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Abstract. A network N on a finite set X , |X | ≥ 2, is a connected directed acyclic graph with leaf set X in which every root5
in N has outdegree at least 2 and no vertex in N has indegree and outdegree equal to 1; N is arboreal if the underlying unrooted,6
undirected graph of N is a tree. Networks are of interest in evolutionary biology since they are used, for example, to represent the7
evolutionary history of a set X of species whose ancestors have exchanged genes in the past. For M some arbitrary set of symbols,8
d :
(X

2

)
→M∪{�} is a symbolic arboreal map if there exists some arboreal network N whose vertices with outdegree two or more9

are labelled by elements in M and so that d({x,y}), {x,y} ∈
(X

2

)
, is equal to the label of the least common ancestor of x and y in10

N if this exists and � else. Important examples of symbolic arboreal maps include the symbolic ultrametrics, which arise in areas11
such as game theory, phylogenetics and cograph theory. In this paper we show that a map d :

(X
2

)
→M∪{�} is a symbolic arboreal12

map if and only if d satisfies certain 3- and 4-point conditions and the graph with vertex set X and edge set consisting of those pairs13
{x,y} ∈

(X
2

)
with d({x,y}) 6= � is Ptolemaic (i.e. its shortest path distance satisfies Ptolemy’s inequality). To do this, we introduce14

and prove a key theorem concerning the shared ancestry graph for a network N on X , where this is the graph with vertex set X and15
edge set consisting of those {x,y} ∈

(X
2

)
such that x and y share a common ancestor in N. In particular, we show that for any connected16

graph G with vertex set X and edge clique cover K in which there are no two distinct sets in K with one a subset of the other, there is17
some network with |K| roots and leaf set X whose shared ancestry graph is G.18

1. Introduction. Given a finite set X , |X | ≥ 2, an arbitrary non-empty set M of symbols, and some19
element � that is not in M, a symbolic map is a function d that maps the collection of 2-subsets of X , i.e.20 (X

2

)
, into the set M� = M∪{�}. For brevity, given a symbolic map d we denote d({x,y}), {x,y} ∈

(X
2

)
,21

by d(x,y). Important examples of such maps are the symbolic ultrametrics. These are maps d :
(X

2

)
→M22

for which there exists some rooted tree T with leaf set X in which each internal vertex of T is labelled23
by an element in M, and such that d(x,y), {x,y} ∈

(X
2

)
, is given by the element in M that labels the least24

common ancestor of x and y in T (see e.g. Figure 1(i)). Symbolic ultrametrics were introduced in a different25
guise by Gurvich in [5], and subsequently rediscovered and studied in [1]. They are a generalization of the26
well-known ultrametrics (see e. g. [18]), and have close links with the theory of cographs (see e. g. [8]).27
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FIG. 1. For the set M = {•,◦,×}, (i) a phylogenetic tree with leaf set X = {x,y,z,u,w}, a labelling of its internal vertices by
M, and the corresponding symbolic ultrametric d. (ii) An arboreal network with leaf set X, a labelling of its internal vertices having
outdegree 2 by M, and the corresponding symbolic arboreal map d′.

Symbolic maps also arise from more general structures than trees. For example, maps arising from28
hypergraphs and di-cographs are investigated in [6] and [11], respectively (see also e.g. [4]). In this paper,29
we are interested in understanding symbolic maps that arise from a network on X , that is, a connected30
directed acyclic graph with leaf set X in which every root in N has outdegree at least 2 and no vertex31
in N has indegree and outdegree equal to 1. Networks arise, for example, in the study of the evolutionary32
history of species whose ancestors have exchanged genes in the past (see e.g. [15]), and important examples33
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include the well-studied phylogenetic networks, that is, networks that have a single root (see e.g. [19] for a34
recent review). Relatively little is known concerning properties of symbolic maps arising from networks;35
to our best knowledge they have only been directly considered in [3] where symbolic maps arising from36
rooted median networks are introduced, in [16] where some results are presented for 3-way symbolic maps37
that arise from so-called level-1 networks, and in [9, 10], for symbolic maps whose image set is restricted38
to two elements.39

Here we shall consider symbolic maps that arise from arboreal networks, that is, networks whose un-40
derlying (undirected and unrooted) graph is a tree [15]. An example of an arboreal network is pictured in41
Figure 1(ii); note that such a network has a single root if and only if it is a rooted tree. Due to their close-42
ness to unrooted trees, arboreal networks are among the simplest multiple-rooted networks. As we shall43
see they enjoy a number of key structural properties that do not always hold for general multiple-rooted44
networks. As such, a better understanding of these networks represents a first step towards understanding45
more complex networks. Arboreal networks are also closely related to laminar-trees, introduced in [20],46
with algorithmic applications in the field of graph theory.47

As with symbolic ultrametrics, symbolic maps arise naturally from arboreal networks by labelling48
each vertex in such a network with outdegree at least 2 by an element in M, through the notion of a least49
common ancestor. Roughly speaking, a vertex v is a least common ancestor of two vertices x and y if v50
is an ancestor of both x and y, and no child of v enjoys that property. In particular, a symbolic map d is51
obtained from an arboreal network N by defining d(x,y), {x,y} ∈

(X
2

)
, to be the element in M that labels52

the least common ancestor of x and y in N if such a vertex exists, and � otherwise (see e.g. Figure 1(ii)).53
As we shall see (Proposition 7.1), in an arboreal network, the least common ancestor of two leaves, if it54
exists, is always unique, so this map is uniquely defined.55

In this paper, we characterise symbolic arboreal maps, that is, symbolic maps that arise from arboreal
networks. Note that symbolic ultrametrics can be characterised amongst symbolic maps d in terms of a 3-
and 4-point condition as follows [1, 5]. The 3-point condition states that there are no x,y,z ∈ X distinct
such that |{d(x,y),d(x,z),d(y,z)}| = 3 and � 6∈ {d(x,y),d(x,z),d(y,z)}, and the 4-point condition states
that there are no four distinct elements x,y,z,u in X such that

d(x,y) = d(y,z) = d(z,u) 6= d(y,u) = d(u,x) = d(x,z),

and � 6∈ {d(x,y),d(x,z)}1. In our main result, Theorem 7.5, we show that a symbolic map is arboreal if
and only if it satisfies these 3- and 4-point conditions, an additional 4-point condition, and the graph Gd
with vertex set X and edges consisting of elements {x,y} ∈

(X
2

)
, with d(x,y) 6=� is Ptolemaic. Note that a

graph with vertex set X is Ptolemaic if its shortest path distance d∗ satisfies Ptolemy’s inequality [12], i.e.

d∗(x,y) ·d∗(z,u)+d∗(x,u) ·d∗(y,z)≥ d∗(x,z) ·d∗(y,u)

holds for all x,y,z,u ∈ X . In addition, we show that there is a special type of labelled arboreal network that56
can be used to uniquely represent any given symbolic arboreal map (see Theorem 7.6).57

The rest of this paper is organised as follows. In Section 2, we collect together relevant basic definitions58
and terminology. In Section 3, we then formally define arboreal networks and present some characteriza-59
tions of such networks that will be useful later on. In Section 4, we introduce the notion of the shared60
ancestry graph for a network, and show that given any connected graph G with vertex set X , we can con-61
struct a network N with leaf set X from any edge clique cover of G that represents G, that is, whose shared62
ancestry graph is G (Theorem 4.4). In Section 5, we review some properties of Ptolemaic graphs, including63
a key result concerning the laminar structure of Ptolemaic graphs from [20], and show that the minimum64
size of an edge clique cover for such a connected graph is equal to the number of maximal cliques in that65
graph with size at least 2 (Theorem 5.2). We then use these results in Section 6 to characterise shared66
ancestry graphs of arboreal networks, showing that if G is a connected graph with vertex set X then there67
exists an arboreal network with leaf set X that represents G if and only if G is Ptolemaic (Theorem 6.4).68
In Section 7, we prove our aforementioned main result (Theorem 7.5) by linking properties of the shared69
ancestry graph of an arboreal network whose associated symbolic map is d with the graph Gd as defined70

1We have stated the 3- and 4-point conditions in slightly more general terms than in [1, 5] as we need to consider the additional
� symbol which does not arise when considering only trees.
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above. We also state the uniqueness result, Theorem 7.6, which we prove in the Appendix. We conclude71
in Section 8 by presenting some potential directions for future work.72

2. Preliminaries. Throughout this paper, X is a finite set with |X | ≥ 2, and all graphs are simple,73
directed or undirected graphs that have a finite vertex set. To simplify terminology, we usually refer to a74
directed graph as a digraph and to an undirected graph as a graph.75

Let N be a digraph with vertex set V (N). Then we call the number of arcs coming into a vertex v of N76
the indegree of v and denote it by indegN(v) = indeg(v). Similarly, we call the number of outgoing arcs of77
a vertex v the outdegree of v and denote it by outdegN(v) = outdeg(v). A leaf of N is a vertex with indegree78
1 and outdegree 0, and a root is a vertex with indegree 0. We denote the set of leaves of G by L(G). An79
internal vertex (of N) is a vertex with outdegree 1 or more, and a tree-vertex (of N) is a vertex with indegree80
0 or 1. Note that if N contains a vertex v with indegree and outdegree 1, by suppressing v we mean that we81
remove v and its incident arcs and add a new arc from the parent of v to the child of v. A vertex v of N is82
said to be an ancestor of a vertex w in N if there exists a directed path in N from v to w. In this case, we83
say that w is below v and call w a descendant of v. If v is an ancestor of w and v 6= w then we call v a strict84
ancestor of w and w a strict descendant of v. Note that a vertex is both an ancestor and a descendant of85
itself. If neither v nor w is an ancestor of the other, then we say that v and w are incomparable (in N). Note86
that if two vertices of N are incomparable then they must necessarily be distinct. We say that two vertices87
v,w ∈ V (N) share an ancestor in N if there exists a vertex u (possibly equal to v or w) such that u is an88
ancestor of both v and w. We say that N is connected if the underlying graph of N obtained by ignoring the89
directions of the arcs of N is a connected graph.90

A network (on X) is a connected, acyclic digraph N with leaf set X such that all vertices of N of91
indegree 0 have outdegree at least 2, all vertices of outdegree 0 have indegree 1, and no vertices have92
indegree and outdegree equal to 1. For N a network, we denote by R(N) the set of roots of N, and let93
r(N) = |R(N)|. For simplicity, we shall sometimes call a network with k≥ 1 roots a k-rooted network. For94
v a vertex of N, we let C(v)⊆ X denote the set of leaves of N that have v as an ancestor. A (single rooted)95
phylogenetic network (on X) is a network on X with one root (see e.g. [19]), and a phylogenetic tree (on96
X) is a phylogenetic network in which every vertex is a tree-vertex.97

Vertices in a network N that have indegree 2 or more are called hybrid vertices, and the set of hybrid98
vertices of N is denoted by H(N). We put h(N) = |H(N)|. Also, we put h̃(N) = 0 if H(N) = /0 and,99
otherwise, we put h̃(N) = ∑h∈H(N)(indegN(h)−1). Note that h̃(N) = h(N) if and only if all hybrid vertices100
of N have indegree 2. If r(N)≥ 2, then for r ∈ R(N), we denote by N− r the digraph obtained from N by101
first removing all vertices of N and their incident arcs that are not a descendant of any vertex in R(N)−{r}102
and then suppressing resulting vertices of indegree and outdegree 1. Note that, in general, N− r need not103
be a network as it might not be connected.104

1 2 3 4 5 6 7

(i)

1 2 3 4 5 6

v w

h2h1

(ii)

1 2 3

(iii)

r

v
r1 r2

FIG. 2. (i) An arboreal network with 3 roots on {1, . . . ,7}. (ii) A 2-rooted network on {1, . . . ,6} that is not arboreal as it
contains the 2-alternating cycle v,h1,w,h2. (iii) A 1-rooted network (i. e. a phylogenetic network) on {1,2,3} that contains 1-, 2- and
3-alternating cycles.

3. Characterizing arboreal networks. We call a network N arboreal if its underlying graph is a105
tree. For example, the 3-rooted network depicted in Figure 2(i) is arboreal. In this section, we give two106
characterizations of arboreal networks that will be useful later on. We begin with a useful lemma.107
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LEMMA 3.1. Let N be a network. Then h̃(N)≥ r(N)−1.108

Proof. We show that h̃(N) ≥ r(N)− 1 holds for all networks N using induction on r(N). Let N be a109
network. Since H(N) = /0 if and only if N is a phylogenetic tree, the base case is r(N) = 1. If r(N) = 1,110
then the inequality holds trivially since h̃(N) = h(N) = 0.111

Now, suppose that r(N) ≥ 2. We first claim that there must exist some r ∈ R(N) such that N− r is a112
network. It suffices to prove that N− r is connected. Pick r1 ∈ R(N). If N− r1 is connected, then the claim113
follows as we can take r to be r1. Otherwise, we can pick some r2 ∈ R(N)−{r1} such that r2 is a vertex of114
a connected component C1 of N− r1 with the fewest number of roots amongst all connected components115
of N− r1. If N− r2 is connected, then the claim follows again as we can take r to be r2. Otherwise the116
correspondingly defined connected component C2 has strictly fewer roots than C1 and we can continue this117
process of picking a root with r1 replaced by r2 and r2 replaced by a root in R(N)−{r1,r2}. Since R(N) is118
finite, this process of picking elements in R(N) must eventually come to an end. This completes the proof119
of the claim.120

Now, suppose that the inequality h̃(N′) ≥ r(N′)− 1 holds for all networks N′ with r(N′) < r(N).121
Consider a root r of N such that N′ = N− r is a network, which exists by the claim. Then r(N′) = r(N)−1122
and, because N is connected, h̃(N′) < h̃(N). By our induction hypothesis, we have h̃(N′) ≥ r(N′)− 1, so123
h̃(N)≥ r(N)−1 follows.124

We now present two characterizations for arboreal networks, which we shall use later on without125
always explicitly referring them. Let N be a network. A k-alternating cycle of N is a sequence126
v1,h1,v2, . . .vk,hk, k ≥ 1 of vertices of N such that for all 1 ≤ i ≤ k, hi is a hybrid vertex of N, and there127
exists internal vertex-disjoint directed paths from vi to hi and from vi+1 to hi, respectively (where we put128
vk+1 = v1). For example, the sequence of vertices v,h1,w,h2 of the network depicted in Figure 2(ii) is129
a 2-alternating cycle. Note that k-alternating cycles are closely related to so called zig-zag paths ([21]),130
up-down paths ([2]) and crowns ([7]).131

PROPOSITION 3.2. Let N be a network. Then the following statements are equivalent.132
(i) N is arboreal.133

(ii) h̃(N) = r(N)−1.134
(iii) N does not contain a k-alternating cycle for any k ≥ 1.135

Proof. (i)⇒ (ii) Suppose that N is an arboreal network. We show that h̃(N) = r(N)−1 using induction136
on r(N). For the base case, if r(N) = 1, then N is a phylogenetic tree. So, h̃(N) = 0 = r(N)−1.137

Now, suppose that r(N)≥ 2 and that the stated equality holds for all arboreal networks N′ with r(N′)<138
r(N). Consider a root r of N such that N′ = N− r is a network, which exists by the claim in the second139
paragraph of the proof of Lemma 3.1. Furthermore, N′ is arboreal and r(N′) = r(N)− 1. Also, h̃(N′) =140
h̃(N)− 1 since N′ has one root less than N and so N must have a unique hybrid vertex h whose indegree141
decreases by precisely 1 when removing all vertices and arcs that are not descendant of any root of N other142
than r. Note that h may not be a hybrid vertex in N′, in case h has indegree 2 in N. It may also not be a143
vertex of N′, as it is suppressed in the second phase of the construction of N′ in case it has indegree 1 and144
outdegree 1 after the aforementioned vertex and edge removal. Clearly, the above equality remains true145
also in these two cases. By induction hypothesis, it follows that h̃(N) = r(N)−1, as required.146

(ii)⇒ (i) Suppose for contradiction that N is such that h̃(N) = r(N)− 1 but N is not arboreal. Then147
there must exist a hybrid vertex h in H(N) and a parent v ∈ V (N) of h such that removing the incoming148
arc (v,h) of h does not disconnect N. Consider now the graph N′ obtained from N by removing the arc149
(v,h), introducing a new leaf x, adding the arc (v,x), and suppressing h if this has rendered it a vertex150
with indegree and outdegree 1. Since N′ is connected with leaf set X ∪{x}, N′ is a network on X ∪{x}.151
Furthermore, r(N′) = r(N) and h̃(N′) = h̃(N)−1. By Lemma 3.1, h̃(N′)≥ r(N′)−1. Since r(N′) = r(N)152
it follows that h̃(N)−1 = h̃(N′)≥ r(N′)−1 = r(N)−1 = h̃(N); a contradiction.153

(i) ⇔ (iii) It is straight-forward to check that the cycles in the underlying graph of N are in 1-1 cor-154
respondence with the k-alternating cycles of N, from which the equivalence of (i) and (iii) immediately155
follows.156

4. The shared ancestry graph. Let N be a network on X . The shared ancestry graph A (N) (of N)157
is the graph whose vertex set is X and in which two distinct vertices x,y of X are joined by an edge if and158
only if they share an ancestor in N. Note that since N is connected, A (N) is also connected. In addition,159
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note that if N is a phylogenetic network then A (N) is a complete graph. However, the converse does not160
necessarily hold. In this section, we shall prove that given any connected graph G with vertex set X , we161
can construct a network N with leaf set X from any edge clique cover of G whose shared ancestry graph is162
G.163

We begin with some observations on shared ancestry graphs, and their relationship with edge clique164
covers. We say that a connected graph G with vertex set X is representable if there exists a network N on165
X such that G is isomorphic to A (N) and that isomorphism is the identity on X . In that case, we also say166
that N represents G.167

PROPOSITION 4.1. Any connected graph (X ,E) is representable by an k-rooted network on X, where168
k = |E|.169

Proof. Suppose that G = (X ,E) is a connected graph. We prove the proposition by constructing a170
|E|-rooted network N on X that represents G.171

We initialize the construction of N with the set of arcs (xp,x) where, for all x ∈ X , we have that172
xp 6∈ X and xp 6= yp, for all x,y ∈ X distinct. Then for all edges e = {x,y} of G taken in turn, we add to173
N a vertex ve, and two arcs (ve,xp) and (ve,yp). Since G is connected, the digraph N obtained once all174
edges of G have been processed (and after all vertices of indegree and outdegree 1 have been removed) is175
connected. Moreover, N has leaf set X and contains |E| roots. Hence, N is an |E|-rooted network on X . By176
construction, for any two distinct elements x,y ∈ X , there exists a vertex v in N that is an ancestor of x and177
y if and only if {x,y} is an edge of G. Hence, N represents G.178

Note that although the network N constructed from G in the proof of Proposition 4.1 is a network179
representing G it is not necessarily the only network on X satisfying this property. Moreover, N has many180
more roots than is usually necessary (viz. the number of edges in G). In the following, we present a way181
to construct a network representing any connected graph G with a minimum number of roots amongst all182
possible networks that represent G.183

We begin with introducing some further terminology. For G = (X ,E) a graph and /0 6= Y ⊆ X , the184
subgraph G[Y ] of G induced by Y is the graph whose vertex set is Y and any two vertices u and v in Y are185
joined by an edge if {u,v} ∈ E. For G′ a graph, we say that G contains G′ (as an induced subgraph) if there186
exists Y ⊆ X such that G′ is isomorphic to G[Y ] and that isomorphism is the identity on Y . A subset Y ⊆ X187
is called a clique (of G) if |Y | ≥ 2 and {x,y} ∈ E, for all x,y ∈ Y distinct. If, in addition, there is no proper188
superset Y ′ of Y that is also a clique of G, then we say that Y is a maximal clique of G. Denoting by P(X)189
the powerset of X , we define K(G) ⊆P(X) to be the set of all subsets of X that are a maximal clique in190
G. Note that if G does not contain isolated vertices, then each element of X is contained in at least one set191
in K(G).192

Interestingly, if a network N does not contain 3-alternating cycles then, as Lemma 4.2 shows, the193
cliques in A (N) provide key information concerning the structure of N.194

LEMMA 4.2. Let N be a network on X that does not contain 3-alternating cycles. Let Y ⊆ X with195
|Y | ≥ 2. Then Y is a clique in A (N) if and only if there exists a vertex in N that is an ancestor of all leaves196
in Y .197

Proof. One direction is trivial. Indeed, if all leaves in Y share an ancestor in N then any two elements198
in Y are joined by an edge in A (N) by definition. Hence, Y is a clique in A (N)2.199

Conversely, assume for contradiction that N is a network on X and that Y ⊆ X with |Y | ≥ 2 is such that200
Y is a clique in A (N) but no common ancestor in N of the elements in Y exists. Without loss of generality201
we may assume that Y is such that for all subsets Y ′ ⊆ Y with |Y ′| ≥ 2 there exists an ancestor in N of202
all elements in Y ′. Then |Y | ≥ 3 as otherwise Y is a clique of A (N) in the form of an edge {x,y}. Then203
Y = {x,y} and so there exists an ancestor of every element of Y in N which is impossible. By assumption204
on Y , it follows for all x ∈ Y that all elements in Y −{x} have an ancestor vY,x in N. Without loss of205
generality, we can choose vY,x such that no child of vY,x also enjoys this property.206

We claim that the vertices vY,x, x ∈ Y , are pairwise incomparable and therefore necessarily distinct.207
To see the claim, assume for contradiction that there exist x,y ∈ Y distinct such that vY,x and vY,y are not208
incomparable. Then vY,x is an ancestor of vY,y or vice versa. Assume without loss of generality that vY,x is209

2Note that this direction holds for all networks N, including networks containing 3-alternating cycles.
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an ancestor of vY,y. Then vY,x is an ancestor of all elements in Y as x ∈ Y − y and vY,y is an ancestor of the210
elements in Y − y; a contradiction in view of our assumption on Y .211

Consider three distinct elements x,y,z ∈ Y and the corresponding vertices vY,x,vY,y,vY,z ∈V (N). Since212
vY,x and vY,y are both ancestors of z and incomparable, there exists a hybrid vertex hz that lies on the213
directed paths from vY,x to z and from vY,y to z. Note that we can choose hz such that no strict ancestor of hz214
belongs to those two paths. We can define vertices hy and hx in a similar way. It follows that the sequence215
vY,x,hz,vY,y,hx,vY,z,hy is a 3-alternating cycle of N, which is impossible by assumption on N. Hence, all216
elements of Y share an ancestor in N.217

Note that the assumption that N does not contain a 3-alternating cycle is necessary for Lemma 4.2 to218
hold. In particular, there exists networks N that contain 3-alternating cycles and are such that for all Y ⊆ X ,219
|Y | ≥ 2, that is a clique in A (N) there exists a vertex v in N that is an ancestor of all leaves in Y . For220
example, the phylogenetic network N depicted in Figure 2(iii) contains a 3-alternating cycle, A (N) is a221
clique with vertex set Y = {1,2,3}, and C(v) = Y . However if we remove v and its incident arcs from N222
(suppressing resulting vertices of indegree and outdegree 1), then no vertex of the resulting network is an223
ancestor of all elements in Y .224

We now continue with finding a network that represents a connected graph G with vertex set X with225
a minimum number of roots. To this end, we say that a subset K of P(X) is an edge clique cover of G if226
every Y ∈ K is a (not necessarily maximal) clique in G, and for every edge {x,y} in G, there exists Y ∈ K227
such that x,y ∈ Y . Note that K(G) is always an edge clique cover of G, although G may admit edge clique228
covers containing fewer elements than K(G). We define the edge clique cover number ecc(G) of G as229
min{|K| : K is an edge clique cover of G}. In other words, ecc(G) is the minimum size of an edge clique230
cover of G over all such covers.231

Interestingly, and as Lemma 4.3 shows, the edge clique cover number of a connected graph G provides232
a lower bound on the number of roots of a network that represents G.233

LEMMA 4.3. Let G be a connected graph with vertex set X. For N a network on X representing G, we234
have ecc(G)≤ r(N).235

Proof. It suffices to show that the set K = {C(r) : r ∈ R(N)} is an edge clique cover of G. Clearly,236
every set C(r), r ∈ R(N), is a clique of G. Now, suppose for contradiction that K is not an edge clique237
cover of G. Then there exists an edge {x,y} of G such that no root r of N satisfies x,y ∈C(r). In particular,238
no vertex v of N satisfies x,y ∈C(v). But this is impossible since N represents G. The lemma now follows239
since, clearly, ecc(G)≤ |K| ≤ r(N).240

To prove the main result of this section (Theorem 4.4), we require some further definitions. First,241
given a set C ⊆P(X) of non-empty subsets of X , we define a network N(C ) on X as follows. First take242
the cover digraph H(C ) of C [19, p.252], that is, the digraph with vertex set C , and two distinct vertices243
A,B ∈ C joined by the arc (A,B) if and only if B ( A and there is no set C ∈ C with B (C ( A. To obtain244
N(C ) from H(C ), we first add (i) for all x ∈ X with {x} /∈ C , a new vertex {x} with outdegree 0, and (ii)245
an arc from a vertex A in H(C ) to the vertex {x} if x ∈ A and no child of A in H(C ) contains x. To the246
resulting digraph we then (i) add a child to every vertex with outdegree 0 and indegree 2 or more, and (ii)247
identify all leaves l in the resulting digraph with the unique element x ∈ X such that l = {x} or l is a child248
of {x}.249

Now, for any connected graph G with vertex set X , and any edge clique cover K of G, we let

C (K) = {
⋂

Y∈S

Y : S⊆ K and
⋂

Y∈S

Y 6= /0},

and we set N(K) = N(C (K)). As an illustration of these definitions, consider the graph G depicted in250
Figure 3(i). Then N(K) is pictured in Figures 3(ii) and 3(iii) for K the edge clique cover251
{{1,2,3,4},{3,4,5,6}} and {{1,2,3},{1,2,4},{3,4},{3,5,6},{4,5,6}} of G, respectively.252

We now show how an edge clique cover of a connected graph G gives rise to a network representing253
G.254

THEOREM 4.4. Suppose that G is a connected graph with vertex set X. If K is an edge clique cover255
of G, then N(K) is a network on X that represents G. Moreover, R(N(K)) ⊆ K, and R(N(K)) = K if and256
only if K does not contain two distinct sets such that one is a subset of the other. In particular, if |K| is257
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1 2 3 4 5 6 1 2 3 4 5 6

1234 3456

34

123 124 34 356 456

12 563 4

(ii) (iii)

2 4 6

1 3 5

(i)

FIG. 3. (i) A graph G with vertex set X = {1, . . . ,6}. (ii) The network N(K) for the edge-clique cover K =
{{1,2,3,4},{3,4,5,6}} of G. (iii) The network N(K) for the edge-clique cover K = {{1,2,3},{1,2,4}, {3,4},{3,5,6},{4,5,6}} of
G. For brevity, we represent a vertex {a1, . . . ,ap}, p≥ 1, of N(K) as the string a1a2 . . .ap.

minimum (so that |K| = ecc(G) and R(N(K)) = K), then N(K) has a minimum number of roots amongst258
all representations of G.259

Proof. To ease notation, we put N = N(K).260
We first show that N is a network on X . Clearly, N is acyclic and directed by definition. By construc-261

tion, all vertices in N with outdegree 0 have indegree 1, and so X is contained in the leaf set of N. To see262
that the leaf set of N is also contained in X , suppose that N has a leaf l that is not in X . Then l corresponds263
to a set A of C (K) of size 2 or more. But by construction, for all x ∈ A, the vertex x is a descendant of264
l, a contradiction. Note that this observation also shows that all sets A ∈ C (K) of size 2 or more have at265
least two children in N. Hence, no vertex of N has indegree and outdegree 1 in N and all roots of N have266
outdegree at least 2.267

To see that N is a network, it remains to show that N is connected. Suppose x,y ∈ X distinct. Since268
G is connected, there is a path x = v1, . . .vk = y, k ≥ 2, in G, such that vi ∈ X , 1 ≤ i ≤ k. Since K is an269
edge clique cover of G, for every such i, there exists a set Yi ∈ K such that vi,vi+1 ∈ Yi. In particular, Yi is270
a vertex of N since {Yi} ⊆ K, and there exists directed paths from Yi to vi and from Yi to vi+1 in N. Hence,271
for all 1≤ i≤ k−1, there exists a path between vi and vi+1 in the underlying graph U(N) of N. So there is272
a path in U(N) between x and y. Since this holds for all x,y ∈ X and N is acyclic, it follows that U(N) is273
connected. Hence, N is connected.274

To see that N is a representation of G, suppose that x,y ∈ X distinct. Then, by construction, x and y275
share an ancestor in N if and only if there exists some Y ∈ K such that x,y ∈ Y . Since K is an edge clique276
cover of G, this is the case if and only if {x,y} is an edge in G, as required.277

To see that R(N) ⊆ K, note that for all Y ∈ K, we have Y ∈ V (N) because {Y} ⊆ K. Moreover, all278
vertices Z ∈V (N) satisfy Z ⊆Y for some Y ∈K. In particular, if Z has indegree 0 in N, then Z ∈K. Hence,279
Z must be a root of N and so R(N)⊆ K.280

To see that R(N) = K holds under the stated condition, note that a set Z ∈ K has indegree 0 in N if and281
only if Z ∈ K and no element Z′ ∈ K satisfies Z ( Z′. Hence, R(N) = K holds if and only if K does not282
contain two distinct sets such that one is a subset of the other.283

Using this last observation, to see that the final statement of the theorem holds, it suffices to remark284
that if |K|= ecc(G), then K does not contain Y,Y ′ such that Y ( Y ′. Otherwise, K−{Y} is an edge clique285
cover of G that contains strictly fewer elements than K, a contradiction. So, in view of the above, it follows286
that r(N) = |K| = ecc(G). By Lemma 4.3, ecc(G) ≤ r(N′) holds for all representations N′ of G, so the287
theorem follows.288

5. Ptolemaic graphs. In this section, we present some properties of Ptolemaic graphs, as defined in289
the introduction. We begin by stating two key characterizations of Ptolemaic graphs from the literature.290

For k ≥ 3, we let Ck denote the cycle on k ≥ 3 vertices. A graph G is chordal if it contains no induced291
cycle of length 4 or more. In addition, the gem is the graph pictured in Figure 4. In the following result,292
the equivalence between (i) and (ii) is proven in [13], and the equivalence between (i) and (iii) is proven in293
[20, Theorem 5] 3.294

3Note that the statement of Theorem 5.1 is slightly more general than that of [20, Theorem 5] since in [20] a Ptolemaic graph is
assumed to be connected.
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FIG. 4. The gem, a chordal graph on 5 vertices, is the only chordal forbidden induced subgraphs for Ptolemaic graphs.

THEOREM 5.1. Suppose that G is a graph. Then the following are equivalent295
(i) G is Ptolemaic.296

(ii) G is chordal and does not contain the gem as an induced subgraph.297
(iii) the underlying graph of H(K(G)) is acyclic.298

We now make a general observation concerning the edge clique cover number of a Ptolemaic graph.299

THEOREM 5.2. Let G be a connected graph with vertex set X. If G is Ptolemaic, then there is no edge300
clique cover K of G distinct from K(G) such that |K| ≤ |K(G)|. In particular, ecc(G) = |K(G)|.301

Proof. Note first that we may assume that G is not an isolated edge as otherwise the theorem trivially302
holds. Suppose for contradiction that there exists an edge clique cover K of G distinct from K(G) such303
that |K| ≤ |K(G)|. Without loss of generality, we may assume that K has minimum size. For all Y ∈ K,304
pick some maximal clique m(Y ) in K(G) (which may be Y itself) such that m(Y ) contains Y . Note that305
we can clearly always pick some such clique m(Y ). Then the set M (K) = {m(Y ) : Y ∈ K} ⊆ K(G) is an306
edge clique cover of G, and we have |M (K)| ≤ |K|. Since, by assumption, |K| = ecc(G), it follows that307
|M (K)|= |K|= ecc(G).308

We claim that there exists Y0 ∈ K(G) and x ∈ Y0 such that the set K(Y0,x) obtained from K(G) by309
replacing Y0 with Y0−{x} in case |Y0| > 2, or removing Y0 from K(G) in case |Y0| = 2, is an edge clique310
cover of G. To see this, we distinguish between the cases that |K|= |K(G)| and that |K|< |K(G)|.311

If |K| = |K(G)|, then M (K) = K(G) as M (K) ⊆ K(G) and |M (K)| = |K|. Since K 6= K(G) by312
assumption, there exists Y0 ∈ K(G) such that Y0 /∈ K. In view of M (K) = K(G) it follows that Y0 is of the313
form m(Y ) for some Y ∈ K. In particular, Y ( Y0 holds. Choose some x ∈ Y0−Y . Then the definition of314
KY0,x implies that all sets of K(Y0,x) are supersets of some set in K. Hence, K(Y0,x) is an edge clique cover of315
G.316

If |K|< |K(G)|, then M (K) is a proper subset of K(G). So for all Y0 ∈ K(G)−M (K) and all x ∈ Y0,317
the set K(Y0,x) contains M (K). Since M (K) is an edge clique cover of G, it follows that K(Y0,x) is also such318
a cover. This completes the proof of the claim.319

We next show that G contains a C4 or a gem. To this end, suppose that Y0 ∈ K(G) and x ∈ Y0 are320
such that K0 = K(Y0,x) is an edge clique cover of G. Let Y1 ∈ K0 such that Y1 ∩Y0 contains at least two321
elements one of which is x. Note that such a set Y1 always exists since Y0 is a clique in G and K0 is an322
edge clique cover of G. Without loss of generality, we may assume that Y1 is such that no Y ′ ∈ K distinct323
from Y1 satisfies Y1∩Y0 ⊂ Y ′∩Y0. Since Y0 ∈ K(G), we have, Y1∩Y0 6= Y0. Hence, there exists z ∈ Y0 such324
that z /∈ Y1. Since x ∈ Y1 and z /∈ Y1, we have z 6= x. Furthermore, since x,z ∈ Y0 and Y0 is a clique in G325
it follows that {x,z} is an edge in G. Hence, since K0 is an edge clique cover of G, there exists Y2 ∈ K0326
such that x,z ∈ Y2. Moreover, by the choice of Y1, there exists y ∈ Y1∩Y0 such that y /∈ Y2, since otherwise,327
Y1∩Y0 ⊂ Y2∩Y0.328

Consider now an element u ∈Y1 such that {u,z} is not an edge of G. Note that such an element always329
exists, since z /∈ Y1 together with the maximality of Y1 implies that Y1∪{z} cannot be a clique in G. Note330
also that since y,z ∈Y0, we have that {y,z} is an edge in G because Y0 is a clique in G. Hence, u 6= y. Since331
{x,z} is an edge in G, we have u 6= x. Similarly, there exists v ∈ Y2 such that {v,y} is not an edge of G.332
Note that v 6= u,z since if v = z then {v,y} is an edge in G as z,y ∈ Y0 and Y0 is a clique in G, and if v = u333
then {v,y} is an edge in G as u,y ∈ Y1 and Y1 is a clique in G.334

Now, if {u,v} is an edge in G, then the set {u,y,z,v} is a C4 in G, since y,u ∈Y1, y,z ∈Y0, and z,v ∈Y2335
imply that {y,u}, {y,z}, and {z,v} are edges in G as Y1, Y0, and Y2 are cliques in G, respectively. But then336
G is not chordal since, as shown above, neither {u,z} not {y,v} can be an edge in G. Otherwise, the set337
{u,y,z,v,x} induces a gem in G since {y,z} is an edge in G and x,y ∈ Y0, x,u ∈ Y1, and x,v,z ∈ Y2 imply338
that {x,y}, {x,u}, {v,z}, and {x,v} are also edges in G. In either case, it follows by Theorem 5.1 that G is339
not Ptolemaic, a contradiction.340
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Note that the converse of Theorem 5.2 is not true in general, that is, there exists graphs G that are not341
Ptolemaic and are such that K(G) is the only minimum size edge clique cover of G. This is the case, for342
example, if G is isomorphic to Ck, k ≥ 4.343

6. Arboreal representations. In this section, we characterise arboreal-representable graphs, that is,344
graphs G for which there exists an arboreal network N on X that represents G. We begin by considering345
some properties of the shared ancestry graph of an arboreal network.346

LEMMA 6.1. Let N be an arboreal network. Then:347
(i) if N contains a non-root vertex of outdegree 2 or more, then A (N) contains a C3.348

(ii) if N has a vertex of outdegree 3 or more, then A (N) contains a C3.349

Proof. To help establish Assertions (i) and (ii), we first make the following claim. If v is a vertex of350
N with outdegree k ≥ 2 then |C(v)| ≥ k. To see this, let v be such a vertex. Let w and w′ be two distinct351
children of v. If C(w)∩C(w′) 6= /0, then there exists a hybrid vertex h of N that is a descendant of both w352
and w′. Assuming without loss of generality that no strict ancestor of h also enjoys this property, it follows353
that v,h is a 1-alternating cycle in N. By Proposition 3.2, this is impossible since N is arboreal. Hence,354
C(w)∩C(w′) = /0 holds for any two distinct children w,w′ of v. Since, by assumption, outdeg(v) ≥ k the355
claim follows.356

(i) Suppose that v ∈V (N) but not a root. Let r be a root of N that is an ancestor of v. By the previous357
claim, |C(v)| ≥ 2. The same reasoning also implies that, there is an element x ∈ X that is a descendant of r358
but not of v. Since C(v) ⊆C(r), it follows that |C(r)| ≥ 3. Since C(r) is a clique in A (N) it follows that359
A (N) contains a C3.360

(ii) If v has outdegree 3 or more, then by the previous claim, C(v) contains at least three elements.361
Since C(v) is a clique in A (N) it follows that A (N) contains a C3.362

LEMMA 6.2. Let N be an arboreal network. Then A (N) is acyclic if and only if all vertices of N have363
outdegree at most 2, and the only vertices of N with outdegree 2 are the roots of N.364

Proof. Assume first that A (N) is acyclic. In particular, A (N) does not contain a C3. By Lemma 6.1,365
it follows that all vertices in N have outdegree at most 2, and the only vertices in N with degree 2 are the366
roots of N.367

Conversely, assume that all vertices in N have outdegree at most 2, and the only vertices in N with368
outdegree 2 are the roots of N. Then a vertex in N must either be a root, a hybrid vertex, or a leaf.369
Since N is arboreal and so cannot contain a root r and some x ∈ C(r) such that there exists a directed370
path from r to x that contains two hybrid vertices of N, it follows that |C(r)| = 2. Hence, there exists a371
bijection between the roots of N and the edges of G. Assume now for contradiction that G contains a cycle372
x1, . . . ,xk,xk+1 = x1, k ≥ 2. Then for all 1 ≤ i ≤ k, there exists a root ri in N such that C(ri) = {xi,xi+1}373
in view of the aforementioned bijection. In particular, for all 1 ≤ i ≤ k there exists a hybrid vertex hi374
that is common to the directed path from ri to xi and the directed path from ri+1 to xi. Without loss of375
generality, we may assume that no strict ancestor of hi belongs to both these paths. Hence, the sequence376
r1,h1,r2, . . . ,rk,hk is a k-alternating cycle in N. By Proposition 3.2, this is impossible since N is arboreal.377
Hence, A (N) is acyclic as claimed.378

We now use Lemmas 6.1 and 6.2 to relate the shared ancestry graph of an arboreal network with the379
Ptolemaic property. To help with this, we require a further concept. For N a network on X and Y a proper380
subset of X with |Y | ≥ 2, we define the restriction of N to Y to be the network N′ obtained from N by381
first removing all leaves in X −Y and their pendant arcs, then successively removing resulting vertices of382
outdegree 0 (and their incoming arcs) and vertices of indegree 0 and outdegree 1 (and their outgoing arcs),383
and, finally, suppressing vertices of indegree and outdegree 1, until no such vertices remain. For example,384
the restriction of the network depicted in Figure 2(ii) to Y = {1,2,3,4} is a rooted tree in which the arcs385
containing 1 and 2 share a vertex and also the arcs containing 3 and 4.386

We now show that the shared ancestry graph of an arboreal network is Ptolemaic.387

PROPOSITION 6.3. If N is an arboreal network, then A (N) is Ptolemaic.388

Proof. We first show that G = A (N) is chordal. Suppose for contradiction that G contains an induced389
cycle x1, . . . ,xk,xk+1 = x1, k≥ 4. Let Y = {x1, . . . ,xk}, and let N′ be the restriction of N to Y . Clearly, since390
N is arboreal, N′ is arboreal. By definition, A (N′) = G[Y ] also holds. So, by Lemma 6.2, N′ must contain a391

9

This manuscript is for review purposes only.



vertex with outdegree at least 2 that is not a root, or one of the roots of N′ has outdegree 3 or more. In both392
cases, it follows by Lemma 6.1 that G[Y ] contains a C3, which contradicts the assumption that Y induces a393
cycle in G with length at least 4. Thus, G is chordal.394

Using Theorem 5.1 to complete the proof, we next show that G does not contain a gem as an induced395
subgraph. To this end, assume for contradiction that there exists a subset Y = {x,y,z,u,v} ⊆ X such that396
G[Y ] is a gem. Let N′ be the restriction of N to Y . Then similar arguments as before imply that N′ is397
arboreal and that A (N′) = G[Y ]. Up to permutation in Y , we may assume that the edges of G[Y ] are {u,y},398
{y,z}, {z,v}, {x,u}, {x,y}, {x,z} and {x,v}.399

Since, by definition, N′ represents G[Y ], it follows that N′ contains a root r1 that is an ancestor of u400
and y, a root r2 that is an ancestor of y and z, and a root r3 that is an ancestor of z and v. Note that since401
neither {u,z} nor {v,y} are edges of G[Y ], the roots r1, r2 and r3 are pairwise distinct. In particular, there402
exists a hybrid vertex hy (resp. hz) in N′ that is a descendant of both r1 and r2 (resp. r2 and r3), and no403
strict ancestor of hy (resp. hz) enjoys this property. Note that hy and hz are incomparable in N′.404

Now, since N′ is arboreal, the underlying undirected graph of N′ is a tree. Suppressing all vertices in405
this tree with degree 2, results in a tree T with leaf set {x,y,z,u,v} which either (i) has a single internal406
vertex with degree 5, (ii) two internal vertices, one with degree 3 and one with degree 4, or (iii) three407
internal vertices each with degree 3.408

We now show that each of these cases leads to a contradiction, which will complete the proof. Case409
(i) is impossible, since each hybrid vertex in N′ corresponds to an internal vertex in T (since in the tree410
underlying N′ it has degree at least 3), and there are at least two hybrid vertices in N′. In Case (ii), each411
of the two internal vertices in T with degree greater than 2 must correspond to hybrid vertex in N′ which,412
in particular, implies that one of the leaves adjacent to the internal degree 3 vertex in T corresponds to a413
vertex with degree 1 in A (N′), which is impossible as A (N′) is a gem. Finally, in Case (iii), note that at414
least one of the two vertices in T with degree 3 that are adjacent to two leaves in T must be a hybrid vertex415
as there are at least two hybrid vertices in N′. But, as in Case (ii), this implies that there must be a vertex416
of degree 1 in A (N′) which is impossible. This completes the proof of the proposition.417

We are now ready to characterise arboreal-representable graphs.418

THEOREM 6.4. Let G be a connected graph with vertex set X. The following statements are equiva-419
lent:420

(i) G is Ptolemaic.421
(ii) The underlying graph of H(K(G)) is acyclic.422

(iii) N(K(G)) is arboreal.423
(iv) G is arboreal representable.424
(v) G is arboreal representable by a network with ecc(G) = |K(G)| roots.425

Proof. To ease notation, we put N = N(K(G)), H = H(K(G)), and C = C (K(G)). Note that the426
equivalence of (i) and (ii) holds by Theorem 5.1. We now show that (ii) and (iii) are equivalent.427

Suppose first that (iii) holds, i.e. N is arboreal. Since N is constructed from H by adding new arcs and428
vertices, it follows that H is a subgraph of N. Hence, the underlying graph of H is acyclic. Thus, (ii) holds.429

Conversely, suppose that (ii) holds, i.e. the underlying graph of H is acyclic. Let H+ be the graph430
obtained within the construction of N from H by adding, for all x ∈ X such that {x} /∈ C , a new vertex {x}431
with outdegree 0 and with parents all the sets A ∈ C that contain x and are such that no child of A in H432
contains x. This operation creates a cycle in the underlying graph of H+ if and only if H has two or more433
vertices A and B containing x such that no child of A in H and no child of B in H contains x. We claim that434
this cannot be the case.435

Indeed, suppose for contradiction that C contains two elements A,B such that A and B contain x, and436
no child of A and no child of B in H contains x. Since A,B ∈ C , their choice implies that there exists437
SA,SB ⊆K(G) distinct such that A =

⋂
Y∈SA

Y and B =
⋂

Y∈SB
Y . In particular, we have A∩B =

⋂
Y∈SA∪SB

Y .438
Since SA ∪ SB ⊆ K(G), A∩B ∈ C = V (H) follows by definition of C . By definition of H, A∩B is a439
descendant of A and B in H. Since x ∈ A∩B, we obtain a contradiction. This completes the proof of the440
claim.441

It follows that the underlying graph of H+ is acyclic. Since N is obtained from H+ by adding a new442
child to each vertex of H+ with outdegree 0 and indegree 2 or more, this operation does not create a cycle443
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in the underlying graph of H+. Hence N must be arboreal, i.e. (iii) holds.444
To complete the proof, first note that N represents G by Theorem 4.4 as K(G) is an edge clique cover445

of G. Hence, (iii) implies (v) in view of Theorem 4.4 and Theorem 5.2 since A (N) is Ptolemaic by446
Proposition 6.3. Moreover, that (v) implies (iv) is trivial, and that (iv) implies (i) follows immediately from447
Proposition 6.3.448

7. Symbolic maps. In this section, we characterise symbolic arboreal maps. We begin by considering449
properties of ancestors in networks.450

Let N be a network on X . As mentioned in the introduction, for x,y ∈ X two distinct leaves of N, we451
say that v ∈V (N) is a least common ancestor of x and y if v is an ancestor of both x and y, and no child of452
v in N enjoys this property. It is well-known that if N is a phylogenetic tree, then any two leaves of N have453
a unique least common ancestor. As we have seen in Section 4, in networks, two leaves do not necessarily454
have a least common ancestor. It is therefore of interest to understand when the uniqueness property holds455
for leaves that share an ancestor. The next result shows that this is always the case for arboreal networks.456

PROPOSITION 7.1. Let N be a network on X. If N does not contain a 2-alternating cycle, then if457
x,y ∈ X share an ancestor in N, then x and y have a unique least common ancestor in N. In particular, if458
N is an arboreal network, then the least common ancestor of two leaves sharing an ancestor is unique.459

Proof. Let N be an arboreal network on X that does not contain a 2-alternating cycle. Let x,y ∈ X460
such that x and y share an ancestor in N. Then x and y clearly have at least one least common ancestor in461
N. Assume for the following that x 6= y since otherwise the proposition trivially holds.462

To see that there exists exactly one such vertex, assume for contradiction that there exists v,w ∈V (N)463
distinct such that both v and w enjoy the property that they are a least common ancestor of x and y. Then464
there exists two distinct children vx and vy of v that are ancestors of x and y respectively, and two distinct465
children wx and wy of w that are ancestors of x and y, respectively. Since vx and wx are both ancestors of466
x there must exist a hybrid vertex hx belonging to a directed path from vx to x and a directed path from wx467
to x. Without loss of generality, we may choose hx such that no strict ancestor of hx enjoys this property.468
Clearly, y is not a descendant of hx as otherwise y is a descendant of vx and wx which contradicts the fact469
that v and w are least common ancestors of x and y in N. By symmetry, vy 6= wy. Hence, there must also470
exist a vertex hy belonging to a directed path from vy to y and a directed path from wy to y. Again, we may471
assume without loss of generality that no strict ancestor of hy enjoys this property. Hence, v,hx,w,hy is a472
2-alternating cycle in N, a contradiction. Thus, x and y have a unique least common ancestor in N.473

Note that the converse of Proposition 7.1 does not hold in general, since there exist networks N on X474
that contain 2-alternating cycles, and are such that the least common ancestor of x and y is unique for all475
x,y ∈ X that share an ancestor in N. For example, the phylogenetic network N depicted in Figure 2(iii)476
contains three 2-alternating cycles, but one can easily check that any pair of elements of {1,2,3} has a477
unique least common ancestor in N.478

Assume for the rest of the paper that M is a non-empty set and that � 6∈ M. As in the introduction,479
we set M� = M∪{�} and call a symmetric map d :

(X
2

)
→ M� a symbolic map (on X). Denoting for a480

network N the set of all vertices with outdegree 2 or more by V (N)−, we call a pair (N, t) consisting of a481
network N on X and a map t : V (N)−→M a labelled network (on X). In this case, we also call the map t482
a labelling map (for N).483

For N an arboreal network and x,y two leaves of N that share an ancestor, we denote by lcaN(x,y)484
the least common ancestor of x and y in N, which is well defined by Proposition 7.1. As mentioned in the485
introduction, every labelled arboreal network (N, t) on X induces a (unique) symbolic map d(N,t) :

(X
2

)
→486

M� which, for {x,y} ∈
(X

2

)
, is defined by taking d(N,t)(x,y) = t(lcaN(x,y)) if x and y share an ancestor in487

N, and d(N,t)(x,y) = � else. We say that a labelled arboreal network (N, t) on X explains a symbolic map488
d on X if d = d(N,t), in which case, we call d a symbolic arboreal map. Note that these maps have a special489
property in case N is a phylogenetic tree:490

LEMMA 7.2. Let (N, t) be a labelled arboreal network on X. Then d(N,t)(x,y) 6=� for all {x,y} ∈
(X

2

)
491

if and only if N is a phylogenetic tree on X.492

Proof. Set d = d(N,t). Note that since N is arboreal, it must be connected.493

Suppose first that d(x,y) ∈ M, for all {x,y} ∈
(X

2

)
. Then any two leaves of N share an ancestor.494
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Thus, X is a clique in A (N). Since N is arboreal and so cannot contain a 3-alternating cycle in view of495
Proposition 3.2, it follows by Lemma 4.2 that N contains a vertex v that is an ancestor of all elements of X .496
Using Proposition 3.2 again, it follows that, N cannot contain a hybrid vertex. Hence, v is necessarily the497
only root of N. Thus, N is a phylogenetic tree on X .498

Conversely, suppose that N is a phylogenetic tree on N. Then any two leaves of N share an ancestor,499
so d(x,y) ∈M for all {x,y} ∈

(X
2

)
.500

Now, suppose that d is a symbolic map on X . Let Gd be the graph with vertex set X , such that501
{x,y} ∈

(X
2

)
are joined by an edge if and only if d(x,y) 6=�. We next present a key link between the graph502

Gd associated to a symbolic map d on X and the shared ancestry graph of a network on X .503

LEMMA 7.3. Let (N, t) be a labelled arboreal network on X. Then Gd(N,t)
and A (N) are isomorphic504

and that isomorphism is the identity on X.505

Proof. Put d = d(N,t) and recall that X is the vertex set of both Gd and A (N). Let x,y ∈ X distinct. By506
definition, {x,y} is an arc of A (N) if and only if x and y share an ancestor in N. Since, by definition, N507
explains d, x and y share an ancestor in N if and only if d(x,y) 6=�, that is, if and only if {x,y} is an edge508
of Gd .509

Before presenting the main result of this section (Theorem 7.5), we recall some facts concerning510
symbolic ultrametrics including the 3- and 4-point conditions stated in the introduction. Suppose that511
d :
(X

2

)
→M� is a symbolic map. We say that three pairwise distinct elements x,y,z ∈ X are in ∆-relation512

(under d) if |{d(x,y), d(x,z),d(y,z)}|= 3 and� /∈ {d(x,y),d(x,z), d(y,z)}. We also say that four pairwise513
distinct elements x,y,z,u ∈ X are in Π-relation (under d) if, up to permutation of the elements x,y,z,u,514
d(x,y) = d(y,z) = d(z,u) 6= d(z,x) = d(x,u) = d(u,y) and � /∈ {d(x,y),d(x,z)}. These relations naturally515
arise when explaining symbolic maps in terms of phylogenetic trees (see e. g.,[1, 5, 6]). Bearing in mind516
that every symbolic map d :

(X
2

)
→ M� can be extended to a map d′ : X ×X → (M ∪{0})� by putting517

d′(x,y) = d(x,y) if x 6= y and d′(x,y) = 0 if x = y, Theorem 7.2.5 in [18] implies:518

THEOREM 7.4. Suppose that d :
(X

2

)
→M� is a symbolic map. Then there exists a labelled phyloge-519

netic tree (T, t) on X explaining d if and only if no three pairwise distinct elements of X are in ∆-relation520
under d and also no four pairwise distinct elements of X are in Π-relation under d.521

We now use this result to characterise symbolic maps that can be explained by a labelled arboreal522
network:523

THEOREM 7.5. Suppose that d :
(X

2

)
→M� is a symbolic map. Then, d is a symbolic arboreal map if524

and only if the following four properties all hold:525
(A1) Gd is connected and Ptolemaic.526
(A2) No three pairwise distinct elements of X are in ∆-relation under d.527
(A3) No four pairwise distinct elements of X are in Π-relation under d.528
(A4) If x,y,z,u ∈ X are pairwise distinct and are such that d(z,u) = � and d maps all other elements529

of
({x,y,z,u}

2

)
to an element of M, then d(x,z) = d(y,z) and d(x,u) = d(y,u) hold.530

Proof. It is straight-forward to check that the theorem holds if |X | ∈ {2,3} since Properties (A3) and531
(A4) vacuously hold in case |X | ≤ 3 and Property (A2) vacuously holds in case |X | = 2. So assume that532
|X | ≥ 4. Suppose first that d is a symbolic arboreal map, that is, there exists a labelled arboreal network533
(N, t) explaining d. By Lemma 7.3, there exists an isomorphism between Gd and A (N) that is the identity534
on X . In particular, Gd must be connected as A (N) is connected. Since, by Theorem 6.4, Gd is Ptolemaic535
it follows that Property (A1) holds.536

We now show that Property (A2) holds. As part of this, we remark that the proof of Property (A3)537
uses analogous arguments on subsets of X of size 4. Let x,y,z be three pairwise distinct elements of X .538
If � ∈ {d(x,y),d(x,z),d(y,z)}, then since (N, t) explains d, it follows that x,y,z are not in ∆-relation. So539
assume that � 6∈ {d(x,y),d(x,z),d(y,z)}. Then {x,y,z} is a clique in Gd . By Lemma 4.2, there exists a540
vertex v in N that is an ancestor of x,y and z. Since N is arboreal, it cannot contain a 3-alternating cycle541
by Proposition 3.2. Let Tv be the subtree of N rooted at v. Note that Tv must exist as N is arboreal and so542
cannot contain a 1-alternating cycle by Proposition 3.1. For tv the restriction of t to V (Tv), it follows that543
the labelled phylogenetic tree (Tv, tv) explains d|L(Tv). Property (A2) then follows from Theorem 7.4.544

To see that Property (A4) holds, let x,y,z,u ∈ X be pairwise distinct such that d(z,u) = � and that545
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all other elements in
({u,x,y,z}

2

)
are mapped to some element in M under d. By Lemma 4.2, there exists546

vertices v and w that are ancestors of the leaves in {x,y,z} and {x,y,u} respectively, and no vertex in N is547
an ancestor of all four of x,y,z,u. In particular, v and w do not share an ancestor in N as otherwise that548
ancestor would also be an ancestor of u and z which is impossible. Since both v and w are ancestors of the549
leaves x and y in N, there exists a hybrid vertex hx that is common to the directed paths from v to x and550
from w to x. Similarly, there exists a hybrid vertex hy that is common to the directed paths from w to x and551
from w to y. Without loss of generality, we may assume that neither hx nor hy has an ancestor enjoying this552
property.553

We first remark that hx is an ancestor of lcaN(x,y). To see this, it suffices to show that hx = hy. Assume554
for contradiction that hx 6= hy. By choice of hx and hy, these two vertices are incomparable in N. Hence,555
v,hx,w,hy is a 2-alternating cycle in N, a contradiction in view of Proposition 3.2 as N is arboreal. Thus,556
hx = hy and, so, hx is an ancestor of lcaN(x,y).557

Clearly, hx is not an ancestor of z, as otherwise w is an ancestor of z. Similarly, hx is not an ancestor558
of u, as otherwise v is an ancestor of u. So we must have lcaN(x,z) = lcaN(y,z) and lcaN(x,u) = lcaN(y,u).559
Since (N, t) explains d, it follows that d(x,z) = d(y,z) and d(x,u) = d(y,u) hold. This concludes the proof560
of Property (A4).561

Conversely, suppose that d satisfies Properties (A1)–(A4). We next construct a labelled arboreal net-562
work (N, t) that explains d. To help illustrate our construction, we refer the reader to Figure 5 for an563
example.564

Since Gd is connected and Ptolemaic, Theorem 6.4 implies that there exists an arboreal network N̂565
on X such that N̂ represents Gd . Without loss of generality, we may assume that N̂ does not contain an566
arc (u,v) such that u has outdegree 2 or more and v is a non-leaf tree-vertex, since contracting such arcs567
preserves A (N̂) (see Figure 5 (ii)) and so we could take the resulting network to be N̂. By construction, we568
have for any two distinct elements x and y in X that x and y share an ancestor in N̂ if and only if d(x,y) 6=�.569

To obtain a labelled arboreal network from N̂ that explains d, let v be a vertex of N̂ of outdegree 2 or570
more. By assumption on N̂, the children of v are either hybrid vertices of N̂ or leaves of N̂. We first claim571
that if h is a child of v that is a hybrid vertex, and z is a descendant of v that is not a descendant of h, then572
d(x,z) = d(y,z) holds for all leaves x,y below h in N̂. To see this, let x and y be leaves of N̂ that are below573
h. Let v′ be a tree vertex that is an ancestor of h but not of v, and let u be a leaf that is a descendant of v′574
but not of h. Note that such a leaf must exist as N is arboreal and so cannot contain a 1-alternating cycle by575

Proposition 3.2. By choice of x,y,z,u, there is exactly one element in
({x,y,z,u}

2

)
that is mapped to � under576

d, that is, the element {z,u}. By Property (A4), d(x,z) = d(y,z) holds, as claimed.577
In view of this claim, we can “locally replace” v with a tree-structure as follows. Let Cv be the set of578

children of v in N̂. By assumption on v, we have |Cv| ≥ 2. For v1,v2 ∈Cv distinct, we define a symbolic map579
dv :

(Cv
2

)
→M� by putting dv(v1,v2) = d(x1,x2) for some leaves x1 and x2 below v1 and v2, respectively.580

The fact that all non-leaf children of v are hybrid vertices together with the previous claim imply that581
the definition of dv(v1,v2) does not depend on the choices of x1 and x2. Moreover, dv(v1,v2) 6= � for all582
v1,v2 ∈Cv. Since Properties (A2) and (A3) hold by the definition of dv, it follows by Theorem 7.4 that there583
exists a labelled phylogenetic tree (Tv, tv) on Cv that explains dv (see Figure 5(iii)). We can then modify N̂584
at v into an arboreal network Nv on X by (i) removing all outgoing arcs of v in N̂, (ii) identifying v with585
the root of Tv and (iii) identifying each vertex w ∈ Cv in with the corresponding leaf of Tv. Note that Nv586
might be N̂. By construction, we have for all leaves x and y below v that lcaNv(x,y) is a vertex of Tv and587
that tv(lcaNv(x,y)) = d(x,y).588

Now, let N be the network obtained by applying the above process to all non-leaf vertices of N̂ of589
outdegree 2 or more (see Figure 5(iv)). By construction, for all vertices w of N of outdegree 2 or more,590
there exists exactly one vertex v of N̂ such that w ∈ V (Tv). Taken together, the maps tv induce a natural591
labelling map t : V (N)−→M.592

It remains to show that (N, t) explains d, that is, for all {x,y} ∈
(X

2

)
we have that d(x,y) =� if x and y593

do not share an ancestor in N, and d(x,y) = t(lcaN(x,y)) otherwise. To see this, let x,y be two elements of594
X . If d(x,y) = �, then, as mentioned before, x and y do not share an ancestor in N̂. By construction, that595
property still holds in N. If d(x,y) 6= �, then x and y share an ancestor in N̂. Let v be the least common596
ancestor of x and y in N̂. Then for (Tv, tv) the labelled phylogenetic tree obtained by replacing v in the597
construction of Nv from N̂, it follows in view of our observations concerning Nv that lcaN(x,y) is a vertex598
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of Tv and that tv(lcaN(x,y)) = d(x,y). Since, by definition, t(w) = tv(w) for all internal vertices w of Tv, we599
have t(lcaN(x,y)) = d(x,y) as desired. Hence, (N, t) explains d.600

1 2 3 4 5 6 7

1 2 3 4 5 6 7

N̂ : v1

v2

v4

v3

h1 h2

1 2 h1 h1 5 h2

h2 7

3 4

(Tv1 , tv1) : (Tv2 , tv2) :

(Tv3 , tv3) :

(Tv4 , tv4) :

(N, t) :

d :

(i) (ii)

(iv)(iii)

2 4 6

7

531

FIG. 5. (i) For X = {1, . . . ,7}, a symbolic map d :
(X

2

)
→{•,◦,�} represented in terms of an edge-labelled graph. For x,y ∈ X

distinct, there is an edge {x,y} in that graph that is solid if d(x,y) = • and dashed if d(x,y) = ◦. If there is no edge between x and
y then d(x,y) = �. In particular, Gd is the depicted graph, where the edge styles are ignored. Using the notation from the proof of
Theorem 7.5, (ii) presents the arboreal network N̂ for Gd in which no arc joins a vertex with outdegree 2 or more with a non-leaf
tree-vertex. (iii) For all internal tree-vertices vi of N̂, a labelled phylogenetic tree (Tvi , tvi ) on the set Cvi of children of vi that explains
dvi . (iv) The labelled arboreal network (N, t) that explains d obtained by replacing each internal vertex vi of outdegree 2 or more in
N̂ by (Tvi , tvi ).

We conclude this section by stating a uniqueness result. We say that two networks N and N′ on X601
are isomorphic if there exists a digraph isomorphism from V (N) to V (N′) that is the identity on X . In [1,602
Theorem 2] it is shown that for any symbolic ultrametric d there is a unique (up to isomorphism) labelled603
tree (T, t) which explains d which has the property that t(u) 6= t(v) for any internal arc (u,v) in T (i.e.604
an arc that does not contain a leaf). In a similar vein, we say that a labelled arboreal network (N, t) is605
discriminating if N has no internal arc (u,v) such that u has outdegree 1, and no internal arc (u,v) such that606
v has indegree 1 and t(u) = t(v). Then we have the following result:607

THEOREM 7.6. Let d :
(X

2

)
→ M� be a symbolic arboreal map. Then there exists a unique (up to608

isomorphism that is the identity on X) discriminating arboreal network (N, t) on X that explains d.609

Note that if N is a phylogenetic tree, then N has no internal arc (u,v) such that u has outdegree 1, so610
Theorem 7.6 is a generalization of the aforementioned uniqueness result for symbolic ultrametrics. As our611
proof for this result is somewhat long and technical we shall present it in the Appendix.612

8. Discussion. In this paper, we have characterised symbolic maps that can be explained by a labelled613
arboreal network. To do this, we introduced the concept of the shared ancestry graph of a network, and614
then exploited the connection between such graphs and Ptolemaic graphs for arboreal networks.615

It would be interesting to understand how far our results might be extended to other classes of net-616
works or symbolic maps. For example, as mentioned in the introduction, results have recently appeared on617
connections between symbolic maps and so-called level-1 phylogenetic networks [16], and so one might618
investigate if similar results can be derived in the setting where networks are permitted to have multiple619
roots. In addition, there are connections between ultrametrics, edge-labelled hypergraphs and symbolic 3-620
way maps [6, 14] that might potentially yield interesting generalizations within the arboreal setting. And,621
finally, it could be worth investigating how properties of symbolic arboreal maps vary with different choices622
of symbol set M; for example, in case M is taken to be a group (see e.g. [17]).623
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In another direction, note that since a Ptolemaic graph can be recognized in linear time [20], as a624
corollary of Theorem 7.5 we immediately obtain the following observation.625

COROLLARY 8.1. A symbolic arboreal map on a set X can be recognized in O(|X |4) time.626

It would be interesting to know if there is an algorithm for recognizing symbolic arboreal maps that has627
a better run-time than O(|X |4). Also for applications, it would be useful to develop an efficient algorithm628
for constructing a labelled arboreal network that explains a symbolic arboreal map. Such an algorithm629
is implicitly given in the proof of Theorem 7.5, in which we describe the “vertex-replacement” opera-630
tion, which constructs a representation of d from some N̂. For example, we can always choose N̂ to be631
N(K(Gd)), which we know how to construct from K(Gd). Note that [20, Theorem 8] shows how to con-632
struct a directed clique laminar tree associated to a Ptolemaic graph in linear time might also be useful for633
developing algorithms for symbolic arboreal maps.634

Acknowledgements. The authors thank the anonymous referees for their positive and helpful com-635
ments.636

REFERENCES637
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9. Appendix. In this appendix, we prove Theorem 7.6. To do this we shall first consider properties675
of the sets C(v) for v a vertex of an arboreal network N, and then show that, for a labelled arboreal network676
(N, t), we can recover the sets C(v) from the map d(N,t) which permits us to prove uniqueness. We begin677
with a result which underlines the key role played by the elements in C (K(G)) in case G is the shared678
ancestry graph for an arboreal network N.679

PROPOSITION 9.1. Let N be an arboreal network and let G = A (N). For all Z ∈ C (K(G)), there680
exists a vertex v of N such that C(v) = Z.681

Proof. To ease notation, set K = K(G). Let Z ∈ C (K). The proposition holds if |Z| = 1 since then682
Z =C(x) for some x ∈ X . So assume for the remainder that |Z| ≥ 2. We distinguish between the cases that683
Z ∈ K and that Z /∈ K.684

Suppose first that Z ∈ K. Since N is arboreal and so cannot contain a 3-alternating cycle by Proposi-685
tion 3.2, Lemma 4.2 implies that there exists a vertex vZ of N such that Z ⊆C(vZ). Let x ∈C(vZ). Since x686
and z share an ancestor for all z ∈ Z, it follows that Z∪{x} is a clique in G. By maximality of Z it follows687
that x∈ Z. Hence, C(vZ)⊆ Z. Thus C(vZ) = Z, which completes the proof of the proposition in case Z ∈K.688

So, suppose Z /∈ K. Let KZ = {Y ∈ K |Z ⊂ Y}. Note that since Z ∈ C (K)−K, we have |KZ | ≥ 2 and689
Z =

⋂
Y∈KZ

Y . By Lemma 4.2, it follows that there exists a vertex vZ of N such that Z ⊆C(vZ). Without690
loss of generality, we can choose vZ such that no strict descendant of vZ satisfies this property. We now691
show that C(vZ) ⊆ Z must also hold, which implies that Z = C(vZ) and thus completes the proof of the692
proposition.693

We first claim that if y ∈ X −C(vZ) is such that y and z share an ancestor in N for all elements z ∈ Z,694
then for all x ∈C(vZ), x and y share an ancestor in N.695

To see that the claim holds, suppose for contradiction that there exists y ∈ X −C(vZ) and x ∈ C(vZ)696
such that y and z share an ancestor in N for all elements z ∈ Z but x and y do not share an ancestor in N. By697
choice of vZ , there exists two elements z1,z2 ∈ Z distinct such that z1 and z2 are descendant of two distinct698
children v1 and v2 of vZ , respectively. Indeed, if this is not the case, then all elements of Z are descendant699
of the same child v′ of vZ , which contradicts our choice of vZ .700

Now, let w1 = lca(z1,y) and w2 = lca(z2,y). Since x and y do not share an ancestor in N, vZ is701
incomparable with w1 and w2. For i ∈ {1,2}, let hi be the last vertex common to the paths from wi to zi702
and from vZ to zi. Since wi and vZ are incomparable in N, hi is a (not necessarily strict) descendant of vi.703
In particular, wi and hi are distinct. We conclude the proof of the claim by considering two possible cases:704
w1 and w2 are incomparable in N, or one is an ancestor of the other.705

If w1 and w2 are incomparable in N, then w1,h1,vZ ,h2,w2,hy is a 3-alternating cycle of N, where hy706
is the last vertex common to the directed paths from w1 to y and from w2 to y. In view of Proposition 3.2707
this is impossible since N is arboreal. If one of w1,w2 is an ancestor of the other, say w1 is an ancestor of708
w2 in N, then w1 is an ancestor of h2 in N, and w1,h1,vZ ,h2 is a 2-alternating cycle of N. Then the same709
argument as before shows that this is impossible. This concludes the proof of the claim.710

Now by the claim it follows that for all x∈C(vZ) and all Y ∈KZ , x shares an ancestor with all elements711
of Y . Hence Y ∪{x} is a clique in G for all such Y . Since for all such Y , we have that Y ∈ K, it follows that712
x ∈ Y . Thus C(vZ)⊆ Y for all Y ∈ KZ , and so C(vZ)⊆

⋂
Y∈KZ

Y = Z.713

We now prove two useful lemmas which provide more information concerning the sets C(v) for v a714
vertex in an arboreal network.715

LEMMA 9.2. Let N be an arboreal network and let u,v ∈V (N) distinct. Then the following hold:716
(i) If u is an ancestor of v in N, then u has exactly one child that is an ancestor of v. Moreover, all717

other children u′ of u satisfy C(u′)∩C(v) = /0.718
(ii) If C(v) ⊆C(u) and u and v are incomparable in N, then there exists a non-leaf descendant h of719

both u and v satisfying C(h) =C(v).720

Proof. (i) To see the first part of the statement, suppose for contradiction that u has two distinct children721
u1,u2 that are both ancestors of v. Then there exists a vertex h in N that is an ancestor of v, and is a722
descendant of both u1 and u2. Choosing h in such a way that no strict ancestor of h is a descendant of both723
u1 and u2, it follows that u,h is a 1-alternating cycle of N. In view of Proposition 3.2, this is impossible724
since N is arboreal. Hence, u has exactly one child that is an ancestor of v.725

To see the second part of the statement, let u′ be a child of u that is not an ancestor of v, and let726
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x ∈C(u′). If x ∈C(v), then x is a descendant of both u′ and v in N. Hence, there exists a vertex h that is an727
ancestor of x in N, and a descendant of both u′ and v. Choosing h in such a way that no strict ancestor of h728
is a descendant of both u′ and v, it follows that u,h is a 1-alternating cycle of N. Since N is arboreal this is729
impossible in view of Proposition 3.2. Hence, C(u′)∩C(v) = /0.730

(ii) Since u and v are incomparable, for all z ∈C(v), there exists a vertex hz that is an ancestor of z, and731
a descendant of u (since C(v) ⊆C(u)) and v. Without loss of generality, we can choose hz in such a way732
that no strict ancestor of hz is a descendant of both u and v. Note that hz must be a hybrid vertex of N. In733
particular, it cannot be a leaf of N.734

We claim that C(hz) = C(v), for any z ∈C(v). To see this, assume for contradiction that there exists735
x,y ∈C(v) distinct such that hx 6= hy. Then u,hx,v,hy is a 2-alternating cycle of N which is impossible in736
view of Proposition 3.2 as N is arboreal. Hence, hx = hy, for all x,y ∈C(v). Choose some x ∈C(v). Then737
C(v)⊆C(hx) by the previous argument. Moreover, since hx is a descendant of v, we also have C(hx)⊆C(v)738
which completes the proof of the claim and also the proof of the lemma.739

LEMMA 9.3. Let N be an arboreal network. If N has no vertex of outdegree 1 whose unique child is a740
non-leaf vertex then C(u) 6=C(v), for all internal vertices u,v of N distinct.741

Proof. Assume for contradiction that there exist internal vertices u and v in N distinct such that C(u) =742
C(v). Note that we may assume that u and v are such that u is a strict ancestor of v in N (indeed, if v is743
an ancestor of u in N, then the roles of u and v can be reversed). If u and v are incomparable in N, then744
by Lemma 9.2(ii), there exists a non-leaf vertex h that is a descendant of both u and v in N and satisfies745
C(h) =C(v) =C(u). In this case, h can play the role of v.746

Since u is a strict ancestor of v in N and v is not a leaf, u has outdegree at least 2. Combined with747
Lemma 9.2(i), it follows that there exists a child u′ of u in N that is not an ancestor of v and for which748
C(u′)∩C(v) = /0 holds. However, since u′ is a child of u, we also have C(u′) ⊆ C(u) = C(v) which is749
impossible. Hence, no two such elements u and v can exist.750

Now, recall from Section 7 that a labelled arboreal network (N, t) is discriminating if N has no internal751
arc (u,v) such that u has outdegree 1, and no internal arc (u,v) such that v has indegree 1 and t(u) = t(v).752
This definition is motivated by the fact that, for (N, t) a labelled arboreal network, the labelled arboreal753
network (N′, t ′) obtained from N by successively applying the following operations to internal arcs (u,v):754

• If u has outdegree 1 then collapse (u,v) into a new vertex w. If v had outdegree 2 or more, put755
t ′(w) = t(v).756
• If v has indegree 1 and t(u) = t(v) then collapse (u,v) into a new vertex w and put t ′(w) = t(v).757

and putting t ′(v) = t(v) for all other vertices v satisfies d(N′,t ′) = d(N,t). Note that, in a discriminating758
labelled arboreal network (N, t), a vertex v of N has outdegree 2 or more if and only if |C(v)| ≥ 2. In759
particular, the labelling map t assigns an element of M to all such vertices.760

We now prove a result which, for a labelled arboreal network (N, t), relates the sets C(v) for v a vertex761
in N with properties of the map d(N,t). First we require some further terminology. Let d :

(X
2

)
→M� be a762

symbolic map. We say that a non-empty subset Y of X is a clique-module of d if |Y |= 1, or if Y is a clique763
in Gd , and for all x,y∈Y and all z∈X−Y we have |{d(x,z),d(y,z),�}|≤ 2. Informally speaking, the latter764
means that if both d(x,z) and d(y,z) are elements in M then d(x,z) = d(y,z). We say that a clique-module765
Y is trivial if |Y |= 1, and that it is strong if for all clique-modules Y ′ of d such that Y ′∪Y is a clique in Gd ,766
Y ∩Y ′ ∈ {Y,Y ′, /0}. Note that trivial clique-modules are always strong. We denote by M (d) the set of all767
strong, non-trivial clique-modules of d. To illustrate these notions, let X = {x,y,z, t,u}, and consider the768
map d :

(X
2

)
→ {•,◦,�} defined by d(x,z) = d(x, t) = d(y,z) = d(y, t) = d(z, t) = •, d(x,y) = d(t,u) = ◦,769

and d(x,u) = d(y,u) = d(z,u) =�. Then the non-trivial clique-modules of d are {x,y,z, t}, {x,y}, {x,y,z},770
{x,y, t}, {z, t} and {t,u}. Of these, only {x,y,z, t}, {x,y} and {t,u} are strong.771

PROPOSITION 9.4. Let (N, t) be a labelled arboreal network on X. For all vertices v of N, C(v) is a772
clique-module of d = d(N,t). Moreover, for all Y ∈M (d), there exists a vertex v of N such that C(v) = Y .773

Proof. We begin by proving the first statement in the proposition. Let v be a vertex of N. If |C(v)|= 1,774
then C(v) is a trivial clique-module of d. Hence, we may assume from now on that |C(v)| ≥ 2.775

By definition of d, C(v) is a clique in Gd . Now, let x,y ∈ C(v) distinct, and let z /∈ C(v) such that776
� /∈ {d(x,z),d(y,z)}. Then, the vertex lcaN(x,y) is a descendant of v in N, while the vertices lcaN(x,z)777
and lcaN(y,z) are not. Since these three least common ancestors cannot be pairwise distinct, lcaN(x,z) =778
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lcaN(y,z), and so d(x,z) = t(lcaN(x,z)) = t(lcaN(y,z)) = d(y,z). Hence, C(v) is a clique-module of d.779
To see that the second statement in the proposition holds, let Y by a strong, non-trivial clique-module780

of d. By Lemma 4.2, there exists a vertex v of N such that Y ⊆C(v). Without loss of generality, we may781
choose v in such a way that no child of v enjoys this property. We now show that C(v) ⊆ Y also holds, so782
that C(v) = Y which concludes the proof of the proposition.783

By choice of v, there exist two distinct children v1,v2 of v such that C(v1)∩Y 6= /0 and C(v2)∩Y 6= /0.784
Note that since N is arboreal, Proposition 3.2 implies that C(v1)∩C(v2) = /0. Now, let C′ =C(v)−C(v1).785
Since C′ is a subset of C(v), C′ is a clique in Gd . We next claim that C′ is a clique-module of d. Let786
x,y ∈C′, z /∈C′. In view of the first part of the proposition, C(v) is a clique-module of d, so if z /∈C(v), we787
have d(x,z) = d(y,z). If z ∈C(v), then since z /∈C′, we have z ∈C(v1). Hence, lca(x,z) = lca(y,z) = v and788
so d(x,z) = d(y,z). Thus, C′ is a clique-module of d, as claimed.789

Since Y is a strong non-trivial clique-module of d, we have C′ ∩Y ∈ {C′,Y, /0}. Since C(v1)∩Y 6= /0,790
we have that Y ⊆C′ does not hold. Moreover, since C(v2)∩Y 6= /0 and C(v2)⊆C′ it follows that Y ∩C′ = /0791
does not hold either. Hence, C′ = C(v)−C(v1) ⊆ Y . Replacing v1 with v2 in the latter argument, implies792
that C(v)−C(v2)⊆ Y also holds. Thus, C(v)⊆ Y , as required.793

Putting together the above results, we now prove a key theorem that enables us to prove Theorem 7.6.794

THEOREM 9.5. Let (N, t) be a labelled arboreal network on X and d = d(N,t). Then the following795
statements are equivalent:796

(i) (N, t) is discriminating.797
(ii) The map φ : V (N)−X → C (K(Gd))∪M (d) given by φ(v) = C(v), for all v ∈ V (N)−X, is a798

bijection between V (N)−X and C (K(Gd))∪M (d).799

Proof. To ease notation, set K = K(Gd).800
(i)⇒ (ii) We first show that, if v ∈V (N)−X then (at least) one of C(v) ∈ C (K) or C(v) ∈M (d) must801

hold. By Proposition 9.4, C(v) is a clique-module of d. If v is a root of N, then C(v) ∈ K ⊆ C (K) (in fact802
C(v)∈M (d) also holds). If v has indegree 2 or more in N, then C(v) =

⋂
C(v)⊂Y∈K Y . Hence, C(v)∈C (K)803

holds in this case too.804
So, suppose v has indegree 1 in N. Then since v 6∈ L(N), the outdegree of v in N must be at least 2.805

Hence, v ∈V (N)−. Furthermore, since the unique parent u of v in N cannot be a leaf either, (u,v) must be806
an internal arc of N. Since (N, t) is discriminating it follows that the outdegree of u is at least 2. Hence,807
u ∈V (N)− also holds.808

We next claim that C(v) ∈M (d), that is, C(v) is a strong clique-module for d. Suppose for contra-809
diction that C(v) is not a strong clique-module for d, that is, there exists a clique-module Y of d, such that810
Y ∪C(v) is a clique in Gd and Y ∩C(v) /∈ {Y,C(v), /0}. Since N is arboreal, Gd and A (N) are isomorphic811
in view of Lemma 7.3. Since |Y ∪C(v)| ≥ 2, Lemma 4.2 implies that there exists a vertex w such that812
Y ∪C(v)⊆C(w). Without loss of generality, we may choose w in such a way that no strict descendant of w813
has this property. In view of Lemma 9.2(ii), we may also assume that w is an ancestor of v. Since Y *C(v)814
as C(v) is not a strong clique-module for d, it follows that w is a strict ancestor of v. In particular, w has815
outdegree 2 or more. Thus, w ∈V (N)−.816

We next show that w 6= u and that t(w) = t(v). To this end, note that by the choice of w there exists817
y ∈ Y such that lcaN(x,y) = w for all x ∈ C(v). Now, let x ∈ C(v) and z ∈ C(v)∩Y such that x /∈ Y and818
lcaN(x,z) = v. Note that such an x and z always exist since, by the choice of Y , there always exist some819
a ∈ C(v)−Y and b ∈ C(v)∩Y . If lcaN(a,b) = v then we take x = a and z = b. Otherwise, lcaN(a,b)820
must be a strict descendant of v. In that case, we can choose some c ∈ C(v) such that c and lcaN(a,b)821
are descendants of different children of v. If c ∈ Y then we can take z to be c and x to be a, and if c 6∈ Y822
then we can take x to be c and z to be b. Since Y is a clique-module of d and neither d(x,y) = � nor823
d(x,z) = � holds as x,y,z ∈ C(v), we obtain d(x,y) = d(x,z). Since (N, t) explains d, it follows that824
t(w) = d(x,y) = d(x,z) = t(v), as required. Since t(u) 6= t(v) because (N, t) is discriminating, w 6= u825
follows, also as required.826

Now, let p ∈C(u) with p /∈C(v). Then lcaN(x, p) = lcaN(z, p) = t(u). If p ∈ Y held, then d(x, p) =827
d(x,z) since Y is a clique-module of d and neither d(x, p) 6=� nor d(y, p) 6=� holds. But this is impossible,828
since d(x, p) = t(u) 6= t(v) = d(x,z). Hence, p /∈ Y . Similar arguments as in the case that p ∈ Y imply that829
d(z, p) = d(y, p). But this is also impossible, since t(u) 6= t(v) = t(w) = d(y, p) = d(z, p) = t(u). Thus,830
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C(v) ∈M (d), as claimed.831
It remains to show that the map φ is bijective. That φ is surjective is a direct consequence of Propo-832

sitions 9.1 and 9.4. That φ is injective is a direct consequence of Lemma 9.3 since (N, t) is discriminating833
and so N does not contain an internal arc (u,v) such that u has outdegree 1.834

(ii)⇒ (i) We first remark that N cannot have an internal arc (u,v) such that u has outdegree 1. Indeed,835
if N had such an arc, then C(u) =C(v) would hold which contradicts the injectivity of φ . To see that N is836
discriminating, we therefore need to show that if (u,v) is an internal arc of N such that v has indegree 1837
then t(u) 6= t(v).838

So, let (u,v) be an internal arc of N such that v has indegree 1. Since φ is injective and so C(w) 6=C(v)839
holds for all vertices w ∈ V (N), it follows that C(v) /∈ C (K). Hence, C(v) ∈M (d), that is, C(v) is a840
strong clique-module of d. Now, let v′ be a child of v which exists because v is an internal vertex of N. Let841
Y =C(u)−C(v′). Note that since v has indegree 1, v has outdegree 2 or more. In particular, v′ is not the only842
child of v. Clearly, Y is a clique in Gd . Since C(u) 6=C(v), we have Y ∩C(v) =C(v)−C(v′) /∈ {Y,C(v), /0}.843
Combined with the fact that C(v) is a strong clique-module of d it follows that Y cannot be a clique-module844
of d. Hence, there must exist three elements x0,y0 ∈ Y , z0 ∈ X −Y such that � /∈ {d(x0,z0),d(x0,z0)} and845
d(x0,z0) 6= d(y0,z0).846

Since, by Proposition 9.4, C(u) is a clique-module of d, we have for all x,y ∈Y ⊆C(u) distinct and all847
z∈X−C(u), that |{d(x,z),d(y,z),�}|≤ 2. Hence, z0 ∈C(u)−Y =C(v′). Since, for all x,y∈C(v)−C(v′),848
we have lcaN(x,z) = lcaN(y,z) = v, it follows that d(x,z) = d(y,z) = t(v) 6= �. Similar arguments imply849
that, for all x,y ∈ C(u)−C(v), lcaN(x,z) = lcaN(y,z) = u. Thus, d(x,z) = d(y,z) = t(u) 6= � holds too.850
Hence, we must have (up to permutation) x0 ∈C(u)−C(v) and y0 ∈C(v)−C(v′). In particular, we have851
d(x0,z0) = t(u) and d(y0,z0) = t(v). Since d(x0,z0) 6= d(y0,z0), we have t(u) 6= t(v), as required.852

Proof of Theorem 7.6. In view of Theorem 9.5, for two discriminating labelled arboreal networks (N, t)853
and (N′, t ′) to both explain d, there must exist a bijection ψ : V (N)→ V (N′) that is the identity on X and854
such that C(v) =C(ψ(v)), for all v∈V (N). It therefore suffices to show that (a) for all u,v∈V (N) distinct,855
(u,v) is an arc of N if and only if (ψ(u),ψ(v)) is an arc of N′, and (b) for all internal vertices v of N of856
outdegree 2 or more, t(v) = t ′(ψ(v)).857

(a) Let u,v ∈ V (N) distinct. By symmetry, it suffices to show that, if (u,v) is an arc of N then858
(ψ(u),ψ(v)) is an arc of N′. Clearly, u is an internal vertex of N and C(v) ⊆ C(u). If v is also an in-859
ternal vertex of N, then Lemma 9.3 together with Lemma 9.2(ii) imply that φ(u) is an ancestor of ψ(v) in860
N′. If v is not an internal vertex of N, then it must be a leaf of N. Hence, ψ(v) = v ∈ C(u) = C(ψ(u)).861
Consequently, ψ(u) must also be an ancestor of ψ(v) in this case. To see that ψ(u) is in fact a parent862
of φ(v), suppose for contradiction that there is a vertex w ∈ V (N) distinct from u and v such that ψ(w)863
lies on the directed path from φ(u) to ψ(v) in N′. Combined with the definition of ψ , it follows that864
C(v)(C(w)(C(u). Since u and w cannot be leaves of N, Lemma 9.3 and Lemma 9.2(ii) imply that u is865
an ancestor of w and, in case v is not a leaf of N either, that w is an ancestor of v in N. If v is a leaf then866
similar arguments as before imply that w is an ancestor of v. Since (u,v) is an arc of N, it follows that u,v867
is a 1-alternating cycle of N. But this is impossible in view of Proposition 3.2 as N is arboreal. Thus such868
a vertex w cannot exist and, so, (ψ(u),ψ(v)) must be an arc of N′.869

(b) Assume that v is an internal vertex of N that has outdegree 2 or more. Since (N, t) is discrim-870
inating, |C(v)| ≥ 2 must hold since otherwise N would have a 1-alternating cycle which is impossible871
in view of Proposition 3.2 because N is arboreal. Hence, t(v) = d(N,t)(x,y) holds for all x,y ∈ C(v) for872
which lcaN(x,y) = v, and t ′(ψ(v)) = d(N′,t ′)(x′,y′) holds for all x,′ y′ ∈C(v) for which lcaN′(x′,y′) = ψ(v).873
Since, by (a), the map ψ is a graph isomorphism from N to N′ that is the identity on X , it follows that if874
lcaN(x,y) = v, then lcaN′(x,y) = ψ(v). Hence, t(v) = t ′(ψ(v)).875

876
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