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Abstract
By shaping where individuals move, habitat configuration can fundamentally structure animal populations. Yet, we cur-
rently lack a framework for generating quantitative predictions about the role of habitat configuration in modulating popula-
tion outcomes. To address this gap, we propose a modelling framework inspired by studies using networks to characterize 
habitat connectivity. We first define animal habitat networks, explain how they can integrate information about the different 
configurational features of animal habitats, and highlight the need for a bottom–up generative model that can depict realistic 
variations in habitat potential connectivity. Second, we describe a model for simulating animal habitat networks (available 
in the R package AnimalHabitatNetwork), and demonstrate its ability to generate alternative habitat configurations based on 
empirical data, which forms the basis for exploring the consequences of alternative habitat structures. Finally, we lay out three 
key research questions and demonstrate how our framework can address them. By simulating the spread of a pathogen within 
a population, we show how transmission properties can be impacted by both local potential connectivity and landscape-level 
characteristics of habitats. Our study highlights the importance of considering the underlying habitat configuration in studies 
linking social structure with population-level outcomes.
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Introduction

Animals rarely move unrestrictedly, as the physical habi-
tat environments they depend on are often heterogeneous 
and uneven (Fahrig 2007; Kovalenko et al. 2012; Lovett 
et al. 2005). The physical configuration of habitats, such 
as the spatial arrangement of habitat components and their 

physical attributes (e.g. heterogeneity, size, and quality), 
can fundamentally determine the patterns of habitat poten-
tial connectivity (i.e. where animals of a species can go), 
which eventually determine how populations of given spe-
cies are functionally connected (e.g. socially or geneti-
cally). Thus, habitat configuration can have broad impli-
cations for population and community dynamics across 
spatial and temporal scales, including ecological interac-
tions (Jordano 2016; Plitzko and Drossel 2015; Ryser et al. 
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2019), community structure (Altermatt and Holyoak 2012; 
Henriques-Silva et al. 2013; Wilson et al. 2016), and spe-
ciation (Naka and Brumfield 2018). Habitat configuration 
can also determine the rates of social interactions among 
conspecifics, thus shaping the social structure of popula-
tions (Emlen and Oring 1977; Farine and Sheldon 2019; 
Gosling 1991; He et al. 2019; Leu et al. 2016). Ultimately, 
the physical configuration of habitats shapes the distribu-
tions of genes (Armansin et al. 2020; Beninde et al. 2016; 
Phillipsen and Lytle 2013), pathogens (Altizer et al. 2003; 
Loehle 1995; Silk et al. 2019), and information (Aplin 
et al. 2015; Laiolo and Tella 2005, 2006) in populations. 
Understanding the effects of habitat physical configura-
tion on animal population and community dynamics is 
particularly important in a rapidly changing world, where 
natural populations increasingly face anthropogenic habi-
tat changes.

How individual animals are socially structured has many 
consequences for populations (Allen et al. 2017; Aplin et al. 
2012; Keeling 1999; Montiglio et al. 2018). The best exam-
ple for this perhaps comes from studies on pathogen trans-
mission (Cantor et al. 2020; Prado et al. 2009; Sah et al. 
2018; Silk et al. 2019) describing how patterns of social or 
physical connections among individuals at local and global 
scales can impact the speed of transmission and the magni-
tude of disease outbreaks. Specifically, more clustered con-
nections—where the number of shared social connections 
between individuals, or triads A ↔ B , B ↔ C , and A ↔ C , 
are more represented in the population—can increase the 
local spread (among immediate contacts) but decrease the 
speed and global reach of pathogen transmission (Keeling 
2005; Read and Keeling 2003; Sah et al. 2018). However, 
to unravel the role of social structure in shaping ecological 
and evolutionary dynamics, we need to also understand the 
mechanisms that shape animal social structure. Alongside 
social decisions, features of the physical habitat environ-
ments can play a major role in shaping where animals move, 
who they (re-)encounter, and how often they interact with 
one-another (He et al. 2019). For example, a study in sleepy 
lizards (Tiliqua rugosa) found that habitats with more bar-
riers increased the rates of encounters among individuals, 
increasing the density and clustering of the social networks 
(Leu et  al. 2016), which may have implications for the 
spread of infectious pathogens (Tildesley et al. 2010; White 
et al. 2018). Early socioecological models have linked the 
spatiotemporal distribution of resources and risks to social 
behaviour (van Schaik 1989; Wilson 1975), while more 
recent models have focussed the behavioural mechanisms 
underlying social structure (Cantor and Farine 2018; Farine 
2019; Ilany and Akçay 2016; Kappeler 2017; Spiegel et al. 
2016). However, we also require quantitative tools that 
explicitly link configurational properties of habitats to social 
structures to enable us to generate testable hypotheses on the 

role of the physical habitat environments on socially medi-
ated population outcomes.

The features of animal habitats are typically multi-fac-
eted—they can be described by the heterogeneity, sizes, 
abundance and spatial arrangements of habitat components 
(Tokeshi and Arakaki 2012). For a given animal species, 
these features determine habitat potential connectivity, 
indicating where individuals can move, thereby, the behav-
iours that they express and the subsequent consequences for 
populations (Gilarranz et al. 2017). For example, Doherty 
et al. (2019) found that the shape of habitats, specifically 
whether habitats were wider (i.e. forming a rectangle) or 
thinner (forming a narrow strip), structured the movements 
of radio-tracked agamid lizards (Pogona barbata); specifi-
cally, activity area and daily movement rates were lower 
among individuals inhabiting thinner habitats. The actual 
movements of animals are then the outcomes of a range 
of drivers (Nathan et al. 2008), including habitat potential 
connectivity and individuals’ actual behavioural decisions 
(e.g. where to move for resources and/or mates), which over 
time determine how populations of a species are function-
ally connected (Calabrese and Fagan 2004; Tischendorf and 
Fahring 2000). Among these drivers, the spatial components 
inherent to many emergent ecological patterns have received 
increasing attention in ecology (Fletcher et al. 2013; Gilar-
ranz et al. 2017).

Spatial networks (Barthélemy 2011) have been used to 
characterize metapopulation spatial structures and the spatial 
configuration of habitats (Dale and Fortin 2010; Fall et al. 
2007; Urban and Keitt 2001; Urban et al. 2009), and the 
spatial patterns of connectivity of animal habitats (Alther 
and Altermatt 2018; Bodin and Norberg 2007; Fall et al. 
2007; Galpern et al. 2011; Lookingbill et al. 2010; Marini 
et al. 2019; Minor and Urban 2008; Poli et al. 2020; Urban 
and Keitt 2001; Urban et al. 2009). For example, Robert-
son et al. (2018) used long-term mark–resight data to con-
struct networks that characterize the functional connectivity 
among habitat patches of snail kite (Rostrhamus sociabilis 
plumbeus) to evaluate the relative roles of among-patch 
movement and reproduction in modulating the effective 
connectivity of the species’ distribution range. In such net-
works, nodes often represent habitat or resource patches (e.g. 
nesting sites, Galpern et al. 2011; Urban et al. 2009), that is, 
areas crucial for survival and reproduction (Fahrig and Mer-
riam 1985) as opposed to the landscape matrix (Ziolkowska 
et al. 2014). How these connections are defined determines 
what these networks are depicting. Typically, the connec-
tions are inferred from movements of individuals, gene flow, 
the species’ biological attributes, or from the characteristics 
of the environment itself (see Calabrese and Fagan 2004 for 
the definitions of connectivity metrics; but see review on 
the use of these connectivity metrics in Galpern et al. 2011).
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Spatial networks constructed following the approaches 
outlined above have been instrumental in studies of animal 
movements (Gilarranz et al. 2017; Robertson et al. 2018) 
and community structure (Altermatt and Holyoak 2012). 
However, they typically do not allow us to make broader, 
or more general, predictions on the linkages between spa-
tial network structures and processes in animal populations 
and communities. This is because the structures of empiri-
cally constructed spatial networks are usually derived from, 
and thus inherently limited in scope by, the specific habitats 
and species under study (Baguette et al. 2013; Baranyi et al. 
2011; e.g. Fig. 1a). Thus, they limit our understanding on 
how various configurational features of habitats (e.g. land-
scape linearity and spatial scale) might consistently shape 
population or community outcomes. For example, networks 
explicitly built to characterize the potential connectivity 
of the Yangtze and the Rhine rivers for freshwater organ-
isms can be used to explore the relationships between these 
specific network structures and processes in populations 
or communities. Yet, the specificity of such networks, as 
originated from the specific spatial configurational features 
(e.g. landscape geometry, elevation) of those habitat sys-
tems for targeted species, may limit our ability to explore a 

broader spectrum of plausible habitat networks, including 
those that might not yet exist but could emerge from pre-
sent habitat networks (e.g. through rerouting of river flow 
or the construction of a dam). Moreover, empirical networks 
provide limited ability to explore how specific dimensions 
of network properties (e.g. patterns of connectivity) affect 
populations while holding other properties constant (e.g. 
network size, spatial scales at which these networks are 
defined; e.g. Fig. 1b, c). For example, empirical networks 
have suggested that highly modular social structures (i.e. 
multilevel social structures) play an important role in pro-
moting cultural evolution (Migliano et al. 2020); yet, it has 
been subsequently shown that such effects of modularity 
contribute relatively little in promoting cultural evolution 
by simulated networks, which allow testing the effects of 
network connectivity itself while controlling other network 
properties such as the number of links (Cantor et al. 2021). 
Such limitations may make it hard to generalize insights and 
predictions on the relationship between the physical habitat 
environment and biological processes.

One way to overcome the limitations of empirical net-
works is to simulate networks using generative models 
(Granovetter 1973; Watts and Strogatz 1998). While many 

(a)

(b)

(c)

Fig. 1  Two distinct approaches for understanding the role of habitat 
configuration in shaping animal population (or community) struc-
tures. a In most studies, animals are observed living and moving (e.g. 
via GPS tracking) within given time windows in specific habitats, 
from which characteristics of the connectivity of the focal habitat 
area are inferred or modelled (e.g. by resistance surface modelling, 
network-based landscape connectivity modelling, or circuit theory). 
By contrast, (b) with a bottom–up approach, we can simulate net-
works to depict the physical configurations of specific habitats, and 
then model individual movements (or more complex behaviours) in 
these habitats, from which we can gain sights on how observed struc-
tures (e.g. patterns of movements and social interactions) emerged. 

With this approach, we can also (c) simulate habitat networks con-
trolling for key parameters (e.g. network connectivity), thus produc-
ing alternative scenarios that can control (or not) for features that are 
hypothesized to play a major role in shaping biological processes in 
populations. Here, we illustrate two simulated networks, one of which 
(b) can exactly depict the configuration of the given habitat for the 
focal species (a), while the other depicts a habitat that maintains 
some characteristics (e.g. the same distributions and sizes of habitat 
patches, represented by nodes) as the given habitat (a), but provides 
alternative patterns of potential connectivity (by randomizing the spa-
tial distribution of movement barriers that determine which patches 
are connected)
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generative models exist (e.g. Barabási et al. 2001; Erdős and 
Rényi 1960), none considers the inherent spatial depend-
ency of animal habitat networks, and thus generate networks 
might not capture their fundamental properties (but see Car-
raro et al. 2020 for a recent solution for riverine habitats). 
One generative model of random networks that can incor-
porate spatial components is the random geometric network 
model (Dall and Christensen 2002; Penrose 2003). In geo-
metric networks, nodes are anchored in space and are con-
nected whenever their Euclidean distance is below a given 
threshold. By producing distance-based spatial networks 
(Barthélemy 2011), the random geometric network model 
provides a starting point for generating habitat networks. 
However, random geometric networks remain limited by a 
fixed spatial extent (i.e. a consistent square landscape) and 
a fixed threshold for determining the presences of links. In 
nature, the geometry of habitats and landscapes for a spe-
cies, and the topological properties of their potential connec-
tivity, can vary widely. For example, the distance between 
two patches does not exclusively dictate their potential con-
nectivity—barriers such as waterscapes can restrict move-
ment of a terrestrial animal between two patches in close 
proximity, while patches that are far apart can be connected 
by movements (as demonstrated by empirical evidence that 
primates can use roads to efficiently move between distant 
areas of their home ranges, Green et al. 2020; Strandburg-
Peshkin et al. 2017).

Here, we address the need for a generative model of 
animal habitat networks by extending the random geomet-
ric network model to generate more plausible spatial net-
works. We first define animal habitat networks and outline 
the key configurational features of animal habitats that can 
be captured by such networks. Next, we describe a mod-
elling framework—available in the accompanying R pack-
age AnimalHabitatNetwork, for simulating animal habitat 
networks explicitly tailored to depict the diverse physical 
configurations of animal habitats. We show that our net-
work simulation algorithm can be tuned to capture the pat-
terns of potential connectivity of real habitats efficiently, 
thereby providing the basis for explorations of alternative 
scenarios. Doing so is important, as making predictions 
requires producing realistic alternative scenarios. We pro-
pose three key research questions related to our modelling 
framework. Finally, we illustrate how our framework can 
be used to simulate animal habitat networks with varying 
patterns of connectivity to investigate the implications of 
habitat configuration for populations by embedding a Sus-
ceptible-Infected-Recovered (SIR) epidemic model in our 
modelling framework. Taken together, our findings provide 
new insights on the linkages between habitat configuration 
and population-level outcomes and highlight how the appli-
cation of an explicit and quantitative framework to simu-
late habitat networks can help us gain a better mechanistic 

understanding of the role of habitat configuration in shaping 
the dynamics of ecological, evolutionary processes and their 
conservation implications.

A multi‑dimensional framework 
for modelling animal habitat configuration

Defining animal habitat networks

Animal habitats are defined by taking both the species-
level properties (such as locomotion and space use char-
acteristics of a focal species) and the environmental fea-
tures into account. Here, we highlight the five fundamental 
dimensions proposed by Tokeshi and Arakaki (2012) for 
characterizing habitat physical configuration as a means 
of defining components in animal habitat networks. 
These dimensions are (1) spatial scale (spatial resolution 
and extent) at which the landscape and its elements are 
defined, (2) composition diversity (heterogeneity), (3) size 
(area), (4) abundance or density (number of discrete habi-
tat patches/units per area), and (5) spatial arrangement 
(distribution) of habitat components. With these dimen-
sions and following the definitions of connectivity metrics 
(i.e. structural, potential, and realized connectivity; Cala-
brese and Fagan 2004; Taylor et al. 1993; Tischendorf and 
Fahring 2000; Urban and Keitt 2001), we define animal 
habitat networks (Fig. 2) as network-based explicit depic-
tions of (1) the spatial organization and (2) the physical 
attributes (e.g. heterogeneity and area) of given numbers 
of habitat components at given spatial scales, and (3) the 
potential connectivity indicating where animals of a given 
species can move.

In habitat networks, nodes represent spatially explicit 
habitat components (or patches) which can be character-
ized by attributes (e.g. size, quality, and physical composi-
tion). The presence of a link between nodes indicates that 
animals of a given species can move between patches. In 
weighted animal habitat networks, link weights can char-
acterize variation in the propensity for individuals to move 
between patches. Variation can arise from a range of fac-
tors, such as the spatial proximity between habitat compo-
nents or the permeability of the landscape matrix between 
habitat components. Link weights can also be defined by 
empirical data (such as the actual rate of movement or 
gene flow between patches previously observed, which are 
typically treated as measurements of the extent to which 
landscapes facilitate/impede movements of individuals of 
a species, Taylor et al. 1993). Link presences and weights 
can also be related to properties of habitat patches (i.e. 
node attributes), such as the extent to which they are simi-
lar in their attributes for a species (e.g. types of resources 
they provide for a species).
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The definition of the presences and weights of links 
in habitat networks highlights a clear distinction between 
network structures defined as a priori potential connectiv-
ity versus those determined by post hoc observational data. 
The former provides a fundamental template indicating 
where animals of a species can move, as the outcome of 
how the species’ intrinsic biological attributes (e.g. loco-
motion, Hirt et al. 2018) interact with the configurational 
features of the physical habitat environment. By contrast, 
the latter reflects realized animal movements (e.g. animal 
movement networks; see properties of movement networks 
in Bastille-Rousseau et  al. 2018; Jacoby and Freeman 
2016) that are typically driven by habitat potential con-
nectivity together with a range of factors. These include 
the social environment that contribute independently to 
individuals’ movement decisions (Armansin et al. 2020; 

Strandburg-Peshkin et al. 2015, 2017), but also methodo-
logical factors (e.g. measurement accuracy, effort, deci-
sions about where to collect data). Defining animal habitat 
networks from the perspective of potential connectivity 
highlights the fundamental bottom–up role of habitat 
physical configuration together with focal species’ biol-
ogy in structuring animal movements and the subsequent 
processes in populations or communities.

The AHN model

We propose a general and spatially explicit modelling 
framework for plausible spatial networks (hereafter the 
‘AHN’ model) that can depict the diverse configurational 
features of animal habitats. Although we focus on animals, 
our framework can equally be applied to characterize the 
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Fig. 2  Networks explicitly characterizing the physical configurations 
of animal habitats. We illustrate how five dimensions for assessing 
habitat configuration proposed by Tokeshi and Arakaki (2012) can 
be integrated and applied to construct animal habitat networks. These 
dimensions are (1) spatial scale (spatial resolution and extent), (2) 
composition diversity (heterogeneity), (3) size (area), (4) abundance 
or density (number of discrete habitat units per area), and (5) spatial 
arrangement (distribution) of habitat components. (a) A hypotheti-
cal landscape composed by forest fragments (numbered components) 
within a heterogeneous matrix with potential movement corridors 
(light green, which account for the presences of links between nodes) 
and physical barriers (light brown, which account for the absence of 
links between nodes). The physical features and spatial organization 
of the habitat components can be represented by a connected network 
at a large spatial scale, with a high composition diversity (fragments 
of different tree species), different habitat sizes (small and large 

fragments), high abundance (7 fragments), and heterogeneous spa-
tial arrangement (fragments unequally distributed and connected by 
movement corridors across the landscape). (b) The physical features 
and spatial arrangement of habitat components can be characterized 
at different spatial scales. Here, part of the forest (fragment 2) can be 
represented by a connected network at a finer spatial scale (e.g. trees 
as habitat components), with a low composition diversity (the same 
tree species), small habitat size (single trees), low abundance of com-
ponents (4 trees), and uniform spatial arrangement. In the two habitat 
networks, the compositional diversity (or quality) and size (or carry-
ing capacity) of habitat components are characterized by node attrib-
utes (colours and sizes), the abundance by the number of nodes in the 
networks, and the spatial arrangement by the patterns of connectivity 
and the distribution of link weights (both as a function of the Euclid-
ean distances between habitat components)
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configurational features of habitats for any moving organ-
isms, such as pathogens in moving hosts and dispersing 
seeds. The model contains eight parameters (Table 1) explic-
itly encoding five fundamental dimensions characterizing 
animal habitat physical configuration (Tokeshi and Arakaki 
2012) and species-level movement characteristics. We define 
the model within a 2-dimensional Euclidean space, by con-
ceiving a planar rectangular landscape with an area A and 
a side length L . The model can accept any given spatial 
layouts of habitat components. For example, the coordinates 
can be determined by the spatial locations of empirically 
observed natural habitats, approaches developed for simulat-
ing point patterns in spatial ecology (Baddeley et al. 2016; 
see also Baddeley and Turner 2005 for the R package ‘spat-
stat’), or any spatial distributions relevant to a hypothesis of 
interest (e.g. the layout simulated using the Gauss-Poisson 

point process; see  also the example in Code Availability). 
By default, the spatial coordinates x and y of the N habitat 
components are randomly drawn from the intervals [0, L] and 
[0,A∕L] (e.g. Fig. 3a), respectively. In this way, the AHN can 
depict landscapes with variable sizes, spatial extents, and 
aspect ratios, which can be based on the geometric proper-
ties of empirical animal habitats. Thus, the model explicitly 
captures the number (or density) of habitat components at 
the given spatial scale. Finally, in the model, the composi-
tional diversity (i.e. heterogeneity) and size (or other physi-
cal properties) of habitat components can be encapsulated as 
node attributes, in vectors U and V respectively, the values of 
which can be quantitative or qualitative, and can be provided 
specifically or drawn at random from a given distribution, 
depending on the hypothesis of interest. By being explicit 
in spatial scale and node attributes (e.g. heterogeneity), the 
model can relate spatial scaling (Fletcher et al. 2013) to the 
functionality of the physical habitat environment for organ-
isms of focal species (Fahrig et al. 2011). 

Once the layout of habitat components is defined, the 
AHN model can then generate links to characterize the pat-
terns of potential connectivity among habitat components 
for a given species. Links can be weighted (e.g. Fig. 3c, with 
link weights characterizing the strength of connections) or 
unweighted (e.g. Fig. 3d, where the strength of connections 
is not of interest), and are non-directed (the model can easily 
be extended to have directed links, for example if there is 
a gradient—such as altitude—a physical features of habitat 
that might favour animal movements in one direction more 
than the other).

When generating links, the model starts by allocating a 
link weight between node i and node j ( i ≠ j ). By default, 

Table 1  Parameters of the AHN model for depicting habitat physical 
configuration

Parameter Description

A > 0 Area of the conceived landscape
L > 0 The length of one side of the conceived landscape
N > 0 Number of habitat components (integer)
� ≥ 1 Scaler for the weights of rewiring links
𝜆 > 0 Determining the steepness of link filtering-out function 

P(Dij)

� Determining the concave-to-convex transition point of 
P(Dij)

U Heterogeneity (or qualitative properties) of habitat 
components

V Sizes (or quantitative properties) of habitat components
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Fig. 3  The workflow of the AHN model for generating animal habi-
tat networks. First, (a) the algorithm constructs a fully connected and 
weighted habitat network. Here, numbered nodes represent 30 habi-
tat components colour-coded by their attributes (such as their sizes, 
quality or compositions, with continuous or discrete colour palette) 
and connected by links whose thicknesses indicate the strength of the 
spatial relationship between the two habitat components, and is deter-
mined by the spatial positions of the nodes. The network is defined in 
a conceived 2-dimensional landscape in which the x and y axes indi-
cate the spatial extents of the landscape (here the aspect ratio is 1, i.e. 

A = L2 , but the model allows any x and y extents for capturing the 
diverse landscape geometry), therefore, it inherits spatial properties 
of the landscape. Next, (b) the algorithm removes the link between 
node i and j ( i ≠ j ) from the network with probability P(Dij) ; in this 
example, it results in a disconnected habitat network. Then, (c) the 
(disconnected) network components can be rewired with minimal 
number of links  if a connected network is wanted. Finally, (d) the 
habitat network can be transformed to unweighted, if so desired (e.g. 
when we are interested only in the patterns of potential connections 
while their attributes are irrelevant to our hypotheses)
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the model uses the power function W
(

Dij

)

= D−1
ij

 , where 
Dij is the Euclidean distance, a primary metric charac-
terizing habitat potential connectivity (Poli et al. 2020), 
between habitat components that node i and node j are 
referring to (Fig. 3a). However, alternative approaches can 
be used to define link weights, such as relating them to 
the similarities or differences in the properties of patches 
themselves (i.e. node attributes characterized by U and/
or V  , such as their heterogeneity), using different met-
rics such as cost-distance (Fletcher et al. 2016), using 
dispersal kernels (Clobert et al. 2012; Hartfelder et al. 
2020; Urban and Keitt 2001; see also examples in Code 
Availability), or using information on habitat choice of a 
species, such as evidence that animals can preferentially 
disperse to habitats with similar properties as their natal 
habitats (Davis 2008; Hoover et al. 2021)—which would 
mean that patches with greater similarity would have a 
stronger link weight.

With our approach, the network starts by being fully con-
nected, with link weights indicating the strength of potential 
connectivity between pairs of habitat components. In nature, 
however, animals are often limited by their ability to move 
between habitat components that could otherwise be con-
nected by movements, for example, due to physical barri-
ers to their movements, and/or spatial distances that they 
are intrinsically not able to directly cover between habitat 
components. To capture this realism, we use the sigmoidal 
function P

(

Dij

)

= [1 + exp(−�(Dij − �))]−1 to determine a 
threshold probability for filtering out the link between node i 
and j from the initial complete network, where � determines 
the steepness of the thresholding curve which transits from 
concave to convex at the species-specific critical distance 
Dij = � . We define 𝜆 > 0 so P

(

Dij

)

 consistently increases 
over Dij (Fig. A1). This function enables us to generate a 
wide spectrum of curves to cover the diverse and evolv-
ing relationships between Dij and P

(

Dij

)

 by tuning � and � 
(Figs. A1–A3). The dependence of the probability on Dij 
assumes that it is less likely that there exists a direct move-
ment potential between two habitat patches when they are 
much further away.

The probabilistic nature of the filtering function captures 
the stochasticity that exists in the relationships between 
spatial proximity, landscape configurational features and 
potential connectivity. That is, on one hand, � operates on 
the distances between patches to characterize the baseline 
stochasticity as the product of the interplay between species-
specific characteristics of how individuals typically move 
(e.g. locomotion mode or capacity) and the given spatial 
proximity between habitat components, while, on the other 
hand, � is a coefficient which characterizes the stochastic-
ity arising from how the intrinsic biological properties of a 
species interact with the given configurational features of 

the physical habitat environment between habitat compo-
nents with the given spatial proximity, such as the presences/
absences of physical barriers, and/or the amount of resist-
ance to movements. With � and/or � we can generate the 
patterns of absences/presences of links that are ecologically 
relevant to our hypotheses or questions (e.g. parameteriza-
tion with empirical or observational data on focal species’ 
attributes, spatial proximity between habitat components, 
and/or the quality of landscape matrix for the focal species).

Our framework provides a starting point for incorporating 
more complex approaches for simulating spatial networks as 
habitat networks. It provides a simple and flexible approach 
to simulating networks that can capture the diverse pat-
terns of potential connectivity of animal habitats as found 
in nature. For example, with a given set of spatially refer-
enced nodes, P(Dij) allows us to simulate variable patterns 
of network connectivity, such as node clustering, which can 
be used as meaningful depictions of the potential connectiv-
ity of alternative scenarios of empirically derived habitats 
or to generate scenarios for habitats based on observed (or 
hypothesized) locomotion modes of a species. P(Dij) can 
also determine the presence of links in both probabilistic 
and deterministic ways, which not only makes the frame-
work general, but also enriches our ability to encode the 
diverse physical features between habitat components, such 
as the variation in the quality of habitat matrix (in terms of 
their effects on animal movements), and species’ intrinsic 
attributes, such as the ability to exploit the physical land-
scapes. For instance, in the extreme case when � → −∞ and 
� → +∞ , the link removal function becomes deterministic 
(i.e. P(Dij) → 1 ), and with the rewiring option in the model 
(described below), the model can then generate networks 
that approximate planar networks (McDiarmid et al. 2005), 
which have previously been used to model landscape func-
tional connectivity (Chubaty et al. 2020).

In some cases, P(Dij) fragments the network into (discon-
nected) network components (e.g. Fig. 3b). The smaller the 
� gets and the larger the � gets, the more links on average 
will be filtered out, and the more likely it is for the resulting 
habitat network to be disconnected (Fig. A3). In such cases, 
a disconnected network would represent habitats containing 
isolated clusters of habitat components between which ani-
mals cannot physically move among them. From a modelling 
perspective, it is often preferable (at least initially) to con-
sider one habitat as a connected network (i.e. a single net-
work component) which denotes a complete habitat or a 
section of a larger fragmented habitat in which individuals 
can theoretically (but not necessarily) move from one patch 
to any other. This means that the whole of the focal popula-
tion can be functionally connected as a biologically mean-
ingful unit (e.g. gene flow is possible between any two 
patches). We, therefore, incorporate the option of using a 
step-wise approach to rewire network components for 
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connected habitat networks. In the rewiring, the two spa-
tially closest nodes from each of the two network compo-
nents are wired each time until the network has no discon-
nected network components, and the algorithm uses the 
minimum number of rewiring links for doing this (Fig. 3c). 
While by default the weights of rewiring links (if simulated) 
are defined in the same way as for the links within connected 
clusters, the model provides the option to additionally medi-
ate these weights (for example, if we expect lower movement 
potentials between clusters, given the distance between 
them). We implement this option with the function 
G
(

D�i�j, �
)

= D
−�

�i�j
 , where D�i�j is the Euclidean distance 

between node i from the network component � and node j 
from the network component �(� ≠ �) , and the scaler � ≥ 1 
enables control over the weights of the rewiring links (if any; 
Fig. A4), and by default � = 1 (i.e. all the link weights in a 
network are defined with the mathematical reciprocal of the 
Euclidean distance between nodes).

We provide the implemented algorithm for simulating 
habitat networks in the function ahn_gen() in the R package 
AnimalHabitatNetwork (version 0.1.0, He and Farine 2019; 
see Code Availability).

Demonstrating the capability of the AHN model 
in simulating habitat potential connectivity

The pattern of connectivity is the key signature of a net-
work (Albert et al. 1999). To test the capability of the 
AHN model in simulating habitat networks that are similar 
in terms of their structural properties (i.e. connectivity) to 
those observed from real habitats, we compared the top-
ological properties of networks generated by the model 
using a given parameter space with those of empirical hab-
itat networks characterizing habitat potential connectivity 
by Friesen et al. (2019). Here we consider three network 
metrics, the (average) clustering coefficient, modularity 
and diameter. Studies have discussed the relationships 
between these metrics of (social) networks and population 
outcomes, such as transmission of pathogens (Sah et al. 
2018) and evolutionary dynamics (Marcoux and Lusseau 
2013; Raghunandan and Subramanian 2012) in popula-
tions. In the context of animal habitat networks, these 
metrics could explain outcomes where individual move-
ment play a fundamental role. The clustering coefficient 
(Fagiolo 2007) in animal habitat networks characterize the 
probability that two patches connected to a third patch 
are themselves connected, which can capture the extent to 
which individuals are locally constrained and contained 
by the physical habitat environments. Modularity (New-
man 2006) in animal habitat networks characterizes the 
extent to which clusters of habitat patches tend to be more 
densely connected with each other within the cluster than 

with other clusters, which can capture the extent to which 
individuals are facilitated in local movements but impeded 
in movements at larger spatial scales by configurational 
features of the physical habitat environments (where 
higher modularity would represent more distinct subpopu-
lations). Diameter (Albert et al. 1999; Jackson 2008) in an 
animal habitat network captures the length of the longest 
(yet the most efficient) potential movement path between 
two patches within a given habitat, which can capture the 
linearity of habitat potential connectivity.

We extracted the largest network component from each of 
the 62 empirical habitat networks contained in the Friesen 
et al. (2019) dataset, and kept 58 of them for benchmark-
ing (the two largest were omitted due to computation limit 
and the two smallest, each with two nodes, were excluded). 
Each of these extracted networks is connected, denoting a 
habitat or a part of a larger habitat where animals can physi-
cally move from a given habitat component to any other one 
(i.e. the habitat can be functionally connected—biological 
processes such as information or genes flows are possible 
among habitat components). Next, we simulated random 
habitat networks with the AHN model and identified those 
sets of parameters under which the corresponding output 
habitat networks best approximated the (average) clustering 
coefficient, modularity, and diameter of each of these empir-
ical networks, respectively. We considered the parameter 
space A = 25 , L ∈ {5,10,15,20,25,30} , � ∈ {0.1,2, 5,7, 10} , 
� ∈ {0.001,0.1,0.15,0.35,0.4,0.75,1.25,5, 30} across all 
empirical benchmark networks, while keeping N  identi-
cal to the number of nodes of the corresponding empirical 
habitat network. This parameter space was determined by 
considering the effects of each parameter on the resulting 
network structures (Fig. A1–A7). In total, for each metric 
of each empirical network, we generated 270 (i.e. size of the 
parameter space) random habitat networks, and identified the 
set of parameters from the parameter space that generated 
the network that most closely approximated the metric of the 
given empirical network as the ‘best-fitting’ set of param-
eters for that network. We then simulated 15 habitat net-
works with each of these sets of parameters as replicates, and 
evaluated the extent to which each of these metrics of each 
replicate deviated from that of the corresponding empirical 
network (see Code Availability). The test of the model with 
these networks confirmed that our proposed algorithm can 
generate networks that capture the key structural properties 
of real habitats (Fig. 4), thereby forming the basis for subse-
quently exploring on how population outcomes (structures 
and/or processes) might change under alternative habitat 
scenarios (e.g. by controlling and/or parameterizing key 
parameters from empirical and/or observed landscapes, such 
as increasing or decreasing connectivity by tuning � and/
or � ). For example, if we wanted to test whether a species 
in a landscape with a given set of configurational features 
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is more prone to infectious pathogens than another species, 
we can model transmission dynamics with epidemic models 
on habitat networks defined by species-specific � and/or � . 
All network computations were done in R (version 3.6.1, 
R Development Core Team 2019) with the igraph library 
(version 1.2.5, Csardi and Nepusz 2006).

Key research questions related 
to the modelling framework

The AHN model can be used to address a range of topics and 
research questions. Here, identify three key research areas 
where our framework can be used to address outstanding 
questions.

(a)

(b)

(c)

Fig. 4  The AHN model can simulate spatially explicit networks to 
characterize habitat potential connectivity. Each grey circle denotes 
the difference in each of the three metrics (y-axes, a, b, c) between 
each of the 15 replicated random habitat networks generated by the 

AHN model with each set of best-fitting parameters identified from 
the given parameter space and the corresponding empirical network; 
black circles and bars characterize the means and the standard devia-
tions
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What are the consequences of habitat changes 
for population processes in social animals?

Animal habitats are changing under natural and anthro-
pogenic drivers, typically characterized by changes in the 
spatial distribution of habitat components (e.g. food and 
shelter), changes in their potential connectivity (e.g. through 
fragmentation or reforestation), and/or changes in the physi-
cal attributes of the habitat components themselves (e.g. the 
amount of resources in each patch). These changes can then 
reshape the movements of animals, which can subsequently 
affect the patterns of biological or ecological interactions 
(e.g. inter-individual social structure, predator–prey interac-
tions), or even impose evolutionary pressures on impacted 
species (Banks et al. 2011; Kokko and Sutherland 2001). 
The spatial distributions of food resources or habitat frag-
mentation can shape the spatial organization of individu-
als (Jacobson et al. 2015; Mourier et al. 2012), with conse-
quences on the evolution of their social or mating systems 
(Banks et al. 2007; Emlen and Oring 1977; Tuomainen and 
Candolin 2011; van Schaik 1989). For example, Banks et al. 
(2011) empirically explored the relationship between the 
patterns of den-sharing interactions among hollow-depend-
ent Australian mountain brushtail possums and the spatial 
variation in hollow tree availability, and found a behavioural 
switch from kin avoidance to kin preference in den shar-
ing when hollow tree availability decreases, highlighting 
the important role of habitat change in driving individuals’ 
social behaviours as responses. In another example, Bain 
et al. (2014) examined the effects of habitat configuration on 
the frequency of extra-pair paternity (EPP) in cooperatively 
breeding superb fairy-wren (Malurus cyaneus) by linking 
spatial arrangements of their territories to the frequency of 
EPP, and found that the frequency of extra-group paternity 
(EGP) among groups in linear strips of vegetation was lower 
than those in more clustered territories in continuous habi-
tats, highlighting the role of habitat spatial configuration in 
influencing the rates of EGP and the potential consequences 
of anthropogenic habitat change for mating systems.

Our network-based modelling framework can be used to 
depict multiple yet diverse configurational properties of ani-
mal habitats, thereby providing the starting point for explic-
itly modelling habitat change and predicting the population 
outcomes. Moreover, understanding the consequences of 
habitat fragmentation for populations is one of the central 
topics in conservation biology (Fischer and Lindenmayer 
2007; Haddad et al. 2015), while the impacts on social pro-
cesses of conservation efforts aimed at reducing habitat 
fragmentation are almost completely unexplored. With our 
framework, one can simulate network scenarios that realisti-
cally map the potential trajectories of habitat change (e.g. 
by parameter optimization and/or network manipulation), 

and generate predictions on the potential consequences for 
a population.

How is habitat connectivity shaped by landscape 
and species properties?

The patterns of potential connectivity that form animals’ 
habitats are shaped by a range of properties. Some of these 
are biological, such as species attributes. For example, the 
movement capacity of an animal species can be driven by 
body mass and locomotion, influencing how they explore 
their physical habitat environments (Hirt et al. 2018). Many 
of the properties shaping potential connectivity are abiotic, 
such as the climatic conditions that determine the compo-
sition of habitat patches (e.g. the assemblage of plants, or 
coral, species in a patch) and geological features that deter-
mine the shape of the landscape (e.g. the long and narrow 
valleys created by a mountain range vs. an open plain). A 
key question is, therefore, whether certain types of land-
scapes consistently shape networks with different properties. 
For example, it is likely that riverine habitats, or habitats in 
valleys, will have a larger network diameter than habitats 
that are less restricted by the geometric features of land-
scapes. Studies have highlighted the importance of linking 
the configurational features of landscapes and species-level 
properties to population-level outcomes, and practical guide-
lines have been proposed for exploring such linkages (e.g. 
Frank and Wissel 1998). Using our framework and following 
a fundamental bottom–up approach, it will be possible to 
develop a mechanistic understanding of the relative roles of 
the multiple factors underlying population outcomes, such 
as species-level properties (e.g. body mass and locomotion 
characteristics, Hirt et al. 2018) and landscape properties 
(e.g. linearity) in shaping structural properties of habitat 
networks (e.g. network clustering).

How different do we expect population social 
structures to be in different landscapes?

Studies have revealed that animal population social struc-
tures often exhibit notable variations (Mori and Saito 2005; 
Nandini et al. 2017; Prehn et al. 2019; Whitehead and Kahn 
1992). When habitats vary in their physical configurations, 
we would expect the social structures of populations in these 
habitats to exhibit variations (even for the same species), 
and this is indicated by empirical evidence. For example, 
Farine and Sheldon (2019) showed that the social network 
structure (at the network community level) of a woodland 
bird community observed in the Wytham Woods in the UK, 
remained consistent across four winters, despite the high 
turnover rate of individuals within the communities. This 
study suggests that the predictability of habitat configuration 
for the emergent social network structures. Our framework 
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can be tuned to depict animal habitats with distinct configu-
rational features, therefore, providing a theoretical tool to 
examine how much variations in population social structures 
observed from one habitat to another might be explained 
by habitat physical configurations (i.e. the extent to which 
animal habitat networks account for the variations in animal 
social networks). Figure 5 highlights how different aspects 
of habitat configuration (such as the aspect ratio and the 
tendency for distant patches to be connected versus not) can 
interact with each other to shape the resulting structural fea-
tures of the habitat networks.

Illustrating the application 
of the framework: how do habitat networks 
shape pathogen transmissions?

Our modelling framework can be used for understanding the 
link between animal habitat network structures and popula-
tion outcomes. Here, we illustrate a possible application of 
it in the context of pathogen transmission in a population 
of 100 individuals (with no birth, death, emigration from 
and immigration to the landscape) moving among 20 habi-
tat patches, where the patterns of potential connectivity are 
depicted by (connected) habitat networks simulated using 

the AHN model. We considered the simplest case where 
habitat patches are randomly positioned (with their x and 
y coordinates drawn from uniform distributions) in land-
scapes with the same area (i.e. A = 25 ) but varying aspect 
ratios, with L = 5 producing square-shaped landscapes (e.g. 
resembling forests on open plains) and L = 50 producing 
landscapes with a large aspect ratio (e.g. resembling forests 
in a narrow valley). Within these landscapes, we consid-
ered two scenarios of habitat potential connectivity, defined 
by � = 0.001 and � = 30 . These values depict two distinct 
outcomes of how the focal species’ intrinsic biological 
attributes interact with the environmental features between 
habitat patches, whereby � = 0.001 characterizes a weaker 
deterministic effect of such interactions on the potential con-
nectivity between patches with given spatial proximity, and 
� = 30 represents a stronger effect. We maintained other 
parameters constant ( � = 5 and � = 1).

We initiated simulations by randomly allocating indi-
viduals to the nodes of each habitat networks and modelled 
individual movements and transmission dynamics for 500 
timesteps. When modelling individual movements, we 
defined the probability for an individual to stay at the cur-
rent node i at each timestep consistently as ps = 0.5 , and the 
probability of moving from node i to j as (1 − ps) × wij∕Σjwij 
(where wij is the weight of the link between node i and j ). 

(a) (b) (c)

Fig. 5  The application of the AHN model for understanding the role 
of habitat geometry and potential connectivity in mediating pathogen 
transmission dynamics in habitat-structured animal populations. a 
The transmission of pathogens in populations is dependent on both 
the landscape geometry (shape), depicted by L where a larger value 
represents landscapes with a larger aspect ratio, and the extent to 
which the potential connections between patches to be determined 
by the habitat features between them, depicted by � , where a lower 
value corresponds to a weaker deterministic effect of how the spe-
cies’ movement characteristics interact with the environmental fea-
tures on the potential connectivity between patches with given spatial 
proximity. Simulations show that the transmission dynamics, when 
individual mobility is at a medium level ( 1 − ps = 0.5 ) under an infec-
tion rate of � = 0.05 and a recovery rate of � = 0.01 , are impacted by 

habitat shape and potential connectivity. Specifically, habitats with a 
larger aspect ratio (a larger L value) and with their potential connec-
tivity determined with a stronger deterministic effect of the configu-
rational features on the potential connectivity between patches with 
given spatial proximity (i.e. a larger � value) have the smallest dis-
ease outbreaks (each curve indicates the mean percentage of infected 
individuals in a population of 100 individuals moving on simulated 
habitat networks comprising 20 nodes, over 500 timesteps, with bars 
indicating the standard deviations from 100 replications). The inter-
action between landscape shape and the degree to which between-
patch potential connectivity is determined by habitat configurational 
features affects the structural properties of habitat networks, such as 
diameter (b) and (average) clustering coefficient (c). Open circles (in 
b and c) indicate medians
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We simulated pathogen transmissions in the population 
using an SIR epidemic model (Keeling and Eames 2005; 
Kermack and McKendrick 1927), where each individual is 
either susceptible (S), infectious (I) or recovered (R). We 
randomly set one individual (1% of the population) as infec-
tious, and at each timestep, simulated infected individual 
infecting each of its susceptible neighbours in the same 
patch (if any) with probability � = 0.05 . Individuals recov-
ered and acquires immunity with the probability � = 0.01 . 
We tracked the percentages of infected individuals in the 
simulated populations over time, and compared the mean 
percentages of infections observed from 100 replications.

We show that the landscape properties play a role in 
mediating the pathogen transmission dynamics. Importantly, 
large- (landscape geometry) and local- (the propensity for 
patches to be more connected) scale characteristics work 
together to shape the transmission dynamics of a simulated 
pathogen. A weaker relationship between inter-patch poten-
tial connectivity and inter-patch configurational features (as 
modelled by a lower � value) increases the scale of global 
disease outbreaks, but this effect is most strongly realized 
in landscapes with a larger aspect ratio (Fig. 5a), such as a 
forest habitat in a narrow valley. Our results relate to exist-
ing literature linking social (or contact) network structures 
to patterns of disease transmissions—the stronger tendency 
for patches to be connected (i.e. � = 0.001 ) and squarer 
landscapes (i.e. L = 5 ) typically decrease the path length, 
or diameter (Fig. 5b), and clustering (Fig. 5c) of the habitat 
networks, and correspondingly, increase the pathogen out-
break size in simulated populations. Our results complement 
recent work demonstrating that the fragmentation of animal 
habitats can impact the transmission dynamics of pathogens 
(Silk et al. 2019), extending it by showing that the shape 
as well as the internal potential connectivity of a habitat is 
important.

Discussion

We present a multi-dimensional framework for simulating 
networks that can realistically capture the diverse physical 
configurations of animal habitats. Our model provides a 
tool to develop a more mechanistic understanding of the 
role of habitat configuration in modulating population pro-
cesses and outcomes. Such modulating effects are likely to 
be widespread—for example, we have demonstrated that the 
structure of the habitat network can have consequences on 
pathogen transmission, in line with predictions from studies 
of social networks. Developing such mechanistic knowledge 
is critical as natural animal populations face increasingly 
rapid changes in their habitats, which have ecological and 
evolutionary consequences. For instance, habitat change can 
affect the magnitude of competition (Calizza et al. 2017) and 

the spread dynamics of pathogens (Bloomfield et al. 2020), 
information (Betts et al. 2008), or genes (Keller and Lar-
giader 2003). By taking a bottom–up and spatially explicit 
approach to capture habitat configurations, our model can 
be tuned to approximate the potential connectivity of spe-
cific habitat configurations for a given species. From these, 
researchers can produce a range of alternative and realistic 
scenarios to explore the consequences of different features 
of the habitat on population processes, such as changes in 
the spatial arrangements of resource patches and physical 
barriers to movement.

The fundamental role of the physical environment on ani-
mal populations makes the evaluation of the consequences of 
habitat configuration relevant to both theorists and empiri-
cists. If we do not explicitly consider habitat configuration, 
we risk missing the importance of its contribution to biologi-
cal processes. For example, simulating social networks of 
large populations without considering spatial dependencies 
could produce networks that are more connected than they 
should be (i.e. without considering the spatial constraints 
on social interactions). Doing so can misrepresent the bio-
logical processes that network structure shapes, such as the 
transmissions of pathogens (White et al. 2018; Wilkinson 
et al. 2018), information (Aplin et al. 2015), genes (Vähä 
et al. 2007). By contrast, current geometric network mod-
els, which are spatially-dependent, may largely overestimate 
the spatial clustering of habitat components because it does 
not allow for rare long-distance connections or missing con-
nections among close patches by forcing all closely located 
components to be connected. The need for models tailored 
to simulate habitat networks has been highlighted by recent 
studies that modelled specific habitat scenarios. For exam-
ple, Carraro et al. (2020) proposed a toolkit for generating 
networks to capture the topological features of real river-
ine habitats to understand their role in shaping the key pro-
cesses in freshwater ecology and evolution. The AHN model 
herein proposed is a more general and flexible framework 
for depicting habitat potential connectivity. Notably, when 
simulating networks, the AHN model allows any spatial 
distributions of habitat components in any landscape (i.e. 
by tuning A and/or L ), and provides a cluster of probability 
curves (i.e. by tuning the � and/or � in the P(Dij) ) to model 
the diverse patterns of potential connectivity among habitat 
components. In addition, the AHN model can generate alter-
native representations of the potential connectivity of given 
habitats, and allows control over the deviations of alterna-
tive scenarios from the specific habitats that can be used to 
generate scenarios. Thus, our proposed model can generate 
realistic habitat scenarios that are biologically meaningful.

There are many useful applications in generating real-
istic animal habitat scenarios. For example, there is grow-
ing interest in understanding the interplay between habi-
tat physical configurations and individuals’ behaviours to 
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predict the persistence of animal populations (Snijders 
et al. 2017), and explain the structure and composition 
of ecological communities (Altermatt and Holyoak 2012; 
Carraro et  al. 2020). Rapid habitat changes are also a 
major threat to wildlife, as they can alter the movement 
patterns of individuals which may have consequences for 
populations (Collingham and Huntley 2000; Todd et al. 
2009). As habitat changes, individual animals can experi-
ence different spatial distributions of resources and risks, 
which in turn can alter the patterns of both intraspecific 
(Banks et al. 2007) and interspecific (Farine et al. 2015; 
Meise et al. 2019) interactions among individuals, as well 
as other processes such as dispersal patterns and gene flow 
(Wey et al. 2015). In population ecology, for example, 
changes in habitat physical configurations can reduce rates 
of movements among neighbouring subpopulations, which 
potentially reduces gene flow at the scale of meta-popula-
tions (Keller and Largiader 2003) and impacts the persis-
tence of populations (Frankham 2005). Likewise, changes 
in habitat physical configurations could alter the transmis-
sion of information within social networks (Barkoczi and 
Galesic 2016; Franz and Nunn 2009; Whitehead and Lus-
seau 2012) and other complex behavioural traits to specific 
social groups (Nowak et al. 2010; Ohtsuki et al. 2007; 
Stilwell et al. 2020). Furthermore, altered habitat physical 
configurations imply potential changes to the transmission 
dynamics of pathogens across populations (Green et al. 
2006; Keeling et al. 2010; Riley 2007; Silk et al. 2019). 
Our simulations show that, as animal social networks, ani-
mal habitat network structures play an important role in 
shaping pathogen transmission, thus highlight a funda-
mental link between the physical habitat environments and 
emergent biological processes, such as the evolutionary 
dynamics of cooperation (Stilwell et al. 2020) and animal 
culture (Gruber et al. 2019; Somveille et al. 2018).

Understanding how habitat physical configuration inter-
acts with behavioural and/or demographic dynamics is cru-
cial to assess how vulnerable wild animal populations—and 
the ecological communities that they are part of (Ryser et al. 
2019)—are to the consequences of habitat changes. Our 
model provides the necessary first step to integrating animal 
movement at various spatial scales into existing quantitative 
frameworks. We have demonstrated that the local properties 
of connectivity and large-scale properties of the landscape 
can work together to shape population outcomes, such as 
the spread of pathogens. Such insights can help us to make 
better predictions or generate new hypotheses on how popu-
lation or community structures and dynamics are shaped by 
the physical configurational features of habitats, and how 
populations or communities might respond to changing 
physical habitat environments.
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