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Abstract

We use tail events at different levels of severity to define

an asset's tail risk and to decompose the latter into a

systematic and an idiosyncratic component. The systematic

component captures an asset's tendency to experience

joint tail losses with the market and generalizes a classic tail

dependence coefficient. However, the idiosyncratic com-

ponent consists of two parts: idiosyncratic tail risk that

leads to asset‐specific tail losses and tail risk cushioning

that dampens the tail losses emanating from the market.

Tail risk cushioning is a novel concept that arises naturally

in our framework, is consistent with the previous two and

completes the taxonomy of tail risk. We examine the

performance of our tail risk decomposition on a large

dataset, confirming some previous results on tail risk and

uncovering new theoretical and empirical findings.

J E L C L A S S I F I C A T I ON
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1 | INTRODUCTION

In this article, we propose novel measures of systematic and idiosyncratic tail risks (STR and ITR, respectively).

These measures arise organically from a decomposition of the tail risk of asset returns and are mutually consistent.

In addition to these types of tail risk, we introduce a novel concept, tail risk cushioning (TRC)—the tendency of an

asset to dampen tail risk emanating from the systematic factor—and propose a measure that encapsulates it. Tail

risk cushioning arises naturally in our framework, is fully consistent with the previous two types, and completes the
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taxonomy of tail risk. We relate the systematic, idiosyncratic and cushioning component to other measures of tail

risk and examine their impact on asset returns. Specifically, we measure how much of the (expected) return of an

asset can be attributed to each of these components. Following the literature (see, for example, Bali, Cakici, and

Whitelaw (2014)), we apply the Fama and MacBeth (1973) methodology and use a large cross section of stock

returns and the Fama‐French systematic factors to estimate the significance and magnitude of the premia earned

by exposure to the systematic, idiosyncratic and cushioning components of tail risk.

We define tail risk as the probability of a (joint) exceedance of certain thresholds. The thresholds are

defined by Value‐at‐Risk (VaR) which shows how much an investor is likely to lose with a given probability over

a given horizon. VaR has been extensively embraced by regulators and practitioners in financial markets under

the Basel II and III frameworks as the basis of risk measurement for the purpose of ensuring regulatory capital

adequacy, risk management and strategic planning. In extensive empirical exercises, we find a significant

positive risk premium associated with the systematic component of tail risk as well as a significant negative

premium for tail risk cushioning. However, we find that exposure of a portfolio to idiosyncratic tail risk earns a

negative risk premium, contradicting the theory but extending the findings of Ang et al. (2006), among others,

on the negative relation between expected stock returns and idiosyncratic volatility to idiosyncratic tail risk.

Our findings are qualitatively similar, although statistically more significant, if instead of tail risk, one examines

the impact of (the components of) downside risk—defined as the tendency of an asset to generate losses—on

expected returns. Interestingly, similar observations hold if instead one examines the premia of the tail and

downside risk measures at different threshold levels α for three months‐ahead returns. Indeed, while the

coefficients seem to have increased across all three risk measures, the statistical significance has reduced slightly

though generally still well above the usual significance levels. Digging deeper, we find considerable nuances, as is

usually the case in the empirical asset pricing literature. For example, examining the impact of tail risk in the period

immediately following a “financial disaster” and calmer periods, we find that the impact of STR on returns is much

stronger in the years subsequent to a market crash. This finding is similar to that of Chabi‐Yo et al. (2018) and

supports the model of Gennaioli et al. (2015). However, whereas TRC is not significant in periods following market

crashes, it appears to be relevant in the remaining years. Further, ITR has a negative impact, though marginal at

best, on expected returns in both the post‐market crash and the remaining periods, consistent with the findings of

Bali et al. (2014).

The paper is structured as follows. In Section 2, we discuss the context within the literature, lay out the

theoretical framework, and discuss an array of properties of these new measures of tail risk. In Section 3, we

present our empirical results, while Section 4 summarizes the paper. Appendix A contains the proofs of our

theoreti‐cal results, while Appendices B and C contain initial data analyses and robustness analyses, respectively.

2 | THEORETICAL FRAMEWORK

2.1 | The Context within the Literature

Classic finance theory argues that diversification can eliminate idiosyncratic but not systematic risk, and therefore

only exposure to the latter earns a risk premium. Exposure to the former is not rewarded with a premium since it

can and should be diversified away (see, for example, Chen and Sears (1984); Statman (1987)). Indeed,

diversification is often referred to as the only free lunch in finance. However, many examples, (e.g., the financial

crisis 2007–2009, the eurozone crisis 2010–2011, or the crash due to the COVID‐19 pandemic) illustrate that, in

practice, diversification can abjectly fail to protect investors from tail events. According to an old saying in

investment circles, the only things that go up in a crisis are correlations. Assets which before a crisis had low or even

negative correlations leading to a well‐diversified portfolio become highly interdependent during the crisis,
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therefore compounding losses instead of offsetting them. These considerations have led to a different approach to

investing that can be summarized in two words: concentrated portfolio.1

By construction, concentrated portfolios carry significant idiosyncratic risk. Assuming under‐diversification,

various theories predict a positive relationship between the idiosyncratic risk and the expected stock returns in the

cross section (see, for example, Levy (1978); Malkiel and Xu (2004)). Under‐diversified investors will demand a

return compensation for bearing idiosyncratic risk. In stark contrast however, Ang et al. (2006) find that, in the

cross‐section, high idiosyncratic volatility in one month predicts abysmally low average returns in the next month, a

finding which they call "a substantive puzzle".2

Volatility measured as standard deviation or variance of portfolio returns may not be an adequate risk measure,

especially for undiversified portfolios. For example, ample empirical evidence shows that individuals value losses

and gains differently, usually assigning greater weight to losses (Kahneman and Tversky (1979); Barberis (2013)).

Downside risk is particularly important when asset returns are asymmetrically distributed and investors are averse

to disasters. Menezes et al. (1980) argue that investors tend to avoid positions that may lead to large losses even

though they may have low probability. Rietz (1988) and Barro (2006) show that tail risks are important to explain

some of the asset pricing puzzles.

The literature lacks a consensus on a unique definition for the concept of “systematic tail risk” associated with

an asset. For instance, some studies base their analysis on statistical moments (e.g., Ang et al. (2006); Conrad et al.

(2013)), while others employ co‐moments (e.g., Harvey and Siddique (2000); Dittmar (2002), Fran, cois, Heck,

François et al. (2022)). However, research relying on moment‐ and co‐moment‐based risk metrics offers only

indirect insights into how tail risk influences asset pricing. Direct evidence on the role of tail risk remains

inconclusive.

Several studies investigating the impact of VaR on expected returns find a positive correlation (e.g., Bali,

Demirtas, and Levy (2008); Bali and Cakici (2004)). However, these studies do not differentiate between the

systematic and idiosyncratic components of VaR. More recently, Atilgan, Bali, Demirtas, and Gunaydin (2020) find a

robust negative effect of tail risk, proxied by VaR, on expected returns. They attribute this effect to behavioral

biases, which suggests the significance of idiosyncratic tail risk in asset pricing. However, other studies find

insignificant or negative results when examining both idiosyncratic and systematic tail risk, while they do find some

supporting evidence for a hybrid tail risk measure (e.g., Bali et al. (2014)).

Chabi‐Yo et al. (2018) apply the classic tail dependence coefficient of Sibuya (1960) as a measure of

systematic tail risk and find that the risk premium corresponding to this measure is substantial. On the other

hand, van Oordt and Zhou (2016) rely on Arzac and Bawa's (1977) asset pricing model and introduce the

concept of tail beta, calculated as the product of a tail dependence coefficient and the relative tail risk. They

find that systematic tail risk, proxied by tail beta, is linked to future stock returns but does not earn a

significantly positive risk premium. Stoja et al. (2023) suggest that negative common features in systematic

tail risk measures may be the reason behind the contradictory findings in these two studies. Interestingly, van

Oordt and Zhou (2016) find that stocks with high (low) tail betas have high (low) tail dependence with the

market, as intuition would suggest, but also high (low) idiosyncratic risk (see their Table 1). This implies a

positive correlation between tail dependence and idiosyncratic risk. However, Chabi‐Yo et al. (2018) find that

idiosyncratic risk correlates negatively with tail dependence (see their Table 2). Because in these models,

1For evidence on concentrated portfolios, see Polkovnichenko (2005) who shows that the median number of stocks in household portfolios is two at

several points between 1989 and 1998 and increases to three in 2001. Similarly, Goetzmann and Kumar (2008) find that during 1991–1996, the median

number of stocks in a portfolio of individual investors is three. See also the interview with the manager of Henderson European Focus Fund explaining that

this approach to portfolio construction is in direct response to the demand by clients that he defends as making economic sense at the following link

https://www.newstatesman.com/politics/2019/05/a-truer-active-more-idiosyncratic-portfolio-2.
2For a recent discussion of the idiosyncratic volatility puzzle and the related empirical studies see Chichernea and Slezak (2013); Stambaugh et al. (2015);

Hou and Loh (2016).
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idiosyncratic and systematic (tail) risk are not necessarily mutually consistent, it is not clear then what drives

these sharply conflicting results or how to reconcile them.

Unlike systematic tail risk, idiosyncratic tail risk has attracted much less attention. Huang, Liu, Rhee, and Wu

(2012) model idiosyncratic tail risk with a two‐step procedure. In the first step, stock returns are regressed on

systematic risk factors. Then, in the second step, idiosyncratic tail risk is estimated as the tail index of the regression

residuals. This approach, standard in the literature in the context of idiosyncratic risk, deserves careful

consideration in the context of idiosyncratic tail risk. We discuss this issue in detail in the next section.

2.2 | Systematic Tail Risk Defines its Idiosyncratic Counterpart

Two prominent articles that study systematic tail risk are Chabi‐Yo et al. (2018) and van Oordt and Zhou (2016).

Both their systematic tail risk measures rely, to different degrees, on the classic tail dependence coefficient

proposed by Sibuya (1960) (see their Equations (1) and (7)). Essentially, they measure the systematic tail risk of an

asset by joint occurrences of extreme events ‐ occurrences when both the market and the asset exceed some

thresholds, in both cases their VaRs. Following this approach, idiosyncratic tail risk can then be defined by the

outcomes in which the asset is in distress (i.e., exceeds its VaR) while the market is not.

An approach that relies on a threshold such as VaR to estimate idiosyncratic tail risk contrasts sharply with

other measures. For example, Huang et al. (2012) use a two‐step procedure to estimate idiosyncratic tail risk. In the

first step, stock returns are regressed on systematic risk factors. Then, in the second step, idiosyncratic tail risk is

estimated as the tail index of the residuals of the regression. In the context of the Sibuya‐based tail risk approach,

the two‐step procedure can lead to misclassification of tail events. Some events may be “double counted” as both

systematic and idiosyncratic, and other events may be included in the calculation of idiosyncratic tail risk, when in

fact they should not. A careful consideration of these issues and a systematic categorization of tail events is

important given their paramount importance for stock returns and since most tail events are idiosyncratic (see, for

example, Bali et al. (2014).

To illustrate, suppose that at some severity level α, the market (systematic risk factor) has a VaR of negative five

percent, but on a particular day generates a return of10 percent. Suppose further that an asset has the sameVaR of

negative five percent, a (tail) beta of one but on the same day generates a return of two percent. Thus, the residual

term is negative eight percent, which is large but does not result in a tail event for the asset because its VaR has not

been breached. However, the two–stage procedure would classify this as an idiosyncratic tail event. Suppose that

on another day, the market generates a return of negative six percent and the asset generates a return of

−15 percent. While the residual term of negative nine percent is large, it would appear incorrect to classify this as an

idiosyncratic tail event. One could argue that since the market has already breached its VaR, this event should count

as a systematic tail event. Indeed, this observation is the essence of the classic tail dependence coefficient of Sibuya

(1960) (see also Joe (1997)) which forms the basis of many systematic tail risk measures, including those of van

Oordt and Zhou (2016) and Chabi‐Yo et al. (2018) as well as systemic risk measures like CoVaR of Adrian and

Brunnermeier (2016).

In our framework, for any given level of an asset's total tail risk, systematic tail risk accounts for some part of

tail risk, while the idiosyncratic component (composed of idiosyncratic tail risk and tail risk cushioning) accounts for

the remaining part. Thus, for a given level of tail risk, a stock with high systematic tail risk will tend to have a low

idiosyncratic component and vice versa. Therefore, this approach is the direct analogue of the total volatility

decomposition of a stock into systematic and idiosyncratic volatility in the Single‐Index Model (SIM; see, for

example, Sharpe (1963)). This is an important feature of the model and an advantage relative to other frameworks,

in which it is not clear how systematic and idiosyncratic tail risk relate to each other. Of course, this approach is not

without its own issues. Going back to the example, suppose the market on a particular day generates a return of

negative four percent while the asset has a return of negative six percent. Since the asset's VaR has been breached,
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this would contribute to idiosyncratic tail risk even though the residual term is negative two percent, many times

smaller in absolute value than the negative eight percent term which previously did not contribute to idiosyncratic

tail risk. However, this issue ensues from the decision of an investor as to what level of return constitutes a severe

tail event (i.e., the rather arbitrary but unavoidable decision as to where exactly the threshold is, the point

demarcating moderate losses from tail event losses, that the VaR condition imposes). Any model, including that of

van Oordt and Zhou (2016) or Chabi‐Yo et al. (2018), that relies on cut‐off points for the definition of tails would be

subject to this issue.3

2.3 | A Tree‐Model of Asset Returns

This section presents a simple model of asset returns and shows how it leads directly to our decomposition of tail

risk. Assume that a SIM holds and the excess return ri of stock i is approximately equal to (tail) beta βi times the

market's excess return rm, where the latter exceeds its threshold with the time‐independent probability f .

We assume β ≥ 0i for the sake of consistency with the literature and consider two regimes. In the first regime,

which occurs with probability pi, β > 0i and the error term is distributed with a “moderate” dispersion (denoted ϵi).

Hence, stock i's excess return does not deviate significantly from the prediction of the SIM. More specifically, stock

i does (not) exceed its threshold whenever the market does (not). In the second regime, which materializes with the

complementary probability p1 − i, β = 0i and the error is distributed with a “large” dispersion (Ei). In this regime,

asset i exceeds its threshold independently of the market with probability qi due to a large negative error term

materializing (Ei
−) or, with probability q1 − i, does not exceed it due to a moderate or large positive error term (Ei

+).

For simplicity, all probabilities are assumed to be time‐independent. However, this assumption is not essential—

the setting can be generalized easily to allow for time‐dependent probabilities.

Figure 1 depicts the event tree which illustrates the different paths that lead to the mutually‐exclusive and

collectively‐exhaustive outcomes (i.e., joint tail events represented by the final nodes).

The outcomes in Figure 1 correspond then to the following four tails. In tail ∅T , no threshold exceedance has

occurred; in tail Tm{ }, the market has exceeded its threshold but not the asset; in tail Ti{ } the asset has exceeded its

threshold but not the market. Finally, in tail Ti m{ , }, both have exceeded their respective thresholds. Figure 2 depicts

these outcomes.

The four areas in Figure 2 correspond to the four possible outcomes (i.e., joint tail events) in Figure 1 that

materialize due to three binary events: 1) the realization of the market (systematic factor) return (whether it is

above or below a given threshold), 2) the occurrence of the first or the second regime and, in the latter case, 3) the

realization of the idiosyncratic shock (whether it is above or below a given threshold). Below we show that the

parameter values of f , pi and qi in the event tree can be uniquely calculated from the observed data on the tail

events.

2.4 | The Taxonomy of Tail Risk

When the thresholds in the model above delineate extreme (or tail) events, we can interpret the areas in Figure 2 as

follows: the region ∅T corresponds then to the day‐to‐day moderate losses as well as gains. There is an extensive

literature that examines various asset pricing predictions in this region. In fact, the majority of asset pricing studies

relate to this area. More recently and, in particular, since the financial crisis of 2007–2009, there has been rather

3In a wider context, Supper et al. (2020) explicitly caution that “… several key results from the literature (e.g., Chabi‐Yo et al. (2018) […]) need to be treated

with care” (page 14) as the dependent structure could be misestimated. As a way to alleviate the impact that this choice may have on the results, we

employ a wide range of cut‐off points.
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intense interest in the asset pricing implications of the joint tail Ti m{ , } (e.g., Baruník and Nevrla (2023), Bollerslev et al.

(2022), Chabi‐Yo et al. (2018), and van Oordt and Zhou (2016)). This tail proxies the systematic tail risk which,

theoretically, should have important implications for asset pricing despite the mixed empirical findings discussed

above.

Similarly important, but to date overlooked, are the remaining two tails. In tail Ti{ } the stock i return exceeds its

respective threshold whenever the market return does not. Therefore, this tail captures idiosyncratic tail risk of stock i. The

tendency of an asset to exceed its threshold when the market does not is an undesirable property and hence, investors can

only be induced to hold this asset if they are compensated with an adequate risk premium. The corresponding theoretical

result is rigorously stated in Subsection 2.6. below and proved in Appendix A in the Supplementary Material.

By analogy, tail Tm{ } corresponds to outcomes where the market exceeds its threshold but stock i does not. As a

result, this tail captures an important property of stock i: tail risk cushioning (i.e., the tendency of an asset to

dampen the losses emanating from the market). Assets that have this property would be in high demand, especially

F IGURE 1 The Evolution of Stock Returns. According to our tree model, market excess returns fall below (rm) or
above (Rm) a given threshold with probabilities f and f1 − , respectively. Excess returns of asset i follow a SIM with a
non‐negative βi according to one out of two possible regimes. In the first regime, β > 0i and the error term is
distributed with a “moderate” dispersion (ϵi). In this regime, which occurs with probability pi, stock i's does (not)
exceed its threshold whenever the market does (not). In the second regime, which materializes with the
complementary probability p1 − i, β = 0i and the error is distributed with a “large” dispersion (Ei). In this case, asset i
exceeds its threshold independently of the market with probability qi due to a large negative error term
materializing (Ei

−) or, with probability q1 − i, does not exceed it due to a moderate or large positive error term (Ei
+).
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during periods of market turbulence and would thus, be compensated with lower expected returns. This claim is

also rigorously stated in Subsection 2.6. and the proof is given in Appendix A.

Intuitively, stock i's exposure to systematic tail risk can be defined as its tendency (not) to exceed its threshold

when the market does (not). Figure 2 illustrates that this situation occurs in the joint tail Ti m{ , } ( ∅T ) where both returns

are simultaneously below (above) their respective VaR thresholds. Similarly, idiosyncratic behaviour is displayed

whenever stock i diverges strongly from the market (i.e., either stock i or the market exceeds its VaR but not both at

the same time). This occurs in joint tail Tm{ } when the market exceeds its threshold but not the asset, and in the joint

tail Ti{ } when asset i does exceed its threshold but not the market.

If the prediction of classical finance theory on the reward to risk exposure extends to tail risk, then only

exposure to systematic tail risk should earn a risk premium. Idiosyncratic tail risks are supposed to be diversified

away and investors would not be compensated with any premia for exposure to such risks. For example, Hwang

et al. (2018) find that for portfolios with a small number of stocks, naïve diversification not only outperforms more

sophisticated diversification techniques but is also less exposed to tail risk. However, for large portfolios, naïve

diversification maintains its superior performance but increases tail risk. Without a clear demarcation and

classification of tail risk into systematic and idiosyncratic, it is challenging to understand and interpret these results.

It is important to emphasize that in the foregoing discussion, the meaning of tails can be “expanded” to all

outcomes below the median return which effectively modifies tail risk to downside risk (see also Bali et al. (2014)).

The three components of risk are still valid and mutually‐consistent although they would now represent systematic

downside risk, idiosyncratic downside risk, and downside risk cushioning.

2.5 | The Definition of Tail Risk Measures

In this subsection, we formally derive our measures of systematic tail risk, idiosyncratic tail risk, and tail risk

cushioning. Define x0, xm, xi and xim as the respective probabilities of the outcomes ∅T , Tm{ }, Ti{ } and Ti m{ , }. In this case,

the event tree in Figure 1 leads to a system of linear equations as follows:

F IGURE 2 The Partition of Outcome Space of Market and Stock Returns. Partition of the two‐dimensional
outcome space into four joint tails. These joint tails correspond to the final nodes in the event tree depicted in
Figure 1: in ∅T no exceedance has occurred (the white area), in Tm{ } the market but not the asset exceeds its
threshold (the light grey area), in Ti{ } the asset but not the market exceeds its threshold (the green area), in Ti m{ , } both
exceed their respective thresholds (the dark grey area). The dash lines depict the thresholds which in this case
correspond to the quantiles Q F α= ( )m

α
m
−1 and Q F α= ( )i

α
i
−1 .
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
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Pr T x f p f p q

Pr T x f p q

Pr T x f p q

Pr T x f p f p q

( ) = = (1 − ) + (1 − ) (1 − ) (1 − )

( ) = = (1 − ) (1 − )

( ) = = (1 − ) (1 − )

( ) = = + (1 − )

i i i

i i i i

m m i i

i m im i i i

0

{ }

{ }

{ , }

The last probability TPr( )i m{ , } , for example, is the sum of the probability ⋅f pi encapsulating the market exceeding

its threshold followed by the asset and the probability ⋅ ⋅f p q(1 − )i i encapsulating the market and the asset

exceeding their respective thresholds independently.

In the following discussion, we define the threshold for the asset i equal to VaRi
αi and for the market equal to

VaRm
αm at the corresponding severity levels αi and αm. Then, the probabilities of the tails TPr( )i{ } and TPr( )m{ } are equal

to x α x= −i i im and x α x= −m m im, where x T= Pr( )im i m{ , } . Although not explicitly stated, the probabilities x x,i m and xim

clearly depend on αi and αm.

As the sum of the probabilities of the four collectively‐exhaustive and mutually‐exclusive outcomes must be

one, the following unique solutions for f , qi and pi obtain:

f α= ,m (1)

p
x α α

α α
=

−

−
,i

im i m

m m
2 (2)

q
α α x

α α α x
=

( − )

(1 + − ) −
.i

m i im

m i m im

(3)

The probabilities pi and qi are well‐defined only if α α x α α α≤ < (1 + − )i m im m i m . Note that by construction,

x α≤im m and x α≤im i.

As stock i's excess return ri closely follows the prediction β ri m with probability pi, this probability captures the

systematic part of the tail risk of asset i. With the complementary probability p1 − i, asset i, independently of the

market, either exceeds its threshold or it does not. The former event occurs with probability qi and captures the

idiosyncratic tail risk, while the latter occurs with the complementary probability q1 − i and captures the tail risk

cushioning of asset i. Formally, we define:

Systematic Tail Risk (STR):







STR STR α α p

x α α

α α
≡ , ≡ =

−

−
i i i m i

im i m

m m
2

(4)

Idiosyncratic Tail Risk (ITR):

∪ ∅ITR ITR α α p q
x

α
T T T≡ ( , ) ≡ (1 − ) =

1 −
= Pr( | )i i i m i i

i

m
i i{ } { } (5)

Tail Risk Cushioning (TRC):

∪TRC TRC α α p q
x

α
T T T≡ ( , ) ≡ (1 − )(1 − ) = = Pr( | ).i i i m i i

m

m
m m i m{ } { } { , } (6)

In the context of our model, the Systematic Tail Risk pi can be interpreted as a coefficient of tail dependence,

with values bounded between 0 and 1, that captures joint VaR exceedances by asset i's returns and the market

returns. In particular, when α α=m i and p = 1i , then the market exceeding its VaR leads always to stock i exceeding

its VaR. However, if p = 0i then VaR exceedances by the market and asset i are independent.
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On the other hand, the complementary probability p1 − i can be decomposed into two parts. The first part,

Idiosyncratic Tail Risk, corresponds to asset i exceeding its threshold independently of the market and the second

part, Tail Risk Cushioning, corresponds to asset i not exceeding its threshold independently. We show below that

the systematic tail risk measure pi is similar to that of Chabi‐Yo et al. (2018). However, the other two measures are

novel in the literature.

It is straightforward to see that measures (4)‐(6) are valid and mutually‐consistent for any level of alpha below

the median (α α, ≤ 50m i percent) although their meaning now generalizes to systematic, idiosyncratic and downside

risk cushioning.4 We return to this important point in the empirical exercises in Section 3. In that section, we also

use the fact that STR, ITR, and TRC are computed from probabilities, which allows for their non‐parametric

estimation and avoids the pitfalls associated with the parametric estimation of tail measures (see, e.g., Frahm et al.

(2005) for theory and evidence on that matter).

2.6 | Properties of the Measures of Tail Risk

The tail risk measures that emerge from the framework laid out above have a surprisingly rich array of properties

which we elaborate on in this section. Importantly, our tail risk measures are closely related to long‐established

coefficients of tail dependence. Specifically, the next result shows that the lower (upper) tail dependence coefficient

of Sibuya (1960), usually denoted λL (λU), is a limit case of STR α α( , )i i m when α α α= =m i . These classic coefficients

are of crucial importance in the Extreme Value Theory (EVT) literature (see, e.g., Joe (1997)) and can also be

expressed in terms of copulas (see, e.g. Aghakouchak et al. (2013)), which connects STR to this important

dependence framework.

Proposition 1. Let Fi and Fm denote the cumulative distribution functions of asset i and the market returns,

respectively. Then:



 


 


 


STR α α λ r F α r F αlim , = ≡ lim Pr < ( ) < ( ) ,

α
i L

α
i i m m

→0 →0

−1 −1



 


 


 


STR α α λ r F α r F αlim , = ≡ lim Pr > ( ) > ( ) ,

α
i U

α
i i m m

→1 →1

−1 −1

Proof.See Appendix A in the Supplementary Material.

By allowing for any value of the severity level α, STR generalizes the classic coefficients of tail dependence to

arbitrary severity levels of extreme events. This feature is paramount in empirical studies which rely on multivariate

extreme tails because the limited number of observations in these tails make such studies practically infeasible.

Moreover, by allowing for cases where α α≠m i, STR α α( , )i m provides another flexible feature useful in empirical studies.

We note here that naively generalizing λL by computing the conditional probability

{ }λ α r F α r F α x α( ) = Pr ≤ ( ) ≤ ( ) = / ,L i i m m im
−1 −1 (7)

may result in misleading inferences. In particular, when asset i is independent of the market, x α=im
2 and then λ α α( ) =L

implies that their dependence increases in the severity level α, while our measure yields STR = 0i for any severity level α.

4Note that if α α= = 0.5i m , then these measures would bear some resemblance to Bollerslev et al. (2022) semibetas.
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Furthermore, STR is also closely related to another classic measure of tail dependence. Huang (1992) proposes

the measure E κ κ[ | ≥ 1], which is the expected number of tail events given that at least one has occurred (see also

Hartmann et al. (2004)). It is straightforward to show that in the bivariate case E κ κ[ | ≥ 1] =
p

2

2 − i
. Finally, our STR is

closely connected to χ‐measure proposed by Coles et al. (1999) and used by Poon et al. (2004) to study stock

returns. It is again straightforward to verify that in the bivariate lower tails case

p χlim =
α

i
→0

(8)

where χ = lims
S s T s

S s→−∞
Pr( < , < )

Pr( < )
and S and T are two generic random variables with support on the real line. An

equivalent result holds in the upper tails.

Another essential aspect of this framework is that our Idiosyncratic Tail Risk and Tail Risk Cushioning measures

generalize, respectively, the mixed lower‐upper tail dependence coefficient (λLU) and the mixed upper‐lower tail

dependence coefficient (λUL) ‐ see for example, Joe (1997).

Proposition 2



 


 


 


 



ITR α α λ r F α r F αlim , 1 − = ≡ lim Pr < ( ) > 1 − ,

α
i LU

α
i i m m

→0 →0

−1 −1



 


 


 


 


 


TRC α α λ r F α r F αlim 1 − , = ≡ lim Pr > 1 − < ( ) .

α
i UL

α
i i m m

→0 →0

−1 −1

Proof. See Appendix A in the Supplementary Material.

As in the case of STR, the Idiosyncratic Tail Risk and Tail Risk Cushioning generalize the mixed tail dependence

coefficients to any severity level of tail events. This is an important feature of these measures, especially in the

context of asset returns with positive dependence on the systematic factor, which is typically the overwhelming

majority of assets. In that case, it may be practically impossible to estimate the tail dependence coefficients in the

mixed tails due to the lack of or exceptionally low number of observations in these tails.

The connection between our tail risk measures and the classical tail dependence coefficients is important, and it

can be shown theoretically that they impact the expected excess returns. Chabi‐Yo et al. (2018) prove in their

Theorem 3 that the expected excess return of a risky asset i is an increasing (decreasing) function of its λL (λU) with

the systematic factor (i.e., the market return). The regularity assumptions on the representative investor's utility

function necessary for their result are that the first four derivatives of the utility function have altering signs; that is,

investors show non‐satiation, they are risk‐averse, their absolute risk aversion is decreasing (which is equivalent to

investors liking skewness), and they are “temperate” (which is equivalent to investors disliking kurtosis). These

assumptions hold for a wide class of possible preferences (e.g., constant relative risk aversion preferences). Our

Proposition 1 and their Proposition 3 imply then the following corollary.

Corollary 1. The expected excess return of risky asset i, E R R[ ] −i f , increases in STR α αlim ( , )α i→0 and decreases

in STR α αlim ( , )α i→1 .

We can also show that, under the same regularity assumptions on the representative investor's utility function,

ITR and TRC have in the limit a similarly unambiguous impact on expected excess returns of risky assets.

Proposition 3. The expected excess return of risky asset i, E R R[ ] −i f , increases in ITR α αlim ( , 1 − )α i→0 and

decreases in TRC α αlim (1 − , )α i→0 .

Proof. See Appendix A in the Supplementary Material.
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These results suggest that our measures of tail dependence will impact excess returns not only in the limit as

the joint tail probability vanishes, but also for moderate values of α, in particular, when these measures of tail risk

become measures of downside risk.5 In Section 3, we rely on measures (4)‐(6) ‐ with the limits of αi and αm as

specified in Corollary 1 and Proposition 3 ‐ to estimate the impact of the different components of tail and downside

risk on stock returns. As your theoretical framework allows for the difference between αi and αm, in Appendix C of

the Supplementary Material, we present further empirical results examining the impact of tail risk components

when investors have different tail risk appetites for the market and individual stocks.

3 | EMPIRICAL ANALYSIS

In Section 2.6, we showed theoretically that STR and ITR should have a positive impact whereasTRC should have

a negative impact on expected returns. To examine whether these predictions hold in the data, we empirically

test them following standard practice in the asset pricing literature. Firstly, we conduct sorting exercises (i.e.,

examine whether and how expected returns vary in portfolios sorted according to their tail risk components). This

analysis, presented in Appendix B to preserve space, though illustrative of the returns seemingly accruing to

portfolios with exposure to a particular tail risk component, is only a first step. Because the returns are not

properly risk‐adjusted or because a particular tail risk measure may be a proxy of or highly correlated with

another risk factor, portfolio sorting is generally followed by a number of empirical exercises that try to adjust

expected returns for exposure to other risk factors. This is achieved by adding additional factors generally

accepted to influence expected returns as control variables in the Fama and MacBeth (1973) regression. This

isolates the part of the excess return that is strictly and exclusively linked to the particular risk factor being

examined. To this end, in the following sections, we first discuss the data used in our empirical studies and then

present the results of the Fama and MacBeth (1973) regressions. Appendix C contains additional empirical

exercises that examine the robustness of these results.

3.1 | Data

In our extensive empirical exercises, as is standard in the literature, we use daily and monthly data for all

common stocks in the American Stock Exchange (AMEX), National Association of Securities Dealers

Automated Quotations (NASDAQ) and New York Stock Exchange (NYSE) markets. Our data is obtained from

the Center for Research in Security Prices (CRSP) and covers the period from January 1968 to December

2021. In the empirical exercises, we follow the standard practice and include only stocks with share codes 10

or 11 and with a minimum of two years of data available in every five years. To calculate the Book‐to‐Market

ratios, we obtain the firm accounting data from the CRSP‐Compustat Merge database. This results in a sample

of 3,278,028 stock‐month observations with the average of 5,059 stocks per month although this number

varies between 2,149 and 7,932 stocks in each month during the period we examine. Data on the risk‐free

rate and on the excess market return for the same period are obtained from Kenneth French's online data

library.

The tail risk measures that we propose are computed as follows. At the end of each month, we calculate

STR, ITR and TRC for a stock using the previous five years of return observations of the market and the stock.

We use the lower tail of the actual empirical distribution of excess returns to calculate a non‐parametric

measure of VaR following the literature (see, for example, Atilgan et al. (2020)). Specifically, VaR is calculated as

5Because we focus on the lower part of the asset returns distribution (i.e. when α ≤ 50 percent), we do not investigate the case when STR α αlim ( , )α i→1

and leave it instead for future research.

THE TAXONOMY OF TAIL RISK | 711

 14756803, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfir.12423 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [12/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the α percentile (where ∈α {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}) of the daily excess returns over the past five years as of

the end of month t with the restriction that at least 500 non‐missing return observations should exist. Having

determined the thresholds defined by VaRi and VaRm, we then compute the probabilities xm, xi and xim of the

respective tails Tm{ }, Ti{ } and Ti m{ , } as the number of observations that fall into each tail divided by the total number

of observations over that period. With the probabilities xm, xi and xim, it is then straightforward to obtain the tail

risk measures (4)‐(6).

In Appendix B of the Supplementary Material, we provide a detailed discussion of descriptive statistics,

persistence analysis of the three tail risk measures and portfolio sorting analysis.

3.2 | Fama and MacBeth (1973) Cross‐Sectional Regression

In this section, we investigate the impact of tail risk on expected stock returns controlling for other risk factors using

the Fama and MacBeth (1973) cross‐sectional regression analysis. Specifically, we estimate the factor betas and

other risk measures using time series data in the first step, and then, the relation between returns and these

variables is estimated in a second step with a cross sectional regression.

Subrahmanyam (2010) highlights that the number of variables shown to predict stock returns in the cross‐

section is in excess of 50. Controlling for all of these variables is clearly infeasible, and thus, we focus on the most

widely used ones in the literature and those that, intuitively, are most likely to be correlated with our tail risk

measures (see also Bali et al. (2014).

InTable 1, we report the results of the Fama and MacBeth (1973) cross‐sectional regression of monthly excess

returns of all listed US stocks on our tail risk measures and also on other canonical measures. Specifically, the excess

returns of each stock relative to the T‐bill rate over the following month is regressed on the explanatory variables

estimated from historical data over the previous five years. We report the time series average of the coefficients

estimated monthly for each variable in nine different models. These coefficients capture the premia per unit of risk

and are reported with the respective Newey and West (1987) t‐statistics (in parentheses).

The regressors in the Models I to III contain varying sets of canonical risk measures including CAPM beta, book‐

to‐market, size, momentum, volatility, illiquidity, coskewness and cokurtosis (see, e.g., van Oordt and Zhou (2016);

Bali et al. (2014) and references therein). Book‐to‐market is measured as the ratio of the book value from the

previous fiscal year adjusted for investment tax credits, deferred taxes and preferred shares divided by the market

capitalization at the end of the previous calendar year (see, for example, Fama and French (1993)). Size is calculated

as the natural logarithm of market capitalization at the end of the previous month. Momentum is the average of

previous year returns excluding the last month (see, e.g., Huang et al. (2012)). Volatility is the standard deviation of

daily returns. Illiquidity is proxied by average daily illiquidity in the last year, where the latter is calculated as the

ratio of the absolute daily return over daily dollar volume (see Amihud (2002)). Coskewness and cokurtosis are

computed as in Ang et al. (2006).

Estimates in Models I‐III are consistent with results reported in the literature. At the level of individual stocks,

the CAPM beta earns a negative or insignificant risk premium when it is calculated from past daily returns (see, e.g.,

Bali, Engle, and Murray (2016) for an extensive discussion of this finding). Book‐to‐market is associated with higher

expected return and it is highly significant when we include only CAPM beta and size in the regression. However,

with additional risk factors included (Model III), book‐to‐market becomes only marginally significant. Size affects

expected returns negatively and is significant. Momentum, illiquidity and cokurtosis are all statistically significant

with the signs of the premia consistent with theoretical predictions. Volatility is significantly associated with lower

expected returns, reflecting the volatility feedback and leverage effects (see Black (1976); Campbell and Hentschel

(1992) among others). Finally, coskewness is not significant, which is probably due to the high level of measurement

noise (see, e.g., Bali et al. (2016)).
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Models IV to VI include our proposed measures of tail risk (4)‐(6) with the limits of αi and αm as specified in

Corollary 1 and Proposition 3.

Table 1 shows the results calculated at 10% VaR. We note that STR exhibits the expected positive sign and is

highly significant. This suggests that investors are rewarded for bearing the systematic tail risk, which is in line with

the theoretical predictions laid out in Corollary 1. Importantly, the inclusion of systematic tail risk in the regression

does not substantially alter the significance or the magnitude of other coefficients. We conclude therefore that the

systematic tail risk captures a distinct risk that is not present in the other canonical factors.

Similarly, the risk premium associated with TRC is also of the expected negative sign, as suggested by

Proposition 3, and is statistically significant. Therefore, this finding supports the theoretical prediction that investors

are willing to pay a higher price (i.e., accept lower expected returns) to hold stocks with the ability to cushion large

losses generated by the market.

However, we find an unexpected result regarding the idiosyncratic tail risk. The risk premium of ITR is negative

although only marginally significant. This suggests that investors are not compensated with higher expected returns

when investing in stocks with higher idiosyncratic tail risk. This finding seems at odds with the theoretical prediction

of Proposition 3 but mirrors the findings on the idiosyncratic volatility of Ang et al. (2006) among others. These

results are consistent after controlling for several potential biases including size, illiquidity, idiosyncratic volatility,

realized volatility and momentum as suggested in Bali et al. (2014). We also obtain similar results when including all

tail risk measures simultaneously in the cross‐sectional regressions. The results of these investigations are

presented and discussed in Appendix C of the Supplementary Material.

We also investigate the economic significance of the tail risk measures by calculating the annualized change in

future returns corresponding to one standard deviation change in the risk measures (the complete results are

available upon request). Specifically, one standard deviation increase in STR raises the annualized expected returns

by 2.88 percent. This is comparable to the impact of the LTD measure in Chabi‐Yo et al. (2018). The corresponding

impacts of ITR and TRC are ‐0.53 and ‐0.72 percent, respectively. Thus, STR is statistically more significant and has

a higher economic impact on stock returns than the other two tail risk components. Our results are also comparable

to the cross‐sectional analysis of Chabi‐Yo et al. (2018) in terms of the average R‐squared of the cross‐sectional

regressions, where the risk factors collectively can explain 6.1 percent of next month stock returns.

The estimation of the tail risk premium might be affected by potential survivorship bias. This might be the case

if the estimation sample consists of a large number of surviving companies.6 In fact, only a small proportion of the

firms in our sample have survived throughout the period. From January 1968 to December 2021, there are 21,565

unique stocks, while only 3802 stocks exists at the end of the sample (December 2021), accounting for 17.6

percent of the stock population. Thus, one can safely argue that the impact of survivorship bias in our results is

minimal. To validate this, in models VII to IX of Table 1, we present the cross‐sectional regression results for stocks

in our sample that did not exist in December 2021. Since the majority of firms in the last several years in the sample

existed in December 2021, we only obtain the Fama and MacBeth (1973) cross‐sectional regression for the January

1968 ‐ December 2011 period, removing the last 10 years of recent data. The results of models VII to IX confirm

the robustness of our results with respect to survivorship bias. We observe the same sign and similar statistical

significance for the coefficients associated with STR, ITR, and TRC as in the main results in models IV to VI.

3.3 | Time‐varying Crash Fears

Chen, Joslin, and Tran (2012) argue that the risk premium for disaster risk increases substantially after a disaster

(see also Gennaioli et al. (2015) who propose a theoretical model where investors overstate the fear of a future

6We would like to thank an anonymous reviewer for this insightful suggestion.
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market crash following the occurrence of a tail event). Therefore, we examine the impact of the realization of a

market tail event on the three components of tail risk. To that end, and following the literature (see, for example,

Bali et al. (2014)), we divide our data set into two subsamples centered around large tail events: the “Post–market

crash” subsample containing five years after a market tail event and the “Remaining years” subsample. However,

because of the pandemic, our sample of market crashes contains three more days which occurred in March 2020

TABLE 1 Cross‐sectional analysis of tail risk and other canonical risk measures.

I II III IV V VI VII VIII IX

Intercept 0.0111 0.0332 0.0469 0.0528 0.0488 0.0499 0.0659 0.0635 0.0639

(5.2956) (2.9828) (6.9334) (7.7043) (7.2872) (7.3407) (7.8203) (7.5831) (7.6096)

Beta −0.0025 0.0010 0.0018 0.0000 0.0013 0.0012 −0.0013 0.0000 0.0000

(−1.5627) (0.4528) (0.9015) (0.0008) (0.6073) (0.5642) (−0.5819) (−0.0068) (−0.0200)

Size −0.0015 −0.0022 −0.0026 −0.0022 −0.0023 −0.0033 −0.0030 −0.0030

(−2.5985) (−6.4034) (−7.2989) (−6.5696) (−6.6271) (−7.5339) (−7.1745) (−7.2069)

B/M 0.0021 0.0007 0.0007 0.0007 0.0007 0.0005 0.0006 0.0006

(3.7508) (1.3601) (1.2214) (1.3721) (1.3980) (0.6807) (0.9698) (1.0177)

Momentum 0.0066 0.0069 0.0065 0.0066 0.0089 0.0084 0.0085

(4.2319) (4.4810) (4.0979) (4.1322) (5.6086) (4.8944) (5.0596)

Illiquidity 0.0012 0.0012 0.0012 0.0012 0.0005 0.0005 0.0005

(4.7059) (4.5713) (4.7628) (4.7432) (5.1385) (5.2102) (5.2876)

Real Vol −0.1954 −0.1752 −0.1869 −0.1885 −0.2214 −0.2355 −0.2368

(−3.8886) (−3.4727) (−3.7649) (−3.7638) (−4.0490) (−4.2918) (−4.2952)

Coskewness −0.0014 0.0013 −0.0016 −0.0007 0.0020 −0.0015 −0.0004

(−0.5026) (0.4548) (−0.5710) (−0.2326) (0.6197) (−0.4569) (−0.1182)

Cokurtosis 0.0024 0.0015 0.0022 0.0023 0.0022 0.0030 0.0030

(4.2986) (2.5619) (4.0020) (4.0828) (3.0100) (4.3485) (4.3244)

STR 0.0231 0.0268

(7.3930) (6.1953)

ITR −0.0126 −0.0181

(−1.5058) (−1.7068)

TRC −0.0194 −0.0229

(−2.1106) (−2.0324)

R‐squared 0.0168 0.0366 0.0603 0.0611 0.0611 0.0610 0.0622 0.0623 0.0623

Fama and MacBeth (1973) average risk premia of the proposed tail risk measures and of the canonical risk measures
calculated at α= 10 percent tail threshold (with the corresponding Newey and West (1987) t‐statistics in brackets). STR is

computed as STR α α( , ); ITR is computed as ITR α α( , 1 − ); TRC is computed as TRC α α(1 − , ). In each cross‐sectional
regression, monthly excess return of a stock is regressed on CAPM beta, book‐to‐market, size, momentum, volatility,
illiquidity, coskewness, cokurtosis, and the proposed tail risk measure. Models I to VI use data from January 1968 to
December 2021 of all stocks in the market. Models VII to IX use data from January 1968 to December 2011 of stocks not
existing in December 2021.
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and has a total of 13 worst days.7 As these three days occurred towards the end of our sample, we only have just

one more year of data after the crash. The results of this analysis are presented in Table 2.

We find that the impact of STR on returns is much stronger in the years subsequent to a market crash. The

impact of STR on returns is almost three times as high in the “Post–market crash” subsample with a coefficient for

the impact of STR of 0.034 in contrast to a coefficient of 0.016 for the “Remaining years”. This finding is similar to

that of Chabi‐Yo et al. (2018) and supports the theoretical model of Gennaioli et al. (2015). However, whereas TRC

is not significant in periods following market crashes, it appears to be relevant in the remaining years with a

statistically significant coefficient of ‐0.023. This suggests that investors are willing to pay a premium for stocks that

cushion potential blows emanating from the market during relatively calmer periods, but rather surprisingly, this

effect does not appear to be priced following a market crash. While at face value this looks like a paradox, an

explanation for it may be that in highly turbulent periods, risk aversion increases sufficiently to deter under‐

diversified investors from market participation (see, for example, Zhou (2020) and Meister and Schulze (2022) for

evidence that household market participation decreases substantially following a market crash). This, in turn,

reduces any impact these investors may have on the pricing of stocks. Finally, ITR has a negative but insignificant

impact on expected returns in both, the post‐market crash and the remaining periods. This result is consistent with

the findings of Bali et al. (2014) so it is not entirely surprising.

3.4 | The Impact of Downside Risk on Expected Returns

In Section 2, we argue that the three components of risk are valid and mutually consistent if the meaning of tails is

“expanded” to all outcomes below the median return, effectively modifying the tail risk to downside risk (see, for

example, Bali et al. (2014)). Therefore, we now examine the premia of the downside (tail) risk measures for α ranging

from five to 50 percent and report the results of the Fama and MacBeth (1973) cross‐sectional regression in

Table 3.

The findings are consistent with those in the main cross‐sectional regression. Specifically, the risk premium of

systematic downside (tail) risk is positive and highly significant at every threshold level α defining the downside (tail)

risk. Similarly the risk premium of downside (tail) risk cushioning is negative and significant with the only exception

at five percent severity level. The puzzling negative risk premium associated with idiosyncratic tail risk can also be

observed at almost all levels of idiosyncratic downside risk. Indeed, for α ranging from 50 to 20 percent, there

seems to be strongly significant evidence of a negative impact of ITR on expected returns. At these high levels of α,

ITR is a proxy for idiosyncratic (semi‐) volatility rather than tail risk. In this context, this result is not surprising and

entirely in line with the findings of Ang et al. (2006), among others, that stocks with high idiosyncratic volatility have

very low average returns even after controlling for exposure to aggregate volatility. Interestingly, the ITR risk

premium flips back to the positive sign indicated by Proposition 3 at the five percent severity level of tail risk.8

Interestingly, we observe that the impact of tail risk components on expected returns becomes slightly weaker

when the tail threshold reduces below 10 percent. This is largely true for all three measures but especially for ITR

and TRC, suggesting that the impact of downside risk on expected returns becomes weaker when the overall

downside risk becomes tail risk. At face value, this finding suggests that investors care more about downside risk

rather than tail risk.

In the above analysis, the tail risk measures are estimated with a window of five years of daily data. To check

the robustness of the results obtained with this window size, we repeat the investigation and examine the premia of

7The market crash dates are: October 19, 1987, October 26, 1987, August 31, 1998, April 14, 2000, September 29, 2008, October 09, 2008, October 15,

2008, November 20, 2008, December 01, 2008, August 08, 2011, March 09, 2020, March 12, 2020, March 16, 2020.
8We did not carry out the investigation for one percent tail threshold since the exceptionally low number of observations made the estimation of the

measures infeasible.
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TABLE 2 Cross‐sectional analysis of time‐varying tail risk.

Post‐market crash Remaining years
I II III I II III

Intercept 0.061 0.053 0.053 0.047 0.046 0.047

(5.648) (5.018) (5.009) (5.496) (5.443) (5.503)

Beta 0.002 0.004 0.004 −0.001 0.000 −0.001

(0.372) (0.835) (0.851) (−0.612) (−0.238) (−0.359)

Size −0.003 −0.002 −0.003 −0.002 −0.002 −0.002

(−5.529) (−4.667) (−4.699) (−5.147) (−4.852) (−4.893)

B/M 0.000 0.000 0.000 0.001 0.001 0.001

(0.075) (0.315) (0.348) (1.450) (1.458) (1.468)

Momentum 0.003 0.002 0.002 0.009 0.009 0.009

(0.991) (0.711) (0.727) (6.699) (6.630) (6.614)

Illiquidity 0.002 0.001 0.002 0.001 0.001 0.001

(2.821) (2.911) (2.935) (4.680) (4.632) (4.695)

Real Vol −0.070 −0.086 −0.092 −0.244 −0.253 −0.252

(−0.780) (−0.968) (−1.040) (−4.223) (−4.433) (−4.321)

Coskewness 0.003 0.001 0.001 0.000 −0.003 −0.002

(0.768) (0.265) (0.238) (−0.002) (−0.856) (−0.471)

Cokurtosis 0.001 0.002 0.002 0.002 0.002 0.002

(1.428) (2.626) (2.505) (2.161) (3.134) (3.250)

STR 0.034 0.016

(6.163) (4.681)

ITR −0.012 −0.013

(−0.788) (−1.489)

TRC −0.014 −0.023

(−0.857) (−2.365)

R‐squared 0.0569 0.0568 0.0568 0.0638 0.0639 0.0638

This table shows the Fama and MacBeth (1973) average risk premia of canonical risk measures and of the proposed tail risk
measures calculated at α = 10 percent tail threshold, along with their corresponding Newey and West (1987) t‐statistics (in
brackets). These results relate to two subsamples: the “Post–market Crash” subsample containing the five subsequent years
after a market tail event and the “Remaining years” subsample. The market tail events are defined as the 13 worst market
returns in our sample which occurred on: October 19, 1987, October 26, 1987, August 31, 1998, April 14, 2000,
September 29, 2008, October 09, 2008, October 15, 2008, November 20, 2008, December 01, 2008, August 08, 2011,
March 09, 2020, March 12, 2020, March 16, 2020. In each cross‐sectional regression, monthly excess return of a stock is

regressed against its risk measures of CAPM beta, size, book‐to‐market, momentum, illiquidity, volatility, coskewness,
cokurtosis, and the proposed tail risk measure. STR is computed as STR α α( , ); ITR is computed as ITR α α( , 1 − ); TRC is
computed as TRC α α(1 − , ). The sample period is from January 1968 to December 2021.
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the tail risk measures at different tail thresholds but now with the tail risk measures estimated with a window of

two years of daily data. The results of the Fama and MacBeth (1973) cross‐sectional regressions are reported in

Table 4. Although the significance of the results has been somewhat reduced, as illustrated by the slightly lower

t‐statistics, the results are qualitatively similar to those of Table 3. An exception is the risk premium for TRC which is

now significant for all levels of α (recall that in the previous exercise, TRC was significant only for α from 50 to

10 percent). Similar to previous results, STR is significantly and positively related to expected returns for all levels of

α examined whereas ITR is significantly but negatively related to expected returns for levels of α between 50 and

20 percent. Interestingly and in line with the finding in the previous table, although negative and significant for most

levels of α, the ITR risk premium switches to the positive sign (though statistically insignificant) at the five percent

severity level of tail risk.

In a similar exercise, but with a different focus, we modify the above investigation and examine the premia of

the tail risk measures at different threshold levels α for three months ahead returns. In each Fama and MacBeth

(1973) cross‐sectional regression, the three months‐ahead (i.e., the cumulative excess return of a stock from t + 1

to t + 3) is regressed on its time‐t tail risk measures as well as other canonical risk measures. The results, presented

inTable 5, are largely similar to those inTable 3. The difference is that, while the coefficients seem to have increased

and in some cases doubled across all three risk measures, the statistical significance has reduced slightly, though

generally still well above the usual significance levels. For example, at α = 50 percent, the impact of STR increases

from 0.034 on the one‐month ahead expected returns to 0.069 on the three‐month ahead expected returns (with

the respective Newey and West (1987) t‐statistics 6.997 and 5.772). Similarly, these coefficients are 0.011 and

0.024 at α = five percent (with Newey and West (1987) t‐statistics of 3.938 and 3.043 respectively). Similar

observations can be made for ITR and TRC. This suggests that the impact of these downside risk measures may take

more than one month to “show up” in expected returns although the reduced precision makes it harder to detect it

deep in the tails.

To preserve space, the results of extensive robustness analyses, which are generally along the lines of the

results discussed above (although they provide some more nuance as well as some interesting insights) are provided

in Appendix C of the Supplementary Material.

4 | CONCLUSION

There are several studies that examine the relationship between (different measures of) systematic tail risk and

expected returns. The impact of idiosyncratic tail risk on stock returns, on the other hand, has attracted much less

attention.

In this article, we decompose the tail risk of stock returns into systematic and idiosyncratic parts, with the latter

being further decomposed into the tendency of a stock to contribute to or dampen tail risk. These three

components of tail risk correspond, respectively, to systematic tail risk, idiosyncratic tail risk, and tail risk cushioning

of a stock.

In the theoretical part, we propose a simple model of asset returns and show how it leads directly to our

decomposition of tail risk. From this model, we derive closed‐form measures for the three aforementioned tail

risk components that can be empirically estimated. The explicit formulae for the derived measures allow for

their detailed studies, and we prove a number of their properties. In particular, we show that STR generalizes

the classic lower (upper) tail dependence coefficient of Sibuya (1960) to any level of severity of extreme

events. Moreover, we prove that all our measures have in the limit an unambiguous impact on expected excess

returns.

In the empirical part, we extensively investigate the impact of systematic and idiosyncratic components on

asset returns. We find, in particular, that our measure of systematic tail risk has a considerable impact on stock

returns which confirms the findings reported by Chabi‐Yo et al. (2018). Moreover, we find evidence that exposure
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of a stock portfolio to tail risk cushioning earns a significant negative risk premium as suggested by our theoretical

results. However, evidence suggests that exposure of a portfolio to idiosyncratic tail risk earns a negative risk

premium, extending the findings of Ang et al. (2006), among others, on the negative impact of idiosyncratic volatility

on expected stock returns to idiosyncratic tail risk. The components of downside risk have an economically similar

although statistically stronger impact on expected returns relative to their tail risk counterparts. Our findings on

idiosyncratic tail and downside risk add to the existing wealth of results on idiosyncratic risk that contradict

theoretical predictions, an issue which clearly deserves further study.
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