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Can you have prescription without prediction? Most scholars and practitioners would argue that a good forecast 
drives an optimal decision, thus promoting the concept of prediction-led prescription. In times of turbulence, 
Special events like promotions and supply chain disruptions are impacting businesses severely. Nevertheless, 
limited research has been carried out to date to accurately forecast the impact of, and consequentially prescribe 
in the presence of special events. Nowadays Artificial Intelligence (AI) predictive analytics methods and heu-
ristics imitate and even improve human intelligence, progressively leading towards innovative cognitive ana-
lytics solutions. This research aims to contribute to applying advancements in AI-based predictive analytics to 
improve business performance. We provide empirical evidence that these AI solutions outperform the popular 
(especially among practitioners) linear regression models. We corroborate the stream of literature arguing that AI 
predictive analytics could − via a natural path-dependent process − enhance prescriptive analytics solutions, and 
thus improve business performance.   

1. Introduction & motivation 

Can we have prescription without prediction? Although academics’ 
and practitioners’ views may vary (Siemsen and Spiliotopoulou, 2023), 
the dominant school of thought sees them entangled (Nikolopoulos, 
2021). Especially in times of turbulence where special events are 
impacting critical sectors (Nikolopoulos et al., 2021; Nikolopoulos et al., 
2015), optimal decisions better be taken once we have accurate esti-
mates of the current as well as the future state of systems (Petropoulos 
et al., 2022). Thus, despite prescriptive and predictive analytics being 
perceived as different sets of tools, the truth is that the latter regularly 
leads the former. In essence, forecasts lead to optimal decisions, and 
thus, predictive analyses drive prescriptive solutions; in a nutshell: 
prediction-led prescription. 

Nowadays, we live in a world massively dominated by data, as well 
as an unprecedented increase in data collection and increasing compu-
tational power that has led to the phenomenon (and opportunity) of big 
data analytics (BDA) in recent years. Moreover, Artificial Intelligence 
(AI) elementsin decision systems have become important parts (Duan 
et al., 2019). Similarly, BDA and AI created a loop of co-development, 

which offered clear improvements in decision-making in times of tur-
bulence (Zhang et al., 2021; Gunasekaran et al. 2017; George et al. 2014; 
Nikolopoulos, 2010). The reason is that these techniques seem prom-
ising for prediction but also for prescribing optimal decision thereafter 
(Kim & Swanson, 2018). Also, external factors like the financial melt-
down in 2008, supply chain disruptions, and stock-outs (Nikolopoulos 
et al., 2021) raised the interest for more refined BDA (Huang et al., 
2014). 

Despite the breadth and depth of forecasting research (Petropoulos 
et al., 2022), special events and their respective impact on baseline time 
series forecasting remain at large an under-researched topic (Nikolo-
poulos, 2021). This is not a trivial technical challenge, due to mostly 
limited available and often non-parametric and nonlinear past data 
(Webby & O’Connor, 1996). 

Nikolopoulos (2010; 2021) provided systematic reviews and theo-
retical propositions to conceptualise and simulate special events in time 
series. Both articles – despite being a decade apart – highlight the need 
for further research into this area. Although being tested on simulated 
and real-life data, the results of these studies with a clear and immediate 
need for more advanced AI-based predictive, prescriptive, and cognitive 
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analytics models, and if back then (Nikolopoulos, 2010), computational 
power was not empowering such solutions, nowadays − with a super-
computer and the cloud at hand, it really is about time. Furthermore, it is 
well documented to date that nonlinear methods like neural networks 
have not been able to consistently outperform statistical methods 
(Makridakis et al., 2018) – thus, AI-based solutions have a long way to 
go. Despite AI-based methods’ great flexibility and ability to approxi-
mate non-parametric relationships, their performance has not always 
been as expected. Nevertheless, when forecasting baseline time series, 
Zhang and Haghani (2015) could observe a strong performance of these 
algorithms in grasping non-regular patterns and special events in the 
context of forecasting traffic time series. Furthermore, Kraus et al., 
(2017) found strong performance of these algorithms in the context of 
complex financial time series data sets. 

The primary aim of this research is to assess the performance of 
predictive analytics methods when forecasting the impact of special 
events (we employ the real-world “Rossmann store sales” dataset; Kag-
gle, 2016), leading to the prescription of optimal decisions (ordering, 
inventory positions, trading strategies etc) and therefore improved 
business performance: 

“As demand forecasting accuracy increases, and the standard deviation 
associated with the forecast decreases, the need to hold “just in case” 
inventory also goes down. This leads to lower inventory carrying costs and 
thus better cash flow”1 

To the extent that. 

“1% forecast improvement leads to a 2.5 % reduction in the amount of 
inventory that needs to be held.”2 

If that is not a manifestation of the potential benefits of prediction- 
led prescription, then what is? 

Secondly, we corroborate,the stream of literature on applying ma-
chine learning methods − and AI in general, to achieve better quality 
prescriptive analytics (Bertsimas & Van Parys, 2022; Bertsimas and 
Kallus, 2020; Ban and Rudin, 2019; Lee et al., 2018; Van der Vlist, 
2016). 

Essentially, we argue that our results contribute to the scientific 
premises of a framework which supports the effective transition from 
predictive to prescriptive analytics by offering additional credibility on 
the optimal strategic choice, leading to superior operational perfor-
mance (Elmachtoub & Grigas, 2022; (Bertsimas & Kallus, 2020). AI 
tools, such as the ones researched in this article, enhance further the 
value dimension of analytics in the stage of ‘prediction’, leading to more 
value to the next level of ‘prescription’; that improved decision-making 
offering stronger competitiveness which could foster improved perfor-
mance. This is also the natural path towards ‘cognitive’ analytics solu-
tions (following the diagonal in the data analytics framework in Charles, 
Emrouznejad,Gherman,and Cochran, 2022), as such solutions are not 
created in a void and they follow a natural evolutionary process from 
simpler solutions to more advanced ones as per the conceptual frame-
work of Charles, Emrouznejad, Gherman, and Cochran (2022). 

In our study, the transition from ‘predictive’ to ‘prescriptive’ is 
facilitated by the identification and forecasting of special events. Such 
an identification will not only offer greater accuracy when anticipating 
the future, but it will also allow the decision maker to optimize their 
behaviour by selecting from a finite strategy-set; if the firm has to select 
a pure or mixed strategy for reaching the greater pay-off, the choice or 
the probabilities assigned will be much more accurate thus making 
easier for the firm realizing/answering the question of ‘how can we 
make it happen’? 

AI methods can capture information more effectively and create a set 

of knowledge, making special events more predictable and providing 
solutions to tackle the issues presented in the prescriptive stage of an-
alytics. Real-world analytics applications often include elements of both 
predictive and optimization effects (Cohen et al., 2017; Angalakudati 
et al., 2014) that help the transition from predictive to prescriptive 
analytics and therefore, our results contribute further into this valuable 
path dependence. 

We will even dare claim that given the combinatory nature of our 
approach, that our theoretical proposition can be classified as an early- 
stage cognitive analytics tool, also given the autonomous way the ma-
chine learning methods do learn and extrapolate from past data and 
knowledge. 

The remaining of this paper is structured as follows: section 2 offers a 
comprehensive yet targeted visit in the relevant literature, followed by 
section 3 on our theoretical foundations and framework. Section 4 dis-
cussed our research methodology and section 5 offers our empirical 
results followed by discussion (section 6). The last section offers 
conclusion, limitations, implications for theory and practice, and sug-
gestions for future work on the topic. 

2. Background literature 

We follow a targeted literature review methodological approach 
focus on three areas of the literature: a) forecasting trends, b) forecasting 
special events, and c) using AI for a) and b). 

2.1. Forecasting trends 

Forecasting and prediction methods and models have been success-
fully applied for smoothing and estimating baseline trends for decades 
now (Syntetos et al., 2016; Assimakopoulos & Nikolopoulos, 2000; 
Brown, 1963). Besides the traditional linear statistical models, machine 
learning algorithms are nowadays often used for prediction and fore-
casting tasks (Wauters & Vanhoucke, 2017; Chen & Guestrin, 2016; 
Hendry, 1987). 

The strong focus on quantitative methods can be attributed to the 
fact that very often, we get very mixed results from qualitative fore-
casting methods – most notably judgmental forecasting methods (Pet-
ropoulos et al., 2022). Human judgment is so often based on simple 
mental strategies and heuristics driven by past experiences (Goodwin & 
Wright, 2010). This latter argument explains to a large extent the limi-
tations and often very mixed results of qualitative methods (Werner, 
et al., 2017; Nikolopoulos, et al., 2015; Genrea, et al., 2013; Lawrence, 
et al., 2000; Webby & O’Connor, 1996) (Lawrence, et al., 2000). 

One other dimension of predictive analytics methods is computa-
tional cost (Leitch & Tanner, 1991). Newly proposed methods need to be 
evaluated both on accuracy as well as computational cost – i.e time to 
compute. Especially in the last two decades nonlinear methods, like 
Artificial Neural Networks (ANN − Haerdle, 1992) and tree-based 
methods have attracted wider attention because of their increasing ac-
curacy but also in parallel increasing computational power needed and 
respective cost (Haykin, 1998). 

2.2. Forecasting special events 

Special events are as old as time, as is the need to forecast the timing 
and impact of them (Petropoulos et al., 2022); yet the formal intro-
duction of the term, and a first set of proposition on approaches for the 
identification and forecasting of such events came from Wilpen (as late 
as) in 1986 in the context of relational database management systems: 
[any] “out of the ordinary events”. These irregular but (temporally) 
expected out of ordinary events (Nikolopoulos, 2021; Nikolopoulos, 
2010; Armstrong, 2001) are difficult to identify and even more difficult 
to forecast in a time series context. Limited data (more often than not), 
or at best non-parametric and nonlinear past data of previous events, 
makes a forecast difficult (Webby & O’Connor, 1996). Special events are 

1 The Forecasting Accuracy Bugaboo (forbes.com).  
2 Demand Planning Solutions Improve Forecasting By Consuming More And 

More Data (forbes.com). 
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also mentioned in the literature as shocks, rare events or grey swans (or 
even black swans but these are meant to be unforecastable – Taleb, 
2007). Black swans have a major impact that is even more difficult to 
expect or forecast (Aven, 2015) for example terror attacks or tsunamis 
(Aven, 2016; Nafday, 2011). Special events are more similar to rare 
events or shocks (Kesavan and Kushwaha, 2013) like for examples jumps 
in financial markets or even more regular events like promotions or 
strikes (Nikolopoulos, 2010). Research also remains inconclusive 
regarding the value of qualitative forecating – i.e expert adjustements 
for adjusting the impact of special events (Goodwin , 2002; King & Zeng, 
2001; Goodwin & Fildes, 1999). 

Therefore, more focus have been given to quantitative approaches −
under the caveat that past data are avaialbe, like parameter estimation 
and model intervention (Webby & O’Connor, 1996). In another propo-
sition Lee and Yum combined two separate ANNs to forecast special 
events (Lee & Yum, 1998). Nunes and Pimentel developed the statistical 
jump-diffusion processes (Nunes & Pimentel, 2017), and Martzoukos 
and Trigeorgis proposed a Markov-chain methodology to forecast these 
jumps and abnormal peaks (Martzoukos & Trigeorgis, 2002). Other 
approaches can be also found in the context of maintenance modelling in 
Cha et al. (2018), or Ren et al. (2016), in the context of traffic prediction. 
Theofilatos et al. (2017) indicate that the small ratio between special 
events and regular periods causes problems for statistical forecasting 
methods. This observation was also described by Goodwin and Wright 
(2010), when predicting the occurrence of terror attacks or kidnapping 
(Goodwin & Wright, 2010), where that ANNs can outperform linear 
statistical forecasting techniques and autoregressive methods in the 
context of special events. 

Nikolopoulos (2010) applied a wider range of forecasting tools, 
including ANNs, multi linear regression (MLR) and nearest neighbour 
techniques. The linear techniques proved to be sufficient under certain 
circumstances, especially when forecasting simulated data with linear 
relationships; nevertheless, ANNs outperformed the other techniques, in 
data with stronger nonlinearity. Combinations, or sophisticated selec-
tion between ANN and MLR depending on data characteristics gave also 
promising results Another interesting approach was forecasting with 
rare events logistic regression model (RELR), applied by Ren et al. in 
2016. These models are based on a further development of conventional 
logistic regression. The challenge with their research was that satisfac-
tory results could be only obtained by massively shrinking the dataset to 
a ratio of 10:1 between rare events and regular periods. Furthermore, 
RELR only performed slightly better than regular regression and the 
prediction rate was still not very satisfactory (Barrow & Kourentzes, 
2018). Barrow and Kourentzes applied a range of forecasting algorithms 
to capture the impact of holidays and promotional effects. Their paper is 
of high interest due to the large number of forecasting methods empir-
ically competing seasonal naïve, seasonal moving average, exponential 
smoothing, seasonal exponential smoothing and ANNs. The main 
finding from this study was that both linear and nonlinear models, 
exhibit limited performance without the additional information pro-
vided in form of dummy variables (Barrow & Kourentzes, 2018). 

2.3. AI-based/ Machine learning approaches 

Classical statistical forecasting techniques, that work well in the 
presence of a few variables and large volume of data, cannot cope with 
problems with a high degree of dimensionality. (Bansal, et al., 1993). On 
the contrary, Machine Learning (ML) approaches, with their ability to 
learn from patterns and input–output relationships (Samuel, 1969), 
have recently shown very promising performance in such challenging 
contexts (Makridakis, et al., 2018; Smyl, et al., 2018; Keung, Zhang & 
Xu, 2017; Ma, et al., 2016; Makridakis, Hogarth, & Gaba, 2009; Car-
bonneau, et al., 2008). 

In recent years ML, due to the unprecedented access to computing 
power and storage via the cloud, have seen a strong revival due to been 
capable of handling large data sets with high complexity and non- 

parametric distributions (Sanders,& Ganeshan, 2018; Fisher & Raman, 
2018; Cohen, 2017; Feng & Shanthikumar, 2017). Linear statistical 
models on the other hand, still work very well in the presence of strong 
linearity (Finlay, 2011). Ensembles are used to enhance the results of ML 
algorithms further (Fitzpatrick & Muesa, 2016; Zhang & Haghani, 2015; 
Dietterich, 2000). 

Random Forests (RF − Breiman, 2001) have been very popular and 
successful in empirical investigations (Lessmann, Sungb, & Johnson, 
2011). When comparing to Support Vector Machines (SVMs) and Arti-
ficial Neural Networks ANNs (Petropoulos et al., 2022), as well as other 
non-parametric models, RFs are not perceived as full black box models, 
and that is valued by both academic and practitioners, as the importance 
of the individual attributes can be measured visualised too (Liang & Lin, 
2014; Lessmann, Sungb, & Johnson, 2010). RFs are faster than ANNs 
and easier to train, giving them a huge advantage in terms of compu-
tational cost and complexity. Successful applications of RFs include 
customer relationship management, medical science, and bioinformatics 
(Krauss, et al., 2017; Nagya, et al., 2016; Fitzpatrick & Muesa, 2016). 
Similar results can be found in Baboota and Kaur‘s paper in 2018, where 
RF (compared to SVMs) were able to capture complex relationships 
when dealing with special events. With the help of feature engineering 
both RF and SVM algorithms could produce quite balanced results, 
nevertheless RF outperformed SVMs. In 2013 Liu et al. authors also 
compared RFs with ANNs, as well as SVMs. They also found superior 
performance of RF (Liu, et al., 2013). Also Ahmad et al., observed that 
RF were able to discover and forecast sudden nonlinear fluctuations in 
their dataset. The RF algorithms performed again more robustly, even 
under significant noise and missing data (Ahmad, et al., 2017). 

One very promising ML approach, the Gradient Boosting (GB), un-
fortunately has architecture that is more challenging to fine-tune 
(Krauss, et al., 2017; Hastie, Tibshirani, & Friedman, 2009). Despite 
generating very competitive results in general, in comparison to RF the 
GB algorithms tend to over-fit (Hastie, Tibshirani, & Friedman, 2009; 
Mason, et al., 1999). GB algorithms are also non-parametric like RF, thus 
able to handle complex interactions among attributes and capture 
complex nonlinear trends. Furthermore, they are able to handle small 
samples with nonlinear distributions very well. 

In a 2007 paper, GB algorithms were applied in a very noisy data set 
(Death, 2007). The GB algorithms were able to outperform ANNs, 
especially in the small data sets he used. Similar results were found by 
Yang et al. (2007). The second main advantage of GB versus ANNs is that 
like RF models are not fully black box models (Martinez, et al., 2018; 
Zhang and Haghani, 2015). Also, in a financial analytics context, Finlay 
(2011) could make use of the GB architecture for a credit scoring system. 
In this paper standard benchmarks could not perform well due to the 
complex underlying patterns with many individual attributes. All 
nonlinear models, ANNs, SVMs and boosted trees outperformed the 
linear models, with boosting offering the best compromise between 
accuracy and computational cost (Finlay, 2011). 

The aforementioned targeted literature review concludes with the 
highlight of the gap in having a plethora of a) accurate and relatively 
computationally cheap forecasting algorithms for modelling and fore-
casting special events and b) consequently optimally prescribing de-
cisions based on these forecasts. 

3. Prediction-led prescription: Theoretical foundations and 
methodological considerations 

The current work essentially links two sub-fields of analytics: pre-
dictive and prescriptive; and inevitably paves the way towards cognitive 
analytics solutions. The theoretical foundations of our proposition are 
ceased from the Charles et al. (2022) data analytics framework, where 
the framework is expanded (see Fig. 1) to allow for: 
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a) the Predictive and Prescriptive analytics to have an intersection, the 
area exactly where predictive analytics are informing and driving the 
prescriptive ones, introducing Prediction-led Prescription (PlP), and  

b) allowing PlP3 to pave the way and drive cognitive analytics solutions 
too. Cognitive analytics while pooling information and adjusting/ 
optimising model parameters on present time (Gudivada et al., 
2016), could be influenced and driven to some extent from the data 
set until the optimal prescribed action (that has been already influ-
enced by earlier predictions). 

Predictive analytics for special events can drive solutions and equally 
provide guidance as to what steps can be taken to improve business 
performance by identifying and handling the occurrence of special 
events, action which can be detrimental to the timely intervention 
needed to secure and enhance the performance of the business (Leicht- 
Deobald et al., 2019; Burton et al., 2019; Schafheitle et al., 2019; Isson & 
Harriott, 2016). Previous research indicates that ‘black swan’ events 
such as the COVID-19 pandemic can lead to very severe consequences 
for the performance of businesses (Donthu & Gustafsson, 2020). A study 
by Baumgartner (et al., 2020) reveals that up to 45 % of businesses’ 
annual revenue can vanish due to the impact of various adverse events 
globally. A recent study (Wamba et al., 2019) highlighted the need for 
further research on the potential impact of Artificial Intelligence in 
crises. Thus, we strongly believe our research highlights potential ways 
to navigate through uncertainty and improve decision-making in 
changing economic conditions and looming disasters, which can clearly 
influence the performance of an organisation. 

Methodologically this study (as illustrated in the Fig. 2 below), at-
tempts to expand our ability to process and handle both high volume and 
high complexity of information, thus creating a better prescriptive set of 
actions improving our ability to move forward, and thus improve busi-
ness performance (Schafheitle et al., 2019). 

It is worth noting that very often, prescriptive analytics uses solution- 
oriented simulation and scenario calculations as well as machine 
learning algorithms with the aim of aiding and implementing decisions 

(Sivathanu & Pillai, 2019; Lunsford & Phillips, 2018). At that stage, 
decision-making becomes a joint human-algorithm decision-making 
process (Burton et al., 2019). As it is argued that AI has improved 
making predictions in a more efficient manner (Agrawal et al., 2018), 
the usage of such techniques can help to deliver more accurate optimi-
zation of decisions. This study attempts to go further than an accurate 
forecast, paving the way for better implementation of future actions 
such as a choice of strategy out of set of alternative strategies. One key 
conceptualization, which drives a big part of the argument of our 
endeavour, is connected with the improvement of the reaction time, but 
as well as with the quality of the decision, while entering the phase of 
prescriptive actions as given in Fig. 4 and given that these algorithms 
(machine learning/deep learning) in principle emulate human cognitive 
processes, we can claim, decisively, that the proposed solution, can drive 
towards cognitive analytics ones (as depicted in Fig. 3 as well). 

The notion that prescriptive analytics offer the ground for proactive 
actions, which are based on results generated from predictive analytics 
(Lepenioti et al., 2020), is on the core of our argument which supports 
the ability for more accurate forecasts in the domain of occurrence of 
special events that can lead to better business performance. Similar 
rational is also apparent to the framework offered by Charles at al. 
(2022) (see Fig. 1). 

4. Empirical investigation 

We employ in our empirical investigation the publicly available 
“Rossmann Store Sales” dataset (Kaggle, 2016). The dataset consists of 
1115 longitudinal time series for 1115 distinct drug stores in Germany, 
covering the period of January 2013 to the end of July 2015. The dataset 
contains a mix of continuous and categorical variables; therefore, we 
used a series of dummy variables to prevent the problem of spurious 
ordering (Brown, 2015; Berry & Linoff, 2004, p. 554). Missing values 
were treated accordingly, too, via either using median values of this 
attribute or assigned randomly in order to abide by the original distri-
bution (Castro et al., 2017). The dataset was split into an initial fixed 70/ 
30 ratio for fitting versus out-of-sample forecasting evaluation (Petro-
poulos et al., 2022), and then a rolling origin evaluation took place 
(Tashman, 2000), thus starting with a six-month training and three- 
month evaluation period, the dataset was step by step prolonged by 

Fig. 1. Expansion of Charles et al., 2022 Data Analytics Framework to include Prediction-led Prescription (PlP) and respective driving of cognitive solutions.  

3 We will be using the terms ‘Prediction-led Prescription’ and ‘PIP’ inter-
changeable onwards in the manuscript. 
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Fig. 2. Methodological choices of forecasting methods when considering Volume of Information versus Complexity of Information.  

Fig. 3. The theoretical model −
Adopted from Lepenioti et al., 2020. 

Fig. 4. Store #25. Left part: 100 days for training and 30 days out-of-sample for forecasting evaluation, Right part: 140 days for training and 30 days out-of-sample 
for forecasting evaluation. Forecasting performed with a Multilayer Perceptron (Artificial Neural Network). 
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another 6 months period. 
An example of the 1115 time series is illustrated in Fig. 4, store #25, 

with a series of Special Events in the training part of the left Fig. 4 (15 
data points with zero sales). On the left part of Fig. 4, we set 100 days for 
training and 30 days out-of-sample for forecasting evaluation. In 
contrast, in the right part, the rolling origin has been applied, with (an 
extended) 140 days for training and (still) 30 days out-of-sample for 
forecasting evaluation. Forecasting in this example is performed with 
the standard benchmark of Artificial Neural Networks (ANN), the Mul-
tiple Layer Perceptron (MLP) (Petropoulos et al., 2022). 

From the illustration in Fig. 5, a time series dominated by special 
events, the importance of forecasting the timing and the extent (i.e. the 
amplitude) of these events is becoming evident as these rapid changes in 
sales (and respective demand) affect severely inventory levels, produc-
tion schedules, staffing, sourcing and whatnot, and thus make clear the 
link of predictive, predictive, and cognitive analytics and the importance 
of the PlP paradigm shift. 

Following the methodological paradigm of Nikolopoulos, Babai and 
Bozos (2016), we employ multiple measures of forecasting performance: 
a) Runtime to track the computational cost of the forecasting method, b) 
the Root Means Squared Error (RMSE) to track the uncertainty of the 
forecasts, and c) the Mean Absolute Error (MAE) to trach forecasting 
accuracy. As the multiple metrics may indicate different winners, we 
also calculate a ranking metric so as to pick the ultimate winner of our 
empirical investigation (Petropoulos et al., 2022). 

Although we are in a time series context, the interest lies in model-
ling and forecasting the special events that are modelled by cues of in-
formation, and as such, we need multivariate methods in order to 
perform the task. We use Multiple Linear Regression (MLR) as the nat-
ural benchmark, the standard Machine Learning (ML) benchmark in the 
like of an MLP ANN (Haykin, 1998), and employ three state-of-the-art 
ML methods – Random Forest (RF), Gradient Boosting (GB), and 
Extreme Boosting(xgBoosT) (Petropoulos et al., 2022; Chen et al., 2018) 
in order to model and forecast our special events. 

From Table 1 and our holistic empirical comparison, MLR as ex-
pected dis the fastest approach, while xgBoost the fastest of all the ML 
approaches. The ML benchmark (MLP ANN) does worse than the stan-
dard linear benchmark (MLR) that perform overall quite strongly, and 
when all is said and done, RF is the overall winner, tha tis consistent with 
earlier studies on the forecasting field. 

We also take one step further our analysis and we plot the MAE over 
Runtime. If the objective is to provide a method that is both accurate and 
fast − as is very often the case in industry, for example the case of UBER4 

and the Theta method (Assimakopoulos and Nikolopoulos, 2000), the 
efficiency frontier in can help to make a decision (Fig. 5). It can be 
observed, that for a ‘fast and frugal’ ML estimation, the xgBoost archi-
tecture offers the most promising results. Although the xgBoost was the 
fastest nonlinear algorithm, the RF architecture outperformed the 
xgBoost architecture in terms of forecasting accuracy, with a slightly 
longer runtime. 

This final result contradicts the findings of he paper of Krauss et al. 
(2017) and Zhang and Haghani’s (205) papers, both observing a slightly 
better performance for GB architectures versus RF. 

5. Discussion: Form prediction to prescription to cognition 

Prescriptive analytics has been helping businesses to achieve 
improved performance outcomes for quite some time (den Hertog & 
Postek, 2016), via answering questions relevant to ‘what should I do?’ 
(Lepenioti,et al., 2020,p. 57) and ‘how can we make it happen?’ (Charles 
et al. p.44). As ̌Sikšnys & Pedersen, 2016 argue the aim is prescribing the 
best choice in order to gain the optimal results from a predicted future 
via a big data set. This can be achieved by incorporating in the process 

various predictive techniques such as ML and AI (Syntetos et al. 2026; 
Basu 2013). AI has improved making prediction in a more efficient 
manner (Agrawal et al., 2018), and the usage of such techniques can 
help to deliver more accurate prediction and respective decisions. The 
notion that prescriptive analytics offer the ground for proactive actions, 
which are based on results generated from predictive analytics (Lep-
enioti et al., 2020), is on the core of our argument (on PIP) which sup-
ports the ability for more accurate forecasts in the presence of special 
events that can lead to better business performance. Similar rational is 
also apparent to the framework offered by Charles at al. 

Corroborating recent studies have addressed the importance of 
optimal solutions on newsvendor problems (Ban and Rudin, 2019) or 
generally optimise an unknown optimisation objective using Machine 
Learning models (Bertsimas and Kallus, 2020), our study also further 
contributes to the literature trend of applying AI methods to achieve 
better quality of prescriptive analytics which are mainly currently 
developed in a conceptual way (Lee et al., 2018; Bertsimas & Van Parys 
2022). 

We argue that our results contribute to the scientific premises of the 
P/P framework, which supports the effective transition from predictive 
to prescriptive analytics by offering additional credibility on the optimal 
strategic choice for superior operational performance (Elmachtoub & 
Grigas, 2022; Bertsimas & Kallus, 2020). The predictive algorithmic 
decision-making method promoted in our study is practically leading to 
a prescriptive analytics approach by offering the more insightful alter-
natives for optimal decision-making similar to other studies (Van der 
Vlist, 2016). As per the framework offered by Charles et al. (2022), this 
study contributes to the advising on all possible scenarios to transit from 
foresight (predictive) to wide sight (prescriptive). 

The transition from predictive to prescriptive (Fig. 2) is facilitated 
with the identification of special events and, in turn, such an identifi-
cation will not only add greater accuracy on forecasting performance 
results but it will also allow the decision maker to optimize their 
behaviour by selecting the dominant strategy from a finite strategy-set 
(or infinite set if the problem is theoretical) or allowing to achieve 
optimal scenario building and running the appropriate simulations 
hence achieving better prescriptive analytics results. Usually, prescrip-
tive analytics set cost minimization objectives (Achenbach & Spinler, 
2018); however, our contribution via realizing the special event allows 
us to optimize any relevant objective. Our study shows that by achieving 
a better result via AI, we were able to utilize it with a plausible pre-
scriptive technique in order to get the best prescription possible. 

Therefore, the incorporation of AI predictive techniques allows the 
best implementation of the intersecting prescriptive techniques, as in the 
figure above, leading to the best strategic decisions, optimization tasks 
or even simulated scenario-based outcomes. The bridging between 
predictive and prescriptive is based on better filtering of the various 
options that should be available after an accurate prediction. 

On the other hand, cognitive process are more elegant and sophis-
ticated and attempt to develop an insight on deep sight to reveal patterns 
from data usually given in an unstructured form (Charles et al., 2022). 
There is a cognitive computing environment that generates some in-
ferences for via feedback which are stored and can then be employed as 
actions in the future using cognitive models similar to the human brain 
(Gudivada et al., 2016). Even though the field is still emerging from the 
very beginning it was clear that cognitive analytics refers to the use of 
self-learning algorithms simulating on human cognitive processes, 
which can adapt on differences in data generating immediate responses 
(Hurwitz et al., 2015). 

The cognitive aspect is not just a big-data analysis but “draws upon 
the cognitive computing environment to generate actionable insights by 
analysing diverse heterogeneous data sources using cognitive models 
that the human brain employs” (Gudivada et al., 2016, pp. 169–170). 
Machine learning and AI on training and learning is of highest impor-
tance in cognitive analytics and our analysis and structure and un-
structured data can be part of that process (Phillips-Wren et al., 2015). 4 Forecasting at Uber: An Introduction | Uber Blog. 
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Our study has shown that using AI and capturing easier the best response 
on strategic decisions will foster stronger and more robust training on 
the cognitive process that is mimicked by the computer capabilities. Any 
novel system could take advantage of findings which can give better 
optimal choices on the prescriptive side. Then these choices can feed in 
the loop via more advance AI methods to promote further intelligence of 
the system. 

This embeddedness of AI can become a very important component 
into those processes, and their potential of developing data-driven al-
gorithms; algorithms that perform prescriptive analytics, based on 
cognitive data (Gunasekaran et al 2017), thus our study is an affirmative 
case showing how greater credibility can be added on the various stages 
of analytics. 

6. Conclusion, Limitations, and the future 

Following the methodological contribution discussed in section 5, on 
the empirical end of this research, the currently most promising 
nonlinear ML algorithms − RF, GB and xgBoost (Petropoulos et al., 
2022), have been successfully applied in the context of forecasting 
special events, in a systematic way aiming to lead to improved perfor-
mance during periods of higher uncertainty, and the winner came out to 

be the well-celebrated RF (Breiman, 2001,1996). 
The research could synthesize the initial findings made by Nikolo-

poulos in 2010 in the field of forecasting special events and the latest 
results in the field of ML. Furthermore, the research could strengthen 
Huang et al. research. In their paper it was argued that competitive in-
formation, like promotions are important factors for forecasting sales for 
retailers (Huang, et al., 2014) It could be observed that information 
about promotions and competitors increases the achievable accuracy. 

An average runtime of fewer than fifteen minutes on a regular 
desktop office computer and a dataset with more than 70,000 observa-
tions is very practicable, even for decision-making under time pressure. 
Nevertheless, as stated above already, satisfactory results can only be 
achieved with initial data pre-processing and feature engineering, like 
for any other quantitative approach. This study paper also lays the 
foundation for further research in the field of ML and special events. 

For future research on the topic, based on historical successful per-
formance of ensemble methods (Dietterich, 2000: Finlay, 2011), a 
combination of the best performing methods in form of ensembles, in a 
similar approach to Nikolopoulos (2010) ‘expert’ methods, could 
potentially further increase the accuracy and robustness of our 
proposition. 

Regarding Makridakis et al. observation, that a combination of ML 
techniques, linear statistical methods and forecasting models achieved 
the highest results on the M4 time series data set, suggests conducting 
further research in this direction (Makridakis, et al., 2018). The appli-
cation of seasonal artificial networks (SANN) could be another approach 
for further research, based on the poor performance of the pure autor-
egressive time series MLPs (Adhikari & Agrawal, 2013). AI could feed 
and support complex special event processing techniques, which will be 
utilized to prescribe in a way that it improves proactive rather than 
reactive business decisions and thus, achieving better operational per-
formance. Cognition comes as the last natural step, since these algo-
rithms emulate the way humans operate, assuming large datasets are in 
place for the necessary training; and this is a very inspirational avenue 
for further research. 
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Fig. 5. Efficiency Frontier, RF vs GB.  

Table 1 
Empirical Forecasting Competition of LR, MLP, RF, GB and xgBoost vs MLR and 
ANN.   

Computational 
cost 

Uncertainty Accuracy Combining 
all metrics 

Method Runtime[in min] RMSE MAE RANKING 

Score RANK 

Artificial 
Neural 
Network 
(ANN)  

2.570  4485.670  57.150 4 + 5 
+ 5 =
14 

5 

Random 
Forest 
(RF)  

1.800  1270.000  27.600 3 þ 1 
þ 1 
¼ 5 

1 

Gradient 
Boosting 
(GB)  

2.690  1325.000  29.300 5 + 2 
+ 2 =
9 

3 

Extreme 
Boosting 
(xgBoost)  

0.110  1321.000  29.100 2 + 3 
+ 4 =
9 

3 

Multiple 
Linear 
Regression 
MLR  

0.006  2039.000  38.280 1 + 4 
+ 3 =
8 

2 

With bold the best-performing method; With Italics the standard benchmark. 
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