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Abstract

Environmental regulations are important tools to tackle the issues of climate change and air pol-

lution that are increasingly severe in emerging economies. Using appropriate policy instruments

plays an important role in realising the targets. In this thesis, we assess the effectiveness of envi-

ronmental regulations in China, which is one of the largest emerging economies in the world.

In Chapter 2, we assess the effectiveness of early climate policy in China by causally evaluating

the impact of the Low-carbon City Pilot (LCCP) on city-level per-capita CO2 emissions and CO2 in-

tensity of GDP over the period 2003-2017. The idiosyncrasies of the policy design pose significant

challenges for causal identification, which we overcome within a synthetic control framework. Con-

trary to previous contributions, our results suggest that the LCCP had no significant impact on ei-

ther carbon emissions or intensity. The main takeaway of our empirical investigation is that even

in emerging economies, effective environmental policy requires transparent, quantifiable targets,

and credible enforcement.

Chapter 3 revisits the impact of he LCCP on environmental efficiency using a city-level panel dataset

from 2003 to 2016. The unique design of the policy calls into question the credibility of the existing

empirical analysis based on standard methods. We suggest an alternative identification framework

based on synthetic control method. Contrary to the existing literature, our results suggest that the

LCCP had no statistically significant increase on environmental efficiency. Nevertheless, for the first

time we find a learning effect that instead increased the non-treated cities’ efficiency in the short-

run. We conduct a series of robustness checks to validate our results.

Chapter 4 investigates the carbon leakage induced by the air pollution control policy that focuses

on PM2.5 mitigation in China – Action Plan for Prevention and Control of Air Pollution. We employ a

one-to-one nearest neighbour matching technique to overcome the significant challenge posed by

the policy design. Our findings demonstrate unambiguous evidence that the Action Plan resulted in

significant leakage of 151 thousand tonnes of CO2 emissions each year. This translates to an annual

increase of CO2 emissions by around 4.4% in the surrounding regions. We validate our empirical

findings through a battery of tests. We also explore the heterogeneity of our analysis and investigate

the potential economic benefits and the possible channels.
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Chapter 1

Introduction

Weather and climate extremes have resulted in substantial economic losses (see Estrada et al.,

2015, for example). The connection between these occurrences and anthropogenic climate change

has become more pronounced since the release of the Fifth Assessment Report (AR5), and it is vir-

tually certain the anthropogenic CO2 emissions are the main driver (Masson-Delmotte et al., 2021).

However, the debate between developed and emerging economies on who should shoulder the

responsibility of reducing emissions has never stopped.

Notes: This figure displays the cumulative CO2 emissions from
several major economies worldwide, including Brazil, 27 mem-
bers in the European Union, India, United States of America,
China, Great Britain, and Russia.

FIGURE 1.1: Cumulative CO2 emissions
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Figure 1.1 displays the cumulative CO2 emissions from several major economies worldwide. As of

2021, the US and EU members were the top two contributor to cumulative CO2 emissions, with

values of approximately 422 gigatonnes and 293 gigatonnes, respectively. More accurate estimates

were reported by Wei et al. (2012), where developed and emerging countries had contributed about

60–80% and 20–40% to climate change by 2005, respectively. It clearly suggests that the developed

economies ought to contribute more in mitigating climate change, due to their historical CO2 emis-

sions. Indeed, most of the existing literature discussing the effectiveness of environmental regula-

tions focuses on the developed economies.

Notes: This figure displays the annual CO2 emissions from sev-
eral major economies worldwide, including Brazil, 27 members
in the European Union, India, United States of America, China,
Great Britain, and Russia.

FIGURE 1.2: Annual CO2 emissions

Nevertheless, the growth of CO2 emissions in the foreseeable future is expected to originate in

emerging economies (Wei et al., 2012). Figure 1.2 displays the annual CO2 emissions from sev-

eral major economies worldwide. When the developed economies had started to show downward-

sloping trends, the trends for emerging economies, especially China, were still surging. In 2021,

China’s annual CO2 emissions reached 11 gigatonnes, more than the sum of the statistics from the

US and EU members. Therefore, deploying effective climate policy in emerging economies is equiv-

alently important, and distilling the relevant experience would be very much helpful for a coordi-

nated development between the Global North and the Global South.
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Unlike market-based or command-and-control instruments, voluntary approaches are less popular

adopted in correcting for the market failure induced by the externalities of anthropogenic activities.

The existing literature evaluating the performance of voluntary approaches offers a rather limited

number of contributions. Prasad and Mishra (2017) evaluated the impact of voluntary environmen-

tal management standards ISO 14001 on Indian iron and steel sector. Using sample of 76 firms from

2006 to 2012, they find a significantly positive relationship between voluntary compliance and re-

duction in emissions intensity.

Deploying voluntary approaches to address environmental problems, from the theoretical point of

view, is typically viewed as second-best instruments, since they do not meet the economist’s ideal

for a optimised policy instrument (Segerson, 2013). In fact, the effectiveness of using voluntary ap-

proaches largely depends on how they are designed and whether they can play an important role in

environmental policy mix (Segerson and Miceli, 1998). Early empirical studies suggest that a strong

regulatory threat and a reliable monitoring are important, since voluntary approaches are unlikely

to be effective or efficient, if incentives for participation are weak or participation entails a limited

pollution abatement commitment (Alberini and Segerson, 2002). More recent studies underscore

the importance of how the voluntary regulation coordinates with other policies, by lending support

to the proposition that self-regulation could be effective in yielding improvements on environmen-

tal performance within the current regulatory system, rather than as a substitute for that system

(Lyon and Maxwell, 2019).

In Chapter 2 and 3, we evaluate a voluntary climate policy – the Low-Carbon City Pilot (LCCP), in one

of the largest emerging economies in the world, China. We characterise the LCCP as ‘voluntary’ be-

cause the selection into treatment is largely associated with other unobserved characteristics. In-

deed, regional authorities are often incentivised to perform key tasks that the regime deems essen-

tial (Landry et al., 2018). Such mechanism might have allowed the local officials to self-select them-

selves into the LCCP. While this policy has been heavily documented in the existing literature sug-

gesting positive results, the setups in these studies are broadly similar. Noticeably, almost all stud-

ies use the canonical difference-in-differences (DiD) approach. However, the LCCP was adopted in

different cities at different points of time. As econometrically demonstrated by Goodman-Bacon

(2021), using the canonical DiD design in this context would lead to biased estimates. This method-

ological shortcoming due to the policy design of the LCCP pose challenges to causally identify the
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effect, which we will discuss with details in Chapter 2 and 3.

We investigate different questions in Chapter 2 and 3. Specifically, we evaluate the effectiveness of

the LCCP in Chapter 2, with a focus on CO2 emissions per capita and carbon intensity. We develop

a complete identification framework that allows us to discuss the potential confoundedness that

we are aware of, and explore the heterogeneity of our results. In Chapter 3, we follow the devel-

oped identification framework to investigate its impact on environmental efficiency. The existing

literature broadly gauge the efficiency using data envelopment analysis (DEA) with slacks-based

measure. While informative, the estimates may be over-estimated, since the efficiency is not sep-

arated from random shocks due to the deterministic nature of the DEA. We approach the question

using stochastic frontier analysis that provides more economic interpretation of the estimates.

Apart from climate change, concentration of air pollutants is another market failure caused by the

externalities of anthropogenic activities. Just like what the developed economies faced in the last

century, air pollution is also a critical challenge for emerging economies.1 China in 2013 began

with haze and ended with haze. In January, the PM2.5 concentration covered almost one quarter

of China’s land area. Over 600 million people were exposed to the polluted atmosphere with a

record-high hourly maximum of 791 µg/m3 in Beijing, more than 50 times higher than the Air Quality

Guidelines 2021 published by WHO (2021) – 15 µg/m3. Another occurrence was at the end of 2013,

where the instantaneous concentration in Nanjing reached 943 µg/m3.

In chapter 4, we study an air pollution control policy in China – Action Plan for Prevention and Control

of Air Pollution (Action Plan). This policy was specifically issued to ease the growing concentration

of particulate matter with a diameter of 2.5 micrometers or less (PM2.5) in China. The effective-

ness of the Action Plan has been well documented in the literature. For example, Liu et al. (2020b)

examine the influence of the Action Plan on air quality across 16 districts in Beijing. Employing a

first difference approach, they observe a substantial yearly reduction of approximately 10% in con-

centrations of SO2, PM10, PM2.5, and CO. Yu et al. (2022) explore a comparable inquiry, compiling a

city-level dataset spanning from 2008 to 2018. Employing a DiD design and propensity score match-

ing, they report significant reductions of 18.4% in SO2 emissions and 24.7% in PM2.5 concentration

due to the Action Plan. Additionally, Wu (2023), using a city-level panel dataset, evaluate the Action
1The pollution levels during the infamous London smog event in the winter of 1952, for instance, were 5-19 times

higher than current regulatory standards and guidelines (Bell and Davis, 2001). The severe and prolonged consequences
of this event resulted in approximately 12,000 excess deaths.
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Plan’s impact employing a triple-difference estimator and arrive at similar findings.

We assess the socioeconomic impact of Action Plan with a focus on an undesirable output in eco-

nomic activities – CO2. Specifically, we investigate whether the Action Plan led to increases of CO2

emissions in the neighbouring regions. While closely related to our motivation in Chapter 2 and 3,

our empirical analysis in Chapter 4 is also well aligned with the literature that focuses on the socioe-

conomic dimensions induced by environmental regulations. Walker (2013), for instance, focusing

on the labor market in the United States of America (USA), investigate whether the 1990 Clean Air

Act Amendments led to worker reallocation. Using an array of micro-level panel datasets with a

triple-difference estimator, he find that workers in newly regulated plants experienced substantial.

Another example is from a performance evaluation system that was constructed for mitigating SO2

concentration. Using city-level statistics and a DiD approach, Chen et al. (2018) find that the system

significantly reduced SO2 emissions, but at the cost of the GDP growth rate. They show that local

bureaucrats are willing to trade of economic performance to achieve emissions reduction goal.

Some studies have focused on the socioeconomic impact of the Action Plan, therefore they are

more closely related to our work. Using door-to-door survey data from 302 households in six vil-

lages, Barrington-Leigh et al. (2019) assess the impact of the Action Plan on household energy use

and expenditure, well-being and indoor environmental quality, by comparing the the treated (coal

ban in place with subsidised heating system) and the untreated (no ban nor subsidy) households.

They find positive impacts of the Action Plan on all outcomes. However, these benefits are sensi-

tive to household wealth, where fewer benefits were found in low-income districts. Mei et al. (2021)

investigate the impact of the Action Plan on real estate industry. They estimate a triple-difference

estimator, using housing transaction data from 2011 to 2015 and administrative data on all power

plants in Beijing. They find that the Action Plan led to a marginally significant price premium of 11%

for properties close to coal-fired power plants. Using a multi-regional input-output model and an

atmospheric chemical transport model, Fang et al. (2019) evaluate the impact of the Action Plan

on primary PM2.5 and secondary precursor emissions. They find that the Action Plan in fact lead to

a leakage of the air pollutants, especially in neighboring provinces. Our work in Chapter 4 shares

similarities with Fang et al. (2019), but we will approach the question in a different way and com-

plement their study. We investigate whether the Action Plan led to increases on a ‘co-pollutant’ –

CO2 emissions, by examining the impact of the geographical proximity.



6 Chapter 1. Introduction

Our empirical investigation is also well aligned with the literature on carbon leakage, where most

studies focus on international protocols and carbon markets. Carbon leakage from the Clean De-

velopment Mechanism (CDM) was suggested by Rosendahl and Strand (2011), where they find that

the unilateral climate policy affect market equilibrium in energy and product markets, increasing

emissions elsewhere. Aichele and Felbermayr (2015) find significant carbon leakage induced by

the Kyoto Protocol, where the binding commitments have increased the embodied carbon imports

from non-committed countries by around 8%, and the emission intensity of their imports has risen

by about 3%. No statistically significant carbon leakage was found from the EU ETS (Naegele and

Zaklan, 2019; Dechezleprêtre et al., 2022). Using data from German multinational firms, Koch and

Mama (2019) find that the ETS-regulated firms have substantially increased the number of their af-

filiates outside the EU, which is suggestive of leakage of carbon in the future. Using transmission

data from the national electricity grid, Fell and Maniloff (2018) find significant leakage of electric-

ity generation from the Regional Greenhouse Gas Initiative (RGGI) where, the reduction of capacity

utilisation in the RGGI region is compensated by cleaner generation in RGGI-surrounding regions.

Results from the Japanese sub-national ETS are more interesting – ETS entities also reduced their

emissions from the unregulated facilities in ETS-free regions (Sadayuki and Arimura, 2021). Cui

et al. (2023) and He and Chen (2023) investigate the leakage of carbon induced by the China’s ETS

pilots, both concluding that the pilots significantly increased carbon emissions of the non-ETS firms

that belong to the same ownership network as ETS ones. Although Zhu et al. (2022) suggest that

this leakage effect is not related to administrative boundaries, their conclusions are less convinc-

ing, since they exclude some ETS-cities and use aggregated data. We will add to the literature and

discuss our contribution with details in Chapter 4.

1.1 Outline

This thesis consists of three independent papers, which we start by assessing the effectiveness of

the LCCP, with a focus on CO2 emissions per capita and GDP CO2 intensity in Chapter 2. These out-

come variables provide direct comparability across different administrative divisions as well as be-

ing immediately related to the long-run relationship between CO2 emissions and economic growth.

The LCCP was adopted in different cities at different points of time, and the treated units were likely
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self-selected into the treatment due to the policy design. Taken together, we need identification

strategy that incorporates variation in treatment timing and selection bias. In what follows, we use

to the partially pooled SCM as our main identification strategy. We set out a robust design and cor-

rect for the mis-perception reported in the existing literature. We clarify the potential threats to our

analysis, and use an alternative dataset to examine the robustness of our results. This dataset al-

lows us to unprecedentedly decompose the treatment effect into sectoral level. We also document

the relevant discussion and the choice of policy instruments.

In Chapter 3, we continue the analysis, with a focus on assessing the impact of the LCCP on envi-

ronmental efficiency. We specify an enhanced hyperbolic distance function, then estimate the ef-

ficiency by using SFA. To account for the learning effect that might have promoted the diffusion of

low-carbon mitigation from the pilots to the non-pilot cities, we adopt the timing-based approach

suggested by Miller (2023). We apply the partially pooled SCM to control for the selection into treat-

ment, and explore the potential heterogeneity of our results. We document relevant discussion at

the end of the analysis.

In Chapter 4, we investigate the socioeconomic impact induced by the Action Plan that focuses on

PM2.5 mitigation. Our identification framework builds upon the policy design where the mandates

were set at different levels for different regions. We use a nearest neighbour matching technique

based on Mahalanobis distance to control for the systematic differences between the treated and

control units. We clarify potential confounding factors in our analysis, and explore the heterogene-

ity of the leakage effect. We also investigate the economic benefits brought by the leakage of car-

bon, and explore the possible channels that could be attributed to.
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Chapter 2

Climate Policy in Emerging Economies:

Evidence from China’s Low-Carbon City

Pilot

2.1 Introduction

With the urgent need to effectively tackle climate change now beyond doubt (Masson-Delmotte

et al., 2021), a fierce debate has broken out between developed and emerging economies on who

should shoulder the responsibility – and the costs – of reducing carbon emissions. Undeniably,

western economies ought to bear the responsibility for their historical emissions; at the same time

almost all the growth in global energy demand – and therefore emissions – over the coming decades

is expected to originate in emerging markets (Wei et al., 2012). Sound policies are therefore needed

in both the Global North and the Global South to ensure that the expansion in human activity is fi-

nally decoupled from greenhouse gas emissions. Most of the research that aims to evaluate the ef-

fectiveness and the consequences of climate policy has to date focused on developed economies,

while much less is known about how climate policies perform in emerging economies. Gaining a

sufficient understanding of whether climate policies are working in the fastest-growing emerging

economies is nevertheless vital to the debate on how to share the mitigation burden among coun-

tries.

In this chapter, we contribute to this debate by analysing the impact of the Low-Carbon City Pilot
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(LCCP) – the first national climate policy introduced in China. Launched in 2010 by the National

Development and Reform Commission (NDRC), the pilot was introduced to ‘develop and demon-

strate’ the pathways that would help to accelerate the transition to a low-carbon economy (NCSC,

2020, In Chinese). The LCCP is particularly relevant, from our point of view, because it has been

identified as an effective template for other countries to emulate (e.g. Hong et al., 2021).1

Given the specific focus of the LCCP on facilitating the shift to a low-carbon economy, in what fol-

lows we ask whether it indeed had a significant mitigation effect on both per-capita carbon emis-

sions and carbon intensity of GDP.2 These questions have not been satisfactorily answered in the

literature so far. A rich literature has so far focused on efficiency and productivity effects, conclud-

ing that the LCCP had modest but statistically significant positive impacts, yet only a few studies

have directly considered carbon emissions and, to the best of our knowledge, no study has directly

addressed per-capita emissions.3 Yu et al. (2019), Huo et al. (2022), and Tu et al. (2022) investigate

directly the impact of the LCCP on carbon emissions; Feng et al. (2021), Zhou and Zhou (2021) and

Hong et al. (2021) focus instead on emissions intensity, and are therefore closer in spirit to our in-

vestigation. None of these papers presents a credible framework for causal inference, however. Vir-

tually all of the papers mentioned here adopt (some version of) the difference-in-differences (DiD)

approach and, therefore, fail to address the idiosyncratic design of the LCCP, where the selection

of the cities into the treatment group was far from random and the treatment staggered over time

(e.g. Goodman-Bacon, 2021). The only exception to this is represented by Yu et al. (2019), who fo-

cus on Guangdong Province as a case study over the period 2010-2015. They construct a synthetic

counterfactual for Guangdong and conclude that the LCCP reduced carbon emissions by approxi-

mately 10%. Their study is unsatisfactory, however, since they do not account for the simultaneous

introduction of China’s emissions trading scheme (ETS) pilots. Because of these methodological
1The LCCP was introduced in response to China’s commitment, at the 2009 Copenhagen Conference of the Parties

(COP15), to reduce by 2020 the CO2 intensity of its GDP by 40-45% relative to its 2005 levels.
2Our outcome variables have the advantage of providing direct comparability across different administrative divi-

sions as well as being immediately related to the long-run relationship between CO2 emissions and economic growth.
3Most of the existing literature has used methods linked to productivity analysis such as Data Envelopment Analysis

(DEA) to provide estimates of changes in efficiency and productivity that they would then link to the LCCP. Cheng et al.
(2019), Yu et al. (2021), and Wen et al. (2022), for example, all point to positive, albeit limited, impacts of the LCCP on
technical efficiency. Others, who used measures of productivity as their outcome of interest – such as Yao and Shen
(2021) and (Zhou and Zhou, 2021)– conclude that the impact of the LCCP was less clear cut, and could have even been
negative.
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shortcomings, these papers fail to convincingly gauge whether the LCCP has been effective in kick-

starting China’s low-carbon transition. Our main contribution is, therefore, to provide a robust de-

sign for the causal identification of the impact of the LCCP on both per-capita carbon emissions and

the carbon intensity of GDP and to present credible results to inform the debate on climate policy

effectiveness in emerging economies.

To analyse the impact of the LCCP, we construct a unique dataset that merges socioeconomic and

energy-related data. Overall, our dataset comprises detailed information on socioeconomic and

environmental indicators, as well as CO2 emissions for 245 Chinese prefecture-level cities over the

period 2003-2017.4 This dataset allows us to causally assess the impact of the LCCP on emissions

per capita and carbon intensity for the administrative units treated in the first two waves (in 2010

and 2012, respectively).

A serious challenge to naïve identification in the context of the LCCP is that, as discussed in more

detail below, the selection into treatment is not random. We overcome this problem by adopting an

approach based on recent developments in the field of synthetic control method (SCM) that uses

the pool of cities outside the LCCP to create credible counterfactuals that match the (pre-treatment)

outcome variables of the treated ones (Ben-Michael et al., 2022). We then estimate the treatment ef-

fect by comparing the actual post-treatment outcomes of the treated cities to the relevant synthetic

controls. We perform multiple tests to validate our identification strategy and conduct several ro-

bustness checks to shore up confidence in our empirical findings.

Our work complements the existing literature along three dimensions. First, as discussed above,

we identify and overcome a range of potential challenges to causal inference that arise from the

idiosyncratic design and the timing of the LCCP, thereby presenting empirical evidence which cor-

rects the record in the literature on the actual effectiveness of the LCCP. Second, given that the

implementation of the LCCP is largely voluntary, we contribute one state-of-the-art piece to the

scant empirical literature that evaluates voluntary environmental policy instruments (e.g. Borck

and Coglianese, 2009; André and Valenciano-Salazar, 2022). Third, we take a step forward in the
4In this context ‘cities’ is our short-hand for administrative divisions that comprise an urban centre and the surround-

ing county-level divisions. In China, there are three levels of administrative divisions: province-level, prefecture-level and
county-level. Province-level divisions are the highest administrative level. In total, there are 34 province-level divisions,
including 23 provinces, 5 autonomous regions, 4 municipalities and 2 special administrative regions. Prefecture-level
cities are subordinate to the province-level division and comprise 293 prefecture-level cities, 30 autonomous prefec-
tures, 7 prefectures and 3 leagues.
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literature by assessing the impact of policy on carbon emissions in China by applying the method-

ology developed by Shan et al. (2017), which is based on the Intergovernmental Panel on Climate

Change (IPCC) Guidelines, to construct an alternative emission inventory (IPCC, 2006). This alterna-

tive dataset not only allows us to examine the sensitivity of our results to changes in the data source

but also enables us to look closer at the sectoral impacts of the LCCP and to discuss the potential

for fuel-switching.

Overall, we find no evidence that the LCCP had significant impact in terms of reducing per-capita

emissions or carbon intensity of GDP. This conclusion is drawn through examinations on the iden-

tification and a series of robustness checks. While these results contrast sharply with the results

found elsewhere in the literature, they are not surprising when put in the context of a regulation

that is fundamentally voluntary, provides no binding targets and lacks enforcement. We conclude

that this early policy experiment did not deliver on its stated goals, at least not in terms of promot-

ing a rapid de-coupling of economic growth from carbon emissions.

The rest of the chapter develops as follows, in Section 2.2, we describe the policy background and

discuss the specific design characteristics that complicate causal identification in this case. Build-

ing on this, we discuss the identification strategy and the data in Section 2.3. Section 2.4 is devoted

to the discussion of the main empirical results, their validity and some robustness checks. Sec-

tion 2.5 discusses the potential economic mechanism and the sectoral impacts. Finally, section 2.6

summarises and concludes.

2.2 Policy background

Starting from a relatively low level of technological development, China’s fast economic growth

has come at the cost of severe environmental consequences over the last five decades (Smil, 1993).

The sheer scale of China’s economy has also meant that its rapidly increasing CO2 emissions have

greatly contributed to a rise in atmospheric concentrations of greenhouse gases with significant

global impacts (Grimm et al., 2013).

In 2007, recognising the severity of this problem, China issued its National Climate Change Program

(NDRC, 2007). This was followed in 2008 by the white paper on the country’s actions and strategy on
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climate change (SCPRC, 2008). In 2009, following on the commitments agreed to within the frame-

work of the 2009 United Nations Climate Change Conference, the State Council for the first time

announced a target of reducing the carbon intensity of its GDP by 40–45% by 2020 compared to the

2005 level (SCPRC, 2009). This emissions mitigation target was then incorporated into the national

12th Five-Year Plan (FYP) (2011-2015) for the very first time, at the same time setting a binding target

of 17% reduction in CO2 emissions per unit of GDP between 2011 to 2015 (NPC, 2011).5 Within the

framework of the 12th FYP, each province was assigned a mitigation target, according to its socioe-

conomic characteristics and growth trajectories. When the 13th FYP (2016-2020) was published in

2016, the reduction target for the carbon intensity of GDP was set at 18% between 2016 to 2020 and

further decomposed into different targets for each city (NPC, 2016).

Against this backdrop, the NDRC launched the LCCP, designed to accelerate the transition to a low-

carbon economy and demonstrate pathways to achieve ambitious carbon reduction goals for the

benefit of other cities. On 19 July 2010, the NDRC issued a ‘Notice on the Piloting Work of Low-

carbon Provinces and Cities’ and then the first wave of the pilot started (NCSC, 2020, in Chinese).

This first phase included two municipalities, five provinces, and six prefecture-level cities. The sec-

ond wave began two years later and covered two municipalities, one province, and 26 prefecture-

level cities. Finally, the third wave was introduced in 2017 and focused on prefecture-level cities

and smaller administrative divisions. In total, eight additional county-level divisions (seven coun-

ties and one district) and 35 prefecture-level cities were included in the pilot scheme in the final

stage.

It should be noted that, according to the NDRC, these pilot cities and provinces were selected based

on their geographic, social and economic diversity, rather than being identified at random (NCSC,

2013, in Chinese). Moreover, in choosing the pilot locations account was taken of any ongoing work

in low-carbon development and of any expression of interest by the regions to be part of the pilot.6

Naturally, this process was also prone to political bargaining and manipulation. Therefore, assign-

ment to treatment cannot be thought of as random by any stretch of the imagination, which poses
5The FYPs are a series of regulations in China, focusing on devising social and economic development guidelines for

the entire country. The first Five-Year Plan (1953-1957) was implemented in 1953, the latest and current one is the 14th

Five-Year Plan (2021-2025), introduced in 2021.
6Baoding and Shanghai, for example, had both been working with the World Wildlife Fund (WWF) on the ‘Low-Carbon

City Initiative’ pilot to reduce CO2 emissions since 2008, two years prior to the LCCP implementation. They were included
in the first and second wave, respectively.
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a serious challenge to our empirical investigation.

Rather than being assigned binding targets or given specific mandates, by the central government,

each pilot division had significant flexibility in defining its own mitigation targets as long as they

were consistent with the overarching FYP mandates. In particular, they were free to decide on the

allocation of abatement across sectors. As mandated by the NDRC, the pilot cities were required to

compile an explicit low-carbon development plan, which would articulate the measures needed to

promote an effective local low-carbon economy, accelerate the establishment of a low-carbon in-

dustrial system, build a management system for greenhouse gas emission statistics, and encourage

low-carbon lifestyles and green consumption patterns. To date, however, publicly available infor-

mation on the overarching implementation process and any specific guidance offered to the local

authorities remain scarce. Therefore, we collected additional information by scouring the official

websites of the regional municipal people’s governments, wherever available.7

In the majority of cases, we found that targets were set in terms of carbon intensity, the share of

non-fossil energies, retiring outdated power plants, and forest coverage rate. Specific efforts were

made to compile greenhouse gas inventories, decarbonise farming, public transportation systems

and construction, introduce green nudges, and promote wetland conservation. For some of these

measures, targets were set in some cities. For instance, Shijiazhuang was treated in the second

wave and its online agenda clearly states that the share of ‘new energy automobiles’ in the personal

transportation system should exceed 90% by 2015.8

To conclude, unlike traditional policy instruments, the LCCP is by and large a voluntary program,

without mandated enforcement. In this sense, we would not expect it to have much impact, based

on the evidence available in the literature (Borck and Coglianese, 2009). The mitigation pathways

were devised by the regional authorities based on their regional economies and their local prefer-

ences. While mitigation pathways differ across treated units, almost all cities had targets on CO2

emissions or GDP CO2 intensity, and a few of which were more stringent than FYP mandates (see
7We managed to find online agendas for 20 of the 40 regulated administrative units, including two municipalities,

three provinces, and 15 prefecture-level cities. As an example, see the online agenda (in Chinese) in Ningbo: https://
www.ningbo.gov.cn/art/2013/4/28/art_1229541831_59033042.html. For the cities that did not publish agendas
online or whose agendas are untraceable, we contacted the Regional Development and Reform Commission (DRC) for
additional information. Based on their response, these cities either did not have a specific agenda or their agendas have
been incorporated as a part of the 12th FYP.

8The term ‘new energy automobiles’ is often used by the Chinese government to refer to plug-in hybrid electric ve-
hicles, battery electric vehicles, fuel cell electric vehicles, as well as liquefied natural gas vehicles. The exact definition
may vary depending on the regional governments, however.

https://www.ningbo.gov.cn/art/2013/4/28/art_1229541831_59033042.html
https://www.ningbo.gov.cn/art/2013/4/28/art_1229541831_59033042.html
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Khanna et al., 2014, for a detailed analysis of the first wave). In what follows, we, therefore, focus

on assessing whether the LCCP was effective in bringing about additional mitigation, compared to

elsewhere in the country, with a focus on emissions per capita and the CO2 intensity of GDP.

2.3 Identification strategy and data

As discussed in the introduction, much of the existing literature on the LCCP employs a DiD ap-

proach to estimate the average treatment effect. Our empirical investigation, therefore, starts by

replicating these efforts within a DiD framework.

Mindful of recent contributions that warn against using standard fixed-effect methods in the pres-

ence of heterogeneous treatment effects (e.g. Goodman-Bacon, 2021; Baker et al., 2022), and keep-

ing in mind the staggered adoption of the LCCP, however, we adopt the dynamic DiD framework for

intertemporal treatment effects proposed by De Chaisemartin and d’Haultfoeuille (2022).9 To the

best of our knowledge we are the first to use this methodology in this context.

While we believe that the use of dynamic DiD estimators à la De Chaisemartin and d’Haultfoeuille

(2022) could control for the issue of heterogeneous treatment effects, it is clear that a naïve iden-

tification of the impact of the LCCP based on DiD methods would still be flawed, due to the non-

random nature of the process whereby cities were included in the pilot. In fact, the pilot cities

selected themselves, at least in part, into the pilot group and were otherwise chosen based on

characteristics – such as their current level of industrialisation and their energy intensity – that

are clearly correlated to the outcomes we seek to evaluate. To overcome these issues, we design

our identification strategy around the pooled SCM recently introduced in the literature.

Generally speaking, SCMs estimate the treatment effect by constructing synthetic counterfactuals

and comparing them to the actual outcomes for the treated units. The synthetic control is con-

structed by assigning weights to selected units drawn from the pool of control units (donors) so

that the synthetic controls closely match the outcome of the treated units in the pre-treatment

phase (Abadie and Gardeazabal, 2003; Abadie et al., 2010). While the SCM was originally designed

to study a single treated unit, a number of recent contributions suggest possible extensions of
9Given the staggered adoption and the substantial differences in the treated units, heterogeneous treatment effects

are indeed likely.
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the SCM to multiple treated units (Dube and Zipperer, 2015; Galiani and Quistorff, 2017; Donohue

et al., 2019). Estimating weights that minimise the average pre-treatment imbalance across differ-

ent treatment units, however, could produce an almost perfect fit for the average, while leading to

poor unit-specific fits.10 On the other hand, focusing on a separate synthetic control for each treat-

ment unit and estimating the average treatment effect on the treated could yield good fits for the

unit-specific predictors while producing a poor balance for the average.11 Recently, Ben-Michael

et al. (2022) have instead proposed the so-called partially-pooled SCM, which seeks to mitigate such

biases within a staggered treatment framework. Their method decomposes the error of the aver-

age treatment effect on the treated (ATT) estimate into errors stemming from the pooled fit and the

unit-specific fits and then proceeds to minimise a weighted combination of the two. See Appendix

A for the technical details. In an extension of their basic model, Ben-Michael et al. (2022) further

recommend incorporating auxiliary covariates to insure a good pre-treatment fit not only for the

main outcome variable of interest but also for other key characteristics of the units of analysis. In

what follows, we adopt this augmented partially-pooled approach for staggered treatment as it fits

well with the need to ensure a good fit across a range of treated units that are heterogeneous by

design, and that are treated at different points in time.

2.3.1 Data

Our outcome variables of interest are the CO2 emissions per capita (in ton/person) and the CO2

intensity of GDP (in ton/10,000 CNY). Emissions per capita are calculated by dividing the regional

CO2 emissions by resident population, and the CO2 intensity of GDP is calculated as CO2 emissions

per 10,000 CNY of regional GDP.12

The most challenging part of the data collection is to find reliable information on city-level CO2

emissions. While in general preferable, estimates of emissions based on the IPCC guidelines are
10Kreif et al. (2016), for example, follow a similar approach and construct an aggregate treated unit and match the

average pre-treatment aggregate outcome using weighted controls.
11For instance, Dube and Zipperer (2015) propose a modified SCM by converting the estimates to elasticities by ranking

them based on the treatment intensity and aggregating the elasticities across different treatments. Similarly, Galiani and
Quistorff (2017) and Donohue et al. (2019) focus on finding separate synthetic control for each of the treated units and
then estimate the average treatment effect on the treated (ATT) by averaging the unit-specific SCM estimates.

12The use of the resident population en lieu of the registered population is generally recommended as it better reflects
actual economic activities in China. This is also in line with the practice for calculating GDP per capita adopted by China’s
National Bureau of Statistics since 2004 (NBS, 2004, in Chinese).
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only available for a limited set of cities due to the lack of complete data on city-level energy use

(see Shan et al., 2017, for a discussion). In what follows, we, therefore, use the widely used data of

Chen et al. (2020), that provide county-level carbon emissions data based on nighttime light data

from satellite imagery. The emission inventories include 2,735 counties and districts in around 350

administrative divisions from 1997 to 2017. We obtain the data from the Carbon Emission Accounts

Datasets and aggregated the CO2 emissions at the city level (CEADs, 2020).

NCSC (2020, in Chinese) provides us with the information we need to construct our treatment in-

dicators, which distinguish between the cities treated in each successive wave of the LCCP. Due to

data availability, however, our data spans the period 2003-2017 and, therefore, omits the third wave

of treatment. We exclude from our sample all the cities that will be subject to treatment in the third

wave of the LCCP so that the control group more correctly reflects the ‘never-treated’ status of the

non-LCCP cities.13

To construct the synthetic controls for the treated cities, we first use the values of the outcome vari-

ables – per-capita CO2 emissions and CO2 intensity of GDP – in the pre-treatment period. Abadie

(2021) warns of the dangers of matching only on pre-treatment outcomes, which may lead to over-

fitting to noise and introduce potential sources of bias. We, therefore, introduce additional covari-

ates in our predictor set that we use to try and balance against systematic differences between the

treated cities and weighted donor units. We include per-capita GDP (in 10,000 CNY), the industrial-

isation rate, i.e. the GDP share of the secondary sector, social fixed asset investments (in 10 billion

CNY), and industrial SO2 discharges (in 10,000 ton) as additional predictors. As a robustness check,

in what follows we also include employment (million people) and investment in science and tech-

nology (billion CNY) to the predictor set to gauge the sensitivity of our results to changes in the

predictor set. All these data come from the China City Statistical Yearbook (NBS, 2017), and the

monetary values are normalised to 2010 CNY. All our data was also cross-checked with the relevant

data from prefectural and provincial statistical yearbooks – which may be accessed via the cities’

or provinces’ municipal bureau of statistics – to ensure accuracy and consistency.

In our baseline results, we classified as treated all the cities that were included either directly or
13Using the third-wave cities as donor units for the previous waves implies that we assume that they did not prepare

in any way ahead of the regulation, i.e. that there is no anticipation effect. This is questionable, however, given the
possibility of political bargaining and the strong connections between regional authorities and the central government.
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TABLE 2.1: Descriptive statistics, 2003-2017.

Mean Std. dev. Min. Max. Obs.

Panel A: Treated cities
Outcome variable:
CO2 emissions per capita (ton/person) 6.13 4.20 0.35 32.86 1,230
GDP CO2 intensity (ton/10,000 CNY) 2.31 1.39 0.19 10.12 1,230
Socioeconomic measurement:
GDP per capita (10,000 CNY) 3.28 2.37 0.11 15.41 1,230
Employment (million people) 0.50 0.56 0.06 4.64 1,230
Industrialisation rate (%) 47.67 9.92 18.14 84.39 1,230
Social fixed asset investment (10 billion CNY) 8.46 9.60 0.26 65.30 1,230
Expenditure on science and technology (billion CNY) 0.48 1.76 0.00 34.42 1,228
Industrial SO2 discharge (10,000 ton) 5.09 4.69 0.01 33.90 1,225

Panel C: Donor cities
Outcome variable:
CO2 emissions per capita (ton/person) 6.44 5.63 0.46 55.22 2,443
GDP CO2 intensity (ton/10,000 CNY) 2.60 1.58 0.52 15.07 2,443
Socioeconomic measurement:
GDP per capita (10,000 CNY) 2.90 2.35 0.16 20.24 2,443
Employment (million people) 0.35 0.29 0.04 3.80 2,443
Industrialisation rate (%) 48.56 11.84 2.66 90.97 2,443
Social fixed asset investment (10 billion CNY) 7.45 7.85 0.20 63.59 2,443
Expenditure on science and technology (billion CNY) 0.20 0.37 0.00 4.82 2,443
Industrial SO2 discharge (10,000 ton) 5.38 4.86 0.01 33.19 2,428

Notes: The table shows means, standard deviations, minimum values, maximum values and the num-
ber of observations. Panel A displays the statistics of the cities under either the first or second wave;
panel B displays the statistics of the cities that are never included in any treatment pool under the
LCCP.

indirectly, i.e. via municipality-, province- or prefecture-level treatment in either the first or sec-

ond wave. As a control group, we use all cities that were not treated in either wave. An important

caveat in creating reliable synthetic controls is that both pre-treatment outcomes and additional

predictors of the treated unit should fall in the convex hull of the donor units (as indicated by the

minimum and maximum). As explained in Section 2.2, however, the assignment to treatment is not

random, so that the treated cities are on average cleaner and more advanced, making it impossi-

ble to create close matches on some of the measurements. We, therefore, identify and exclude as

outliers the cities of Beijing, Tianjin, Shanghai, Suzhou, Guangzhou, Shenzhen and Chongqing, for

which no plausible donors exist. After the adjustment, we are left with 245 cities, 82 of which were

included in the LCCP in either the first or the second wave.
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Table 2.1 provides the descriptive statistics of the variables used in the analysis, divided by treat-

ment status, over the period 2003-2017. Although as mentioned the treated cities exhibit bet-

ter economic and environmental performances, their minimum and maximum values fall approx-

imately in the support of the donor cities for most measurements. We are therefore confident in

fitting reliable synthetic counterfactuals that closely match the treated cities’ historical outcomes

and additional predictors.

Notes: The figure shows the trends of the outcome variables, CO2 emissions per capita and GDP CO2

intensity, respectively.

FIGURE 2.1: Outcome variables

Figure 2.1 displays the trends of the outcomes over the study period. In the pre-treatment periods,

the trend for GDP CO2 intensity is approximately parallel. For emissions per capita, however, the

pilot cities outpaced the control cities in the early periods, then develop approximately parallel

afterwards. In the post-treatment periods, both outcomes diverge, although the differences seem

to diminish in the last few periods.

2.4 Empirical results

We begin this section by presenting the results we obtain within the DiD framework discussed in

Section 2.3. This approach allows us to clarify the placement of our contribution within an exist-

ing literature that has mostly relied on naïve DiD estimations, before moving on to discussing the

results that emerge from our preferred synthetic-control-based methodology.
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Table 2.2 and Figure 2.2 present the results of a staggered DiD estimation, following the method-

ology introduced by De Chaisemartin and d’Haultfoeuille (2022). The goal of this procedure is to

capture the aggregate effect of the LCCP on the outcome variables of interest over the first two

waves.14 The results in the Table suggest that the LCCP had a statistically significant impact on

per-capita CO2 emissions, with a reduction of 0.38 ton per capita – about 7% less than the average

emissions in the pre-treatment phase – whereas there is no significant effect on the carbon intensity

of GDP, compared to the control group.

TABLE 2.2: Estimates of staggered difference-in-differences

ATT estimate Std. err. p-value

CO2 emissions per capita -0.363*** 0.139 0.009
GDP CO2 intensity -0.061 0.041 0.140

Note: (i) The table displays the estimates of staggered difference-
in-differences estimations of CO2 emissions per capita and GDP
CO2 intensity for the first two waves of the LCCP. (ii) *, **, *** indi-
cate 10%, 5% and 1% statistical significance, respectively.

Figure 2.2 plots the evolution over time of the impacts of the policy across the first two waves of the

LCCP and shows downward-sloping trends over time, at least initially. This pattern is particularly

pronounced for per-capita emissions. For the emissions measure, the results become significantly

negative at t = 3 and remain so until the end of the horizon. The results are less clear-cut for CO2

intensity. The DiD estimates are negative in the short run, albeit only significantly so at t = 3,

and rebound strongly towards zero at the end of the time window. Alarmingly, however, for both

outcomes, the estimates in the treatment period suggest that they are the continuation of trends

started well before t = 0, thus violating the ‘parallel-trends’ assumption needed for DiD identifica-

tion. These results confirm that naïve regressions of this type are not the ideal approach to identify

causality in this context.

While problematic, our emissions results are broadly consistent with the existing literature that

considers the role of the LCCP in mitigating carbon emissions using a DiD approach. For example,

Huo et al. (2022) and Tu et al. (2022) find that the LCCP reduces CO2 emissions by 2-3%.15 Our null
14In the figure, the treatment effects are normalised relative to the beginning of the corresponding treatment period,

i.e. t=0 represents 2010 for wave I, and 2012 for Wave II.
15Huo et al. (2022) do not control for the staggered nature of the treatment, nor do they account for the non-random

nature of the selection into treatment, both of which bias their results, and call their identification strategy into question.
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results on the impact of the LCCP on the carbon intensity of GDP, however, contrast both with the

findings of Feng et al. (2021) and Zhou and Zhou (2021), who argue that the LCCP has increased the

carbon content of GDP, and those of Hong et al. (2021), who instead find a significant reduction of

energy consumption relative to GDP.16 These differences might be due to the heterogeneity of treat-

ment effects, which have been shown to give rise to biased estimates in the presence of staggered

treatments (Baker et al., 2022, e.g.).

Notes: The figure shows the results of intertemporal difference-in-differences estimations on CO2 emissions
per capita and GDP CO2 intensity for the first two waves of the LCCP (De Chaisemartin and d’Haultfoeuille,
2022). The effects are normalised relative to the beginning of the corresponding treatment, i.e. 2010 for
Wave I and 2012 for Wave II.

FIGURE 2.2: Plots of the staggered difference-in-differences effects

Overall, our assessment of this first set of results is that even if they represent an improvement

on the current state-of-the-art, in that they at least address the potential biases in the estimated

treatment effects due to the staggered nature of the treatment, they still fall short of providing a

convincing identification framework for the causal effects of the LCCP. Indeed, it is clear that – as

argued in Section 2.2 – the selection into the LCCP is not random. As a consequence, the identi-

fication strategy that underlies the DiD efforts discussed above is unsatisfactory. In view of this

While Tu et al. (2022) account for the staggered treatment, they also fail to control for the selection into treatment aspect.
Neither study, moreover, discusses the potential misattribution of the effect that arises from the partial overlap of the
LCCP with the ETS pilots, so their identification strategy is questionable.

16We note here that, taken together, these results would imply that China moved to a much more carbon-intensive
energy mix as a consequence of the LCCP, which is hard to believe. These studies, however, suffer from a number of
limitations that might explain their somewhat erratic conclusions. In particular, neither Feng et al. (2021) nor Hong et al.
(2021) control for the staggered nature of the treatment, while Zhou and Zhou (2021) focuses on Wave II only. Neither of
the two latter studies controls for the non-random treatment selection, and all fail to account for policy overlaps. Overall,
their identification strategies are not very convincing, which might explain their contrasting results.
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discussion, we now move on to the main part of our analysis, where we apply the partially-pooled

SCM introduced by Ben-Michael et al. (2022) to the LCCP.

TABLE 2.3: Estimates of the staggered synthetic control – baseline

ATT estimate Std. err. p-value

CO2 emissions per capita -0.148 0.174 0.395
GDP CO2 intensity -0.065 0.077 0.399

Notes: (i) The table displays the estimates of the staggered syn-
thetic control method on CO2 emissions per capita and GDP CO2

intensity for the first two waves of the LCCP. (ii) *, **, *** indicate
10%, 5% and 1% statistical significance, respectively.

Notes: The figure shows the results of the staggered synthetic control method on per-capita CO2 emissions
and GDP CO2 intensity. The effects are normalised relative to the beginning of treatment, i.e. 2010 for Wave
I and 2012 for Wave II.

FIGURE 2.3: Plots of the staggered synthetic control method – baseline

The results of the partially-pooled, staggered synthetic control procedure run for the first two waves

of the LCCP are presented in Table 2.3. The table provides the point estimates, the standard errors

and the p-values for the treatment effects.17 Relative to the non-pilot cities, these results show

that the LCCP had no statistically significant effect at conventional levels on the treated ones. Fig-

ure 2.3 plots the estimates of the effects over time. Overall, the pre-treatment fits are satisfactory
17The conventional practice to claim statistical inference of synthetic control method is to run a number of falsification

tests. Specifically, one can estimate treatment effects τ̂j for each of the j = 2, ...,N donor units following the main
specification, using the remaining N − 2 donor units. Here we follow Ben-Michael et al. (2022) and provide statistical
inference using the leave-one-unit-out jackknife approach. See the online appendix of Ben-Michael et al. (2022) for more
details.



2.4. Empirical results 23

and, based on the confidence intervals plotted, the treatment effects on both measures remain

insignificant throughout the treatment period.

These findings are clearly at odds with the ones currently available in the literature, so in the re-

mainder of this section, we delve deeper into the data to shore up our confidence that these results

are indeed correct and robust.

2.4.1 Challenges to identification

One of the most critical challenges to identification in the context of the LCCP derives from the fact

that several policy initiatives aimed at decoupling carbon emissions from economic growth were

undertaken in China around the same time as the LCCP. For example, shortly after the introduc-

tion of the LCCP, the Chinese authorities started discussing the introduction of emissions trading

as a climate change mitigation tool. Beginning in 2011, with trading commencing in 2013, seven

emissions trading scheme (ETS) pilots were launched. The pilots included one prefecture-level

city (Shenzhen), two provinces (Hubei and Guangdong) and four municipalities (Beijing, Shanghai,

Tianjin, Chongqing).18 Due to the fact all ETS-regulated cities are also treated by the LCCP, making

it impossible to attribute any treatment effect to the LCCP alone causally.

To control for this confoundedness, we exclude all ETS-regulated cities from our sample, leaving

us with a total sample of 214 cities, 51 of which were treated under the LCCP. Using this restricted

sample, we run our SCM model once again to confirm the validity of our design.

Figure 2.4 and Table 2.4 report the results of this exercise. The effect of excluding the cities treated

by the ETS pilots is relatively small. Compared to the baseline discussed in Table 2.3, the changes in

the estimated coefficients are small and they remain insignificant, with the p-value for the carbon

intensity increasing to 0.699. For completeness, we repeat the same exercise using the staggered

difference-in-differences approach of De Chaisemartin and d’Haultfoeuille (2022) and report it in

the lower half of Table 2.4. In this case, the results are quite striking as the coefficient of the per-

capita emissions becomes much smaller and strongly insignificant compared to the ones presented

in Table 2.2.
18The cap covered around 40% of the total CO2 emissions in each division, including a range of entities and industries

(Swartz, 2016). The empirical literature has suggested that the ETS pilots reduced CO2 emissions by around 15.5% (Hu
et al., 2020).
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Taken together, these findings suggest that the inclusion of the ETS pilot cities in the LCCP treat-

ment group might lead to significant biases in the results of DiD estimates. The fact that we find no

evidence that our SCM baseline results are significantly impacted by them suggests that the pooled

SCM methodology may be more robust to this type of overlap than other approaches. It is worth

noting that, to the best of our knowledge, none of the significant results reported in the literature

control for the policy overlap discussed here. This strongly suggests that taking them at face value

might lead to misleading conclusions.

Notes: The figure shows the results of the staggered synthetic control method on per-capita CO2 emissions
and GDP CO2 intensity on a restricted sample that excludes all the cities taking part in the ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE 2.4: Staggered synthetic control estimation – controlling for policy overlap

TABLE 2.4: Controlling for policy overlap – excluding ETS cities

ATT estimate Std. err. p-value

Panel A: Staggered synthetic control
CO2 emissions per capita -0.236 0.230 0.304
GDP CO2 intensity -0.034 0.087 0.699

Panel B: Staggered difference-in-differences
CO2 emissions per capita -0.070 0.147 0.632
GDP CO2 intensity -0.081 0.055 0.138

Notes: (i) The table displays the estimates of the staggered syn-
thetic control method on CO2 emissions per capita and GDP CO2

intensity for the first two waves of the LCCP on a restricted sample
that excludes all the cities taking part in the ETS pilots. (ii) *, **, ***
indicate 10%, 5% and 1% statistical significance, respectively.
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As discussed in Section 2.2, alongside the LCCP the Chinese government was making concurrent

efforts to decarbonise the economy, via the increasingly stringent targets mandated by the FYPs.

Our identification framework implicitly assumes that treated and donor units are assigned similar

reduction targets under the FYPs, thus not biasing our estimates of the impact of the LCCP. To test

whether this assumption holds, we collect information on the reduction targets mandated for each

of the cities in our sample under both the twelfth and thirteenth FYPs. We then perform equivalence

tests for the average reduction targets to ensure that the FYPs’ mandates do not introduce biases

to our estimates above.

Table 2.5 reports the results of these tests. As the t -statistics and the p-values suggest, we cannot

reject the null hypothesis that the reduction targets are equal between the two groups. This implies

that our results above are not likely to be driven by differences in the reduction targets in the FYPs..19

TABLE 2.5: Testing differences in reduction targets under the 12th and 13th Five-Year Plans

Donor units
Mean

Treated units
Mean Diff. t -statistic p-value

12th Five-Year Plan (2011-15) 17.04 17.08 -0.04 -0.18 0.86
13th Five-Year Plan (2016-20) 18.54 18.88 -0.35 -0.96 0.34

Notes: (i) The table reports the results of the t -test for the equality of means between the
treated and donor units for the carbon emissions reduction targets set by 12th and 13th Five-
Year Plans. (ii) *, **, *** indicate 10%, 5% and 1% statistical significance, respectively.

Another possible limitation of our identification strategy is that the LCCP was introduced follow-

ing an earlier announcement and the selection process of suitable pilot candidates was also rather
19As indicated by one anonymous reviewer, another policy – the Two Control Zones (TCZ) policy – might be another

possible source of confoundedness here. While the TCZ has been shown to have been successful at reducing pollut-
ing emissions (e.g. Cai et al., 2016), however, it had only a minimal overlap with the LCCP. On the one hand, it stopped
running in 2010, the first year in which the LCCP was introduced; on the other hand, its goal was to mitigate acid rains
by reducing SO2 emissions from coal combustion, rather than focusing on carbon emissions. The main consequences
of SO2 regulation were the closure of older coal-fired boilers and a switch to lower-sulfur coal (including washed coal).
According to Zhang et al. (2016), these behavioural responses to the regulation have significantly contributed to decou-
pling economic growth from SO2 discharge in China. The effect of the TCZ on CO2 emissions in the control zones is more
uncertain, however, because switching from high-sulfur coal to cleaner coal does not necessarily reduce CO2 emissions
(e.g. Zhang et al., 2016). In fact, low-sulfur coal has a higher net caloric value than dirtier coal and therefore produces
more CO2 emissions per unit of weight during combustion (Shan et al., 2018b). As discussed by Glomsrød and Taoyuan
(2005), moreover, switching from dirtier to cleaner coal has complex system-wide implications, which might even lead
to an increase in CO2 emissions. For the sake of completeness, however, we have re-run our SCM analysis excluding the
TCZ cities, to control for any policy overlap; we also repeated our analysis using only the set of cities treated under the
TCZ, to isolate the potential additional effects of the LCCP. In both cases, we fail to identify any impact from the LCCP. If
anything, the results are even more insignificant than our baseline ones. See Table D.1 in Appendix for the summary of
the results, and Figures D.1 and D.2 for the synthetic control fits
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slow. From this point of view, our choice to start the treatment period from the official inception

dates of wave I and II – in 2010 and 2012, respectively – might be considered naïve. It is indeed

plausible that at least in some of the treated cities, both officials and economic agents might have

been aware of their future treatment status through their own lobbying for selection into the pilot

or other political connections. If this were indeed the case and at least some of the pilot cities had

taken early actions to prepare for the pilot, this could introduce biases in the selection of donors.

Selecting donors with lower emissions would then potentially lead to an attenuation of the esti-

mated effect, and to insignificant results. To control for this potential bias, we conduct our analysis

again, this time moving the notional start of the treatment to one year prior to the official start of

the pilot.20

Notes: The figure shows the results of examining the anticipation effect on per-capita CO2 emissions and
GDP CO2 intensity using staggered synthetic control method. The effects are normalised relative to the
beginning of treatment, i.e. 2009 for wave I and 2011 for Wave II.

FIGURE 2.5: Controlling for potential anticipation effect – alternative policy start

Figure 2.5 and Panel A of Table 2.6 present the results of the above discussion. While the develop-

ment trajectories are not subject to major changes, we find that the estimates attenuate for both

outcomes compared to Table 2.3. In the presence of an anticipation effect, we would instead ex-

pect larger estimates and smaller p-values, because by backdating the treatment start date, the

anticipation effect would be incorporated into the treatment effect. Overall, we find no evidence

to support the existence of a significant anticipation effect. For completeness, we also exclude the
20While a two-year anticipation effect seems excessive in this context, for completeness we also performed this anal-

ysis moving the treatment date up by two years. The results do not change qualitatively, as the treatment effect remains
insignificant for both outcomes.
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cities treated under the ETS pilots. The results are reported in Panel B of Table 2.6 and in Appendix

(see Figure D.3). Again, we find no indication that an anticipation effect might have taken place.

TABLE 2.6: Controlling for potential anticipation effect – alterna-
tive policy start

ATT estimate Std. err. p-value

Panel A: Baseline sample
CO2 emissions per capita 0.030 0.329 0.927
GDP CO2 intensity -0.061 0.091 0.502

Panel B: Excluding the ETS-regulated cities
CO2 emissions per capita -0.236 0.268 0.377
GDP CO2 intensity -0.033 0.110 0.766

Notes: (i) The table displays the estimates of examining the antic-
ipation effect on per-capita CO2 emissions and GDP CO2 intensity
using staggered synthetic control method. (ii) *, **, *** indicate
10%, 5% and 1% statistical significance, respectively.

Lastly, we focus on the potential for treatment spillovers to the control group, which would compro-

mise our identification. On the one hand, it is possible that the pilot was successful in identifying,

developing and demonstrating low-carbon pathways that may have been adopted by other cities.

This would potentially lead to reductions in both outcomes among treated and control units. On

the other hand, the introduction of the LCCP might have increased the cost of carbon emissions in

the treatment regions and pushed economic activities towards areas with less stringent environ-

mental regulations, thus leading to carbon leakage. In this case, emissions would increase in the

destination cities alongside economic activity.

To test for the presence of these treatment spillovers, and assuming that any spillover is more likely

to occur in cities ‘close’ to the pilot ones, we first excluded from the donor pool cities that are in

close geographical proximity to the pilots from our sample.21 Using this restricted sample, we re-

run our synthetic control estimations for both outcomes. Next, we restrict the donor pool to include

the neighbouring cities only and repeat the analysis. The overall idea here is that, in the presence

of treatment spillovers, this latter set of results ought to be less significant than the former.
21Specifically, we drop all control units that share a border with a treated city.
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TABLE 2.7: Controlling for treatment spillovers

ATT estimate Std. err. p-value

Panel A: Excluding neighboring cities
CO2 emissions per capita -0.304 0.372 0.415
GDP CO2 intensity -0.030 0.142 0.830
GDP per capita 0.104 0.146 0.476

Panel B: Using neighboring cities as donor units
CO2 emissions per capita -0.168 0.332 0.612
GDP CO2 intensity -0.001 0.094 0.993
GDP per capita 0.062 0.142 0.660

Notes: (i) The table displays the estimates of examining the treatment
spillovers on CO2 emissions per capita, GDP CO2 intensity, and GDP per capita
for the first two waves of the LCCP using staggered synthetic control method.
Panel A shows the results excluding neighbouring cities from our sample; Panel
B shows the results using only neighbouring cities as donor units. (ii) *, **, ***
indicate 10%, 5% and 1% statistical significance, respectively.

Finally, to control for possible leakage effects, we also run an additional test using per-capita GDP

as an outcome that allows us to identify economic leakage.22

Table 2.7 presents the results of our investigation into treatment spillovers.23 All the estimates re-

main insignificant, although – consistent with the idea that spillovers are more likely in neighbour-

ing cities – point estimates in Panel B seem to be rather attenuated. Overall, we discard the idea

that treatment spillovers or carbon leakage drive our insignificant results in the baseline.

2.4.2 Robustness checks

Having acknowledged the possible challenges to our identification strategy and having found that

they do not invalidate our approach, we now start our discussion of the robustness of our results

to several possible changes in the data. For the remainder of this section, we work with a restricted

dataset from which we have removed the ETS-regulated cities, for cleaner identification.

Our first step is to make sure that the main results are not driven by the set of predictors used to

construct the synthetic controls in our main specification. In what follows, we repeat our estimates
22To achieve treatment-control balance in the GDP per capita analysis, we use employment, industrialisation rate,

social fixed asset investment and expenditure in science and technology as additional predictors in the construction of
the synthetic control.

23See Figures D.4 - D.6 in Appendix for the synthetic control fits.
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with different sets of predictors, starting from matching on outcomes only. We then expand the pre-

dictor set one variable at a time, until we have used all the variables at our disposal. The complete

set of predictors includes the two original outcome variables, GDP per capita, industrialisation rate,

social fixed asset investments, industrial SO2 discharges, employment, and expenditure on science

and technology. If the results do not change substantially, we can conclude that the selection of

the predictors does not drive our SCM results.

Notes: The figure shows the results of examining the sensitivity to different predictor sets on CO2 emissions
per capita and GDP CO2 intensity using a staggered synthetic control method. Effects are normalised relative
to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE 2.6: Robustness checks – changing predictor sets

Table 2.8 and Figure 2.6 present the results of our sensitivity analysis to the different predictor sets.

We find that including or excluding predictors only marginally changes the point estimates, and no

estimate comes close to being significant. Overall, this exercise shows that our results are extremely

robust across predictor sets.

We next look into possible differential effects across the first two waves of the LCCP that might be

hidden by the staggered treatment analysis of Table 2.3. We replicate our previous analysis sep-

arately for each wave. Panel A and B in Table 2.9 show the estimates for the treatment effects on

CO2 emissions per capita and the CO2 intensity of GDP for the different waves.24 The estimates are

broadly consistent with our baseline results above in that they confirm that the LCCP had no sta-

tistically significant effect in the first wave for both outcomes, and for the carbon intensity of GDP

in the second wave. The coefficient for emissions per capita in the second wave, however, is much
24See Figures D.7 and D.8 in Appendix for the synthetic control fits.
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TABLE 2.8: Robustness checks – changing predictor sets

Baseline S1 S2 S3 S4 S5 S6

CO2 emissions per capita -0.236
(0.223)

-0.081
(0.209)

-0.266
(0.204)

-0.274
(0.216)

-0.221
(0.227)

-0.241
(0.226)

-0.241
(0.280)

GDP CO2 intensity -0.034
(0.087)

-0.058
(0.135)

0.010
(0.095)

-0.015
(0.108)

-0.008
(0.087)

-0.041
(0.096)

-0.016
(0.099)

Notes: (i) The table displays the estimates of examining the sensitivity to different predictor sets on
CO2 emissions per capita and GDP CO2 intensity for the first two waves of the LCCP using staggered
synthetic control method. (ii) *, **, *** indicate 10%, 5% and 1% statistical significance, respec-
tively.
Baseline: Predictor set as in the main results.
S1: Only outcome variables in the pre-treatment periods as predictors.
S2: Outcome variables and GDP per capita as predictors.
S3: Outcome variables, GDP per capita and industrialisation rate as predictors.
S4: Outcome variables, GDP per capita, industrialisation rate and social fixed asset investment as
predictors.
S5: Outcome variables, GDP per capita, industrialisation rate, social fixed asset investment, indus-
trial SO2 discharge and employment predictors.
S6: Outcome variables, GDP per capita, industrialisation rate, social fixed asset investment, indus-
trial SO2 discharge, employment and expenditure on science and technology as predictors.

larger than the one in the baseline and marginally significant, with a p-value of 0.085. While these

results per se do not change our overall assessment of the policy, it might suggest that any benefits

of the LCCP are rather muted in the short to medium term but might take longer to materialise.

The difficulty with this type of reasoning, of course, is that the counterfactual might become rather

less convincing over longer periods of time, akin to a violation of the Stable Unit Treatment Value

Assumption (SUTVA).

As a further test for the robustness of our results, we now distinguish between cities that are as-

signed to treatment directly (which we refer to as city-level treatment) versus cities that are as-

signed treatment status as part of a province-level treatment assignment. The rationale for this

further test is the two types of treatments might differ with respect to the enforcement pressure.25

Table 2.10 reports on the outcome of this test, showing that the treatment effect is insignificant,

irrespective of the level of their assignment into treatment.26

Our next robustness check is conducted to ensure that our insignificant results do not arise because
25We thank one anonymous reviewer for suggesting this additional test.
26See Figures D.9 and D.10 in Appendix for the synthetic control fits.
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TABLE 2.9: Checking for robustness — results for individual waves

ATT estimate Std. err. p-value

Panel A: LCCP first wave
CO2 emissions per capita -0.274 0.340 0.420
GDP CO2 intensity 0.050 0.146 0.732

Panel B: LCCP second wave
CO2 emissions per capita -0.511* 0.297 0.085
GDP CO2 intensity 0.010 0.114 0.930

Notes: (i) The table displays the estimates of the synthetic control
method on CO2 emissions per capita and GDP CO2 intensity for indi-
vidual waves of the LCCP. Panel A shows the results of the first wave;
panel B shows the results of the second wave. (ii) *, **, *** indicate
10%, 5% and 1% statistical significance, respectively.

TABLE 2.10: Checking for robustness – heterogeneous treatment levels

ATT estimate Std. err. p-value

Panel A: City-level treatment
CO2 emissions per capita -0.410 0.316 0.195
GDP CO2 intensity -0.012 0.084 0.882

Panel B: Province-level treatment
CO2 emissions per capita -0.248 0.496 0.617
GDP CO2 intensity -0.036 0.124 0.769

Notes: (i) The table displays the estimates in different administrative levels
on CO2 emissions per capita and GDP CO2 intensity for the first two waves
of the LCCP using staggered synthetic control method. Panel A shows the
results of the city-level treatment; panel B shows the results of the province-
level treatment. (ii) *, **, *** indicate 10%, 5% and 1% statistical signifi-
cance, respectively.

of an averaging of heterogeneous treatment effects across units. In particular, we are concerned

that, given the significant differences that exist across more developed regions and less developed

ones in China, our aggregate results might not be very informative as to the actual impact of the

LCCP. We, therefore, group the treated cities by affluence level and by geographical position be-

fore running our SCM tests again separately for each group – Table D.3 in Appendix D provides the

details.

Starting with the results by income level, we use the cities’ GDP per capita to proxy for the units’

level of economic development, grouping them by mean GDP per capita between 2003 and 2017.
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Specifically, we define three groups: cities with mean GDP per capita smaller than 35K CNY are

defined as low-income cities; those between 35K and 65K CNY are defined as middle-income cities;

those in excess of 65K CNY are defined as high-income cities.

Figure 2.7 – the estimates can be found in Panel A of Table D.2 in Appendix D – reports the results of

this exercise.27 Once again, the treatment effects remain clearly insignificant across all groups for

both outcome variables although the precision of the estimates varies greatly.

Notes: The figure shows the results of differential effects in cities with different affluence levels on CO2 emis-
sions per capita and GDP CO2 intensity using the staggered synthetic control method.

FIGURE 2.7: Checking for robustness -– cities with different affluence levels

We now turn to possible heterogeneous impacts across different regions in China. Chinese regions

differ substantially from each other by their different degree of reliance on coal, and the quality of

their infrastructures, for example. These differences make it likely that carbon emissions mitigation

would happen at different rates. We classify the treated cities into regions according to the frame-

work for Chinese human geography proposed by Fang et al. (2017). Based on the cities’ location,

we are able to estimate treatment effects across seven regions.

Figure 2.8 – and Panel B of Table D.2 in Appendix D – reports the results of this analysis.28 Also in

this case, the results suggest that the LCCP had no significant effect on carbon intensity.

Lastly, we explore whether resource-based cities behave differently from non-resource-based cities.

We define cities as resource-based if their dominant industries are based on the exploitation and
27See Figures D.11 - D.13 in Appendix for the synthetic control fits.
28See Figures D.14 - D.20 in Appendix for the synthetic control fits.
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Notes: The figure shows the results of differential effects in cities in different regions on CO2 emissions per
capita and GDP CO2 intensity using the staggered synthetic control method.

FIGURE 2.8: Checking for robustness -– cities in different geographical regions

Notes: The figure shows the results of the differential effects on resource-based and non-resource-based
cities’ CO2 emissions per capita and GDP CO2 intensity using the staggered synthetic control method.

FIGURE 2.9: Checking for robustness -– resource-based and non-resource-based
cities

processing of local natural resources, based on the classification contained in the National Sus-

tainable Development Plan for Resource-based Cities (2013–2020) issued by the State Council.29

We perform SCMs separately for each group.
29See the Development Plan at http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm (in Chinese). 262

administrative units were classified as resource-based cities, including 126 prefecture-level divisions, 120 county-level
divisions, and 16 districts.

http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm
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Figure 2.9 and Panel C of Table D.2 present the results.30 The estimated treatment effects are in-

significant for both categories and outcomes, again suggesting no evidence of any significant effect.

Having come so far, we are confident that our identification strategy is correct and that the method-

ology we deploy is appropriate for the case study at hand. We are, however, also conscious that,

while the data we used so far has been extensively used in the literature, they are far from perfect.

Indeed, the county-level CO2 emission inventories our data are constructed from might be prob-

lematic, as they are down-scaled to the county level starting from provincial carbon emissions es-

timates based on nighttime light data. One of the problems, of course, is that nighttime light data

are only able to offer a direct proxy for the electricity used for illumination and any other extrapola-

tion (to the level of economic activity or the overall energy demand and carbon emissions) is at best

the result of a noisy procedure (Shan et al., 2018a,b, 2020). Fortunately, an alternative is available

in the form of consumption-based CO2 emissions estimates using the IPCC guidelines with updated

emission factors from survey studies in China.31 The energy consumption data necessary to com-

pile the new emission inventories are collected from the respective city-level statistical yearbook

(e.g. Beijing Municipal Bureau of Statistics, 2021; Shanghai Municipal Bureau of Statistics, 2021),

which also allows us to decompose the aggregate emissions into emissions from 17 different fossil

fuels, 47 socioeconomic sectors, and cement production. In this section, we use these alternative

emission inventories to examine the sensitivity of our results to changes in emissions data.

Using this alternative data presents us with a trade-off, however. On the one hand, the data have

been shown to be more accurate and reliable; on the other hand, by relying on city-level energy con-

sumption estimates for its construction, it only allows the construction of a narrower and shorter

panel dataset. The new dataset covers the period 2005-2016 and a total of 122 cities (45 treated,

77 donor units). We report the descriptive statistics in Table 2.11, alongside the corresponding de-

scriptive statistics from our original dataset. Overall, the two sets of emission data appear notice-

ably different, especially in terms of the minimum-maximum spread. This is likely because the orig-

inal emissions data obtained by downscaling the nighttime light data may average out the extreme

values.

We examine the sensitivity of our results to using different datasets by applying the SCM using the
30See Figures D.21 and D.22 in Appendix for the synthetic control fits.
31See Appendix B for a discussion of how this inventory is constructed.
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TABLE 2.11: Comparison of emissions data between different sources

Mean Std. dev. Min. Max. Obs.

Panel A: Cities received treatment
IPCC Guidelines:
CO2 emissions per capita (ton/person) 6.94 4.72 0.51 39.74 540
GDP CO2 intensity (ton/10K CNY) 1.97 1.44 0.35 10.27 540
Nighttime light:
CO2 emissions per capita (ton/person) 6.13 2.71 1.73 14.05 540
GDP CO2 intensity (ton/10K CNY) 1.75 0.91 0.31 5.87 540

Panel B: Donor units
IPCC Guidelines:
CO2 emissions per capita (ton/person) 12.90 19.75 0.53 177.34 924
GDP CO2 intensity (ton/10K CNY) 3.17 3.29 0.37 28.63 924
Nighttime light:
CO2 emissions per capita (ton/person) 8.24 7.01 1.14 53.54 924
GDP CO2 intensity (ton/10K CNY) 2.24 1.28 0.57 10.99 924

Notes: The table compares the means, standard deviations, minimum and maximum
values as well as the number of observations using data collected using the IPCC
Guidelines and data based on nighttime light data. Panel A displays the values of the
pilot cities. Panel B displays the values of the never-treated cities.

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity, using outcome variables calculated based on the IPCC Guidelines using city-level
statistics on energy use.

FIGURE 2.10: Checking for robustness – alternative emissions data

IPCC data as the basis to construct alternative outcome variables. For comparability, we use the

same covariates and definition of the treatment group and exclude cities regulated by China’s ETS
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TABLE 2.12: Checking for robustness – alternative emissions data

ATT estimate Std. err. p-value

Panel A: Staggered estimation
CO2 emissions per capita 0.148 1.080 0.891
GDP CO2 intensity 0.085 0.239 0.721

Panel B: LCCP first wave
CO2 emissions per capita -0.992 0.959 0.301
GDP CO2 intensity -0.103 0.237 0.664

Panel C: LCCP second wave
CO2 emissions per capita 1.005 1.939 0.604
GDP CO2 intensity 0.262 0.383 0.494

Notes: (i) The table displays the estimates of the staggered syn-
thetic control method on CO2 emissions per capita and GDP CO2

intensity for the first two waves of the LCCP. The outcome vari-
ables are calculated based on the IPCC Guidelines using city-level
statistics on energy use. (ii) *, **, *** indicate 10%, 5% and 1% sta-
tistical significance, respectively.

pilots or whose predictors do not fall in the convex hull.32 Figure 2.10 and Table 2.12 present the

results.33 Despite the change in data, the results are consistent with those in Figure 2.4 in that

the treatment effects are clearly insignificant. The only difference of relevance is that using this

alternative data, the marginal significance of the treatment effect on per-capita emissions in the

second wave vanishes. To conclude this section, we believe that our robustness checks support

the idea that our main results are correct in that the LCCP had negligible effects on the treated

cities.

2.5 Discussion and sectoral analysis

Until now, we have focused our attention on gauging the effect of the LCCP on two key variables

of interest in climate policy debates, namely CO2 emissions per capita and the carbon intensity of

GDP. Consistently, our efforts in this chapter show that the introduction of this pilot scheme had

no significant differential effect on the treated cities. Indeed, there seems to be no doubt that the

effect of the policy has been negligible.
32We exclude 25 ETS-regulated cities and two outliers (Suzhou and Qingdao) from the sample. After the exclusion, we

have 18 treated units and 77 donor units left.
33See Figures D.23 and D.24 in Appendix for the synthetic control fits for individual waves.
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In this section, we focus on a few potential channels that we would expect to underpin the ‘demon-

stration’ effect expected of the policy. In particular, we investigate signs of an increase in invest-

ment activity in treated cities versus their untreated counterparts. We look for investments in both

physical and knowledge capital as we would expect that the LCCP would provide incentives to in-

novation in treated areas, and/or that older machinery and infrastructure would need replacing to

support a low-carbon transition.

We use data on ‘Expenditure on Science and Technology’ and ‘Social fixed asset investment’ as

proxies for the type of investment activities discussed above. Table 2.13 reports the results of our

staggered synthetic control estimations.34 We find no evidence that LCCP cities are investing more

than other cities, at least at this level of aggregation.

TABLE 2.13: Expenditure on science and technology and social fixed capital

ATT estimate Std. err. p-value

Expenditure on science and technology 0.005 0.032 0.880
Social fixed asset investment 0.551 0.502 0.272

Notes: (i) The table displays the estimates of the staggered synthetic control
method on each of the outcomes for the first two waves of the LCCP on a re-
stricted sample that excludes all the cities taking part in the ETS pilots. (ii) *, **,
*** indicate 10%, 5% and 1% statistical significance, respectively.

One possible explanation for this pattern could be that low-carbon investments might have simply

crowded out other types of investments, leaving the total unchanged. Unfortunately, we have no

disaggregated investment data to test for this.

Even if aggregate investment remained constant, we should be able to infer the presence of low-

carbon structural changes via changes in sectoral emissions. If any sector became relatively greener

in LCCP cities than in control ones, we should observe changes in CO2 emissions patterns across

sectors. Similarly, any greening of economic activity should be flagged up by fuel switching, e.g.

moving from coal to gas in manufacturing or a reduction in oil consumption in the transportation

sector. The data constructed following the IPCC methodology discussed in the previous section
34We exclude four treated cities in evaluating the impact of the LCCP on investment in science and technology. These

cities exhibit large numbers on this outcome, which we are unable to find appropriate counterfactuals. See Figure D.25
in Appendix for the synthetic control fits
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provides an unprecedented wealth of information in this context. We next use this data to present

a sectoral analysis of the impact of the LCCP.

TABLE 2.14: Sectoral analysis by fuel type

Sectors
CO2 emissions

Total Coal products Gas Oil products

Agriculture -0.060
(0.044)

-0.021
(0.039)

0.000
(0.001)

0.011
(0.030)

Mining -0.673
(0.656)

-0.790
(0.622)

0.026
(0.019)

-0.006
(0.009)

Light manufacturing -0.161
(0.182)

-0.078
(0.145)

-0.002
(0.036)

-0.008
(0.012)

Heavy manufacturing -0.318
(1.364)

-0.314
(1.034)

0.121
(0.350)

-0.156
(0.157)

High-tech manufacturing 0.005
(0.035)

0.011
(0.036)

-0.001
(0.006)

-0.006
(0.005)

Energy supply sector -3.106
(2.033)

-3.239*
(1.966)

0.077
(0.093)

0.003
(0.004)

Construction -0.004
(0.039)

-0.012
(0.013)

-0.001
(0.001)

0.021
(0.019)

Transportation -0.062
(0.190)

-0.022
(0.023)

-0.008
(0.017)

-0.161
(0.268)

Service sector -0.046
(0.204)

-0.127
(0.183)

0.035
(0.028)

0.045
(0.053)

Household usage 0.049
(0.187)

-0.028
(0.129)

-0.004
(0.040)

-0.060
(0.047)

Notes: (i) The table shows the treatment effects on CO2 emissions for the first
two waves of the LCCP using the staggered synthetic control method. Results
are divided by fuel type and economic sector. (ii) *, **, *** indicate 10%, 5% and
1% statistical significance, respectively.

Given the lack of sector-specific GDP data, we focus here on sectoral-level CO2 emissions as our

outcome variable of interest. In what follows, for ease of exposition, we group the 47 socioeconomic

sectors and 17 fossil fuels available to us into broader categories – see Table D.4 and Table D.5 in

Appendix D for the details. As before, we exclude the ETS-regulated cities and the cities whose

predictors do not fall in the convex hull of the donor set.35

35Apart from the ETS-regulated cities, we exclude Shenyang from the sample for the evaluation of CO2 emissions from
oil products in agriculture; Shijiazhuang for the evaluation of coal products in light manufacturing and the evaluation
of oil products in high-tech manufacturing; Ningbo and Wenzhou for the evaluation of oil products in the power supply
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Table 2.14 summarises the synthetic control estimates for the impact of the LCCP on CO2 emissions

for each broader sector, by fuel. Even at this level of disaggregation, we fail to find any evidence of

a low-carbon transition brought about by the LCCP. This is surprising, given the degree of flexibility

afforded to each city to focus its efforts on specific sectors, or on specific energy uses.

In fact, reading through the details contained in the online agendas published by the LCCP pilot

cities, we found a surprising degree of consistency in the type of targets they set (See also Khanna

et al., 2014). Figure 2.11 provides the distribution of the sectoral targets across the 11 cities for

which we are able to locate an online agenda. Most of these cities published targets aimed at pro-

moting the service sector, decarbonising the public transportation system, boosting low-carbon

construction and introducing green nudges.36

Notes: The figure shows the distribution of cities according to their LCCP sectoral mitigation tar-
gets, based on the information contained in their online agendas.

FIGURE 2.11: Distribution of cities by LCCP sectoral-level target

Our next step is to focus on the cities whose agendas we used to construct Figure 2.11. Using this

(admittedly small) set of cities, we once again drill down to the sector/fuel level. Table 2.15 provides

the results of this more focused analysis, including a sectoral-level analysis by a level-of-treatment

split, similar to our discussion in Table 2.10.

sector; Shijiazhuang and Xi’an for the evaluation of gas in the service industry; Shenyang, Dalian and Qingdao for the
evaluation of oil products in the service industry; Hangzhou and Xi’an for the evaluation of gas in household usage.
These cities are all outliers based on the selected predictors.

36As discussed in the footnote in section 2.2, for the cities that did not publish online agendas or their online agendas
are not traceable, we contacted the regional DRC for additional information. For these cities, however, we were unable to
distinguish the details of their sectoral targets, either because they do not have specific ones, or because their agendas
have been subsumed into the 12th FYP.
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TABLE 2.15: Sectoral analyses by fuel type

Sectors
CO2 emissions

Total Coal products Gas Oil products

Agriculture -0.024
(0.070)

0.022
(0.052)

0.000
(0.001)

0.031
(0.052)

Heavy Manufacturing 3.135
(2.705)

2.197
(1.928)

0.606
(0.590)

-0.220
(0.360)

High-tech Manufacturing 0.046
(0.062)

0.046
(0.057)

0.007
(0.011)

0.001
(0.007)

Construction 0.023
(0.069)

-0.005
(0.019)

-0.002
(0.002)

0.027
(0.026)

Transportation -0.383*
(0.226)

-0.020
(0.039)

0.005
(0.031)

-0.321
(0.286)

Service sector 0.100
(0.274)

0.012
(0.257)

0.060**
(0.029)

0.064
(0.073)

Household usage 0.308
(0.249)

0.071
(0.167)

0.023
(0.060)

-0.026
(0.084)

Notes: The table shows the treatment effects on CO2 emissions for the first two
waves of the Low Carbon-City Pilot using the staggered synthetic control method.
Results are divided by fuel type and economic sector. *, **, *** indicate 10%, 5%
and 1% statistical significance, respectively.

Overall, while acknowledging that the data we use represent just a subset of the overall population

of treated cities, using consumption-based data reveals the surprising result that the LCCP had no

statistically significant effect on sector-level emissions across China, even in sectors that were set

clear targets. The only exception is a statistically significant increase in emissions related to natural

gas use in the Service sector, which might signal some degree of fuel switching to a cleaner fuel. In-

terestingly, also the treatment-level analysis also returns null results, suggesting that the intensity

of enforcement did not play a role either.

Coming towards the end of our analysis, we must conclude that the LCCP had no significant impact

on the carbon emissions of the treated cities, either at an aggregate level or at a sectoral level. We

want to conclude our analysis by checking whether we can find evidence that the LCCP might have

led to an increase in the costs of production in treated cities. Not having a direct way to assess

these costs, we look at the level of employment across treated and non-treated cities, as well as

their GDP. Our last results, in Table 2.16 show that, neither in the full sample nor among the cities
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that have published online agendas, we can find any evidence that the LCCP made any difference

to the treated cities.37

TABLE 2.16: Staggered synthetic control estimation –
other outcomes

ATT estimate Std. err. p-value

Panel A: Full sample
GDP 0.641 3.558 0.857
GDP per capita 0.134 0.129 0.298
Employment -0.039 0.056 0.488

Panel B: Cities with published agendas
GDP -0.936 4.738 0.843
GDP per capita 0.156 0.146 0.285
Employment -0.047 0.053 0.375

Notes: (i) The table displays the estimates of the stag-
gered synthetic control method on other outcomes for
the first two waves of the LCCP on a restricted sample
that excludes all the cities taking part in the ETS pilots.
(ii) *, **, *** indicate 10%, 5% and 1% statistical signifi-
cance, respectively.

2.6 Concluding remarks

In this chapter, we set out to evaluate the effectiveness of early climate policy efforts in the largest

emerging economy in the world. We focus on the LCCP because it was the first policy implemented

to mitigate climate change and because it was hailed as the first significant step taken by the Chi-

nese authorities in the transition to a more sustainable development path. From this point of view,

a careful assessment of the policy’s impacts is essential to make (further) progress towards miti-

gating climate change. Our focus is, moreover, motivated by the fact that, despite its idiosyncratic

design, the LCCP has been recognised as a success story in much of the literature (e.g. Feng et al.,

2021; Hong et al., 2021; Huo et al., 2022; Tu et al., 2022). Our results, unfortunately, hardly sup-

port this optimistic view. We find no evidence that the LCCP led to a significant reduction in carbon

emissions per capita, nor did it have a significant impact on the carbon intensity of GDP.
37As previously mentioned, we exclude treated cities exhibiting large values in the outcomes of interest for which we

are unable to find appropriate counterfactuals. In Panel A, two cities are excluded when evaluating the impact of the
LCCP on GDP, and one city is excluded when assessing the impact on employment. See Figures D.26 - D.28 in Appendix
for the synthetic control fits.
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Our results contrast with the existing literature on the LCCP that emphasises a small but generally

positive impact of the pilot.38 We are confident, however, that our work benefits from a more care-

ful identification strategy and better accounts for the impacts of overlapping policies. In particular,

our use of the synthetic control method increases our confidence that our counterfactuals are not

biased by the non-random nature of the selection of the cities into the pilot. Furthermore, we are

particularly careful in controlling for the impacts of China’s ETS pilots, which partially overlap with

the LCCP, and for the measures contained in the 12th and 13th Five-Year Plans, both of which have

received little attention in the literature and might have been important confounding factors in the

results published to date.

In our analysis, besides considering the main outcomes of interest, we forensically discuss both the

identification strategy and the robustness of the baseline results. We also include an analysis of the

main channels through which the demonstration role of the policy would likely play out. We find

no evidence that the LCCP led to an increase in investment in either physical capital or science and

technology, both of which would be expected to play a key role in any low-carbon transitions. We

also test for evidence that the LCCP might have put pressure on pilot cities through an increase in

production costs. Indeed, neither the level of economic activity nor the level of employment shows

any deviation from the relevant counterfactual. Using the rich sectoral level energy consumption

data collected from the respective city-level statistical yearbook (e.g. Beijing Municipal Bureau of

Statistics, 2021; Shanghai Municipal Bureau of Statistics, 2021), we are able to construct emissions

data for different economic sectors and by fossil fuel type. Using this data we are the first to be able

to discuss the sectoral impact of the LCCP. Our analysis shows that, even at such a disaggregated

level, we cannot identify any impact of the LCCP.

Overall, our work leads us to conclude that the measures introduced by the treated cities as part

of the LCCP failed to generate a differential response by the economic agents operating in their

jurisdictions. That is not to say, of course, that China’s climate policy efforts had no mitigating

effects, based on our results, however, we can clearly conclude that – in the context of a country

that was starting to ready itself for a lower-carbon future – the LCCP failed to mobilise sufficient

resources, political attention and creativity to galvanise a low-carbon transition. Given the general

lack of evidence of any significant change over time, across regions and economic sectors, we must
38It is fair to point out that our results also contradict the findings of the contributions that find significant and negative

impacts linked to the LCCP (e.g Zhou and Zhou, 2021; Feng et al., 2021).
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conclude that the LCCP’s design was simply not conducive to generating sufficient incentives to

cause a significant response across the economy.

While our results run counter the existing literature, our conclusions in fact are well aligned with

the theoretical priors on the likely impacts of the LCCP. The LCCP was designed and introduced

fundamentally as a voluntary scheme, which the administrators of Chinese cities might sign up to.

The policy provided only vague ambitions to ‘demonstrate pathways’ to a transition to the low-

carbon economy. The scheme also lacked explicit mandates in terms of the instruments to use and

had no specific quantitative target. The policy also lacked any actual enforcement mechanism. On

all these grounds, we would indeed not expect the policy to have made much of a difference to the

choices of the agents in the economy. From this point of view, the main lesson to be drawn from

our analysis is that, even among emerging economies, the design of effective environmental policy

requires the careful setting of transparent and quantifiable targets, the introduction of economic

instruments that affect economic incentives, and credible enforcement mechanisms.
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Chapter 3

Climate policy and environmental

efficiency

3.1 Introduction

As the climate emergency takes centre stage, calls for the introduction of effective climate poli-

cies have been growing louder across the world (Shukla et al., 2022). With most of the growth in

global energy demand – and therefore emissions – over the coming decades expected to originate

in emerging markets (Wei et al., 2012), an understanding of whether climate policies are leading to

a more efficient use of carbon resources in the fastest-growing emerging economies is particularly

important to the debate on how to best approach the issue of mitigation.

Built on the background that we introduced in Chapter 2, in this chapter we continue our analysis

of the LCCP on low-carbon economy transition, instead focusing on its impact on environmental

efficiency measured with a stochastic frontier analysis (SFA) framework. By allowing for explicit

trade-offs among inputs and outputs, it provides a more holistic view of the overall environmental

efficiency performance of the units and a more nuanced understanding of the transition to a low-

carbon economy.

The existing literature on the LCCP provides results as Yu et al. (2019), Hong et al. (2021) and Huo

et al. (2022) to the improvements of the LCCP on carbon emissions, whereas Zhang et al. (2022a)

provides more convincing causal evidence that the LCCP had no impact. Ma et al. (2021); Yang

(2023) support that the LCCP has led to significant increases on low carbon innovation. More closely
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related to our focus here, Cheng et al. (2019) investigate the impact of the LCCP on efficiency growth,

using a prefecture-level panel dataset over the period 2007-2016. They use data envelopment anal-

ysis (DEA) with a slack-based approach to measure environmental efficiency, with CO2 emissions as

undesirable output. Based on a standard difference-in-difference (DiD) framework, they find that

the LCCP significantly promoted efficiency growth. Methodologies adopted by Liu et al. (2020a), Fu

et al. (2021), Yu et al. (2021), Shi and Xu (2022), Wen et al. (2022), Zhang et al. (2022b), Wang et al.

(2023) and Yang et al. (2023) are broadly consistent with Cheng et al. (2019), all suggesting signif-

icant increases on environmental efficiencies. Chen et al. (2021) instead investigate the impact of

the LCCP on productivity over the period 2005-2015. They estimate productivity based on the uni-

form semi-parametric estimation method proposed by Olley and Pakes (1992). Using a standard

DiD framework with propensity score matching, they find that the LCCP has significantly increased

firms’ productivity.

While these contributions seem to suggest favourable outcomes delivered by the LCCP, the iden-

tification frameworks proposed in the literature so far seem worth challenging on at least three

grounds. First, by its very nature as a voluntary measure, the assignment to treatment within the

LCCP cannot be assumed to be random by any stretch of the imagination. Second, recent advances

in econometric theory advise against using the standard two-way fixed effects method in the pres-

ence of heterogeneous treatment effects (e.g. Goodman-Bacon, 2021; Baker et al., 2022). To the

best of our knowledge, most – if not all – studies fail to recognise the staggered nature of the LCCP.

Such modelling issue might bias the estimated treatment effect in the existing literature.1 Third, as

claimed by the Chinese government, one of the aims of the LCCP is to demonstrate the low-carbon

transition to other non-pilot cities (NCSC, 2020, in Chinese). Constructing a meaningful counterfac-

tual in this context is therefore questionable, due to the potential diffusion of low-carbon process

from the pilots to non-pilot cities.

In this chapter, we revisit the impact of the LCCP by carefully accounting for the potential biases

mentioned above. We first assemble a dataset including socioeconomic measurements and CO2

emissions for 260 cities over the period 2003-2016. We then specify an enhanced hyperbolic dis-

tance function proposed by Cuesta et al. (2009), and estimate the environmental efficiency using
1Given the staggered adoption and the substantial differences in the treated units across waves, heterogeneous treat-

ment effects are indeed likely.
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SFA. To estimate the treatment effect while controlling for the learning effect, we adopt the timing-

based approach suggested by Miller (2023), using cities treated earlier or later as controls for one

another. We use dynamic DiD to start our empirical investigation, then move on to employing the

partially pooled synthetic control method (SCM) proposed by Ben-Michael et al. (2022) to control

for the selection into treatment. Finally, we conduct several robustness checks to show that our

empirical investigation is reliable.

We contribute to the literature in several ways. First, we build on the recent advances in the litera-

ture on distance function and efficiency to provide a more accurate measurement of environmental

efficiency than the ones currently reported in the literature. Specifically, we adopt the enhanced

hyperbolic distance function approach of Cuesta et al. (2009) and Mamardashvili et al. (2016), al-

lowing the units to contract inputs and undesirable output, at the same time expanding the desir-

able output. In addition, contrary to the literature that uses DEA to estimate efficiency, we use SFA,

which allows us to distinguish statistical noise from inefficiency. Second, we introduce a more care-

ful identification framework that accounts for the learning effect of the treatment while controlling

for the selection bias. The timing-based approach also allows us to gauge the learning effect. To

the best of our knowledge, we are the first to investigate such unique policy design.

Contrary to the existing literature, our analysis leads us to conclude that the LCCP did not signifi-

cantly increase treated cities’ environmental efficiency. Nevertheless, we find evidence of a positive

learning effect in the second wave of the LCCP, although it is not persistent and only significant in

the short run. We conclude that the LCCP might not be stringent enough to promote a consistent

transition to a low-carbon economy.

This chapter is organised as follows. We explain the methodology and data in Section 3.2, and then

present our results in Section 3.3. Section 3.4 concludes.

3.2 Methodologies

3.2.1 Environmental efficiency

Following recent advances in the field of productivity analysis, we exploit the enhanced hyperbolic

distance function introduced by Färe et al. (1985) and Färe et al. (1989), and adapted by Cuesta
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et al. (2009) and Mamardashvili et al. (2016) to measure environmental efficiency. We measure the

outcome to the production frontier following a hyperbolic path by contracting the use of input and

undesirable output, at the same time increasing the desirable output.

FIGURE 3.1: Graphical demonstration of the allocative adjustment

Figure 3.1 illustrates the methodology. Unit C sits inside of the production possibility set and is

therefore technically inefficient. From the output-oriented point of view, the unit can increase its

desirable output from YC to YA while holding the use of input XC unchanged. Similarly, under

the input-oriented approach the unit might decrease its input use from XC to XB , while holding

the level of output YC unchanged. The economic implications are that the output-orientation is

consistent with the revenue-maximisation behaviour, whereas the input-orientation links to the

cost-minimisation behaviour (Cuesta and Zofío, 2005). The projection of interest in this chapter

performs a hyperbolic path onto the frontier D , by contracting the input and undesirable output

from XC to XD , and at the same time increases its desirable output fromYC toYD .

In what follows, we specify the enhanced hyperbolic distance function and estimate the efficiency

following Cuesta et al. (2009) as:

D (x , y , b) = min
θ

{θ : (θx , y
θ
, θb) ∈ T }, (3.1)
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whereT is the production possibility set, and θ is the efficiency of interest that equiproportionately

expands desirable output y and contract input x and undesirable output b .

Following Mamardashvili et al. (2016), we define the enhanced hyperbolic efficiency as:

HEi t = D (x , y , b). (3.2)

Using the almost homogeneity property yields:

D ( x
θ
, θy ,

b

θ
) = θD (x , y , b) [ θ > 0. (3.3)

Letting θ = 1
yM

, where yM refers to the M t h output, we have

D (x · yM ,
y

yM
, b · yM ) = 1

yM
· D (x , y , b). (3.4)

After taking logarithms on both sides, we obtain

l nD (x , y , b) = l nD (x · yM ,
y

yM
, b · yM ) + l nyM . (3.5)

Substitute equation (5) back into equation (2) yields

−l nyM = l nD (x · yM ,
y

yM
, b · yM ) − l nHEi t + vi t , (3.6)

which is an estimable form of the enhanced hyperbolic distance function, where vi t is statistical

noise.

The enhanced hyperbolic distance function can be estimated in either a parametric or a non-parametric

framework. DEA proposed by Charnes et al. (1978) is commonly used when it comes to non-parametric

framework. In contrast, parametric estimation relies on SFA. While DEA does not require a func-

tional form, its deterministic nature makes separating efficiency change from random shock impos-

sible. In addition, DEA estimates are serial-correlated, which complicates inference in the potential

second stage (Simar and Wilson, 2007).

We specify a translog hyperbolic distance function with three inputs xk i t including labor, capital



50 Chapter 3. Climate policy and environmental efficiency

and energy with k ∈ {1, 2, 3}, GDP as the desirable output yi t and CO2 emissions as the undesirable

output bi t :

−l nyi t = α0 +
3∑

k=1

αk l n (xk i t yi t ) +
1

2

3∑
k=1

3∑
l=1

αk l l n (xk i t yi t )l n (x l i t yi t )

+ βb l n (bi t yi t ) +
1

2
βbb (l n (bi t yi t ))2 +

3∑
k=1

βk b l n (xk i t yi t )l n (bi t yi t ) + ϵi t ,

(3.7)

where i identifies the different cities and t for the different time periods.

To control for intertemporal technical change, we augment the hyperbolic distance function with

a time trend t .2 We assume that the technical change is associated with the production factors:

−l nyi t = α0 +
3∑

k=1

αk l n (xk i t yi t ) +
1

2

3∑
k=1

3∑
l=1

αk l l n (xk i t yi t )l n (x l i t yi t )

+ βb l n (bi t yi t ) +
1

2
βbb (l n (bi t yi t ))2 +

3∑
k=1

βk b l n (xk i t yi t )l n (bi t yi t )

+ γt t +
1

2
γt t t

2 +
3∑

k=1

γk t t l n (xk i t yi t ) + ηt b t l n (bi t yi t ) + ϵi t .

(3.8)

The composed error term ϵi t comprises a non-negative inefficiency term ui t and a random noise

term vi t :

ϵi t = ui t + vi t . (3.9)

We estimate the enhanced hyperbolic distance function SFA, and measure the efficiency HEi t us-

ing the estimator proposed by Battese and Coelli (1988) in a maximum likelihood estimation frame-

work:

HEi t = E (e−ui t |ϵi t ). (3.10)

Following Orea et al. (2015), we centre the production inputs at the sample mean to facilitate con-

vergence. We assume a half-normal distribution for ui t and a normal distribution for vi t . Following
2Specifically, change in environmental efficiency is related to efficiency change and technical change, where the later

component may shift the production frontier which, makes the efficiency of interest less comparable across periods.
Our exercise here is equivalent to adding a year fixed effect in estimating the environmental efficiency, which allows the
efficiency estimation to be more accurate and comparable.
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Mamardashvili et al. (2016), we allow ui t and vi t to be heteroskedastic:

σ2
u,i t = ez

′
i
ρ, (3.11)

σ2
v ,i t = ew

′
i
τ , (3.12)

where zi and wi are the variables that respectively affect the variance of the environmental effi-

ciency and random noise, and ρ and τ are the vectors of parameters to be estimated. To explain

the variance of the environmental efficiency across cities, we use expenditure on science and tech-

nology, as it directly links to research and development activities (Xiong et al., 2020). We introduce

a regional indicator that indexes different geographical positions for different cities to explain the

variance of the random noise, following the regionalisation framework of China proposed by Fang

et al. (2017).

3.2.2 Data

We collect a range of socioeconomic measurements for 285 cities from 2003 to 2016 to measure the

efficiency and balance the systematic differences between the treated cities and weighted counter-

factuals. In particular, we extract GDP (billion CNY), GDP per capita (10 thousand CNY), employment

measured as people employed in urban units (million people), industrialisation rate measured by

the share of GDP from the secondary sector (%), social fixed asset investment (10 billion CNY), and

electricity usage (billion kWh) from the China City Statistical Yearbook (NBS, 2017). Monetary values

are normalised as constant 2010 CNY or USD.

While the above statistics provide us with rich city-level information, certain variables require addi-

tional calculations as they are not readily available. In particular, we need data on capital stock and

CO2 emissions to measure environmental efficiency. We estimate capital stock using the perpetual

inventory method, assuming a 4% depreciation rate, as suggested by Zhang (2008) and Jidong et al.

(2014):

Kt = It + (1 − δ)Kt−1, (3.13)
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where It is investment and δ refers to the constant depreciation rate of the capital stock. The initial

capital stock is estimated following Harberger (1988):

K0 =
I0

δ + g
, (3.14)

where I0 refers to the initial investment, and g refers to the average GDP growth rate over the study

period.

One of the challenge that we face is to find reliable emissions data. While the estimates of CO2

emissions based on the IPCC Guidelines are generally preferable, they are only available for a very

limited set of cities, due to the lack of complete city-level statistics. We resort to the CO2 emission

inventories provided by Chen et al. (2020) as an indicator of undesirable output. The data was esti-

mated based on nighttime light data from satellite imagery, including 2,735 counties and districts

in around 350 administrative divisions from 1997 to 2017.3 We obtain the data from the Carbon

Emission Accounts Datasets and aggregated the CO2 emissions at the city level (CEADs, 2020).

We then meticulously clean the data. First, we cross-check the data with prefectural and provincial

statistical yearbooks, which are accessed via the municipal bureau of statistics in different admin-

istrative divisions, to ensure the best accuracy. Second, for data quality assurance, we exclude 18

cities (five of which were treated by the first or the second wave of the LCCP) with substantial mis-

reported statistics from our sample. We also correct occasional missing and misreported values by

employing linear interpolation for electricity usage across 72 observations out of 3,836.

We estimate environmental efficiency using production inputs as employment, capital stock, and

electricity usage. We respectively use GDP and CO2 emissions as desirable output and undesir-

able output. Given our specification in function 3.8, a negative coefficient suggests that the vari-

able positively contributes to the efficiency of interest. Table 3.1 presents the frontier estimates

derived from the enhanced hyperbolic distance function, where the coefficients broadly have ex-

pected signs and tend to statistically significant.

To construct counterfactuals that closely match the treated cities, we use GDP per capita, industri-

alisation rate, social fixed asset investment, and CO2 emissions as additional predictors. A caveat of
3We decide not to use the final year of this emissions data, because the rules of compiling the China City Statistical

Yearbook changed in the year 2017. Some city-level statistics are therefor inconsistent and are not comparable across
years.
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TABLE 3.1: Frontier estimates

Variable Coefficient Std. err. p-value

α1 -0.154*** 0.004 0.000
α2 -0.281*** 0.005 0.000
α3 -0.056*** 0.002 0.000
α11 0.098*** 0.012 0.000
α12 -0.101*** 0.011 0.000
α13 0.016*** 0.005 0.001
α22 0.136*** 0.015 0.000
α23 -0.021*** 0.005 0.000
α33 -0.025*** 0.004 0.000
βb -0.037*** 0.004 0.000
βbb -0.039*** 0.011 0.001
β1b 0.018* 0.010 0.063
β2b -0.014 0.011 0.210
β3b 0.022*** 0.004 0.000
γt -0.001** 0.001 0.048
γt t 0.007*** 0.000 0.000
γ1t 0.000 0.001 0.886
γ2t -0.010*** 0.001 0.000
γ3t 0.004*** 0.000 0.000
ηt b 0.006*** 0.001 0.000
Constant -0.023* 0.012 0.055

σ2
u

R&D 0.139*** 0.000
Constant -5.844*** 0.565 0.055

σ2
v

Regionalisation 0.155*** 0.016 0.000
Constant -5.310*** 0.117 0.000

Note: (i) The table reports enhanced hyperbolic dis-
tance frontier estimates. Year fixed effects are in-
cluded in all estimations. (ii) *, **, *** indicate 10%, 5%
and 1% statistical significance, respectively. (iii) R&D
is an abbreviation for the expenditure on science and
technology.

creating reliable synthetic controls is that the pre-treatment outcome and predictors of the treated

unit should approximately fall into the convex hull of the donor units. In what follows, we exclude

eight treated cities from our sample. These cities significantly outperform the non-pilot ones along

many dimensions, which in no circumstances could we find counterfactuals. Moreover, as detailed

in Section 2.4.1 of Chapter 2, the policy overlap due to the China’s emission trading scheme (ETS)

pilots introduces significant confoundedness. Therefore, we exclude 32 ETS-regulated cities (of
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TABLE 3.2: Descriptive statistics

Mean Std. dev. Min Max N

Panel A. Descriptive statistics for the Wave I cities
Outcome variable:
Environmental efficiency 0.97 0.01 0.93 0.98 378
Socioeconomic measurements:
GDP (billion CNY) 111.82 131.65 5.06 965.16 378
GDP per capita (10 thousand CNY) 2.91 2.06 0.11 10.60 378
Employment (million people) 0.46 0.49 0.06 2.93 378
Industrialisation rate (%) 48.85 10.95 20.27 81.09 378
Electricity usage (billion kWh) 6.61 8.68 0.08 58.40 378
Social fixed asset investment (10 billion CNY) 7.68 9.07 0.26 51.41 378
CO2 emissions (million ton) 22.51 16.65 1.76 84.43 378

Panel B. Descriptive statistics for the Wave II cities
Outcome variable:
Environmental efficiency 0.96 0.01 0.94 0.98 280
Socioeconomic measurements:
GDP (billion CNY) 156.57 160.87 9.22 854.05 280
GDP per capita (10 thousand CNY) 3.34 2.03 0.42 10.29 280
Employment (million people) 0.48 0.37 0.06 1.75 280
Industrialisation rate (%) 46.66 10.68 18.57 81.09 280
Electricity usage (billion kWh) 6.77 6.83 0.23 41.66 280
Social fixed asset investment (10 billion CNY) 10.13 10.57 0.44 63.60 280
CO2 emissions (million ton) 29.60 22.40 2.70 99.84 280

Panel C. Descriptive statistics for the non-pilot cities
Outcome variable:
Environmental efficiency 0.96 0.01 0.92 0.98 2,226
Socioeconomic measurements:
GDP (billion CNY) 105.69 102.78 3.88 785.70 2,226
GDP per capita (10 thousand CNY) 2.84 2.32 0.23 20.24 2,226
Employment (million people) 0.35 0.28 0.04 2.21 2,226
Industrialisation rate (%) 49.19 11.85 2.66 90.97 2,226
Electricity usage (billion kWh) 4.72 5.87 0.08 56.51 2,226
Social fixed asset investment (10 billion CNY) 7.01 7.32 0.20 59.70 2,226
CO2 emissions (million ton) 21.69 16.70 1.63 108.48 2,226

Note: Table shows means, standard deviations, minimum values, maximum values and num-
ber of observations of outcome variable and socioeconomic measurements from 2003 to 2016.
Monetary values are normalised as constant 2010 CNY or USD.

which all were treated by the first or the second wave of the LCCP) for a clearer identification. Lastly,

we exclude 29 cities that were treated by the LCCP third wave implemented in 2017, to circumvent

any potential confoundedness introduced by the anticipation effect. Overall, we have 2,870 obser-

vations, including 46 treated and 159 non-pilot cities over the period 2003-2016.
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Panel A of Table 3.2 displays the statistics of the cities treated by the first wave (Wave I cities, here-

after); Panel B displays the statistics of the cities treated by the second wave (Wave II cities, here-

after); Panel C displays the statistics of the non-pilot cities.4 These three groups are comparable

and could serve as counterfactuals for each other, providing us an opportunity for the timing-based

approach that we will elaborate below.

3.2.3 Identification strategy

One of the primary motivations of launching the LCCP is to chart a viable path for transitioning

to a low-carbon economy. Experiences gleaned from high-income cities’ transitions may not be

directly applicable to low-income counterparts due to their idiosyncratic characteristics. There-

fore, the critical task of selecting the most suitable candidates becomes pivotal in propagating low-

carbon mitigation. As elaborated in the technical report published by the National Center for Cli-

mate Change Strategy and International Cooperation (NCSC), the diversity in social and economic

status is one of the key factors influencing the selection process (NCSC, 2013, in Chinese).

Another factor to consider is regional representativeness, which is linked to unobserved regional

differences not captured by social or economic indicators. For example, South and Northwest China

have distinct climate characteristics that influence the types of crops grown. These subtle distinc-

tions within industries can give rise to intricate cross-industry implications when implementing

low-carbon mitigation measures. In fact, the pilot cities were primarily concentrated in South and

East China, but are also dispersed throughout the country.

The fact that the selection into the treatment was affected by the aforementioned factors suggests

that the learning effect was factored in by the policy makers and that they introduced carbon miti-

gation process to diffuse to the non-pilot cities. Therefore, it is challenging to construct a meaning-

ful counterfactual in conventional wisdom, since the non-pilot cities are, in fact, partially treated.

Figure 3.2 displays the development trajectories for three different groups: the short dashed line

with triangles represents the Wave I cities; the long dashed line with squares represents the Wave

II cities; the solid line with circles represents the non-pilot cities. Overall, the pre-trends are ap-

proximately parallel across the three groups. When the trend for Wave I cities started to accelerate
4Note that Yan’an was treated twice, since it was treated at province-level in the first wave and city-level in the second

wave. We include this city in both Panel A and B, thus the sum of ’N’ is larger than the number of observations.
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after the introduction of the first wave, the trends for Wave II cities and the non-pilot remained un-

changed. The almost flat post-trend also suggests that the treatment effect might be stable over

the entire post-treatment period. Shortly after the introduction of the second wave, both Wave II

cities and the non-pilot cities experienced a noticeable short-term increase. This short-term effect

did not seem to persist, however, and completely disappeared in the final period.5

FIGURE 3.2: Mean environmental efficiency

The figure presented above seem to provide evidence that the trends of the earlier and later treated

groups offer reasonably suitable counterparts for each other. First, the non-pilot cities serve as a

reasonable counterfactual for the Wave I cities from 2003 to 2012, for which the non-pilot cities’

trends are virtually and continuously flat after the first wave, at least visibly showing no indication

of the learning effect being diffused. Second, the Wave I cities serve as a reasonable counterfactual

for the Wave II cities and for evaluating the learning effect from 2010 to 2016, for which all three

groups share a same treatment history within this period.

In what follows, we employ the timing-based approach recommended by Miller (2023). We select

two distinct time windows where cities treated earlier or later serve as controls for one another.

First, we evaluate the first wave of the LCCP using the time window that spans from 2003 to 2012,
5The fact that we do not observe such short-term increase after the introduction of the first wave, likely because of

the treatment levels. In Wave I, most cities were assigned treatment at province-level, whereas in Wave II, most cities
were assigned at city-level. Province-level treatment has larger jurisdictional area, which may increase the transaction
cost, therefore limiting the diffusion of low-carbon mitigation.
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where the non-pilot cities serve as controls. Second, we evaluate the second wave of the LCCP and

the learning effect using the time window that spans from 2010 to 2016, where the Wave I cities

serve as controls.

We employ the dynamic DiD as our first method to assess the effects of the LCCP. Following the

timing-based approach, we specify three dynamic DiD models. The first model evaluates the first

wave of the LCCP, which we formally express as

Yi t = α +
∑

−7≤k ≤2
k,−1

βW ave I
k × CitiesW ave I

i × TreatmentW ave I
t+k + δXi t + λi + θt + ϵi t . (3.15)

i includes Wave I cities and those non-pilot; t spans from 2003 to 2012. CitiesW ave I
i and TreatmentW ave I

t+k

are dummy variables that respectively index the Wave I cities (one if the city was treated by the first

wave and zero otherwise) and the introduction of the first wave (one if the first wave has been im-

plemented and zero otherwise). Xi t is a vector of city-level control variables. λi and θt are the

city-level and time fixed effects. ϵi t is the random error. The coefficient of interest is βW ave I
k

, which

we specify with leads and lags, and estimate relative to the year before the implementation, k = −1

The second model evaluates the second wave of the LCCP. The regression is expressed as

Yi ′t ′ = α +
∑

−2≤k ′≤4
k ′,−1

βW ave I I
k ′ × CitiesW ave I I

i ′ × TreatmentW ave I I
t ′+k ′ + δXi ′t ′ + λi ′ + θt ′ + ϵi ′t ′ . (3.16)

i ′ differs from i as it includes both Wave I and Wave II cities, where we use Wave I cities as controls.

βW ave I I
k ′ is the coefficient of interest, which we specify with different numbers of leads and lags.

The third model evaluates the learning effect, which we consider the non-pilot cities as treated

cities, and use the Wave I cities as controls. We formally express the model as

Yi ′′t ′ = α +
∑

−2≤k ′≤4
k ′,−1

β
Non−pi l ot
k ′ ×CitiesNon−pi l ot

i ′′ ×TreatmentW ave I I
t ′+k ′ +δXi ′′t ′ +λi ′′ +θt ′ +ϵi ′′t ′ . (3.17)

i ′′ therefore includes the Wave I cities and the non-pilot cities. We estimate the coefficient of inter-

est βNon−pi l ot
k ′ and specify the same leads and lags as model 3.16.

As introduced earlier, the selection into treatment is intentional and lacks randomness. Even worse,
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the voluntary nature of the LCCP suggests that the treated cities are likely self-selected into the

treatment. Thus, the dynamic DiD is less satisfactory in causally identifying the effect of the LCCP.

In what follows, for each analysis we use the partially pooled SCM proposed by Ben-Michael et al.

(2022) to mitigate these biases. We believe that their proposal outperforms other SCM proposals

because it seeks an intermediate balance between the pooled SCMs and the separate SCMs, where

the imbalances in both proposals determine the error of a weighting estimator for the average effect

Ben-Michael et al. (2022). See Section 2.3 of Chapter 2 and Appendix A for the technical details.

3.3 Main results

In this section, we present the results from the dynamic DiD and SCM for the three different analy-

ses, which we start by investigating the effect of the LCCP first wave. Figure 3.3 shows the results of

the LCCP first wave on environmental efficiency using the dynamic DiD approach. While the post-

treatment estimates are overall insignificant, the point estimates seem to decrease over time. The

persistence of this trend before t = 0 contradicts the parallel-trend assumption. This violation

of the identification assumption diminishes the informativeness of our post-treatment estimates.

This result suggests that the selection into treatment is not random, therefore naïve identification

based on standard methods are not the ideal approach to identify causality.

We move on to the partially pooled SCM, and report the results in Figure 3.4. The pre-treatment

trends are virtually flat, showing satisfactory balance between the treated cities and the counter-

factual. Although the point estimates seem to increase over time, the average treatment effect is

insignificant, as indicated by the 95% confidence interval.6

We then move on to the LCCP second wave, which we first display the results of the dynamic DiD in

Figure 3.5. The post-treatment estimates are statistically insignificant, and they exhibit a negligible

upward-sloping trend. Using the Wave I cities as the control group, we have only one pre-treatment

estimate that is statistically positive. Similar to the previous analysis, we find that the parallel trend

assumption is violated, which motivates us to the SCM to control for the selection into treatment.
6As discussed in the footnote in the Section 2.4 of Chapter 2, we follow Ben-Michael et al. (2022) to provide statistical

inference using the leave-one-unit-out jackknife approach. See the online appendix of Ben-Michael et al. (2022) for more
details.
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Notes: The figure shows the effect of the LCCP first wave on envi-
ronmental efficiency using the dynamic difference-in-differences
approach.

FIGURE 3.3: Effect of the LCCP first wave using a difference-in-differences approach

Notes: The figure shows the effect of the LCCP first wave on envi-
ronmental efficiency using the partially pooled synthetic control
method.

FIGURE 3.4: Effect of the LCCP first wave using the synthetic control method

Figure 3.6 shows the results of the SCM application. The post-treatment estimates hover around the

x-axis, suggesting that the LCCP second wave had no significant effect on environmental efficiency
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Notes: The figure shows the effect of the LCCP second wave
on environmental efficiency using the dynamic difference-in-
differences approach.

FIGURE 3.5: Effect of the LCCP second wave using a difference-in-differences ap-
proach

for the treated cities.

Notes: The figure shows the effect of the LCCP second wave on en-
vironmental efficiency using the partially pooled synthetic con-
trol method.

FIGURE 3.6: Effect of the LCCP second wave using the synthetic control method
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The above results clearly contradict the existing literature that points to a significantly positive im-

pact of the LCCP (e.g. Cheng et al., 2019; Liu et al., 2020a; Fu et al., 2021; Yu et al., 2021; Shi and Xu,

2022; Zhang et al., 2022b; Wang et al., 2023; Yang et al., 2023). Despite the fact that we use SFA in-

stead of DEA, there are a number of limitations that might explain the difference. First, none of the

previous studies discuss the potential misattribution due to the introduction of the China’s ETS pi-

lots. Second, almost all studies do not control for the variation in treatment timing. Therefore, their

estimates are likely to be inconsistent and unsatisfactory. One of the exceptions is Yu et al. (2021)

who adopt the staggered DiD framework developed by Callaway and Sant’Anna (2021). However,

they do not control for the selection bias, and their verification of the parallel trend assumption

is incorrectly specified (Sun and Abraham, 2021; Roth et al., 2023).7 Another exception is Fu et al.

(2021) who only focus on the second wave. Although their estimated average treatment effect is

significantly positive at 5% level, the estimator is only statistically significant at t = 4, showing

very limited effect in improving efficiency.

Using the Wave I cities as the control group, we next evaluate the learning effect. Figure 3.7 presents

the results from dynamic DiD. Albeit insignificant, the post-treatment estimates suggest a short-run

learning effect, where the control units’ environmental efficiency increased after the introduction

of the LCCP second wave. Same as before, however, the pre-trend clearly runs against the parallel-

trend assumption, which motivates us to the application of the SCM.

The results of the SCM is displayed in Figure 3.8. After controlling for the selection into treatment,

we find that the learning effect is significantly positive at 5% at t +1. However, similar to the results

from the DiD, this learning effect is not persistent and soon decreases to insignificant at t + 2 and

negative at t +4. Overall, the average treatment effect of the treated (ATT) seems to be insignificant.

Table 3.3 summarises the results from the SCM estimations. Consistent with the plots before, the

estimates suggest that the LCCP had no statistically significant impact on environmental efficiency.
7Specifically, Yu et al. (2021) use a dynamic DiD estimator to verify the parallel trend assumption. Given the staggered

nature of the LCCP and the heterogeneous dynamic treatment effects across cohorts, however, their coefficients are
difficult to interpret Sun and Abraham (2021). In this case, the estimator also fails to yield consistent estimates Roth
et al. (2023).
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Notes: The figure shows the learning effect on environmental ef-
ficiency using a dynamic difference-in-differences approach.

FIGURE 3.7: Investigating the learning effect using a difference-in-differences ap-
proach

Notes: The figure shows the learning effect on environmental ef-
ficiency using the partially pooled synthetic control method.

FIGURE 3.8: Investigating the learning effect using the synthetic control method
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TABLE 3.3: Synthetic control method estimations

ATT estimate Std. error p-value

LCCP first wave 0.0007 0.0010 0.485
LCCP second wave -0.0004 0.0021 0.842
Learning effect 0.0007 0.0016 0.670

Note: (i) The table displays the synthetic control method es-
timation on environmental efficiency for the three analyses.
(ii) *, **, *** indicate 10%, 5% and 1% statistical significance,
respectively.

3.3.1 Robustness checks

We start by dividing the non-pilot cities into two groups. Specifically, we define the non-pilot cities

that share a border with those treated as ’Neighbours’. For the others we define as ’Peripheries’. Our

main concern is that the learning effect might be more significant for the non-pilot cities that are

geographically closer to those treated, since the diffusion of low-carbon mitigation might depend

on how far they are away from those treated. We apply such maneuver to the evaluations of the

first wave and the learning effect.

Notes: The figure shows the heterogeneity analysis by dividing
the non-pilot cities into two groups, depending on whether they
share a border with those treated ones.

FIGURE 3.9: Heterogeneity analysis – neighbours and peripheries
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Figure 3.9 displays the results of the above exercise.8 The estimates are insignificant for all analy-

ses, showing that our main results are not sensitive to such concern.

Next, we differentiate the treated cities based on the treatment levels that they received. Specif-

ically, we divide the treated cities into two groups, depending on whether they were assigned to

treatment directly (which we refer to as city-level treatment) or assigned treatment status as part

of a province-level treatment assignment. We then re-run our synthetic control estimation for each

group, each wave.

Notes: The figure shows the heterogeneity analysis by dividing
the treated cities into two groups, depending on whether they
were assigned to treatment directly or assigned treatment status
as part of a province-level treatment assignment.

FIGURE 3.10: Heterogeneity analysis – treatment levels

Figure 3.10 displays the results.9 Same as before, the estimates are insignificant for all analysis,

suggesting that the effects of treatment do not differ from cities that were treated at different levels.

Lastly, for each of the analysis we group the cities in the treatment group based on their income

levels, which we use the cities’ mean GDP per capita between 2003 and 2016 to proxy. Specifically,

we define three groups: cities with mean GDP per capita smaller than 35K CNY are defined as low-

income cities; those between 35K and 65K CNY are defined as middle-income cities; those in excess
8See Figures E.1 and E.2 in Appendix E for the synthetic control fits.
9See Figures E.3 and E.4 in Appendix E for the synthetic control fits.
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Notes: The figure shows the heterogeneity analysis for the cities
treated by the first wave of the LCCP, by grouping the treated
cities based on their mean GDP per capita between 2003 and
2016.

FIGURE 3.11: Heterogeneity analysis – effect of the LCCP first wave by income levels

Notes: The figure shows the heterogeneity analysis for the cities
treated by the second wave of the LCCP, by grouping the treated
cities based on their mean GDP per capita between 2003 and
2016.

FIGURE 3.12: Heterogeneity analysis – effect of the LCCP second wave by income lev-
els
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Notes: The figure shows the heterogeneity analysis of the learn-
ing effect, by grouping the cities in the treatment group based on
their mean GDP per capita between 2003 and 2016.

FIGURE 3.13: Heterogeneity analysis – the learning effect by income levels

of 65K CNY are defined as high-income cities.

Figures 3.11-3.13 display the results.10 The effects show clear trends across different income levels.

The estimates in Figures 3.11 and 3.12 become more negative when the income levels increase.

These trends seem to suggest that the LCCP is more positive for less affluence regions, possibly

due to the fact that they are less efficient in optimising the use of production factors, which in turn

higher up their marginal efficiency growth (Griffith et al., 2004). In Figure 3.13 the estimates are

more positive for high-income cities and less when the income level decreases. This trend seems

to suggest that the diffusion of low-carbon mitigation is more easily adopted for affluence regions.

From statistical point of view, however, these interpretations are with very limited value, since all

estimates are statistically insignificant.

3.4 Concluding remarks

In this chapter, we set out a credible framework to revisit the impact of the LCCP on environmen-

tal efficiency. Contrasting to the existing literature that uses data envelopment analysis to estimate
10See Figures E.5 - E.13 in Appendix E for the synthetic control fits.
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efficiency, we estimate efficiency via a enhanced hyperbolic distance function using stochastic fron-

tier analysis, which provides more economic interpretation of the results. The most significant chal-

lenge that we face is that, besides the selection into treatment and variation in treatment timing,

the LCCP has clear learning effect that promote the diffusion of low-carbon to the non-pilot cities.

We adopt a timing-based approach recommended by Miller (2023) with staggered synthetic control

methodology proposed by Ben-Michael et al. (2022) to overcome these problems.

We find that the LCCP was not statistically significant in improving environmental efficiency, which

unfortunately run against the existing literature that points to a significantly positive impact of the

LCCP (e.g. Cheng et al., 2019; Liu et al., 2020a; Fu et al., 2021; Yu et al., 2021; Shi and Xu, 2022; Wen

et al., 2022; Zhang et al., 2022b; Wang et al., 2023; Yang et al., 2023). Benefiting from our identifica-

tion strategies and the framework that we set up in Chapter 2, we are confident that our results are

more reliable. We also conducted a series of tests to ensure the robustness of our results.

For the first time, we find that the LCCP second wave promoted the non-pilot cities’ environmental

efficiency, although this effect is only significant in the short run and soon decreases to insignifi-

cance after t + 3. Such learning effect is not found in the first wave of the LCCP. We attribute the

difference to the treatment levels. In Wave I, most cities were assigned treatment at province level.

In contrast, in Wave II most cities were assigned treatment at city level. Province-level treatment

has larger jurisdictional area, which may increase the transaction cost, therefore limiting the diffu-

sion of low-carbon mitigation.

From a policy design perspective, our results make sense. The LCCP was introduced fundamentally

as a voluntary scheme, where cities self-selected themselves into the treatment with vague ambi-

tious. The policy itself also lacks explicit mandates and quantifiable targets. Therefore, the mea-

sures of the LCCP may not be stringent enough to kick-start the low-carbon transition for the treated

cities, and ending up with null effect in this context does not surprise us much. Nevertheless, our

results suggest that the relevant experience has been successfully adopted by the non-pilot cities

in the short run. However, we are unable to explore the possible channels that developed the tran-

sition pathways due to the lack of relevant information and disaggregated data, but could be a

fruitful avenue for future research.
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Chapter 4

Unintended carbon leakage induced by

pollution control policy in China

4.1 Introduction

Environmental regulation is an important tool to mitigate air pollutants concentration, and the

adoption of air pollution control policies have been widely seen across economies Kuklinska et al.

(2015); Balakrishnan et al. (2019); Yu et al. (2021). However, theses policies often have unintended

consequences on many socioeconomic dimensions Feng et al. (2024). While relatively small com-

pared to the estimated benefits, the 1990 Clean Air Act Amendments has been suggested to have

significant and substantial re-allocative cost for workers in newly regulated plants Walker (2013).

Similarly, evidence from the performance evaluation system that was constructed for cutting SO2

emissions in China show that it slowed down economic growth rate (Chen et al., 2018). Clearly,

understanding how air quality policies impact economies from a cost-benefit perspective is crucial

for devising well-crafted regulations in the future.

In this chapter, we add to the relevant literature by investigating the socioeconomic impact of an

air quality policy in one of the largest emerging economies in the world with a focus on an undesir-

able output in economic activities. Specifically, we ask whether the Action Plan for Prevention and

Control of Air Pollution (Action Plan, hereafter) in mega-cities (Beijing and Tianjin) led to increases

in CO2 emissions in the surrounding regulated province (Hebei Province). This policy was launched

by the State Council of China in 2013 to ease the growing air pollutants concentration, by setting
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explicit mandates on the densities of particulate matter with a diameter of 2.5 micrometers or less

(PM2.5) in different levels for different regions.

In what follows, we construct a unique dataset that documents detailed socioeconomic indicators

and CO2 emissions for 171 counties (37 districts and 134 counties) in Hebei Province over the period

2007-2017.1 Our treatment group consists of counties in the neighbouring cities that share a border

with Beijing and Tianjin; our control group includes counties in the peripheries, i.e. cities that do

not share a border with Beijing and Tianjin. We employ a nearest neighbour matching technique

that allows us to pair the treated units with their closely matched controls, which mitigates the

bias introduced by the region-specific idiosyncratic characteristics. With this matched set, we can

assess the leakage of carbon using a difference-in-differences (DiD) approach, by comparing the

CO2 emissions between the counties in the neighbouring cities and those in the peripheries.

To the best of our knowledge, we contribute to the literature along at least three dimensions. First,

we add to the literature that focuses on the socioeconomic impact of environmental regulations.

Our empirical findings are well aligned with, for instance, Walker (2013) and (Chen et al., 2018),

highlighting the importance of comprehensive assessment in decision making process. Second,

we contribute to the literature that focuses on the policy evaluation of the Action Plan, where many

studies have suggested improvement on air quality (e.g. Liu et al., 2020b; Zhao et al., 2020; Wang

et al., 2021; Yu et al., 2021). Some studies, such as those by Barrington-Leigh et al. (2019) and Mei

et al. (2021), investigate the socioeconomic impacts of the Action Plan, and thus have a closer the-

matic alignment with our study. Specifically, Fang et al. (2019) find that the induced improvement

in the regulated regions (Beijing, Tianjin, and Hebei Province) is at the cost of leakage of air pollu-

tants in other neighbouring provinces. We complement their study by providing empirical evidence

on leakage of carbon inside the regulation zone, with a focus between the mega-cities (Beijing and

Tianjin) and the surrounding province (Hebei Province). Third, we complement Duvivier and Xiong

(2013) who focuses on transboundary pollution in Hebei Province in China. They find that pollut-

ing firms are more likely to set up in the border counties than in the interior ones. This preliminary
1Here, ‘counties’ is the short-hand for county-level divisions that consist of 1301 counties, 977 districts, 117 au-

tonomous counties, 49 banners, 3 autonomous banners, 1 special district and 1 forestry area. In China, there are
three levels of administrative divisions: province-level divisions, prefecture-level divisions and county-level divisions,
of which province-level divisions are the ones with the highest administrative status. County-level divisions subordi-
nate to prefecture-level divisions. For brevity, we will use the term ’cities’ as a shorthand for prefecture-level divisions
henceforth.
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study is not satisfactory, however, since they only focus on the overall probability. We complement

their study by quantitatively evaluating the effect, examining the heterogeneity, and explore the

economic benefits and leakage channels, with a focus on a ‘co-pollutant’ – CO2 emissions.

We find a significant carbon leakage of 151 thousand tonnes of CO2 emissions each year. This trans-

lates to an annual increase of CO2 emissions of around 4.4% in the surrounding counties. We ex-

amine the potential challenges to our identification. We then discuss the robustness of our results,

by using another set of covariates, different number of match size, and alternative matching esti-

mator. We also perform heterogeneity analysis, by grouping the neighbouring counties based on

their affluence levels and distances to Beijing and Tianjin. Our further results suggest additional

economic benefits delivered by the Action Plan. These changes are likely attributed by secondary

sector, where its share of GDP and annual gross product respectively increased by 5.2% and 906

million CNY, without crowding out other economic sectors.

The chapter develops as follows. Section 4.2 introduces the institutional background. Section 4.3

reviews the relevant literature. Section 4.4 elaborates the identification strategies and data. Sec-

tion 4.5 and 4.6 presents empirical results and the relevant discussion. Section 4.7 concludes.

4.2 Institutional background

In January 2013, China encountered one of the worst air pollution events in history. The contin-

uous haze weather covered almost one quarter of China’s land area and over 600 million people

were exposed to the polluted atmosphere. The record-high PM2.5 concentration reached an hourly

maximum of 791 µg/m3 in Beijing, along with other extensively elevated atmospheric pollutants

and satellite-derived aerosol optical depths (Andersson et al., 2015). The severe air pollution has

produced massive damage to people’s physical health, which increased total mortality induced by

stroke and cardio-respiratory diseases (e.g. Chen et al., 2012; Rohde and Muller, 2015; Ebenstein

et al., 2017; Gu et al., 2019).

Given this background, the State Council issued the Action Plan for Prevention and Control of Air

Pollution in September 2013 (MEE, 2013). As a command-and-control regulation, it mandated that

the density of inhalable particulate matters in all municipalities and prefecture-level cities would
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be decreased by more than 10% by 2017 relative to the levels in 2012. In particular, the densities

of PM2.5 in Beijing-Tianjin-Hebei region, Yangtze River Delta and Pearl River Delta would be respec-

tively decreased by 25%, 20% and 15%. The annual average concentration of fine particulate matter

in Beijing was additionally required to reduce to around 60 µg/m3.2

FIGURE 4.1: Geographical location of Beijing, Tianjin and Hebei Province

While the reduction targets set for Tianjin and Hebei are the same, the enforcements are likely sen-

sitive to the differences in economic development and environmental quality. The public inter-

est theory predicts that regulation protects and benefits the public at large (Stigler, 1971; Posner,

1974), by maximising social welfare to prevent market failures (Hantke-Domas, 2003). When air

pollution control policy is supplied for inefficient market practices, the demand would be the will-

ingness to pay for air pollution mitigation (Posner, 1974). The market equilibrium is realised when

the supply and the demand intersects, which translates to different enforcement levels for differ-

ent entities. Empirical evidence suggests that Tianjin has the highest ratio of willingness to pay to
2In 2013, the annual average concentration of fine particulate matter in Beijing was 89.5 µg/m3. This additional re-

quirement translates to a reduction of the density by around 33%.
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income for air pollution mitigation in China (Sun et al., 2016). Therefore, it is theoretically conceiv-

able to expect more stringent enforcement in Tianjin relative to Hebei, as this would maximise the

social welfare of the environmental regulation market.

Figure 4.1 displays the geographical location of our study area, where Beijing and Tianjin are clearly

surrounded by Hebei Province. Such geographical characteristic provides us an unique institu-

tional context to investigate the relevant question. The differences in enforcement levels across

regions bolster our confidence in expecting carbon leakage. In what follows, we assess the carbon

leakage, with a focus on county-level CO2 emissions.

4.3 Literature review

Our study is well aligned with the strand of literature that focuses on the policy evaluation of the

Action Plan. A large body of existing literature has suggested improvement on air quality resulted

by the Action Plan. Liu et al. (2020b), for instance, investigate the impact of the Action Plan on air

quality using data from 16 districts in Beijing. Using a first difference approach, they find that the

Action Plan significantly reduced concentrations of SO2, PM10, PM2.5 and CO by around 10% each

year. Yu et al. (2022) look into the similar question by assembling a city-level dataset from 2008 to

2018. Using a DiD design and a propensity score matching technique, they find that the Action Plan

significantly reduced SO2 emissions and PM2.5 concentration by 18.4% and 24.7%, respectively.

Also using a city-level panel dataset, Wu (2023) assess the impact of the Action Plan using a triple-

difference estimator, and find similar results.

A number of papers have investigated the socioeconomic impact of the Action Plan, therefore they

are more closely related to our work. Using survey data from 302 households in three districts in

Beijing, Barrington-Leigh et al. (2019) suggest increased benefits on indoor temperature, indoor air

pollution and life satisfaction. These benefits are however contingent on household wealth, where

there were fewer benefits for households in low-income district. Mei et al. (2021) investigate the

impact on real estate industry, using housing transaction data from 2011 to 2015 and administra-

tive data on all power plants in Beijing. They estimate a triple-difference estimator, and find that

the Action Plan led to a marginally significant price premium of 11% for properties close to coal-

fired power plants. Particularly, Fang et al. (2019) use a multi-regional input-output model and
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an atmospheric chemical transport model to evaluate the impact on primary PM2.5 and secondary

precursor emissions. They find that the Action Plan reduced primary PM2.5 and secondary precur-

sor emissions in the regulation zone, but at the cost of leakage of air pollutants in other provinces,

especially for the ones that are neighbouring to the regulated regions.

Our study is also closely related to the strand of literature on carbon leakage, where the relevant

literature yet mainly focuses on international protocols and carbon markets. Little attention has

been paid to alternative policy instruments. Studies focusing on Clean Development Mechanism

(CDM) (Rosendahl and Strand, 2011) and Kyoto Protocol (Aichele and Felbermayr, 2015) suggest sig-

nificantly positive carbon leakage. Findings on carbon markets are however contradictory. Despite

the broader empirical support for the EU ETS from Naegele and Zaklan (2019) and Dechezleprêtre

et al. (2022), Koch and Mama (2019) find that the regulated firms on average have increased their

number of affiliates outside the EU, which seems to suggest future carbon leakage. While the find-

ings from the Regional Greenhouse Gas Initiative (RGGI) in the US suggest carbon leakage in RGGI-

surrounding regions (Fell and Maniloff, 2018), no displacement is found for the Japanese regional

ETSs (Sadayuki and Arimura, 2021). As for the China’s ETS pilots, leakage is found within firm owner-

ship networks (He and Chen, 2023; Cui et al., 2023), but not found across administrative boundaries

(Zhu et al., 2022).

4.4 Identification strategy and data

4.4.1 Identification strategy

We investigate the carbon leakage from Beijing and Tianjin induced by the Action Plan by examining

the impact of the geographical proximity. Our identification strategy builds upon the investigation

on transboundary pollution in China in Duvivier and Xiong (2013), who suggest that polluting firms

are more likely to set up near the border. Carbon leakage likely follows the similar pattern, where

the neighbouring counties have higher probability of becoming the focal points (Paroussos et al.,

2015).
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Figure 4.2 demonstrate our identification strategy. We define the cities that share a border with Bei-

jing or Tianjin as neighbours, and then define their subordinated counties as neighbouring coun-

ties; cities that do not share a border with Beijing or Tianjin are defined as peripheries. We assess

the leakage using a DiD approach, by comparing the county-level CO2 emissions between the neigh-

bouring counties and those in the peripheries.

Notes: The figure illustrates our identification strategy.
Specifically, cities that share a border with Beijing or Tianjin
are defined as neighbours; cities that do not share borders
with Beijing or Tianjin are defined as peripheries. We assess
the effect of carbon leakage by comparing the county-level
CO2 emissions across the neighbours and peripheries.

FIGURE 4.2: Identification framework

For county i in year t , we estimate the effect of carbon leakage via the following regression:

Yi t = α +
∑

−6≤k ≤4
k,−1

βk × Neighbouri × Treatmentt+k + δXi t + λi + θt + ϵi t . (4.1)

Yi t is the outcome variable, i.e. county-level CO2 emissions, of county i in year t . Neighbouri and

Treatmentt are the dummy variables respectively indexing neighbouring counties (one if the county
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is a neighbour and zero otherwise) and the Action Plan (one if the Action Plan has been imple-

mented and zero otherwise). βk is the coefficient of interest that estimates the dynamic effect of

the leakage of carbon. Xi t is the county-specific control variables, including economic and infras-

tructure indicators. λi and θt are the county-level and time fixed effects. ϵi t is the random error.

We specify leads and lags in our event study model to respectively examine the parallel trend as-

sumption and observe how the leakage effect evolve over time. Note that the effects are estimated

relative to the year before the implementation, k = −1. Given the detailed control variables and

fixed effects, we identify the yearly effect by comparing the outcome across very similar counties.

The key identifying assumption, of course, is that the CO2 emissions would develop in parallel

trends between the neighbouring counties and those in the peripheries in the absence of treat-

ment. Nevertheless, the neighbouring counties are geographically closer to Beijing and Tianjin,

leading to a geographical advantage that may allow the neighbouring counties to have easier ac-

cess to production inputs, e.g. labor, capital and energy. While the distances between the neigh-

bouring counties and Beijing and Tianjin are time-invariant variables, they may have a time-varying

impact on the outcome, which might have allowed the neighbouring counties to outpace the con-

trols in the peripheries in the growth of CO2 emissions, leading to a violation of the parallel trend

assumption and add bias to our DiD estimate.

In what follows, we employ a one-to-one nearest neighbour matching technique.3 For each neigh-

bouring county, we match it with the county that situates in peripheries and has the shortest Ma-

halanobis distance. Due to the large number of neighbouring counties, we allow the matching with

replacement, to ensure that each neighbouring county has the closest counterfactual. To further

ensure the systematic balance of the covariates, we standardise the mean difference between the

neighbouring counties and their counterfactuals using the standard deviations and sample mean

across all neighbouring units. We then plot the standardised difference over the pre-treatment pe-

riods.

Even though the matching allows us to pair the neighbouring counties with their counterfactuals in

the peripheries along a number of dimensions, it does not provide causal identification without a

well-formulated research design. We need to ensure that the neighbours did not select themselves
3We conduct this using the matching methods proposed by Imai et al. (2021) for panel data. See the technical details

in Appendix C.
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as ‘neighbours’. In what follows, we reviewed the historical administrative adjustments of the units

in Hebei Province. We find that the adjustments mostly happened in the last century. In our study

period (2007-2017), two counties and three districts were abolished, and their administrative areas

were merged into other nearby units without beyond city-level jurisdictions.4 Some counties were

renamed without any changes on their land areas. No administrative units were merged across

cities. Overall, we are confident that our identification is not driven by this potential confounded-

ness (we examine the sensitivity of our results to this in Section 4.5.3).

4.4.2 Data

Our outcome variable is the county-level CO2 emissions in Hebei Province. While in general prefer-

able, estimates of emissions based on the IPCC guidelines are only available for a very limited set

of counties (IPCC, 2006), owing to the insufficient and often incomparable county-level energy use

information (Chen et al., 2020). In what follows, we use the county-level CO2 emissions data esti-

mated by Chen et al. (2020), who downscale the provincial energy-carbon emissions based on the

nighttime light data from satellite imagery. The emission inventories include 2,735 counties and

districts in around 350 administrative divisions from 1997 to 2017. We obtain the emission inven-

tories from the Carbon Emission Accounts Datasets (CEADs, 2020).

To assess the question of interest, ideally, we need counterfactuals that closely mimic the treated

units’ outcome and socioeconomic performance. In what follows, we collect both economic and

infrastructure attributes to balance the systematic differences between the treatment and control

groups, including GDP per capita (thousand CNY), share of GDP taken by secondary sector (%),

share of GDP taken by social fixed asset investment (%), share of GDP taken by fiscal expenditure

(%), highway per land area (km), telephones (fixed and mobile) per capita (unit) and beds in health

care institutions per thousands (bed). These data were collected from the Hebei Statistical Yearbook

(NBS, 2018). We have crosschecked the data with the relevant data from prefecture-level statistical
4Four cities were involved in such adjustments. (i) Shijiazhuang: Qiaodong District was abolished in 2014, and its ad-

ministrative area was split and merged into Chang’an District and Qiaoxi District. (ii) Baoding: In 2015, Nanshi District and
Beishi District were abolished and merged together as Lianchi District (new). (iii) Handan: Handan County was abolished
in 2016, and its administrative area was split and merged into Hanshan District and Congtai District. (iv) Zhangjiakou:
Xuanhua County was abolished in 2016. Its administrative area was merged into Xuanhua District.
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yearbooks to ensure the best possible accuracy, and have normalised all monetary measurements

to 2010 CNY.

By merging the above data with the county-level CO2 emissions inventory, we assemble a unique

county-level dataset that documents detailed statistics of the counties in Hebei Province spanning

from 2007 to 2017. In total, there are 171 counties in our sample, of which 92 are the neighbouring

counties. To control for the potential omitted variables bias and to best predict the neighbouring

counties’ CO2 emissions, we use all economic and infrastructure indicators as control variables in

a DiD approach and the nearest neighbour matching estimation.

TABLE 4.1: Descriptive statistics, 2007-2017

Neighbours
Mean

Peripheries
Mean

Uncond.
diff. t -test

Outcome variable

CO2 emissions (million tonnes) 3.86
(2.73)

3.45
(2.39)

0.41***
(0.12) 3.43

Economic indicators

GDP per capita (thousand CNY) 30.35
(20.54)

25.92
(13.79)

4.43***
(0.81) 5.46

Share of GDP taken by secondary sector (%) 46.94
(14.42)

47.68
(12.90)

-0.74
(0.65) -1.14

Share of GDP taken by social fixed asset investment (%) 83.75
(41.01)

88.00
(36.18)

-4.26**
(1.81) -2.35

Share of GDP taken by fiscal expenditure (%) 14.91
(9.28)

12.73
(6.74)

2.18***
(0.38) 5.79

Infrastructure indicators

Highway per land area (km) 1.08
(0.48)

1.43
(0.47)

-0.35***
(0.02) -14.40

Telephones (fixed and mobile) per capita (unit) 0.15
(0.08)

0.12
(0.09)

0.02***
(0.00) 5.32

Beds in health care institutions per thousands (unit) 3.39
(2.32)

3.22
(2.08)

0.17
(0.11) 1.52

Notes: The table presents the means and standard deviations, along with the unconditional differences and
results of the Student’s t-test, for specific outcome and socioeconomic indicators in neighbouring counties
compared to those in the peripheries.

Table 4.1 displays the statistics of the outcome variable and socioeconomic indicators. As sug-

gested by the means and unconditional differences, neighbouring counties significantly differs from

those in the peripheries along most variables except share of GDP taken by secondary (%) and beds

in health care institutions per thousands (unit). The share of GDP taken by secondary sector is near
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50% for both groups, indicating that their regional economies are dominated by secondary sector.

Note that the share of GDP taken by social fixed asset investment is over 200% for some counties,

because of the city-level inter-county transfer payment (see Table F.1 for the descriptive details).

4.5 Results

4.5.1 Main results

Notes: The figure reports the results of a difference-in-differences
approach. Treatment effect is normalised relative to the begin-
ning of the treatment. The error bars are constructed by the 95%
confidence interval.

FIGURE 4.3: Carbon leakage – difference-in-differences approach

We start this section by presenting the baseline results estimated using the dynamic DiD approach.

Results are displayed in Figure 4.3. The post-treatment estimates suggest an upward-sloping trend

for CO2 emissions. Specifically, the point estimate is statistically significant at t + 3, as suggested

by the 95% confidence interval. However, the average treatment effect seems to be insignificant,

as suggested by averaging the point estimates across the study period. More importantly, there

is clear pre-trend before the implementation of the Action Plan, which violates the parallel trend

assumption, although the estimates are insignificant.
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Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions. Treatment effect is nor-
malised relative to the beginning of the treatment. The error bars
are constructed by the 95% quantiles of the bootstrapped esti-
mates.

FIGURE 4.4: Carbon leakage – with Mahalanobis matching

Clearly, the naïve regression is not the ideal approach to identify causality in this context. To over-

come the bias introduced by the region-specific idiosyncratic characteristics, we move on to the

nearest neighbour matching technique to pair the best possible controls to the neighbouring coun-

ties. Figure 4.4 presents the results of applying the matching method. The outcome in the pre-

treatment periods is virtually flat, suggesting satisfactory balance between the neighbouring coun-

ties and the counterfactuals. The treatment effects become significantly positive at t +1and remain

so until the end of the horizon. Relative to the counties in the peripheries, these results show that

the Action Plan caused statistically significant carbon leakage in the neighbouring counties.

We report the average treatment effect in Table 4.2. As suggested by the estimates and bootstrapped

confidence intervals, the treatment effect is 0.151, being significantly positive at 5%, implying an

annual leakage of 151 thousand tonnes of CO2 emissions, which translates to an increase of CO2

emissions around 4.4% in the neighbouring counties.

We further examine the covariates balance between the neighbouring counties and their counter-

factuals. Figure 4.5 displays the matching quality for the main results. The left panel shows the
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TABLE 4.2: Estimates of carbon leakage –
with Mahalanobis matching

Average treatment effects

Estimate 0.151**
90% CI (0.040, 0.283)
95% CI (0.022, 0.323)
99% CI (-0.005, 0.400)

Note: (i) The table displays the estimate
of the nearest neighbour matching on
county-level CO2 emissions. The confi-
dence intervals are constructed by the
90%, 95% and 99% quantiles of the boot-
strapped estimates. (ii) *, **, *** indicate
10%, 5% and 1% statistical significance,
respectively.

Notes: (i) The figure displays the matching quality for the main results. The left panel displays the covariates
balance, and the right panel displays the improvement of the balance before and after the refinement.
(ii) The mean difference between the treated and their counterfactuals are standardised by the standard
deviation.

FIGURE 4.5: Covariates balance for the main results.

covariates balance that is measured in the unit of standard deviation. We find that the covariates

balance is generally within one standard deviation after the matching, which is satisfactory. The

right panel shows how the matching method improves the covariates balance between the neigh-

bouring counties and the counterfactuals, where control units are assigned equal weights before

the matching, and are then matched one-to-one to a treated unit that has the shortest Mahalanobis

distance. We compare the covariates balance before and after the refinement using the absolute
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value of standardised mean difference of covariates, where a dot below the 45 degree line implies

improvement. Overall, we find that the matching improves balance for most control variables in

the pre-treatment periods.

4.5.2 Challenges to identification

While we believe that the data and methods used are appropriate for this case study, certain issues

could potentially compromise our identification. To address these concerns, we have conducted a

more thorough analysis of the data to bolster our confidence in the empirical findings.

First and foremost, at the time of issuing the Action Plan, Chinese authorities introduced emis-

sion trading scheme (ETS) to mitigate climate change. Starting in 2011, with trading commenc-

ing in 2013, seven ETS pilots were launched, including one prefecture-level city (Shenzhen), two

provinces (Hubei and Guangdong) and four municipalities (Beijing, Shanghai, Tianjin, Chongqing).5

The ETS pilots in Beijing and Tianjin pose critical challenge to our identification since, without ap-

propriately controlling for such policy overlap, it is impossible to causally attribute any leakage to

the Action Plan.6

To control for this confoundedness, we exploit two unique features of the China’s ETS pilots. First,

mindful that the trading scheme was announced in 2011, and empirical results have suggested that

ETS-regulated firms had started to significantly reduce CO2 emissions (Cui et al., 2021). Such antic-

ipatory reduction of CO2 emissions due to the announcement of the ETS pilots, as suggested by

Cui et al. (2023), is likely at the cost of leakage of carbon to the entities that are within a same firm

ownership networks with those ETS-regulated ones but locate outside the pilots regions. Thus, we

can investigate the carbon leakage induced by the announcement of the ETS pilots, by moving the

start of the treatment back to 2011. If we find null effect, we can conclude that the announcement

of the ETS pilots did not increase neighbouring counties’ CO2 emissions, therefore do not add con-

foundedness to our identification.
5The cap covered around 50% of the total CO2 emissions in each treated division, including a range of entities and

industries (Cui et al., 2021). The empirical literature has suggested that the ETS pilots reduced CO2 emissions by around
15.5% (Hu et al., 2020).

6Zhu et al. (2022) suggest that China’s ETS pilots did not lead to transboundary carbon leakage. However, due to the
fact that Beijing and Tianjin are not included in their survey area, little is known in terms of the carbon leakage induced
by the carbon markets in these two cities. Also, additional discretion needs to be taken, as the ETS pilots have been
suggested to cause carbon leakage onto the entities that are within a same firm ownership networks with those ETS-
regulated ones but locate outside the pilots regions (Cui et al., 2023; He and Chen, 2023).
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Second, we follow the empirical findings reported by He and Chen (2023) who also suggest leak-

age of carbon due to the ETS pilots, but their estimate is only significant during the trading phase.

Although our focus is not to determine which study is more credible, we need to ensure that our

identification is not sensitive to any potential confoundedness. In fact, the ETS pilots in Beijing

and Tianjin came into force at the end of 2013, bringing in very limited enforcement onto the ETS-

regulated firms in the current year.7 Thus, by moving the start of the treatment to 2014, we can

investigate the mixed carbon leakage of the Action Plan and the ETS pilots, which we expect an in-

crease on the coefficient relative to the one in 2013, if there is any leakage related to the ETS pilots.

This is because by moving the the start of the treatment forwards, any leakage due to the ETS pilots

in Beijing and Tianjin would be incorporated into the next year’s estimate. If we find null effect, we

can conclude that the implementation of the ETS pilots did not increase neighbouring counties’

CO2 emissions, therefore being conclusive combined with our exercise discussed before.

Notes: The figure displays the trading emission allowances (left, in million tonnes) and trading amount
(right, in million CNY) documented in Beijing Carbon Emission Exchange and Tianjin Carbon Emission
Exchange. Monetary values are normalised to 2013 CNY.

FIGURE 4.6: The ETS pilots in Beijing and Tianjin

Figure 4.6 provides the statistical evidence for our inference.8 The left panel displays the traded

emission allowances (million tonnes). The allowance was 20 thousand tonnes in 2013 as opposed

to 2 million tonnes in 2014, showing that the carbon markets were very inactive in the previous
7The ETS pilots in Beijing and Tianjin came into force on 28th and 26th November 2013, respectively.
8We obtained the trading data documented in Beijing Carbon Emission Exchange and Tianjin Carbon Emission Ex-

change from the China Stock Market & Accounting Research (CSMAR) database. Monetary values are normalised to 2013
CNY. We also have data on trading date, trading type and prices, but decide not to display for brevity.
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year. Similarly, as indicated by the statistics in the right panel , the trading amount in 2013 was 624

thousand CNY as opposed to 83 million CNY in 2014, again suggesting that the carbon markets were

in a very preliminary stage.

(i) Alternative start at 2011 (ii) Alternative start at 2014

Notes: The figure reports the results of the nearest neighbour matching on county-level CO2 emissions.
Treatment effect is normalised relative to the beginning of the treatment. (ii) The error bars are constructed
by the 95% quantiles of the bootstrapped estimates.

FIGURE 4.7: Carbon leakage – examination of the ETS pilots in Beijing and Tianjin

We implement both exercises to ensure that our results are not driven by this potential confound-

edness. Figure 4.7 displays the examination of the overlapping policies.9 In the left panel, we move

the start of the treatment to 2011 to investigate the carbon leakage induced by the announcement

of the ETS pilots in Beijing and Tianjin. The pre-treatment balance is satisfactory, suggesting the

assumption of parallel trends that is necessary for identification. The point estimates in the post-

treatment periods are insignificant, suggesting null effect of carbon leakage due to the announce-

ment. In the right panel, we move the treatment forwards to 2014 to investigate the mixed carbon

leakage induced by the announcement and Action Plan. Again, the balance is satisfactory in the

pre-treatment periods. The post-treatment estimates, albeit significantly positive, seem to have

smaller magnitudes relative to our main results in Table 4.2.

We report the estimates of the examination in Table 4.3 to have a closer look of the the above ex-

ercise. Consistent with the insights in Figure 4.3, there is no statistically significant effect when
9Note that there are only nine time periods in the right panel of Figure 4.7. This is due to the fact that one may need to

concern about the validity of parallel trends over longer time horizons. See the detailed discussion in Roth et al. (2023).
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TABLE 4.3: Estimates of carbon leakage – examination of the ETS
pilots in Beijing and Tianjin

Alternative start at 2011 Alternative start at 2014

Estimate 0.077 0.126**
90% CI (-0.213, 0.287) (0.035, 0.239)
95% CI (-0.277, 0.321) (0.020, 0.263)
99% CI (-0.347, 0.384) (-0.013, 0.314)

Note: (i) The table displays the estimate of the nearest neighbour
matching on county-level CO2 emissions. The confidence inter-
vals are constructed by the 90%, 95% and 99% quantiles of the
bootstrapped estimates. (ii) *, **, *** indicate 10%, 5% and 1%
statistical significance, respectively.

moving the treatment back to 2011, suggesting that the announcement of the ETS pilots in Beijing

and Tianjin did not lead to increases in CO2 emissions in the neighbouring counties. The estimate

of moving the treatment to 2014 is 0.126, albeit still significantly positive at 5% level, smaller than

our main results reported in Table 4.2 that is 0.151. Overall, we find no evidence of carbon leakage

induced by the ETS pilots, showing that our main results are not confounded by the overlapping

policies.

We further plot the covariates balances in Figures G.1 and G.2 in Appendix G. As suggested by the

left panels in both figures, the standardised mean differences are within one standard deviation for

all covariates. The right panels suggest that there are improvements for most control variables in

the pre-treatment periods. Although the balance noticeably deteriorates for one control in one of

the pre-treatment period, the standardised mean difference is still within one standard deviation,

showing satisfactory balances for both exercises.

Next, we move on to discussing the potential confoundedness brought by the administrative ad-

justments discussed in Section 4.4.1. Including the involved counties and districts in our analysis,

however, may lead to a noisy estimate, due to the inconsistent statistics. In what follows, we repeat

our analysis, this time excluding the involved units, to ensure that our results are not driven by such

potential confoundedness.

Figure 4.8 reports the results of the above exercise. The pre-treatment balance is satisfactory. Con-

sistent with our main results before, the post-treatment estimates suggest significantly positive

carbon leakage. Table 4.4 displays the estimate for the administrative adjustments. Relative to our
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Notes: The figure reports the results of the administrative adjust-
ments, using the nearest neighbour matching. The treatment
effect is normalised relative to the beginning of the treatment.
The error bars are constructed by the 95% quantiles of the boot-
strapped estimates.

FIGURE 4.8: Carbon leakage – examination of the administrative adjustments

main results, the treatment effect negligibly attenuates from 0.151 to 0.148, still being significantly

positive at 5% level. Figure G.3 in Appendix G further displays the matching quality. Same as be-

fore, the standardised mean differences are satisfactory for all covariates, and there is noticeable

improvement of the balance after the matching. Overall, we are confident that our results are not

driven by the historical administrative adjustments.

Even though the Action Plan was not introduced following an earlier announcement, the regional

authorities might have been aware of potential air pollution control policy through their political

connections, which may attenuate the estimated treatment effect. To provide a cleaner investiga-

tion and control for this potential concern, we repeat our analysis, this time moving the the treat-

ment to one year prior to its official start.

Figure 4.9 reports the results, where the pre-treatment balance is satisfactory. The point estimates

in the post-treatment periods seem to have significantly attenuated, relative to our main results in

Figure 4.4. Table 4.5 reports the estimates. After the adjustment, the treatment effect decreases
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TABLE 4.4: Estimates of carbon leakage –
examination of the administrative adjust-

ments

Administrative adjustments

Estimate 0.148**
90% CI (0.038, 0.289)
95% CI (0.020, 0.331)
99% CI (-0.006, 0.423)

Note: (i) The table displays the estimates
for the administrative adjustments, using
the nearest neighbour matching. The con-
fidence intervals are constructed by the
90%, 95% and 99% quantiles of the boot-
strapped estimates. (ii) *, **, *** indicate
10%, 5% and 1% statistical significance, re-
spectively.

Notes: The figure reports the results of the announcement effect,
using the nearest neighbour matching. The treatment effect is
normalised relative to the beginning of the treatment. The error
bars are constructed by the 95% quantiles of the bootstrapped
estimates.

FIGURE 4.9: Carbon leakage – examination of the announcement effect

from 0.151 to 0.074, and becomes insignificant. In principle, we would expect larger and more sig-

nificant estimate in the presence of announcement effect, because by backdating the treatment
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start date, the announcement effect would be incorporated into the estimate. The matching qual-

ity is displayed in Figure G.4 in Appendix G, where the standardised mean differences are generally

within one standard deviation for all control variables. The improvement of covariates balance is

also substantial after the matching, showing satisfactory matching quality. Overall, we find no evi-

dence of the announcement effect.

TABLE 4.5: Estimates of carbon leak-
age – examination of the announce-

ment effect

Announcement effect

Estimate 0.074
90% CI (-0.012, 0.169)
95% CI (-0.025, 0.193)
99% CI (-0.060, 0.238)

Note: (i) The table displays the esti-
mates for the announcement effect,
using the nearest neighbour match-
ing. The confidence intervals are
constructed by the 90%, 95% and
99% quantiles of the bootstrapped
estimates. (ii) *, **, *** indicate 10%,
5% and 1% statistical significance,
respectively.

4.5.3 Robustness check

Having validated our empirical findings, we now move on to testing the robustness of our results.

We start this section by conducting a falsification test, to ensure that our significant results do not

come from nowhere. Specifically, we randomly draw 92 counties from the dataset without replace-

ment to construct an ‘alternative’ set of neighbouring counties. We use the ‘alternative’ neighbour-

ing counties as the treatment group, and then apply the nearest neighbour matching. The average

placebo effect should not be statistically different from zero. We iterate this exercise 1000 times.

Figure 4.10 shows the placebo effects, where the average treatment effects are plotted on the x-

axis. The effects centre around zero and approximate to normal distribution with sample mean and

standard deviation respectively as 0.000 and 0.045. This result is consistent with our expectation,

suggesting that our estimates are not driven by other confounders.
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Notes: The figure reports the distribution of the placebo effects.
Specifically, we randomly draw 92 counties from the dataset, and
apply the nearest matching estimator to the ‘alternative’ treat-
ment group using both economic and infrastructure indicators as
control variables.

FIGURE 4.10: Placebo effects

Although we provided theoretical context and empirical evidence as our rationale to expect more

stringent enforcement in Tianjin relative to Hebei in Section 4.2, the way of inference may be con-

sidered as ’hand-waving’, as there has been no direct evidence that explicitly show that the enforce-

ments are in different levels. For a cleaner analysis, we re-define neighbouring cities as the ones

who only share a border with Beijing. We then exclude the neighbouring cities of Tianjin from our

sample, to limit any potential leakage that may dampen our analysis.

Figure 4.11 reports this exercise, where the pre-treatment balance is satisfactory. The covariates

balance is within one standard deviation for all covariates, as suggested by Figure G.5 in Appendix

F. The post-treatment estimates are significantly positive and do not seem to attenuate relative to

our main results in Figure 4.4.

For a closer look, we display the estimate in Table 4.6. The treatment effect negligibly declines

from 0.151 to 0.148, still being statistically significant at 5%, suggesting that our identification is

not sensitive to such concern.
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Notes: The figure reports the results of re-defining the neighbour-
ing cities, using the nearest neighbour matching. The treatment
effect is normalised relative to the beginning of the treatment.
The error bars are constructed by the 95% quantiles of the boot-
strapped estimates.

FIGURE 4.11: Carbon leakage – re-define the neighbouring cities

TABLE 4.6: Estimates of carbon leakage – re-
define the neighbouring cities

Re-define the neighbouring cities

Estimate 0.148**
90% CI (0.038, 0.299)
95% CI (0.019, 0.327)
99% CI (-0.011, 0.386)

Note: (i) The table displays the estimates for
the administrative adjustments, using the near-
est neighbour matching. The confidence inter-
vals are constructed by the 90%, 95% and 99%
quantiles of the bootstrapped estimates. (ii) *,
**, *** indicate 10%, 5% and 1% statistical sig-
nificance, respectively.

Next, we examine the sensitivity of our results to different refinement specifications, to mitigate

the potential judgement calls involved in the identification strategy.

We start by changing the control variables in the nearest neighbour matching. Specifically, we in-

stead use GDP per capita (thousand CNY), share of GDP taken by secondary sector (%), share of
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GDP taken by fiscal expenditure (%), highway per land area (km), and telephones (fixed and mo-

bile) per capita (unit) as the control variables. These variables are significantly correlated with the

county-level CO2 emissions, identified by the dynamic DiD approach.

Notes: (i) The figure reports the results of changing the refine-
ment specifications. For convenient comparison, we display the
main result at the top, and then proceed to the changes be-
low. The error bars are constructed by the 95% quantiles of the
bootstrapped estimates. (ii) We use abbreviations for brevity. In
‘FE covariates’, we use as control variables the significant vari-
ables identified by the dynamic DiD approach. In ‘PS match-
ing’, ‘PS weighting’, ‘CBPS matching’, and ‘CBPS weighting’, we
estimate the effect of carbon leakage instead using propensity
score matching, propensity score weighting, covariate balancing
propensity score matching, and covariate balancing propensity
score weighting, respectively.

FIGURE 4.12: Different specifications

Second, we examine the sensitivity of our results to different number of match size. Most worries

about the reduced power since one-to-one matching would inevitably discard a large number of

observations. Additionally, the matching is allowed with replacement due to the large number of

neighbouring units, which may raise a concern that a same county in the peripheries is repeatedly

matched to different neighbouring ones. To ensure the robustness of our results, we conduct the

test by increasing the number from one up to three. We expect slightly attenuated treatment ef-

fects, because the matching would converge to a regression where equal weights are assigned to

all control units as we increase the match size.
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Third, to ensure that our results are consistently robust across different refinement methods, we re-

spectively estimate the treatment effect using propensity score matching, propensity score weight-

ing, covariate balancing propensity score matching, and covariate balancing propensity score weight-

ing (Imai and Ratkovic, 2014). We expect similar estimates and significance levels across different

methods.

Figure 4.12 reports the results of changing the refinement specifications.10 Overall, the treatment

effects are significantly positive across all specifications, suggesting that our results are extremely

robust.11

4.5.4 Heterogeneity analysis

Owing to the significant differences across neighbouring counties, our aggregate results may not

be very informative in reflecting the actual carbon leakage. Therefore, as the last robustness check,

we explore the heterogeneity of our results, by grouping the neighbouring counties based on their

affluence levels and distances to Beijing and Tianjin.

We start by grouping the neighbouring counties based on their affluence levels, measured by the

mean GDP per capita across our study period. We define as high-income counties whose mean

GDP per capita are over 50k, middle-income counties whose GDP per capita are from 20k to 50k,

and low-income counties whose GDP per capita are smaller than 20k.

Second, we group the neighbouring counties based on their distances to Beijing and Tianjin, using

the mean of the Euclidean distances measured by dropping two pins on Baidu Maps: one on the

Beijing or Tianjin Municipal People’s Government, and another one on the county-specific Munici-

pal People’s Government of interest.12 Specifically, we group the neighbouring counties into four
10We use abbreviations for brevity. In ‘FE covariates’, we use as control variables the significant variables identified

by the dynamic DiD approach. In ‘PS matching’, ‘PS weighting’, ‘CBPS matching’, and ‘CBPS weighting’, we estimate
the effect of carbon leakage instead using propensity score matching, propensity score weighting, covariate balancing
propensity score matching, and covariate balancing propensity score weighting, respectively.

11See Figures F.1 - F.4 in Appendix F for visualizations of the results. Figures G.6 - G.12 in Appendix G illustrate the
quality of various refinements. Notably, the covariates balances show a deterioration in some exercises, especially with
propensity score matching (Figure G.9) and covariate balancing propensity score matching (Figure G.11). Despite these
observations, the approximately parallel pre-trends across all specifications suggest that our main results are robust,
indicating that these alternative methodologies, while not optimal for this case study, still provide informative insights.

12We drop the pin on the former address of the Beijing Municipal People’s Government, since the Beijing Municipal
People’s Government moved to the city subcenter in Tongzhou District in January, 2019. The former address is 2 Zhengyi
Road, Dongcheng District, Beijing.



4.5. Results 93

categories: (i) close counties whose distances are within 100 km; (ii) nearby counties whose dis-

tances range from 100 to 200 km; (iii) distant counties whose distances exceed 200 km. We expect

the geographically closer counties to have larger and more significant carbon leakage, relative to

the neighbouring counties that locate farther away (Paroussos et al., 2015).

Notes: The figure reports the results of heterogeneity analyses.
For convenient comparison, we display the main result at the top.
The error bars are constructed by the 95% quantiles of the boot-
strapped estimates.

FIGURE 4.13: Heterogeneity analysis

Figure 4.13 reports the results of the heterogeneity analysis discussed above.13 As suggested by

the estimates, we find that the carbon leakage is only relevant to the middle-income counties, with

the effect is significantly positive at 5% level. The estimated coefficient is 0.206, implying that the

Action Plan led to significant carbon leakage of 206 thousand tonnes of CO2 emissions each year,

equivalent to an annual increase by 5.6%. From the distance point of view, the leakage is only sig-

nificantly positive for the close counties at 5% level with the coefficient of 0.392 . These estimates

suggest significant carbon leakage of 392 thousand tonnes of CO2 emissions per year, equivalent

to annual increases by 8.3%.
13See Figures F.5 - F.10 in Appendix F for the visualisations of the results, where the parallel trend assumption holds

for all checks. Figures G.13 - G.18 in Appendix G show the qualities of the refinements, where there are substantial im-
provements after the matching.
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The city-level idiosyncratic characteristics may allow the neighbouring cities to substantially differ

from each other, leading to carbon leakage at different rates. To uncover the city-specific carbon

leakage and identify the main driver, we further decompose the above aggregate effects into disag-

gregate level. Results are reported in Figure F.11 in Appendix F. As suggested by the estimates, the

leakage is mostly relevant to Baoding and Langfang, where the treatment effects are both statisti-

cally significant at 5% level with estimated treatment effects of 0.158 and 0.423. This results suggest

that the Action Plan caused significant carbon leakage of 158 thousand tonnes and 423 thousand

tonnes in these two cities, equivalent to annual increases of CO2 emissions by 5.9% and 8.6%, re-

spectively.14 The estimated coefficient is also significantly positive for the high-income counties in

Chengde, but is not significant at the average level.

4.6 Further results

Until now, we have been focusing on assessing the carbon leakage of the Action Plan, using the

neighbouring counties’ CO2 emissions as the outcome variable. Based on the above tests, we are

convinced that our identification is correct for the case study, and our empirical findings make

sense in the question of interest.

In this section, we investigate economic benefits induced by the leakage and possible leakage chan-

nels that contribute to the leakage. We start by using alternative outcome variables to uncover

these economic benefits. Specifically, we investigate the impact on physical capital by employing

social fixed asset investment (in billion CNY) as the outcome measure, based on the assumption

that neighbouring counties may be incentivised to invest in complementary infrastructure as a re-

sponse to carbon leakage. Additionally, we include GDP (billion CNY) and GDP per capita (thousand

CNY) as alternative outcome variables to examine the economic benefits associated with the car-

bon leakage.15

14Notably, the coefficient is significantly negative for the high-income counties in Langfang. However, there is only
one neighbouring county and the plot suggests violation of parallel trend assumption.

15For this analysis, we use the same control variables as previously, with the exception of the model for GDP per capita.
In this case, our control variables include the shares of GDP accounted for by the primary, secondary, and tertiary sec-
tors (%), the share of GDP allocated to fiscal expenditure (%), highway density per land area (km), and the number of
telephones (fixed and mobile) per capita (unit).
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TABLE 4.7: Further results – economic benefits

GDP GDP per capita Physical capital

Estimate 0.819** 2.225** 0.655
90% CI (0.177, 1.495) (0.503, 4.302) (-1.147, 2.252)
95% CI (0.049, 1.643) (0.248, 4.733) (-1.481, 2.489)
99% CI (-0.266, 1.918) (-0.306, 5.522) (-2.183, 2.914)

Note: (i) The table displays the estimate of the nearest neighbour
matching on alternative outcome variables. The confidence inter-
vals are constructed by the 90%, 95% and 99% quantiles of the
bootstrapped estimates. (ii) *, **, *** indicate 10%, 5% and 1%
statistical significance, respectively.

Table 4.7 displays the results.16 As suggested by the estimates, we find that the neighbouring coun-

ties’ GDP and GDP per capita increased by around 819 million CNY and 2.2 thousand CNY relative

to the counties in the peripheries, with significance level at 5% level for both estimations. These

estimates translate to annual increases on the outcomes by around 7.8% and 8.8%, respectively.

However, we find no statistically significant effect on physical capital.

TABLE 4.8: Further results – leakage channels

Primary sector Secondary sector Tertiary sector

Panel A: share of GDP taken by sector (%)
Estimate -1.389 5.159* -3.913
90% CI (-4.010, 0.680) (0.170, 11.675) (-8.904, 0.021)
95% CI (-4.563, 1.054) (-0.424, 12.962) (-10.086, 0.559)
99% CI (-5.689, 1.729) (-1.264, 17.308) (-11.998, 1.560)

Panel B: gross product by sector (billion CNY)
Estimate 0.100 0.906** 0.015
90% CI (-0.131, 0.326) (0.134, 1.900) (-0.580, 0.533)
95% CI (-0.176, 0.372) (0.015, 2.151) (-0.707, 0.612)
99% CI (-0.274, 0.473) (-0.181, 2.616) (-0.895, 0.778)

Note: (i) The table displays the estimate of the nearest neighbour
matching on alternative outcome variables. The confidence inter-
vals are constructed by the 90%, 95% and 99% quantiles of the boot-
strapped estimates. (ii) *, **, *** indicate 10%, 5% and 1% statistical
significance, respectively.

16See Figures F.12 - F.14 in Appendix F for the visualisations, and Figures G.19 - G.21 in Appendix G for the quality of
the refinement.
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Next, we focus on the possible leakage channels that contribute to the carbon leakage. While prefer-

able, sector-specific energy consumption or CO2 emissions are not available, because of the incom-

plete statistics at the county level. Therefore, we instead use shares of GDP respectively taken by

the primary, secondary and tertiary sectors (%) as the outcome variables. We further use the gross

product of the primary, secondary and tertiary sectors (billion CNY) as the alternative outcomes, to

further identify whether the increase (decrease) crowds out (in) other sectors.17

Table 4.8 displays the results.18 Albeit statistically significant at 10% level, we find that the Action

Plan led to a structural change in the neighbouring counties, where the share of secondary sector

rose by 5.2%. We report a significant increase on the gross product of secondary sector around 906

billion CNY. This significant increase did not crowd out the primary or tertiary sector, however, as

indicated by the correspondingly insignificant estimates.

4.7 Concluding remark

In this chapter, we set out to assess the impact of an air pollution control policies in China – Action

Plan for Prevention and Control of Air Pollution – on an undesirable output in economic activities,

CO2 emissions. Exploiting its policy design that the mitigation mandates were set at different lev-

els in different regions, we are able to investigate the question of interest by comparing the CO2

emissions from the counties in the neighbouring cities with those from the counties in the periph-

eries. The overlapping policy of the China’s ETS pilots poses significant challenge to our identifica-

tion, which we overcome by delving into the policy details of the pilots. We are also aware of the

potential biases introduced by the historical administrative adjustments and the announcement

effect. Furthermore, we uncover substantial heterogeneity along various dimensions, and explore

the economic benefits and leakage channels.

We find that the Action Plan led to a significant carbon leakage of 151 thousand tonnes of CO2 emis-

sions each year. This translates to an annual increase of CO2 emissions of 4.4% in the neighbouring
17We use GDP per capita (thousand CNY), shares of GDP respectively taken by primary, secondary and tertiary sec-

tors (%), highway per land area (km), and telephones (fixed and mobile) per capita (unit) as control variables, wherever
possible.

18See Figures F.15 - F.20 in Appendix F for the visualisations, and Figure G.22 - G.27 in Appendix G for the quality of the
refinement.
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counties. Our empirical findings are extremely robust and survived all relevant checks. The leak-

age of carbon is mostly relevant to Baoding and Langfang, where the Action Plan increased 158

thousand tonnes and 423 thousand tonnes of CO2 emissions, equivalent to annual increases of

CO2 emissions by 5.9% and 8.6%, respectively. The leakage of carbon also brought additional eco-

nomic benefits in the neighbouring counties, where their GDP and GDP per capita respectively rose

by 819 million CNY and 2.1 thousand CNY, mostly contributed by secondary sector, where its share

of GDP and gross product respectively increased by 5.2% and 906 million CNY, without crowding

out other economic sectors.

Our empirical findings suggest an inflow of economic activities in the neighboring units induced by

more stringent enforcement in the mega-cities. While this maneuver has brought economic ben-

efits to the neighboring units, there may be uncovered costs associated with it that are beyond

the scope of this analysis. Exploring these potential costs could be a fruitful avenue for future re-

search. The specific channels of the inflow could involve relocating production across administra-

tive boundaries or demand outsourcing. Unfortunately, we are unable to clarify which mechanism

is more pronounced due to the lack of disaggregated data. Regardless, this does not alter the main

idea of this chapter — an optimal environmental regulation should account for leakage channels.

This emphasizes the need for a comprehensive assessment in a general equilibrium setting.
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Chapter 5

Concluding remarks

In this thesis, we assess climate and air pollution control policies in emerging economies, with a

focus on the Low-Carbon City Pilot (LCCP) and the Action Plan for Prevention and Control of Air Pol-

lution (Action Plan) in China.

In Chapter 2, we investigate the effectiveness of the LCCP on CO2 emissions per capita and CO2

intensity of GDP. Contrary to the existing literature, we find that the LCCP had no statistically sig-

nificant effect on either of the outcomes. Our results are robust to a series of tests. We also use an

alternative set of data as outcomes, following an improved version of IPCC Guidelines reported by

Shan et al. (2017). This set of data allows us to unprecedentedly explore the sectoral impact of the

LCCP. We also delve into the policy design, and differentiate the units with explicit political agen-

das. Our results surprisingly suggest that the LCCP had no sector-level emissions, even for those

cities with explicit political agendas.

In Chapter 3, we follow our developed identification framework and assess the impact of the LCCP

on environmental efficiency. While we find that the LCCP had no statistically significant effect on

efficiency, we find that the non-treated cities’ efficiencies were closely associated with the imple-

mentation of the LCCP. Our results suggest that the second wave of the LCCP had statistically sig-

nificant effect in increasing the non-treated cities’ efficiencies, although only in the short run.

In Chapter 4, we move on to assessing the socioeconomic impact of the Action Plan, by investigat-

ing whether the policy led to increases of CO2 emissions in the neighbouring counties. Our results

suggest significant leakage of 151 thousand tonnes of CO2 emissions each year, equivalent to an

annual increase of CO2 around 4.4%. We attributed the increases to the secondary sector, where its
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gross product and share of GDP respectively increased by 906 million CNY and 5.2%, without crowd-

ing out other economic sectors. The inflow of economic activities respectively rose neighbouring

counties’ GDP and GDP per capita by 819 million CNY and 2.1 thousand CNY.

The conclusions of Chapter 2 and 3 unfortunately run against to the existing literature. The dif-

ferences mostly derive from the policy design of the LCCP, where cities are self-selected into the

treatment, and are treated at different points of time. We believe that our empirical findings ben-

efit from a more robust design of identification, which is tailored for the case study of the LCCP.

Indeed, effects are in general insignificant once we control for the possible confounding factors.

One may worry that the learning effect that we reported in Chapter 3 may undermine our effort

in Chapter 2. In fact, the LCCP mostly worked as a demonstration tool to promote transition to a

low-carbon economy, rather than explicitly focusing on reducing CO2 emissions. Moreover, we find

no indication of treatment spill-overs for CO2 emissions per capita and carbon intensity due to the

LCCP. Therefore, we conclude that the LCCP has been focusing on optimising the use of production

factors. Our use of environmental efficiency precisely reflects such transition, where we find that

the second wave of the LCCP indeed promoted the diffusion of low-carbon mitigation. The effect

is, unfortunately, not persistent and only statistically significant in the short run.

Our results lead us to conclude that emerging economies do not behave significantly different from

the developed ones. The empirical findings are well aligned with the theory of environmental reg-

ulation. That is, quantifiable targets and the introduction of clear instruments affect the incentives

of the economic agents. Credible enforcement still represent the key elements for effective envi-

ronmental policy.

In Chapter 4, we find inflow of economic activities from the mega-cities to the neighbouring coun-

ties. Our concern is consistent with those reported in the literature, that such outsourcing of energy

demand or relocation of heavy emitters may offset the benefits delivered by the intervention. In-

deed, a well-crafted policy design should be devised in a general equilibrium setting that accounts

for such potential leakage channels. While generally preferable, monitoring data of air pollutants

are only available from 2014 onwards, thus, we are unable to investigate the leakage of air pollu-

tants. The lack of appropriate data constraints our research at this scope, but could be a fruitful

research revenue in the future.
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This thesis could be extended in a number of dimensions. First, we could add more energy con-

sumption data. The fact that the CO2 emissions compiled following IPCC Guidelines have a shorter

panel and less cities is because the relevant statistics are stored offline in the municipal bureau of

statistics. Recruiting more researchers into our group might be helpful in adding more observa-

tions. Second, we could derive the data of air pollutants concentration by downscaling the global

estimates of surface PM2.5 reported by satellite images from National Aeronautics and Space Ad-

ministration (NASA). Such transformation requires additional administrative data and program-

ming, but is promising for studying the leakage of air pollutants.
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Partially pooled synthetic control

method

We suppose a panel dataset with an outcomeYi t for 1, ...,N units in 1, ...,T time periods. Each unit

has a potential treatment outcome Yi t (s) in each treatment time s , for s = 1, ...,T . j = 1, ..., J

indexes the units that are treated in timeTi with an orderT1 ≤ T2 ≤ ... ≤ TN , and non-zero never

treated units are indexed by N0 = N − J withTi = ∞. k indexes event time relative to treatment

timeTj by k = t −Tj , and ATT is estimated k periods after the treatment start. For each treated unit,

we consider the outcome up to Lj ≤ Tj − 1 periods before treatment, with L ≡ maxj ≤JLj referring

to the maximum number of lagged outcomes. The ATT in original SCM is therefore expressed as:

ATTk =
1

J

J∑
j=1

(
Yj ,Tj +k (Tj ) −Yj ,Tj +k (∞)

)
. (A.1)

When the ATT is estimated in the presence of multiple treated units through unit-specific fits, the

average pre-treatment root mean square error q seq across the J treated units is given by:

q seq =

√√√√
1

J

J∑
j=1

[
1

Lj

Lj∑
ℓ=1

(
Yj ,Tj −ℓ −

N∑
i=1

γ̂i jYi ,Tj −ℓ

)2]
. (A.2)
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Alternatively, ATT for multiple treated units can also be estimated by performing the average pre-

treatment fit. The imbalance qpool for the average of the treated units is expressed as:

qpool =

√√√√
1

L

L∑
ℓ=1

[
1

J

∑
Tj >ℓ

(
Yj ,Tj −ℓ −

N∑
i=1

γ̂i jYi ,Tj −ℓ

)]2
. (A.3)

The partially pooled SCM looks for weights that minimise a convex combination of imbalance in

separate SCM q sep and pooled imbalance qpool :

min
γ1,...,γJ

ν (qpool )2 + (1 − ν) (q sep )2 + λ
J∑

j=1

N∑
i=1

f (γi j ). (A.4)

Both of the pooled SCM and separate SCM are nested in this optimisation problem with a hyper-

parameter ν ∈ [0, 1] that equals 0 and 1 for each of them respectively (Ben-Michael et al., 2022).

Specifically, λ
∑J

j=1

∑N
i=1 f (γi j ) is a term that penalises the weights toward uniformity over a hyper-

parameter λ (Abadie et al., 2015). In the presence of perfect pre-treatment fit, the choice of penalty

can be important since the optimisation problem may have multiple solutions.
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Emission inventories using the IPCC

Guidelines

Recent contributions in the literature have used the method developed by the IPCC to calculate

CO2 emissions, i.e. they multiply energy consumption by standard emissions factors (IPCC, 2006).

However, recent survey data from 602 samples from 100 different mining areas that cover the ma-

jority of China’s coal production suggests that the default emission factors proposed by the IPCC

are on average 40% higher than than the actual values for China (Liu et al., 2015; Shan et al., 2018b).

In addition, most studies do not take the CO2 emissions from industrial processes into account. In

the year 2016, the aggregate CO2 emissions in China was 9,217.15 Mt, 7.6% of which are emissions

due to chemical reactions linked to industrial processes rather than due to fossil fuels combustion

(Shan et al., 2020). To correctly assess the amount of carbon emissions across cities, it is, therefore,

necessary to both use the revised emission factors and to include process emissions.

In this paper, we, therefore, follow Shan et al. (2017) and calculate CO2 emissions for each of our

observations using the updated emission factors to compile the CO2 emission inventories. The data

for compiling the CO2 emission inventory for each city is collected from the respective city-level

statistical yearbook, which allows us to decompose the aggregate emissions into emissions from

17 different fossil fuels, 47 socioeconomic sectors and cement production.

Formally, the CO2 emissions from fossil fuel combustion are calculated as:

CEEnergy,pt =
∑
i

∑
j

CEpt i j =
∑
i

∑
j

ADpt i j × NCVpt i × CCpt i ×Opt i j , (B.1)
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where p denotes cities; t denotes the year; i indexes the 17 different fossil fuel types in the data and

j indexes the 47 different economic sectors. ADpt i j represents the activity data, i.e. the physical

quantity of fuel i consumed by sector j ; NCVi represents the net caloric value, i.e. is the heat value

for each physical unit of the fossil fuel; CCi represents CO2 emissions per unit of the net caloric

value of the fossil fuel;O i j represents the oxygenation rate, which is the oxidation rate in the process

of fossil fuel combustion.

Similarly, the CO2 emissions from industrial processes can be expressed as:

CEProcess,pt =
∑
m

CEptm =
∑
m

ADptm × EFm , (B.2)

where m indexes the 7 different industrial processes for which we have information. ADptm de-

notes the production (in physical quantity) from industrial process m and EFm denotes the corre-

sponding emission factors. Table B.1 summarises the net caloric values and the emission factors

for calculating CO2 emissions from both fossil fuel combustion and industrial processes. For the

combustion emissions, we used the oxygenation rates provided by Shan et al. (2018b).
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TABLE B.1: Emission factors for CO2 emissions calculations.

No. Fossil fuel types NCVi CCi Industrial process EFt
1 Raw coal 0.21 96.51 Cement production 0.4985
2 Cleaned coal 0.26 96.51
3 Other washed coal 0.15 96.51
4 Briquette 0.18 96.51
5 Coke 0.28 115.07
6 Coke oven gas 1.61 78.80
7 Other gas 0.83 78.80
8 Other coking products 0.28 100.64
9 Natural gas 3.89 56.17

10 Crude oil 0.43 73.63
11 Gasoline 0.44 69.30
12 Kerosene 0.44 71.87
13 Diesel oil 0.43 74.07
14 Fuel oil 0.43 77.37
15 Other petroleum products 0.51 74.07
16 Liquefied petroleum gas (LPG) 0.47 63.07
17 Refinery gas 0.43 73.33

Note: "Briquettes" includes briquettes and gangue. "Other gas" includes blast furnace
gas, converter gas and other unclassified gas. "Other petroleum products" includes naph-
tha, lubricants, paraffin, white spirit, bitumen asphalt, petroleum coke and other unclas-
sified petroleum products.
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Mahalanobis distance

We calculate the average Mahalanobis distance between the treated units and each control follow-

ing the expression below:

MDj t (i ′) =
1

L

L∑
l=1

√
(Xj ,t−l − Xi ′,t−l )⊺Σ−1

j ,t−1(Xj ,t−l − Xi ′,t−l ), (C.1)

where i ′ is the matched control unit for each treated unit j = 1, ..., J .
∑−1

j ,t−1 is the sample covariance

matrix of Xj t that is the vector of control variables that one wishes to control for. With the non-

negative integer l = 1, ..., L as lags, we compute the distance using the included control variables,

then average it across the study period.

After creating a matched set Mi t , we compute the DiD estimate for each treated unit and then av-

erage it across all treated observations. For brevity, we omit the non-negative weight assigned to

each treated observation, since it equals to one whatsoever due to our specification of one-to-one

nearest neighbour matching. Following Imai et al. (2021), we specify the DiD estimator as

δ̂ (F , L) = 1∑J
j=1

∑T −F
t=L+1 Dj t

J∑
j=1

T −F∑
t=L+1

Dj t

{
(Yj ,t+F −Yj ,t−1) − (Yi ′,t+F −Yi ′,t−1)

}
, (C.2)

where Dj t = 1 only if observation (j , t ) switches to treated unit from the control condition at time

t − 1 to time t and has at least one matched control unit.
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For each treated observation, the covariate balance for variable x at the pre-treatment period t − l

is defined as

B j t (x , l ) =
Xj ,t−l ,x − Xi ′,t−l ,x√

N1
N1−1 (Xi ′,t−l ,x − X t−l ,x )2

, (C.3)

where N1 is the total number of treated observations, and X t−l ,x =
∑N

i=1 Di ,t−l ,x/N . We then ag-

gregate this balance across all treated observations for each control variable and pre-treatment

period:

B (x , l ) = 1

N1

N∑
i=1

T −F∑
t=L+1

Di tB j t (x , l ). (C.4)
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Additional figures and tables for

Chapter 2

TABLE D.1: Controlling for policy overlap – Two Control Zones

ATT estimate Std. err. p-value

Panel A: Excluding Two Control Zones cities
CO2 emissions per capita -0.152 0.384 0.692
GDP CO2 intensity 0.019 0.173 0.913

Panel B: Restrict to Two Control Zones cities
CO2 emissions per capita -0.027 0.267 0.919
GDP CO2 intensity -0.083 0.117 0.478

Notes: (i) The table displays the estimates of the staggered synthetic control
method on CO2 emissions per capita and GDP CO2 intensity for the first two waves
of the LCCP. (ii) *, **, *** indicate 10%, 5% and 1% statistical significance, respec-
tively.
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Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on a sample that excludes all Two Control Zones cities. The effects are normalised
relative to the beginning of treatment, i.e. 2009 for wave I and 2011 for Wave II.

FIGURE D.1: Controlling for policy overlap – excluding Two Control Zones cities

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on a sample that is restricted to Two Control Zones cities. The effects are normalised
relative to the beginning of treatment, i.e. 2009 for wave I and 2011 for Wave II.

FIGURE D.2: Controlling for policy overlap – Two Control Zones cities
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Notes: The figure shows the results of examining the anticipation effect on CO2 emissions per capita and
GDP CO2 intensity using staggered synthetic control method on a sample which excludes all cities treated
under China’s ETS pilots. The effects are normalised relative to the beginning of treatment, i.e. 2009 for
wave I and 2011 for Wave II.

FIGURE D.3: Controlling for potential anticipation effect – alternative policy start

Notes: The figure shows the results of examining the treatment spillovers on CO2 emissions per capita using
staggered synthetic control method. The left panel excludes neighbouring cities, and the right panel uses
neighbouring cities as donor units. The effects are normalised relative to the beginning of treatment, i.e.
2010 for wave I and 2012 for Wave II.

FIGURE D.4: Controlling for treatment spillovers – CO2 emissions per capita
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Notes: The figure shows the results of examining the treatment spillovers on GDP CO2 intensity using
staggered synthetic control method. The left panel excludes neighbouring cities, and the right panel uses
neighbouring cities as donor units. The effects are normalised relative to the beginning of treatment, i.e.
2010 for wave I and 2012 for Wave II.

FIGURE D.5: Controlling for treatment spillovers – GDP CO2 intensity

Notes: The figure shows the results of examining the treatment spillovers on GDP per capita using staggered
synthetic control method. The left panel excludes neighbouring cities, and the right panel uses neighbour-
ing cities as donor units. The effects are normalised relative to the beginning of treatment, i.e. 2010 for
wave I and 2012 for Wave II.

FIGURE D.6: Controlling for treatment spillovers – GDP per capita
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Notes: The figure shows the results of the first wave on CO2 emissions per capita and GDP CO2 intensity
using synthetic control method on a sample which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment.

FIGURE D.7: Checking for robustness – results for the first wave

Notes: The figure shows the results of the second wave on CO2 emissions per capita and GDP CO2 intensity
using synthetic control method on a sample which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment.

FIGURE D.8: Checking for robustness – results for the second wave
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Notes: The figure shows the results of the city-level treatment on CO2 emissions per capita and GDP CO2

intensity using staggered synthetic control method on a sample which excludes all cities treated under
China’s ETS pilots. The effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and
2012 for Wave II.

FIGURE D.9: Checking for robustness – city-level treatment

Notes: The figure shows the results of the province-level treatment on CO2 emissions per capita and GDP
CO2 intensity using staggered synthetic control method on a sample which excludes all cities treated under
China’s ETS pilots. The effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and
2012 for Wave II.

FIGURE D.10: Checking for robustness – province-level treatment
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Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on low-income cities which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.11: Checking for robustness – low-income cities

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on middle-income cities which excludes all cities treated under China’s ETS pilots.
The effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.12: Checking for robustness – middle-income cities
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Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on high-income cities which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.13: Checking for robustness – high-income cities

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on northwestern cities which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.14: Checking for robustness – northwestern cities
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Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on northern cities which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.15: Checking for robustness – northern cities

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on northeastern cities which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.16: Checking for robustness – northeastern cities
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Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on central cities which excludes all cities treated under China’s ETS pilots. The effects
are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.17: Checking for robustness – central cities

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on eastern cities which excludes all cities treated under China’s ETS pilots. The effects
are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.18: Checking for robustness – eastern cities
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Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on southern cities which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.19: Checking for robustness – southern cities

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on southwestern cities which excludes all cities treated under China’s ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.20: Checking for robustness – southwestern cities
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Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on resource-based cities which excludes all cities treated under China’s ETS pilots.
The effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.21: Checking for robustness – resource-based cities

Notes: The figure shows the results of the staggered synthetic control method on CO2 emissions per capita
and GDP CO2 intensity on non-resource-based cities which excludes all cities treated under China’s ETS
pilots. The effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for
Wave II.

FIGURE D.22: Checking for robustness – non-resource-based cities
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Notes: The figure shows the results of the first wave on CO2 emissions per capita and GDP CO2 intensity
using synthetic control method on an alternative dataset which excludes all cities treated under China’s ETS
pilots. The effects are normalised relative to the beginning of treatment.

FIGURE D.23: Alternative emissions data – results for the first wave

Notes: The figure shows the results of the second wave on CO2 emissions per capita and GDP CO2 intensity
using staggered synthetic control method on an alternative dataset which excludes all cities treated under
China’s ETS pilots. The effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and
2012 for Wave II.

FIGURE D.24: Alternative emissions data – results for the second wave



136 Appendix D. Additional figures and tables for Chapter 2

Notes: The figure shows the results of the staggered synthetic control method on expenditure on science
and technology and social fixed asset investment on a sample which excludes all cities treated under China’s
ETS pilots. The effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012
for Wave II.

FIGURE D.25: Alternative outcome – expenditure on science and technology and so-
cial fixed capital

Notes: The figure shows the results of the staggered synthetic control method on gross domestic product
on a sample which excludes all cities treated under China’s ETS pilots. The left panel displays the results for
the entire sample, while the right panel is restricted to cities that have published agendas. The effects are
normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.26: Alternative outcome – gross domestic product
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Notes: The figure shows the results of the staggered synthetic control method on gross domestic product
per cpaita on a sample which excludes all cities treated under China’s ETS pilots. The left panel displays the
results for the entire sample, while the right panel is restricted to cities that have published agendas. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.27: Alternative outcome – gross domestic product per capita

Notes: The figure shows the results of the staggered synthetic control method on employment on a sample
which excludes all cities treated under China’s ETS pilots. The left panel displays the results for the entire
sample, while the right panel is restricted to cities that have published agendas. The effects are normalised
relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

FIGURE D.28: Alternative outcome – employment
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TABLE D.2: Staggered synthetic control estimation - excluding ETS pilot cities

CO2 emissions per capita GDP CO2 intensity

Panel A. Different affluence levels

Low-income cities -0.236
(0.204)

-0.075
(0.109)

Middle-income cities -0.138
(0.658)

0.120
(0.155)

High-income cities -1.075
(0.830)

-0.039
(0.082)

Panel B. Different geographical regions

Northwest China 0.405
(0.700)

0.133
(0.244)

North China -0.314
(0.510)

0.018
(0.125)

Northeast China -0.145
(0.389)

-0.136
(0.193)

Central China 0.091
(0.213)

0.111
(0.120)

East China -0.488*
(0.272)

-0,002
(0.092)

South China -0.315
(0.734)

0.138
(0.181)

Southwest China -0.601
(0.470)

-0.187
(0.176)

Panel C. City category

Resource-based cities -0.202
(0.388)

-0.059
(0.144)

Non-resource-based cities -0.374
(0.305)

0.010
(0.074)

Notes: (i) The table displays the estimates of the staggered synthetic control
method on CO2 emissions per capita and GDP CO2 intensity for the first two
waves of the LCCP on a sample which excludes all cities treated under China’s
ETS pilots. (ii) *, **, *** indicate 10%, 5% and 1% statistical significance, respec-
tively.
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TABLE D.3: Distribution of LCCP cities by affluence levels and geography

China’s Low-Carbon City Pilot

First wave Second wave

Panel A. Affluence levels
High-income cities Hangzhou, Xiamen Zhenjiang, Ningbo

Middle-income cities
Anshan, Fushun, Benxi, Yingkou, Panjin,

Nanchang, Kunming, Xi’an, Yan’an,
Yulin (Shaanxi)

Jilin, Wenzhou, Qingdao,
Kunming, Yan’an, Jinchang, Ürümqi

Low-income cities

Baoding, Dandong, Jinzhou, Fuxin,
Liaoyang, Tieling, Huludao, Guiyang,
Qujing, Baoshan, Zhaotong, Lijiang,

Pu’er, Lincang, Tongchuan, Baoji,
Xianyang, Weinan, Hanzhong

Shijiazhuang, Qinhuangdao, Jincheng,
Hulunbuir, Huai’an, Chizhou, Nanping,
Jingdezhen, Ganzhou, Guilin, Haikou,

Guangyuan, Zunyi

Panel B. Geographical distribution

North China Baoding Shijiazhuang, Qinhuangdao, Jincheng,
Qingdao

Northeast China
Anshan, Fushun, Benxi, Dandong,
Jinzhou, Yingkou, Fuxin, Liaoyang,

Panjin, Tieling, Huludao
Hulunbuir, Jilin

East China Hangzhou Huai’an, Zhenjiang, Ningbo,
Wenzhou, Chizhou

South China Xiamen Nanping, Guilin, Haikou

Central China Nanchang Jingdezhen, Ganzhou

Southwest China Guiyang, Kunming, Qujing, Baoshan,
Zhaotong, Lijiang, Pu’er, Lincang Guangyuan, Zunyi, Kunming

Northwest China Xi’an, Tongchuan, Baoji, Xianyang, Weinan,
Yan’an, Hanzhong, Yulin (Shaanxi) Yan’an, Jinchang, Ürümqi

Notes: The table displays the list of LCCP cities by affluence levels and geographic locations. Note that Yulin may
refer to multiple prefecture-level cities, therefore, we use Yulin (Shaanxi) to avoid confusion.
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TABLE D.4: Economic sectors

No. Economic sectors Category

1 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy Agriculture

2 Coal Mining and Dressing

Mining

3 Petroleum and Natural Gas Extraction
4 Ferrous Metals Mining and Dressing
5 Nonferrous Metals Mining and Dressing
6 Non-metal Minerals Mining and Dressing
7 Other Minerals Mining and Dressing

8 Logging and Transport of Wood and Bamboo

Light Manufacturing

9 Food Processing
10 Food Production
11 Beverage Production
12 Tobacco Processing
13 Textile Industry
14 Garments and Other Fibre Products
15 Leather, Furs, Down and Related Products
16 Timber Processing, Bamboo, Cane, Palm Fibre & Straw Products
17 Furniture Manufacturing
18 Papermaking and Paper Products
19 Printing and Record Medium Reproduction
20 Cultural, Educational and Sports Articles
21 Medical and Pharmaceutical Products

22 Petroleum Processing and Coking

Heavy Manufacturing

23 Raw Chemical Materials and Chemical Products
24 Chemical Fibre
25 Rubber Products
26 Plastic Products
27 Non-metal Mineral Products
28 Smelting and Pressing of Ferrous Metals
29 Smelting and Pressing of Nonferrous Metals
30 Metal Products
31 Ordinary Machinery
32 Equipment for Special Purposes
33 Transportation Equipment Manufacturing

34 Electric Equipment and Machinery

High-tech Manufacturing
35 Electronic and Telecommunications Equipment
36 Instruments, Meters, Cultural and Office Machinery
37 Other Manufacturing Industry
38 Scrap and waste

39 Production and Supply of Electric Power, Stream and Hot Water
Power Supply Sector40 Production and Supply of Gas

41 Production and Supply of Tap Water

42 Construction Construction

43 Transportation, Storage, Post and Telecommunication Services
Service industry44 Wholesale, Retail Trade and Catering Services

45 Other Service Sectors

46 Urban Resident Energy Usage Household usage47 Rural Resident Energy Usage

Notes: The table shows the economic sectors and categorisation. In general, we categorise 47 economic sec-
tors into nine broader categories, partly following the suggestion in Shan et al. (2018b).



Appendix D. Additional figures and tables for Chapter 2 141

TABLE D.5: Fossil fuel types

No. Fossil fuel types Category

1 Raw Coal

Coal Products

2 Cleaned Coal
3 Other Washed Coal
4 Briquettes
5 Coke
6 Other Coking Products

7 Coke Oven Gas

Gas
8 Other Gas
9 Liquefied Petroleum Gas
10 Refinery Gas
11 Natural Gas

12 Crude Oil

Oil products
13 Gasoline
14 Kerosene
15 Diesel Oil
16 Fuel Oil

17 Other Petroleum Products Petroleum Products

Note: The table shows the fossil fuel types and categorisa-
tion. In general, we categorise 17 types of fossil fuel into
4 broader categories. “Briquettes” includes briquettes and
gangue. “Other gas” includes blast furnace gas, converter
gas and other unclassified gas. “Other petroleum prod-
ucts” includes naphtha, lubricants, paraffin, white spirit,
bitumen asphalt, petroleum coke and other unclassified
petroleum products.
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Notes: The figure shows the heterogeneity analysis for the LCCP first wave, by dividing the non-pilot cities
into two groups, depending on whether they share a border with those treated ones.

FIGURE E.1: Heterogeneity analysis – neighbours and peripheries for the first wave
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Notes: The figure shows the heterogeneity analysis for the learning effect, by dividing the non-pilot cities
into two groups, depending on whether they share a border with those treated ones.

FIGURE E.2: Heterogeneity analysis – neighbours and peripheries for the learning ef-
fect

Notes: The figure shows the heterogeneity analysis for the LCCP first wave, by dividing the treated cities into
two groups, depending on whether they were assigned to treatment directly or assigned treatment status
as part of a province-level treatment assignment.

FIGURE E.3: Heterogeneity analysis – treatment levels for the first wave
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Notes: The figure shows the heterogeneity analysis for the LCCP second wave, by dividing the treated cities
into two groups, depending on whether they were assigned to treatment directly or assigned treatment
status as part of a province-level treatment assignment.

FIGURE E.4: Heterogeneity analysis – treatment levels for the second wave

Notes: The figure shows the effect of the LCCP first wave on low-
income cities’ environmental efficiency using the partially pooled
synthetic control method.

FIGURE E.5: Heterogeneity analysis – LCCP first wave on low-income cities
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Notes: The figure shows the effect of the LCCP first wave on
middle-income cities’ environmental efficiency using the par-
tially pooled synthetic control method.

FIGURE E.6: Heterogeneity analysis – LCCP first wave on middle-income cities

Notes: The figure shows the effect of the LCCP first wave on high-
income cities’ environmental efficiency using the partially pooled
synthetic control method.

FIGURE E.7: Heterogeneity analysis – LCCP first wave on high-income cities
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Notes: The figure shows the effect of the LCCP second wave on
low-income cities’ environmental efficiency using the partially
pooled synthetic control method.

FIGURE E.8: Heterogeneity analysis – LCCP second wave on low-income cities

Notes: The figure shows the effect of the LCCP second wave on
middle-income cities’ environmental efficiency using the par-
tially pooled synthetic control method.

FIGURE E.9: Heterogeneity analysis – LCCP second wave on middle-income cities
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Notes: The figure shows the effect of the LCCP second wave on
high-income cities’ environmental efficiency using the partially
pooled synthetic control method.

FIGURE E.10: Heterogeneity analysis – LCCP second wave on high-income cities

Notes: The figure shows the learning effect on low-income cities’
environmental efficiency using the partially pooled synthetic
control method.

FIGURE E.11: Heterogeneity analysis – learning effect on low-income cities
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Notes: The figure shows the learning effect on middle-income
cities’ environmental efficiency using the partially pooled syn-
thetic control method.

FIGURE E.12: Heterogeneity analysis – learning effect on middle-income cities

Notes: The figure shows the learning effect on high-income cities’
environmental efficiency using the partially pooled synthetic
control method.

FIGURE E.13: Heterogeneity analysis – learning effect on high-income cities
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Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions using as control vari-
ables the significant variables identified by the dynamic DiD ap-
proach. Treatment effect is normalised relative to the beginning
of the treatment. The error bars are constructed by the 95%
quantiles of the bootstrapped estimates.

FIGURE F.1: Different specifications – FE covariates
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Notes: The figure reports the results of the nearest neighbour matching on county-level CO2 emissions
using different number of match size. The left panel displays the results where the match size increases to
two, and the right panel displays the results where the match size increases to three. Treatment effects are
normalised relative to the beginning of the treatment. The error bars are constructed by the 95% quantiles
of the bootstrapped estimates.

FIGURE F.2: Different specifications – alternative match size

Notes: The figure reports the results of applying alternative matching method on county-level CO2 emissions.
The left panel displays the results of applying propensity score matching, and the right panel displays the
results of applying propensity score weighting. Treatment effects are normalised relative to the beginning
of the treatment. The error bars are constructed by the 95% quantiles of the bootstrapped estimates.

FIGURE F.3: Different specifications – propensity score matching and weighting
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Notes: The figure reports the results of applying alternative matching method on county-level CO2 emis-
sions. The left panel displays the results of applying covariates balance propensity score matching, and
the right panel displays the results of applying covariates balance propensity score weighting. Treatment
effects are normalised relative to the beginning of the treatment. The error bars are constructed by the 95%
quantiles of the bootstrapped estimates.

FIGURE F.4: Different specifications – covariates balance propensity score matching
and weighting

Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions for the low-income
counties. Treatment effect is normalised relative to the begin-
ning of the treatment. The error bars are constructed by the 95%
quantiles of the bootstrapped estimates.

FIGURE F.5: Heterogeneity analysis – low-income counties
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Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions for the middle-income
counties. Treatment effect is normalised relative to the begin-
ning of the treatment. The error bars are constructed by the 95%
quantiles of the bootstrapped estimates.

FIGURE F.6: Heterogeneity analysis – middle-income counties

Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions for the high-income
counties. Treatment effect is normalised relative to the begin-
ning of the treatment. The error bars are constructed by the 95%
quantiles of the bootstrapped estimates.

FIGURE F.7: Heterogeneity analysis – high-income counties
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Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions for the close counties.
Treatment effect is normalised relative to the beginning of the
treatment. The error bars are constructed by the 95% quantiles
of the bootstrapped estimates.

FIGURE F.8: Heterogeneity analysis – close counties

Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions for the nearby counties.
Treatment effect is normalised relative to the beginning of the
treatment. The error bars are constructed by the 95% quantiles
of the bootstrapped estimates.

FIGURE F.9: Heterogeneity analysis – nearby counties
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Notes: The figure reports the results of the nearest neighbour
matching on county-level CO2 emissions for the distant counties.
Treatment effect is normalised relative to the beginning of the
treatment. The error bars are constructed by the 95% quantiles
of the bootstrapped estimates.

FIGURE F.10: Heterogeneity analysis – distant counties
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Notes: (i) The figure reports the results of heterogeneity analysis for each neighbouring city. For convenient
comparison, we display the city-specific average treatment effects at the top. (ii) We are unable to perform
estimations for some categories, since there is no available neighbouring counties due to the county-specific
geographical characteristics. (iii) The error bars are constructed by the 95% quantiles of the bootstrapped
estimates.

FIGURE F.11: Heterogeneity analysis for each neighbouring city
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Notes: The figure reports the results of the nearest neighbour
matching on GDP. Treatment effect is normalised relative to the
beginning of the treatment. The error bars are constructed by the
95% quantiles of the bootstrapped estimates.

FIGURE F.12: Further results – GDP

Notes: The figure reports the results of the nearest neighbour
matching on GDP per capita. Treatment effect is normalised rel-
ative to the beginning of the treatment. The error bars are con-
structed by the 95% quantiles of the bootstrapped estimates.

FIGURE F.13: Further results – GDP per capita
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Notes: The figure reports the results of the nearest neighbour
matching on county-level physical capital. Treatment effect is
normalised relative to the beginning of the treatment. The error
bars are constructed by the 95% quantiles of the bootstrapped
estimates.

FIGURE F.14: Further results – physical capital

Notes: The figure reports the results of the nearest neighbour
matching on share of GDP taken by primary sector. Treatment
effect is normalised relative to the beginning of the treatment.
The error bars are constructed by the 95% quantiles of the boot-
strapped estimates.

FIGURE F.15: Further results – share of GDP taken by primary sector
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Notes: The figure reports the results of the nearest neighbour
matching on share of GDP taken by secondary sector. Treatment
effect is normalised relative to the beginning of the treatment.
The error bars are constructed by the 95% quantiles of the boot-
strapped estimates.

FIGURE F.16: Further results – share of GDP taken by secondary sector

Notes: The figure reports the results of the nearest neighbour
matching on share of GDP taken by tertiary sector. Treatment
effect is normalised relative to the beginning of the treatment.
The error bars are constructed by the 95% quantiles of the boot-
strapped estimates.

FIGURE F.17: Further results – share of GDP taken by tertiary sector
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Notes: The figure reports the results of the nearest neighbour
matching on GDP taken by primary sector. Treatment effect is
normalised relative to the beginning of the treatment. The error
bars are constructed by the 95% quantiles of the bootstrapped
estimates.

FIGURE F.18: Further results – GDP taken by primary sector

Notes: The figure reports the results of the nearest neighbour
matching on GDP taken by secondary sector. Treatment effect is
normalised relative to the beginning of the treatment. The error
bars are constructed by the 95% quantiles of the bootstrapped
estimates.

FIGURE F.19: Further results – GDP taken by secondary sector
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Notes: The figure reports the results of the nearest neighbour
matching on GDP taken by tertiary sector. Treatment effect is nor-
malised relative to the beginning of the treatment. The error bars
are constructed by the 95% quantiles of the bootstrapped esti-
mates.

FIGURE F.20: Further results – GDP taken by tertiary sector
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TABLE F.1: Descriptive statistics, 2007-2017

Mean SD Min Max N

Panel A. Neighbouring counties
Outcome variable
CO2 emissions (million tonnes) 3.86 2.73 0.21 13.65 1,012
Economic indicators
GDP per capita (thousand CNY) 30.35 20.54 5.04 142.71 989
Share of GDP taken by secondary sector (%) 46.94 14.42 13.75 90.56 992
Share of GDP taken by social fixed asset investment (%) 83.75 41.01 1.10 261.63 983
Share of GDP taken by fiscal expenditure (%) 14.91 9.28 1.88 88.60 990
Infrastructure indicators
Highway per land area (km) 1.08 0.48 0.11 3.09 821
Telephones (fixed and mobile) per capita (unit) 0.15 0.08 0.00 0.61 818
Beds in health care institutions per thousands (unit) 3.39 2.32 0.85 25.59 838

Panel B. Counties in peripheries
Outcome variable
CO2 emissions (million tonnes) 3.45 2.39 0.58 14.16 869
Socioeconomic indicators
GDP per capita (thousand CNY) 25.92 13.79 5.55 111.11 828
Share of GDP taken by secondary sector (%) 47.68 12.90 9.73 84.72 779
Share of GDP taken by social fixed asset investment (%) 88.00 36.18 17.08 223.67 828
Share of GDP taken by fiscal expenditure (%) 12.73 6.74 1.19 41.06 828
Infrastructure indicators
Highway per land area (km) 1.43 0.47 0.34 3.94 712
Telephones (fixed and mobile) per capita (unit) 0.12 0.09 0.01 0.89 703
Beds in health care institutions per thousands (unit) 3.22 2.08 0.91 17.18 733

Notes: The table shows means, standard deviations, minimum values, maximum values and the num-
ber of observations. Panel A displays the statistics for the neighbouring counties, and Panel B displays
the statistics for those in the peripheries.
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Notes: (i) The figure shows the matching quality for the examination of the Beijing’s and Tianjin’s ETS pilots.
The left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.1: Covariates balance for the examination of the Beijing’s and Tianjin’s ETS
pilots, alternative start at 2011
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Notes: (i) The figure shows the matching quality for the examination of the Beijing’s and Tianjin’s ETS pilots.
The left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.2: Covariates balance for the examination of the Beijing’s and Tianjin’s ETS
pilots, alternative start at 2014

Notes: (i) The figure shows the matching quality for the examination of the administrative adjustments. The
left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.3: Covariates balance for the examination of the administrative adjust-
ments
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Notes: (i) The figure shows the matching quality for the examination of the announcement effect. The
left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.4: Covariates balance for the examination of the announcement effect

Notes: (i) The figure shows the matching quality for the examination of re-defining the neighbouring cities.
The left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.5: Covariates balance for re-defining the neighbouring cities
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Notes: (i) The figure shows the matching quality for the examination of using as control variables the
significant variables identified by the dynamic DiD approach. The left panel displays the covariates balance,
and the right panel displays the improvement of the balance before and after the refinement. (ii) The mean
difference between the treated and their counterfactuals are standardised by the standard deviation.

FIGURE G.6: Covariates balance for the examination of the announcement effect

Notes: (i) The figure shows the matching quality for the examination of increasing the match size to two.
The left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.7: Covariates balance for the examination of increasing the match size to
two
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Notes: (i) The figure shows the matching quality for the examination of increasing the match size to three.
The left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.8: Covariates balance for the examination of increasing the match size to
three

Notes: (i) The figure shows the matching quality for the examination of using propensity score matching.
The left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGUREG.9: Covariates balance for the examination of using propensity score match-
ing
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Notes: (i) The figure shows the quality for the examination of using propensity score weighting. The left
panel displays the covariates balance, and the right panel displays the improvement of the balance before
and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.10: Covariates balance for the examination of using propensity score
weighting

Notes: (i) The figure shows the matching quality for the examination of using covariates balance propensity
score matching. The left panel displays the covariates balance, and the right panel displays the improve-
ment of the balance before and after the refinement. (ii) The mean difference between the treated and their
counterfactuals are standardised by the standard deviation.

FIGURE G.11: Covariates balance for the examination of using covariates balance
propensity score matching
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Notes: (i) The figure shows the quality for the examination of using covariates balance propensity score
weighting. The left panel displays the covariates balance, and the right panel displays the improvement
of the balance before and after the refinement. (ii) The mean difference between the treated and their
counterfactuals are standardised by the standard deviation.

FIGURE G.12: Covariates balance for the examination of using covariates balance
propensity score weighting

Notes: (i) The figure shows the quality for the heterogeneity analysis for the low-income counties. The
left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.13: Covariates balance for the heterogeneity analysis for the low-income
counties
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Notes: (i) The figure shows the quality for the heterogeneity analysis for the middle-income counties. The
left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.14: Covariates balance for the heterogeneity analysis for the middle-
income counties

Notes: (i) The figure shows the quality for the heterogeneity analysis for the high-income counties. The
left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.15: Covariates balance for the heterogeneity analysis for the high-income
counties
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Notes: (i) The figure shows the quality for the heterogeneity analysis for the close counties. The left panel
displays the covariates balance, and the right panel displays the improvement of the balance before and af-
ter the refinement. (ii) The mean difference between the treated and their counterfactuals are standardised
by the standard deviation.

FIGUREG.16: Covariates balance for the heterogeneity analysis for the close counties

Notes: (i) The figure shows the quality for the heterogeneity analysis for the nearby counties. The left
panel displays the covariates balance, and the right panel displays the improvement of the balance before
and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.17: Covariates balance for the heterogeneity analysis for the nearby coun-
ties
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Notes: (i) The figure shows the quality for the heterogeneity analysis for the distant counties. The left
panel displays the covariates balance, and the right panel displays the improvement of the balance before
and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.18: Covariates balance for the heterogeneity analysis for the distant coun-
ties

Notes: (i) The figure shows the quality for the results on GDP. The left panel displays the covariates balance,
and the right panel displays the improvement of the balance before and after the refinement. (ii) The mean
difference between the treated and their counterfactuals are standardised by the standard deviation.

FIGURE G.19: Covariates balance for the results on GDP
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Notes: (i) The figure shows the quality for the results on GDP per capita. The left panel displays the covariates
balance, and the right panel displays the improvement of the balance before and after the refinement.
(ii) The mean difference between the treated and their counterfactuals are standardised by the standard
deviation.

FIGURE G.20: Covariates balance for the results on GDP per capita

Notes: (i) The figure shows the quality for the results on physical capital. The left panel displays the covari-
ates balance, and the right panel displays the improvement of the balance before and after the refinement.
(ii) The mean difference between the treated and their counterfactuals are standardised by the standard
deviation.

FIGURE G.21: Covariates balance for the results on physical capital
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Notes: (i) The figure shows the quality for the results on share of GDP taken by primary sector. The left
panel displays the covariates balance, and the right panel displays the improvement of the balance before
and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.22: Covariates balance for the results on share of GDP taken by primary
sector

Notes: (i) The figure shows the quality for the results on share of GDP taken by secondary sector. The
left panel displays the covariates balance, and the right panel displays the improvement of the balance
before and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.23: Covariates balance for the results on share of GDP taken by secondary
sector
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Notes: (i) The figure shows the quality for the results on share of GDP taken by tertiary sector. The left
panel displays the covariates balance, and the right panel displays the improvement of the balance before
and after the refinement. (ii) The mean difference between the treated and their counterfactuals are
standardised by the standard deviation.

FIGURE G.24: Covariates balance for the results on share of GDP taken by tertiary
sector

Notes: (i) The figure shows the quality for the results on GDP taken by primary sector. The left panel displays
the covariates balance, and the right panel displays the improvement of the balance before and after the
refinement. (ii) The mean difference between the treated and their counterfactuals are standardised by the
standard deviation.

FIGURE G.25: Covariates balance for the results on GDP taken by primary sector
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Notes: (i) The figure shows the quality for the results on GDP taken by secondary sector. The left panel dis-
plays the covariates balance, and the right panel displays the improvement of the balance before and after
the refinement. (ii) The mean difference between the treated and their counterfactuals are standardised by
the standard deviation.

FIGURE G.26: Covariates balance for the results on GDP taken by secondary sector

Notes: (i) The figure shows the quality for the results on GDP taken by tertiary sector. The left panel displays
the covariates balance, and the right panel displays the improvement of the balance before and after the
refinement. (ii) The mean difference between the treated and their counterfactuals are standardised by the
standard deviation.

FIGURE G.27: Covariates balance for the results on GDP taken by tertiary sector
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