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ABSTRACT. Phylogenetic diversity indices are commonly used to rank the elements in a collec-
tion of species or populations for conservation purposes. The derivation of these indices is typi-
cally based on some quantitative description of the evolutionary history of the species in question,
which is often given in terms of a phylogenetic tree. Both rooted and unrooted phylogenetic trees
can be employed, and there are close connections between the indices that are derived in these two
different ways. In this paper, we introduce more general phylogenetic diversity indices that can be
derived from collections of subsets (clusters) and collections of bipartitions (splits) of the given
set of species. Such indices could be useful, for example, in case there is some uncertainty in the
topology of the tree being used to derive a phylogenetic diversity index. As well as characteriz-
ing some of the indices that we introduce in terms of their special properties, we provide a link
between cluster-based and split-based phylogenetic diversity indices that uses a discrete analogue
of the classical link between affine and projective geometry. This provides a unified framework
for many of the various phylogenetic diversity indices used in the literature based on rooted and
unrooted phylogenetic trees, generalizations and new proofs for previous results concerning tree-
based indices, and a way to define some new phylogenetic diversity indices that naturally arise as
affine or projective variants of each other or as generalizations of tree-based indices.

1. INTRODUCTION4

Evolutionary isolation metrics or phylogenetic diversity indices provide quantitative measures5

of biodiversity and are increasingly popular tools to prioritize species for conservation (Isaac6

et al., 2007; Redding et al., 2008, 2014; Redding and Mooers, 2006; Tucker et al., 2016; Vane-7

Wright et al., 1991). These indices quantify the importance of a species to overall biodiversity8

by assessing its unique and shared evolutionary history as indicated by its placement in an un-9

derlying phylogeny. Preserving phylogenetic diversity and the “Tree of Life” has become an10

integral component of conservation considerations (see, e.g., the “Phylogenetic Diversity Task11

Force”1 initiated by the IUCN). Indeed, conservation initiatives like the EDGE of Existence12

programme2 (Gumbs et al., 2023; Isaac et al., 2007) incorporate phylogenetic diversity indices13

in their identification of species that are both evolutionary distinct and globally endangered.14
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FIGURE 1. (a) A rooted phylogenetic tree on the set X = {a,b,c,d,e} of species.
The root vertex is r and all edges are weighted. The table gives the value FPr(x)
of the fair proportion index on this rooted tree for each x ∈ X . (b) The unrooted
phylogenetic tree with weighted edges on the same set X of species obtained by
suppressing the root of the tree in (a). The table gives the value FPu(x) of the fair
proportion index on this unrooted tree for each x ∈ X .

Moreover, the “guide to phylogenetic metrics for conservation, community ecology and macroe-15

cology” by Tucker et al. (2016) has been cited more than 700 times since its publication, thus16

demonstrating an even more widespread interest and application of phylogenetic tools, and in17

particular different phylogenetic diversity indices, within conservation settings.18

Mathematically, with a multitude of phylogenetic diversity indices at hand, there is now an19

increasing interest in understanding how the different indices relate to each other. Much of the20

previous work in this direction has focused on comparing and analyzing different indices de-21

rived from rooted phylogenetic trees (Bordewich and Semple, 2024; Manson, 2024; Manson and22

Steel, 2023; Wicke and Steel, 2020). Phylogenetic diversity indices have also been defined for23

unrooted trees (Haake et al., 2008; Wicke and Steel, 2020), and an exploration of the relationship24

between indices derived via rooted and unrooted phylogenetic trees is presented by Wicke and25

Steel (2020).26

As one might expect, phylogenetic diversity indices for rooted and unrooted trees are closely27

related. To illustrate this, consider the much studied fair proportion index (Isaac et al., 2007;28

Redding, 2003). For the rooted phylogenetic tree with edge weights in Figure 1(a), the value29

FPr(x) of the rooted fair proportion index for a species x ∈ X (here and throughout this manu-30

script, X denotes a non-empty finite set of taxa or species) is computed by adding, over all edges31

that are contained in the path from the root r to the leaf labeled by x, the weight of the edge32

divided by the total number of species for which the path from the root to the leaf labeled by that33

species also contains that edge. For example, for species e there are three edges in the path from34

r to e and we obtain35

(1) FPr(e) =
3
3
+

2
2
+

4
1
= 6.36

In Wicke and Steel (2020) the fair proportion index has also been defined for unrooted phy-37

logenetic trees. Consider the unrooted phylogenetic tree with edge weights in Figure 1(b). The38

removal of an edge breaks the tree into two subtrees. The value FPu(x) of the unrooted fair39
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proportion index for a species x ∈ X is one half of the value obtained by adding, over all edges40

in the unrooted tree, the weight of the edge divided by the number of species that lie in the same41

subtree as x after removal of the edge. For example, for species e we obtain42

(2) FPu(e) =
1
2
·
(

3
4
+

2
4
+

7
3
+

6
4
+

2
2
+

1
4
+

4
1

)
=

31
6
.43

As can be seen in Figure 1, ∑x∈X FPr(x) = ∑x∈X FPu(x) = 25, which is the total weight of44

the edges of the phylogenetic tree from which the values are computed. Among other natu-45

ral requirements, this property called completeness (formally defined in Section 2), should be46

preserved when relating phylogenetic diversity indices for rooted and unrooted trees.47

To better understand how this can be systematically achieved, in this paper we consider indices48

from the viewpoint of affine and projective clustering. This way of thinking about clustering has49

its origins in (Dress, 1997), and since then has become a useful tool in phylogenetic combina-50

torics (see, e.g., Dress 2012, Ch. 9 and Kleinman et al. 2013). More specifically, in this paper51

we extend the study of phylogenetic diversity indices into the more general setting of collections52

of clusters (subsets of a set) and collections of splits (bipartitions of a set). These settings corre-53

spond to affine and projective viewpoints of clustering, respectively (see Section 5). Considering54

collections of clusters and splits in general can be beneficial since it allows for the representation55

of data that is not tree-like or where it is difficult to determine the correct topology for a phylo-56

genetic tree. Indeed, phylogenetic diversity indices have already been introduced for collections57

of splits (see, e.g., Abhari et al. 2024).58

To illustrate this way of thinking, as hinted above, collections of clusters naturally arise when59

computing the rooted fair proportion index. In particular, clusters arise from rooted phylogenetic60

trees by taking, for each edge, the subset of species for which the path from the root to that61

species contains the edge (e.g., in Figure 1(a) the edge with weight 3 next to the root gives rise to62

the cluster {c,d,e}). Thus, the sum used to compute the fair proportion index of e in Equation (1)63

is just the sum of the values ω(C)
|C| taken over all clusters C that contain e, where ω(C) is the weight64

of the edge giving rise to cluster C and |C| denotes the number of species in C. Similarly, we can65

interpret Equation (2) in terms of splits, using the fact that splits arise from unrooted phylogenetic66

trees by taking, for each edge, the split obtained by removing the edge and considering the subsets67

of species in the two resulting subtrees (e.g., in Figure 1(b) the edge with weight 7 gives rise to68

the split {{a,b},{c,d,e}}). Then the sum used to compute the unrooted fair proportion index of69

e in Equation (2) is just the sum of the values λ (S)
2|A| taken over all splits S coming from the tree,70

where λ (S) is the weight of the edge giving rise to S and A is the part in S that contains e. More71

generally, the sums used to compute FPr and FPu can be applied to any collection of weighted72

clusters or splits, respectively (for example, the values for FPu computed for a collection of73

weighted splits visualized by the network in Figure 2(a) are shown in the second column in74

Figure 2(b)).75

Thinking about phylogenetic diversity indices in an affine and projective way, leads us to two76

key questions that we will consider in this paper:77

(i) How do properties of tree-based phylogenetic diversity indices extend to indices defined78

via collections of clusters and splits?79
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(a)

x FPu(x) SV (x) Ψτ(x) ΨR(x)
s 0.422 0.513 0.420 0.480
m 0.397 0.464 0.403 0.459
h 0.354 0.378 0.322 0.403
a 0.303 0.276 0.302 0.289
r 0.282 0.233 0.348 0.222
f 0.225 0.119 0.185 0.129

(b)

FIGURE 2. (a) A network visualizing a collection S of weighted splits on the set
X = {a, f ,h,m,r,s} of six owl populations (see Figure 12 in the appendix for more
details on this data set). Each band of parallel edges in this network corresponds
to a split of X and the length of the edges in the band corresponds to the weight of
the split. (b) The values of four different phylogenetic diversity indices FPu, SV ,
Ψτ and ΨR considered in this paper, computed for the six owl populations. The
populations are ranked by the values of FPu.

(ii) How can the relationships between collections of clusters and collections of splits be80

exploited to relate cluster- and split-based phylogenetic diversity indices?81

In this contribution, we give answers to both of these questions, introducing the concept of phylo-82

genetic diversity indices based on collections of clusters and splits, and giving characterizations83

for some of these indices in terms of their special properties. We also present a general frame-84

work to systematically relate cluster- and split-based phylogenetic diversity indices via a process85

that is commonly used in phylogenetic combinatorics. This provides concise proofs for general-86

izations of previous results for trees as well as ways to define new indices.87

The rest of this paper is structured as follows. We first illustrate our new concepts and results88

by focusing on a few well-known tree-based phylogenetic diversity indices, namely the fair pro-89

portion index, the Shapely value (Haake et al., 2008; Shapley, 1953), and the equal splits index90

(Redding and Mooers, 2006), before we look into some new split-based phylogenetic diversity91

indices. More specifically, in Section 2 we formally define cluster-based phylogenetic diversity92

indices and present some key properties that such indices may have. Then, in Section 3, we93

present a characterization of the general cluster-based fair proportion index. In Section 4 we94

consider the Shapley value, SV (the values of SV for the six owl populations considered in Fig-95

ure 2(a) are given in Figure 2(b)). In particular, we present a characterization of the Shapley96

value and use its relationship to the fair proportion index to describe the first building block of97

our framework. In Section 5 we then give the complete framework, and illustrate some of its98

applications in Section 6 using the fair proportion index and a split-based phylogenetic diversity99

index, Ψτ , related to the equal splits index as examples. Then, in Section 7, we introduce a100

family of new split-based phylogenetic diversity indices, ΨR, that generalize the phylogenetic101
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diversity index for unrooted phylogenetic trees given by Wicke and Steel (2020, Sec. 5.2) (the102

values of the indices Ψτ and ΨR for the six owl populations considered in Figure 2(a) are also103

given in Figure 2(b)). We conclude in Section 8 discussing some potential interesting directions104

for future work.105

2. CLUSTER-BASED INDICES106

Let X be a non-empty finite set. We denote the power set of X by P(X). We call a non-empty107

subset C ⊆ X a cluster on X and call a non-empty collection C ⊆ P(X) \ { /0} a cluster system108

on X . In this section we introduce the concept of a phylogenetic diversity index on a cluster109

system, and illustrate some basic properties of these indices by considering a generalization of110

the fair proportion index for rooted trees that we discussed in the introduction.111

To motivate the definition of a phylogenetic diversity index on a cluster system, we briefly look112

again at rooted phylogenetic trees. Fixing a rooted phylogenetic tree T on a set X of species, a113

phylogenetic diversity index Φ on T assigns, to each weighting3
ω of the edges in T , a vector114

Φ(ω) ∈ RX . To give an example, let Φ be the fair proportion index on the rooted phylogenetic115

tree in Figure 1(a). Then, for the weighting ω of its edges given in Figure 1(a), we can write116

(3) Φ(ω) = (5,4,7,3,6),117

or, in more detail, (Φ(ω))(a) = 5, (Φ(ω))(b) = 4, . . . , (Φ(ω))(e) = 6.118

As described in the introduction, each edge in a rooted phylogenetic tree on X is associated119

with a cluster on X . In Figure 3(a) the clusters associated with the edges of the rooted phylo-120

genetic tree in Figure 1(a) are given, where each cluster is weighted by the length of the corre-121

sponding edge. Note that this cluster system C has a special property, namely it is a hierarchy,122

that is, C∩C′ ∈ { /0,C,C′} holds for all C,C′ ∈ C . In particular, as we see in this example, hi-123

erarchies are essentially those cluster systems that can be represented by a rooted phylogenetic124

tree on X (see, e.g., Semple and Steel 2003, Thm. 3.5.2 for a more precise statement of this fact125

using the concept of a rooted X-tree).126

Bearing these facts in mind, for an arbitrary cluster system C on X , we consider the space L(C )127

consisting of all weightings ω : C → R. We then define a phylogenetic diversity index on C to128

be a map Φ : L(C )→ RX . For example, following the intuitive description in the introduction,129

we define the fair-proportion index on a cluster system C on X by putting, for each ω ∈ L(C )130

and all x ∈ X ,131

(FP(ω))(x) = ∑
C∈C : x∈C

ω(C)

|C| .(4)132

It can then be checked that (4) applied to the weighted cluster system in Figure 3(a) yields133

precisely the vector we saw in (3).134

We now introduce three key properties of cluster-based indices which generalize properties135

of tree-based indices described in the literature. We will illustrate these properties for the fair136

3In biological applications, weights are usually assumed to be non-negative. Our framework also applies when
this assumption is violated.
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C ω(C)
{a} 3
{b} 2
{c} 6
{d} 1
{e} 4
{a,b} 4
{d,e} 2
{c,d,e} 3

(a)
a b c d e

{a} 1 0 0 0 0
{b} 0 1 0 0 0
{c} 0 0 1 0 0
{d} 0 0 0 1 0
{e} 0 0 0 0 1
{a,b} 1

2
1
2 0 0 0

{d,e} 0 0 0 1
2

1
2

{c,d,e} 0 0 1
3

1
3

1
3

(b)

FIGURE 3. (a) The weighted clusters on X corresponding to the edges of the
rooted phylogenetic tree in Figure 1(a). (b) The matrix Γ from Equation (5) for
the fair proportion index on C , where C is the cluster system consisting of the
clusters given in (a).

proportion index and, as we shall see, these properties are also shared by some of the other137

phylogenetic diversity indices that we consider later on.138

Let C be a cluster system on X . A phylogenetic diversity index Φ on C is additive if139

(A) Φ(ω1 +ω2) = Φ(ω1)+Φ(ω2) for all ω1,ω2 ∈ L(C ),140

and Φ is homogeneous if141

(H) Φ(a ·ω) = a ·Φ(ω) for all ω ∈ L(C ) and all a ∈ R.142

Properties (A) and (H) together mean that Φ is a linear map, in which case we call Φ linear.143

Phylogenetic diversity indices considered in the literature are usually linear. This may be due to144

useful consequences of linearity such as, for example, that applying a linear phylogenetic diver-145

sity index to a weighting obtained by taking the average over several different edge weightings146

of a fixed rooted phylogenetic tree amounts to averaging the values of the phylogenetic diver-147

sity index. In this paper, most (but not all) results assume linearity of the phylogenetic diversity148

indices involved. To avoid any confusion, we will always explicitly state which properties we149

assume.150

Note that every linear phylogenetic diversity index Φ on C corresponds to a |C |× |X |-matrix151

Γ = ΓΦ = (γ(C,x)) such that152

(5) (Φ(ω))(x) = ∑
C∈C

ω(C) · γ(C,x)153

for all ω ∈ L(C ) and all x ∈ X . The entries of the matrix Γ are usually assumed to be non-154

negative (see, e.g., Manson and Steel 2023, Def. 1). Again, our framework also applies when155

this assumption is violated. In Section 7 we will come back to this point. In Figure 3(b) we give,156

as an example, the matrix Γ corresponding to the fair proportion index on the cluster system in157

Figure 3(a).158

Finally, we call a phylogenetic diversity index Φ on C complete if159

(C) ∑x∈X(Φ(ω))(x) = ∑C∈C ω(C) holds for all ω ∈ L(C ).160
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C ω(C)
{a} 1
{b} 1

2
{c} 1

2
{d} 1
{a,b} 1
{b,c} 2
{b,c,d} 3

(a)
a b c d

{a} 1 0 0 0
{b} 0 1 0 0
{c} 0 0 1 0
{d} 0 0 0 1
{a,b} 1

2
1
2 0 0

{b,c} 0 1
2

1
2 0

{b,c,d} 0 1
3

1
3

1
3

(b)

FIGURE 4. (a) A weighted cluster system C on X = {a,b,c,d} that is not a hier-
archy. (b) The matrix Γ from Equation (5) for the fair proportion index Φ on C .

For tree-based phylogenetic diversity indices, completeness is often required as part of their161

definition (see, e.g., Bordewich and Semple 2024; Wicke and Steel 2020). For example, we162

have seen in the introduction for the fair proportion index on a rooted phylogenetic tree that163

∑x∈X FPr(x) equals the total weight of the edges in the tree. Property (C) expresses this fact in164

terms of clusters. Note that a linear phylogenetic diversity index Φ on C is complete if and only165

if ∑x∈X γ(C,x) = 1 for all C ∈ C (cf. Wicke and Steel 2020, Eq. (2) and Wicke 2020, Eq. (1)),166

where Γ = (γ(C,x)) is the matrix from Equation (5).167

We next show that the fair proportion index satisfies all three of the above properties.168

Lemma 2.1. The fair proportion index is a complete, linear phylogenetic diversity index on C169

for any cluster system C on X.170

Proof: As we have seen in the example in Figure 3, the fair proportion index can be described171

by a matrix Γ = (γ(C,x)) where the row associated with a cluster C ∈ C contains |C| entries equal172

to 1
|C| and |X |− |C| entries equal to 0.173

174

We conclude this section with an example of a weighted cluster system C on X = {a,b,c,d}175

that is not a hierarchy and which illustrates the possible consequences of restricting C to some176

hierarchy. The cluster system C and the weighting ω are given in Figure 4(a). Figure 4(b)177

gives the matrix Γ = ΓΦ corresponding to the fair proportion index Φ on C . We have Φ(ω) =178 (3
2 ,3,

5
2 ,2

)
. Now consider the hierarchies C1 = C \{{a,b}} and C2 = C \{{b,c},{b,c,d}} and179

the fair proportion index Φi on Ci, i ∈ {1,2}. Note that the matrix ΓΦi is obtained from Γ by180

removing the rows corresponding to clusters in C \Ci and the weighting ωi is just the restriction181

of ω to Ci. This yields Φ1(ω1) =
(3

2 ,1,
1
2 ,1

)
and Φ2(ω2) =

(
1, 5

2 ,
5
2 ,2

)
. As can be seen, the182

rankings of the elements in X obtained by Φ1 and Φ2 are different and, thus, need not coincide183

with the ranking obtained by considering the whole cluster system C .184

3. A CHARACTERIZATION OF THE FAIR PROPORTION INDEX185

In general, it is of interest to characterize phylogenetic diversity indices in terms of their key186

properties, as this can help to understand better how they are related to one another. In this187

section, as an illustration for cluster-based indices, we shall present a characterization of the fair188
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T
r

a b c d
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T ∗
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a b
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FIGURE 5. Collapsing the edge with weight 6 in the rooted phylogenetic tree T
on X = {a,b,c,d} yields the rooted phylogenetic tree T ∗ on X .

proportion index. This generalizes the characterization of the fair proportion index on rooted189

phylogenetic trees given by Manson and Steel (2023, Thm. 6).190

Our characterization will require three properties. The first two properties concern linear phy-191

logenetic diversity indices Φ on a cluster system C on X , and are given in terms of the matrix192

corresponding to Φ. For all C ∈ C , let ch(C) denote the set of those C′ ∈ C with C′ ⊊ C such193

that there is no C′′ ∈ C with C′ ⊊ C′′ ⊊ C. We emphasize that even though a cluster in C may194

receive the weight 0, it is still considered as present in C and, therefore, the sets ch(C) for C ∈ C195

do not change when such a weighting is encountered.196

We say that Φ satisfies the neutrality condition if197

(NC) the entries of the matrix ΓΦ in Equation (5) are such that γ(C,x) = γ(C,y) holds for all C ∈C198

with ch(C) = /0 and all x,y ∈C.199

A property similar to (NC) was introduced by Manson and Steel (2023) for rooted X-trees. In200

addition, we say that Φ is a descendant diversity index if201

(DD) Φ is complete, all entries of the matrix ΓΦ in Equation (5) are non-negative and, for all202

C ∈ C , γ(C,x) = 0 if x ̸∈C.203

Property (DD) was introduced by Bordewich and Semple (2024) for the special case where the204

cluster system C is a hierarchy (using the equivalent description of hierarchies in terms of rooted205

X-trees).206

The third property is a bit more complicated, and thus we first motivate it using rooted trees207

as in Manson and Steel (2023). Let T be a rooted phylogenetic tree on X with edge weights208

and let T ∗ be the rooted phylogenetic tree on X obtained by collapsing one of the edges of T .209

This is illustrated in Figure 5. In addition, let Φ and Φ∗ be phylogenetic diversity indices on210

T and T ∗, respectively. Both Φ and Φ∗ yield a vector in RX for all weightings of the edges211

of T and T ∗, respectively. The topology of the rooted phylogenetic trees, however, may have212

an impact on how the weights of the edges are used to compute these vectors by Φ and Φ∗,213

respectively. Therefore, since the topologies of T and T ∗ differ, the vector in RX that we obtain214

by Φ∗ for T ∗ will usually not coincide with the vector that we obtain by Φ in the limit, as the215

weight of the edge in T tends to 0 (keeping the weights of all other edges in T in constant).216

With this in mind, let C be a cluster system on X and let C ∈ C be such that C ∗ = C \ {C}217

is non-empty. A phylogenetic diversity index Φ on C is downward continuous with respect to a218

phylogenetic diversity index Φ∗ on C ∗ if219
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(DC) for all ω ∈ L(C ) we have220

(6) lim
ω(C)→0

Φ(ω) = Φ
∗(ω∗),221

where ω∗ ∈L(C ∗) is the weighting with ω∗(D) = ω(D) for all D ∈C ∗. Note that when forming222

the cluster system C ∗ we remove the cluster C from the cluster system C but not the elements in223

C from the set X . In particular, both Φ and Φ∗ yield vectors in RX .224

With the properties (NC), (DD) and (DC) in hand, we now present our characterization of the225

fair proportion index.226

Theorem 3.1. Suppose we have, for each cluster system C on X, a phylogenetic diversity index227

ΦC on C . Then the following are equivalent:228

(i) For all cluster systems C on X, ΦC is the fair proportion index on C .229

(ii) For all cluster systems C on X, ΦC is a descendant diversity index that satisfies the230

neutrality condition and is downward continuous with respect to ΦC \{C} for all C ∈ C231

such that C \{C} ̸= /0.232

Before proving this theorem, to provide some intuition for its statement, consider the clus-233

ter system C = {{a,b},{a,b,c,d},{a,b,c,d,e}} on X = {a,b,c,d,e}, and let Φ be the linear234

phylogenetic diversity index with the following matrix ΓΦ235

a b c d e
{a,b} 1/2 1/2 0 0 0

{a,b,c,d} 1/4 1/4 1/4 1/4 0
{a,b,c,d,e} 2/5 2/5 1/15 1/15 1/15.

236

In addition, let C = {a,b}, C ∗ = C \{C}, and let Φ∗ be the linear phylogenetic diversity index237

on C ∗ whose matrix ΓΦ∗ is obtained by deleting the row corresponding to C from ΓΦ. Then both238

Φ and Φ∗ satisfy properties (NC) and (DD). Moreover, Φ is downward continuous with respect239

to Φ∗. But, clearly, Φ is not the fair proportion index on C . Hence, it is not enough to look at a240

phylogenetic diversity index Φ on a cluster system C and phylogenetic diversity indices Φ∗ on241

cluster systems C \{C} for some C ∈ C . Instead we need to look at all cluster systems on X .242

Proof of Theorem 3.1: We first show that (i) implies (ii). Consider a cluster system C on X and243

put Φ = ΦC . By assumption, Φ is the fair proportion index on C . Thus, in view of Lemma 2.1,244

Φ is linear and complete. Moreover, as illustrated by the example in Figure 3(b), it follows245

immediately from the definition of the fair proportion index in (4) that Φ is a descendant diversity246

index and satisfies the neutrality condition.247

It remains to establish downward continuity. Consider a cluster C ∈ C and assume that C ∗ =248

C \ {C} ≠ /0. Put Φ∗ = ΦC ∗ . Let Γ = ΓΦ and Γ∗ = ΓΦ∗ be the matrices whose entries satisfy249

Equation (5) for Φ and Φ∗, respectively. By assumption, Φ is the fair proportion index on C and250

Φ∗ is the fair proportion index on C ∗. Therefore, it follows again from the definition of the fair251

proportion index in (4) that deleting the row corresponding to the cluster C from the matrix Γ252

yields the matrix Γ∗. But this immediately implies that Equation (6) holds for all ω ∈ L(C ), as253

required.254

Next we show that (ii) implies (i). Let C be a cluster system on X . By assumption, Φ = ΦC255

is a descendant diversity index and, therefore, linear. Let Γ = ΓΦ be the matrix whose entries256
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satisfy Equation (5) for Φ. In view of the definition of the fair proportion index in (4), it suffices257

to show that the entries of Γ satisfy258

γ(C,x) =

{
1
|C| for x ∈C

0 for x ̸∈C
259

for all C ∈ C and all x ∈ X . We use induction on |C | to show this.260

To establish the base case of the induction, assume |C |= 1. Consider C ∈C and x∈X . In view261

of |C |= 1 we have ch(C) = /0. Thus, in view of the assumption that Φ is a descendant diversity262

index and satisfies the neutrality condition, we have γ(C,x) =
1
|C| for all x ∈C and γ(C,x) = 0 for all263

x ∈ X \C, as required.264

Next assume |C | ≥ 2. Consider C ∈ C and put C ∗ = C \ {C}. By the assumption that Φ265

is downward continuous with respect to Φ∗ = ΦC ∗ , the matrix Γ∗ = ΓΦ∗ whose entries satisfy266

Equation (5) for Φ∗ is obtained by deleting the row corresponding to cluster C from Γ. Thus, by267

induction, we have268

γ(D,x) =

{
1
|D| for x ∈ D

0 for x ̸∈ D
269

for all D ∈ C \ {C} and all x ∈ X . Since this holds for all C ∈ C , this finishes the inductive270

proof. □271

4. THE SHAPELY VALUE272

The Shapely value is a well-known phylogenetic diversity index that can be computed using273

rooted phylogenetic trees and that has its origins in game theory. Interestingly, to understand a274

generalization of this index in the cluster setting, it is necessary to consider mappings on slightly275

more general spaces than those used in the definition of cluster-based phylogenetic diversity276

indices in Section 2. In this section, we shall explain this, and then give a characterization of a277

cluster-based version of the Shapely value.278

As before, let X be a finite non-empty set. A game is a map g : P(X)→ R. The elements of279

X are referred to as the players in this context and the value g(C) for some C ∈ P(X) can be280

interpreted as the gain when the players in C form a coalition. One aspect of analyzing such a281

game is to quantify, for each player x ∈ X , the value v(x) ∈ R of the player with respect to the282

game (see, e.g., Branzei et al. 2008 for a more detailed exposition of these concepts).283

Formally speaking, we are thus interested in maps v from RP(X) to RX , and the Shapley value284

is one specific such map v given by285

(7) (v(g))(x) =
1

|X |! · ∑
M∈P(X): x∈M

[(|M|−1)! · (|X |− |M|)! · (g(M)−g(M \{x}))].286

This map was originally proposed by Shapley (1953).287

In a biological context, the players of Shapley’s game are species and from a rooted phylo-288

genetic tree T on X with edge weights we obtain a game g by setting g(M) = PD(M) for each289

M ∈ P(X), where PD(M) is the phylogenetic diversity of M. The value PD(M) is defined as290
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the total weight of those edges in T that lie on a path from the root to some species in M (Faith,291

1992). For example, for the rooted phylogenetic tree in Figure 1(a) we obtain292

PD({a,b,d}) = 3+2+4+3+2+1 = 15.293

We now explain a way to generalize these considerations to cluster systems C on X . First we294

need to define the phylogenetic diversity of a subset of X relative to a weighted cluster system.295

Let ω ∈ L(C ). Then the phylogenetic diversity of a subset M of X with respect to ω is defined296

as297

(8) PD(M) = PDω(M) = ∑
C∈C : M∩C ̸= /0

ω(C).298

To further explore properties of the Shapley value in the context of our work, it will be convenient299

to consider the set300

PD(C ) = {g ∈ RP(X) : there exists ω ∈ L(C ) with g = PDω},301

that is, the set of games in RP(X) for which there is some ω ∈ L(C ) which gives rise to this302

game.303

The following lemma states two key structural properties of the set PD(C ) for any cluster304

system C on X . To prove this lemma, we define, for all C ∈ P(X), the game gC : P(X)→ R305

obtained by putting306

(9) gC(M) =

{
1 if C∩M ̸= /0
0 if C∩M = /0.

307

Lemma 4.1. Let C be a cluster system on X. Then PD(C ) is a linear subspace of RP(X) that308

has dimension |C |.309

Proof: In view of (8), PD(C ) is the linear span of the games gC for C ∈ C defined in (9):310

PDω(M) = ∑
C∈C : M∩C ̸= /0

ω(C) = ∑
C∈C

ω(C) ·gC(M)311

Thus, it suffices to show that the games gC, C ∈ C , are linearly independent. To see this, con-312

sider the square matrix A whose rows and columns are each in one-to-one correspondence with313

the elements of P(X)\{ /0}. For all C,M ∈ P(X)\{ /0} the entry of A in the row corresponding314

to C and the column corresponding to M is 1 if C∩M ̸= /0 and is 0 otherwise. A is the so-called315

intersection matrix of P(X)\{ /0} and it is known that A has full rank (see, e.g., Jukna 2011, p.316

216). Thus, in particular, the rows corresponding to C ∈ C are linearly independent.317

318

Now, as explained above, for a cluster system C on X , we restrict in (7) to games g = PD319

in PD(C ). More specifically, we define the Shapley value relative to the cluster system C as the320

map SV : PD(C )→ RX obtained by putting321

(10) (SV (PD))(x) =
1

|X |! · ∑
M∈P(X): x∈M

[(|M|−1)! · (|X |− |M|)! · (PD(M)−PD(M \{x}))]322
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L(C )

PD(C )

Φ

RX

PD

Φ′

FIGURE 6. This diagram depicts the relationship between a phylogenetic diver-
sity index Φ on L(C ) for a cluster system C on X and a phylogenetic diversity
index Φ′ on PD(C ) as described by Equation (11).

for all PD ∈ PD(C ) and all x ∈ X . Note that, in view of Lemma 4.1, PD(C ) may be a proper323

subspace of RP(X) (i.e., the set of all games). As we will see below, any characterization of the324

Shapley value relative to a cluster system must take this into account (see also Dubey 1975 for a325

more general discussion of this aspect).326

The sharp-eyed reader will have noticed that the Shapley value relative to a cluster system C327

is not a phylogenetic diversity index on C , as the latter is defined as a map from L(C ) to RX .328

However, we can resolve this issue by slightly generalizing our cluster-based definition of phy-329

logenetic diversity indices. Let L be a linear subspace of RP(X). Then we define a phylogenetic330

diversity index on L to be a map Φ : L → RX . This encompasses then the Shapley value as a331

phylogenetic diversity index on L= PD(C ) for all cluster systems C on X . Moreover, viewing332

L(C ) as the linear subspace333

L= {ω ∈ RP(X) : ω(C) = 0 for all C ̸∈ C },334

it also encompasses phylogenetic diversity indices on C as defined in Section 2. In fact, we can335

say even more about these relationships, which we will return to in the next section.336

For the remainder of this section, we focus on giving a characterization of the Shapley value337

relative to a cluster system. This will involve the following two properties. We say that a phylo-338

genetic diversity index Φ on a linear subspace L of RP(X) satisfies Pareto efficiency if339

(PE) ∑x∈X(Φ(ω))(x) = ω(X) for all ω ∈ L.340

Remark 4.2. The properties of completeness and Pareto efficiency are tightly linked. Let C be341

a cluster system on X and note that ∑C∈C ω(C) = PDω(X) holds for all ω ∈ L(C ). Therefore,342

every complete phylogenetic diversity index Φ on L(C ) corresponds to a phylogenetic diversity343

index Φ′ on PD(C ) that satisfies Pareto efficiency, where Φ′ is obtained such that the diagram in344

Figure 6 commutes, that is,345

(11) Φ
′(PDω) = Φ(ω)346

for all ω ∈ L(C ).347

We say that a phylogenetic diversity index Φ on a linear subspace L of RP(X) satisfies group348

proportionality (cf. Haake et al. 2008) if349
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(GP) (Φ(a ·gC))(x) =

{
a
|C| if x ∈C

0 if x ̸∈C,
for all C ∈ P(X)\{ /0} and all a ∈ R350

with gC the game as defined in (9). Note that a similar characterization to that given in the351

following theorem was established by Wicke and Steel (2020, Thm. 7) for the special case of352

cluster systems that form a hierarchy.353

Theorem 4.3. Let C be a cluster system on X. The Shapley value is the unique phylogenetic di-354

versity index on PD(C ) that is additive and satisfies Pareto efficiency and group proportionality.355

Proof: Assume that Φ′ is the Shapley value on PD(C ). It is known (see, e.g., Aumann 1994)356

that Φ′ satisfies Pareto efficiency for all ω ∈RP(X) and is additive for all ω1,ω2 ∈RP(X). Thus,357

these two properties hold, in particular, for all ω,ω1,ω2 ∈ PD(C )⊆ RP(X).358

To establish that Φ′ also satisfies group proportionality, consider x ∈ X , C ∈ C and a ∈ R. We359

calculate the value (Φ′(a ·gC))(x) using Formula (10) (similar calculations are used in the proofs360

of Haake et al. 2008, Thm. 4 and Coronado et al. 2018, Thm. 1):361

If x ̸∈C we have gC(M)−gC(M \{x}) = 0 for all M ∈ P(X), implying Φ′(a ·gC))(x) = 0, as362

required. So assume that x ∈C, put c = |C|, m = |M|, and put n = |X |. Then, in view of the fact363

that only M ∈ P(X) with M∩C = {x} contribute to (Φ′(a ·gC))(x), we have364

(Φ′(a ·gC))(x) =
a
n!

·
n−c+1

∑
m=1

(m−1)! · (n−m)! ·
(

n− c
m−1

)
=

a · (n− c)! · (c−1)!
n!

·
n−1

∑
j=c−1

(
j

c−1

)
365

=
a · (n− c)! · (c−1)!

n!
·
(

n
c

)
=

a
c
,366

as required, where we used the formula for the sum along a diagonal in Pascal’s triangle to obtain367

the first equality in the second line.368

Uniqueness now follows from the fact that, in view of the proof of Lemma 4.1, PD(C ) is the369

linear span of {gC : C ∈ C }.370

371

Interestingly, as shown by Fuchs and Jin (2015), the vector in RX that results from computing372

the Shapley value on the game PD obtained from an edge-weighted rooted phylogenetic tree373

always coincides with the vector that we obtain by computing the fair proportion index on the374

rooted phylogenetic tree. In fact, this is a particular instance of (11). The following Corollary of375

Theorem 4.3 makes this more precise.376

Corollary 4.4. Let C be a cluster system on X, Φ be the fair proportion index on L(C ), and Φ′
377

be the Shapley value on PD(C ). Then378

Φ(ω) = Φ
′( ∑

C∈C

ω(C) ·gC) = Φ
′(PDω)379

holds for all ω ∈ L(C ).380

Proof: This follows immediately from the definition of the fair proportion index together with381

the fact that, by Theorem 4.3, the Shapley value is additive and satisfies group proportionality.382

383
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It is remarked in the discussion by Coronado et al. (2018) that Corollary 4.4 can also be derived384

using arguments based on so-called phylogenetic networks (for more on the connection between385

such networks and diversity indices see Section 8). Moreover, the fact that the Shapley value on386

PD(C ) satisfies Pareto efficiency means that it apportions the phylogenetic diversity of X among387

the elements of X . In view of Corollary 4.4 this then also holds for the fair proportion index388

on L(C ) and, in view of Remark 4.2, this corresponds to the fact that the fair proportion index is389

complete, as can be seen in the example in Figure 3(a):390

PDω(X) = ∑
C∈C

ω(C) = 25 = ∑
x∈X

(FP(ω))(x).391

5. AN AFFINE AND PROJECTIVE FRAMEWORK FOR PHYLOGENETIC DIVERSITY INDICES392

As mentioned in the introduction, the notion of phylogenetic diversity indices has also been393

considered on unrooted phylogenetic trees (Haake et al., 2008; Wicke and Steel, 2020) and, just394

as rooted phylogenetic trees can be encoded by a collection of clusters, unrooted phylogenetic395

trees on a set X of species can be encoded by a collection S of bipartitions, or splits, of X396

(see, e.g., Steel 2016, Ch. 2). In the area of phylogenetic combinatorics, the interplay between397

collections of clusters and collections of splits has been studied in terms of affine and projective398

models of clustering, respectively, in analogy with the interplay between affine and projective399

geometry in classical geometry (Dress 2012, p. 207; see also Dress 1997). One of the key ideas400

that we will exploit from this theory is that we can map a collection S of splits of X in a natural401

way to a cluster system C (S ) on X (defined in (13) below) and, in this way, derive split-based402

indices from cluster-based indices. In this section, we will make this more precise, and illustrate403

the resulting framework using the fair proportion index and the Shapely value as examples.404

First, we formally define the concepts mentioned above. A split S of X is a bipartition of X405

into two non-empty subsets A and B, that is, A∪B = X and A∩B = /0. We denote such a split as406

an unordered pair A|B = B|A. A split system S on X is a non-empty set of splits of X . By S (X)407

we denote the set of all splits of X and, for a split system S ⊆ S (X), we denote by L(S ) the408

set of all weightings λ : S (X)→R with λ (S) = 0 for all S ∈S (X)\S . In addition, we denote409

by PD(S ) the set of all weightings PD : P(X)→ R that can be written as410

(12) PD(M) = PDλ (M) = ∑
A|B∈S : A∩M ̸= /0,B∩M ̸= /0

λ (A|B)411

for some λ ∈ L(S ). The value PDλ (M) is usually called the phylogenetic diversity of M with412

respect to the weighting λ of the splits in S (see, e.g., Spillner et al. 2008).413

Figure 7 gives an overview of the various spaces we shall consider and the maps between414

them. In addition to the maps already introduced in Figure 6 in Section 4, we also consider, for415

split systems S on X , maps τ from L(S ) to L(C ) where C is the cluster system416

(13) C (S ) =
⋃

S∈S

S417

on X mentioned above. In particular, we are interested in maps τ for which various parts of the418

diagram in Figure 7 commute.419
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L(C )

PD(C ) PD(S )

L(S )
τ

Φ Ψ

RX

PD

Φ′ Ψ′

PD

FIGURE 7. A diagram of the various maps we consider to study relationships be-
tween phylogenetic diversity indices. The left part of the diagram we have already
seen in Figure 6. In analogy to this, the right part of the diagram depicts phyloge-
netic diversity indices Ψ and Ψ′ on L(S ) and PD(S ), respectively, where S is
a split system on X . Finally τ associates with each weighting λ of the splits in S
a weighting ω = τ(λ ) of the clusters in a cluster system C = C (S ) that arises
from S by (13).

(a)
S λ(S)
{a, b}|{c, d, e} 10
{a, c}|{b, d, e} 5
{c}|{a, b, d, e} 20

(b)
C ω(C)
{c} 16
{a, b} 6
{a, c} 3
{c, d, e} 4
{b, d, e} 2
{a, b, d, e} 4

FIGURE 8. (a) A split system S on X = {a,b,c,d,e} with weighting λ . (b) The
associated cluster system C (S ) on X as defined in (13) and the weighting ω =
τ(λ ) as defined in (15).

As an illustration of this setup, we now revisit the relationship between the fair proportion420

index and the Shapely value. Let S be a split system on X . Then the Shapley value on PD(S )421

is defined as in (10). Equivalently, as shown by Haake et al. (2008) for trees and by Volkmann422

et al. (2014) for split systems in general, the Shapley value on PD(S ) can also be computed as423

(14) (SV (PDλ ))(x) = ∑
A|B∈S : x∈A

|B|
|X | · |A| ·λ (A|B).424

for all λ ∈ L(S ) and all x ∈ X .425

Now consider the map τ : L(S )→ L(C (S )) defined by putting, for λ ∈ L(S ),426

(15) (τ(λ ))(A) =
|B|
|X | ·λ (A|B) and (τ(λ ))(B) =

|A|
|X | ·λ (A|B)427

for all A,B ∈ C (S ) such that A|B is a split in S . For example, consider the split system S428

with weighting λ in Figure 8(a). Using Formula (14), we obtain SV (a) = 11
2 in this example and429

we also have FP(a) = 11
2 for the fair proportion index as defined in (4) applied to the cluster430
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system C (S ) with weighting ω = τ(λ ). We conclude this section by showing that this is not a431

coincidence.432

Theorem 5.1. Let S be a split system on X, Φ be the fair proportion index on L(C (S )) and433

Ψ′ be the Shapley value on PD(S ). If τ is as defined in (15), then434

(16) Φ(τ(λ )) = Ψ
′(PDλ )435

for all λ ∈ L(S ).436

Proof: Let λ ∈ L(S ) and put ω = τ(λ ). Since the maps Φ, τ , Ψ′ and PD are all linear, it
suffices to show Equation (16) for the case that one element of S , say S = A|B has weight 1 (i.e.
λ (A|B) = 1), whereas λ (S′) = 0 for all S′ ̸= S. Then we have ω(A) = |B|/|X |, ω(B) = |A|/|X |,
and ω(C) = 0 for all C ∈ C (S ) with C ̸= A,B. Now let x ∈ X , and assume without loss of
generality that x ∈ A. Then,

(Φ(ω))(x) = ∑
C∈C (S ): x∈C

ω(C)

|C| =
ω(A)
|A| =

|B|
|X |
|A| =

|B|
|X | · |A| .

On the other hand, in view of (14) we have

(Ψ′(PDλ ))(x) = ∑
A′|B′∈S : x∈A′

|B′|
|X | · |A′|λ (S) =

|B|
|X | · |A|

as well. This completes the proof.437

438

6. COMPLETE DIVERSITY INDICES439

In this section we shall consider Figure 7 once again, considering an alternative definition for440

the map τ that can be used to translate, for any split system S on X , the property of complete-441

ness from a cluster-based index Φ on L(C (S )) to an associated split-based index Ψ = Ψτ(Φ)442

on L(S ). In particular, we will see that this immediately implies the completeness of the fair443

proportion index on unrooted phylogenetic trees that was established by Wicke and Steel (2020)444

(for example, see Figure 1(b) in the introduction). In addition, we illustrate the application of445

these considerations to a generalization of the so-called equal splits index that appears in Wicke446

and Steel (2020).447

We begin by proving a result concerning completeness. Let S be a split system on X . A448

phylogenetic diversity index Ψ on L(S ) is complete if449

(C’) ∑x∈X(Ψ(λ ))(x) = ∑S∈S λ (S) holds for all λ ∈ L(S ).450

Define the map τ : L(S )→ L(C (S )) by putting451

(17) (τ(λ ))(C) =
1
2
·λ (C|(X −C))452

for all C ∈ C (S ). The basic idea is to distribute the weight λ (S) of a split S = A|B ∈ S453

evenly on the two corresponding clusters A,B ∈ C (S ). The following results, however, also454
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hold if the weight is distributed non-evenly, that is, when putting (τ(λ ))(A) = p · λ (A|B) and455

(τ(λ ))(B) = (1− p) ·λ (A|B) for some 0 < p < 1 with p ̸= 1
2 .456

With the map τ defined in (17), we obtain, for a phylogenetic diversity index Φ on L(C (S )),457

the phylogenetic diversity index Ψ = Ψτ(Φ) on L(S ) by putting Ψ(λ ) = Φ(τ(λ )) for all λ ∈458

L(S ).459

Theorem 6.1. Let S be a split system on X and Φ a complete linear phylogenetic diversity index460

on L(C (S )). If τ is as defined in (17), then Ψτ(Φ) is a complete linear phylogenetic diversity461

index on L(S ).462

Proof: Let Φ be a complete linear phylogenetic diversity index on L(C (S )). We first show that463

Ψτ is linear. Let λ1,λ2 ∈ L(S ) and a ∈ R. Then, noting that τ is linear, we have464

(Ψτ(Φ))(a ·λ1 +λ2) = Φ(τ(a ·λ1 +λ2)) = Φ(a · τ(λ1)+ τ(λ2))465

= a ·Φ(τ(λ1))+Φ(τ(λ2)) = a · (Ψτ(Φ))(λ1)+(Ψτ(Φ))(λ2),466

as required.467

It remains to show that Ψτ is complete. Let λ ∈ L(S ). Then we have468

∑
x∈X

((Ψτ(Φ))(λ ))(x) = ∑
x∈X

(Φ(τ(λ )))(x) = ∑
C∈C (S )

(τ(λ ))(C)469

= ∑
C∈C (S )

1
2
·λ (C|X −C) = ∑

S∈S

λ (S),470

as required.471

472

The following Corollary 6.2 includes, as a special case, the completeness of the fair proportion473

index on unrooted phylogenetic trees that was established by Wicke and Steel (2020, Thm. 10).474

To see this, it suffices to consider, for an unrooted phylogenetic tree on X , the split system475

consisting of those splits of X that can be obtained by removing an edge from the tree.476

Corollary 6.2. Let S be a split system on X and Φ be the fair proportion index on L(C (S )).477

If τ is as defined in (17), then Ψτ(Φ) is a complete linear phylogenetic diversity index on L(S )478

and we have479

(18) ((Ψτ(Φ))(λ ))(x) = ∑
A|B∈S : x∈A

λ (S)
2 · |A|480

for all λ ∈ L(S ) and all x ∈ X.481

Proof: In view of Lemma 2.1, Theorem 6.1 implies that Ψτ(Φ) is a complete linear phylogenetic482

diversity index on L(S ). Moreover, (18) follows from (4), (13), and (17).483

484

We now turn our attention to a generalization of the equal splits index, a phylogenetic diversity485

index that was introduced in the setting of rooted phylogenetic trees by Redding and Mooers486

(2006). We first define our generalization for cluster systems C on X . For all C ∈ C , let cl(C)487
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C ω(C) ma(C) mb(C) mc(C) md(C) me(C)
{a} 2 1 0 0 0 0
{b} 3 0 1 0 0 0
{c} 1 0 0 1 0 0
{d} 4 0 0 0 1 0
{a,b,c} 5 1

3
1
3

1
3 0 0

{c,d} 7 0 0 1
2

1
2 0

X 3 1
9

1
9

5
18

1
6

1
3

x ES(x)
a 4
b 5
c 7
d 8
e 1

(a) (b)

FIGURE 9. (a) A cluster system C on X = {a,b,c,d,e} with weighting ω and the
quantities mx(C) as defined for all x ∈ X and C ∈ C in (19). (b) The equal splits
index ES(x) for all x ∈ X obtained from C and ω by (20).

denote the set of those x ∈C that are not contained in any cluster C′ ∈ ch(C). Then put488

(19) mx(C) =


0 if x /∈C,

1
|ch(C)|+|cl(C)| if x ∈ cl(C),

∑
C′∈ch(C)

mx(C′)
|ch(C)|+|cl(C)| otherwise,

489

for all x ∈ X and all C ∈ C . Note that mx(C) = 1/|C| if x ∈ C and ch(C) = /0 (as in this case490

|ch(C)| = 0 and |cl(C)| = |C|). Also note that mx(C) is defined recursively. In particular, when491

computing mx(C) in the third case it is assumed that mx(C′) for each C′ ∈ C with C′ ⊊ C has492

been computed already. The equal splits index is then defined by putting493

(20) (ES(ω))(x) = ∑
C∈C

mx(C) ·ω(C)494

for all ω ∈ L(C ) and all x ∈ X . As an example, consider the cluster system C with weighting ω495

in Figure 9(a). For the cluster C = X we have ch(X) = {{a,b,c},{c,d}} and cl(X) = {e}, which496

yields, by (19), me(X) = 1
3 . The resulting values of the equal splits index are given in Figure 9(b).497

The equal splits index on L(C ) is linear with the corresponding |C |× |X |-matrix Γ in Equa-498

tion (5) having the entries γ(C,x) =mx(C). Moreover, as can be seen in the example in Figure 9(a),499

the sum of the entries in each row of Γ equals 1. The next theorem establishes that this is always500

the case.501

Theorem 6.3. For all cluster systems C on X the equal splits index is a complete linear phylo-502

genetic diversity index on L(C ).503

Proof: Let C be a cluster system on X . We already noted above that the equal splits index is504

linear. Thus, it remains to establish that the equal splits index is complete. More specifically, it505

suffices to show that506

(21) ∑
x∈X

mx(C) = 1507
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for all C ∈ C . To this end, put desc(C) = |⋃C′∈ch(C)C
′| for all C ∈ C , that is, desc(C) equals the508

total number of elements in X contained in the clusters in ch(C). We show (21) by induction on509

desc(C).510

For the base case desc(C) = 0 we have ch(C) = /0 and thus cl(C) =C, implying |cl(C)|= |C|511

and512

∑
x∈X

mx(C) = ∑
x∈C

mx(C)+ ∑
x∈X\C

mx(C) = |C| · 1
|C| +0 = 1,513

as required.514

Next assume desc(C) > 0. By the definition of ch(C), we have desc(C′) < desc(C) for all515

C′ ∈ ch(C). Thus,516

∑
x∈X

mx(C) = ∑
x∈X\C

mx(C)+ ∑
x∈cl(C)

mx(C)+ ∑
x∈C\cl(C)

mx(C)517

= 0+
|cl(C)|

|ch(C)|+ |cl(C)| + ∑
x∈C\cl(C)

∑
C′∈ch(C)

mx(C′)
|ch(C)|+ |cl(C)|518

=
|cl(C)|

|ch(C)|+ |cl(C)| + ∑
C′∈ch(C)

∑
x∈C\cl(C)

mx(C′)
|ch(C)|+ |cl(C)|519

=
|cl(C)|

|ch(C)|+ |cl(C)| + ∑
C′∈ch(C)

∑
x∈X

mx(C′)
|ch(C)|+ |cl(C)|520

=
|cl(C)|

|ch(C)|+ |cl(C)| + |ch(C)| · 1
|ch(C)|+ |cl(C)|521

= 1,522

where the equality in the fourth line holds in view of the fact that mx(C′) = 0 for all x ∈523

X \ (C \ cl(C)) and for all C′ ∈ ch(C), and the equality in the fifth line holds by induction.524

525

Our final result in this section, which is an immediate consequence of Theorem 6.1 and Theo-526

rem 6.3, summarizes how we obtain, via the map τ defined in (17), a complete linear split-based527

phylogenetic diversity index from the cluster-based equal splits index.528

Corollary 6.4. Let S be a split system on X and Φ be the equal splits index on L(C (S )). If τ529

is as defined in (17), then Ψτ(Φ) is a complete linear phylogenetic diversity index on L(S ).530

We conclude this section coming back to the biological example in Figure 2(a) and compute531

the phylogenetic diversity index Ψτ = Ψτ(Φ) from Corollary 6.4 for this example. From the532

split system S on X = {a, f ,h,m,r,s} with weighting λ given in Figure 12 in the appendix we533

first compute the cluster system C = C (S ) on X with weighting ω = τ(λ ) (in Figure 13 in the534

appendix we present the Hasse diagram for the 20 clusters in C , where the weight ω(C) obtained535

by (17) is given below each cluster C in the diagram). Then we compute the matrix Γ = ΓΦ for536

the equal splits index Φ on L(C ) (see Figure 14 in the appendix) from which we obtain the values537

of the phylogenetic diversity index Ψτ given in Figure 2(b). For comparison purposes, we also538
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compute the Shapley value SV as defined in (14) for the split system S on X with weighting λ539

using the program SplitsTreeCE (Huson and Bryant, 2005).540

As can be seen in Figure 2(b), the sum of the values of the index Ψτ yields the total weight 1.980541

of all splits in S , as it should be for a complete phylogenetic diversity index. The ranking of the542

six populations given by SV is the same as the ranking given by FPu computed in the introduc-543

tion. The ranking given by Ψτ slightly deviates from it but also ranks populations s and m at the544

top and population f at the bottom.545

The fact that the network in Figure 2(a) is not a tree implies that using a tree-based phyloge-546

netic diversity index necessarily involves a (potentially arbitrary) decision which of the splits in547

S are used to compute the tree-based index. More formally, we would first need to restrict to548

some subset S ′ ⊆ S such that any two splits A|B,C|D ∈ S ′ are compatible, that is, at least one549

of the intersections A∩C, A∩D, B∩C, and B∩D is empty. A collection of pairwise compati-550

ble splits is called a compatible split system. Intuitively, compatible split systems correspond to551

unrooted phylogenetic trees.552

To illustrate that the choice of a compatible subset of S really has an impact on the ranking553

of the six owl populations, we consider two compatible subsets S ′
1 and S ′

2 that are maximal554

with respect to set inclusion. Using the index Ψτ , we obtain the ranking (from highest to lowest)555

s,m,h,r,a, f based on S ′
1 and the ranking s,m,a,h,r, f based on S ′

2 (for details see Figures 15556

and 16 in the appendix). Clearly, these two rankings are different, and in fact they also differ from557

the ranking obtained when considering all splits in S (cf. 2(b)). Interestingly, in this example,558

the ranking given in Figure 2(b) for FPu and SV does not change when restricting to any maximal559

compatible subset of S . This could be due to the fact that the trivial splits in S (i.e. splits A|B560

with |A| = 1 or |B| = 1) carry more weight than the non-trivial splits, and both FPu and SV are561

less heavily influenced by the non-trivial splits than Ψτ . In future work, it could be interesting to562

further investigate the differences in rankings obtained from these and other split-based diversity563

indices.564

7. A GENERALIZATION OF THE PAUPLIN INDEX565

In (Wicke and Steel, 2020, Sec. 5.2) a phylogenetic diversity index for unrooted phylogenetic566

trees is introduced that is related to the formula for the total weight of the edges given by Pauplin567

(2000). In this section, we describe how the viewpoint suggested by our framework leads to a568

new family of split-based phylogenetic diversity indices.569

Let n = |X | ≥ 3 and θ = x0,x1, . . . ,xn−1 be an ordering of the elements in X . Define the split570

system571

Sθ = {{xi, . . . ,x j}|X \{xi, . . . ,x j} : 0 ≤ i ≤ j < n−1}.572

A split system S on X is circular if there exists an ordering θ of the elements in X such that573

S ⊆ Sθ . If S = Sθ for some ordering θ of the elements in X we call S a full circular574

split system on X . Clearly, a circular split system contains at most
(n

2

)
splits. Moreover, every575

compatible split system is circular (Bandelt and Dress, 1992). Volkmann et al. (2014) considered576

the Shapley value and another phylogenetic diversity index on weighted circular split systems577

(see also the more recent work by Abhari et al. (2024)).578
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Let
(X

2

)
denote the set of all 2-element subsets of X . For a circular split system S on X579

we consider the |S |×
(n

2

)
-matrix M(S ) whose rows correspond to the splits in S and whose580

columns correspond to the 2-element subsets in
(X

2

)
. The entry of M = M(S ) corresponding to581

S = A|B ∈ S and {x,y} ∈
(X

2

)
is defined as582

m(S,{x,y}) =

{
1 if |{x,y}∩A|= |{x,y}∩B|= 1
0 otherwise.

583

The matrix M(S ) describes how a weighting λ ∈L(S ) gives rise to pairwise distances between584

the elements in X :585

(22) dλ ({x,y}) = ∑
S∈S

λ (S) ·m(S,{x,y}),586

or, more compactly, dλ = λ ·M, where λ is viewed as a row vector with |S | entries and dλ as587

a row vector with
(n

2

)
entries. The rows of M(S ) are linearly independent (Bandelt and Dress,588

1992). Thus, every weighting λ yields a distinct dλ .589

Since the matrix M(S ) has full rank, there exists an
(n

2

)
×|S |-matrix R that is right inverse590

to M(S ), that is, M(S ) ·R yields the |S | × |S |-identity matrix. The matrix R need not be591

unique, however. Any such matrix corresponds to a linear estimator of a weighting of the splits592

in S from pairwise distances between the elements in X (see e.g. Pardi and Gascuel (2012) for a593

discussion of such estimators for unrooted phylogenetic trees). Fixing such a matrix R, we define594

a phylogenetic diversity index ΨR on L(S ) by putting595

(ΨR(λ ))(x) =
1
2
· ∑

y∈X\{x}
∑

S∈S

dλ ({x,y}) · r({x,y},S)596

for all x ∈ X and all λ ∈L(S ). In view of (22), we have ΨR(λ ) = λ ·ΓR for the |S |×|X |-matrix597

Γ = ΓΨR whose entries are598

γ(S,x) =
1
2
· ∑

y∈X\{x}
∑

S′∈S

m(S,{x,y}) · r({x,y},S′).599

Moreover, since R is right inverse to M(S ), we have600

∑
x∈X

γ(S,x) =
1
2
· ∑

x∈X
∑

y∈X\{x}
∑

S′∈S

m(S,{x,y}) · r({x,y},S′) = ∑
{x,y}∈(X

2)
∑

S′∈S

m(S,{x,y}) · r({x,y},S′) = 1601

for all S ∈ S . The next lemma summarizes these basic facts about ΨR.602

Lemma 7.1. Let S be a circular split system on X with |X | ≥ 3. Then, for every matrix R that is603

right inverse to the matrix M(S ), ΨR is a complete linear phylogenetic diversity index on L(S ).604

Consider, as an example, the split system S = {S1, . . . ,S5} on X = {a,b,c,d}, for which the605

matrix M(S ) is given in Figure 10(a). The split system S is compatible and, thus, circular.606

There are infinitely many matrices R that are right inverse to the matrix M(S ) and they can be607

described by five parameters p1, . . . , p5 ∈ R as shown in Figure 10(b). The matrix ΓΨR for the608

resulting complete linear phylogenetic diversity index ΨR is given in Figure 10(c). This index609
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(a)
{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

S1 = {a}|{b, c, d} 1 1 1 0 0 0
S2 = {b}|{a, c, d} 1 0 0 1 1 0
S3 = {c}|{a, b, d} 0 1 0 1 0 1
S4 = {d}|{a, b, c} 0 0 1 0 1 1
S5 = {a, b}|{c, d} 0 1 1 1 1 0

(b)
S1 S2 S3 S4 S5

{a, b} 1
2

1
2 0 0 − 1

2

{a, c} p1 p2 p3 p4 p5

{a, d} 1
2 − p1 − 1

2 − p2 −p3 −p4 1
2 − p5

{b, c} −p1 −p2 1
2 − p3 − 1

2 − p4
1
2 − p5

{b, d} − 1
2 + p1

1
2 + p2 − 1

2 + p3
1
2 + p4 p5

{c, d} 0 0 1
2

1
2 − 1

2

(c)
a b c d

S1
1
2

1
4 r 1

4 − r

S2
1
4

1
2

1
4 − r r

S3 r 1
4 − r 1

2
1
4

S4
1
4 − r r 1

4
1
2

S5
1
4

1
4

1
4

1
4

FIGURE 10. (a) The matrix M(S ) for the split system S = {S1, . . . ,S5} on X =
{a,b,c,d}. (b) The matrices R that are right inverse to M(S ). (c) The matrix
ΓΨR for the phylogenetic diversity index ΨR on L(S ).

has only a single parameter r ∈ R with r = 1
2(p1 + · · ·+ p5). If all entries in ΓΨR are required to610

be non-negative, we need to restrict this parameter to 0 ≤ r ≤ 1
4 . The Pauplin index in (Wicke611

and Steel, 2020, Sec. 5.2) corresponds to r = 1
8 .612

We now present the main result of this section which focuses on full circular split systems.613

Theorem 7.2. Let S be a full circular split system on X with S = Sθ for the ordering θ =614

x0,x1, . . . ,xn−1 of X. Then the matrix M(S ) has a unique right inverse matrix R and the matrix615

Γ = ΓΨR for the complete linear phylogenetic diversity index ΨR on L(S ) has the entry616

γ(S,x) =


1
2 if i = j = k or i = 0, j = n−2, k = n−1

1
4 if i ̸= j, k ∈ {i, j} or

(i−1) mod n ̸= ( j+1) mod n, k ∈ {(i+1) mod n,( j+1) mod n}
0 otherwise

617

for the split S = {xi, . . . ,x j}|X \{xi, . . . ,x j} ∈ S and the element x = xk ∈ X.618

Proof: Since S is a full circular split system, the matrix M = M(S ) is a square matrix. Hence,619

M has a unique right inverse matrix R which is just the usual inverse matrix of M. Moreover, as620

shown by Chepoi and Fichet (1998), the matrix R has the entry621

(23) r({y,z},S′) =


1
2 if {y,z}= {a,(b+1) mod n} or {y,z}= {(a−1) mod n,b}
−1

2 if {y,z}= {a,b} or {y,z}= {(a−1) mod n,(b+1) mod n}
0 otherwise

622

for {y,z} ∈
(X

2

)
and S′ = {xa, . . . ,xb}|X \{xa, . . . ,xb} ∈ S .623
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Consider the split S = {xi, . . . ,x j}|X \{xi, . . . ,x j} ∈ S and the element x = xk ∈ X . By sym-624

metry, it suffices to consider the following three cases.625

Case 1: i < k < j. Consider y ∈ X \ {x} with m(S,{x,y}) = 1. Then, by the definition of the626

matrix M, we have y ∈ X \ {xi, . . . ,x j}. This implies, in view of (23), that there exist precisely627

two splits S′ ∈S with r({x,y},S′) =
1
2 and precisely two splits S′ ∈S with r({x,y},S′) =−1

2 . Hence,628

we have629

∑
S′∈S

m(S,{x,y}) · r({x,y},S′) = 0,630

implying that γ(S,x) =
1
2 ·0 = 0, as required.631

Case 2: i = k < j. Consider again y ∈ X \ {x} with m(S,{x,y}) = 1. If y ̸= x(i−1) mod n, we have632

∑S′∈S m(S,{x,y}) · r({x,y},S′) = 0 using the same argument as in Case 1. Otherwise, there exist633

precisely two splits S′ ∈ S with r({x,y},S′) =
1
2 but only one split S′ ∈ S with r({x,y},S′) = −1

2 ,634

implying635

∑
S′∈S

m(S,{x,y}) · r({x,y},S′) =
1
2

636

and, thus, γ(S,x) =
1
2 · 1

2 = 1
4 , as required.637

Case 3: i= k= j. Then we have m(S,{x,y})= 1 for all y∈X \{x}. If y ̸∈ {x(k−1) mod n,x(k+1) mod n}638

we again have ∑S′∈S m(S,{x,y}) ·r({x,y},S′)= 0 by the argument used in Case 1. Otherwise, we have639

∑S′∈S m(S,{x,y}) · r({x,y},S′) =
1
2 by the argument used in Case 2, and, thus, γ(S,x) =

1
2 · (1

2 +
1
2) =

1
2 ,640

as required.641

642

While Theorem 7.2 focuses on full circular split systems, it also suggests two specific phy-643

logenetic diversity indices Ψ1 and Ψ2 for any circular split system that is not full. Consider,644

as an example, again the split system S in Figure 10(a). We have S ⊆ Sθ for the ordering645

θ = a,b,c,d. To obtain the complete linear phylogenetic diversity index Ψ1 on L(S ), we re-646

strict the matrix Γ obtained for Sθ by Theorem 7.2 to those rows that correspond to splits in S .647

The resulting matrix ΓΨ1 is then the matrix in Figure 10(c) with r = 0. To obtain the complete648

linear phylogenetic diversity index Ψ2 on L(S ) we restrict the matrix R obtained for Sθ by649

Theorem 7.2 to those columns that correspond to splits in S . The resulting matrix R′ is a matrix650

that is right inverse to M(S ) and we put Ψ2 = ΨR′ . More specifically, the matrix R′ equals the651

matrix in Figure 10(b) with p1 = p3 =
1
2 and p2 = p4 = p5 = 0 and the matrix ΓΨ2 is the matrix652

in Figure 10(c) with r = 1
2 .653

We conclude this section looking again at the example of owl populations in Figure 2(a).654

The corresponding split system S in Figure 12 in the appendix is circular with the ordering655

θ = a, f ,r,h,s,m of the elements in X . In Figure 11 we give the matrices ΓΨR obtained from656

the right inverse matrices R of M(S ). They contain five parameters r1, . . . ,r5 ∈ R. Only by657

putting r1 = r4 =
1
4 and r2 = r3 = r5 = 0, however, all entries of ΓΨR are non-negative and then658

ΓΨR equals the restriction of the matrix Γ obtained for Sθ by Theorem 7.2 to those rows that659

correspond to splits in S . Using the weighting λ of the splits given in Figure 12 in the appendix,660

we obtain the values of ΨR given in Figure 2(b), which yields the same ranking of the six owl661

populations as FPu and SV .662
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a f h m r s

S1
1
2 r1 r2

1
4

1
4 − r1 − r2 0

S2 r2
1
4 − r2 − r4

1
2 r3 r4

1
4 − r3

S3
1
4 −r3 − r5 r3

1
2 r5

1
4

S4
1
4 − r1 − r2 r1 + r2 r4 r5

1
2

1
4 − r4 − r5

S5 0 − 1
4 + r3 + r4 + r5

1
4 − r3

1
4

1
4 − r4 − r5

1
2

S6
1
2 − r1 r1

1
4 − r4

1
4 − r3 − r5

1
4 − 1

4 + r3 + r4 + r5

S7
1
4 + r2 −r2

1
4

1
4 − r3

1
4 r3

S8
1
4 − 1

4 + r4
1
4

1
4

1
4 − r4

1
4

S9
1
4 r1 − r3 − r5 r2 + r3

1
4

1
4 − r1 − r2 + r5

1
4

S10
1
4 − 1

4 + r1 + r4
1
4 + r2 0 1

2 − r1 − r2 − r4
1
4

FIGURE 11. The matrices ΓΨ for the phylogenetic diversity indices Ψ = ΨR ob-
tained from the matrices R that are right inverse to the matrix M(S ) for the split
system S on X = {a, f ,h,m,r,s} represented by the network in Figure 2(a). The
splits S1, . . . ,S10 are listed in Figure 12 in the appendix.

8. CONCLUSION663

In this paper, we have presented a framework for phylogenetic diversity indices defined on664

linear spaces coming from weighted cluster and split systems. Using some examples of popular665

tree-based phylogenetic diversity indices from the literature, we have shown that this framework666

can yield generalizations of these indices for cluster and split systems as well as allowing us to667

gain a better understanding of their interrelationships.668

Note that in our framework presented in Figure 7, by associating to any split system S on X669

the cluster system C (S ) on X and then considering maps τ , we have focused on deriving split-670

based indices from cluster-based indices. In the affine and projective clustering approach, how-671

ever, there are also ways to associate to any cluster system C on X a split system S (C ) on X672

(see, e.g., Dress 2012, Sec. 9.3). Thus, it could be interesting to investigate how this fact might673

be used to derive cluster-based indices from split-based indices.674

In our results, we have considered cluster and split systems in general, special examples of675

which include hierarchical cluster systems, compatible split systems (which correspond to rooted676

and unrooted phylogenetic trees, respectively) and circular split systems. There are, however,677

various other special classes of cluster and split systems that could be interesting to investigate678

within our framework. For example, it would also be interesting to consider diversity indices679

coming from weak hierarchies, a special type of cluster system introduced by Bandelt and Dress680

(1989). The advantage of considering such specialized cluster and split systems is that they can681

be efficiently computed from biological data, making them potentially more useful for applica-682

tions.683

In the literature, various approaches have been proposed to generalize tree-based phylogenetic684

diversity indices using phylogenetic networks, a graph-theoretical generalization of phylogenetic685

trees (Coronado et al., 2018; Volkmann et al., 2014; Wicke and Fischer, 2018). Such networks686

are essentially directed, acyclic, graphs with a single root and whose set of leaves corresponds687



PHYLOGENETIC DIVERSITY INDICES FROM AN AFFINE AND PROJECTIVE VIEWPOINT 25

to some collection of species. The fair proportion index, for example, is generalized in terms of688

such networks by Coronado et al. (2018). In general, phylogenetic networks give rise to cluster689

systems (see, e.g., Steel 2016, Sec. 10.3.4) by, for example, taking the set of leaves that lie690

below a vertex or an edge in the network (just as with rooted phylogenetic trees). Thus, it could691

be interesting to explore how phylogenetic diversity indices defined in terms of phylogenetic692

networks, such as, for example, those considered by Wicke and Fischer (2018), fit into our693

cluster based framework. This could also be interesting to investigate for split networks such694

as the one presented in Figure 2(a), which are a certain type of undirected phylogenetic network695

(see, e.g., Dress 2012, Sec. 4.4).696

With the different ways of defining diversity indices via clusters and splits and translating697

between the two viewpoints, it could also be interesting to analyze under which circumstances698

different indices give exactly the same score and thus also identical rankings of the taxa. For699

example, Wicke and Steel (2020) characterized precisely when the fair proportion index and the700

equal splits index for rooted binary phylogenetic trees coincide. Thus. it would be interesting701

to characterize which conditions a weighted cluster system (resp. weighted split system) has to702

satisfy in order to obtain similar results for pairs of cluster- or split-based indices.703

In another direction, it could be interesting to apply our framework to establish properties and704

generalizations of other tree-based phylogenetic diversity indices that we did not consider in this705

paper. Indeed, as we have demonstrated, sometimes expressing indices in terms of clusters or706

splits can lead to more concise proofs for showing that they have certain properties. For example,707

it would be interesting to consider some of the questions asked in Section 6 of Wicke and Steel708

(2020) within our new framework.709

Finally, concerning the generalization of the Pauplin index presented in Section 7, we saw in710

the examples in Figure 10 and Figure 11 that even when a circular split system S is not full711

there may exist right inverse matrices R for M(S ) such that for the complete linear phylogenetic712

diversity index ΨR the matrix ΓΨR has non-negative entries. Can we characterize when this is713

the case and, more specifically, give the number of parameters in the matrix ΓΨR? As a potential714

direction for further generalization, one could consider split systems S for which the matrix715

M(S ) has full rank, which are known as linearly independent split systems. There exist such716

split systems that are not circular (Bryant and Dress, 2007). Can Theorem 7.2 be generalized in717

some way to all maximum sized linearly independent split systems?718
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APPENDIX807

λ(Si)
S1 = {a}|{f, h,m, r, s} 0.182
S2 = {h}|{a, f,m, r, s} 0.348
S3 = {m}|{a, f, h, r, s} 0.418
S4 = {r}|{a, f, h,m, s} 0.166
S5 = {s}|{a, f, h,m, r} 0.495
S6 = {a, f}|{h,m, r, s} 0.075
S7 = {a, f, r}|{h,m, s} 0.133
S8 = {a, f, r, h}|{m, s} 0.071
S9 = {a,m}|{f, h, r, s} 0.044
S10 = {a,m, s}|{f, h, r} 0.050

FIGURE 12. The split system S = {S1, . . . ,S10} on X = {a, f ,h,m,r,s} and its
weighting λ represented by the network in Figure 2(a). The elements in X rep-
resent sampling locations of spotted owls in western North America (a = Aguas-
calientes, Mexico; f = San Fransisco Peaks, AZ; h = Huachuca Mountains, AZ;
m = Marin County, CA; r = Capitol Reef National Park, UT; s = San Bernardino
Mountains, CA). The weighted split system is computed from the pairwise genetic
distances between these populations given in Table S1 of (Volkmann et al., 2014)
using the implementation of NeighborNet (Bryant and Moulton, 2004) in Split-
sTree (Huson and Bryant, 2005). The same methodology was applied by Volk-
mann et al. 2014 to all 32 populations in the data set. Here six populations are
selected for illustration purposes. The total weight of all splits in S is 1.980 (all
weights rounded to three decimal places).
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{f, h,m, r, s}
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FIGURE 13. The Hasse diagram for the clusters in the cluster system C (S )
on X = {a, f ,h,m,r,s} computed from the split system S on X in Figure 12.
The number below each cluster is the weight of the cluster obtained by the map τ

defined in (17) from the weights of the splits in S .
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FIGURE 14. The matrix Γ for the equal splits index on L(C ) for the cluster sys-
tem C in Figure 13.
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a f h m r s
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FIGURE 15. The matrix Γ for the equal splits index on L(C1) for the cluster
system C1 obtained from the subset S ′

1 = {S1,S2,S3,S4,S5,S6,S7,S8} of the split
system S in Figure 12. Using the map τ defined in (17) to compute the weights of
the clusters in C1 from the weights of the splits in S ′

1, we obtain Ψτ(s) = 0.450,
Ψτ(m) = 0.431, Ψτ(h) = 0.380, Ψτ(r) = 0.267, Ψτ(a) = 0.202, and Ψτ( f ) =
0.156 (all values rounded to three decimal places).
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a f h m r s
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FIGURE 16. The matrix Γ for the equal splits index on L(C2) for the cluster
system C2 obtained from the subset S ′

2 = {S1,S2,S3,S4,S5,S9,S10} of the split
system S in Figure 12. Using the map τ defined in (17) to compute the weights of
the clusters in C2 from the weights of the splits in S2, we obtain Ψτ(s) = 0.388,
Ψτ(m) = 0.355, Ψτ(a) = 0.296, Ψτ(h) = 0.280, Ψτ(r) = 0.220, and Ψτ( f ) =
0.164 (all values rounded to three decimal places).


