig. 5b).

The acyl biosynthetic cassette (PKS4, PKS5, KR1 and KR2) was
first tested in YL-QsCCL, which can make 2MB-CoA intracellularly,
but no production of C9-CoA could be detected directly by LC-MS,
owing possibly to its chemical instability and potential cyclization
into thelactone. Although ACT2 has been reported to efficiently con-
vert the hepta-glycosylated 13 to 15 (Fig. 5a), it is also active on the
hexa-glycosylated 12 (ref.10) (Fig.1). Therefore, the acyl biosynthetic
cassette and the first acyl transferase ACT2 were first integrated into
the 12-producing yeast strain (YL-30). In the presence of 2MB acid sup-
plementation to the culture medium, the mono-acylated product 19
was detected by LC-MS, which was confirmed by its co-elution with a
tobacco extractstandard™ (strain YL-42; Extended DataFigs. 6 and 7).
Becauseresidual substrate 12 was still detected after the acylation, an
increased concentration of 2MB acid was added to the culture medium
up to 500 mg ™!, which resulted in amuch-improved acylation conver-
sion (Extended Data Fig. 6). After the expression of C28XyIT4 (strain
YL-43), although the mono-acylated hepta-glycosylated product 15
was observed using the culture scheme developed above, residual 12
and 19 were still present in the medium extract, indicating that the
terminal xylosylation still requiresimprovement (Extended DataFig. 7).
The second acyl transferase ACT3 fully acylates both mono-acylated
products (15and 19) with an additional C9 unit, resultingin17 and 20,
respectively (strain YL-45). This indicates that the MB acid supplement
and the yeast endogenous malonyl-CoA pool provide sufficient C9-CoA
for the two-step acyl biosynthesis and additions.

Plant UDP-L-Araf biosynthesis is closely associated with the Golgi
apparatus because L-Arafis a key component in the plant cell wall*®.
The biosynthesis of UDP-arabinopyranose (UDP-Arap) occurs mainly
through the epimerization of UDP-Xyl in the Golgi lumen; UDP-Arap
is then interconverted into UDP-Araf by UDP-Ara mutase, which is
located outside on the cytosolic surface of the Golgi. The resultant
UDP-Arafistransported back to the Golgilumen forits later glycosyla-
tion applications”. Owing to the lack of yeast native sugar transporters
in the Golgi membrane, cytosolic homologues of these nucleotide
sugar synthases were chosen. UDP-glucose epimerase 1 from A. thal-
iana (AtUGEL1), a bifunctional enzyme that epimerizes UDP-Glc and
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UDP-Gal, as wellas UDP-Xyl and UDP-Arap, and reversibly glycosylated
polypeptide 1 (AtRGP1), which converts UDP-Arap to UDP-Araf, were
expressed to produce UDP-Arafin vivo. Integration and expressionin
the presence of UGT73CZ2 (ArafT) led to a new LC-MS peak that cor-
responds to the exact mass 0f 1987.9164 and co-elutes with the QS-21
standard (Fig. 5c); this was further corroborated and confirmed by the
identical isotopic fingerprint patterns of the extracted sample and
QS-21. Note that two mass peaks were observed in the extracted LC-MS
spectrum. When spiked with QS-21 standard, or 18+Xyl (QS-21withan
acyl terminal Xyl instead of Araf) individually', the two LC-MS peaks
were successfully identified as Xyl- or Araf-capped 17, respectively,
with the latter being QS-21-Xyl (Fig. 5¢) produced at 94.6 + 8.3 ug 1™
in YL-46. To further confirm the biosynthesis of QS-21-Xyl in YL-46,
the production was scaled up to allow sufficient materials to be puri-
fied and characterized by high-resolution tandem mass spectrom-
etry (HRMS2; Supplementary Methods and Supplementary Table 6)
and 'H nuclear magnetic resonance (NMR). The identical fragments
observed in the MS2 spectra of purified QS-21-Xyl from YL-46 and in
those of the standard, along with the mirroring corresponding ion
intensities, provide evidence that they have the same structural com-
position (Extended Data Fig. 8 and Supplementary Table 7). In addi-
tion, the well-matched overall spectrum and, in particular, anomeric
proton peaks confirmthe correct structure and connectivity between
sugar moieties (Extended Data Fig. 9). A similar strategy was used
to engineer YL-47 to produce QS-21-Api—the same gene cassettes of
C9-CoA and UDP-Arafbiosynthesis and addition were integrated into
the 14-producing strain to yield QS-21-Api at 31.1+ 0.5 ug I! in YL-47
(Supplementary Fig. 9).

Torealize the complete biosynthesis of QS-21 from the simple sugar
galactose without exogenous supplementation of 2MB acid, we first
sought to express the branched-chain a-keto acid dehydrogenase com-
plex with atransaminase from Bacillus subtilis, which readily converts
isoleucine to 2MB-CoA during amino acid metabolism. However, no
2MB-CoA was detected in yeast, whichis probably due to the fact that
yeast lacks the necessary post-translational modification mechanism
of subunit E2 of the cluster®, Alternatively, a 7.6-kb gene encoding the
type I PKS protein F (LovF) from the Lovastatin biosynthesis cluster
from Aspergillus terreus was used to source 2MB-CoA intracellularly.
This megasynthase converts two units of malonyl-CoA to 2MB cova-
lently attached to the acyl carrier protein (ACP) domain, which would
be directly transferred onto the lovastatin acid precursor monacolin
in the native lovastatin pathway”. We engineered LovF by truncat-
ing it after ACP and fusing it to the promiscuous erythromycin PKS
(EryPKS) M6 thioesterase (TE)*® through an interdomain linker. As a
result, methylbutyryl-S-ACP was hydrolysed torelease free 2MB. Inthe
yeast that contained achromosomal copy of the phosphopantetheinyl
transferase (npgA)?, detectable amounts of 2MB-CoA were observedin
the LC-MS traces when LovF-TE and QsCCL were co-expressed (Fig. 5b),
thus demonstrating the successful engineering of a PKS that catalyses
the release of free 2MB acid from the LovF ACP domain and its sub-
sequent CoA activation. The 2MB-CoA cassette was integrated into
YL-46 and YL-47, leading to the production of QS-21-Xyl and QS-21-Api
biosynthesized from only simple sugars (strains YL-50 and YL-51; Sup-
plementary Fig.10).

Discussion

In addition to the upregulated yeast native mevalonate pathway, our
final strain contains 38 heterologous enzymes sourced from six spe-
cies, spanning several enzyme families: a terpene synthase, P450s,
nucleotide sugar synthases, GTs and acyl transferases, as well astype |
and type Il PKSs. To achieve the complete biosynthesis of QS-21, we
mimicked inyeast the subcellular compartmentalization of plants from
the ERmembrane to the cytosol. QS-21-Xyl and QS-21-Api—two isomers
of QS-21 with high structural similarity—can therefore be producedin
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separate yeast strains, and this enables them to be purified, and their
immunoactivity to be characterized, in anindependent manner.
Moreover, the yeast biosynthetic platform provides vast opportu-
nities to produce structural variants of QS-21 by expressing alterna-
tive pathway enzymes or by making fragments of QS-21, exploiting
the promiscuity of the enzyme in the pursuit of new leads for vaccine

T T T T T T
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ofthe extracted yeast samplesin which the engineered strains were grownin
the presence of 2MB showed the efficient addition of both C9 units onto

the glycosylated molecule substrate (13) toyield acylated 13-C9 (15), and
13-C18 (17). The arabinofuranosylation of 17 led to the biosynthesis of
QS-21-Xyl, which co-elutes with the QS-21 chemical standard. The identical
isotopic fingerprint patterns further confirm the in vivo production of QS-21.
Theextracted peak preceding that of QS-21 corresponds to 18+Xyl generated
invitro, possibly owingto the promiscuity of the Araftransferase.

adjuvants. For example, the xylose in the C3 trisaccharide cluster
can be replaced by rhamnose, with an additional methyl group, by
expressing arhamnose transferase (UGT73CX2, C3RhaT) instead of
the xylose transferase described above (Extended Data Fig. 10). The
rhamnose-containing trisaccharide 22 is also a substrate for down-
stream pathway enzymes and can easily yield a methylated QS-21
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derivative. When investigating the glycan functions of QS-21, GTs can
be intentionally left out to yield truncated oligosaccharides, high-
lighted here by the successful biosynthesis of 21 (Extended DataFig. 7).

The traditional method of extraction and purification of QS-21from
the soapbark tree destroys the bark of the tree, and has prompted
increased governmental regulations around its deforestation. Our
demonstration of the total biosynthesis of QS-21in an engineered
yeast strain highlights the possibility of replacing the plantation-based
supply of saponins with industrial fermentation at scale, which could
markedly increase the availability of QS-21to meet the rising demand
for potent vaccine adjuvants. At present, strain YL-46 produces approxi-
mately 0.0012% w/w QS-21 per dry cell weight, which is less than the
w/wyield fromthetree (0.0032%; Supplementary Methods), butit does
so over a period of days. As a result, the production of QS-21in yeast
is still considerably faster (by approximately 1,000 times) thanitisin
the native Q. saponaria, which produces QS-21in trees only once they
reach an age of 30-50 years®.. Although key developments in strain
engineering, production and fermentation schemes, as well as in the
downstream extractionand purification processes, will stillbe neces-
sary to produce yeast-derived QS-21 at scale, landmark successes in
thisarena, such as the industrial-scale production of the anti-malarial
precursor artemisinic acid", have paved the way for new opportunities
in microbial biomanufacturing.
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Methods

Chemicals

Numbers, trivial names and International Union of Pure and Applied
Chemistry (IUPAC) names, as well as chemical structures of pathway
metabolites, are listed in Supplementary Table 3. All chemical standards
used in this study are analytical grade and are listed in Supplemen-
tary Table 4.

Plasmid construction

All plasmids were constructed by Gibson assembly (New England Bio-
labs, HiFi DNA Assembly Master Mix), followed by heat shock trans-
formation into Escherichia coli DH5a competent cells, which were
plated on Luria-Bertani (LB) agar containing 100 pg ml™ carbenicil-
lin or kanamycin and grown at 37 °C overnight. E. coli transformants
were grownin5 ml LB medium containing 100 pg ml™ carbenicillinor
kanamycinat 37 °C overnight, followed by miniprep plasmid extraction
(Qiagen), and were validated by Sanger sequencing. All biosynthetic
genes®® with the exception of LovF-TE were codon-optimized for
yeast expression and synthesized by Integrated DNA Technologies.
The QS-21biosynthetic pathway genes were directly inserted into the
plasmid backbone for subcellular localization studies in Nicotiana
benthamiana. All genes were assembled as expression cassettes in
pESC plasmids or the plant binary expression vector pCaBGi for yeast
and plant expression, respectively. All enzymes used in this study are
listed in Supplementary Table 1.

Strain construction

DNA integrating sequences were constructed using a previously
described method*?. Manufacturer protocols and standard recom-
binant DNA procedures were followed for DNA purification (Qiagen),
DNA amplification (New England Biolabs, Q5 HighFidelity 2X Master
Mix). All primers were designed using CASdesigner. In brief, DNA
fragments to be integrated were PCR-amplified then co-transformed
with a Cas9-based plasmid facilitating integration at the targeted
locus. Alternatively, selection markers were integrated using homolo-
gous recombination. For transformations, a fresh overnight culture
of parent yeast was inoculated into 25 ml 2xYPD in a 250-ml shake
flask at an optical density at 600 nm (ODy, ) Of 0.2, and was incu-
batedat30 °Cand 200 rpmuntil the OD,,m reached1.0. Then, 50D
of cells were collected by centrifuging for 2 min at 3,000g, and were
washed with a half volume of H,0. The pellet was then resuspen-
ded with DNA fragments for integration (2 pg) and pCUT plasmid
(0.25 pg), which was then mixed with transformation mix (260 pl of
50% PEG3350, 36 ul of 1 M LiOAc and 10 pul of ssDNA)*. The mixture
was incubated at 42 °C for 30 min and the pellet was collected by
centrifuging for 2 minat3,000g. The pellets were then resuspended
with 100 pl H,0 and this was plated onto selective agar plates. The
integration was validated by colony PCR and sequencing; the cor-
rect colonies were used for further engineering after pCUT plasmid
curing. Oligonucleotides and codon-optimized gBlock gene frag-
ments were obtained from Integrated DNA Technologies. Yeast
culture media were purchased from BD, and all agar plates were
obtained from Teknova. All strains constructed in this study are listed
inSupplementary Table 2.

Invivo production, extraction and analysis of QS-21and its
precursors

Strains were grown in 2 ml of yeast extract peptone dextrose (YPD, 4%
D) mediumfor 48 htoreach ODy ., = 10-15, before being resuspended
in 2 ml yeast extract peptone galactose (YPG, 4% G). All strains were
incubated for 72 hin 24-deep-well plates at 30 °C and 200 rpm. YL-43
to YL-51 were supplemented with fresh YPG every 24 h. The medium
was supplemented with 50-500 mg 1™ (S)-2-methylbutyric acid when
culturing YL-42 to YL-47.

B-amyrin production and GC-MS analysis

A single method was used to extract and quantify squalene and
B-amyrin. Five hundred microlitres of culture medium in a microfuge
tube was first treated with Zymolyase 100T (Arthrobacter luteus,
AMSBIO) for 2 hat 37 °C before it was extracted with 500 pl ethyl ace-
tate withbead-beating (3,800 rpm, 1 min x 2). Cholesterol was used as
aninternal standard. Organic and inorganic layers were separated by
centrifugationat12,000gfor 1 min,and samples were extracted twice
using cholesterol as an internal standard. Two hundred microlitres of
the combined organiclayer is derived by treatment with 200 pl of pyri-
dine and 200 pl of BSTFA (Sigma-Aldrich) at 55 °C for 1 h. The derived
sample was diluted in ethyl acetate before it was subjected to GC-MS
(GCmodel 6890, MS model 5973 inert, Agilent). An aliquot of the sam-
ple (1 pl) was injected into a DB-WAX column (Agilent) operating ata
helium flow rate of 1 ml min™. The oven temperature was held at 80 °C
for 4 min after injection and was then ramped to 280 °C at 20 °C min™,
held at 280 °C for 25 min, ramped to 300 °C at 20 °C min™ and finally
held at 300 °C for 5 min (total method of 45 min). The MS ion source
was held at300 °Cthroughout, with the quadrupole at200 °Cand the
GC-MS transfer line at 280 °C. Full mass spectra were generated for
metabolite identification by scanning within the m/zrange of 40-440.
Standard curves for target molecules were routinely run at the start
and end of each batch of samples.

Triterpenoid production and LC-MS analysis

The extraction and detection of erythrydiol (2) follow the procedure
described for 3-amyrin. For the rest of the triterpenoids, 200 pl of cul-
ture was collected in amicrofuge tube before it was directly extracted
with 800 pl methanol with bead-beating (3,800 rpm, 1 min x 2). The
mixture was centrifuged at 12,000g for 1 min to separate the pellet.
Two hundred microlitres of the supernatant was transferred into an
Eppendorftube, whichwas then evaporated inavacuum concentrator
atroomtemperature and the remainders were resuspended in 200 pl
methanol. Finally, samples were filtered with Amicon Ultra 0.5-ml
3-kDa filter tubes or centrifuged at 15,000g for 5 min. Products were
analysed using LC-MS (1260 Infinity Il LC-MSD iQ, Agilent) equipped
withareverse phase C18 column (Kinetex 2.6 um, 250 x4.6 mm, XB-C18,
Phenomenex). A 50-min isocratic method was performed with 10:90
of water (solvent A) and acetonitrile (solvent B) using a flow rate of
0.3 ml min™.. Full mass spectra were generated for metabolite identi-
fication by scanning within the m/zrange of 300-600 in negative-ion
mode. Data acquisition and analysis were performed using OpenLab
CDS version 2.4 (Agilent).

Production of glycosylated QA and LC-MS analysis

A similar extraction procedure was followed, by collecting 500 pl of
culture and mixing with 500 plmethanol with bead-beating (3,800 rpm,
1min x2). Two hundred microlitres of the supernatant was evaporated
andwasresuspended in 200 pl of methanol before C28 glycosylation;
otherwise, 800 pl of the supernatant was resuspended in 160 pl of
methanol. Detection of glycosylated triterpenoids was performed
using an LC-MSD iQ equipped with a Kinetex column 2.6 pm XB-C18
100 A, 50 x 2.1 mm (Phenomenex) using the following parameters’:
MS (ESlionization, desolvation line temperature = 250 °C, nebulizing
gas flow =151 min™, heat block temperature =400 °C, spray voltage
positive 4.5 kV, negative -3.5 kV). Method: solvent A: (H,0 + 0.1% formic
acid); solvent B: (acetonitrile (CH;CN) + 0.1% formic acid). Injection
volume: 10 pl. Gradient: 15% B from O to 1.5 min, 15% to 60% B from
1.5t0 26 min, 60% to 100% B from 26 to 26.5 min, 100% B from 26.5 to
28.5min, 100% to 15% B from 28.5 to 29 min, 35% B from 29 to 30 min.
The method was performed using a flow rate of 0.3 ml min. Full mass
spectrawere generated for metabolite identification by scanning within
the m/z range of 400-1,350 in negative-ion mode. Data acquisition
and analysis were performed using OpenLab CDS v.2.4 (Agilent).
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The production of target molecules was confirmed by co-elution with
the purified standards previously reported®.

Production of acylated molecules and QS-21, and LC-QTOF-MS
analysis

A similar extraction procedure was followed, by collecting 500 pl of
culture and mixing with 500 plmethanolwith bead-beating (3,800 rpm,
1min x2).Eight hundred microlitres of the supernatant was evaporated
and was resuspended in 40 pl methanol, which was then filtered with
Amicon Ultra 0.5-ml 3-kDa filter tubes or centrifuged at 15,0008 for
5min. Detection of the acylated molecules and QS-21 was performed
by LC-MS (Agilent 6545 for quadrupole time-of-flight (QTOF), Agilent)
using the following parameters': MS (ESI ionization, desolvation
line temperature = 250 °C, nebulizing gas flow = 15 min~, heat block
temperature =400 °C, spray voltage positive 4.5 kV, negative -3.5 kV).
Method: solvent A: (H,0 + 0.1% formic acid); solvent B: (acetonitrile
(CH,CN) + 0.1% formic acid). Injection volume: 10 pl. Gradient: 15% B
from0to 0.75 min,15% to 60% B from 0.75 to 13 min, 60% to100% B from
13t013.25min, 100% to 15% B from 13.25t0 14.5 min, 15% B from 14.5 to
16.5 min. The method was performed using a flow rate of 0.6 ml min™
and aKinetex column 2.6 um XB-C18100 A, 50 x 2.1 mm (Phenomenex).
Full mass spectrawere generated for metabolite identification by scan-
ning within the m/zrange of400-2,500 in negative-ion mode™. Analy-
sis was performed using MassHunter Qualitative Analysis v.B.06.00
(Agilent). Note that the standard used to spike in the QS-21sample was
18-Xyl, which was generated in vitro using 18 with a terminal apiose on
the C28 sugar chain. Because the molecules witha C28 terminal apiose
or xylose co-elute, 18-Xyl (C28 terminal apiose) was used to determine
the elution time of 17-Xyl (C28-terminal-xylose).

Extraction of CoA from engineered yeast and LC-MS analysis
The extraction procedure was adapted from previous reports®®>*, Spe-
cifically, 50D of cells were pelleted by centrifugation for 2 minat 4 °C
at 3,000g and the supernatant was discarded. Cells were quenched
and extracted by 100 pl of methanol: acetonitrile: 0.1% glacial acetic
acid ata45:45:10 ratio prechilled at —20 °C. The resuspended extracts
wereincubated onice with intermittent vortexing for 15 min, followed
by a3-mincentrifugationat12,000gand 4 °C. The supernatant (10 pl)
was injected for LC-MS analysis. Detection of CoA was performed
using an LC-MSD iQ equipped with a Hypercarb column 5 um, 250 A,
150 x1 mm (Thermo Fisher Scientific) using the following parameters:
MS (ESlionization, desolvation line temperature =350 °C, nebulizing
gas flow =13 I min™, spray voltage positive 4.5 kV, negative —6.0 kV).
Method: solvent A: (H,O + 0.1% formic acid); solvent B: (acetonitrile
(CH5CN) + 0.1% formic acid). Injection volume: 10 pl. Gradient: 2% B
from 0 to 15 min, 2% to 90% B from 15 to 17 min, 90% to 20% B from 17
to 18 min, 2% B from 18 to 35 min. The method was performed using a
flow rate of 0.1 ml min™. Full mass spectra were generated for metabo-
lite identification by scanning within the m/z range of 300-1,300 in
negative-ion mode. Dataacquisition and analysis were performed using
OpenLab CDSv.2.4 (Agilent). The 2MB-CoA standard was synthesized
according to areported procedure?.

Transient expression of fluorescent fusion proteins in tobacco
plants

Leaves of four-week-old N. benthamiana plants were infiltrated follow-
ing a procedure adapted from a previous study®. In brief, constructs
assembled into binary vectors were transformed into the Agrobacte-
rium tumefaciens strain GV3101. Transformed Agrobacterium strains
were grown in LB with appropriate antibiotics at 30 °C, shaking at
200 rpm, to an ODg ,m 0f 0.8-1.2. Agrobacterium cells were collected
by centrifugation at4,000g for 10 min at room temperature and resus-
pended ininfiltration buffer (10 mM MES, 10 mM MgCl, and 500 pM
acetosyringone) to final OD4g ,, = 0.5. Cells were incubated in the infil-
tration buffer for 1 h with gentle shaking. N. benthamianaleaves were

infiltrated with al-mlsyringe with no needle attached by gently pressing
the syringe to the abaxial side of the leaf while applying gentle pressure
tothe adaxial side. N. benthamiana plants were grown and maintained
inaplantgrowthroomat25°Cin16-h-8-hlight-dark cycles with 50%
humidity. Leaves were collected three days after infiltration.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Strains and plasmids developed for this study (Supplementary
Table 2), along with annotated sequences, have been depositedin the
JBEI Registry (https://registry.jbei.org) and are physically available
from the authors upon reasonable request. Contractual obligations
from commercial partnerships prohibit us from distributing (by our-
selves or throughathird party) strains described in our manuscript to
for-profit commercial entities. However, we provide extensive geno-
typic descriptions of our strains, fully annotated DNA sequences and
detailed methods that will enable others to build on our work. Strains
will be provided to nonprofit, government or academic laboratories
and institutions. Source data are provided with this paper.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size of three or more was taken following previous papers in this field.

Data exclusions | No data were excluded in the processing of data analysis.

Replication All experiments were performed in triplicates or more. All attempts at replication were successful.

Randomization  Replicates of all engineered strains were randomly picked up from corresponding selection plates for data generation.

Blinding No blinding was performed, as no subjective measurements were done.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)
Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Plants

All strains used in this study were derived from the Saccharomyces cerevisiae strain CEN.PK2-1C (EuroSCARF3 0000A).
All yeast strains with chromosomal editing were validated by genotyping PCR and sequencing of the modified loci.
N/A

N/A

Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A

>
Q
]
(e
()
1®)
O
=
o
c
-
(D
©
O
=
5
(@]
wn
(e
3
=
Q
<




	Complete biosynthesis of QS-21 in engineered yeast

	Biosynthesis of quillaic acid

	C3 and C28 O-glycosylation

	Biosynthesis and addition of the acyl unit

	Discussion

	Online content

	Fig. 1 Complete biosynthetic pathway for the de novo production of QS-21 in yeast from simple sugars.
	Fig. 2 Functionalization of QA (6) to yield QS-21-Xyl and QS-21-Api.
	Fig. 3 Functional expression of cytochrome P450s and pathway engineering for QA.
	Fig. 4 Reconstitution of the glycosylation pathway by the functional expression of nucleotide sugar synthases and corresponding GTs.
	Fig. 5 Acylation and terminal glycosylation towards the complete biosynthesis of QS-21.
	Extended Data Fig. 1 Biosynthesis of β-amyrin in engineered yeast and culture condition optimization.
	Extended Data Fig. 2 Optimization of P450 oxidation efficiency through the expression of a scaffolding MSBP.
	Extended Data Fig. 3 Functional expression of cytochrome P450s and pathway engineering for QA.
	Extended Data Fig. 4 C3 glycosylation studies.
	Extended Data Fig. 5 Subcellular localization studies of QS-21 pathway proteins in yeast and tobacco.
	Extended Data Fig. 6 The C9 acylation of 12 in the presence of exogenously supplemented 2MB acid.
	Extended Data Fig. 7 Acylated and glycosylated intermediates towards the complete biosynthesis of QS-21.
	Extended Data Fig. 8 Characterization of purified QS-21-Xyl from engineered yeast YL-46 compared to that of the QS-21 standard.
	Extended Data Fig. 9 1H NMR spectra of purified QS-21-Xyl from engineered yeast YL-46 compared to that of the QS-21 standard.
	﻿Extended Data Fig. 10 Reconstitution of the glycosylation pathway of QS-21 with a C3 terminal rhamnose structural analogue.




