
                                                                                           

1 

 

 

A machine-learning architecture with two strategies 

for low-speed impact localization of composite laminates 

 

Junhe Shena , Junjie Yea,b* , Zhiqiang Qua , Lu Liua , Wenhu Yanga , Yong Zhanga,c , Yixin Chend 

Dianzi Liu e* 

a
 Research Center for Applied Mechanics, Xidian University, Xi’an 710071, China  

b
 Shaanxi Key Laboratory of Space Extreme Detection, Xidian University, Xi’an 710071, China 

c 
Guodian Nanjing Automation Co., LTD.,Nanjing 211100, China  

d
 Key Laboratory of Expressway Construction Machinery of Shaanxi Province, Chang’an 

University  

e 
Engineering Division, Faculty of Science, University of East Anglia, Norwich, UK 

*Corresponding authors. 

Email address: ronkey6000@sina.com (Junjie Ye); Dianzi.Liu@uea.ac.uk (Dianzi Liu) 

Abstract 

In this paper, a machine-learning architecture with the integration of two strategies including data 

enhancement and adaptive generation scheme for Impact Localization (IL) are developed to address 

the aforementioned issues for location identification of impacts on composite laminates. Two main 

contributions are included in this research: First, response signals collected from low-speed impact 

experiments under various working conditions are denoised using Adaptive Sparse Noise Reduction 

Algorithm (ASNRA), which aims at maximizing the preservation of the original signal amplitude, 

thereby avoiding the underestimation of pulse features during denoising. Then a RIME-optimized 

Dual-layer Support Vector Regression (RDSVR) method for the real-time update of 

hyperparameters is implemented in the machine-learning architecture to realize IL. The superior 

performances of the IL architecture over different IL models are validated throughout the numerical 

examples in terms of stability and efficiency. Results demonstrate that proposed architecture has the 

ability to realize the accurate and robust IL of composite laminates. 

Keywords: Composite materials; Impact localization; Machine learning; Sparse noise reduction; 

Optimization strategies  
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1. Introduction 

Composite materials are widely used in industrial fields, including automotive[1, 2], aerospace[3, 

4], oilfields[5], military[6, 7], and others, owing to their exceptional properties of being lightweight, 

corrosion-resistant, and high stiffness-to-weight ratio[8]. However, during operational service, they 

can be vulnerable to low-energy impact. Despite of impact as low as a few joules, they can result in 

severe delamination of composite laminates, leading to a significant reduction in structural strength. 

Therefore, identifying low-speed impact location has become an essential aspect of practical 

engineering applications. With the rise of artificial intelligence, it has found widespread applications 

of Impact Localization (IL) in composite materials. Recently, many scholars have applied various 

machine-learning methods to IL in composite materials and obtained promising results[9, 10]. 

However, significant noise interference is often present during the signal acquisition process, 

resulting in poor-quality response signal datasets and making accurate localization challenging. 

Therefore, the removal of noise from response signals is a crucial strategy in the field of IL of 

composite material for fault diagnosis due to the presence of transient signals and noise components. 

In recent years, algorithms such as Empirical Mode Decomposition (EMD)[11], Ensemble 

Empirical Mode Decomposition(EEMD)[12], Spectral Kurtosis(SK)[13], and Wavelet 

Transform(WT)[14, 15] have been proven effective in enhancing the feature extraction capability 

of signals. Chen et al. [16] proposed a method for extracting weak fault features in rolling bearings 

using Improved Ensemble Noise-assisted Empirical Mode Decomposition (IENEMD) and Adaptive 

Threshold Denoising (ATD). Based on Improved Adaptive Resonance Technology (IART) to 

remove noise components from vibration signals, Li et al.[17] designed an improved EEMD. Shahis 

Hashim et al.[18] developed a novel denoising approach for fault diagnosis through the study of 

Spectral Kurtosis, employing a blind convolution strategy. However, the application of these 

algorithms to IL in composite materials presents certain challenges: (1) The noise reduction 

performance of traditional filtering algorithms depends highly on the characteristics of the measured 

signal. When the measured signal is complex or the noise is too strong, the denoising performance 

will be compromised. (2) During the process of eliminating noise or interference, the amplitude of 

the useful features is also reduced, potentially degrading the quality of the response signal dataset 

after denoising. In practical engineering applications, the collection of response signals often occurs 
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in noisy environments, making it difficult for the aforementioned algorithms to extract signal 

features, resulting in poor denoising effects. 

Since IL in composite laminates can be considered a regression problem[19], Lu et al.[20] 

achieved composite material damage location prediction based on Support Vector Regression (SVR) 

by extracting the wavelet packet energy spectrum of the  Low-Velocity Impact (LVI) response 

signal monitored by FBG sensors. Datta et al.[21] used a SVR model based on the least squares 

method to assess the energy of x  and y  coordinate values on Carbon Fiber Reinforced Plastic 

(CFRP) plate-like structures. Compared to other nonlinear processes, SVR demonstrates strong 

generalization performance. However, these researchers used traditional techniques to determine 

the hyperparameters in SVR. The essence of this process is to combine different parameters to 

achieve the optimal results for SVR. Consequently, using traditional techniques for hyperparameter 

determination can lead to insufficient accuracy in predicting impact location and excessive time 

costs. The metaheuristic algorithms provide a solution to the problem. These algorithms replicate 

intelligent optimization functions inspired by various natural organisms [22]. There are multiple 

examples, such as the Artificial Bee Colony (ABC)[23], Bat Algorithm (BA)[24], Whale 

Optimization Algorithm (WOA)[25], Grasshopper Optimization Algorithm (GOA)[26], and Slime 

Mould Algorithm (SMA)[27]. The selection of the proper initial parameters and the utilization of 

the fitness function as the optimization core are critical for enhancing the overall optimization 

performance of the model. However, the traditional metaheuristic algorithms have problems such 

as falling into local optimum, large computational overhead, and high uncertainty in the large and 

small searching space. 

In this paper, a machine-learning architecture with the integration of two methods is proposed to 

solve the challenges present in response signals. The first strategy (data enhancement) steps are as 

follows: (1) Adaptive Sparse Noise Algorithm (ASNRA) aims to extract useful signals in complex 

noise environments while preventing signal submersion by noise and maximizing the amplitude of 

the target signal component (2) a feature index with the fusion of dimensionality reduction method 

in the time domain, frequency domain, and time-frequency domain is developed to address issues 

such as insufficient accuracy caused by a single indicator in SVR. This approach facilitates 

comprehensive feature extraction, resulting in a new dataset with strong data interpretability. Finally, 

https://www.sciencedirect.com/topics/engineering/carbon-fiber-reinforced-plastic
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The second strategy (adaptive generation scheme) provides a Dual-layer Support Vector Regression 

(DSVR) method whose hyperparameters are dynamically adjusted by the RIME algorithm, thereby 

significantly improving the accuracy of IL prediction and reducing time costs. The following 

sections of this paper are organized as follows: Section 2 presents the strategies and algorithms 

developed in the IL architecture. Section 3 analyzes the performance of the proposed architecture 

for low-speed IL of composite laminates throughout experimental tests. Finally, conclusions are 

provided in Section 4.  

2. Constructing Architecture-Related Methodology 

In this paper, the impact detection is performed by the SVR-based architecture, a data-driven 

positioning algorithm [32], for the position prediction. However, the SVR-based architecture has 

the issues including: (1) Noise interference with impact data affects the extraction accuracy from its 

characteristic amplitude. This will directly lead to poor prediction accuracy and a large deviation 

from the true results. (2) The architecture of SVR as the core requires the specific experience for 

parameter setting and tuning. Therefore, this causes the great increase of time costs and the lack of 

robustness of prediction results. To address these difficulties, this section provides two strategies, 

namely data enhancement and adaptive generation scheme for impact localization. 

2.1 Data enhancement   

The first method mainly plays its role in mitigating the influence of noise on the original data 

under complex and various working conditions, enabling the enhanced quality of datasets. The 

second method performs feature extraction on the dataset processed by the Adaptive Sparse Noise 

Reduction Algorithm(ASNRA), which is introduced by the section below and increases the 

dimension of the dataset. These two methods improve the capability of the stability and 

generalization. 

2.1.1 Adaptive Sparse Noise Reduction Algorithm 

ASNRA is a signal noise reduction algorithm that integrates Tunable-Q Wavelet Transform 

(TQWT) and Adaptive Generalized Minimax-Concave (AGMC). This combination maintains 

convexity and maximizes the sparsity of the objective function, properties that are beneficial for 

response signal noise reduction. The following is a description of these two algorithms. 

(1) Tunable-Q Wavelet Transform 
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TQWT is a structured design methodology that dynamically adjusts parameters to comply with 

the property of wavelet basis functions. By combining the advances of continuous wavelet and 

second-generation wavelet transforms, TQWT overcomes the shortcomings of discrete wavelet 

transform. The oscillatory behavior of wavelet basis function is optimized through the adjustment 

of parameters, including the Q  factor, r factor, and the number of decomposition levels J [33, 

34]. This optimization guarantees optimal correspondence between the oscillatory features of 

wavelet basis functions and those of the measured signal. The schematic diagram of the TQWT 

filter structure is illustrated in Fig. 1, where the signal decomposition and reconstruction are 

accomplished by combining a dual-channel filter.  

 

Fig. 1. TQWT filter decomposition and reconstruction diagram 

 

 It should be noted that LPS and HPS denote the low-pass and high-pass scale expansions. 

( )iH w   and ( )iG w   represent the low-frequency and the high-frequency response during 

decomposing or reconstructing at the i-th layer.   and    depict the corresponding scale 

transformation factors, which determine the transformation of the quality factor Q   and 

redundancy coefficient r . 

(2) Adaptive Generalized Minimax-Concave  
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A sparse-enhanced decomposition signal method based on the GMC penalty term is presented to 

reduce noise interference. In engineering applications, response signals generally contain the stress 

wave and noise at the points of the interest in the low-speed impact. Therefore, the response signal 

My  of the composite laminate can be formulated as follows[35]: 

 y Ax n= +  (1) 

where MAx  and Mn  denote the clean signal and the noise component. The matrix 

operation is expressed through the operator M Ny  ( )M N . 

According to the generalized Huber function and the definition of the GMC penalty function, 

substituting the GMC penalty function : N

B →  into the objective function combined with 

GMC[36], one has: 
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where ( , )g x v  is an expression that is convex regarding x , to ensure the overall convexity of 

the function ( )F x . It is necessary to satisfy the inequality 0T TA A B B−  , which can be further 

transformed when 0 1    and  /B A =   are achieved. The matrix A  still allows the 

function ( )F x   to maintain overall convexity. Fig. 2 depicts the non-convex curves of the 

generalized Huber function and the GMC penalty function. The minimization points can be 

identified, ensuring the final solution's uniqueness and the extracted features' sparsity. 

 

(a) (b)



 

7 

 

Fig. 2. (a) GMC penalty and (b) Generalized Huber function 

 

Additionally, taking the Root Mean Square Error（RMSE）as a quantification metric, a dynamic 

regularization parameter   is employed to analyze the simulated signals. Considering an adaptive 

parameter    ranging from 0 to 2 (with an increment of 0.05), the adaptive setting minimizes 

RMSE, resulting in an optimal   value of 0.63. The Proximal Gradient Method (PGM) ensures 

the global minimization of the non-convex sparse regularization function. The GMC penalty 

regularization problem is reformulated into a saddle-point problem as follows: 

 ( , ) arg min max ( , )
N N

opt opt
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saddle-point problem, in which it can be solved by the Forward Backward Splitting (FBS) algorithm. 

The variable   in the FBS should satisfy the condition 
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2
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0
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 
  . 

2.1.2 Multidimensional Indicator Fusion 

A new feature dataset is formed by extracting time domain, frequency domain, and time-

frequency domain features from the vibration response signal. This dataset offers advantages such 

as low operating costs and strong interpretability, addressing impact of insufficient data dimensions 

in small sample scenarios. Various types of feature indicators extracted from the dataset after 

ASNRA noise reduction are developed as follows: 

(1) Time Domain indicators 

Time-domain features are mainly divided into two categories: the first category consists of 

dimensional statistical parameters, including the mean value 
1TD , the standard deviation 

2TD , the 

variance value 
3TD , the maximum value 

4TD , the minimum value 
5TD , the peak-to-peak value 

6TD , the root mean square 
7TD , the absolute mean value 

8TD , and the square root amplitude 

9TD . The second category includes dimensionless statistical parameters including the skewness 

factor 
10TD , the kurtosis factor 

11TD , the waveform factor 
12TD , the kurtosis factor 

13TD , the pulse 

factor 
14TD  , and the margin factor 

15TD  . Table 1 describes the calculation methods for each 

statistical parameter. 

 

Table 1. Time domain metrics calculation formulas ( N  is the number of sampling points in the low-speed 

impact response signal ( )s t ) 
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(2) Frequency Domain indicators 

Frequency performance indicators include the average frequency 
1FD , the centroid frequency 

2FD  , the root mean square frequency 
3FD  , the mean square frequency 

4FD  , the standard 

deviation frequency
5FD , and the kurtosis frequency

6FD . The calculation methods for these five 

frequency performance indicators are described in Table2, where ( )f  represents the spectrum 

of response signal ( )s t . The parameter K  is the number of Fourier transform points for ( )s t  

and fF  represents the frequency corresponding to each Fourier transform point. 

 

Table 2. Frequency domain metrics calculation formulas 
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(3) Time-Frequency Domain indicators 

Applying the Short-time Fourier transform (STFT) [37] to analyze signals that change over time, 

the frequencies and phases of local signals are calculated at each moment by the determination of 

the maximum amplitude at each frequency. Subsequently, by calculating dimensionless and 
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dimensioned statistical parameters from the generated data sequence, 15 time-frequency domain 

features parameters are obtained.    

2.2 Adaptive generation scheme for Impact Localization  

2.2.1 Dual-layer Support Vector Regression (DSVR) algorithm 

The Adaptive generation scheme is developed on the basis of DSVR to predict the impact location. 

SVR is usually used to solve a continuous data regression problems[32]. Assume that the training 

dataset is {( , ) | 1,2... }i ix y i s=   and s   represents the sample number. The SVR incorporates the 

Lagrange multiplier method, facilitating its transformation into a dual problem. By introducing a 

kernel function, the algorithm has the ability to calculate inner products within the same feature 

space, addressing issues of linear inseparability in datasets. This augmentation enhances the 

universality of the SVR, and its expression is formulated as follows: 
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2
, 0

i i i

i i i i ii

i i
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min c s s t x b y
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  (4) 

where the parameters   and c  represent the weight factor and the penalty factor, respectively.

i  and 
*

i  are the slack variables. ( )x  and   are respectively the mapping function and the 

insensitive loss function. The symbol b  indicates the function threshold.   

In the scenario with a limited sample size, this study utilizes the Radial Basis Function（RBF）

as a kernel function for the SVR. It divides the extracted multi-domain indicator features from low-

speed response signals into training and testing datasets, which are then input into the SVR. 

Naturally, a mapping relationship between the multi-domain indicator features of the input signals 

and the impact coordinates enables the prediction of low-speed impact points on composite 

laminates. Two sets of SVR are configured to build the mapping relationships for the x-coordinate 

and y-coordinate values separately. Sequentially arranging the predicted coordinates, DSVR is 

assembled. Fig. 3 illustrates the structure and functionality of DSVR. 
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Fig. 3. Dual-Layer SVR display 

2.2.2 Brief review of RIME 

The complexity and recognition accuracy of the developed DSVR are closely dependent on the 

kernel parameter   and penalty parameter C . In detail, a small kernel parameter   combined 

with a large penalty function C   may result in overfitting[38]. In order to achieve the adaptive 

optimization of the parameters mentioned above, the RIME proposed by Su[39] is a novel 

metaheuristic algorithm to investigate the soft-rime and hard-rime growth processes of ice in nature 

and is implemented in DSVR. This paper adopts the RIME algorithm, utilizing the RMSE as the 

fitness function to implement the search of the solution space. Based on the above conditions, a 

method (the RIME-optimized dual-layer Support Vector Regression, RDSVR) integrating RIME 

and DSVR is defined to predict coordinate values in the event of a low-speed impact. As the main 

part of RDSVR, RIME is described below.  

RIME is a meta-heuristic algorithm consisting of Soft-rime searching strategy and the Hard-rime 

puncture mechanism. The rime-population R  is used to represent the frost-ice growth process, 

which can be directly formulated by the hoar frost particle ijx as follows, 
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1 2
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x x x
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where the subscripts i  and j  represent the number of rime body rime particle, respectively. 

The particle position 
new
ijR  in the soft-rime search strategy is updated as follows: 

 ( )( ), 1 cos
10
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t
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where the subscripts i  and j  denote the i-th and j-th particle of the rime-agent. 
,best jR  indicates 

the best rime-agent in the rime-population R . The parameter 1r  is a random number within the range 

from -1 to 1, which is closely related to the direction of particle movement. The symbols t  and T  

represent the current iteration number and the maximum iteration number, respectively. h   is an 

adhesion coefficient within the range from 0 to 1, controlling the distance between the centers of 

two rime particles. ijUb  and ijLb  are the upper and lower bounds in the escape space and 

constrain the effective region of particle motion.    is the environmental factor to ensure the 

convergence of the algorithm. 

In the hard-rime puncture mechanism, the particle replacement formula is defined as follows: 

 ,
new
ij best jR R=  (8) 

 ( )3 norm ir F S  (9) 

where 
new
ijR  is the new position of the updated particle and ,best jR  is the j -th particle of the best 

rime-agent in the rime-population R . 
normF  represents the normalized fitness value of the current 

agent and indicates the probability of selection the i-th rime-agent. 
3r  is a random number within 

the range (-1,1). 

Combining the soft-rime searching strategy with the hard-rime puncture mechanism, an improved 

positive greedy selection mechanism is developed for the better global exploration efficiency. The 

RIME-based DSVR possesses the following advantages: 

(1) The ability to rapidly locate a globally approximate optimal solution.  

(2) The improvement of a robust algorithm demonstrating the capability of global exploration. 

(3) The ability to seamless transition between the large and small searching space. 

Based on the two strategies proposed above, the IL architecture to predict impact location is 

developed and its flowchart is shown in Fig. 4. The specific steps are listed as follows: 

(1) Data Collection: Utilizing acceleration sensors to collect the low-speed impact signals. 

(2) Data Enhancement: ASNRA is employed to denoise the collected response signals and to 

obtain the reconstructed response signal. On this basis, multi-dimensional indicator features from 

the response signal are extracted before the fusion with a multidimensional indicator feature dataset. 
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(3) RDSVR Iteration: The enhanced dataset is divided into training and testing datasets for model 

constructing. Parameters are adaptively selected corresponding to the minimum fitness function 

during the process. 

(4) RDSVR Prediction: The optimal parameters are applied to the regression training and the 

coordinate prediction, and the result image is displayed intuitively. 

 

 

Fig. 4. Flow chart of impact localization architecture based on ASNRA 

 

3.Experimental demonstration  

3.1 Low-speed impact experiment 
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To conduct low-speed impact experiments for the investigation of IL, the glass fiber reinforced 

epoxy resin composite laminates ( 400 400 6mm mm mm  ) with resin content of 40% , density of 

3 31.8 10 /kg m  and Poisson 's ratio of 0.3 are selected in this study. The laminates are evenly 

divided into 100 regions with the labels A1-A100 and the impact position are marked by an asterisk 

shown in Fig. 5. Considering that composite materials often serve in harsh environments, ceramic 

products with stainless steel shells are selected as sensing devices, whose configurations include a 

weight of 13 g and a dimension of 12 17mm  . To efficiently conduct the prediction of the impact 

position, a monitoring area ( 200 200 6mm mm mm   ) located at the center of the laminate is 

defined to study IL. 

 

Fig. 5. Impact locations of the monitored composite laminate 

To simulate the low-speed impact in engineering applications, a steel ball with a weight of 10g is 

used for free fall at a height of 15cm, and an impact energy of 0.0147J is estimated. A data 

acquisition system including I-TY100 accelerometer sensor, NI CompactDAQ (NI-CDAQ9184 

Chassis, NI-9234 (Vibration Input Module)), and LabVIEW data acquisition software, is set up to 

monitor the response signal in Fig. 6. During the experiment, four accelerometer sensors are 

connected to the data acquisition system, and the LabVIEW software is employed to collect the 

vibration response data. Moreover, the experimental environment is set to mitigate the noise 
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exposure for the clean signal acquisition. In the multi-channel acquisition, the signals among the 

channels affect each other, the higher the sampling rate, the greater the impact. This issue could be 

addressed by reducing the sampling frequency, thus in this research the sampling frequency is set 

to 15 kHz. The specific steps of the experiment are provided as follows: (1) The grid is used to 

discretize the monitoring area, and the distance between the grids is 20 mm. A total of 9 points are 

selected as the impact position, and the division position and number are shown in Fig. 5 (2) Each 

of the 9 impact points is sequentially impacted, and data are collected 25 times for each point to 

construct the dataset. 

 

 

Fig. 6. Experimental Acquisition System 

3.2 Data preprocessing 

Data preprocessing is essential to improve the localization accuracy. It involves the periodic 

fitting adding different noises to the signal. These operations also can ensure effective data 

enhancement in the scenarios with a small number of samples.  

3.2.1 Periodic Fitting 

A set of datasets collected by different sensors at the same point under the same impact condition 

are obtained to identify the difference of characteristic amplitude. As observed in Fig. 7 (a), the 

time-domain responses represented by four sensors are almost same. Therefore, quasi-periodic data 
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analysis is conducted in this research. Following that, ASNRA is applied to process the response 

signals considering different levels of noises. First, 3000 points in the vicinity of the maximum 

amplitude of the sampling data from each sensor are extracted and combined into a quasi-periodic 

signal. The integrated signal of the quasi-periodic response is presented in Fig. 7 (b). According to 

Fig. 7 (c), the fitted quasi-periodic signal has shown a degree of periodical performance with the 

period of 0.2s by the integration scheme and the frequency of the spectrum is 6.25 Hz. Also, it is 

noted that the double, the triple, and the quadruple frequencies are 11.25 Hz, 16.25 Hz and 21.25 

Hz, respectively. The scheme can greatly retain the characteristics of the shock response data and 

facilitate the dimensionality reduction of the response signal in different noise environments. By 

this study, the rationality and effectiveness of the fitting scheme are demonstrated. 

 

(a) Time domain diagram of original signal

(b) Quasi-periodic response signals (c) Quasi-periodic response signal 

Hilbert envelope spectrum
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Fig. 7. Comparison of original signal images (a) the integrated quasi-periodic signal (b) Quasi-periodic response 

signal (c) Hilbert envelope spectrum  

3.2.2 Denoising capability of ASNRA     

In order to verify the denoising capability of various algorithms in different noise environments, 

the noise with standard deviations of 0.1,0.3,0.5 and 0.7 is added to the dataset to represent real 

working conditions. Comparisons of the quasi-periodic response signals in the time domain 

considering the addition of various noise are conducted to study the robustness of the architecture 

proposed in this paper. Fig. 8 shows a total of 5 response signals recorded under complex working 

conditions. The green curve represents the original response signal without the consideration of 

noise. The purple, yellow, orange, and blue curves represent response signals in the time domain 

considering the addition of noise with standard deviations of 0.1, 0.3, 0.5 and 0.7, respectively. It 

can be observed that as the noise gradually increases, the response signal is significantly affected 

and its characteristics cannot be easily identified. Therefore, it is necessary to perform the denoising 

process for data enhancement of the response signal and the increase of Signal-to-Noise Ratio 

(SNR).  

 

Fig. 8. Time domain diagram of response signal under complex working conditions and noise-free conditions 

3.3 Performance Comparison 
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The performance of the IL architecture depends on both ASNRA and RDSVR. ASNRA guarantees the 

result accuracy, and RDSVR is a critical step to realize the localization prediction in the process of impact 

localization by the proposed architecture. Section 3.3.1 aims to the performance verification of ASNRA 

and includes the result comparison with other noise reduction algorithms. The parameter settings and 

evaluation index selection of RDSVR for IL are provided in Section 3.3.2. Finally, the experimental 

results by the proposed method are provided in Sections 3.3.3 and 3.3.4. 

3.3.1 Comparison of noise reduction using different algorithms  

In this study, three variable parameters ( 3Q = , 3r = and 10J = ) in TQWT, the non-convex 

penalty function ( 0.36 = ) in the GMC and the non-convexity parameter ( 0.53 = ) are set to 

ensure the best performance of ASNRA. In Fig.9, the effect of different noise levels on the response 

signal is demonstrated by A1-1 - A1-4 using ASNRA. The red curves represent the denoised low-

speed response signals, and the blue curves denote the low-speed response signals with the addition 

of noise with standard variation of 0.1, 0.3, 0.5 and 0.7. Moreover, the images labelled with B, C, 

and D in Fig. 9 are the time-domain responses under the consideration of denoising by EMD, EEMD, 

and VMD, respectively. It can be observed that the time-domain responses obtained by ASNRA 

clearly include the characteristics of the signal, and effectively retain the amplitude information 

during the denoising process. As the noise pollution becomes more and more serious, the clean 

response signal is gradually wrapped in the noise, resulting in the higher demand for denoising. As 

compared with other algorithms, it is demonstrated that the ASNRA has the ability to robustly solve 

the problem under various noise environments. According to Table 3, RMSE and Signal-to-Noise 

Ratio (SNR) are used to assess noise reduction performance. It is noted that when a good RMSE is 

considered, only the SNR of the response signal after noise reduction by ASNRA is positive and 

further improved by 125.3 %. For other algorithms, the SNR values are all negative. In general, 

ASNRA can preserve the signal amplitude well whilst realizing the denoising capability, leading to 

the clearer impact features extracted than the results by EMD, EEMD, and VMD. 
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Fig. 9. Comparison of the effects of using ASNRA: A1-1~A1-4, using EMD: B1-1~B1-4, using EEMD: C1-

1~C1-4, using VMD: D1-1~D1-4 

 

Table 3. Performance comparison between denoising algorithms 

Method 
Noise 

Amplitude 

Root Mean 

Square Error 

Signal-to-

Noise Ratio 

Before 

Denoising 

Signal-to-

Noise Ratio 

After 

Denoising 

Signal-to-

Noise Ratio 

Improvement 

Ratio 

EMD 

0.1 0.5770 -4.2971 -10.4280 -142.6% 

0.3 0.5429 -4.1330 -8.5532 -106.9% 

0.5 0.6001 -6.0499 -8.9579 -48.1% 

0.7 0.6143 -6.0155 -9.2738 -54.2% 

EEMD 

0.1 0.5478 -4.2971 -9.0291 -110.1% 

0.3 0.5313 -4.1330 -9.4894 -129.6% 

0.5 0.5682 -6.0499 -10.5859 -75.0% 

0.7 0.5647 -6.0155 -11.5203 -91.5% 

VMD 

0.1 0.5745 -4.2971 -13.1273 -205.5% 

0.3 0.5786 -4.1330 -10.7661 -160.5% 

0.5 0.5972 -6.0499 -11.1673 -84.6% 

0.7 0.5972 -6.0155 -13.5896 -125.9% 

ASNRA 
0.1 0.5456 -4.2971 1.0870 125.3% 

0.3 0.5659 -4.1330 -0.2846 93.1% 
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0.5 0.8076 -6.0499 -0.9614 84.1% 

0.7 0.8724 -6.0155 -0.0416 99.3% 

 

3.3.2 The evaluation index selection and internal setting for impact localization 

Table 4 shows the detailed parameter configuration of RDSVR to predict the impact position in 

three cases: under the consideration of large searching space (C1), small searching space (C2) and 

the situation where result comparison is conducted between the proposed architecture and Bayesian 

optimization-based DSVR(C3). In the parameter selection process of the RDSVR, RMSE is chosen 

as the fitness function because it measures the difference between the predicted values of the 

RDSVR and the actual observed values. Compared to Mean Square Error (MSE) and R2, RMSE is 

highly sensitive to outliers due to the error of each data point. This means that one or more extreme 

outliers can significantly increase the value of RMSE, making it a measure of the RDSVR’s stability. 

The formula is as follows: 

  

 Fitness RMSE=  (10) 

 

2

, ,1
( )

M

pre i real ii
X X

RMSE
M

=
−

=


 (11) 

where Fitness  is the fitness function, M  is the number of observations, ,pre iX  means the 

predicted data, and 
,real iX denotes the real data.  

Table 4. Internal parameter setting of three types of cases 

Case Fitness Population 

Size 

Iteration 

Number 

Update 

Dimensions 

C       

C1 RMSE  100 50 2 1-10000 0.001-10 

C2 RMSE  100 50 2 1-1000 0.01-2 

C3 RMSE  100 100 2 1-1000 0.001-2 

 

3.3.3 Result comparison between the proposed architecture and Metaheuristic Algorithms-based 

DSVR methods 

This section mainly analyzes the results of IL in C1 and C2, to verify the global searching 

performance of the proposed IL architecture. 

Since the four algorithms of Grey Wolf Optimizer (GWO)[40], Harris Hawks Optimization 

(HHO)[41], Slime Mould Algorithm (SMA)[27], and Hunger Games Search (HGS)[42] have the 
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powerful global optimization ability and thus, they are selected to optimize the internal parameters 

of DSVR with the comparison of the performance of IL architecture in predicting the impact 

coordinate values. In this paper, GWO-optimized Dual-layer Support Vector Regression (GDSVR), 

HHO-optimized Dual-layer Support Vector Regression (HODSVR), SMA-optimized Dual-layer 

Support Vector Regression (SDSVR), and HSG-optimized Dual-layer Support Vector Regression 

(HSDSVR) are constructed to predict position of low-speed impact, dynamically optimizing the 

commonly used parameters   and C  as a basis for comparison. In these methods, parameters 

are unchanged in C1 and C2. Table 5 shows the kernel parameter   and penalty parameter C  

obtained by the global optimization for the minimum fitness value in C1. It is noted that IL 

architecture yields the optimal RMSE of 4.7840. Results show that proposed architecture has good 

stability in positioning as fewer abnormal points with smaller errors are observed. 

 

Fig. 10. Prediction results by five methods in C1 

 

Table 5. The prediction results of IL at Points P1-P9 (in Fig. 5) by four methods in C1 
 

IL architecture GDSVR HODSVR SDSVR HSDSVR Actual 

coordinate 
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 x  y  x  y  x  y  x  y  x  y  x  y  

P1 64.721 137.550 67.518 137.677 66.740 130.737 67.541 137.682 67.553 132.174 60 140 

P2 97.980 138.812 107.784 138.983 103.258 137.633 107.815 138.964 107.838 141.357 100 140 

P3 136.438 137.524 137.375 133.674 138.731 126.021 137.366 133.655 137.345 128.169 140 140 

P4 57.496 100.601 57.705 103.743 54.493 102.578 56.326 106.017 53.937 102.597 60 100 

P5 97.947 103.364 101.243 92.770 94.086 98.754 94.292 94.498 101.219 92.930 100 100 

P6 140.738 98.953 137.780 98.886 138.4716 99.368 139.650 97.285 139.657 96.410 140 100 

P7 65.015 62.852 61.318 66.989 61.625 69.587 61.329 66.997 61.337 68.976 60 60 

P8 95.686 68.095 93.218 68.964 92.453 72.508 93.221 68.965 93.225 69.947 100 60 

P9 155.280 63.554 155.977 64.210 157.325 66.156 155.955 64.168 155.937 66.730 140 60 

C  1069.240 9166.749 10000.0 10000.0 5949.650 380.674 10000.0 10000.0 10000.0 903.124   

  0.046783 0.017191 0.016216 0.016328 0.020321 0.049629 0.016197 0.016344 0.016182 0.035706   

RMSE 4.7840 6.1590 7.6903 6.3508 7.3136  
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Fig. 11. Error Comparison by five aforementioned methods 

 

It is observed in Fig.10 that as the smallest error is introduced by the proposed architecture, the 

best predictions at those 9 points are achieved. In Fig. 11, the five bar charts represent the single-

point error under both C1 and C2, with the dashed lines showing the average error of the five 

methods. The average error by IL architecture is maintained at about 3.6 mm shown in Fig. 11(a), 

where the best overall prediction accuracy can be observed. The fewer errors from the predictions 

on 9 single points demonstrate that IL architecture is superior to other methods. With the additional 

consideration of the lowest RMSE, it is verified that in the proposed architecture, the fluctuates of 
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prediction errors are least and the error is controlled within a certain range, while the error 

fluctuation of the predictions by other methods is larger and the accuracy is lower. 

 

Fig. 12. The prediction points by five methods in C2 

 

Table 6. The prediction results of IL at Points P1-P9 (in Fig. 5) by four methods in C2 

Method 

Comparison 

RDSVR GDSVR HODSVR SDSVR HSDSVR Actual 

coordinate 

 x  y  x  y  x  y  x  y  x  y  x  y  

P1 65.110 132.184 65.140 132.187 58.972 128.048 65.144 132.171 65.151 132.168 60 140 

P2 98.834 141.367 98.945 141.359 98.990 141.274 98.960 141.357 98.988 141.356 100 140 

P3 134.849 136.751 134.719 136.736 134.666 136.808 134.701 136.750 134.670 136.750 140 140 

P4 57.377 101.826 57.368 101.836 57.365 102.459 57.367 101.839 57.365 101.840 60 100 

P5 99.479 97.800 99.477 97.787 97.837 104.158 99.477 97.811 99.476 97.814 100 100 

P6 140.937 98.719 140.944 98.757 133.899 96.406 140.945 98.731 140.947 98.730 140 100 

P7 65.956 62.314 66.046 62.350 66.082 62.870 66.058 62.323 66.079 62.322 60 60 

P8 95.917 62.305 95.925 62.302 95.928 62.570 95.926 62.314 95.927 62.315 100 60 

P9 154.832 66.755 154.816 66.706 150.151 73.583 154.814 66.736 154.810 66.738 140 60 

C  1000.0 912.957 1000.0 903.014 1000.0 396.254 999.998 903.414 1000.0 902.871   

  0.046766 0.035546 0.046622 0.035742 0.046564 0.048554 0.046603 0.035695 0.046567 0.035699   

RMSE 5.0160 5.0219 5.5936 5.0265 5.0291  
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Fig. 12 shows that the proposed IL architecture predicts the impact coordinates of the reference 

point (100, 140) more accurately than other methods. According to the data in Fig. 11(b) and Table 

6, the differences among the five methods in C2 are negligible, highlighting the stability of IL 

architecture. By performing the optimization of the parameter C , the proposed architecture tends 

to focus on the high-quality solutions globally while other methods determine the upper limit of the 

parameter C   in C1. Consequently, it exhibits superior convergence performance, ensuring the 

reliability and stability in solving the cases of C1 and C2. 

3.3.4 Result comparison between the proposed architecture and Bayesian-optimized DSVR method 

Bayesian optimization exhibits excellent scalability in the process of hyperparameter 

optimization and also enables fast iterations and minimal counts, reducing time costs and providing 

robust global solutions to non-convex problem-solving[43]. In this section, a Bayesian-optimized 

Dual-layer support vector regression (BDSVR) is conducted for performance comparison with 

RDSVR to demonstrate the prediction accuracy and efficiency of RDSVR. The parameters C and 

  in the SVR method are ranged from 1 to 10000 and 0.001 to 2, respectively. Fig.13 shows the 

IL by the proposed architecture have the similar degree of accuracy as the results by BDSVR. It 

should be noted that the proposed IL architecture ensures the exactly prediction at the point (100,60). 

In Table 7, it is evidenced that the proposed architecture achieves a better result with the RMSE 

value of 2.363 and outperforms BDSVR (RMSE 2.577= ) by 9%, indicating that RDSVR has the 

superior ability to explore the global optimal solution and avoid falling into the local optimum. Fig. 

14 describes the evolutionary history of the fitness values used to evaluate the optimal searching 

results using these two methods. The RDSVR fitness value curve of 50 iterations in Fig. 14 (a) and 

(c) shows a decreasing trend; however, the BDSVR fitness value curve considering 2000 iterations 

in Fig. 14 (b) and (d) will show a trend of oscillation. The above two phenomena show that the 

principle of proposed architecture is to continuously explore better results. BDSVR is to find various 

results in a certain interval. The difference in their principles also leads to better efficiency and 

accuracy of RDSVR in solving. In terms of the computational time, the IL architecture achieves the 

solution in 1,332.786 s, while BDSVR obtains the similar result by the increased time of 41% 

(1,880.331s). It is concluded that the proposed architecture significantly reduces computational time 

and enable both the robust convergence capability and improved accuracy, demonstrating the high 
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effectiveness in solving large searching space problems. Furthermore, as the increase of 

dimensionality in the optimization process, the superiority of the proposed architecture over 

BDSVR for IL of composite structures becomes more pronounced.  

 

Table 7. Result comparison between the proposed architecture and Bayesian-optimized DSVR 

Multi working condition IL architecture BDSVR Actual coordinate 

Impacts x  y  x  y  x  y  

P1 61.65 137.32 61.21 136.17 60 140 

P2 99.12 138.79 99.99 140.01 100 140 

P3 136.42 135.84 138.66 135.20 140 140 

P4 62.09 100.15 61.19 100.50 60 100 

P5 104.73 98.84 96.41 99.17 100 100 

P6 144.08 101.67 135.45 100.24 140 100 

P7 60.67 58.49 60.97 57.83 60 60 

P8 99.34 60.36 105.62 59.31 100 60 

P9 139.86 57.13 142.72 60.09 140 60 

C  4761.502 8644.420 3053.830 9604.011   

  0.0175 0.0111 0.0260 0.0081   

Time 597.658 735.128 926.199 954.132   

Total Time 1,332.786 1,880.331   

RMSE       2.363 2.577  
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Fig. 13. Predictions of results by the proposed architecture and BDSVR 
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Fig. 14. Comparison of RDSVR and BDSVR fitness function 

 

4. Conclusion  

In this paper, a machine-learning architecture is proposed to realize the impact localization of 

composite laminates. The developed IL architecture has the ability to accurately and effectively 

predict the low-speed impact positions of composite laminates in the white noise environment with 

standard deviations of 0.1,0.3,0.5 and 0.7, respectively. As compared with other noise reduction 

algorithms, the signal-to-noise ratio rate by Adaptive Sparse Noise Reduction Algorithm(ASNRA) 

is improved over 84%, demonstrating the ASNRA with the capability of effectively extracting the 

feature amplitude under real working conditions. Meanwhile, the proposed architecture has the 

lowest RMSE with a fast convergence as compared with four metaheuristic optimization-based 

DSVR and Bayesian-optimized DSVR methods under the consideration of large and small 

searching space, verifying its the remarkably high suitability and computational efficiency. 

Throughout the experimental tests, the proposed architecture enables to accurately realize the impact 

localization of composite laminates and also lays a solid foundation on the development of novel 

algorithms for novel structural health monitoring.  
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