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Abstract

Recovering 3D information from 2D RGB images is an essential task for many ap-

plications such as autonomous driving, robotics, and augmented reality, etc. Specif-

ically, estimating depth information, which is lost during image formation, is a vital

step for downstream tasks. With the development of deep learning, especially super-

vised learning, more and more researchers exploit this technique to improve depth

estimation. However, supervised learning based models’ performance heavily re-

lies on the quality of depth ground truth which is expensive to collect. In contrast

to supervised learning methods, based on well-established Structure-from-Motion,

self-supervised approaches only require sequential images to train depth estimation

models, which transfer a depth regression task to an image reconstruction task

In this thesis, we focus on improving self-supervised monocular depth esti-

mation. To this end, we propose several approaches: Firstly, we explore temporal

geometry consistencies across consecutive frames and propose a depth loss and a

pose loss. Secondly, we adopt HRNet and attention mechanism to build a novel rep-

resentation network architecture DIFFNet, which significantly benefits from higher

resolution input images. Thirdly, we propose a two-stage training scheme upon the

existing one-stage framework by introducing a second-stage training when a self-

distillation loss is optimized at the same time as the photometric loss. All of my

works have been published at conferences.
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Chapter 1

Introduction

3D scene understanding has many practical applications in autonomous navigation,

Augmented Reality (AR), and structure reconstruction. As a vital part of inferring

the 3D geometry of a scene, depth estimation techniques have been attracting more

and more attention in the last decades.

Depth perception hardware such as LiDAR sensors have been widely deployed

on vehicles and personal electronic consumer products (iPhone Pro and iPad Pro).

However, LiDAR devices are expensive, and the quality of generated depth is sparse

and material-sensitive. To overcome LiDAR devices’ limitations, some commercial

LiDAR based products have been integrated with monocular or stereo camera sys-

tems to generate high-quality and high-resolution depth. Besides, camera-based

perception systems are generally lighter and smaller than LiDAR systems which

makes non-LiDAR systems possible to deploy on wearable products such as AR

smart glasses. Another advantage is that non-LiDAR depth estimation systems typ-

ically consume less power compared to LiDAR systems, which can be crucial for

battery-powered devices such as drones, autonomous vehicles, and smartphones.

As a more compatible and economical solution to infer scene geometry, depth from

photographs is becoming popular and attractive in academic and industrial research

communities.

Camera-based depth estimation methods can be divided into monocular, stereo

and multi-view according to types of input images when inferring. A summary of

their strengths and weaknesses is illustrated in Table 1.1. Despite the aforemen-
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Monocular Stereo Multi-View
Definition Predicts depth from Uses two or more Uses multiple images

a single image cameras to calculate from different
depth viewpoints

Strength - Simple and cost- - Provide accurate - Comprehensive 3D
effetive depth information modelling
- Requires only one - Real-time processing - Flexible use of multi-
camera ple viewpoints
- Versatile in different
environments

Weakness - Less accurate due to - Requires precise - Computationally
lack of direct depth calibration intensive
information
- Requires large - Issues with occlusion - Needs accurate align-
training datasets and texture dependency ment and matching

Table 1.1: Comparison of the strengths and weaknesses of monocular, stereo, and multi-
view depth estimation.

tioned advantages of camera-based depth perception, monocular depth estimation

methods, which can be particularly useful in applications where only one camera is

available, are the most versatile as they can be integrated with other scene perception

tasks more simply and seamlessly. Specifically, we exploited self-supervised learn-

ing techniques to overcome the drawback of requiring large amounts of data. Within

the scope of this thesis, we developed three self-supervised based approaches to im-

prove the performance of monocular depth estimation methods

In the past decade, supervised learning using Convolutional Neural Networks

(CNNs) has been a popular topic in our computer vision research community.

CNN-based supervised learning has achieved tremendous results in image recog-

nition [12], segmentation [13], and depth estimation [14].

However, supervised training requires a significant amount of data labelled by

humans or other hardware. When applying this technique to depth estimation, we

need hardware such as LiDAR and Kinect sensors which need to be calibrated with

cameras. Such devices incur a major cost and also introduce significant noise to

ground truth due to the characteristics of such hardware.

Therefore, it is more desirable to explore the development of unsupervised

learning methods. Unsupervised learning of depth can be summarised, by type of
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Figure 1.1: Monocular Depth Estimation: Left: the RGB input images; Right: the corre-
sponding outputs of our depth estimation method.

input, into two categories: stereo input [14] or monocular input. Indeed, using

multi-view input images for depth estimation [15] is also possible, however, the

multi-view method is usually considered less popular and a general case of stereo

vision. It is often specialized to reconstruct a single object of interest rather than a

frontal scene. We thus do not discuss multi-view depth estimation in detail in this

thesis.

Stereo depth estimation [16], or stereo vision, is one of the most common

methods for vision-based depth estimation. However, its major limitation is the

difficulty of matching features between two stereo views. In some common cases

where the scene texture is weak, stereo vision algorithms could easily fail (due

to correspondence ambiguity). In comparison, monocular depth estimation is a

more popular alternative to stereo reconstruction due to its low requirements for

hardware setup. In Figure 1.1, we show some exemplar inputs and outputs from our

monocular depth estimation methods, which will be further discussed in this thesis.

This said, for the monocular settings, some important constraints such as
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epipolar geometry [17] (e.g. baseline length) are missing. Instead, the monocu-

lar methods [18, 4] use geometry in consecutive image sequences to build the pixel

correspondence among frames. To this end, a depth and a pose neural networks are

trained simultaneously. In this thesis, we concentrate on improving the accuracy of

self-supervised monocular depth estimation methods in three published works.

1.1 Aims
With the goal of improving self-supervised monocular depth estimation perfor-

mance, the work presented in this thesis is aimed at:

• overcoming the limitations of the original photometric loss function by intro-

ducing geometry constraints (discussed in Chapter 4).

• designing a representation learning backbone specifically optimized for depth

estimation (discussed in Chapter 5).

• building a new training pipeline (discussed in Chapter 6).

1.2 Thesis Outline and Contributions
In this chapter, we have introduced our research background, motivations and aims.

In the following Chapter 2, we systematically revisit prior works published in the

deep learning era. We firstly review supervised learning based monocular depth

estimation methods and discuss their limitations due to the quality of depth ground

truth and amount of data. Then, we mainly focus on self-supervised learning based

approaches categorized into two classes: stereo based depth perception and monoc-

ular depth estimation which were beneficial to each other in terms of the devel-

opment of loss functions in the last decade. As for the latter one, we summarize

prior works in two categories in terms of contributions: network architectures and

loss functions, since our works in this thesis are also concerned with these two as-

pects. After the literature review chapter, we continue with three research chapters

as below:

In Chapter 3 (largely based on Zhou et al. [19]): we present a new method

for self-supervised monocular depth estimation. Contemporary monocular depth
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estimation methods use a triplet of consecutive video frames to estimate the central

depth image. We make the assumption that the ego-centric view progresses linearly

in the scene, based on the kinematic and physical properties of the camera. During

the training phase, we can exploit this assumption to create a depth estimation for

each image in the triplet. We then apply a new geometry constraint that supports

novel synthetic views, thus providing a strong supervisory signal. Our contribution

is simple to implement, requires no additional trainable parameters, and produced

competitive results when compared with other state-of-the-art methods at the time

of publication.

In Chapter 4 (largely based on Zhou et al. [20]): based on a well-developed se-

mantic segmentation network HRNet [5], we propose a novel depth estimation net-

work DIFFNet, which can make use of semantic information in down and up sam-

pling procedures. By applying feature fusion and an attention mechanism, our pro-

posed method outperforms the state-of-the-art monocular depth estimation methods

on the KITTI benchmark. Our method also demonstrates greater potential on higher

resolution training data. Moreover, we propose an additional extended evaluation

strategy by establishing a test set of challenging cases, empirically derived from the

standard benchmark.

In Chapter 5 (largely based on Zhou et al. [21]): Since multi-task learning

has succeeded in the supervised learning domain, we also would like to utilize

this technique in our works. Besides, recent works have introduced additional

learning objectives, for example semantic segmentation, into the training pipeline

and have demonstrated improved performance. However, such multi-task learn-

ing frameworks require extra ground truth labels, neutralizing the most significant

advantage of self-supervision. In this work, we propose SUB-Depth, a two-stage

training framework, to overcome these limitations. Our main contribution is that

we design an auxiliary self-distillation scheme and incorporate it into the standard

self-supervised depth estimation (SDE) framework, to take advantage of multi-task

learning without labeling cost. Then, instead of using a simple weighted sum of

the multiple objectives, we employ generative task-dependent uncertainty to weight
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each objective in our proposed training framework. We present extensive evalua-

tions on KITTI to demonstrate the improvements achieved by training a range of

existing networks using the proposed framework, and we achieve state-of-the-art

performance on depth estimation task.

In Chapter 6, we conclude with the findings of this thesis and discuss potential

improvements for future work.

1.3 Publications
The Chapter 3, 4 and 5 are largely based on the following three papers published in

the conference proceedings:

1. Hang Zhou, David Greenwood, Sarah Taylor, and Han Gong. Constant ve-

locity constraints for self-supervised monocular depth estimation. In Euro-

pean Conference on Visual Media Production (CVMP), 2020.

2. Hang Zhou, David Greenwood, and Sarah Taylor. Self-supervised monocu-

lar depth estimation with internal feature fusion. In British Machine Vision

Conference (BMVC), 2021.

3. Hang Zhou, Sarah Taylor, David Greenwood, and Michal Mackiewicz. Sub-

depth: Self-distillation and uncertainty boosting self-supervised monocular

depth estimation. In British Machine Vision Conference (BMVC), 2022.



Chapter 2

Literature Review

In this Chapter, before we review deep learning based methods for depth estima-

tion, we start with a recap of the classic 3D reconstruction method Structure from

Motion, as it is the foundation of self-supervised monocular depth estimation.

Self-supervised depth learning can be treated as an alternative approach to su-

pervised learning, we start with supervised-based approaches first and then cover

self-supervised related works.

For a high-level overview of this Chapter, please find a diagram of how the

related works are organized, shown in Figure 2.1.

Structure from Motion (Section 2.1)

Stereo pairs (Section 2.3)

Supervised learning (Section 2.2)

Monocular videos (Section 2.4)

Network architectures (Section 2.4.1)

Loss functions (Section 2.4.2)

Self-supervised learning

Classic

Learning-based

Data-driven methods

Chapter 4

Chapter 3 Chapter 5

An overview of depth estimation methods

Figure 2.1: An overview of the methods discussed in this Chapter. Font indicates sections,
and Chapter 3, Chapter 4 and Chapter 5 are associated with the related Sections.
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2.1 Structure from Motion

Structure from Motion (SfM) is a branch of classic 3-D reconstruction algorithms

which have been well exploited in computer vision. These methods simultaneously

estimate the pose of the moving camera and structure (or shape) information from

the views captured by a camera [16, 22, 23, 1]. However, their general framework is

usually based on some strong assumptions which are often not met in the presence

of occlusions, fine structures, moving objects, complex geometry, or weak texture.

The majority of these methods can only estimate sparse reconstruction results, i.e.

point clouds, for rigid scenes. Figure 2.2 shows an example of SfM 3-D reconstruc-

tion results.

These SfM methods, nevertheless, provide the theoretical foundation (e.g. ge-

ometric transforms and camera projection models) for us to develop deep CNN

solutions which can handle more dynamic scenes and achieve dense 3-D recon-

struction results. Since this PhD project focuses on learning-based approaches, we

would omit the detailed discussions of traditional SfM in this thesis.

Figure 2.2: Structure from Motion (SfM): Multiple views of capturesMultiple images are
taken (poses indicated by the black camera boxes) and the reconstruction SfM
result is commonly a point cloud of a rigid object due to the limitation of sparse
feature correspondences. This figure has been taken from [1].
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More recently, learning-based SfM approaches such as Atlas [24], NeuralRe-

con [25] learn a neural implicit representation, Truncated Signed Distance Function

(TSDF) volume, with the neural networks to reconstruct 3D scenes. As a result,

such methods directly regress a form of 3D scene representation without an inter-

mediate estimation of depth maps. So following works in this research line are out

of the scope of this thesis.

2.2 Supervised depth estimation

Estimating dense depth information from only a single input image is an ill-posed

problem as the input image can be projected to multiple depths – this is depth pro-

jection ambiguity. To overcome this issue, supervised learning is required to train

the neural networks that map colour image input to depth in a statistically mean-

ingful way. For instance, vanishing edges, lighting and scene context could pro-

vide important guidance for depth estimation. Supervised learning methods (esp.

encoder-decoder) are expected to learn the cues of depth from a large amount of

input and ground truth data. There have been a number of papers which have stud-

ied this research problem. For example, the method in [26] automatically generates

plausible depth maps from videos using non-parametric depth sampling and use lo-

cal motion cues to improve the inferred depth maps where optical flow is used to

ensure temporal depth consistency. For training, they have adopted a Kinect-based

system to collect a large dataset of stereoscopic videos with known depth. Some

others [27, 28] have combined local predictions to improve depth estimation ro-

bustness. Saxena et al. [28] have adopted Markov Random Field (MRF) to infer

a set of “plane parameters” that capture both the 3-D location and 3-D orientation

of each small homogeneous patch called “Super-pixels” in the image. The MRF,

trained by supervised learning, models both image depth cues and the relations be-

tween different regions of the image.

To tackle the inherent scale ambiguity of single-image depth estimation, Eigen

et al. [29] proposed a model consisting of a global coarse-to-scale network and

a local fine-scale network. The former network accounts for the overall depth
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Figure 2.3: The multi-scale network architecture of Eigen and Fergus [2].

map structure prediction extracting global information from the image. The fine-

scale network combines the outputs from the coarse-to-scale network and fea-

tures from the original image to refine depth prediction locally. Besides the novel

coarse-to-fine architecture design, the authors also proposed a scale-invariant mean

squared error which measures the relationship between models’ predictions and

depth ground truth, regardless of the absolute global scale of ground truth. For a

predicted depth map y and ground truth y∗ each with n pixels indexed by i, the

measurement also is used as a training loss shown in Equation 2.1.

L
(
y,y∗

)
=

1
n ∑

i
d2

i −
λ

n2

(
∑

i
di

)2

(2.1)

Where di = logyi − logy∗i and λ ∈ [0,1]. When λ = 1, the training loss is exactly

the scale-invariant error measurement.

Upon the two-scale design of [29], Eigen and Fergus [2] proposed a multi-scale

network shown in Figure 2.3 which takes as input a sequence of three scales to gen-
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Figure 2.4: The deep stereo regression architecture.

erate features and refine predictions to higher resolution. This multi-scale network

design also benefits other dense-prediction tasks like surface normal estimation and

semantic segmentation.

Apart from the end-to-end training methods above, for stereo depth estimation,

Kendall et al. [30] have adopted 3-D convolutions to efficiently learn the context in

the disparity cost volume. An example is shown in Figure 2.4. They modelled the

problem as a regression optimisation. Due to sparsity of ground truth depth map, the

network is trained by using the absolute error between the ground truth depth dn and

the estimated depth map d′
n for pixel n. The supervised regression loss Lossavg depth

is defined in Equation 2.2.

Lossavg depth =
1
N

N

∑
n=1

|dn −d′
n| (2.2)

where N indicates the number of pixels in the image.

Most of the above methods are fully supervised and they require full ground

truth depth maps during training. However, it is time-consuming and often im-

practical to collect precise depth maps in real-world scenes. This motivated works

on the development of weakly-supervised methods which require weakly labelled

training data, e.g. unpaired synthetic depth data [31, 32, 33, 34]. Training a depth

estimation model using ideal synthetic data is a solution to most of the issues but

synthetic data can also cause domain bias. It is therefore infeasible to directly apply

a model trained on synthetic data in real-world scenarios.

To address this, Atapour-Abarghouei et al. [32] adopted style transfer and ad-

versarial training to predict dense per-pixel depth from a single real-world colour

image by training on a large collection of synthetic environment data. They have
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adopted a Generative Adversarial Network (GAN), as it is shown in Equation 2.3.

The loss function consists of two components: 1) Photometric reconstruction loss

(Equation 2.4), which “rewards” the generator to produce images that are struc-

turally and contextually similar to the ground truth; 2) Adversarial loss (Equa-

tion 2.5).

Loss = λLossrec +(1−λ )Lossadv (2.3)

Lossrec = |G(x)− y| (2.4)

Lossadv = min
G

max
D

f [logD(x,y)]+ f [log(1−D(x,G(x)))] (2.5)

where Lossrec is a photometric reconstruction loss, λ is a weighting parameter,

Lossadv is an adversarial loss. G is a generative model that learns a mapping from

the input x (RGB image) to the output y (depth map). The generator G attempts to

produce fake samples G(x) that cannot be distinguished from real ground truth y by

the discriminator D. f () denotes data distribution defined by G(x).

To improve the robustness and generalization capabilities of models for single-

view depth estimation, Ranftl et al. [35] proposed MiDaS, a strategy of optimally

mixing diverse datasets for models’ training. To effectively utilize the data from dif-

ferent sources, they first proposed a scale- and shift-invariant loss function to cope

with the depth ranges and scales between datasets. When mixing datasets, instead of

naively sampling images from each dataset equally, they adapted an approach [36]

for Pareto-optimal multi-task learning to define learning on each dataset as an inde-

pendent task, and the model parameters shared across datasets are optimized to find

an approximate Pareto optimum via minimizing the multi-objective criterion 2.6:

min
θ

(
L1(θ), . . . ,LL(θ)

)⊤ (2.6)

Where θ denotes trainable parameters and L denotes the number of datasets. Li, i ∈

[1,L] present the proposed scale- and shift-invariant function optimized on each

dataset.

Some other methods have also been proposed, e.g. supervised appearance
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matching terms [37, 38] and sparse ordinal depths [39, 40]. These methods still re-

quire the collection of additional depth ground truth and sometimes the other types

of annotations. Using synthetic data as training data is a temporary alternative [41]

which can be limited by the generator’s capacity to generate a rich set of synthetic

data containing various real-world scenes and optical phenomena, e.g. motion blurs

or lens glare.

Another way to generate supervisory signals is to adopt conventional structure

from motion to generate sparse “ground truth” for both depth maps and camera

poses [42, 43], where SfM is typically performed as a pre-processing step separated

from training.

2.3 Self-supervised depth-from-stereo

While learning-based approaches have been developing for many years, the main

bottlenecks are resulting from the cost of high-quality ground truth and the limited

amount of data. As humans can infer depth from our binocular and motion to nav-

igate environments without any direct depth clues, researchers intuitively explore

self-supervised depth estimation with stereo pairs.

Inspired by ideas in stereo vision geometry, Xie et al. [44] firstly proposed

Deep3D, a CNN trained directly on stereo pairs extracted from 3D movies. For

each stereo pair, the model predicts a probabilistic disparity-like map from a 2D

image on the left view as an intermediate output. Then, a differentiable selection

layer combines the generated disparity map with the input left-view image to render

a novel image for the right view. Finally, the model is trained end-to-end with an

L1 loss between the ground truth right-view image and the rendered image. Garg

et al. [14] transferred a depth prediction task to an image reconstruction task with

calibrated stereo pairs and a known camera baseline. A depth map associated with a

left view from a depth CNN was used to backward warp a corresponding right view.

The supervisory signal was built on the pixel differences between the left view and

the warped view. In addition to an L1 photometric loss, an L2 depth smoothness

was used deal with the aperture problem. At that time, it achieved comparable per-
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formance to supervised methods. As it suffered from artifacts, Monodepth [45]

proposed by Godard et al. let a depth network generate disparities for both views

(e.g. only feeding a left view but outputting two depth maps for left and right views

respectively). Then, it imposed a left-right consistency regularization on depth maps

from two views, which attempted to push depth maps to equal to its warped version

from the other view depth map. For the photometric loss, instead of a naive L1 loss,

it used a weighted combination of L1 and structural similarity loss (SSIM) [46],

and an edge-aware depth smoothness regularization, which both not only signifi-

cantly improve stereo depth performance, but also benefit monocular depth training

approaches discussed in the next section. Given stereo depth estimation is mainly

affected by artifacts in occlusion regions, it proposed a post-processing technique,

which requires an additional forward of a horizontally-flipped input at testing time.

Further progress on this topic was achieved by Poggi et al. [47] who proposed

Three-view Network to extend [45] using a novel trinocular assumption. With the

poor availability of trinocular imagery datasets, this protocol was still trained with

popular binocular stereo datasets. The depth network consists of a shared encoder

and two separate decoders. When training, the shared encoder first takes as input

either the right or the left view as the middle view and then feeds it to the corre-

sponding decoder. In every iteration, each decoder generates a pair of depth maps

for the ‘middle’ view and a side view, so the depth model can output two pairs of

depth maps in total. What makes it outperform [45] is the introduction of additional

geometry constraints via this assumption.

Pillai et al. [48] proposed SuperDepth to get high-fidelity depth maps by re-

placing the deconvolution layer [45] with sub-pixel convolutional layer [49] in the

decoder. To better deal with cross-view occlusions, it incorporated a differentiable

flip-augmentation layer and an occlusion regularization loss.

Gonzalez and Kim [50] experimented with several depth discretization tech-

niques and proposed an exponential disparity discretization probability volume.

Apart from this contribution, they also defined a two-stage training strategy, which

first trains a model using a photometric loss and finetunes the model with an
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occlusion-free photometric loss enabled by the proposed Mirrored Occlusion Mod-

ule. An extended version [51] was proposed by the same team where positional

encoding and a proxy depth regression loss were introduced.

Watson et al. [52] proposed DepthHint where an auxiliary supervision was

introduced into the unsupervised stereo paradigm. They use an off-the-shelf tra-

ditional stereo matching algorithm, Semi-Global Matching [53], to generate depth

hint maps on the fly. At training time, besides a photometric loss, an additional

penalty minimizing the differences between depth hints and networks’ own depth

estimates is applied to pixels where hint depth maps provide a lower photometric

loss than that of the latter. A concurrent work published by Tosi et al. [54] proposed

a similar idea which also used SGM to generate proxy depth annotations and let

networks’ predictions regress using a reverse Huber loss [55] with α = 0.2. In con-

trast to [52], it used a left-right disparity consistency and a manually set threshold

to select reliable proxy labels.

As performance on objects’ boundaries is a main effect factor on depth model

evaluations, Zhu et al. [56] introduced an explicit constraint from semantic seg-

mentation to depth estimation, which regularizes the depth border to be consistent

with the border generated by a well-trained segmentation model. A recent work

EPCDepth proposed by Peng et al . [57] proposed a self-distillation loss and enabled

a novel full-scale depth network architecture. In contrast to prior encoder-decoder

based networks, its encoder output depth maps as well as the decoder, which can

enhance the encoder’s geometry-specific representation learning ability. The self-

distillation label was generated by selecting depth values between two same-scale

depth maps from the encoder and the decoder according to the lower photometric

loss. A log-based regression loss was used to minimize the discrepancy between

the self-distillation annotation and the depth maps at each scale.

2.4 Self-supervised depth-from-mono

To circumvent the cost of pixel-wise annotation and stereo pairs, more and more

researchers have been attracted to self-supervised monocular depth estimation. In-
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spired by a traditional multi-view geometry algorithm, structure-from-motion.

Zhou et al. [18] proposed a paradigm for monocular self-supervised depth es-

timation, which all the following works are built upon. Given the assumptions of

‘moving camera’ and ‘static scene’, a depth network and a camera pose network

are jointly trained for a novel view synthesis task with unstructured video frames.

To match a target frame, a source view is warped by the target’s depth map and a

relative camera pose change from the depth network and pose network correspond-

ingly, and then the differences, in a form of L1 loss, between the warped frame

and the target view are used to optimize the two networks. The whole system is

built on an insight that the view synthesis task can be performed well only when a

depth network and a pose network can output accurate depth maps and ego-motion

estimations. Since this training framework is built on two strong aforementioned

assumptions, which are very likely to be violated, e.g. moving vehicles, pedestri-

ans, and cyclists, it also models these limitations using a so-called explainability

mask to softly filter out those violating pixels among each matching pair. Although

this work did not archive the performance of the supervised methods, it showed

promising results considering absence of ground truth depth supervision.

After this groundbreaking work, researchers have been continuously improv-

ing performance on two main aspects: 1) neural network architectures; 2) loss func-

tions. Consequently, I will review related prior works from these two perspectives.

For works containing contributions in more than one aspect, they will be multi-

revisited in the following two subsections.

2.4.1 Network architectures

Every task in computer vision has been benefiting from the development of neu-

ral network architectures, for instance, from commonly used convolution networks

VGGNet [58] and ResNet [59] to recently popular vision transformer architectures

ViT [60] and Swin-transformer [61]. Inspired by networks originally designed for

other tasks such as image recognition and semantic segmentation, many researchers

have put efforts into novel architecture design for depth estimation task specifically.

In this section, we review works to advance depth performance mainly in the aspect
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of novel architectures.

Since latecomers choose as their baseline Godard et al. [4] Monodepth2, our

review starts with this work. Monodepth2 achieved a significant improvement com-

pared to Zhou et al. [18] by replacing the adapted DispNet [62] with a ResNet-18

and other contributions, e.g. auto-masking, full-scale loss.

Since standard convolution models use stride and pooling to increase percep-

tion field at the cost of irreversible information loss, which particularly harms depth

estimation on objects’ edges, Guizilini et al. [63] proposed PackNet where spa-

tial details can be preserved during downsampling and upsampling via symmetrical

packing and unpacking blocks. To account for downsampling, the packing block

first folds representations at spatial dimensions to expand channel dimension us-

ing Space2Depth operation [49]. Then a 3D convolution layer is applied to the

Space2Depth features aiming to expand the structured representation.

Finally, a 2D convolution layer maps the reshaped intermediate to a desired

channel size. This block allows more parameters to extract spatial details benefiting

feature upsampling during depth decoding. In contrast to commonly used bilinear

feature upsampling, the unpacking block increases features’ channel number via a

2D convolutional layer, and then decompresses packed spatial features through a 3D

convolutional layer. Lastly, a feature map with appropriate dimensions is generated

by a reshaping and Depth2Space operation [49].

With an assumption that the context for a pixel’s depth estimation may not be

at a contiguous local area, Johnston and Carneiro [64] introduced a self-attention

context module [65]. It takes as input the lowest resolution features from a ResNet

encoder and then generates an attention map for following depth decoding. In ad-

dition, discrete disparity volume blocks, a technique previously commonly used in

depth-from-stereo and supervised depth estimation, are integrated into the depth

decoder to generate multi-scale depth maps. These designs contribute to sharper

results on thinner structures where the model normally infers depth from non-

continuous regions.

To solve the problem that Monodepth2 [4] benefits marginally from higher res-
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olution inputs (for quantitative improvement comparison, please refer to Table 4.2),

Lyu et al. [6] proposed HR-Depth consisting of a redesigned skip-connection and

an effective feature fusion module, inspired by Hu et al. [66], in the depth decoder.

Yan et al. [67] proposed CADepth-Net where two channel-wise attention mod-

ules were employed. To gain richer context representation, a structure perception

module is placed after the last convolution layer of a depth encoder. Differing from

Jhonston and Carneiro [64], this module computes global dependencies along the

channel dimension. Then, a details emphasis module is integrated into the depth

decoder to aggregate discriminative features via channel-wise reweighting.

To make the most use of semantic information, upon HRNet [5], we proposed

DIFFNet in Chapter 4, which is enhanced by a principled strategy of attention-based

internal feature fusion. It first replaced a ResNet-based encoder with a modified

HRNet encoder which concatenates the same resolution features across all interme-

diate encoding stages. In the decoder, a channel-wise attention module from Hu et

al. [66] was applied to the concatenated feature maps from different scales.

Inspired by DIFFNet [20], He et al. [68] proposed RA-Depth capable of aggre-

gating multi-scale features with dense interactions via a naive HRNet [5] encoder

and the proposed high-resolution decoder. Differing from depth decoders used in

the aforementioned works, RA-Depth first introduced a multi-path feature fusion

design into a depth decoder to form a dual HRNet.

Instead of fusing features across an encoder and a decoder with skip-

connection. Hui [69] proposed a recurrent modulation unit to refine the fusion

by adaptive modulating of the encoder features using the hidden state of the de-

coder. To break down the static scene assumption, this work integrated a 3D motion

field estimation module in the camera pose network such that moving objects like

moving vehicles motion can be modeled along with the camera motion.

Since Transformer-based and CNN-Transformer hybrid vision models are be-

coming dominant in other computer vision communities recently, more atten-

tion has been attracted to advancing self-supervised depth estimation by utilizing

Transformer-based and CNN-Transformer backbones. In contrast to CNNs’ limited
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receptive fields, Transformers’ inherent capability of encoding long-range relation-

ships between pixels is a natural advantage, thanks to the self-attention mechanism.

Inspired by Lee et al. [70] MPViT, Zhao et al. [71] extended the Multi-Path

Transformer Block in [70] to Joint CNN and Transformer Layer by introducing an

additional CNN block. The proposed design can benefit from CNN’s capability of

local information modeling which is better than that of Transformers.

Bae et al. [72] compared CNNs and Transformers in terms of generalization

abilities of depth estimation. The experiments illustrated that CNNs demonstrate a

strong texture bias whereas Transformers show smaller texture bias which benefits

depth estimation on unseen data.

With these observations, they proposed Monoformer, a CNN-Transformer hy-

brid network, by designing a module measuring the importance of global semantic

representations and the local details. As a result, in the depth encoder, each stage

generates not only a feature map but also a position attention map and a channel

attention map respectively. In the depth decoder, a feature fusion module was pro-

posed to automatically determine the importance between these two attentions using

two learnable parameters. In the reported ablation study, the method outperformed

the naive ViT model while it showed the best generalization.

As computation complexity is a well-known drawback of Transformers com-

pared to CNNs, Zhang et al. [73] proposed Lite-Mono using channel-wise attention

instead of spatial-wise attention which has a linear time complexity to input dimen-

sion. The proposed attention was adopted from Ali et al. [74].

Apart from the above single-frame depth estimation architectures, many works

exploited spatial-temporal information to benefit monocular depth prediction via

multi-frame inputs. Patil et al. [75] first introduced an RNN-based depth network

to extract spatial-temporal information across consecutive frames. Wang et al. [76]

proposed a module to connect the depth network and the pose network which takes

two frames as input such that the depth model can extract implicit cues from nearby

frames. Either applying RNNs to depth networks or sharing intermediate features

from pose networks outperforms single-frame depth estimators. However, they both
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Figure 2.5: The cost volume based depth network from Watson [3].

rely on the depth networks’ abilities for learning temporal-geometric features in

latent spaces.

With the nature of the image synthesis task, warping a source frame to match a

target frame, cost volume is a commonly used technique in multi-view stereo. As a

result, a recently emerging branch of monocular depth in a self-supervised fashion is

to explicitly utilize sequentially geometric information via feature matching across

frames.

Based on the baseline [4], Watson et al. [3] proposed Manydepth consisting

of a cost volume based encoder. When training and testing, a source frame and a

target frame are fed into a shared feature extractor, then the generated source feature

map is warped to match the generated target features using an estimated pose and

preset depth candidates. For each depth candidate, a 2D cost map is computed by

taking per point the sum of absolute differences between the target feature map and

a depth-aware warped source feature map. Then such 2D cost maps are stacked to

build a cost volume, as shown in Figure 2.5. The rest of the proposed network is the

same as Godard et al. [4]. Thanks to multi-frame input, the depth encoder can learn

cross-frame geometric features in addition to appearance based features, which is a

vital advantage of multi-frame depth models to single-frame ones.

With the observation of hand-crafted matching metric, e.g. the sum of absolute

differences in [3], leading to local minima, Guizilini et al. [77] proposed an attention

based matching method to build the cost volume. It used an multi-head attention

module proposed by Vaswani et al. [78] to develop a cross-attention matching mod-

ule that projects the target features to queries and computes keys and values from the
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matching features warped from source frames when generating attention maps. For

each depth candidate, the attention values are obtained by taking the mean over all

of the heads. This module can be executed many times, and each time the matching

features are updated by the output values. Following each cross-attention module

except the last layer, a self-attention module refines those three elements by com-

puting queries from matching features instead. Finally, an attention based volume

is generated to encode the similarity between features.

Ruhkamp et al. [79] developed a spatial-temporal attention architecture taking

consecutive triplets as input and outputting three corresponding depth maps. For

each frame’s feature map, a spatial attention map is modeled explicitly by measuring

the 3D distance between two points. A temporal attention layer iteratively selects

a feature map as a query and the other two as keys and then calculates similarities

for each key-query pair. By passing features through the proposed spatial attention

and the temporal layer, the depth decoder can receive spatial-temporally aggregated

features for temporal input frames.

2.4.2 Loss functions

Following Zhou et al. [18], Klodt and Vedaldi [80] introduced an off-the-shelf SfM

approach to generate auxiliary supervisory signals. To deal with the noisy signal

generated by traditional SfM, they proposed a probabilistic formulation that can let

models learn where signals are reliable. For pixels violating assumptions, they also

modeled the probability per pixel to let the network learn to down weight losses on

the corresponding pixels.

To better model the photometric uncertainty, Yang et al. [81] proposed a

learned brightness estimation module that aligns a source frame’s lighting condition

to that of the target frame. This approach let depth models get rid of the negative

effect of lighting conditions changing when modeling photometric uncertainty.

To compare different uncertainty modelling methods for self-supervised depth

learning in a comprehensive way, Poggi et al. [10] first charted methods in literature

ranging from empirical uncertainty estimation to predictive uncertainty modeling.

Based on the evaluations of different approaches, they proposed a teacher-student
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paradigm in which a student depth network is trained with the pseudo annotations

generated from a well-trained teacher depth network while a generative uncertainty

is learned within the student model. Inspired by the teacher-student training scheme,

we proposed a two-stage training framework discussed later in Chapter 5. The

first stage is the same as that of [4]. What makes it different from [10] is that in

the second stage, a student network is trained with a multi-objective loss function

consisting of the photometric loss and an L1 loss. Furthermore, we also introduce

uncertainty modelling to automatically weight the two objectives during the second

stage of training.

To solve the inherent problem of depth scale ambiguity, Bian et al. [82] im-

posed a loss on the inconsistency of depth estimates between consecutive views and

a self-discovered mask to detect pixels belonging to moving objects. However, in-

troducing such geometric consistency supervision harms the estimation accuracy on

depth discontinuity regions.

To resolve this problem, Ruhkamp et al. [79] proposed a cycle-consistency

masking scheme and an occlusion-aware geometric loss. To deliver more accurate

relative depth structures, Wang et al. [83] designed a two-stream depth network

to disentangle depth and scale predictions along with a scale-aware geometric loss

which enforces depth consistency and provides supervision for scale learning.

For explicitly learning input-scale invariant depth, He et al. [68] designed a

data augmentation technique that generates training samples by randomly cropping

original images to arbitrary scales and a cross-scale depth consistency over depth

maps from different scale inputs in a scene. This approach can also benefit models

trained with fixed-resolution images to generalize well on a higher resolution input.

Since the accuracy of depth models heavily relies on the image synthesis qual-

ity measurement, Godard et al.[45] first introduced SSIM [46] into self-supervised

stereo depth estimation. As Monodepth [45]’s successor, Monodepth2 [4] inherited

it to improve the naive L1-based appearance matching function used by Zhou et

al. [18], in a form of the weighted sum of SSIM and L1 loss. To alleviate the effects

of contaminated regions for this image warping task, where moving objects, static
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cameras and resulting occlusions occur, unlike Zhou et al. [18]’s learned explain-

ability mask, Godard et al. [4] proposed a simple yet effective per-pixel minimum

reprojection strategy and an auto-masking operation to reduce occlusions and filter

out static pixels respectively. Furthermore, they proposed a full-resolution multi-

scale method that upsampled different intermediate depth maps to the input size

when calculating photometric loss at each scale. In Chapter 3, built upon Mon-

odepth2, we propose a depth-pose consistency loss by explicitly imposing a lin-

ear motion hypothesis on the camera ego-motion. The main idea of our proposed

method is that distance from the camera to any static scene instance (e.g. roads)

varies linearly in a short time interval.

As pixels across frames in textureless regions (e.g. the sky, road) are less

discriminative to the photometric loss, Shu et al. [84] proposed an auto-encoder

network to learn discriminative representations for each frame. During training, the

photometric loss takes the generated features as input in addition to the original

target-source pair. With the observation that the largest depth maps are not always

accurate over all pixels, Peng et al. [57] designed a self-selective supervision signal

that distills the best depth value for each pixel by comparing the minimum photo-

metric loss computed across depth maps in different scales. The depth map sampled

from the outputs can be treated as ‘ground truth’ to build a regression loss.

In addition to the 2D based photometric loss, Mahjourian et al. [85] proposed a

3D point cloud alignment loss to enforce a geometric consistency of inferred point

clouds and relative pose changes across a consecutive triplet. The proposed loss

used a traditional rigid registration, Iterative Closest Point (ICP), to compute a trans-

formation and a residual registration error that is treated as the negative gradient

with respect to pose and depth estimates respectively.

Some works introduced other tasks which are highly correlated with depth es-

timation in order to utilize the underlying temporal-spatial geometric cues. Those

vision tasks also need to establish dense mappings between pixels on nearby frames

in a self-supervised manner such that depth networks can benefit from multi-task

learning and additional geometry consistency without the additional cost of annota-
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tions.

Intuitively, self-supervised optic flow estimation is an auxiliary task meeting

the above requirements. Zou et al. [86] introduced a separate optic flow network

to form a system, DF-net, that learns depth, camera motion and optic flow jointly.

The main idea is that for rigid regions it synthesizes the rigid optic flow using esti-

mated depth and pose and puts a cross-task consistency penalty on the discrepancy

between the synthesized flow and the estimated flow from the optic flow model. To

detect the rigid regions, it employed forward-backward consistency check [87] on

the synthesized rigid flow.

At the same time, Yin and Shi [88] proposed Geonet which reasons pixel cor-

respondence for static and dynamic components in the scenes separately. Differing

from Zou et al. [86] who used a separate flow network, it introduced a residual flow

model to capture the residual flow for non-rigid regions upon the rigid flow synthe-

sized by depth and camera pose predictions. Chen et al. [89] proposed GLnet where

an adaptive photometric loss is designed. This loss term took into account the per-

pixel minimum error between a synthesized image warp by the depth-pose outputs

and the image generated by estimated optic flow. Furthermore, in contrast to [88]

and [86], it does not synthesize a flow from depth and pose to establish an optic

flow consistency with the corresponding output of a flow estimator, but, it directly

enforces a global epipolar constraint over the dense correspondences from optical

flow prediction.

To improve depth-pose-flow consistency, Ranjan et al. [90] introduced a mo-

tion segmentation model to distinguish static backgrounds and moving objects in

scenes. In addition to 2D optic flow, Hur and Roth [91] first incorporated 3D scene

flow estimation with depth in a self-supervised fashion. To this end, they modified

the decoder of Sun et al. [92] PWC-Net to output scene flow and depth simultane-

ously. When warping the feature map, they project the scene flow to the optic flow

using the corresponding depth.

Apart from depth-flow consistency, Yang et al. [93] introduced a surface nor-

mal consistency constraint based on the idea that predicted depths should be com-
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patible with the surface normal computed from depth estimates. To this end, they

constructed a depth-to-normal layer to compute normal directions and a normal-

to-depth layer to recover depth maps from synthesized surface normal. Built upon

this depth-normal consistency, Yang et al. [94] introduced an edge estimation task

by assuming that for those pixels without edges in-between, their reprojected point

clouds should be on a planar surface.

2.5 Conclusion
In this Chapter, we have presented a literature review on data-driven based depth es-

timation methods. We have summarised prior works in two categories: supervised

based and self-supervised based methods. Furthermore, for self-supervised monoc-

ular depth estimation, we discussed the current research trends on two branches:

network architectures and loss functions. Within this framework, we will discuss

our works in the following Chapter 3-5, where we proposed our approaches via

novel loss functions and learning backbones.



Chapter 3

Temporal Geometry Consistencies

for Self-Supervised Monocular Depth

Estimation

In this chapter, with the observation on the KITTI [7] that most moving cars have

similar velocities with the camera-mounted car capturing data, we proposed a depth-

consistency constraint on generated depth maps from sequential images. Besides,

we present a relative camera pose change consistency loss to exploit temporal ge-

ometry consistencies concerning the camera-mounted car motion.

Similar to the photometric loss, these loss terms are introduced with no addi-

tional annotation costs. Both losses are built on the assumption that the ego-centric

view progresses linearly in the scene. Trained with the combination of proposed

losses and photometric loss, our depth and pose models both show noticeable im-

provements. In summary, our contributions are:

• We propose the notion of velocity consistency for monocular depth estima-

tion.

• We investigate a relative pose constraint across video frames captured in a

short period.

• We describe an innovative training framework in which a depth CNN predicts

the depth from three consecutive frames of input. We exploit relative depth
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across these frames and, through a simple motion model, we construct a novel

geometry constraint as a supplementary supervisory signal.

• Our method was published at CVMP2020 and yielded state-of-the-art monoc-

ular depth estimation and pose estimation results on the KITTI benchmarks

at the time of publication Zhou et al. [19]. The code is available at https:

//github.com/brandleyzhou/monocular_depth

The proposed system’s overview is shown in Figure 3.1.

Figure 3.1: An overview of our method when training. A depth CNN and a pose CNN take
a sequence of three consecutive video frames as input It−1, It , It+1. The depth
CNN computes corresponding depth maps Dt−1,Dt ,Dt+1 and simultaneously
the pose CNN outputs the rotation R and translation t of the camera. Dt , T and
R are used to synthesise a new view and a photo-consistency loss is computed
with the input image It (orange lines). Our main contribution is a velocity
constraint loss which is computed over Dt−1,Dt ,Dt+1 (blue lines). To mentor
training of the networks, a novel supervisory signal is constructed by combining
the photo-consistency and depth-pose constraint loss.

3.1 Methods
In this section, we describe the framework of our model training and describe how

we build the supervisory signals during the training of our models. Fundamentally,

our method is a form of Structure from Motion (SfM), where the monocular camera

is moving within a rigid environment to provide multiple views of that scene. Our

framework is built upon Zhou et al. [18] and Monodepth2 [4] (see Section 2.3 for

details).

Let It ∈ RH×W×3, t ∈ {−1,0,1} be a frame in a monocular video sequence

captured by a moving camera, where t is the frame time index. Similarly, let Dt ∈

RH×W denote the depth map corresponding to image It . The camera pose changes

https://github.com/brandleyzhou/monocular_depth
https://github.com/brandleyzhou/monocular_depth
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Figure 3.2: Constructing the depth constraint requires identifying the common pixels at
identical regions with respect to different camera planes. These three frames
It−1, It , It+1 denote a consecutive training sample. Red boxes illustrate an ex-
ample of identified common pixels. Yellow dotted lines denote spatial location
mapping of the exemplar region in the three frames. In our assumption, our
proposed depth constraint only takes the area of the red box into account.

from time t to time t ′ (t, t ′ ∈ {−1,0,1}, t ̸= t ′) is encoded by the 3× 3 rotation

matrix Rt→t ′ and the 3-element translation vector tt→t ′ . We obtain the 4×4 camera

transformation matrix thus:

Mt→t ′ =

Rt→t ′ tt→t ′

0 1

 (3.1)

Our aim is to train two CNN networks to simultaneously estimate the pose change

of the camera motion, and the depth of the scene respectively.

Mt→t ′ = Θpose(It , It ′) (3.2)

Dt = Θdepth(It) (3.3)

3.1.1 Photometric consistency as supervision

Self-supervised depth prediction reformulates the learning task as a novel view-

synthesis problem [18, 4]. Specifically, during training, we let the coupled network

synthesise the photo-consistency the appearance of a target frame from another

viewpoint of the source frame. We treat the depth map as an intermediate vari-

able to constrain the network to complete the image synthesis task, in which we set

I0 as a target frame and It ′ , t
′ ∈ {−1,1} as source frames.
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Let (u,v) ∈ RH×W be the calibrated coordinates of a pixel in a target frame

I0. In this case, let the origin (0,0) be the top-left of the image. In the process of

imaging, a 3D point (X ,Y,Z) ∈ R3 projects onto the pixel plane at location (u,v)

through a perspective projection operator. As Equation 3.4 shows:

pro j(X ,Y,Z,K) = ( fx
X
Z
+ cx, fy

Y
Z
+ cy)

= (u,v)
(3.4)

where K are known camera intrinsic containing ( fx, fy,cx,cy) which denote fo-

cal lengths and the size of the photon sensor. Therefore, given a depth value

D(u,v), a 2D image pixel coordinate (u,v) can be reprojected to a 3D point co-

ordinate (X ,Y,Z) in the camera coordinate system through reprojection operator,

Equation 3.5.

repro j(u,v,D(u,v),K) = D(u,v)(
u− cx

fx
,
v− cy

fy
,1)

= (X ,Y,Z)
(3.5)

Suppose that the transformation matrix M0→t ′ correctly encodes the pose change of

the camera from time 0 to time t ′, we can project a pixel on the target frame I0 onto

a corresponding location on source frame It ′ . e.g. given a pixel coordinate (u,v),

the corresponding pixel’s coordinate (u′,v′) can be computed as:

(u′,v′) = pro j(M0→t ′repro j(u,v,D0(u,v)),K) (3.6)

Where pro j is the projection operator defined in Equation 3.4. Given such cor-

respondence between pixels across consecutive frames, we can warp a source frame

I′t to match the corresponding target frame It and therefore construct a photometric-

consistency supervision signal using the discrepancies between the warped image

and the target frame.
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3.1.2 Differential samplers

As Equation 3.6 is an ideal mathematical model outputting continual values for

(u′,v′), for sampling pixel values from the source frame I′t , we include a dif-

ferentiable bilinear sampling mechanism, as proposed in spatial transformer net-

works [95]. We can now linearly interpolate the values of the 4-pixel neighbours

(top-left, top-right, bottom-left, bottom-right) of It ′(u′,v′) to give the RGB intensi-

ties for the synthesised frame It ′→0 as follows:

It ′→0(u,v) = ∑
u

∑
v

wuvIt ′(u
′,v′) (3.7)

where wuv is linearly proportional to the spatial proximity between (u,v) and (u′,v′),

and ∑u,v wuv = 1. We use the official grid sample function in PyTorch [96] for

sampling pixel values from images.

3.1.3 Photo-consistency losses

Classic depth estimation using SfM relies on a number of assumptions which can

fail in the presence of occlusions, fine structures, moving objects, complex geom-

etry, weak texture (e.g. road, sky) and non-Lambertian surfaces. To mitigate these

problems our method builds a strong supervisory signal by combining a number of

individual loss functions.

For monocular depth estimation, an important supervisory signal to learn ge-

ometry from unlabelled video sequences is brightness constancy, which has been

adopted as an invariant constraint [18]. The constraint is based on the assumption

that pixels in different video frames that correspond to the same scene point must

have the same intensity in general. Existing methods [18, 4, 6] have shown that a

brightness constancy constraint is sufficient (at least in common cases) to guide the

learning of the depth regression network and the camera pose estimation network.

Due to brightness constancy, the RGB intensities of the two corresponding

pixels, in two different frames I0(u,v) and It ′→0(u,v), should match. Therefore, we
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can write the fundamental photo-consistency loss as in Equation 3.8:

ℓbrightness = ∑
(u,v)∈Ω

|It ′→0(u,v)− I0(u,v)| (3.8)

where Ω indicates the set of all pixel coordinates in a frame with respect to the

defined coordinate origin. Note, we mask the brightness loss ℓbrightness with a sta-

tionary mask, described in Section 3.1.4. All quantities in Equation 3.8 are known

except for the synthesizes frame It ′→0 which is sampled from the I
′
t through estimat-

ing Dt , Mt→t ′ by the two CNN networks as Equations 3.3 and 3.2 have shown. This

basic photo-consistency loss only compares pixel intensity values. An additional

constraint, Structural Similarity Index Measure has been shown to improve robust-

ness for reconstructed images’ quality measurement [46]. Given a pair of images a

and b, their Structural Similarity SSIM(a,b) ∈ [0,1] is given by:

SSIM(a,b) =
(2µaµb)(σab+ ε)

(µa2 +µb
2)(σa2 +σb

2)+ ε
(3.9)

where ε is a small constant to avoid division by zero, µa =
1
n ∑

n
i=1 ai is the mean in-

tensity of image a, σa
2 = 1

n−1 ∑
n
i=1(ai−µa)

2 is its variance, and σab =
1

n−1 ∑
n
i=1(ai−

µa)(bi − µb) is the intensity correlation of the two images. Finally, our combined

structural similarity and brightness loss becomes:

ℓp(I0, It ′→0) = α(1−SSIM(I0, It ′→0))+(1−α)ℓbrightness(I0, It ′→0) (3.10)

where the weighting parameter α is set as 0.85 empirically [4].

3.1.4 Stationary pixel masking

Important assumptions for training are that the scene is captured by a moving cam-

era, and the scene is static with respect to a world origin point. If any of these

conditions is violated, the training performance can be detrimentally affected. Us-

ing a simple auto-masking method proposed by Godard et al. [4], we can filter the

pixels that do not change appearance from one frame to the next in the video se-

quence. This mask allows the depth estimation network to ignore objects that move
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at the same velocity as the camera and even ignore whole frames in a monocular

sequence when the camera is still.

A pixel is defined as moving when the photo-consistency loss between the

target view I0 and the synthetic view It ′→0 through warping the source view It ′ ,

is lower than the same error between the target view and source view It ′ . More

formally:

masks = |I0 − It ′→0|< |It ′ − I0| (3.11)

The mask is binary, and no additional hyperparameter is required, as the mask can

be computed in the forward pass of the network training. The pixels with almost

unchanged intensities between consecutive frames often indicate no relative camera

movement, an object that is relatively static to the camera, or a low texture region

such as sky and roads. As such, our training method uses stationary pixel masking

to only consider the photo-consistency loss contribution from the “moving” pixels.

3.1.5 Photometric loss with an edge-aware smoothness

To regularize the depth in low gradient regions, we utilize edge-aware smooth-

ness [45]:

ℓs(D0) = |∇D0

∂x
|e−|∇I0

∂x |+ |∇D0

∂y
|e−|∇I0

∂y | (3.12)

We also employ the minimum photometric error, auto-masking and multi-scale

depth loss techniques which were introduced in [4]. The final photometric loss

function is defined:

ℓphotometric = min(ℓp(I0, It ′→0))+βℓs(D0), t
′
∈ {−1,1} (3.13)

Where β is a weighting coefficient between the photometric loss ℓphotometric and

depth smoothness ℓs. The objective loss is averaged per pixel, pyramid scale and

image batch.

3.1.6 Constant velocity constraints

In this section, we describe our main contribution, a novel loss term for training.

We allow ourselves the assumption that most training frames have been captured
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Figure 3.3: Illustration of Depth Constraint Mask: the brighter regions indicate pixels that
are common to objects in all three frames.

in a short time interval, during which the velocity of the moving camera can be

considered constant. Maintaining that assumption, in a set of consecutive video

frames, the distance from the camera to any static scene instances in front of the

camera, varies only linearly.

Suppose that we denote Dt as the depth map at some time step, we have the

following equation hold for the major areas in the depth maps:

Dt+1 −Dt ≈ Dt −Dt−1 (3.14)

Our idea models relative depth changes of pixels that belong to the same in-

stance (e.g. road) at the same locations on all three frames. We illustrate the concept

in Figure 3.3. We introduce a new mask to constrain the depth loss to ensure we

only consider the pixels of an instance common to all frames:

maskd = [|Ig
t − Ig

t+1|< β ]∩ [|Ig
t − Ig

t−1|< β ] (3.15)

where Ig is the mean luma image and β is a threshold value empirically set as 10 for

8-bit intensity values. A visualisation of an exemplar mask is shown in Figure 3.3.

We apply the mask to form an additional depth loss term as follows:

ℓdepth = λ µmaskd ⊙|(|Dt+1 −Dt |− |Dt −Dt−1|)| (3.16)
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where the weighting parameter λ is set empirically at 0.001 from λ =

{0.1,0.01,0.001,0.0001}, µ refers to the function that computes the mean of

all matrix elements, and ⊙ is the Hadamard Product. As a result of this geometry

constraint, which models the depth relation of corresponding pixels on different

frames, this penalty term makes it possible for the network to estimate depth from

frames that contain a lot of moving objects in the scene or even are captured by a

static camera and therefore violate the photo-consistency assumptions.

Furthermore, based on this strong assumption that the camera-mounted vehi-

cle moves at a constant speed, we also propose a constraint on the outcomes from

Θpose, which puts a relative pose change consistency on transformations M and

translations t among three consecutive frames as Equation 3.17 showing.

ℓpose =∥Mt−1→t+1 −Mt−1→tMt→t+1∥+∥tt−1→t − tt→t+1∥ (3.17)

We empirically impose an additional regularization on relative translation t.

Finally, we combine the masked photo-consistency loss, depth constraint loss and

pose consistency loss:

ℓtotal = ℓphotometric + ℓdepth + ℓpose (3.18)

3.1.7 Model topology

Our model trains weights for two discreet networks, a depth estimation network, and

a pose network. We use the depth network and the pose network of Monodepth2 [4]

as our backbones for depth and pose estimation respectively. The network diagram

is shown in Figure 3.4. The depth network takes as input an RGB image, and outputs

the corresponding depth estimation map; the pose network takes two RGB images

as input to predict the 6–DoF relative pose.

The depth network shown in (a) of Figure 3.4 follows the well-known U-Net

architecture [62], It is a symmetric encoder and decoder with skip connections on

every layer but the input and output. The range of spatial resolution allows mod-
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elling both deep abstract features and local information. The encoder is ResNet-

18 [97] with a total of 11m trainable parameters, initialized with weights trained on

ImageNet [98]. Pretraining has been shown to improve accuracy compared to train-

ing from randomly initialized weights [4]. The depth decoder follows [45], with a

sigmoid nonlinearality on the output, and ReLU on the internal layers. However,

the convolution layers use reflection, rather than zero padding, which gives a better

estimate of source image pixel values when sampling from outside the border.

The pose network shown in (b) of Figure 3.4 follows a similar design as the

depth network encoder, however, it requires two frames to infer the relative cam-

era pose change. Again, like the depth encoder, we use weights pretrained on Ima-

geNet [98] to initialize the pose encoder. The output of the pose network is a 6–DoF

relative pose in an axis-angle and translation representation.

3.1.8 Training

For monocular self-supervised training we use a sequence length of three images.

To increase training data, we flip each input image horizontally and also augment

brightness, contrast, saturation and hue ±0.2 randomly. The same augmentation is

applied to all three images in the input. We have implemented the networks using

Figure 3.4: Network diagram of Monodepth2 [4], and this figure is directly from the paper.
The depth network takes an RGB image It as input to estimate a depth map Dt ,
and the pose network takes two adjacent frames It , It ′(t ′ ∈ [t −1, t +1]) as input
to generate a relative pose change between the two frames.
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Table 3.1: Definitions of Evaluation Metrics. Dp is a pixel in the ground-truth depth map
d, d′

p is a pixel in the estimated depth map d′, and n is the total number of pixels
for each depth image.

Mean Relative Error (Abs Rel) 1
n ∑

n
p
|Dp−d′

p|
Dp

Mean Relative Squared Error (Sq Rel) 1
n ∑

n
p
(Dp−d′

p)
2

Dp

Root Mean Squared Error (RMSE)
√

1
n ∑

n
p(Dp −d′

p)
2

Root Mean Squared Log Error (RMSE log)
√

1
n ∑

n
p(log(Dp)− log(d′

p))
2

Threshold Accuracy (δi) % of Dp,

s.t. max(Dp
d′

p
,

d′
p

Dp
) = δi < thresholdi

thresholdi = 1.25i, i ∈ 1,2,3

PyTorch, and they were trained using an NVIDIA Quadro P5000 GPU with 16GB

memory. During training all model weights are updated simultaneously, by min-

imising the combined loss. The model was trained for 20 epochs, 1105 iterations

every epoch using Adam [99], with a batch size of 12 and an input and output res-

olution of 640×192. We set the initial learning rate as 10−4 for the first 15 epochs

and then decremented to 10−5 for fine-tuning the remainder. When evaluating, we

only report the performance of models trained in the last epoch.

3.2 Experiments
In this section, we describe the dataset, show the evaluation metrics we use

from [29] in Table 3.1, and our evaluation results in comparison with the state-

of-the-art methods at the time of publication.

3.2.1 Dataset

KITTI [7] is a dataset that contains stereo images and corresponding 3-D laser

scans of outdoor scenes captured by imaging equipment mounted on a moving ve-

hicle [99]. The RGB images have a resolution of about 1241× 376 and the cor-

responding depth maps are very sparse with a large amount of missing data. For

training, we adopted the same dataset split used by [29]. After removing the static
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frames by a pre-processing step suggested by [18], this results in 39,810 monocu-

lar frame triplets for training and 4,424 frame triplets for validation. To simplify

the training processing, the camera intrinsic matrix are assumed identical for all the

frames in different scenes. To obtain this “universal” intrinsic matrix, we offset the

principal point of the camera to the image centre and reset the focal length as the

average of all the focal lengths in KITTI. This assumption is only valid when the

capturing cameras are similar. Indeed, a more precise solution would be required to

also estimate the individual intrinsic matrices for different videos sequences.

3.2.2 Results

Table 3.2: Quantitative results on KITTI Benchmark using the Eigen split: ↑ represents
the higher the better, and ↓, lower is better. The best scores in the table are
underlined.

Method Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 < 1.25 ↑ δ2 < 1.252 ↑ δ3 < 1.253 ↑
SfMlearner [18] 0.183 1.595 6.709 0.27 0.734 0.902 0.959
Yang [93] 0.182 1.481 6.501 0.267 0.725 0.906 0.963
GeoNet [100] 0.149 1.060 5.567 0.226 0.796 0.935 0.975
Wang [101] 0.151 1.257 5.583 0.228 0.81 0.936 0.974
DF-Net [86] 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [94] 0.162 1.352 6.276 0.252 - - -
EPC++ [102] 0.141 1.029 5.35 0.216 0.816 0.941 0.976
Struct2depth [103] 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 [4] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [104] 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Our method 0.112 0.816 4.715 0.190 0.880 0.960 0.982

In this section, we perform a quantitative evaluation to compare our proposed

method with the other representative algorithms by using the common metrics dis-

cussed above.

Table 3.2 shows that our method outperforms all other methods on the KITTI

2015 dataset [7]. The exception to this is PackNet-SfM [104] which achieves

marginally better performance on relative and RMSE errors, and equal or worse

performance on threshold accuracy.

One of the reasons that our method produces more robust results given the

same training data is that it uses a triplet of frames to supervise the training pro-

cess while other approaches, such as Struct2Depth [103], rely on a pair of source

and target images. Of course, this could also mean that the computational cost of

training using our method would also be increased.
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Figure 3.5: Visualisation of depth estimation results. The top row contains the input im-
ages. The remaining rows show the depth estimation results from contemporary
methods, visualised by false colours. Hotter colours indicate closer objects.

Another reason is that in the KITTI dataset [7], there are many frames that are

captured by a static camera that contain moving objects. These problematic frames

are filtered out by the other existing methods as their training methods cannot make

use of these frames. However, with our novel depth constraint loss, those frames

are made useful for training.

It should be noted that our model architecture is the same as that in Mon-

odepth2 [4]. However, training with our proposed depth constraints has resulted in

improved performance overall evaluation metrics — a clear indication that our con-

stant velocity assumptions are valid. Figure 3.5 shows the depth maps generated by

SfMlearner [18], Monodepth2 [4], PackNet [104] and our method for some target

frames. We observe that our method predicts fewer artefacts affected by the shad-

ows in the scene, and more robustly identifies the contours of objects. For example,

in the first column our method more accurately segments the post in the foreground,

and correctly identifies that the furthest post is obscured by a tree. In the third col-

umn it is clear that our method better captures depth details around the vehicle’s

contour.

To better understand the behaviour of our system, we visualized the per-pixel

errors of the depth map, as shown in Figure 3.6. We observe that objects that are
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far from the camera have lower accuracy than those that are closer. Therefore our

approach is very well suited to applications that require precise near-field depth in-

formation. As common with all contemporary works, our method suffers occasional

Figure 3.6: Visualisation of depth error maps. Here we show the error from our predicted
depth maps compared to the improved ground truth from the KITTI test set.
The first column contains the input images, the middle column shows the depth
estimation and the right column shows the per-pixel depth error at pixels which
have valid depth ground truth. Hotter colours indicate greater error.

failures in difficult scenes. Figure 3.7 provides some examples. We remain highly

motivated to tackle these problematic areas in future work.

Figure 3.7: Common failure cases. Road marks have been incorrectly recognised as closer
objects in the left and middle figures. The tunnel structure has been recognised
as infinity (i.e. similar to Sky) in the middle figure. The sky in the right figure
has been recognised as an object not at infinity. These failures exist in all
contemporary methods, and motivate future work that can handle these difficult
examples.
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Table 3.3: Quantitative results on the KITTI odometry benchmark using average absolute
trajectory error, and standard deviation, the lower the better.

Sequence 09 Sequence 10
Zhou [18] 0.021±0.017 0.020±0.015

GeoNet [100] 0.012±0.007 0.012±0.009
DDVO [101] 0.045±0.108 0.033±0.074

Monodepth2 [4] 0.021±0.009 0.014±0.010
Ours with the pose consistency 0.020±0.009 0.012±0.010

3.2.3 Odometry

To investigate how the proposed pose consistency loss ( Equation 3.17) impacts the

quality of pose estimation from the pose network Θpose, we directly evaluate it on

Sequences 09 and 10 from KITTI odometry split following Zhou et al. [18] evalua-

tion method. We use Absolute Trajectory Error (ATE) to measure the performance.

For comparison, we also report results from other methods. Table 3.3 shows that

our proposed pose consistency loss improves the performance of the pose network.

We also visualize the trajectories generated by our pose network trained with and

without the pose consistency respectively on two testing sequences in Figure 3.8

and Figure 3.9.

(a) Trajectories on KITTI Sequence 09,
without pose consistency loss

(b) Trajectories on KITTI Sequence 09,
with pose consistency loss

Figure 3.8: Visualisation of odometry results on Sequence 09.
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Table 3.4: Ablation study. The first row represents the baseline, and ✓denotes an imple-
mentation option. The best scores in the table are bold. ✓ identify our final
system.

Method Depth loss Pose loss The lower the better The higher the better
Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Monodepth2 [4] 0.115 0.980 5.142 0.210 0.877 0.960 0.981

Ours
✓ 0.114 0.936 5.010 0.203 0.876 0.960 0.980

✓ 0.115 0.894 4.814 0.192 0.876 0.959 0.981
✓ ✓ 0.112 0.816 4.715 0.190 0.880 0.960 0.982

(a) Trajectories on KITTI Sequence 10,
without pose consistency loss

(b) Trajectories on KITTI Sequence 10,
with pose consistency loss

Figure 3.9: Visualisation of odometry results on Sequence 10.

3.2.4 Ablation Study

To understand how the components of our models incrementally contribute to the

overall performance in monocular depth learning, we perform an ablation study by

changing variables of our components as shown in Table 3.4.

We choose Monodepth2 [4] as our baseline shown in the first row of Table 3.4.

In the second row, a marginal improvement is made by introducing our proposed

depth constraint loss (Equation 3.16) to the photometric loss. In the third row,

We only introduce the pose loss (Equation 3.17) to the baseline showing that the

baseline model is not able to benefit from the proposed pose loss solely. In the final

row, we show the biggest improvement by introducing our novel depth constraint
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loss and the pose change consistency loss simultaneously.

3.3 Conclusions
In this Chapter, we have presented a novel temporal-geometry loss for monocular

depth estimation and achieved state-of-the-art results on a popular benchmark. As

far as we know, no prior work exploited the relationship between depth maps and

relative pose changes from consecutive video frames. From a simple real-world

conception, we introduce and develop additional loss items as a supplementary su-

pervisory signal to photo-consistency loss. Our novel depth loss and pose loss are

based on the assumption that the velocity of the camera moving through the scene

in consecutive video frames is constant. We validate this assumption by comparing

against similar approaches objectively and show depth visualisations of the com-

peting methods. Our idea is simple to understand and implement and introduces no

additional learnable parameters.

In the next Chapter, we will present a novel representation backbone optimized

for depth estimation.



Chapter 4

Self-Supervised Monocular Depth

Estimation with Internal Feature

Fusion

In the previous Chapter, we improved the accuracy of depth models by integrating

temporal-geometric constraints with the original photometric loss. In this Chapter,

we will propose a new network architecture to improve the performance further.

Like many computer vision tasks, depth network performance is determined by

the capability to learn accurate spatial and semantic representations from images.

Most of depth estimation approaches [4, 18, 104] including our proposed method in

Chapter 3 use naive U-Net [62] based architectures. However, in such an encoder-

decoder architecture, low-level feature maps containing more spatial information

are only able to be aggregated with high-level and semantically richer feature maps

in depth decoders, which results in a huge semantic gap between the encoder and

decoder feature maps. Due to semantic gaps, those methods are not able to gain

significant improvements when higher resolution inputs are available [6]. To bridge

semantic gaps between encoded and decoded representations, works [105, 106, 5]

have designed multi-path encoders which aggregate multi-scale feature maps with

dense interaction for pixel-to-pixel prediction tasks such as semantic segmentation.

In this chapter, based on a well-developed semantic segmentation network HR-

Net [5], we propose a novel depth estimation network DIFFNet, which can make use
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of semantic information in down and up sampling procedures. By applying feature

fusion and an attention mechanism, our proposed method outperforms the state-of-

the-art monocular depth estimation methods on the KITTI benchmark. Our method

also demonstrates greater potential for higher resolution training data. We propose

an additional extended evaluation strategy by establishing a test set of challenging

cases, empirically derived from the standard benchmark.

Our contributions are:

• We apply a novel internal feature fusion mechanism to a semantic network

for depth estimation, to bridge the semantic gap between encoder and decoder

feature maps.

• We propose an effective attention module in the decoder to process skip con-

nections.

• Our proposed method advances the state-of-the-art on the KITTI benchmark

and outperforms other methods on a customised benchmark at the time of

publication (Zhou et al. [20]). The code is available at https://github.

com/brandleyzhou/DIFFNet

• We propose an extended evaluation strategy where methods can be further

tested using difficult cases in the benchmark data, formed in a self-established

manner.

4.1 Self-supervised monocular depth estimation

framework
Our general framework is based on the SfM paradigm that is followed by all other

self-supervised monocular depth estimation approaches e.g. [18, 4, 19]. And we

use the photometric loss defined in Equation 3.13 as our objective function ℓ f inal .

Please refer to Section 3.1.5 for a detailed description.

https://github.com/brandleyzhou/DIFFNet
https://github.com/brandleyzhou/DIFFNet
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Figure 4.1: An overview of the DIFFNet depth network. The encoder uses feature fusion
to generate stacks of multi-stage feature maps. For visual simplicity, we only
highlight one stream in depth encoder with a purple dotted box. The decoder
uses an attention module and a 3× 3 convolution layer to restore compressed
feature maps at different scales.

4.2 DIFFNet
DIFFNet introduces a novel depth network which combines multiple resolution fea-

ture fusion and a spatial attention mechanism. In this section we provide details on

our proposed network, which is built on an encoder-decoder architecture and is il-

lustrated in Figure 4.1.

4.2.1 High-resolution depth encoder

Low level but high resolution features are spatially precise, and, conversely, high

level but low resolution features are not spatially precise but are semantically rich.

Many existing depth estimation approaches [4] are built on ResNet which encodes

the input image as a low-resolution feature map. Instead, we investigate an ef-

fective architecture that is capable of fusing semantically-rich and spatially-precise

features.

High-Resolution Network (HRNet) [5] maintains high resolution representa-

tions by the feature extraction process, with two key design characteristics: multiple

streams with every feature map in the stream having the same resolution, and multi-

ple stages having different resolution exchanging information in each stage. HRNet

is illustrated in Figure 4.3(a) showing each stage as a red box and each stream as a

row. Let xe
r,s denote the feature map from an HRNet encoder node located in the rth
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Figure 4.2: Visualisation of intermediate feature maps. We show four intermediate fea-
ture maps from stream r = 1 and stages s = 1,2,3,4 in the HRNet [5] (top)
and DIFFNet (bottom) encoders. The final column shows the RGB input and
DIFFNet predicted depth map.

sub-stream and at the sth stage. The resolution of sub-stream r is 1
2r−1 of the resolu-

tion of the first stream. As r increments, the number of channels in the feature maps

doubles.

When we use an HRNet as the encoder for our depth network, we observe

significant improvements over other approaches that use ResNet as the encoder. An

HRNet has four streams and four stages, and outputs five feature maps at different

scales from the final stage, xe
0,0 and xe

r,4,r = 1,2,3,4. Information from features in

previous stages is ignored. We augment this module with internal feature fusion to

further exploit the potential of the HRNet architecture:

Multi-stage Internal Feature Fusion Based on the relationship between feature

resolution and spatial information, we assume that feature maps with more chan-

nels contain more semantic information and vice versa. To get a semantically-rich

intermediate feature map without changing the scale we could increase the number

of convolution kernels. However, this would dramatically increase the computa-

tional complexity. For example, given a Cin dimensional feature and a kernel with a

size 3×3 to output a Cout dimensional feature, the number of trainable parameters

is Cin×Cout ×3×3. If we need double Cout , the number of parameters also doubles.

HRNet contains a multi-stage convolution strategy (Figure 4.3a), and so increasing

the convolution kernels leads to a large increase in parameters. However, DIFFNet

forces feature maps from different stages to contain different semantic information

but fuses outputs from all intermediate stages using a concatenation strategy be-

fore decoding. Without additional parameters, this strategy is capable of extracting

richer feature maps – see column four in Figure 4.2, which shows a smaller semantic

gap between DIFFNet encoded features and decoded outputs.
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Figure 4.3: (a) Original HRNet [5] and (b) DIFFNet architecture with internal feature fu-
sion which concatenates feature maps from multiple stages for each stream.

The stack of feature maps for stream r is computed as:

xe
r = [xe

r,s], s = r, · · · ,4 (4.1)

where [·] is the concatenation layer. The modified architecture is illustrated in Figure

4.3b in which the red arrows denote a concatenation of feature maps. The advan-

tages of giving low level feature maps more semantic information (stacking multi-

stage features) is explored in Section 4.3.4.

4.2.2 Attention-based depth decoder

Our decoder is based on a U-Net architecture with further inspiration taken

from [6, 66, 107]. Specifically, we introduce an attention mechanism to process

the skip-connections from the encoder. An illustration of the decoder can be seen

in Figure 4.1 with an outline of each decoder node, Di, shown bottom right. Let xd
i

denote the output of decoder node Di, calculated as:
xd

4 = D(σ([µ(xe
4),x

e
3])),

xd
i = D(σ([µ(xd

i+1),x
e
i−1])), i = 1,2,3

xd
0 = D(σ(µ(xd

1)))

(4.2)

where µ(·) is an upsampling operator, σ(·) is an attention module, [·] is concatena-

tion layer and D(·) is a 3×3 convolution layer.

Attention Module. We explore three strategies for incorporating attention into
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the decoder: channel-wise attention, spatial attention and channel-spatial atten-

tion. Given a feature map F ∈ RC×H×W , the attention aggregated maps F
′
c,s,cs ∈

RC×H×W are computed as:

F
′
c = Mc(F )

⊙
F ,

F
′
s = Ms(F )

⊙
F ,

F
′
cs = Ms(F

′
c)
⊙

F
′
c.

(4.3)

where Mc(·) and Ms(·) are attention map generators which output a 1D channel

attention map mc ∈ RC×1×1 and a 2D spatial attention map ms ∈ R1×H×W respec-

tively, and
⊙

denotes element-wise multiplication. During multiplication, the at-

tention values are copied accordingly with channel attention values being broadcast

along the spatial dimension, and vice versa (see [107] for details). We compare

these three attention strategies in Section 4.3.4 and identify that channel-wise atten-

tion gives the best performance.

4.3 Experiments
In this section, we validate that our proposed network can output semantically-rich

and spatially-precise depth maps, and our contributions improve the representa-

tion learning ability of HRNet while outperforming other published methods on the

KITTI benchmark [7]. Furthermore, we analyse the characteristics of the more chal-

lenging scenes from the test partition of the KITTI dataset, and publish identifying

information for the high error images.

4.3.1 Dataset

KITTI [7] is a dataset that contains stereo images and corresponding 3D lidar

scans of outdoor scenes captured by imaging equipment mounted on a moving ve-

hicle [99]. The RGB images have a resolution of ≈ 1241×376 and the correspond-

ing depth maps are sparse with a large amount of missing data. For training, we

adopt the dataset split proposed by [29]. After removing the static frames by a pre-

processing step suggested by [18], this results in 39,810 monocular frame triplets

for training and 4,424 frame triplets for validation. To simplify the training process,
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the camera intrinsic matrices are assumed identical for all the frames in different

scenes. To obtain this “universal” intrinsic matrix, we offset the principal point of

the camera to the image centre and reset the focal length as the average of all the

focal lengths in KITTI. This assumption is only valid when the capturing cameras

are similar.

4.3.2 Implementation details

Our models are trained and tested on a single NVidia RTX 6000 GPU using Py-

torch [96]. A depth network and a pose network are trained for 20 epochs using

the Adam optimizer [99] with the default betas 0.9 and 0.999. They were trained

with a batch size of 16 and an input and output resolution of 640×192. We set the

initial learning rate as 10−4 for the first 14 epochs and then 10−5 for fine-tuning the

remainder. In the objective function ℓ f inal (Equation 3.13), we let the SSIM weight

α = 0.85 and the edge-aware smoothness weight β = 1×10−3.

Depth Network. We implement our proposed DIFFNet as described in Sec-

tion 4.2 as our backbone. We use HRNet pre-trained only on ImageNet [98] to

initialize DIFFNet (the effect of pre-training is shown in Table 4.3). At training,

losses from four scaled depth maps are averaged. When testing, only the maximum

resolution depth map is output by the model.

Pose Network. We implement the architecture proposed in [4] for pose es-

timation, which is built on ResNet-18. The pose network takes the two adjacent

frames as input and outputs the relative pose which is parameterized with a 6-DOF

vector. We experimented with replacing the pose encoder with HRNet, but did not

achieve the same performance gains that we observe with the depth network.

4.3.3 Evaluation on KITTI

Using metrics described in Chapter 3, we evaluate the performance of DIFFNet on

KITTI. The quantitative results are summarized in Table 4.1. Our method outper-

forms state-of-the-art approaches in terms of Absolute Relative Error and RMSE.

When trained on the stereo examples in KITTI, our method achieves best results

on all metrics. Given a higher image resolution of 1024× 320, the accuracy of
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Table 4.1: Results on KITTI Benchmark using the Eigen split grouped by training method-
ology. M: trained on monocular videos, MS: trained on binocular videos. Se:
trained with semantic labels. The best scores are bold and the second are
underlined.

Method Train WxH lower is better higher is better
Abs rel Sq rel RMSE RMSE log δ1 δ2 δ3

SfMlearner [18] M 640x192 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Li [108] M 416x128 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Chen [109] M+Se 512x256 0.118 0.905 5.096 0.211 0.839 0.945 0.977
Monodepth2 [4] M 640x192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SGDepth [110] M+Se 640x192 0.113 0.835 4.693 0.191 0.879 0.961 0.981
SAFENet [111] M+Se 640x192 0.112 0.788 4.582 0.187 0.878 0.963 0.983
VC-Depth [19] M 640x192 0.112 0.816 4.715 0.190 0.880 0.960 0.982
PackNet [63] M 640x192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Mono-Uncertainty[10] M 640x192 0.111 0.863 4.756 0.188 0.881 0.961 0.982
Fang [112] M 640x192 0.111 - 4.660 0.186 0.884 0.962 0.982
HR-depth [6] M 640x192 0.109 0.792 4.632 0.185 0.884 0.962 0.983
Johnston [64] M 640x192 0.106 0.861 4.699 0.185 0.889 0.962 0.982
DIFFNet M 640x192 0.102 0.764 4.483 0.180 0.896 0.965 0.983
Monodepth2 [4] MS 640x192 0.106 0.818 4.750 0.196 0.874 0.957 0.979
HR-depth [6] MS 640x192 0.107 0.785 4.612 0.185 0.887 0.962 0.982
Fang [112] MS 640x192 0.101 - 4.512 0.188 0.881 0.961 0.981
DIFFNet MS 640x192 0.101 0.749 4.445 0.179 0.898 0.965 0.983
Monodepth2 [4] M 1024x320 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Fang [112] M 1024x320 0.109 - 4.581 0.185 0.890 0.964 0.983
PackNet [63] M 1280x384 0.107 0.802 4.538 0.186 0.889 0.962 0.981
SGDepth [110] M+Se 1280x384 0.107 0.768 4.468 0.186 0.891 0.963 0.982
SAFENet [111] M+Se 1024x320 0.106 0.743 4.489 0.181 0.884 0.965 0.984
HR-depth [6] M 1024x320 0.106 0.755 4.472 0.181 0.892 0.966 0.984
Feat-Depth [84] M 1024x320 0.104 0.729 4.481 0.179 0.893 0.965 0.984
Guizilini [113] M+Se 1280x384 0.100 0.761 4.270 0.175 0.902 0.965 0.982
DIFFNet M 1024x320 0.097 0.722 4.345 0.174 0.907 0.967 0.984

DIFFNet further increases while continuing to outperform competing methods (see

in Table 4.2 for more details).

In Figure 4.4 we illustrate the qualitative performance of DIFFNet against

PackNet [63], HR-depth [6] and Monodepth2 [4]. DIFFNet outperforms all self-

supervised approaches and even those which use semantic labels as an external

supervision resource. We draw attention to the second row that shows our method,

where we have used a dashed outline to illustrate the benefits of our semantic back-

bone when compared with other methods. We achieve greater detail in a number of

roadside items, while holding the advantage of fewer trainable parameters than the

other techniques (see Table 4.4).

4.3.4 Ablation Study

To validate the performance improvements that our contributions provide, we con-

duct an ablative analysis. We establish a baseline by replacing the original ResNet-
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Table 4.2: Quantitative results from different resolution setting training and test: ↑ rep-
resents the higher the better, and ↓, lower is better. Abs Imp means absolute
improvement. The best scores in the table are bold.

.

Method WxH Abs Rel ↓ Abs Imp δ1 < 1.25 ↑ Abs Imp

Monodepth2 [4] 640x192 0.115 0 0.877 0.0021024x320 0.115 0.879

Fang [112] 640x192 0.111 0.002 0.884 0.0061024x320 0.109 0.890

HR-depth [6] 640x192 0.109 0.003 0.884 0.0081024x320 0.106 0.892

SAFENet [111] 640x192 0.112 0.006 0.878 0.0061024x320 0.106 0.884

UnRectDepth [114] 640x192 0.107 0.004 0.894 0.0031024x320 0.103 0.897

PackNet [63] 640x192 0.111 0.004 0.878 0.0111280x384 0.107 0.889

SGDepth [110] 640x192 0.113 0.006 0.879 0.0121280x384 0.107 0.891

DIFFNet 640x192 0.103 0.006 0.893 0.0121024x320 0.097 0.905

Figure 4.4: Visualisation of depth estimation results. The top row contains the input im-
ages. The second row shows the result from DIFFNet, and the remaining rows
are from other contemporary methods. Note the improvement in detail for
many roadside items, that our semantic backbone provides. Hotter colours in-
dicate closer objects.

based depth encoder in Monodepth2 [4] with HRNet-18. Table 4.3 shows the re-

sults of the analysis, with the progressive addition of pre-training the encoder on

ImageNet, multi-stage fusion (MF), channel-wise attention (CA) and space-wise at-

tention (SA). The largest performance gain is achieved by pre-training the encoder

rather than training from scratch. We observe that channel-wise attention yields

increased accuracy compared with spatial attention. Furthermore, feature fusion

improves baseline performance for all attention configurations with the exception
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Figure 4.5: Visualisation of the ablation study. Row one shows that with more semantic
information fed into depth decoder, the predicted depth map will more precise.
Row two shows that DIFFNet produces a depth map with fewer artefacts than
the baseline method.

of channel-spatial (CA + SA) in the last row of Table 4.3. A qualitative comparison

of DIFFNet and the baseline model is shown in Figure 4.5.

Table 4.3: Ablation Studies. MF: Multi-stage Fusion. CA: Channel-wise Attention. SA:
Space-wise Attention. ✓ identify our final system.

Method Pre-train Encoder Decoder The lower the better The higher the better
MF CA SA Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Baseline 0.124 0.990 5.158 0.202 0.858 0.952 0.974
✓ 0.108 0.799 4.609 0.186 0.888 0.963 0.982

DIFFNet

✓ ✓ 0.119 0.937 4.905 0.198 0.867 0.955 0.979
✓ ✓ 0.105 0.817 4.593 0.183 0.893 0.964 0.982
✓ ✓ ✓ 0.102 0.764 4.483 0.180 0.896 0.965 0.983
✓ ✓ ✓ 0.107 0.822 4.637 0.183 0.890 0.963 0.983
✓ ✓ ✓ ✓ 0.103 0.769 4.530 0.180 0.892 0.964 0.983

4.3.5 Extended Evaluation

Table 4.1 reveals the relative performance gap between contemporary methods on

KITTI is diminishing. From empirical testing, we observe that the 10 images that

give the highest error from each of these methods represents ≈ 1.4% of the KITTI

test set, but contributes > 3% of error when evaluating. Hence, error is not uni-

formly distributed throughout the test set, but certain images are more challenging

than others. A model’s performance on its own top 10 hard cases is a key factor

in measuring its robustness and stability. For a fair comparison, we propose that

the difficult cases from competing methods form a single challenge set. It is our

hope that future authors will accept this strategy when they evaluate their models

and compare against others.

In our case, we create a challenging test set that is the union of the 10 images

with highest error from the four approaches shown in Table 4.4, including a baseline
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Figure 4.6: The union set of 23 images that have the highest error from the models tested.

method discussed in Section 4.3.4. The union set comprises 23 images in KITTI

benchmark: 58, 68, 73, 106, 164, 173, 183, 260, 330, 374, 377, 385, 386, 388, 394,

395, 477, 504, 518, 548, 549, 559, 683. Those from ours are bold and common hard

cases are red. The corresponding images are shown in Figure 4.6, and 3 images are

common to all sets of Monodepth2 [4], HR-depth [6] and our DIFFNet.

In Table 4.4 it is clear that our method performs competitively under this most

difficult test, resulting in the lowest Absolute Relative Error. We can hypothesise

these are the most challenging images due to the large regions of foliage in combi-

nation with difficult lighting.

Table 4.4: Quantitative results on the challenging KITTI examples. The baseline method is
described in our ablation study, discussed in Section 4.3.4.

Method Parameters Run-time lower is better higher is better
FPS Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3

Monodepth2 [4] 14.84M 99 0.213 2.197 6.468 0.295 0.741 0.906 0.950
HR-depth [6] 14.62M 116 0.205 1.591 5.726 0.282 0.738 0.902 0.957
DIFFNet 10.8M 87 0.197 1.803 5.988 0.282 0.763 0.912 0.957
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Figure 4.7: We create a hard test set of 23 images shown in Figure 4.6 that is the union set of
the ten highest error images from recent well known works (Table 4.4). Here we
illustrate the intersection set of 3 images with the corresponding depth ground
truth and qualitative results from ours, HR-depth [6] and Monodepth2 [4] re-
spectively. It shows that depth estimation on thin structures, such as continuous
separation nets on the roadside, is still challenging.

4.4 Conclusion
In this chapter, we have proposed DIFFNet for self-supervised monocular depth

estimation. Based on HRNet, which is designed for other computer vision tasks,

we adopt it and improve it with two simple but effective strategies. Specifically, we

incorporate multiple resolution feature fusion and a channel attention mechanism.

With fewer parameters to learn, DIFFNet outperforms other state-of-the-art self-

supervised methods, especially when high resolution input is available. We have

shown that the DIFFNet encoder computes semantically rich feature maps, and our

ablation study demonstrates the performance gain from each proposed modification.

Finally, we introduced a creative strategy for evaluating models by investigating

difficult test cases, and we invite authors to adopt the same approach going forward.

In the next Chapter, we will exploit a new training framework to boost the

depth models’ performance.



Chapter 5

SUB-Depth: Self-distillation and

Uncertainty Boosting Self-supervised

Monocular Depth Estimation

In the previous Chapter, we have shown the significant importance of a representa-

tion learning backbone. Then, in this Chapter, we present a novel training frame-

work SUB-Depth.

Our main contribution is that we design a two-stage training framework by

proposing an auxiliary self-distillation loss and incorporating it into the standard

self-supervised monocular depth estimation (SDE) framework. In the first stage, a

depth network is trained using the standard training framework [4]. In the second

stage, given the trained network as a teacher, in addition to the photometric loss the

proposed self-distillation loss is introduced to regularize a student depth network’s

training. When training a student network, instead of using a simple weighted sum

of the photometric loss and the self-distillation loss, we employ generative task-

dependent uncertainty to weight each objective in our proposed training frame-

work. We present extensive evaluations on KITTI to demonstrate the improvements

achieved by training a range of existing networks using the proposed framework,

and we achieve state-of-the-art performance on monocular depth estimation.

We call our system SUB-depth, and summarise its following key contributions:

• We propose a novel two-stage training framework for self-supervised monoc-
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Figure 5.1: An overview of the SUB-Depth framework. SUB-Depth extends the standard
existing self-supervised monocular depth estimation framework (SDE) (high-
lighted) using self-distillation and uncertainty modelling. The teacher Depth-
Net outputs a supervisory signal for training the DepthNet, and enables compu-
tation of a regression loss. Both regression and photometric uncertainty maps
are learned and used to weight the respective losses. The teacher DepthNet is
pretrained with the highlighted SDE framework by optimising the photometric
loss.

ular depth estimation.

• Instead of manually tuning loss terms’ weights, we utilize the task-dependent

uncertainty idea, and experiment with several ways of uncertainty modeling.

• We conduct exhaustive experiments to show that the proposed training frame-

work is able to boost existing models’ performance significantly at the time of

publication (Zhou et al. [21]). The code is available at https://github.

com/brandleyzhou/SUB-Depth

5.1 SUB-Depth training framework
In this section, we first introduce the standard SDE framework, then the proposed

self-distillation, and two task-dependent homoscedastic uncertainty formulations.

The final system overview is shown in Figure 5.1.

5.1.1 Self-supervised monocular depth estimation

An SDE framework (highlighted by the yellow box in Figure 5.1) trains a Depth-

Net Θdepth and a PoseNet Θpose simultaneously for an image reconstruction task

with a triplet of sequential RGB frames It ∈ RH×W×3, t ∈ {−1,0,1}. During train-

ing, a Θdepth and a Θpose are optimized simultaneously using the photometric loss

https://github.com/brandleyzhou/SUB-Depth
https://github.com/brandleyzhou/SUB-Depth
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ℓphotometric defined in Equation 3.13. Please refer to Section 3.1.5 for a detailed

discussion.

5.1.2 Self-distillation loss

Most related works focus on integrating other supervised learning based tasks into

an SDE framework. Typically, when introducing a segmentation task, the segmen-

tation network shares the encoder in the SDE depth network, and all components

are trained jointly with the sum of the photometric loss and the segmentation loss.

Although depth models trained with such a multi-task system can improve their per-

formance, this neutralises the advantage of SDE framework, which only requires

sequential images to train depth models.

Unlike existing multi-task strategies, self-distillation avoids introducing extra

manual annotations. Instead, we use an SDE trained teacher depth network Θteacher

to output pseudo depth ground truth dpseudo = Θteacher(I0). We then let the depth

map from the DepthNet d = Θdepth(I0) regress the dpseudo. The objective can be

formulated as an L1 regression loss:

ℓregression = |Θdepth(I0)−Θteacher(I0)| (5.1)

As Θteacher and Θdepth have the same network architecture, we name this objective

self-distillation loss.

By simply introducing a Θteacher, we retrain depth networks using following

weighted loss function:

ℓ= ωpho × ℓphotometric +ωreg × ℓregression (5.2)

Where ωpho and ωreg are weights for ℓphotometric and ℓregression respectively. We train

and evaluate models using different weighting settings, shown in Table 5.1. From

the table, we observe that this naive multi-objective learning framework can out-

put a Θdepth which outperforms the Θteacher trained with standard SDE framework,

no matter what the ratio of the two weights is. However, when we set ωpho = 0.2

and ωreg = 0.8, models gain the best performance for Rel Abs, while they are im-
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Table 5.1: Comparison between manually tuned objective weights, evaluated on the KITTI
[7] Eigen split. We experiment with several combinations of ωpho and ωreg.
The best weighting pairs are in red. The best (Rel Abs and δ1) scores are
bold and underlined. Error and accuracy metrics’ definitions are given in 5.3.1.

Objective weights Error metrics Accuracy metrics
ωpho ωreg Rel Abs Sq Rel RMSE RMSE log δ1 δ2 δ3

0 1 0.112 0.884 4.740 0.189 0.881 0.961 0.982
0.2 0.8 0.110 0.855 4.724 0.188 0.881 0.961 0.982
0.4 0.6 0.112 0.866 4.736 0.189 0.881 0.961 0.982
0.5 0.5 0.112 0.888 4.766 0.189 0.882 0.961 0.981
0.6 0.4 0.113 0.876 4.774 0.189 0.884 0.962 0.983
0.8 0.2 0.113 0.885 4.799 0.190 0.882 0.961 0.981
1 0 0.115 0.903 4.863 0.193 0.877 0.959 0.981

proved significantly for δ1 when ωpho = 0.6 and ωreg = 0.4. As it is hard to get an

optimal weight setting, we utilize uncertainty based methods to balance loss terms

automatically.

From the first row and the last row from the Table 5.1, we also observe that even

if let a student network regress the outputs from a teacher network with Equation 5.1

as loss function directly, the student can outperform the teacher network trained with

the photometric loss. The reason for such improvements is that the teacher-student

training decouples depth network and pose network which are trained simultane-

ously when optimizing the photometric loss [10]. The improvement on the other

rows against the last row also shows the necessity of introducing the self-distillation

loss.

5.1.3 Task-dependent uncertainty formulation

Following [115], given a dataset (x,y), we let the network output the mean ŷ and

the variance σ of a posterior probability distribution p(y|ŷ,σ) over ground truth y,

which can be modelled as Laplacian or Gaussian. If Laplace’s distribution:

p(y|ŷ,σ) =
1

2σ
exp

−|ŷ− y|
σ

(5.3)
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is used, then the network can be trained by minimising the loss [80]:

loss =
|ŷ− y|

σ
+ log(σ) (5.4)

where the variance σ increases when the ground truth y is unreliable. As a result,

we can treat σ as task-dependent uncertainty, and the penalty term log(σ), avoids

the degenerate solution σ =+∞. To avoid σ being negative, we use sigmoid as the

activation function for the last layer.

We introduce uncertainty modelling for each objective in the framework:

Uncertainty for image reconstruction. Intuitively, as photometric loss is a mea-

surement of the difference between two images, it is natural to estimate its uncer-

tainty with a model that takes two images as input. While prior works [10, 81] use

the DepthNet Θdepth for modelling the photometric uncertainty, we propose a sepa-

rate Photometric UncertNet Θpho to estimate the uncertainty. As for the input of the

proposed uncertainty network, we experiment with different settings: 1). feeding

the target frame It , 2). feeding the target It and aligned It ′ (see in Table 5.2 for more

details). Finally, we let UncertNet take the target frame and the source frame as

inputs and output the photometric uncertainty map σpho, as shown in Figure 5.1.

Then the uncertainty weighted photometric loss, with the penalty term log(σpho),

for the image reconstruction objective is given by:

ℓreconstruction =
ℓphotometric

σpho
+ log(σpho) (5.5)

In Table 5.2, in addition to our final uncertainty modelling scheme (last row),

we experiment with two input settings for the proposed Photometric UncertNet (first

two rows).

Uncertainty for self-distillation. We let the DepthNet Θdepth encode and output

depth regression uncertainty σreg. Besides, we explore using a standalone regression

uncertainty network to estimate depth uncertainty (see the 3rd row in Table 5.2).

Then the uncertainty weighted regression loss with the penalty term log(σreg) for
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Table 5.2: SUB-Depth experiments with different uncertainty inputs for the Photoimetric
UncertNet. First row: feeding It . Second row: feeding It and It+1. Third row:
feeding It and warped It+1.

Input Abs Rel Sq Rel RMSE log δ1 δ2 δ3

It 0.113 0.905 0.189 0.882 0.961 0.982
It and warped It+1 0.111 0.875 0.188 0.882 0.960 0.982
It and It+1 0.110 0.821 0.185 0.884 0.962 0.983

the self-distillation objective can be computed as:

ℓdistillation =
ℓregression

σreg
+ log(σreg) (5.6)

The self-distillation loss has been proposed by Poggi et al. [10] in the context

of modelling depth estimation uncertainty. Their main purpose is to estimate pre-

dictive depth uncertainty without depth ground truth. When modelling uncertainty

they train a new instance of the teacher network [4] to mimic the outputs of the

teacher model, which also simultaneously generates depth uncertainty. Note that

the new networks of [47] are trained only using Equation 5.6 or Equation 5.5 each

time as a single objective. In contrast to theirs, our proposed student network is

simultaneously trained with two objectives Equation 5.5 and Equation 5.6 with the

uncertainties weighting the two losses respectively. We conduct a quantitative com-

parison between ours and the corresponding methods of Poggi et al. [10] in terms

of depth estimation and uncertainty modelling shown in Table 5.5 and Table 5.6. .

5.1.4 Multi-objective learning with uncertainty

Finally we combine the uncertainty weighted photometric loss (ℓreconstruction) and

regression loss (ℓdistillation) to build SUB-Depth:

ℓ f inal = ℓreconstruction + ℓdistillation (5.7)

The result is a multi-objective learning system, which trains Θdepth for an image

reconstruction objective and a self-distillation objective using the sum of task-

dependent uncertainty weighted losses.

The difference during training between the naive unweighted sum of losses
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Figure 5.2: Left: The task-dependent losses, uncertainty weighted losses and uncer-
tainty estimates during SUB-Depth training. Right: The corresponding task-
dependent losses of the same system trained with no uncertainty modelling.
Uncertainty modelling increases the contribution of the regression loss, and
down-weights photometric loss.

and uncertainty weighted losses is shown in Figure 5.2. On the left plot, Θdepth is

trained with self-distillation as a prime objective. In this graph, we observe that,

although the unweighted regression loss is lower than the unweighted photometric

loss throughout most of the training, after applying the task-dependent uncertainty

weighting the self-distillation loss contributes more to the ℓ f inal than the reconstruc-

tion loss. This change is due to the regression uncertainty σreg being lower than

the photometric uncertainty σpho, and indicates that pseudo-labels from the teacher

DepthNet provide a more reliable supervisory signal than the pixel-level metrics

used in the photometric loss. For comparison, the right plot in Figure 5.2 shows the

naive 1:1 weighted multi-objective training framework without uncertainty mod-

elling. In this case, the photometric loss dominates the loss throughout training

following similar curves to the respective unweighted losses on the left plot.

5.2 Implementation
Our models are trained and tested on a single NVIDIA RTX 6000 GPU using Py-

Torch [96]. A depth network and a pose network are trained for 20 epochs using

the Adam optimiser [99] with the default betas 0.9 and 0.999. They were trained

with a batch size of 8 and an input and output resolution of 640× 192. We set the

initial learning rate as 10−4 for the first 14 epochs and then 10−5 for fine-tuning the

remainder. In the objective function ℓ f inal (Equation 5.7), we set the SSIM weight

α = 0.85 and the edge-aware smoothness weight β = 1×10−3.
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Training Protocol. SUB-Depth is a two-stage training framework. In the first

stage, a depth network and a pose network are trained with the photometric loss in

Equation 3.13. In the second stage, we fix the depth network’s weights and treat it

as a teacher network to generate pseudo depth ground. Then we initialize a student

depth network, a pose network and a photometric uncertainty network, which are

trained simultaneously using the proposed loss function in Equation 5.7.

DepthNet and Teacher DepthNet. To verify the generalisation capability of SUB-

Depth, we train three different architectures: Monodepth2 [4], HR-depth [6] and

DIFFNet [20], which represent baseline-level, mid-level and state-of-the-art meth-

ods when trained with the standard self-supervised depth estimation framework (e.g.

Monodepth2 [4]. DepthNet models are initialised on the Imagenet [98] pretrained

weights. The teacher DepthNets are fixed models that are pretrained with the SDE

framework. To generate the associated regression uncertainty, we modify output

layers which originally produce one-channel depth maps to two-channel output.

PoseNet and Photometric UncertNet. For all training settings, we implement

the architecture proposed in [4] for pose estimation, which is built on ResNet-18.

The pose network takes the two adjacent frames as input and outputs the relative

pose which is parameterised with a 6-DOF vector. The photometric uncertainty

network uses an encoder-decoder with skip-connections. The encoder is based on

the ResNet-18 architecture and the decoder follows the design of the Monodepth2

depthnet decoder [4]. The photometric uncertainty network takes adjacent frames

as input and outputs photometric uncertainty maps.

5.3 Experiments and results

In this section we describe and evaluate our framework on the KITTI dataset. We

explore the observed improvements in performance, and perform an ablation study

to determine the contribution of each component of the SUB-Depth training frame-

work.
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5.3.1 Dataset and metrics

KITTI [7] is a dataset that contains stereo images and corresponding 3D laser scans

of outdoor scenes captured by imaging equipment mounted on a moving vehi-

cle [99]. The RGB images have a resolution of ≈ 1241×376 and the corresponding

depth maps are sparse with a large amount of missing data. For training, we adopt

the dataset split proposed by [29] and resize images to 640×192. After removing

the static frames by a pre-processing step suggested by [18], this results in 39,810

monocular frame triplets for training and 4,424 frame triplets for validation. To

simplify the training process, the camera intrinsic matrices are assumed identical

for all the frames in different scenes. To obtain this “universal” intrinsic matrix,

we offset the principal point of the camera to the image centre and reset the focal

length as the average of all the focal lengths in KITTI. Depth metrics described

by Eigen [29] are the most common used metrics for evaluating depth estimation

accuracy. They include four error metrics: the Absolute Relative Error (Abs Rel),

Squared Relative Error (Sq Rel), Root Mean Squared Error (RMSE), and the log

of RMSE; accuracy metric: δ1, δ2, δ3. We report each of these measures for each

setting in our evaluation.

Uncertainty metric. Although uncertainty modelling is not our main contri-

bution, we validate and compare the uncertainty outputs with two selected methods

from Poggi et al. [10]. When evaluating uncertainty, we treat the depth regression

uncertainty from DepthNet Θdepth as depth uncertainty. From Ilg et al. [116], we use

the Area Under the Sparsification Error (AUSE), the lower the better, and the Area

Under the Random Gain (AURG), the higher the better, to quantify the uncertainty

modelling performance of three depth metrics: Abs Rel, RMSE and δ1, respectively

in Table 5.4.

5.3.2 Evaluation on KITTI

To evaluate the performance of SUB-Depth, we select and retrain three model ar-

chitectures from prior work using our training framework: Monodepth2 [4], HR-

depth [6] and DIFFNet [20]. In each case, when compared to the original model

(teacher DepthNet), we see significant improvements in all metrics. Table 5.3
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Table 5.3: Quantitative comparison of SUB-Depth to existing SDE framework trained
models on KITTI [7] Eigen split. The best results in each subsection are in
bold. Models trained with SUB-Depth outperform the same models trained with
SDE in every case.

Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3
Monodepth2 [4] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
+ SUB-Depth 0.110 0.821 4.648 0.185 0.884 0.962 0.983
Improvement 0.005 0.082 0.115 0.008 0.007 0.003 0.002
HR-depth [6] 0.109 0.792 4.632 0.185 0.884 0.962 0.983
+ SUB-Depth 0.106 0.770 4.545 0.182 0.888 0.963 0.983
Improvement 0.003 0.022 0.087 0.003 0.004 0.001 0
DIFFNet [20] 0.102 0.764 4.483 0.180 0.896 0.965 0.983
+ SUB-Depth 0.099 0.695 4.326 0.175 0.900 0.966 0.984
Improvement 0.003 0.059 0.157 0.005 0.004 0.001 0.001

Table 5.4: Quantitative comparison of uncertainty modelling. We evaluate two uncer-
tainty metrics for each selected depth metric and compare with two uncertainty
modelling methods (Log and Self) in [10]. AUSE is lower the better, and AURG
is higher the better.

Abs Rel RMSE δ1
Method AUSE AURG AUSE AURG AUSE AURG
Poggi-Log [10] 0.051 0.027 3.097 1.188 0.060 0.056
Poggi-Self [10] 0.036 0.038 2.292 1.779 0.037 0.072
SUB-Depth 0.035 0.037 2.196 1.770 0.034 0.072

displays this quantitative comparison for all standard metrics for KITTI. We par-

ticularly draw attention to the improvement for DIFFNet, a recent state-of-the-art

model, that still exhibits substantial improvement. DIFFNet trained using SUB-

Depth establishes a new level of performance on the KITTI corpus. In Table 5.4,

We evaluate the uncertainty modelling performance on three different depth met-

rics. With respect to AUSE, our proposed method outperforms other competitors

from Poggi et al. [10], while, for AURG, there is a marginal gap between ours and

the Self method.

To validate the performance improvements gained by SUB-Depth and evaluate

the contribution of each design, we conduct an ablation study as shown in Table 5.6.

Monodepth2 [4] is used as the underlying architecture for all results reported in this

table. The first row ℓphotometric is the result from the standard SDE framework, and
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Table 5.5: Quantitative comparison of uncertainty modelling on improved ground
truth [11].

Abs Rel RMSE δ1
Method AUSE AURG AUSE AURG AUSE AURG
Poggi-Log [10] 0.039 0.020 2.562 0.916 0.044 0.038
Poggi-Self [10] 0.030 0.026 2.009 1.266 0.030 0.045
SUB-Depth 0.029 0.026 1.950 1.245 0.028 0.045

Table 5.6: Ablation Studies. We observe increased performance as self-distillation is in-
troduced, and further improvements with the addition of uncertainty modelling.
We also include results of methods Poggi-Log and Poggi-Self from Poggi et
al. [10] as our counterparts. The best results in each subsection are in bold.

Objective Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3
ℓphotometric(Baseline) 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Poggi-Log [10] 0.113 0.928 4.919 0.192 0.876 0.958 0.981
ℓregression 0.112 0.884 4.740 0.189 0.881 0.961 0.982
Poggi-Self [10] 0.111 0.863 4.756 0.188 0.881 0.961 0.982
Ours(1:1 weighted) 0.112 0.888 4.766 0.189 0.882 0.961 0.981
Ours(uncertainty weighted) 0.110 0.821 4.648 0.185 0.884 0.962 0.983

performs the worst of all settings. In second row ℓregression, by simply using the

trained DepthNet as a teacher DepthNet we achieve improved performance across

all measures. In last two rows, performance improves further as ℓphotometric and

ℓregression are combined and weighted by corresponding uncertainty estimation.

In Table 5.7, we extended our quantitative evaluation by selecting the top 10

most challenging images for each model, following the method described in Sec-

tion 4.3.5 of Chapter 4. The top 10 hardest images show areas of deep shadow, poor

lighting, foliage and other photographically indistinct regions. Our method deals

with this uncertainty and improves on the results of all prior methods for this subset

of the benchmark test set.

Qualitative evaluations are provided in Figure 5.3 for randomly selected exam-

ples. For each example, we show input RGB and output depth and regression un-

certainty maps. The uncertainty map correctly marks object boundaries with high

values where the transition from near to far distance is more difficult to predict.

To show generalisation performance, in Figure 5.4, we additionally qualitatively

evaluate the same depth network on the Cityscapes dataset [8]. Although trained
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Table 5.7: Quantitative comparison of SUB-Depth to existing SDE framework trained
models on top-10 selected subset of KITTI [7] benchmark. The best results
in each subsection are in bold. Models trained with SUB-Depth outperform the
same models trained with SDE in every case.

Method Abs Rel Sq Rel RMSE RMSE log δ1 δ2 δ3
Monodepth2 [4] 0.250 3.008 7.515 0.353 0.683 0.870 0.924
+ SUB-Depth 0.229 2.451 6.885 0.330 0.713 0.876 0.931
Improvement 0.021 0.557 0.63 0.023 0.030 0.006 0.007
HR-depth [6] 0.240 1.687 5.433 0.320 0.669 0.871 0.947
+ SUB-Depth 0.222 1.566 5.176 0.304 0.710 0.891 0.949
Improvement 0.018 0.121 0.257 0.016 0.041 0.020 0.002
DIFFNet [20] 0.225 2.160 6.357 0.312 0.712 0.899 0.951
+ SUB-Depth 0.209 1.672 5.783 0.294 0.723 0.907 0.957
Improvement 0.016 0.488 0.574 0.018 0.011 0.008 0.006

Figure 5.3: Qualitative results on KITTI [7]. We visualise the depth and the uncertainty
maps from SUB-Depth trained Monodepth2. The uncertainty maps capture
high uncertainty at object boundaries with a hotter color.

only on KITTI, the model appears to generalise well for both depth estimation and

uncertainty modelling.

As KITTI does not have dense ground truth depth maps, we use Virtual

KITTI [9] to compute depth error maps in Figure 5.5. In this qualitative evalu-

ation we show, from top to bottom, the input RGB image, the depth error maps

from the baseline Monodepth2 model and the error maps from Monodepth2 trained

with SUB-Depth. For each randomly selected example, we highlight regions of the

depth maps that show compelling improvements over prior work. The images are

provided at high resolution to allow the reader to zoom in.
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Figure 5.4: Generalisation results on Cityscapes [8]. We visualise the depth and the
uncertainty maps from SUB-Depth trained only with KITTI. The uncertainty
maps show higher uncertainty with a hotter color, and illustrate greater uncer-
tainty at object boundaries and for moving objects.

Figure 5.5: Visualisation of error map on Virtual KITTI [9]. The top row contains the
synthetic input images. The second row shows the Abs rel error maps from
SDE trained Monodepth2. The bottom row shows the error maps from SUB-
Depth trained Monodepth2. The differences are highlighted by white dotted
boxes.

5.4 Conclusion
In this Chapter, we presented a two-stage training framework for self-supervised

monocular depth estimation, SUB-Depth. SUB-Depth extends the existing standard

depth estimation framework with the introduction of self-distillation and uncertainty

modelling. We introduce a teacher network and let the depth network be trained,

not only for an image reconstruction objective but also for a self-distillation objec-

tive. To find the optimal objective weights, we utilize task-dependent uncertainty to

weight losses for each objective. Through analysing losses and uncertainty during

training, we discovered that, initially the image reconstruction loss contributes more

than the self-distillation loss, but then self-distillation quickly becomes the primary

objective since the estimated regression uncertainty is much lower than photomet-
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ric uncertainty. We retrained three representative approaches using SUB-Depth to

validate the generalisation capability of our proposed framework, and all outper-

form their counterparts. Our SUB-Depth training framework exhibits substantial

improvements over the current state-of-the-art model on the KITTI benchmark for

all depth metrics at the time of publication.

In the following Chapter, we will conclude the findings of this thesis.



Chapter 6

Conclusion and Future work

Single-view depth estimation, which predicts depth from a single image, has a wide

range of potential applications across various fields. In autonomous vehicles and

robotics, it enhances navigation safety through obstacle detection and improves ob-

ject detection and tracking by providing spatial context. In Augmented Reality (AR)

and Virtual Reality (VR), depth estimation facilitates scene structure understanding,

enabling accurate placement of virtual objects, and enhances the realism of virtual

environments. In photography and videography, depth estimation enhances autofo-

cus systems, enables post-processing depth-of-field effects, and assists in 3D pho-

tography and image segmentation. Healthcare applications include 3D reconstruc-

tion of anatomical structures from 2D images for diagnostics and surgical planning.

To benefit the above-mentioned applications, the main goal of this thesis was

to continuously improve the performance of self-supervised monocular depth es-

timation approaches. In this Chapter, we conclude with our novel contributions

to solving this challenging problem and discuss potential improving directions for

future work.

6.1 Contibutions
In Chapter 3, we first achieved our research goal by designing novel loss functions

and building the associating data flow in the training phase. The motivation for

our proposed loss function was that the original appearance-based photometric loss

is sensitive to moving objects in the KITTI dataset. We initially assumed that the



6.1. Contibutions 86

camera-mounted vehicle was moving at a constant velocity when capturing data

in a short time window. Based on this assumption, we proposed a depth consis-

tency constraint among consecutive frames on pixels that belong to moving objects.

To detect those pixels where our proposed depth consistency loss is valid, we de-

signed an associating mask schema, inspired by Godard et al. [4]. Furthermore, we

exploited relative pose change consistency between frames as a loss term to sup-

plement the photometric loss. As far as we know, we were the first to explore such

geometry consistencies without introducing additional data annotations. As a result,

our depth model outperformed the baseline method on the KITTI benchmark [7],

and surprisingly the pose estimation model was improved on visual odometry task

as well.

To further improve the accuracy of depth estimation models, many prior works

have made efforts to construct representation learning network architectures. So in

Chapter 4, we proposed a novel learning backbone DIFFNet. DIFFNet consists of a

high-resolution encoder and an attention-based depth decoder. The encoder is based

on HRNet proposed by Wang et al. [5] that makes the most use of maintaining high

resolution information and exchanging information between feature maps in differ-

ent resolutions during the down-sampling process. Since such a design costs more

trainable parameters when we want to increase the dimensions of extracted feature

maps, we introduced a multi-stage internal feature fusion mechanism that enables

the extraction of more semantic information by simply concatenating feature maps

in different sampling stages. Furthermore, we explored different attention designs

for feature decoding. After conducting the comparison experiments among spatial-

wise attention, channel-wise attention and a combination of them, we proposed a

channel-wise attention based depth decoder. To better compare with other methods,

we proposed an extended evaluation method which enables researchers to better

compare their approaches to others. As a result, the DIFFNet achieved state-of-the-

art performance on both KITTI benchmark and our proposed evaluation method.

As explored for other computer vision tasks, multi-task learning has been a

technique to improve one task by introducing another task during training. Previous
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works [111, 117, 118, 119] have shown that training a single depth model benefits

from multiple regression or classification objectives. In Chapter 5, inspired by prior

works that train a student depth network with a trained teacher network [6, 10], we

extended the single-task self-supervised depth estimation framework to a two-stage

setting by introducing a self-distillation scheme associated with a regression ob-

jective. Compared with other multi-task settings which introduce supervised tasks

such as semantic segmentation, one of the advantages of self-distillation is that the

framework remains a self-supervised regime. The performance of multi-objective

systems is dependent on the relative loss weighting for each task. Instead of man-

ually tuning weights of loss terms, inspired by Kendall and Gal [120], we propose

two uncertainty modelling strategies to calculate uncertainty for the self-distillation

task and the image reconstruction task respectively. Specifically, the self-distillation

uncertainty down-weights the regression loss when a teacher network outputs noisy

depth values, and the photometric uncertainty outputs higher confidence where in-

put frames satisfy the image reconstruction tasks’ assumptions, that is, static world

and ego-motion. As a result, our proposed training framework is able to further

improve the performance of methods including DIFFNet discussed in Chapter 4.

6.2 Future work

While through the three chapters discussed our depth estimation model has shown

improved performance in terms of higher accuracy and lower error rates on the

KITTI benchmark, there are many problems unsolved, e.g. geometric consistency

with other scene structure information, for instance, surface normals.

Given a depth map, we can calculate its corresponding surface normal. If we

assume the optic axis of the camera is parallel to the ground, we can detect ground

pixels according to their surface normal values as shown in the second column in

Figure 6.1. However, the ground masks generated by depth maps are much dif-

ferent from the ground semantic maps, especially in shadows and lane marks on

carriageways as the red points shown in the last column in Figure 6.1. It means that

depth results in those areas are inaccurate, while the model achieves a higher overall
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Figure 6.1: Geometric consistency on road (ground) pixels. The first column shows in-
put images with their ground semantic maps in purple. The second column
shows ground masks calculated from depth maps generated by the method
in Chapter 4, in which white points represent ground pixels. Note that those
ground masks from depth have been masked by the corresponding ground se-
mantic maps in the first column. The last column shows the differences between
ground semantic maps and ground masks from depth using red points.

accuracy.

We have tested other depth estimation approaches, but the problem still ex-

ists. In future, we would like to solve this problem by exploring the possibility of

imposing a geometric constraint on the depth map and surface normals.

Apart from the unexplored surface normal constraint, there are yet well-solved

problems for future work. The biggest challenge of self-supervised monocular

depth estimation is dynamic objects or stationary cameras, which contaminate the

photometric loss and lead to degradation of models’ performance. Although some

works have proposed approaches (e.g. explainability mask [18], auto-masking [4])

partially alleviating such issues by filtering out those regions in loss calculation, it

is worth exploring multi-frame based architectures to solve this problem by mod-

elling geometry information across temporal frames and disentangling object mo-

tions from scene changes.

Another significant challenge is depth estimation on non-Lambertian surfaces.

Non-Lambertian surfaces exhibit specular reflection, where light is reflected in a

specific direction rather than diffused evenly. This causes highlights or shiny spots,

as seen on glossy or metallic surfaces. In the context of monocular depth estimation,

Bright highlights from specular reflections can be mistaken for object features, lead-
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Figure 6.2: Top image: an example contains a non-Lambertian surface on a vehicle. Bot-
tom image: a corresponding depth map containing artefacts due to the highlight
caused by specular reflection.

ing to errors in depth maps as Figure 6.2 shown. The ability to accurately estimate

depth in the presence of non-Lambertian surfaces can be achieved by incorporating

more realistic reflectance models. Another solution is to utilise multiple viewpoints

or images which can help disambiguate the effects of non-Lambertian reflections

by providing additional information about the scene structure.
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