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Abstract. A network N on a finite set X, |X| > 2, is a connected directed acyclic graph with leaf set X in which every root
in N has outdegree at least 2 and no vertex in N has indegree and outdegree equal to 1; N is arboreal if the underlying unrooted,
undirected graph of N is a tree. Networks are of interest in evolutionary biology since they are used, for example, to represent the
evolutionary history of a set X of species whose ancestors have exchanged genes in the past. For M some arbitrary set of symbols,
d: ()2() — M U{®} is a symbolic arboreal map if there exists some arboreal network N whose vertices with outdegree two or more
are labelled by elements in M and so that d({x,y}), {x,y} € ()2() is equal to the label of the least common ancestor of x and y in
N if this exists and © else. Important examples of symbolic arboreal maps include the symbolic ultrametrics, which arise in areas
such as game theory, phylogenetics and cograph theory. In this paper we show that a map d : ()2( ) — MU{®} is a symbolic arboreal
map if and only if d satisfies certain 3- and 4-point conditions and the graph with vertex set X and edge set consisting of those pairs
{x,y} € ()2() with d({x,y}) # © is Ptolemaic (i.e. its shortest path distance satisfies Ptolemy’s inequality). To do this, we introduce
and prove a key theorem concerning the shared ancestry graph for a network N on X, where this is the graph with vertex set X and
edge set consisting of those {x,y} € ()2( ) such that x and y share a common ancestor in N. In particular, we show that for any connected
graph G with vertex set X and edge clique cover K in which there are no two distinct sets in K with one a subset of the other, there is
some network with |K| roots and leaf set X whose shared ancestry graph is G.

1. Introduction. Given a finite set X, |X| > 2, an arbitrary non-empty set M of symbols, and some
element © that is not in M, a symbolic map is a function d that maps the collection of 2-subsets of X, i.e.
()2(), into the set M® = MU {®}. For brevity, given a symbolic map d we denote d({x,y}), {x,y} € ()2(),
by d(x,y). Important examples of such maps are the symbolic ultrametrics. These are maps d : ()2() —M
for which there exists some rooted tree T with leaf set X in which each internal vertex of T is labelled
by an element in M, and such that d(x,y), {x,y} € ()2() is given by the element in M that labels the least
common ancestor of xand yin T (see e.g. Figure 1(i)). Symbolic ultrametrics were introduced in a different
guise by Gurvich in [5], and subsequently rediscovered and studied in [1]. They are a generalization of the
well-known ultrametrics (see e. g.[18]), and have close links with the theory of cographs (see e. g. [8]).
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FIG. 1. For the set M = {e,0,x}, (i) a phylogenetic tree with leaf set X = {x,y,z,u,w}, a labelling of its internal vertices by
M, and the corresponding symbolic ultrametric d. (ii) An arboreal network with leaf set X, a labelling of its internal vertices having
outdegree 2 by M, and the corresponding symbolic arboreal map d'.

Symbolic maps also arise from more general structures than trees. For example, maps arising from
hypergraphs and di-cographs are investigated in [6] and [11], respectively (see also e.g. [4]). In this paper,
we are interested in understanding symbolic maps that arise from a network on X, that is, a connected
directed acyclic graph with leaf set X in which every root in N has outdegree at least 2 and no vertex
in N has indegree and outdegree equal to 1. Networks arise, for example, in the study of the evolutionary
history of species whose ancestors have exchanged genes in the past (see e.g. [15]), and important examples
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include the well-studied phylogenetic networks, that is, networks that have a single root (see e.g. [19] for a
recent review). Relatively little is known concerning properties of symbolic maps arising from networks;
to our best knowledge they have only been directly considered in [3] where symbolic maps arising from
rooted median networks are introduced, in [16] where some results are presented for 3-way symbolic maps
that arise from so-called level-1 networks, and in [9, 10], for symbolic maps whose image set is restricted
to two elements.

Here we shall consider symbolic maps that arise from arboreal networks, that is, networks whose un-
derlying (undirected and unrooted) graph is a tree [15]. An example of an arboreal network is pictured in
Figure 1(ii); note that such a network has a single root if and only if it is a rooted tree. Due to their close-
ness to unrooted trees, arboreal networks are among the simplest multiple-rooted networks. As we shall
see they enjoy a number of key structural properties that do not always hold for general multiple-rooted
networks. As such, a better understanding of these networks represents a first step towards understanding
more complex networks. Arboreal networks are also closely related to laminar-trees, introduced in [20],
with algorithmic applications in the field of graph theory.

As with symbolic ultrametrics, symbolic maps arise naturally from arboreal networks by labelling
each vertex in such a network with outdegree at least 2 by an element in M, through the notion of a least
common ancestor. Roughly speaking, a vertex v is a least common ancestor of two vertices x and y if v
is an ancestor of both x and y, and no child of v enjoys that property. In particular, a symbolic map d is
obtained from an arboreal network N by defining d(x,y), {x,y} € ()2(), to be the element in M that labels
the least common ancestor of x and y in N if such a vertex exists, and ® otherwise (see e.g. Figure 1(ii)).
As we shall see (Proposition 7.1), in an arboreal network, the least common ancestor of two leaves, if it
exists, is always unique, so this map is uniquely defined.

In this paper, we characterise symbolic arboreal maps, that is, symbolic maps that arise from arboreal
networks. Note that symbolic ultrametrics can be characterised amongst symbolic maps d in terms of a 3-
and 4-point condition as follows [1, 5]. The 3-point condition states that there are no x,y,z € X distinct
such that [{d(x,y),d(x,z),d(y,z)}| =3 and © & {d(x,y),d(x,z),d(y,z)}, and the 4-point condition states
that there are no four distinct elements x,y,z,u in X such that

d(xvy) = d(y,z) = d(Za M) # d(yvu) = d(uvx) = d(xvz)v

and ® ¢ {d(x,y),d(x,z)}'. In our main result, Theorem 7.5, we show that a symbolic map is arboreal if
and only if it satisfies these 3- and 4-point conditions, an additional 4-point condition, and the graph G,
with vertex set X and edges consisting of elements {x,y} € ()2(), with d(x,y) # @ is Ptolemaic. Note that a
graph with vertex set X is Ptolemaic if its shortest path distance d* satisfies Ptolemy’s inequality [12], i.e.

d*(x,y)-d*(z,u) +d*(x,u)-d*(y,2) > d*(x,2) - d" (y,u)

holds for all x,y,z,u € X. In addition, we show that there is a special type of labelled arboreal network that
can be used to uniquely represent any given symbolic arboreal map (see Theorem 7.6).

The rest of this paper is organised as follows. In Section 2, we collect together relevant basic definitions
and terminology. In Section 3, we then formally define arboreal networks and present some characteriza-
tions of such networks that will be useful later on. In Section 4, we introduce the notion of the shared
ancestry graph for a network, and show that given any connected graph G with vertex set X, we can con-
struct a network N with leaf set X from any edge clique cover of G that represents G, that is, whose shared
ancestry graph is G (Theorem 4.4). In Section 5, we review some properties of Ptolemaic graphs, including
a key result concerning the laminar structure of Ptolemaic graphs from [20], and show that the minimum
size of an edge clique cover for such a connected graph is equal to the number of maximal cliques in that
graph with size at least 2 (Theorem 5.2). We then use these results in Section 6 to characterise shared
ancestry graphs of arboreal networks, showing that if G is a connected graph with vertex set X then there
exists an arboreal network with leaf set X that represents G if and only if G is Ptolemaic (Theorem 6.4).
In Section 7, we prove our aforementioned main result (Theorem 7.5) by linking properties of the shared
ancestry graph of an arboreal network whose associated symbolic map is d with the graph G, as defined

'We have stated the 3- and 4-point conditions in slightly more general terms than in [1, 5] as we need to consider the additional
© symbol which does not arise when considering only trees.
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above. We also state the uniqueness result, Theorem 7.6, which we prove in the Appendix. We conclude
in Section 8 by presenting some potential directions for future work.

2. Preliminaries. Throughout this paper, X is a finite set with |X| > 2, and all graphs are simple,
directed or undirected graphs that have a finite vertex set. To simplify terminology, we usually refer to a
directed graph as a digraph and to an undirected graph as a graph.

Let N be a digraph with vertex set V(N). Then we call the number of arcs coming into a vertex v of N
the indegree of v and denote it by indegy(v) = indeg(v). Similarly, we call the number of outgoing arcs of
a vertex v the outdegree of v and denote it by outdegy(v) = outdeg(v). A leaf of N is a vertex with indegree
1 and outdegree 0, and a roor is a vertex with indegree 0. We denote the set of leaves of G by L(G). An
internal vertex (of N) is a vertex with outdegree 1 or more, and a tree-vertex (of N) is a vertex with indegree
0 or 1. Note that if N contains a vertex v with indegree and outdegree 1, by suppressing v we mean that we
remove v and its incident arcs and add a new arc from the parent of v to the child of v. A vertex v of N is
said to be an ancestor of a vertex w in N if there exists a directed path in N from v to w. In this case, we
say that w is below v and call w a descendant of v. If v is an ancestor of w and v # w then we call v a strict
ancestor of w and w a strict descendant of v. Note that a vertex is both an ancestor and a descendant of
itself. If neither v nor w is an ancestor of the other, then we say that v and w are incomparable (in N). Note
that if two vertices of N are incomparable then they must necessarily be distinct. We say that two vertices
v,w € V(N) share an ancestor in N if there exists a vertex u (possibly equal to v or w) such that u is an
ancestor of both v and w. We say that N is connected if the underlying graph of N obtained by ignoring the
directions of the arcs of N is a connected graph.

A network (on X) is a connected, acyclic digraph N with leaf set X such that all vertices of N of
indegree 0 have outdegree at least 2, all vertices of outdegree 0 have indegree 1, and no vertices have
indegree and outdegree equal to 1. For N a network, we denote by R(N) the set of roots of N, and let
r(N) = |R(N)]. For simplicity, we shall sometimes call a network with k > 1 roots a k-rooted network. For
v a vertex of N, we let C(v) C X denote the set of leaves of N that have v as an ancestor. A (single rooted)
phylogenetic network (on X) is a network on X with one root (see e.g. [19]), and a phylogenetic tree (on
X) is a phylogenetic network in which every vertex is a tree-vertex.

Vertices in a network N that have indegree 2 or more are called hybrid vertices, and the set of hybrid
vertices of N is denoted by H(N). We put h(N) = |[H(N)|. Also, we put 2(N) = 0 if H(N) = 0 and,
otherwise, we put 2(N) = Yhen(n)(indegy(h) —1). Note that h(N) = h(N) if and only if all hybrid vertices
of N have indegree 2. If r(N) > 2, then for r € R(N), we denote by N — r the digraph obtained from N by
first removing all vertices of N and their incident arcs that are not a descendant of any vertex in R(N) — {r}
and then suppressing resulting vertices of indegree and outdegree 1. Note that, in general, N — r need not
be a network as it might not be connected.

() (if) (iid)

FIG. 2. (i) An arboreal network with 3 roots on {1,...,7}. (ii) A 2-rooted network on {1,...,6} that is not arboreal as it
contains the 2-alternating cycle v,hy,w,hy. (iii) A 1-rooted network (i. e. a phylogenetic network) on {1,2,3} that contains I-, 2- and
3-alternating cycles.

3. Characterizing arboreal networks. We call a network N arboreal if its underlying graph is a
tree. For example, the 3-rooted network depicted in Figure 2(i) is arboreal. In this section, we give two
characterizations of arboreal networks that will be useful later on. We begin with a useful lemma.
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LEMMA 3.1. Let N be a network. Then h(N) > r(N) — 1.

Proof. We show that i(N) > r(N) — 1 holds for all networks N using induction on 7(N). Let N be a
network. Since H(N) = 0 if and only if N is a phylogenetic tree, the base case is r(N) = 1. If r(N) =1,
then the inequality holds trivially since 2(N) = h(N) = 0.

Now, suppose that r(N) > 2. We first claim that there must exist some r € R(N) such that N —r is a
network. It suffices to prove that N — r is connected. Pick r; € R(N). If N — r| is connected, then the claim
follows as we can take r to be r;. Otherwise, we can pick some r, € R(N) — {r;} such that r; is a vertex of
a connected component C; of N — r| with the fewest number of roots amongst all connected components
of N —r;. If N —r, is connected, then the claim follows again as we can take r to be r,. Otherwise the
correspondingly defined connected component C; has strictly fewer roots than C; and we can continue this
process of picking a root with r; replaced by r, and r; replaced by a root in R(N) — {ry,r }. Since R(N) is
finite, this process of picking elements in R(N) must eventually come to an end. This completes the proof
of the claim.

Now, suppose that the inequality 2(N') > r(N') — 1 holds for all networks N’ with r(N') < r(N).
Consider a root r of N such that N’ = N — r is a network, which exists by the claim. Then r(N') = r(N) —1
and, because N is connected, 4(N') < h(N). By our induction hypothesis, we have 2(N') > r(N') — 1, so
h(N) > r(N) — 1 follows. d

We now present two characterizations for arboreal networks, which we shall use later on without
always explicitly referring them. Let N be a network. A k-alternating cycle of N is a sequence
vi,hi,va, ... vi, b, k > 1 of vertices of N such that for all 1 <i <k, h; is a hybrid vertex of N, and there
exists internal vertex-disjoint directed paths from v; to k; and from v;;| to h;, respectively (where we put
vi+1 = v1). For example, the sequence of vertices v,hi,w,hy of the network depicted in Figure 2(ii) is
a 2-alternating cycle. Note that k-alternating cycles are closely related to so called zig-zag paths ([21]),
up-down paths ([2]) and crowns ([7]).

PROPOSITION 3.2. Let N be a network. Then the following statements are equivalent.
(i) N is arboreal.

(ii) h(N) =r(N)—1.

(iii) N does not contain a k-alternating cycle for any k > 1.

Proof. (i) = (ii) Suppose that N is an arboreal network. We show that i(N) = r(N) — 1 using induction
on r(N). For the base case, if 7(N) = 1, then N is a phylogenetic tree. So, A(N) =0 = r(N) — 1.

Now, suppose that #(N) > 2 and that the stated equality holds for all arboreal networks N’ with r(N') <
r(N). Consider a root r of N such that N' = N — r is a network, which exists by the claim in the second
paragraph of the proof of Lemma 3.1. Furthermore, N is arboreal and r(N') = r(N) — 1. Also, i(N') =
h(N) — 1 since N has one root less than N and so N must have a unique hybrid vertex / whose indegree
decreases by precisely 1 when removing all vertices and arcs that are not descendant of any root of N other
than r. Note that 4 may not be a hybrid vertex in N’, in case & has indegree 2 in N. It may also not be a
vertex of N’, as it is suppressed in the second phase of the construction of N in case it has indegree 1 and
outdegree 1 after the aforementioned vertex and edge removal. Clearly, the above equality remains true
also in these two cases. By induction hypothesis, it follows that 2(N) = r(N) — 1, as required.

(ii) = (i) Suppose for contradiction that N is such that 2(N) = r(N) — 1 but N is not arboreal. Then
there must exist a hybrid vertex & in H(N) and a parent v € V(N) of h such that removing the incoming
arc (v,h) of h does not disconnect N. Consider now the graph N’ obtained from N by removing the arc
(v,h), introducing a new leaf x, adding the arc (v,x), and suppressing 4 if this has rendered it a vertex
with indegree and outdegree 1. Since N’ is connected with leaf set X U {x}, N’ is a network on X U {x}.
Furthermore, #(N') = r(N) and A(N') = hA(N) — 1. By Lemma 3.1, 2(N") > r(N') — 1. Since r(N') = r(N)
it follows that 2A(N) — 1 = A(N") > r(N') — 1 = r(N) — 1 = h(N); a contradiction.

(i) < (iii) It is straight-forward to check that the cycles in the underlying graph of N are in 1-1 cor-
respondence with the k-alternating cycles of N, from which the equivalence of (i) and (iii) immediately
follows. a

4. The shared ancestry graph. Let N be a network on X. The shared ancestry graph </ (N) (of N)
is the graph whose vertex set is X and in which two distinct vertices x,y of X are joined by an edge if and
only if they share an ancestor in N. Note that since N is connected, <7 (N) is also connected. In addition,
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note that if N is a phylogenetic network then </ (N) is a complete graph. However, the converse does not
necessarily hold. In this section, we shall prove that given any connected graph G with vertex set X, we
can construct a network N with leaf set X from any edge clique cover of G whose shared ancestry graph is
G.

We begin with some observations on shared ancestry graphs, and their relationship with edge clique
covers. We say that a connected graph G with vertex set X is representable if there exists a network N on
X such that G is isomorphic to .27 (N) and that isomorphism is the identity on X. In that case, we also say
that N represents G.

PROPOSITION 4.1. Any connected graph (X ,E) is representable by an k-rooted network on X, where
k=|E|.

Proof. Suppose that G = (X,E) is a connected graph. We prove the proposition by constructing a
|E|-rooted network N on X that represents G.

We initialize the construction of N with the set of arcs (x,hx) where, for all x € X, we have that
x, & X and x,, # y), for all x,y € X distinct. Then for all edges e = {x,y} of G taken in turn, we add to
N a vertex v,, and two arcs (ve,x,) and (ve,y,). Since G is connected, the digraph N obtained once all
edges of G have been processed (and after all vertices of indegree and outdegree 1 have been removed) is
connected. Moreover, N has leaf set X and contains |E| roots. Hence, N is an |E|-rooted network on X. By
construction, for any two distinct elements x,y € X, there exists a vertex v in N that is an ancestor of x and
y if and only if {x,y} is an edge of G. Hence, N represents G. d

Note that although the network N constructed from G in the proof of Proposition 4.1 is a network
representing G it is not necessarily the only network on X satisfying this property. Moreover, N has many
more roots than is usually necessary (viz. the number of edges in G). In the following, we present a way
to construct a network representing any connected graph G with a minimum number of roots amongst all
possible networks that represent G.

We begin with introducing some further terminology. For G = (X,E) a graph and 0 # Y C X, the
subgraph G[Y] of G induced by Y is the graph whose vertex set is ¥ and any two vertices u and v in ¥ are
joined by an edge if {u,v} € E. For G’ a graph, we say that G contains G’ (as an induced subgraph) if there
exists ¥ C X such that G’ is isomorphic to G[Y] and that isomorphism is the identity on Y. A subset ¥ C X
is called a clique (of G) if |Y| > 2 and {x,y} € E, for all x,y € Y distinct. If, in addition, there is no proper
superset Y of Y that is also a clique of G, then we say that Y is a maximal clique of G. Denoting by £ (X)
the powerset of X, we define K(G) C &?(X) to be the set of all subsets of X that are a maximal clique in
G. Note that if G does not contain isolated vertices, then each element of X is contained in at least one set
in K(G).

Interestingly, if a network N does not contain 3-alternating cycles then, as Lemma 4.2 shows, the
cliques in o7 (N) provide key information concerning the structure of N.

LEMMA 4.2. Let N be a network on X that does not contain 3-alternating cycles. Let Y C X with
|Y| > 2. ThenY is a clique in &/ (N) if and only if there exists a vertex in N that is an ancestor of all leaves
inY.

Proof. One direction is trivial. Indeed, if all leaves in Y share an ancestor in N then any two elements
in Y are joined by an edge in .7 (N) by definition. Hence, Y is a clique in <7 (N)?.

Conversely, assume for contradiction that N is a network on X and that ¥ C X with |Y| > 2 is such that
Y is a clique in &/ (N) but no common ancestor in N of the elements in ¥ exists. Without loss of generality
we may assume that Y is such that for all subsets Y’ C Y with Y ! | > 2 there exists an ancestor in N of
all elements in Y’. Then |Y| > 3 as otherwise Y is a clique of &/ (N) in the form of an edge {x,y}. Then
Y = {x,y} and so there exists an ancestor of every element of ¥ in N which is impossible. By assumption
on Y, it follows for all x € ¥ that all elements in ¥ — {x} have an ancestor vy, in N. Without loss of
generality, we can choose vy , such that no child of vy, also enjoys this property.

We claim that the vertices vy, x € Y, are pairwise incomparable and therefore necessarily distinct.
To see the claim, assume for contradiction that there exist x,y € Y distinct such that vy, and vy,, are not
incomparable. Then vy, is an ancestor of vy, or vice versa. Assume without loss of generality that vy ; is

2Note that this direction holds for all networks N, including networks containing 3-alternating cycles.
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an ancestor of vyy. Then vy, is an ancestor of all elements in ¥ as x € Y —y and vy, is an ancestor of the
elements in Y — y; a contradiction in view of our assumption on Y.

Consider three distinct elements x,y,z € ¥ and the corresponding vertices vy x, vy y, vy, € V(N). Since
vy, and vy, are both ancestors of z and incomparable, there exists a hybrid vertex /. that lies on the
directed paths from vy, to z and from vy, to z. Note that we can choose A, such that no strict ancestor of /,
belongs to those two paths. We can define vertices £, and h, in a similar way. It follows that the sequence
vy x, 1z, vy y, By, vy 2, hy is a 3-alternating cycle of N, which is impossible by assumption on N. Hence, all
elements of Y share an ancestor in N. 0

Note that the assumption that N does not contain a 3-alternating cycle is necessary for Lemma 4.2 to
hold. In particular, there exists networks N that contain 3-alternating cycles and are such that forall Y C X,
|Y| > 2, that is a clique in 27 (N) there exists a vertex v in N that is an ancestor of all leaves in Y. For
example, the phylogenetic network N depicted in Figure 2(iii) contains a 3-alternating cycle, <7 (N) is a
clique with vertex set Y = {1,2,3}, and C(v) =Y. However if we remove v and its incident arcs from N
(suppressing resulting vertices of indegree and outdegree 1), then no vertex of the resulting network is an
ancestor of all elements in Y.

We now continue with finding a network that represents a connected graph G with vertex set X with
a minimum number of roots. To this end, we say that a subset K of Z2(X) is an edge clique cover of G if
every ¥ € K is a (not necessarily maximal) clique in G, and for every edge {x,y} in G, there exists Y € K
such that x,y € Y. Note that K(G) is always an edge clique cover of G, although G may admit edge clique
covers containing fewer elements than K(G). We define the edge clique cover number ecc(G) of G as
min{|K]| : K is an edge clique cover of G}. In other words, ecc(G) is the minimum size of an edge clique
cover of G over all such covers.

Interestingly, and as Lemma 4.3 shows, the edge clique cover number of a connected graph G provides
a lower bound on the number of roots of a network that represents G.

LEMMA 4.3. Let G be a connected graph with vertex set X. For N a network on X representing G, we
have ecc(G) < r(N).

Proof. Tt suffices to show that the set K = {C(r) : r € R(N)} is an edge clique cover of G. Clearly,
every set C(r), r € R(N), is a clique of G. Now, suppose for contradiction that K is not an edge clique
cover of G. Then there exists an edge {x,y} of G such that no root r of N satisfies x,y € C(r). In particular,
no vertex v of N satisfies x,y € C(v). But this is impossible since N represents G. The lemma now follows
since, clearly, ecc(G) < |K| < r(N). d

To prove the main result of this section (Theorem 4.4), we require some further definitions. First,
given a set ¥ C Z(X) of non-empty subsets of X, we define a network N(%’) on X as follows. First take
the cover digraph H(%') of € [19, p.252], that is, the digraph with vertex set ¢, and two distinct vertices
A, B € € joined by the arc (A, B) if and only if B C A and there is no set C € ¢ with B C C C A. To obtain
N(%) from H(€), we first add (i) for all x € X with {x} ¢ €, a new vertex {x} with outdegree 0, and (ii)
an arc from a vertex A in H(%) to the vertex {x} if x € A and no child of A in H(%) contains x. To the
resulting digraph we then (i) add a child to every vertex with outdegree 0 and indegree 2 or more, and (ii)
identify all leaves  in the resulting digraph with the unique element x € X such that / = {x} or [ is a child
of {x}.

Now, for any connected graph G with vertex set X, and any edge clique cover K of G, we let

C(K)={(Y:SCKand (Y #0},
Yes ves
and we set N(K) = N(€(K)). As an illustration of these definitions, consider the graph G depicted in
Figure 3(i). Then N(K) is pictured in Figures 3(ii) and 3(iii) for K the edge clique cover
{{1,2,3,4},{3,4,5,6}} and {{1,2,3},{1,2,4},{3,4},{3,5,6},{4,5,6} } of G, respectively.
We now show how an edge clique cover of a connected graph G gives rise to a network representing
G.

THEOREM 4.4. Suppose that G is a connected graph with vertex set X. If K is an edge clique cover
of G, then N(K) is a network on X that represents G. Moreover, RIN(K)) C K, and R(N(K)) = K if and
only if K does not contain two distinct sets such that one is a subset of the other. In particular, if |K| is

6
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FIG. 3. (i) A graph G with vertex set X = {1,...,6}.  (ii) The network N(K) for the edge-cliqgue cover K =
{{1,2,3,4},{3,4,5,6}} of G. (iii) The network N(K) for the edge-clique cover K = {{1,2,3},{1,2,4}, {3,4},{3,5,6},{4,5,6}} of
G. For brevity, we represent a vertex {a,...,ap}, p > 1, of N(K) as the string ayay . ..a,

minimum (so that |K| = ecc(G) and R(N(K)) = K), then N(K) has a minimum number of roots amongst
all representations of G.

Proof. To ease notation, we put N = N(K).

We first show that N is a network on X. Clearly, N is acyclic and directed by definition. By construc-
tion, all vertices in N with outdegree 0 have indegree 1, and so X is contained in the leaf set of N. To see
that the leaf set of N is also contained in X, suppose that NV has a leaf / that is not in X. Then / corresponds
to a set A of €(K) of size 2 or more. But by construction, for all x € A, the vertex x is a descendant of
I, a contradiction. Note that this observation also shows that all sets A € € (K) of size 2 or more have at
least two children in N. Hence, no vertex of N has indegree and outdegree 1 in N and all roots of N have
outdegree at least 2.

To see that N is a network, it remains to show that N is connected. Suppose x,y € X distinct. Since
G is connected, there is a path x =vy,...vy =y, k > 2, in G, such that v; € X, 1 <i < k. Since K is an
edge clique cover of G, for every such i, there exists a set ¥; € K such that v;,v;1| € Y;. In particular, ¥; is
a vertex of N since {¥;} C K, and there exists directed paths from ¥; to v; and from ¥; to v;;; in N. Hence,
forall 1 <i<k— 1, there exists a path between v; and v; | in the underlying graph U(N) of N. So there is
a path in U(N) between x and y. Since this holds for all x,y € X and N is acyclic, it follows that U(N) is
connected. Hence, N is connected.

To see that N is a representation of G, suppose that x,y € X distinct. Then, by construction, x and y
share an ancestor in N if and only if there exists some ¥ € K such that x,y € Y. Since K is an edge clique
cover of G, this is the case if and only if {x,y} is an edge in G, as required.

To see that R(N) C K, note that for all Y € K, we have Y € V(N) because {Y} C K. Moreover, all
vertices Z € V(N) satisfy Z C Y for some Y € K. In particular, if Z has indegree 0 in N, then Z € K. Hence,
Z must be a root of N and so R(N) C K.

To see that R(N) = K holds under the stated condition, note that a set Z € K has indegree 0 in N if and
only if Z € K and no element Z' € K satisfies Z C Z'. Hence, R(N) = K holds if and only if K does not
contain two distinct sets such that one is a subset of the other.

Using this last observation, to see that the final statement of the theorem holds, it suffices to remark
that if |[K| = ecc(G), then K does not contain ¥, Y’ such that ¥ C Y’. Otherwise, K — {Y'} is an edge clique
cover of G that contains strictly fewer elements than K, a contradiction. So, in view of the above, it follows
that r(N) = |K| = ecc(G). By Lemma 4.3, ecc(G) < r(N') holds for all representations N’ of G, so the
theorem follows. a

5. Ptolemaic graphs. In this section, we present some properties of Ptolemaic graphs, as defined in
the introduction. We begin by stating two key characterizations of Ptolemaic graphs from the literature.

For k > 3, we let Cy, denote the cycle on k > 3 vertices. A graph G is chordal if it contains no induced
cycle of length 4 or more. In addition, the gem is the graph pictured in Figure 4. In the following result,
the equivalence between (i) and (ii) is proven in [13], and the equivalence between (i) and (iii) is proven in
[20, Theorem 5] 3

3Note that the statement of Theorem 5.1 is slightly more general than that of [20, Theorem 5] since in [20] a Ptolemaic graph is
assumed to be connected.
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FIG. 4. The gem, a chordal graph on 5 vertices, is the only chordal forbidden induced subgraphs for Ptolemaic graphs.

THEOREM 5.1. Suppose that G is a graph. Then the following are equivalent
(i) G is Ptolemaic.

(ii) G is chordal and does not contain the gem as an induced subgraph.

(iii) the underlying graph of H(K(G)) is acyclic.

We now make a general observation concerning the edge clique cover number of a Ptolemaic graph.

THEOREM 5.2. Let G be a connected graph with vertex set X. If G is Ptolemaic, then there is no edge
clique cover K of G distinct from K(G) such that |K| < |K(G)|. In particular, ecc(G) = |K(G)|.

Proof. Note first that we may assume that G is not an isolated edge as otherwise the theorem trivially
holds. Suppose for contradiction that there exists an edge clique cover K of G distinct from K(G) such
that |K| < |K(G)|. Without loss of generality, we may assume that K has minimum size. For all Y € K,
pick some maximal clique m(Y) in K(G) (which may be Y itself) such that m(Y) contains Y. Note that
we can clearly always pick some such clique m(Y). Then the set #(K) = {m(Y) : Y € K} C K(G) is an
edge clique cover of G, and we have |.# (K)| < |K|. Since, by assumption, |[K| = ecc(G), it follows that
| (K)| = |K| = ecc(G).

We claim that there exists Yo € K(G) and x € Yy such that the set Ky, ,) obtained from K(G) by
replacing ¥y with Yo — {x} in case |Yp| > 2, or removing ¥, from K(G) in case |Yy| = 2, is an edge clique
cover of G. To see this, we distinguish between the cases that |[K| = |K(G)| and that |K| < |K(G)|.

If |K| = |K(G)|, then .#(K) = K(G) as .#(K) C K(G) and |.# (K)| = |K|. Since K # K(G) by
assumption, there exists ¥y € K(G) such that ¥y ¢ K. In view of .# (K) = K(G) it follows that ¥ is of the
form m(Y) for some Y € K. In particular, ¥ C ¥, holds. Choose some x € ¥y — Y. Then the definition of
Ky, x implies that all sets of Ky, ) are supersets of some set in K. Hence, Ky, ) is an edge clique cover of
G.

If |K| < |K(G)|, then . (K) is a proper subset of K(G). So for all ¥y € K(G) — . (K) and all x € Yy,
the set Ky, ) contains .# (K). Since .# (K) is an edge clique cover of G, it follows that K(y, ) is also such
a cover. This completes the proof of the claim.

We next show that G contains a C4 or a gem. To this end, suppose that ¥y € K(G) and x € ¥ are
such that Ky = Kiyy ) is an edge clique cover of G. Let Y| € Ky such that ¥} NY, contains at least two
elements one of which is x. Note that such a set Y| always exists since ¥ is a clique in G and Kj is an
edge clique cover of G. Without loss of generality, we may assume that Y; is such that no Y’ € K distinct
from Y satisfies Y1 NYy C Y’ NYy. Since ¥y € K(G), we have, Y| NYy # Yy. Hence, there exists z € ¥ such
that z ¢ Y;. Since x € ¥} and z ¢ Y, we have z # x. Furthermore, since x,z € ¥y and ¥p is a clique in G
it follows that {x,z} is an edge in G. Hence, since Kj is an edge clique cover of G, there exists ¥» € Ky
such that x, z € ¥,. Moreover, by the choice of Yj, there exists y € ¥; NY, such that y ¢ Y, since otherwise,
YinYyCYhnY.

Consider now an element u € Y} such that {u,z} is not an edge of G. Note that such an element always
exists, since z ¢ Y; together with the maximality of ¥; implies that ¥; U {z} cannot be a clique in G. Note
also that since y,z € ¥y, we have that {y,z} is an edge in G because Y} is a clique in G. Hence, u # y. Since
{x,z} is an edge in G, we have u # x. Similarly, there exists v € ¥, such that {v,y} is not an edge of G.
Note that v # u, 7 since if v = z then {v,y} is an edge in G as z,y € ¥y and Yp is a clique in G, and if v =1u
then {v,y} is an edge in G as u,y € Y} and Y] is a clique in G.

Now, if {u,v} is an edge in G, then the set {u,y,z,v} isa C4 in G, since y,u € Y1, y,z€ Yp,and z,v € V»
imply that {y,u}, {y,z}, and {z,v} are edges in G as Y1, ¥y, and Y, are cliques in G, respectively. But then
G is not chordal since, as shown above, neither {u,z} not {y,v} can be an edge in G. Otherwise, the set
{u,y,z,v,x} induces a gem in G since {y,z} is an edge in G and x,y € Yy, x,u € Y}, and x,v,z € Y» imply
that {x,y}, {x,u}, {v,z}, and {x,v} are also edges in G. In either case, it follows by Theorem 5.1 that G is
not Ptolemaic, a contradiction. 0
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Note that the converse of Theorem 5.2 is not true in general, that is, there exists graphs G that are not
Ptolemaic and are such that K(G) is the only minimum size edge clique cover of G. This is the case, for
example, if G is isomorphic to Cy, k > 4.

6. Arboreal representations. In this section, we characterise arboreal-representable graphs, that is,
graphs G for which there exists an arboreal network N on X that represents G. We begin by considering
some properties of the shared ancestry graph of an arboreal network.

LEMMA 6.1. Let N be an arboreal network. Then:
(i) if N contains a non-root vertex of outdegree 2 or more, then </ (N) contains a Cj.
(ii) if N has a vertex of outdegree 3 or more, then </ (N) contains a Cj.

Proof. To help establish Assertions (i) and (ii), we first make the following claim. If v is a vertex of
N with outdegree k > 2 then [C(v)| > k. To see this, let v be such a vertex. Let w and w' be two distinct
children of v. If C(w) NC(w') # 0, then there exists a hybrid vertex & of N that is a descendant of both w
and w'. Assuming without loss of generality that no strict ancestor of / also enjoys this property, it follows
that v, i is a 1-alternating cycle in N. By Proposition 3.2, this is impossible since N is arboreal. Hence,
C(w)NC(w') = 0 holds for any two distinct children w,w’ of v. Since, by assumption, ourdeg(v) > k the
claim follows.

(i) Suppose that v € V(N) but not a root. Let r be a root of N that is an ancestor of v. By the previous
claim, |C(v)| > 2. The same reasoning also implies that, there is an element x € X that is a descendant of r
but not of v. Since C(v) C C(r), it follows that |C(r)| > 3. Since C(r) is a clique in <7 (N) it follows that
&/ (N) contains a Cs.

(ii) If v has outdegree 3 or more, then by the previous claim, C(v) contains at least three elements.
Since C(v) is a clique in 27 (N) it follows that .7 (N) contains a Cs. d

LEMMA 6.2. Let N be an arboreal network. Then </ (N) is acyclic if and only if all vertices of N have
outdegree at most 2, and the only vertices of N with outdegree 2 are the roots of N.

Proof. Assume first that <7 (N) is acyclic. In particular, .7 (N) does not contain a C3. By Lemma 6.1,
it follows that all vertices in N have outdegree at most 2, and the only vertices in N with degree 2 are the
roots of N.

Conversely, assume that all vertices in N have outdegree at most 2, and the only vertices in N with
outdegree 2 are the roots of N. Then a vertex in N must either be a root, a hybrid vertex, or a leaf.
Since N is arboreal and so cannot contain a root r and some x € C(r) such that there exists a directed
path from r to x that contains two hybrid vertices of N, it follows that |C(r)| = 2. Hence, there exists a
bijection between the roots of N and the edges of G. Assume now for contradiction that G contains a cycle
X1y 3 Xgy X1 = X1, kK > 2. Then for all 1 <i <k, there exists a root r; in N such that C(7;) = {xj,xi41}
in view of the aforementioned bijection. In particular, for all 1 < i < k there exists a hybrid vertex 4;
that is common to the directed path from r; to x; and the directed path from r; to x;. Without loss of
generality, we may assume that no strict ancestor of /; belongs to both these paths. Hence, the sequence
ri,hy,ra, ..., g, hy is a k-alternating cycle in N. By Proposition 3.2, this is impossible since N is arboreal.
Hence, </ (N) is acyclic as claimed. 0

We now use Lemmas 6.1 and 6.2 to relate the shared ancestry graph of an arboreal network with the
Ptolemaic property. To help with this, we require a further concept. For N a network on X and Y a proper
subset of X with |Y| > 2, we define the restriction of N to Y to be the network N’ obtained from N by
first removing all leaves in X — Y and their pendant arcs, then successively removing resulting vertices of
outdegree O (and their incoming arcs) and vertices of indegree 0 and outdegree 1 (and their outgoing arcs),
and, finally, suppressing vertices of indegree and outdegree 1, until no such vertices remain. For example,
the restriction of the network depicted in Figure 2(ii) to Y = {1,2,3,4} is a rooted tree in which the arcs
containing 1 and 2 share a vertex and also the arcs containing 3 and 4.

We now show that the shared ancestry graph of an arboreal network is Ptolemaic.

PROPOSITION 6.3. If N is an arboreal network, then <7 (N) is Ptolemaic.

Proof. We first show that G = &7 (N) is chordal. Suppose for contradiction that G contains an induced
cycle xi, ..., xg, xpr1 =x1, k> 4. LetY ={xy,...,x;}, and let N’ be the restriction of N to Y. Clearly, since
N is arboreal, N’ is arboreal. By definition, </ (N) = G[Y] also holds. So, by Lemma 6.2, N must contain a
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vertex with outdegree at least 2 that is not a root, or one of the roots of N’ has outdegree 3 or more. In both
cases, it follows by Lemma 6.1 that G[Y] contains a C3, which contradicts the assumption that ¥ induces a
cycle in G with length at least 4. Thus, G is chordal.

Using Theorem 5.1 to complete the proof, we next show that G does not contain a gem as an induced
subgraph. To this end, assume for contradiction that there exists a subset ¥ = {x,y,z,u,v} C X such that
G|Y] is a gem. Let N’ be the restriction of N to Y. Then similar arguments as before imply that N’ is
arboreal and that «7 (N") = G[Y]. Up to permutation in Y, we may assume that the edges of G[Y] are {u,y},
{2 Az vk Axub, {x, v}, {x, 2} and {x,v}.

Since, by definition, N’ represents G[Y], it follows that N’ contains a root r| that is an ancestor of u
and y, a root r; that is an ancestor of y and z, and a root r3 that is an ancestor of z and v. Note that since
neither {u,z} nor {v,y} are edges of G[Y], the roots ry, r» and r3 are pairwise distinct. In particular, there
exists a hybrid vertex h, (resp. h;) in N’ that is a descendant of both r and r; (resp. r, and r3), and no
strict ancestor of &y, (resp. h) enjoys this property. Note that A, and h, are incomparable in N'.

Now, since N’ is arboreal, the underlying undirected graph of N’ is a tree. Suppressing all vertices in
this tree with degree 2, results in a tree T with leaf set {x,y,z,u,v} which either (i) has a single internal
vertex with degree 5, (ii) two internal vertices, one with degree 3 and one with degree 4, or (iii) three
internal vertices each with degree 3.

We now show that each of these cases leads to a contradiction, which will complete the proof. Case
(i) is impossible, since each hybrid vertex in N’ corresponds to an internal vertex in T (since in the tree
underlying N’ it has degree at least 3), and there are at least two hybrid vertices in N’. In Case (ii), each
of the two internal vertices in T with degree greater than 2 must correspond to hybrid vertex in N’ which,
in particular, implies that one of the leaves adjacent to the internal degree 3 vertex in T corresponds to a
vertex with degree 1 in 7 (N'), which is impossible as .27 (N’) is a gem. Finally, in Case (iii), note that at
least one of the two vertices in 7" with degree 3 that are adjacent to two leaves in 7 must be a hybrid vertex
as there are at least two hybrid vertices in N’. But, as in Case (ii), this implies that there must be a vertex
of degree 1 in <7 (N') which is impossible. This completes the proof of the proposition. 0

We are now ready to characterise arboreal-representable graphs.

THEOREM 6.4. Let G be a connected graph with vertex set X. The following statements are equiva-
lent:
(i) G is Ptolemaic.
(ii) The underlying graph of H(K(G)) is acyclic.
(iii) N(K(G)) is arboreal.
(iv) G is arboreal representable.
(v) G is arboreal representable by a network with ecc(G) = |K(G)| roots.

Proof. To ease notation, we put N = N(K(G)), H = H(K(G)), and € = % (K(G)). Note that the
equivalence of (i) and (ii) holds by Theorem 5.1. We now show that (ii) and (iii) are equivalent.

Suppose first that (iii) holds, i.e. N is arboreal. Since N is constructed from H by adding new arcs and
vertices, it follows that H is a subgraph of N. Hence, the underlying graph of H is acyclic. Thus, (ii) holds.

Conversely, suppose that (ii) holds, i.e. the underlying graph of H is acyclic. Let H™ be the graph
obtained within the construction of N from H by adding, for all x € X such that {x} ¢ €, a new vertex {x}
with outdegree 0 and with parents all the sets A € € that contain x and are such that no child of A in H
contains x. This operation creates a cycle in the underlying graph of H™ if and only if H has two or more
vertices A and B containing x such that no child of A in H and no child of B in H contains x. We claim that
this cannot be the case.

Indeed, suppose for contradiction that % contains two elements A, B such that A and B contain x, and
no child of A and no child of B in H contains x. Since A,B € %, their choice implies that there exists
Sa,Sp C K(G) distinct such that A = (ycg, ¥ and B =ycg, Y. In particular, we have ANB = Ny cg,us, Y-
Since S, USp C K(G), ANB € ¥ = V(H) follows by definition of ¥. By definition of H, ANB is a
descendant of A and B in H. Since x € AN B, we obtain a contradiction. This completes the proof of the
claim.

It follows that the underlying graph of H* is acyclic. Since N is obtained from H™ by adding a new
child to each vertex of H' with outdegree 0 and indegree 2 or more, this operation does not create a cycle
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in the underlying graph of H*. Hence N must be arboreal, i.e. (iii) holds.

To complete the proof, first note that N represents G by Theorem 4.4 as K(G) is an edge clique cover
of G. Hence, (iii) implies (v) in view of Theorem 4.4 and Theorem 5.2 since .2/ (N) is Ptolemaic by
Proposition 6.3. Moreover, that (v) implies (iv) is trivial, and that (iv) implies (i) follows immediately from
Proposition 6.3. a

7. Symbolic maps. In this section, we characterise symbolic arboreal maps. We begin by considering
properties of ancestors in networks.

Let N be a network on X. As mentioned in the introduction, for x,y € X two distinct leaves of N, we
say that v € V(N) is a least common ancestor of x and y if v is an ancestor of both x and y, and no child of
vin N enjoys this property. It is well-known that if N is a phylogenetic tree, then any two leaves of N have
a unique least common ancestor. As we have seen in Section 4, in networks, two leaves do not necessarily
have a least common ancestor. It is therefore of interest to understand when the uniqueness property holds
for leaves that share an ancestor. The next result shows that this is always the case for arboreal networks.

PROPOSITION 7.1. Let N be a network on X. If N does not contain a 2-alternating cycle, then if
x,y € X share an ancestor in N, then x and y have a unique least common ancestor in N. In particular, if
N is an arboreal network, then the least common ancestor of two leaves sharing an ancestor is unique.

Proof. Let N be an arboreal network on X that does not contain a 2-alternating cycle. Let x,y € X
such that x and y share an ancestor in N. Then x and y clearly have at least one least common ancestor in
N. Assume for the following that x # y since otherwise the proposition trivially holds.

To see that there exists exactly one such vertex, assume for contradiction that there exists v,w € V(N)
distinct such that both v and w enjoy the property that they are a least common ancestor of x and y. Then
there exists two distinct children v, and vy of v that are ancestors of x and y respectively, and two distinct
children w, and wy of w that are ancestors of x and y, respectively. Since v, and w, are both ancestors of
x there must exist a hybrid vertex &, belonging to a directed path from v, to x and a directed path from wy
to x. Without loss of generality, we may choose /, such that no strict ancestor of &, enjoys this property.
Clearly, y is not a descendant of A, as otherwise y is a descendant of v, and w, which contradicts the fact
that v and w are least common ancestors of x and y in N. By symmetry, v, # w,. Hence, there must also
exist a vertex h, belonging to a directed path from vy to y and a directed path from w to y. Again, we may
assume without loss of generality that no strict ancestor of 4, enjoys this property. Hence, v, Ay, w,hy is a
2-alternating cycle in N, a contradiction. Thus, x and y have a unique least common ancestor in N. a

Note that the converse of Proposition 7.1 does not hold in general, since there exist networks N on X
that contain 2-alternating cycles, and are such that the least common ancestor of x and y is unique for all
x,y € X that share an ancestor in N. For example, the phylogenetic network N depicted in Figure 2(iii)
contains three 2-alternating cycles, but one can easily check that any pair of elements of {1,2,3} has a
unique least common ancestor in N.

Assume for the rest of the paper that M is a non-empty set and that ® & M. As in the introduction,
we set M® = MU {®} and call a symmetric map d : ()2() — M® a symbolic map (on X). Denoting for a
network N the set of all vertices with outdegree 2 or more by V(N)~, we call a pair (N,#) consisting of a
network N on X and amap ¢ : V(N)~ — M a labelled network (on X ). In this case, we also call the map ¢
a labelling map (for N).

For N an arboreal network and x,y two leaves of N that share an ancestor, we denote by lcay(x,y)
the least common ancestor of x and y in N, which is well defined by Proposition 7.1. As mentioned in the
introduction, every labelled arboreal network (N,7) on X induces a (unique) symbolic map dingy: ()2() —
M® which, for {x,y} € (%), is defined by taking d(y ) (x,y) = t(Icay(x,y)) if x and y share an ancestor in
N, and dy 4 (x,y) = © else. We say that a labelled arboreal network (N,t) on X explains a symbolic map
don X if d =dy ), in which case, we call d a symbolic arboreal map. Note that these maps have a special
property in case N is a phylogenetic tree:

LEMMA 7.2. Let (N,t) be a labelled arboreal network on X. Then dy ) (x,y) # © for all {x,y} € ()2()
if and only if N is a phylogenetic tree on X.
Proof. Setd =dy . Note that since N is arboreal, it must be connected.
Suppose first that d(x,y) € M, for all {x,y} € ()2() Then any two leaves of N share an ancestor.
11
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Thus, X is a clique in <7 (N). Since N is arboreal and so cannot contain a 3-alternating cycle in view of
Proposition 3.2, it follows by Lemma 4.2 that N contains a vertex v that is an ancestor of all elements of X.
Using Proposition 3.2 again, it follows that, N cannot contain a hybrid vertex. Hence, v is necessarily the
only root of N. Thus, N is a phylogenetic tree on X.

Conversely, suppose that N is a phylogenetic tree on N. Then any two leaves of N share an ancestor,
sod(x,y) € M for all {x,y} € (3). d

Now, suppose that d is a symbolic map on X. Let G, be the graph with vertex set X, such that
{x,y} € (%) are joined by an edge if and only if d(x,y) # ©. We next present a key link between the graph
G, associated to a symbolic map d on X and the shared ancestry graph of a network on X.

LEMMA 7.3. Let (N,t) be a labelled arboreal network on X. Then Gay,, and o/ (N) are isomorphic
and that isomorphism is the identity on X.

Proof. Putd =dy, and recall that X is the vertex set of both G; and &/ (N). Let x,y € X distinct. By
definition, {x,y} is an arc of o/ (N) if and only if x and y share an ancestor in N. Since, by definition, N
explains d, x and y share an ancestor in N if and only if d(x,y) # ®, that is, if and only if {x,y} is an edge
of G,;. 0

Before presenting the main result of this section (Theorem 7.5), we recall some facts concerning
symbolic ultrametrics including the 3- and 4-point conditions stated in the introduction. Suppose that
d: ()2() — M© is a symbolic map. We say that three pairwise distinct elements x,y,z € X are in A-relation
(under d) if [{d(x,y), d(x,2),d(y,z)}| =3 and ® ¢ {d(x,y),d(x,z), d(y,z) }. We also say that four pairwise
distinct elements x,y,z,u € X are in II-relation (under d) if, up to permutation of the elements x,y,z,u,
d(x,y) =d(y,z) =d(z,u) #d(z,x) = d(x,u) = d(u,y) and © ¢ {d(x,y),d(x,z)}. These relations naturally
arise when explaining symbolic maps in terms of phylogenetic trees (see e. g.,[1, 5, 6]). Bearing in mind
that every symbolic map d : ()2() — M® can be extended to a map d’' : X x X — (MU {0})® by putting
d'(x,y) =d(x,y) if x #y and d’(x,y) = 0 if x = y, Theorem 7.2.5 in [18] implies:

THEOREM 7.4. Suppose that d : ()2() — M® is a symbolic map. Then there exists a labelled phyloge-
netic tree (T,t) on X explaining d if and only if no three pairwise distinct elements of X are in A-relation
under d and also no four pairwise distinct elements of X are in I1-relation under d.

We now use this result to characterise symbolic maps that can be explained by a labelled arboreal
network:

THEOREM 7.5. Suppose that d : ()2() — M® is a symbolic map. Then, d is a symbolic arboreal map if
and only if the following four properties all hold:
(A1) Gy is connected and Ptolemaic.
(A2) No three pairwise distinct elements of X are in A-relation under d.
(A3) No four pairwise distinct elements of X are in I1-relation under d.
(A4) If x,y,z,u € X are pairwise distinct and are such that d(z,u) = © and d maps all other elements
of ({x’y‘;’“}) to an element of M, then d(x,z) = d(y,z) and d(x,u) = d(y,u) hold.

Proof. Tt is straight-forward to check that the theorem holds if |X| € {2,3} since Properties (A3) and
(A4) vacuously hold in case |X| < 3 and Property (A2) vacuously holds in case |X| = 2. So assume that
|X| > 4. Suppose first that d is a symbolic arboreal map, that is, there exists a labelled arboreal network
(N,t) explaining d. By Lemma 7.3, there exists an isomorphism between G, and <7 (N) that is the identity
on X. In particular, G; must be connected as o/ (N) is connected. Since, by Theorem 6.4, G, is Ptolemaic
it follows that Property (A1) holds.

We now show that Property (A2) holds. As part of this, we remark that the proof of Property (A3)
uses analogous arguments on subsets of X of size 4. Let x,y,z be three pairwise distinct elements of X.
If ® € {d(x,y),d(x,2),d(y,z)}, then since (N,t) explains d, it follows that x,y,z are not in A-relation. So
assume that © ¢ {d(x,y),d(x,2),d(y,z)}. Then {x,y,z} is a clique in G;. By Lemma 4.2, there exists a
vertex v in N that is an ancestor of x,y and z. Since N is arboreal, it cannot contain a 3-alternating cycle
by Proposition 3.2. Let 7, be the subtree of N rooted at v. Note that 7, must exist as N is arboreal and so
cannot contain a 1-alternating cycle by Proposition 3.1. For ¢, the restriction of 7 to V(T,,), it follows that
the labelled phylogenetic tree (7,,,) explains d|;(r,). Property (A2) then follows from Theorem 7.4.

To see that Property (A4) holds, let x,y,z,u € X be pairwise distinct such that d(z,u) = © and that
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all other elements in ({”’XZ’)"Z}) are mapped to some element in M under d. By Lemma 4.2, there exists
vertices v and w that are ancestors of the leaves in {x,y,z} and {x,y,u} respectively, and no vertex in N is
an ancestor of all four of x,y,z,u. In particular, v and w do not share an ancestor in N as otherwise that
ancestor would also be an ancestor of u and z which is impossible. Since both v and w are ancestors of the
leaves x and y in N, there exists a hybrid vertex &, that is common to the directed paths from v to x and
from w to x. Similarly, there exists a hybrid vertex &, that is common to the directed paths from w to x and
from w to y. Without loss of generality, we may assume that neither %, nor h, has an ancestor enjoying this
property.

We first remark that £, is an ancestor of lcay (x,y). To see this, it suffices to show that s, = hy. Assume
for contradiction that . # hy. By choice of &, and #,, these two vertices are incomparable in N. Hence,
v,hy,w,hy is a 2-alternating cycle in N, a contradiction in view of Proposition 3.2 as N is arboreal. Thus,
hy = hy and, so, hy is an ancestor of lcay(x,y).

Clearly, A, is not an ancestor of z, as otherwise w is an ancestor of z. Similarly, A, is not an ancestor
of u, as otherwise v is an ancestor of u. So we must have lcay(x,z) = lcay(y,z) and lcay (x,u) = lcay (y,u).
Since (N, t) explains d, it follows that d(x,z) = d(y,z) and d(x,u) = d(y,u) hold. This concludes the proof
of Property (A4).

Conversely, suppose that d satisfies Properties (A1)—(A4). We next construct a labelled arboreal net-
work (N,f) that explains d. To help illustrate our construction, we refer the reader to Figure 5 for an
example.

Since Gy is connected and Ptolemaic, Theorem 6.4 implies that there exists an arboreal network N
on X such that N represents G;. Without loss of generality, we may assume that N does not contain an
arc (u,v) such that u has outdegree 2 or more and v is a non-leaf tree-vertex, since contracting such arcs
preserves .o/ (A) (see Figure 5 (ii)) and so we could take the resulting network to be N. By construction, we
have for any two distinct elements x and y in X thatx and y share an ancestor in Nifand only ifd (x,y) £ ©.

To obtain a labelled arboreal network from N that explains d, let v be a vertex of N of outdegree 2 or
more. By assumption on N, the children of v are either hybrid vertices of N or leaves of N. We first claim
that if 4 is a child of v that is a hybrid vertex, and z is a descendant of v that is not a descendant of 4, then
d(x,z) = d(y,z) holds for all leaves x,y below & in N. To see this, let x and y be leaves of N that are below
h. Let V' be a tree vertex that is an ancestor of 4 but not of v, and let u be a leaf that is a descendant of v/
but not of /4. Note that such a leaf must exist as N is arboreal and so cannot contain a 1-alternating cycle by
Proposition 3.2. By choice of x,y,z,u, there is exactly one element in ({x’y';’”} ) that is mapped to ® under
d, that is, the element {z,u}. By Property (A4), d(x,z) = d(y,z) holds, as claimed.

In view of this claim, we can “locally replace” v with a tree-structure as follows. Let C, be the set of
children of vin N. By assumption on v, we have |C,| > 2. For v;,v; € C, distinct, we define a symbolic map
dy,: ((’;V) — M® by putting d,(v1,v2) = d(x1,x;) for some leaves x; and x, below v and v, respectively.
The fact that all non-leaf children of v are hybrid vertices together with the previous claim imply that
the definition of d,(v;,v,) does not depend on the choices of x; and x,. Moreover, d,(vi,v2) # © for all
v1,va € Cy. Since Properties (A2) and (A3) hold by the definition of d,, it follows by Theorem 7.4 that there
exists a labelled phylogenetic tree (7,,t,) on C, that explains d, (see Figure 5(iii)). We can then modify N
at v into an arboreal network N, on X by (i) removing all outgoing arcs of v in N, (ii) identifying v with
the root of 7, and (iii) identifying each vertex w € C, in with the corresponding leaf of 7,. Note that N,
might be N. By construction, we have for all leaves x and y below v that Icay, (x,y) is a vertex of 7, and
that ¢, (Icay, (x,y)) = d(x,y).

Now, let N be the network obtained by applying the above process to all non-leaf vertices of N of
outdegree 2 or more (see Figure 5(iv)). By construction, for all vertices w of N of outdegree 2 or more,
there exists exactly one vertex v of N such that w € V(T,). Taken together, the maps #, induce a natural
labelling map ¢ : V(N)~ — M.

It remains to show that (N,7) explains d, that is, for all {x,y} € ()2() we have that d(x,y) = @ if xand y
do not share an ancestor in N, and d(x,y) = t(Icay(x,y)) otherwise. To see this, let x,y be two elements of
X. If d(x,y) = ®, then, as mentioned before, x and y do not share an ancestor in N. By construction, that
property still holds in N. If d(x,y) # @, then x and y share an ancestor in N. Let v be the least common
ancestor of x and y in N. Then for (T,,1,) the labelled phylogenetic tree obtained by replacing v in the
construction of N, from N , it follows in view of our observations concerning N, that lcay(x,y) is a vertex

13



599

600

601
602
603
604
605
606
607

608
609

610
611
612

613
614
615
616
617
618
619
620
621
622

623

of T, and that t,(Icay (x,y)) = d(x,y). Since, by definition, #(w) = #,(w) for all internal vertices w of T,, we
have #(lcay(x,y)) = d(x,y) as desired. Hence, (N, ) explains d. d

d 2 4 6
7
S
N\
1 3 5

(Tos, tws) /\

(TUIT
hy T
(Toss toy) : /\
12 1 2 3 4 5 6 7
3 4

(iii) (iv)

FIG. 5. (i) For X ={1,...,7}, a symbolic map d : ()2() — {e,0,0} represented in terms of an edge-labelled graph. For x,y € X
distinct, there is an edge {x,y} in that graph that is solid if d(x,y) = e and dashed if d(x,y) = o. If there is no edge between x and
y then d(x,y) = ®. In particular, G is the depicted graph, where the edge styles are ignored. Using the notation from the proof of
Theorem 7.5, (ii) presents the arboreal network ﬁfor G, in which no arc joins a vertex with outdegree 2 or more with a non-leaf
tree-vertex. (iii) For all internal tree-vertices v; of N, a labelled phylogenetic tree (T,,,t,;) on the set C,, of children of v; that explains
dy,. (iv) The labelled arboreal network (N ,t) that explains d obtained by replacing each internal vertex v; of outdegree 2 or more in
N by (T, ;).

We conclude this section by stating a uniqueness result. We say that two networks N and N’ on X
are isomorphic if there exists a digraph isomorphism from V(N) to V(N') that is the identity on X. In [1,
Theorem 2] it is shown that for any symbolic ultrametric d there is a unique (up to isomorphism) labelled
tree (7,¢) which explains d which has the property that #(u) # ¢(v) for any internal arc (u,v) in T (i.e.
an arc that does not contain a leaf). In a similar vein, we say that a labelled arboreal network (N,7) is
discriminating if N has no internal arc (u,v) such that u has outdegree 1, and no internal arc (u,v) such that
v has indegree 1 and 7(u) = ¢(v). Then we have the following result:

THEOREM 7.6. Let d : ()2() — M® be a symbolic arboreal map. Then there exists a unique (up to

isomorphism that is the identity on X) discriminating arboreal network (N,t) on X that explains d.

Note that if N is a phylogenetic tree, then N has no internal arc (u,v) such that u has outdegree 1, so
Theorem 7.6 is a generalization of the aforementioned uniqueness result for symbolic ultrametrics. As our
proof for this result is somewhat long and technical we shall present it in the Appendix.

8. Discussion. In this paper, we have characterised symbolic maps that can be explained by a labelled
arboreal network. To do this, we introduced the concept of the shared ancestry graph of a network, and
then exploited the connection between such graphs and Ptolemaic graphs for arboreal networks.

It would be interesting to understand how far our results might be extended to other classes of net-
works or symbolic maps. For example, as mentioned in the introduction, results have recently appeared on
connections between symbolic maps and so-called level-1 phylogenetic networks [16], and so one might
investigate if similar results can be derived in the setting where networks are permitted to have multiple
roots. In addition, there are connections between ultrametrics, edge-labelled hypergraphs and symbolic 3-
way maps [6, 14] that might potentially yield interesting generalizations within the arboreal setting. And,
finally, it could be worth investigating how properties of symbolic arboreal maps vary with different choices
of symbol set M; for example, in case M is taken to be a group (see e.g. [17]).
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In another direction, note that since a Ptolemaic graph can be recognized in linear time [20], as a
corollary of Theorem 7.5 we immediately obtain the following observation.

COROLLARY 8.1. A symbolic arboreal map on a set X can be recognized in O(|X|*) time.

It would be interesting to know if there is an algorithm for recognizing symbolic arboreal maps that has
a better run-time than O(|X|*). Also for applications, it would be useful to develop an efficient algorithm
for constructing a labelled arboreal network that explains a symbolic arboreal map. Such an algorithm
is implicitly given in the proof of Theorem 7.5, in which we describe the “vertex-replacement” opera-

~

tion, which constructs a representation of d from some N. For example, we can always choose N to be
N(K(Gy)), which we know how to construct from K(Gy,). Note that [20, Theorem 8] shows how to con-
struct a directed clique laminar tree associated to a Ptolemaic graph in linear time might also be useful for
developing algorithms for symbolic arboreal maps.

Acknowledgements. The authors thank the anonymous referees for their positive and helpful com-
ments.
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9. Appendix. In this appendix, we prove Theorem 7.6. To do this we shall first consider properties
of the sets C(v) for v a vertex of an arboreal network N, and then show that, for a labelled arboreal network
(N,t), we can recover the sets C(v) from the map d(y,,) which permits us to prove uniqueness. We begin
with a result which underlines the key role played by the elements in 4’ (K(G)) in case G is the shared
ancestry graph for an arboreal network N.

PROPOSITION 9.1. Let N be an arboreal network and let G = <7 (N). For all Z € €(K(G)), there
exists a vertex v of N such that C(v) = Z.

Proof. To ease notation, set K = K(G). Let Z € ¥(K). The proposition holds if |Z| = 1 since then
Z = C(x) for some x € X. So assume for the remainder that |Z| > 2. We distinguish between the cases that
ZeKandthatZ ¢ K.

Suppose first that Z € K. Since N is arboreal and so cannot contain a 3-alternating cycle by Proposi-
tion 3.2, Lemma 4.2 implies that there exists a vertex vz of N such that Z C C(vz). Let x € C(vz). Since x
and z share an ancestor for all z € Z, it follows that ZU {x} is a clique in G. By maximality of Z it follows
that x € Z. Hence, C(vz) C Z. Thus C(vz) = Z, which completes the proof of the proposition in case Z € K.

So, suppose Z ¢ K. Let Kz ={Y € K|Z C Y}. Note that since Z € ¢ (K) — K, we have |Kz| > 2 and
Z =(yek,Y. By Lemma 4.2, it follows that there exists a vertex vz of N such that Z C C(vz). Without
loss of generality, we can choose vz such that no strict descendant of vz satisfies this property. We now
show that C(vz) C Z must also hold, which implies that Z = C(vz) and thus completes the proof of the
proposition.

We first claim that if y € X — C(vz) is such that y and z share an ancestor in N for all elements z € Z,
then for all x € C(vz), x and y share an ancestor in N.

To see that the claim holds, suppose for contradiction that there exists y € X — C(vz) and x € C(vz)
such that y and z share an ancestor in N for all elements z € Z but x and y do not share an ancestor in N. By
choice of vz, there exists two elements 7,z € Z distinct such that z; and z, are descendant of two distinct
children v; and v; of vz, respectively. Indeed, if this is not the case, then all elements of Z are descendant
of the same child V' of v, which contradicts our choice of v.

Now, let w; = Ica(z1,y) and wy = Ica(zp,y). Since x and y do not share an ancestor in N, vz is
incomparable with w; and wy. For i € {1,2}, let h; be the last vertex common to the paths from w; to z;
and from vz to z;. Since w; and vz are incomparable in N, k; is a (not necessarily strict) descendant of v;.
In particular, w; and h; are distinct. We conclude the proof of the claim by considering two possible cases:
w1 and wy are incomparable in N, or one is an ancestor of the other.

If wi and wy are incomparable in N, then wy,hy,vz,ha, w2, hy is a 3-alternating cycle of N, where hy
is the last vertex common to the directed paths from wy to y and from w; to y. In view of Proposition 3.2
this is impossible since N is arboreal. If one of wy,w; is an ancestor of the other, say wy is an ancestor of
wy in N, then wy is an ancestor of &, in N, and wy,hy,vz, hy is a 2-alternating cycle of N. Then the same
argument as before shows that this is impossible. This concludes the proof of the claim.

Now by the claim it follows that for all x € C(v;) and all Y € Kz, x shares an ancestor with all elements
of Y. Hence Y U {x} is a clique in G for all such Y. Since for all such Y, we have that ¥ € K, it follows that
x€Y.Thus C(vz) CY forall Y € Kz, and so C(vz) C(yek, ¥ =Z. d

We now prove two useful lemmas which provide more information concerning the sets C(v) for v a
vertex in an arboreal network.

LEMMA 9.2. Let N be an arboreal network and let u,v € V(N) distinct. Then the following hold:
(i) If u is an ancestor of v in N, then u has exactly one child that is an ancestor of v. Moreover, all
other children u' of u satisfy C(u') NC(v) = 0.
(ii) If C(v) C C(u) and u and v are incomparable in N, then there exists a non-leaf descendant h of
both u and v satisfying C(h) = C(v).

Proof. (i) To see the first part of the statement, suppose for contradiction that u# has two distinct children
ui,up that are both ancestors of v. Then there exists a vertex 4 in N that is an ancestor of v, and is a
descendant of both u; and u;. Choosing % in such a way that no strict ancestor of # is a descendant of both
uy and uy, it follows that u, s is a 1-alternating cycle of N. In view of Proposition 3.2, this is impossible
since N is arboreal. Hence, u has exactly one child that is an ancestor of v.

To see the second part of the statement, let ¥’ be a child of u that is not an ancestor of v, and let
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x€C(u'). If x € C(v), then x is a descendant of both &’ and v in N. Hence, there exists a vertex A that is an
ancestor of x in NV, and a descendant of both ' and v. Choosing % in such a way that no strict ancestor of &
is a descendant of both ' and v, it follows that u, / is a 1-alternating cycle of N. Since N is arboreal this is
impossible in view of Proposition 3.2. Hence, C(«') NC(v) = 0.

(ii) Since u and v are incomparable, for all z € C(v), there exists a vertex /. that is an ancestor of z, and
a descendant of u (since C(v) C C(u)) and v. Without loss of generality, we can choose £, in such a way
that no strict ancestor of &, is a descendant of both u and v. Note that /; must be a hybrid vertex of N. In
particular, it cannot be a leaf of N.

We claim that C(h;) = C(v), for any z € C(v). To see this, assume for contradiction that there exists
x,y € C(v) distinct such that A # hy. Then u,h,v, hy is a 2-alternating cycle of N which is impossible in
view of Proposition 3.2 as N is arboreal. Hence, i, = h,, for all x,y € C(v). Choose some x € C(v). Then
C(v) C C(hy) by the previous argument. Moreover, since ki, is a descendant of v, we also have C(hy) C C(v)
which completes the proof of the claim and also the proof of the lemma. a

LEMMA 9.3. Let N be an arboreal network. If N has no vertex of outdegree 1 whose unique child is a
non-leaf vertex then C(u) # C(v), for all internal vertices u,v of N distinct.

Proof. Assume for contradiction that there exist internal vertices # and v in N distinct such that C(u) =
C(v). Note that we may assume that u and v are such that « is a strict ancestor of v in N (indeed, if v is
an ancestor of u in N, then the roles of u and v can be reversed). If u and v are incomparable in N, then
by Lemma 9.2(ii), there exists a non-leaf vertex / that is a descendant of both u and v in N and satisfies
C(h) = C(v) = C(u). In this case, h can play the role of v.

Since u is a strict ancestor of v in N and v is not a leaf, u has outdegree at least 2. Combined with
Lemma 9.2(i), it follows that there exists a child #’ of u in N that is not an ancestor of v and for which
C(u')NC(v) = 0 holds. However, since '’ is a child of u, we also have C(«') C C(u) = C(v) which is
impossible. Hence, no two such elements «# and v can exist. O

Now, recall from Section 7 that a labelled arboreal network (N, 1) is discriminating if N has no internal
arc (u,v) such that u has outdegree 1, and no internal arc (u,v) such that v has indegree 1 and ¢(u) = #(v).
This definition is motivated by the fact that, for (N,7) a labelled arboreal network, the labelled arboreal
network (N’¢’) obtained from N by successively applying the following operations to internal arcs (u,v):

e If u has outdegree 1 then collapse (u,v) into a new vertex w. If v had outdegree 2 or more, put

t'(w) =t(v).

e If v has indegree 1 and ¢(u) = ¢(v) then collapse (u,v) into a new vertex w and put #'(w) = #(v).
and putting #'(v) = t(v) for all other vertices v satisfies d(y/ ) = d(y,). Note that, in a discriminating
labelled arboreal network (N,t), a vertex v of N has outdegree 2 or more if and only if |C(v)| > 2. In
particular, the labelling map ¢ assigns an element of M to all such vertices.

We now prove a result which, for a labelled arboreal network (N, ¢), relates the sets C(v) for v a vertex
in N with properties of the map dy ;). First we require some further terminology. Let d : ()2( ) — M® be a
symbolic map. We say that a non-empty subset Y of X is a clique-module of d if |[Y| = 1, or if Y is a clique
in G4, and for all x,y € Y and all z € X —Y we have |{d(x,z),d(y,z),®}| < 2. Informally speaking, the latter
means that if both d(x,z) and d(y,z) are elements in M then d(x,z) = d(y,z). We say that a clique-module
Y is trivial if |Y| = 1, and that it is strong if for all clique-modules Y’ of d such that Y’ UY is a clique in G,
YNY' € {Y,Y’ ,0}. Note that trivial clique-modules are always strong. We denote by .# (d) the set of all
strong, non-trivial clique-modules of d. To illustrate these notions, let X = {x,y,z,7,u}, and consider the
map d : (g) — {8,0,0} defined by d(x,2) =d(x,t) =d(y,z) =d(y,t) = d(z,t) = e, d(x,y) = d(t,u) = o,
and d(x,u) = d(y,u) = d(z,u) = ©. Then the non-trivial clique-modules of d are {x,y,z,t}, {x,y}, {x,v,2},
{x,y,t}, {z,t} and {t,u}. Of these, only {x,y,z,¢}, {x,y} and {¢,u} are strong.

PROPOSITION 9.4. Let (N,t) be a labelled arboreal network on X. For all vertices v of N, C(v) is a
clique-module of d = dy ). Moreover, for allY € ./ (d), there exists a vertex v of N such that C(v) =Y.

Proof. We begin by proving the first statement in the proposition. Let v be a vertex of N. If |C(v)| = 1,
then C(v) is a trivial clique-module of d. Hence, we may assume from now on that |C(v)| > 2.

By definition of d, C(v) is a clique in G,;. Now, let x,y € C(v) distinct, and let z ¢ C(v) such that
©® ¢ {d(x,z),d(y,z)}. Then, the vertex lcay(x,y) is a descendant of v in N, while the vertices Icay(x,z)
and Icay(y,z) are not. Since these three least common ancestors cannot be pairwise distinct, lcay (x,z) =
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lcay (y,z), and so d(x,z) = t(lcay(x,z)) = t(Ican(y,2)) = d(,2). Hence, C(v) is a clique-module of d.

To see that the second statement in the proposition holds, let Y by a strong, non-trivial clique-module
of d. By Lemma 4.2, there exists a vertex v of N such that Y C C(v). Without loss of generality, we may
choose v in such a way that no child of v enjoys this property. We now show that C(v) C Y also holds, so
that C(v) = Y which concludes the proof of the proposition.

By choice of v, there exist two distinct children vy, v, of v such that C(v1)NY # @ and C(v,) NY # 0.
Note that since N is arboreal, Proposition 3.2 implies that C(v;) NC(v2) = 0. Now, let C' = C(v) — C(vy).
Since C’ is a subset of C(v), C’ is a clique in G;. We next claim that C’ is a clique-module of d. Let
x,y €C', z¢& C'. In view of the first part of the proposition, C(v) is a clique-module of d, so if z ¢ C(v), we
have d(x,z) = d(y,z). If z € C(v), then since z ¢ C’, we have z € C(v1). Hence, lca(x,z) = lca(y,z) = v and
sod(x,z) = d(y,z). Thus, C’ is a clique-module of d, as claimed.

Since Y is a strong non-trivial clique-module of d, we have C'NY € {C',Y,0}. Since C(v;)NY # 0,
we have that ¥ C C’ does not hold. Moreover, since C(v2) NY # 0 and C(v2) C C' it follows that Y NC' =0
does not hold either. Hence, C' = C(v) —C(v1) C Y. Replacing v; with v; in the latter argument, implies
that C(v) — C(v;) C Y also holds. Thus, C(v) C Y, as required. a

Putting together the above results, we now prove a key theorem that enables us to prove Theorem 7.6.

THEOREM 9.5. Let (N,t) be a labelled arboreal network on X and d = d)- Then the following
statements are equivalent:
(i) (N,t) is discriminating.
(ii) The map ¢ : V(N) —X — €(K(Gy))U.#(d) given by ¢(v) =C(v), forallve V(N)—X, isa
bijection between V(N) — X and € (K(Gq))U.# (d).

Proof. To ease notation, set K = K(Gy).

(i) = (ii) We first show that, if v € V(N) — X then (at least) one of C(v) € € (K) or C(v) € .# (d) must
hold. By Proposition 9.4, C(v) is a clique-module of d. If v is a root of N, then C(v) € K C % (K) (in fact
C(v) € #(d) also holds). If v has indegree 2 or more in N, then C(v) = \¢(y)cyex Y- Hence, C(v) € €'(K)
holds in this case too.

So, suppose v has indegree 1 in N. Then since v ¢ L(N), the outdegree of v in N must be at least 2.
Hence, v € V(N)~. Furthermore, since the unique parent u of v in N cannot be a leaf either, (#,v) must be
an internal arc of N. Since (N,?) is discriminating it follows that the outdegree of u is at least 2. Hence,
u € V(N)~ also holds.

We next claim that C(v) € .Z(d), that is, C(v) is a strong clique-module for d. Suppose for contra-
diction that C(v) is not a strong clique-module for d, that is, there exists a clique-module Y of d, such that
YUC(v) is aclique in Gy and Y NC(v) ¢ {Y,C(v),0}. Since N is arboreal, G, and <7 (N) are isomorphic
in view of Lemma 7.3. Since |Y UC(v)| > 2, Lemma 4.2 implies that there exists a vertex w such that
YUC(v) C C(w). Without loss of generality, we may choose w in such a way that no strict descendant of w
has this property. In view of Lemma 9.2(ii), we may also assume that w is an ancestor of v. Since ¥ ¢ C(v)
as C(v) is not a strong clique-module for d, it follows that w is a strict ancestor of v. In particular, w has
outdegree 2 or more. Thus, w € V(N)~.

We next show that w # u and that ¢(w) = 7(v). To this end, note that by the choice of w there exists
y €Y such that lcay(x,y) = w for all x € C(v). Now, let x € C(v) and z € C(v)NY such that x ¢ Y and
Icay(x,z) = v. Note that such an x and z always exist since, by the choice of Y, there always exist some
ac€C(v)—Y and b € C(v)NY. If lcay(a,b) = v then we take x = a and z = b. Otherwise, lcay(a,b)
must be a strict descendant of v. In that case, we can choose some ¢ € C(v) such that ¢ and lcay(a,b)
are descendants of different children of v. If ¢ € Y then we can take z to be ¢ and x to be a, and if c €Y
then we can take x to be ¢ and z to be b. Since Y is a clique-module of d and neither d(x,y) = ® nor
d(x,z) = ® holds as x,y,z € C(v), we obtain d(x,y) = d(x,z). Since (N,t) explains d, it follows that
t(w) = d(x,y) = d(x,z) = t(v), as required. Since t(u) # t(v) because (N,t) is discriminating, w # u
follows, also as required.

Now, let p € C(u) with p ¢ C(v). Then lcay(x, p) = lcay(z,p) =t(u). If p € Y held, then d(x, p) =
d(x,z) since Y is a clique-module of d and neither d(x, p) # © nor d(y, p) # ® holds. But this is impossible,
since d(x, p) = t(u) #t(v) = d(x,z). Hence, p ¢ Y. Similar arguments as in the case that p € Y imply that
d(z,p) = d(y,p). But this is also impossible, since #(u) # t(v) = t(w) = d(y,p) = d(z,p) = t(u). Thus,
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C(v) € #(d), as claimed.

It remains to show that the map ¢ is bijective. That ¢ is surjective is a direct consequence of Propo-
sitions 9.1 and 9.4. That ¢ is injective is a direct consequence of Lemma 9.3 since (N, ¢) is discriminating
and so N does not contain an internal arc (u,v) such that u has outdegree 1.

(i) = (i) We first remark that N cannot have an internal arc (u,v) such that u has outdegree 1. Indeed,
if N had such an arc, then C(u) = C(v) would hold which contradicts the injectivity of ¢. To see that N is
discriminating, we therefore need to show that if (u,v) is an internal arc of N such that v has indegree 1
then #(u) # t(v).

So, let (u,v) be an internal arc of N such that v has indegree 1. Since ¢ is injective and so C(w) # C(v)
holds for all vertices w € V(N), it follows that C(v) ¢ % (K). Hence, C(v) € .#(d), that is, C(v) is a
strong clique-module of d. Now, let v/ be a child of v which exists because v is an internal vertex of N. Let
Y =C(u) —C(v'). Note that since v has indegree 1, v has outdegree 2 or more. In particular, v is not the only
child of v. Clearly, Y is a clique in G,. Since C(u) # C(v), we have Y NC(v) = C(v) —C(V') ¢ {Y,C(v),0}.
Combined with the fact that C(v) is a strong clique-module of d it follows that ¥ cannot be a clique-module
of d. Hence, there must exist three elements xo,yo € Y, zo € X —Y such that ® ¢ {d(xo,z0),d(x0,20)} and
d(xo,20) # d(y0,20)-

Since, by Proposition 9.4, C(u) is a clique-module of d, we have for all x,y € Y C C(u) distinct and all
z€X —C(u), that |{d(x,z),d(y,z),®}| <2. Hence, zo € C(u) —Y = C(v'). Since, for all x,y € C(v) —C(V'),
we have lcay (x,z) = Icay(y,z) = v, it follows that d(x,z) = d(y,z) = t(v) # ©. Similar arguments imply
that, for all x,y € C(u) — C(v), lcay(x,z) = Icay(y,z) = u. Thus, d(x,z) = d(y,z) = t(u) # © holds too.
Hence, we must have (up to permutation) xy € C(u) — C(v) and yo € C(v) —C(V'). In particular, we have
d(x0,z0) = t(u) and d(yo,z0) = t(v). Since d(xo,20) # d(y0,20), we have ¢(u) # t(v), as required. d

Proof of Theorem 7.6. In view of Theorem 9.5, for two discriminating labelled arboreal networks (N, 1)
and (N’,1") to both explain d, there must exist a bijection Y : V(N) — V(N’) that is the identity on X and
such that C(v) = C(y(v)), for all v € V(N). It therefore suffices to show that (a) for all u,v € V(N) distinct,
(u,v) is an arc of N if and only if (y(u),y(v)) is an arc of N’, and (b) for all internal vertices v of N of
outdegree 2 or more, t(v) =1'(y(v)).

(a) Let u,v € V(N) distinct. By symmetry, it suffices to show that, if (u,v) is an arc of N then
(w(u),y(v)) is an arc of N'. Clearly, u is an internal vertex of N and C(v) C C(u). If v is also an in-
ternal vertex of N, then Lemma 9.3 together with Lemma 9.2(ii) imply that ¢ («) is an ancestor of y(v) in
N'. If v is not an internal vertex of N, then it must be a leaf of N. Hence, y(v) =v € C(u) = C(y(u)).
Consequently, y(u) must also be an ancestor of y(v) in this case. To see that y(u«) is in fact a parent
of ¢(v), suppose for contradiction that there is a vertex w € V(N) distinct from u and v such that y(w)
lies on the directed path from ¢(«) to w(v) in N'. Combined with the definition of v, it follows that
C(v) € C(w) € C(u). Since u and w cannot be leaves of N, Lemma 9.3 and Lemma 9.2(ii) imply that u is
an ancestor of w and, in case v is not a leaf of N either, that w is an ancestor of v in N. If v is a leaf then
similar arguments as before imply that w is an ancestor of v. Since (u,v) is an arc of N, it follows that u, v
is a l-alternating cycle of N. But this is impossible in view of Proposition 3.2 as N is arboreal. Thus such
a vertex w cannot exist and, so, (y(u), (v)) must be an arc of N'.

(b) Assume that v is an internal vertex of N that has outdegree 2 or more. Since (N,?) is discrim-
inating, |C(v)| > 2 must hold since otherwise N would have a 1-alternating cycle which is impossible
in view of Proposition 3.2 because N is arboreal. Hence, ¢(v) = d(y ) (x,y) holds for all x,y € C(v) for
which Icay(x,y) = v, and ¢'(y(v)) = d(n 1 (x',y’) holds for all x,’y" € C(v) for which lcay/ (x',y") = w(v).
Since, by (a), the map  is a graph isomorphism from N to N’ that is the identity on X, it follows that if
leay (x,y) = v, then Icay (x,y) = w(v). Hence, t(v) =1 (y(v)).
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