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Abstract

The complex field, equipped with the multivalued functions of raising to each complex power, is
quasiminimal, proving a conjecture of Zilber and providing evidence towards his stronger conjecture
that the complex exponential field is quasiminimal.
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1 Introduction

Over 25 years ago, Zilber stated his Quasiminimality Conjecture for complex exponentiation:

Conjecture 1.1 ([Zil97]). The complex field with the exponential function, Cexp := ⟨C; +, ·, exp⟩, is
quasiminimal: every subset of C which is definable in this structure is countable or co-countable.
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Definable means in the sense of first-order logic: a formula φ(z) is built from variables, constants
for each complex number (so definable “with parameters”), the operations +, ·, exp, and equality =
using the usual Boolean operations and quantifiers. We assume there is only one free variable, z, and
then φ(z) defines the set of complex numbers c for which φ(c) is true. If we do not use quantifiers,
then a definable subset is just a Boolean combination of zero sets of complex exponential polynomials.
Such subsets are easily seen to be countable or co-countable. In the complex field Cfield, without
exponentiation, a subset of C defined without quantifiers is just a Boolean combination of zero sets
of polynomials, so is finite or cofinite. By the Tarski–Chevalley quantifier elimination theorem [Tar51],
using quantifiers gives no new definable subsets in this case, so Cfield is minimal : every definable
subset is finite or cofinite. Another consequence of quantifier elimination is that the definable (or even
interpretable) sets in any number of variables correspond to complex algebraic varieties.

With exponentiation this is far from true. The subset Z of integers is definable in Cexp, and so
the whole arithmetic hierarchy of subsets of Z is definable, and their complexity increases with each
additional quantifier alternation. However, all these subsets are of course countable. It is not known how
complicated the subsets of C can get with increasing quantifier alternations. One possibility mentioned
in [Mar06, p.791] is that the real field R is a definable subset. If so, with R and Z together, every
subset of C or R in the projective hierarchy of descriptive set theory is definable [Kec12, Exercise 37.6],
in particular all continuous functions C → C, so definable sets would generally have nothing to do with
the exponential. If Conjecture 1.1 is true, the picture is very different, and the definable sets should
have a geometric nature, from complex analytic geometry, much closer to algebraic geometry but also
with connections to the transcendence theory and the diophantine geometry related to the complex
exponential.

We note that in the real case, the definable sets of the real field are the semi-algebraic sets and the
structure is so-called o-minimal. By Wilkie’s very influential theorem [Wil96], the real exponential field
Rexp is also o-minimal, and so the definable sets there are geometric in nature.

The Quasiminimality Conjecture has sparked a lot of mathematical activity. For example, Zilber’s
part of the Zilber–Pink conjecture of diophantine geometry, and the related work on functional tran-
scendence around the Ax–Schanuel theorem, came out of his early work towards his conjecture [Zil02].
The Pila–Wilkie theorem for counting integer or rational points is now a major tool in diophantine
geometry which also came, at least partly, from work towards the conjecture. Indeed, Wilkie [Wil23]
wrote:

. . . my motivation for studying integer points in o-minimally definable sets was, apart
from the fun of it, completely motivated by Boris’ [Zilber’s] quasiminimality problem.

In a third, more model-theoretic direction, quasiminimality is not a property traditionally studied in
model theory because it is not an invariant of the finitary first-order theory of a structure. The impor-
tance of this conjecture has led to a resurgence of interest in the use of infinitary logics and abstract
elementary classes in model theory, as for example in the books of Baldwin [Bal09] and Marker [Mar16].

While in this paper we do not prove Conjecture 1.1, we do prove a strong result towards it, the
Quasiminimality Conjecture for complex powers.

Theorem 1.2. For λ ∈ C, let Γλ = {(exp(z), exp(λz)) | z ∈ C} denote the graph of the multivalued
map w 7→ wλ. Then the structure CC-powers = ⟨C; +, ·, (Γλ)λ∈C⟩ of the complex field equipped with
all complex powers is quasiminimal.

Complex powers are obviously definable in Cexp, so Theorem 1.2 would be a consequence of Con-
jecture 1.1, and is the most significant result yet proved towards it. We give some discussion of the
gap between Theorem 1.2 and Conjecture 1.1 after the statement of Theorem 1.3.
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For the structure CC-powers itself, a consequence of Theorem 1.2 is that R is not definable, and so
neither is the projective hierarchy of its subsets. So at least on a generic level, the definable sets are
geometric in nature. There is no obvious definition of Z as a ring in CC-powers. Indeed, it follows from
[Zil15] that if we restrict to powers from certain subfields K, the theory is superstable so Z as a ring
is not interpretable and all the definable sets are geometric in nature. Assuming Schanuel’s conjecture,
this conclusion holds for all complex powers. However, we cannot prove it unconditionally.

1.1 Towards the Quasiminimality Conjecture

Boxall made progress towards Conjecture 1.1 by showing in [Box20] that certain existential formulas in
the language of exponential rings must define countable or co-countable sets in Cexp.

Wilkie has an approach to proving Conjecture 1.1 via analytic continuation of definable holomorphic
functions, discussed in [Wil13; Wil23]. In 2008 he gave talks [Wil] announcing a proof of the quasimin-
imality of C with the power i only, that is, of ⟨C; +, ·,Γi⟩. However, the method relied heavily on the
fact that i2 = −1, and did not extend to other powers, and the proof has not yet appeared.

Zilber’s own attempts to prove his conjecture led to a construction of a quasiminimal exponential
field [Zil05a], now known as Bexp, via the Hrushovski–Fräıssé amalgamation-with-predimension method
[Hru93], which produces a countable structure, and then by his own variant [Zil05b] (see also [Kir10b;
Bay+14]) of Shelah’s excellence method [She83], which extends the amalgamation to uncountable
cardinalities, in particular to the continuum-sized model Bexp. Zilber then conjectured that Cexp

∼=
Bexp, which implies Conjecture 1.1, but is much stronger, since it incorporates Schanuel’s Conjecture
of transcendental number theory. In fact, it is equivalent to that conjecture together with another
conjectural property for Cexp, called Strong Exponential-Algebraic Closedness (SEAC) which asserts that
certain systems of exponential polynomial equations in many variables should have complex solutions,
but also includes a condition that the solutions should have large enough transcendence degree.

Bays and the second author [BK18] modified Zilber’s construction and were able to remove the
transcendence conjectures from this path to Conjecture 1.1. They were able to show that Conjecture 1.1
follows from Exponential-Algebraic Closedness (EAC) for Cexp, which is like SEAC but without the
transcendence requirement.

The proof of Theorem 1.2 in this paper follows this Bays–Kirby strategy for quasiminimality, adapted
for complex powers rather than complex exponentiation.

1.2 Exponential sums with a field of exponents

We actually prove a slightly stronger form of Theorem 1.2: quasiminimality for the complex field in
Zilber’s exponential sums language, first introduced in [Zil03]. For a subfield K ⊆ C, we write CK for
the complex numbers as a K-powered field, that is, as the 2-sorted structure

CK-VS
exp−→ Cfield

where the image sort is C equipped with the field structure, the covering sort is C equipped only with
its structure as a K-vector space, and the covering map is the usual complex exponentiation.

Theorem 1.3. The structure CC is quasiminimal. That is, any definable subset of either sort (in one
free variable) is countable or its complement in that sort is countable. Equivalently, for any countable
subfield K ⊆ C, the structure CK is quasiminimal.

The complex power functions Γλ are definable in CC so Theorem 1.2 follows immediately from
Theorem 1.3.

In analytic number theory, an exponential sum is an expression of the form
∑r

j=1 ajexp(2πixj)
where the aj are real coefficients and the xj are real or complex numbers or variables. Generally, one
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looks to get bounds on such expressions. A consequence of Theorem 1.3 is that in CC we cannot
define absolute values or indeed the set of reals or the order relation. What we can express are complex
exponential sums equations. For example, if z1, . . . , zn are variables in the K-vector space sort, α is an
element of that sort, and λ1, . . . , λn ∈ K, then exp (α+

∑n
i=1 λizi) is a term in the field sort. Writing

wi = exp(zi) and a = exp(α), we can informally write this as a
∏n

i=1 w
λi
i to get a “monomial” with

complex exponents. Applying addition in the field sort, we can then get “polynomials” with complex
exponents, and these terms, treated properly with the variables zi from the covering sort, are the
exponential sums whose zero sets are generalisations of complex algebraic varieties and which are the
basic definable sets in CK .

However, in CK we cannot iterate exponentiation, and in general there is no way to recover the
embedding of K as a subfield of the field sort Cfield from the structure CK . Likewise, there is no way
to recover the field structure on the covering sort, let alone identify it with the field sort. If we could do
that, we could iterate the exponential map and CC would be bi-interpretable with Cexp, so Theorem 1.3
would actually prove Conjecture 1.1.

If we take K = Q, the structure CQ was axiomatised and shown to be quasiminimal in [Zil06;
BZ11]. Since rational powers are algebraic in nature, there is no analytic content to this structure. If
we now take K = Q(λ) for some λ ∈ C, the structure CK depends on λ. In topological terms, there
is a clear difference between real and non-real λ. For λ ∈ R, there is a branch of w 7→ wλ which fixes
the positive real line setwise, but not for non-real λ. One might wonder if this distinction shows up in
the algebra of powers: for example, if t is real and transcendental, are the structures CQ(t) and CQ(it)

distinguishable, or isomorphic? It turns out that not all transcendental powers are isomorphic, and we
give an example in 9.4. However, if Conjecture 1.1 is true then all but countably many complex powers
should give isomorphic powered fields, and indeed we are able to prove this.

Given a countable field K, we construct a K-powered field EK of cardinality continuum, analogous
to Zilber’s Bexp. We prove

Theorem 1.4. Let K be a countable field of characteristic 0. Then up to isomorphism, there is exactly
one K-powered field EK of cardinality continuum which:

(i) has cyclic kernel,

(ii) satisfies the Schanuel property,

(iii) is K-powers closed, and

(iv) has the countable closure property.

Furthermore, it is quasiminimal.

In the case K = Q(λ) with λ ∈ C transcendental, we say that λ is a generic power if CK ∼= EK , so
Theorem 1.4 implies that generic powers give rise to isomorphic powered fields. We are able to prove:

Theorem 1.5. If λ ∈ C is exponentially transcendental then λ is a generic power.

There are only countably many complex numbers which are not exponentially transcendental (that
is, which are exponentially algebraic), so this proves the promised corollary of Conjecture 1.1.

We briefly explain the terms used in the statement of Theorem 1.4 and how they are proved in the
complex case. Cyclic kernel just refers to the fact that the kernel of the exponential map is an infinite
cyclic group. The Schanuel property is a form of Schanuel’s conjecture appropriate for powers from a
field K. It was proved for exponentially transcendental λ in [BKW10]. There is a natural pregeometry
on a K-powered field, analogous to relative algebraic closure on a field, which we call K-powers closure.
The countable closure property (CCP) asserts that theK-powers closure of a countable set is countable.
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It holds on CK because the K-powers closure of a set A is contained in the exponential algebraic closure
of A ∪K, and the exponential algebraic closure has the CCP for topological reasons.

On the other hand the K-powers closed property does not refer to this pregeometry, but is rather
an existential closedness condition: every system of K-powers (or exponential sums) equations which
can have solutions in a “reasonable” extension of EK already has solutions inside EK . So this is the
analogue of a field being (absolutely) algebraically closed, and of the EAC property for exponential
fields mentioned above. Zilber [Zil02] was able to prove this property for CK in the case where K was
a subfield of R, and then in the unpublished [Zil15] he proved Theorem 1.5 in the case of real λ. The
main breakthrough which allows us to prove Theorem 1.5 without this restriction to real powers is:

Fact 1.6 ([Gal23, Corollary 8.10]). The complex field with complex powers, CC, is powers-closed.

This fact is also essential for the proofs of Theorems 1.2 and 1.3. For these we use the Bays–Kirby
variation of the Shelah–Zilber excellence method from [BK18] to construct quasiminimal K-powered
fields EK,tr(D) over a base K-powered field D, such that D is in fact relatively K-powers closed
in EK,tr(D). Given a countable subfield K ⊆ C, we are able to find a suitable D ⊆ CK such that
CK ∼= EK,tr(D). Again, one has to show appropriate forms of the conditions (i)—(iv) from Theorem 1.4.
The point of the Bays–Kirby method is we are able to hide the transcendental number theory part of
the Schanuel Property inside D, and so ignore it. In this way we are able to prove the quasiminimality
of the powered fields CK without characterising them all up to isomorphism.

From the excellence method it follows that each CK has an uncountably categorical axiomatization
in the infinitary logic Lω1,ω(Q). However, except for the generic cases, we are not able to give any
explicit axiomatization.

1.3 Outline of the paper

The short section 2 explains our terminology and notation for affine algebraic varieties, their linear
counterparts, and the associated dimension notions. The main technical objects of study, partial K-
powered fields and their extensions, are introducted in section 3. Section 4 introduces the predimensions
in the style of Hrushovski, which are the tool for expressing and using transcendence statements.

The K-powers analogues of algebraicity and transcendence are explained in section 5, and we prove
the first of the main technical steps in the quasiminimality proof, that purely powers-transcendental
extensions can be amalgamated, using a lemma from stable group theory. In section 6 we classify the
finitely generated extensions of partial K-powered fields in terms of the locus of a good basis. This is
possible due to a result of Zilber in Kummer theory.

Section 7 uses Hrushovski–Fräıssé amalgamation to build countable K-powered fields FK(D0) and
FK,tr(D0), which are then extended to continuum-sized quasiminimal K-powered fields EK(D0) and
EK,tr(D0) using the Shelah-Zilber excellence method.

In section 8, we explain the K-powers closedness notion, and use a theorem of diophantine geometry
known as “weak Zilber–Pink” to show that under a strong transcendence assumption, the analogue of
Schanuel’s conjecture, it implies an algebraic saturation property satisfied by EK(D0).

In section 9 we put together the earlier work to characterise these EK(D0) up to isomorphism
by a short list of properties, which includes Theorem 1.4 as a special case. We then give several
consequences, including Theorem 1.5.

While sections 8 and 9 rely on a strong transcendence assumption which holds only for sufficiently
generic subfields K of C, in section 10 we drop this assumption. The second main technical step
towards the quasiminimality proof is to prove the algebraic saturation property for EK,tr(D0) now only
with tools from Ax’s functional transcendence theorem in place of Schanuel’s transcendence conjecture.
We then complete the proof of Theorem 1.2.
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2 Subspaces, loci, and dimension conventions

There are two kinds of notions of subspace related to a vector space which we make extensive use of,
which model theorists characterize as semantic and syntactic notions, so to avoid ambiguity we briefly
clarify the terminology and notation we will use. Let K be a field, and V a K-vector space.

By a (K)-vector subspace of V , as usual we mean a subgroup of V closed under scalar multiplication.
Given a subset A ⊆ V , we write ⟨A⟩K for the K-span of A in V , the smallest K-vector subspace

of V containing A.
Given subsets A,B ⊆ V , we write ldimK(A/B), read as the K-linear dimension of A over B, to

mean the cardinality of the smallest set A0 such that ⟨A∪B⟩K = ⟨A0∪B⟩K ; this is of course equal to
the dimension of the quotient space ⟨A ∪B⟩K/⟨B⟩K . As usual, we write ldimK(A) for ldimK(A/∅).

Now fix n ∈ N. By a K-linear subspace of V n we mean a K-vector subspace L of V n given as the
set of n-tuples z from V satisfying a matrix equation Mz = 0. More generally, a K-affine subspace of
V n is given as the solution set to a matrix equation Mz = b, for some matrix M ∈ Matk×n(K) and
some b ∈ V k. We say that a K-affine subspace L is defined over a subset B ⊆ V if it is defined by
some equation Mz = b with b ∈ ⟨B⟩kK .

The dimension of a K-affine subspace L of V n is defined to be n − rk(M), where rk(M) is the
rank of the matrix M .

Now fix a ∈ V n and B ⊆ V . The K-affine locus of a over B, denoted by K-AffLoc(a/B), is the
minimal K-affine subspace of V n which is defined over B and contains a. We can regard the finite
tuple a as a finite set, and then ldimK(a/B) coincides with dimK-AffLoc(a/B).

We have similar conventions for fields and algebraic varieties. Let F be a field, and let A,B be
subsets of F . We write td(A/B) for the cardinality of the smallest subset A0 of A such that every
element of F which is algebraic over A∪B is also algebraic over A0∪B. Equivalently, in characteristic
0, td(A/B) is the transcendence degree of the field extension Q(A ∪B)/Q(B).

Given a ∈ Fn and B ⊆ F , the algebraic locus Loc(a/B) is the smallest Zariski-closed subset of Fn

which is defined over B (or equivalently over the subfield of F generated by B) and contains a. We
have dim Loc(a/B) = td(a/B).

3 K-powered fields

In this section we introduce K-powered fields and the technical notions of a partial or full K-powered
field, and discuss some basic facts about extensions.

Definition 3.1. Let K be a field of characteristic 0. A K-powered field consists of a K-vector space
V , a field F of characteristic 0, and a group homomorphism

exp : (V,+) → (F×, ·).

We say the K-powered field is full if exp is surjective and F is algebraically closed.

Example 3.2. For any subfield K ⊆ C, the K-powered field CK is the structure

CK-VS
exp−→ Cfield
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described in the Introduction. More generally, if Fexp is an exponential field and K ⊆ F is a subfield,
we construct a K-powered field

FK-VS
exp−→ Ffield

where FK-VS is the reduct of Fexp to the K-vector space language, Ffield is the reduct to the field
language, and exp is the exponential map from Fexp.

The K-powered fields we will mostly be interested in in this paper have the form BK and CK ,
where Bexp is Zilber’s exponential field and Cexp is the complex exponential field.

To classify extensions of K-powered fields it is useful to have a notion of partial K-powered field,
where the exponential is a partial function on V .

Definition 3.3. A partial K-powered field consists of a K-vector space V , a Q-vector subspace D of
V , a field F of characteristic 0, and a group homomorphism exp : D → F× such that:

1. ⟨D⟩K = V ; and

2. exp(D) generates F as a field.

The kernel kerD of D is the kernel of the exponential function. When it is clear what D is, we will
denote the kernel simply by ker. A K-powered field D has cyclic kernel if kerD is an infinite cyclic
group.

All the K-powered fields considered in this paper, such as CK and BK , will have cyclic kernel.
A partialK-powered field is finitely generated if the domainD of the exponential is finite dimensional

as a Q-vector space.

Example 3.4. Consider a 1-dimensional Q-vector space D, generated by an element τ . We take
V = D ⊗Q K, F = Q(

√
1) the field generated by all roots of unity, and define exp : D → F by

mapping τ
n to a primitive n-th root of unity, for each n, chosen so that for all m1 and m2 we have

exp

(
τ

m1m2

)m2

= exp

(
τ

m1

)
.

This partial K-powered field is unique up to isomorphism. We will refer to this partial, 1-dimensional
K-powered field (D,V, exp, F ) as the standard base and denote it by SBK .

It is possible to encode all the information of a partial K-powered field in the domain D of the
exponential map.

Definition 3.5. Let K be a field of characteristic 0. Fix a K-vector space V and an algebraically closed
field F , also of characteristic 0. The language LK is the expansion of the language of Q-vector spaces
by:

1. A unary predicate ker;

2. An n-ary predicate L(z1, . . . , zn) for each K-linear subspace L ≤ V n;

3. An n-ary predicate EW (w1, . . . , wn) for each algebraic variety W ⊆ Fn defined and irreducible
over Q.

(The language does not depend on the choices of V and F ).
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Given a partial K-powered field (D,V, exp, F ) we may see the domain of exponentiation D (which
is a Q-vector space by definition) as a structure in the language LK as follows. The predicate ker
is interpreted as the kernel of exp; each predicate L is interpreted as the intersection of the K-linear
subspace L ≤ V n with Dn; each predicate EW is interpreted as the preimage under exp of the set of
F -points of W .

Conversely, given the domain of exponentiation D of a partial K-powered field seen as an LK-
structure we can reconstruct the K-powered field.

Notation 3.6. We will freely useD (orD1, D2, D
′...) to denote a partialK-powered field (D,V, exp, F ).

We will still denote by F (or, according to the notation for the domain, F1, F2, F
′...) the field generated

by the quotient D/ ker, by V (or V1, V2, V
′...) the K-vector space that D embeds in, by exp(z) the

coset z + ker for some z ∈ D, and write “z ∈ L” or “exp(z) ∈W” rather than “L(z)” or “EW (z)”.

3.1 Extensions of partial K-powered fields

Definition 3.7. Let D1 be a partial K-powered field.
An extension of D1 is an LK-embedding φ of D1 into a partial K-powered field D2. Equivalently,

it is an embedding of (D1, V1, exp1, F1) into (D2, V2, exp2, F2) consisting of a K-linear embedding
φV : V1 ↪→ V2 and a field embedding φF : F1 ↪→ F2 such that φV (D1) ⊆ D2 and φF ◦exp1 = exp2◦φV .

If φ is an inclusion, we say that D1 is a partial K-powered subfield of D2. We denote this by
D1 ≤ D2. If kerD2

= kerD1
, we say that the extension preserves the kernel, or that it is kernel-

preserving.

Example 3.8. Observe that a partial K-powered field has cyclic kernel if and only if it is a kernel-
preserving extension of the standard base SBK of Example 3.4.

An extension of partial K-powered fields D1 ≤ D2 is finitely generated if D2 is finitely generated
over D1 as a Q-vector space. A basis for the extension D2 of D1 is a Q-linear basis for D2 over D1.

We can use bases to determine the isomorphism type of an extension of K-powered fields.

Definition 3.9. Let D be a partial K-powered field, z ∈ Dn, A ⊆ D. The K-powers locus of z over
A is the pair (K-AffLoc(z/A), Loc(exp(z)/exp(A))). We denote it by K-pLoc(z/A).

The following is straightforward.

Lemma 3.10. Let D1 and D2 be finitely generated extensions of a partial K-powered field D, and let
b1 ∈ Dn

1 be a basis for D1 over D.
Then D1 and D2 are isomorphic over D if and only if there is a basis b2 ∈ Dn

2 such that for each
m ∈ N \ {0}, we have K-pLoc

(
b1
m/D

)
= K-pLoc

(
b2
m/D

)
.

In Section 6 we will see that in cases of interest it is actually sufficient to consider the loci of b
m up

to some finite m, and therefore by replacing b by b
m! we can consider only m = 1.

4 Predimensions

In this section we introduce the predimension δK on a K-powered field and we use it to define strong
extensions of K-powered fields. We show that these classes of extensions satisfy an amalgamation
property.

We then compare the predimension on BK with the exponential predimension on Zilber’s exponential
field Bexp, and use this comparison to show that if K is a subfield of Bexp of finite transcendence degree
then BK has a finitely generated strong substructure.

8



4.1 The predimension on a K-powered field

Definition 4.1. Let D be a partial K-powered field, A,B subsets of D with ldimQ(A/B) finite.
We define the predimension of A over B as

δK(A/B) = ldimK(A/B) + td(exp(A)/exp(B))− ldimQ(A/B).

We define δK(A) := δK(A/∅).

When the field of powers is clear we just write δ instead of δK . We will frequently consider the
predimension of a tuple z ∈ Dn rather than of a set; this is defined in the obvious way.

Note that if D1 ≤ D2 is a finitely generated extension of partial K-powered fields, then δ(D2/D1)
is equal to δ(z/D1) where z is a basis for D2 over D1.

Lemma 4.2. The predimension function δK satisfies the following properties:

1. Finite character: if z ∈ Dn and A ⊆ D, there is a finite subset A0 ⊆ A such that δ(z/A) =
δ(z/A0).

2. Addition formula: given X ⊆ Y ⊆ Z ⊆ D,

δ(Z/X) = δ(Z/Y ) + δ(Y/X).

3. Submodularity: given A1, A2 ⊆ D,

δ(A1 ∪A2/A1) ⩽ δ(A2/⟨A1⟩Q ∩ ⟨A2⟩Q).

Proof. Straightforward, by the same argument as [BK18, Lemma 4.2].

4.2 Strong extensions

As usual in Hrushovski–Fräıssé-type constructions, the predimension function is used to define a notion
of strong extension.

Definition 4.3. An extension D1 ≤ D2 of partial K-powered fields is strong if it is kernel-preserving
and for all finite tuples z in D2, we have δ(z/D1) ⩾ 0. We denote this by D1 ◁ D2 and say D1 is a
strong partial K-powered subfield of D2.

It is straightforward to verify that the composite of strong extensions is strong.

Definition 4.4 (Free amalgam). Let D2 and D3 be partial K-powered fields, extending the full K-
powered field D1.

Let V4 be the K-vector space V2⊕V1
V3, and D4 the Q-vector subspace of V4 generated by D2 and

D3. Since F1 is algebraically closed, there is up to isomorphism a unique amalgam F4 of F2 and F3 such
that F2 is linearly disjoint from F3 over F1. Extend exp toD4 by setting exp(z2+z3) = exp(z2)·exp(z3).

We call the partial K-powered field D4 the free amalgam of D2 and D3 over D1.

Proposition 4.5. Let D2 and D3 be partial K-powered fields, extending the full K-powered field D1.
Let D4 be the free amalgam of D2 and D3 over D1, and suppose D1 ◁ D2. Then D3 ◁ D4. If also
D1 ◁ D3, then D1 ◁ D4.

Proof. First we note that kerD4 = kerD3 : if exp(z2 + z3) = 1 then exp(z2) = 1
exp(z3)

∈ F3, so

exp(z2) ∈ F1. Since D1 ◁ D2 and D1 is full, this implies that z2 ∈ D1. Hence z2 + z3 ∈ D3.
Let now z4 be a finite tuple in D4; then z4 = z2 + z3 for some finite tuples z2 and z3. Then

δ(z4/D3) = δ(z2/D3). Since the amalgam is free, we have δ(z2/D3) = δ(z2/D1), which is non-
negative because D1 ◁ D2. So indeed D3 ◁ D4.

The last statement follows from the composite of strong extensions being strong.
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4.3 Hulls

Lemma 4.6. Suppose D is a partial K-powered field, J is a set, and for each j ∈ J , Dj is a strong
partial K-powered subfield of D.

Then DJ :=
⋂

j∈J Dj is also strong in D.

Proof. By the same argument as [BK18, Lemma 4.5].

Definition 4.7. Let D be a partial K-powered field, A ⊆ D. The hull of A in D is

⌈A⌉DK =
⋂

{X ◁D | A ⊆ X}.

Lemma 4.6 shows that the hull of a set in D is a strong partial K-powered subfield of D. When
the field of exponents and the ambient space in which we take the hull are clear, we drop this from the
notation and write ⌈A⌉ rather than ⌈A⌉DK .

Lemma 4.8. The hull operator has finite character: if D is a K-powered field and X ⊆ D, then

⌈X⌉ =
⋃

X0⊆X finite

⌈X0⌉.

Proof. By the same argument as [BK18, Lemma 4.7].

4.4 Strong substructures of BK

In this subsection we study strong substructures of the K-powered field BK , coming from Zilber’s
exponential field as explained in Example 3.2. To do so, we compare the predimension δK with the
notion of predimension used in exponential fields. We will explain the properties of Bexp we need as we
use them.

Definition 4.9. Let F be an exponential field. The exponential predimension δexp on F is the predi-
mension function defined, for subsets A,B ⊆ F with ldimQ(A/B) finite, by

δexp(A/B) = td(A, exp(A)/B, exp(B))− ldimQ(A/B).

As in the case of the predimension δK , we will frequently refer to the predimension of a tuple z in
the exponential field F .

For a set B ⊆ F , we write B ◁exp F to denote the fact that δexp(z/B) ⩾ 0 for all finite tuples z in
F and that for all z ∈ F , if exp(z) ∈ exp(⟨B⟩Q) then z ∈ ⟨B⟩Q. We say that B is exponentially strong
in F .

The exponential hull ⌈B⌉Fexp of a set B is the smallest Q-vector subspace of F containing B that
is exponentially strong in F (and it always exists).

In this case too we will omit the field F from the notation if it is clear from the context.

Lemma 4.10. Let F be an exponential field, K ⊆ F a subfield, X ⊆ F . Then ⌈X⌉K ⊆ ⌈X,K⌉exp.
Proof. Let D = ⌈X,K⌉exp: we have to prove that D is strong in FK in the sense of K-powered fields.
So let z be a tuple in F . Then

δK(z/D) = ldimK(z/D) + td(exp(z)/exp(D))− ldimQ(z/D)

⩾ td(z/D) + td(exp(z)/exp(D))− ldimQ(z/D)

⩾ td(z, exp(z)/D, exp(D))− ldimQ(z/D)

= δexp(z/D)

⩾ 0

as required.
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We will use this with F = Bexp and X = {τ}, where τ is a generator of the kernel in Bexp. Strong
extensions are by definition kernel-preserving, and therefore τ is contained in any strong partial K-
powered subfield of BK . Hence the hull of the empty set, that is, the minimal strong substructure of
Bexp, coincides with the hull of τ .

Recall that by construction (see [Zil05a, Section 5], [BK18, Section 9]) Bexp satisfies the Schanuel
property, that is, for every finite A ⊆ Bexp we have δexp(A) ⩾ 0.

Lemma 4.11. Let K ⊆ Bexp be a subfield of transcendence degree d for some d ∈ N. Then BK has a
finitely generated strong partial K-powered subfield (in particular ⌈τ⌉K is finitely generated).

Proof. Let z be a finite tuple in Bexp. Then we have:

δK(z) = ldimK(z) + td(exp(z))− ldimQ(z)

⩾ td(z/K) + td(exp(z))− ldimQ(z)

⩾ td(z)− d+ td(exp(z))− ldimQ(z)

⩾ td(z, exp(z))− ldimQ(z)− d

= δexp(z)− d

⩾ −d.

Thus there is a tuple a containing τ such that δK(a) is minimal. Then for any z we have δK(z/a) ⩾
0, so ⟨a⟩Q is a finitely generated strong partial K-powered subfield.

Remark 4.12. By [BK18, Theorem 1.3], there are many choices of K for which ⌈τ⌉K ∼= SBK ; for
instance, this holds when K = Q(λ) for all but countably many λ’s in Bexp.

5 The K-powers-closure pregeometry

As usual in Hrushovski-Fräıssé amalgamation constructions, we use the predimension to define a prege-
ometry on K-powered fields. We introduce two kinds of extensions of K-powered fields: the powers-
algebraic and powers-transcendental extensions, analogous to algebraic and purely transcendental ex-
tensions of fields. Finally, we show that on CK the pregeometry satisfies the countable closure property
using the corresponding property of exponential-algebraic closure.

5.1 The pregeometry on a K-powered field

Definition 5.1. Let D be a partial K-powered field, and let A ⊆ D. The K-powers-closure of A in
D, denoted pclDK(A), is the smallest partial K-powered subfield of D which contains A such that if
B ⊆ D and δ(B/pclDK(A)) ⩽ 0 then B ⊆ pclDK(A).

If the field of exponents is clear then we only write pclD(A).

Proposition 5.2. Let D be a partial K-powered field. Then

pclDK(A) =
⋃

{z ∈ D | ∃n ∈ N, z′ ∈ Dn : δ(z, z′/⌈A⌉DK) = 0}

and pclD is a pregeometry on D. Moreover, if D is full and A ⊆ D, then the powers-closure pclD(A)
is a full K-powered subfield of D.

Proof. The description of pclDK(A) is straightforward. Finite character is by the same argument as
[BK18, Lemma 4.12]. Exchange can be obtained by the same argument as in [BK18, Lemma 4.14],
but we remark that in this context it has a shorter, direct proof which we leave to the reader. The
“moreover” statement is by the same argument as [BK18, Lemma 4.10(2)].

11



As with all pregeometries, we can associate to powers-algebraic closure a dimension function.

Definition 5.3. We call the dimension function associated to pclD powers-transcendence degree and
denote it by K-tdD.

If z ∈ D and A ⊆ D we say that z is powers-algebraic over A in D if K-tdD(z/A) = 0, and
powers-transcendental over A in D otherwise.

We have defined pclDK as a closure operator on the covering sort D of a partial K-powered field.
For a full K-powered field, we extend it to a closure operator on the disjoint union of the covering and
field sorts D ⊔ F , by also closing under exp and exp−1. If we now restrict to the field sort F we get a
pregeometry there which we denote by pclFK .

In the case K = Q, we have δQ(z/A) = td(exp(z)/exp(A)) and it is easy to see that pclFQ is equal

to algebraic closure on F , that is, given b ∈ F and a subfield A ⊆ F , we have b ∈ pclFQ (A) if and only
if b is a zero of a non-trivial polynomial p(X) ∈ A[X].

Now consider K ̸= Q and suppose b ∈ F is a zero of a “K-powered polynomial” over a subfield A ⊆
F , that is, there is a non-zero polynomial p(X1, . . . , Xr) ∈ A[X1, . . . , Xr], there are Q-linearly indepen-
dent λ1, . . . , λr ∈ K, and there are a1, . . . , ar ∈ exp−1(b) such that p(exp(λ1a1), . . . , exp(λrar)) = 0.
We also write this informally as p(bλ1 , . . . , bλr ) = 0.

Then one can check easily that δK(λ1a1, . . . , λrar/⌈exp−1(A)⌉DK) = 0 and so b ∈ pclFK(A).

However, we can also have b ∈ pclFK(A) without satisfying a K-powers polynomial over A, due to
a lack of elimination theory for K-powered polynomials.

For example, if we take λ1, λ2, c1, . . . , c8 to be a sufficiently generic 10-tuple in Bexp, for example
exponentially-algebraically independent, then we can find a1, a2 ∈ Bexp such that

c1exp(a1)+c2exp(λ1a1)+c3exp(a2)+c4exp(λ2a2) = c5exp(a1)+c6exp(λ1a1)+c7exp(a2)+c8exp(λ2a2) = 0.

So taking K = Q(λ1, λ2) and C = Q(c1, . . . , c8) we see that a1, a2 satisfy two different K-powered

polynomials in two variables, and one can see that a1, a2 ∈ pcl
Bexp

K (C).
However, using the arguments of [Kir13, Proposition 7.5], one can check that neither a1 nor a2

satisfies any one-variable K-powered polynomial over C.
The predimension and the pregeometry are related in the usual way.

Lemma 5.4. Let D be a partial K-powered field. Suppose D1 ◁ D and D2 is a finitely generated
extension of D1 contained in D. Then:

(1) D2 ◁ D if and only if K-tdD(D2/D1) = δ(D2/D1);

(2) K-tdD(D2/D1) = min{δ(D′/D1) | D2 ⊆ D′ ⊆ D};

(3) ⌈D2⌉D is finitely generated over D2.

Proof. These are standard facts about the pregeometry attached to a predimension. A proof of the
first two assertions follows the same argument as [BK18, Lemma 4.15] (although in this setting there
is no need to apply [BK18, Lemma 4.13].)

The last statement is a consequence of the first two: the extension finitely generated over D2 by
the elements of a pcl-basis of pclD(D2) over D1 is strong in D.

Unlike the usual transcendence and algebraicity, the ambient D does matter in general. However,
the following lemma, standard for predimension constructions, shows that as long as extensions are
strong we can forget the ambient D.

Lemma 5.5. Let D0 ◁D1 ◁D2 be partial K-powered fields. For every tuple a in D1, K-tdD1(a/D0) =
K-tdD2(a/D0).

Proof. Follows from Lemma 5.4(2).
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5.2 Powers-algebraic extensions

Definition 5.6. A strong extension D1 ◁ D2 of partial K-powered fields is powers-algebraic if every
element in D2 is powers-algebraic over D1; equivalently, if for all finite tuples z in D2 there is a finite
tuple z′ in D2 extending z such that δ(z′/D1) = 0.

Proposition 5.7. Let D1 be a full K-powered field and let D2 and D3 be powers-algebraic extensions
of D1. The free amalgam D4 of D2 and D3 over D1 is a powers-algebraic extension of D1.

Proof. By Proposition 4.5, D1 ◁ D4 is a strong extension. By definition of free amalgam, any tuple
z in D4 has the form z2 + z3 where z2, z3 are tuples from D2 and D3 respectively. By powers-
algebraicity of the extensions D1 ≤ D2 and D1 ≤ D3, up to extending z2 and z3 we may assume that
δ(z2/D1) = δ(z3/D1) = 0.

Now we have that

δ(z2 + z3/D1) = δ(z2 + z3/D1, z3) + δ(z3/D1)

= δ(z2 + z3/D1, z3).

Write zi = (z1i , . . . , z
n
i ) for i = 2, 3. Now let λ1, . . . , λn ∈ K. If

∑n
j=1 λj(z

j
2 + zj3) ∈ ⟨D1, z3⟩K ,

then
∑n

j=1 λjz
j
2 ∈ ⟨D1, z3⟩K and hence by freeness of the amalgam

∑n
j=1 λjz

j
2 ∈ D1. Hence

ldimK(z2/D1) ≤ ldimK(z2 + z3/D1, z3). Conversely, if
∑n

j=1 λjz
j
2 ∈ D1 then

∑n
j=1 λj(z

j
2 + zj3) ∈

⟨D1, z3⟩K . Hence ldimK(z2 + z3/D1, z3) = ldimK(z2/D1).
Similar considerations hold for transcendence degree and Q-linear dimension, so δ(z2+z3/D1, z3) =

δ(z2/D1) = 0.

5.3 Purely powers-transcendental extensions

Definition 5.8. Let D1 be a partial K-powered subfield of D2. We say D1 is K-powers-closed in
D2 if for all finite tuples z in D2 we have that either δ(z/D1) > 0, or z is in D1. Equivalently, if
D1 = pclD2(D1).

In this case we say that D2 is a purely powers-transcendental extension of D1. We denote this by
D1 ◁cl D2.

We next prove an amalgamation result for purely powers-transcendental extensions of a fixed, full
K-powered field. This is one of the two key technical steps in the Bays-Kirby method which allows us
to prove quasiminimality of CK without Schanuel’s Conjecture.

Proposition 5.9. Let D0 be a full, countable K-powered field; let D1, D2, D3 be purely powers-
transcendental extensions of D0 with D1 full, D1 ◁ D2 and D1 ◁ D3, and let D4 be the free amalgam
of D2 and D3 over D1. Then D4 is a purely powers-transcendental extension of D0.

We are going to use two versions of a technical result on stable groups due to Ziegler.

Lemma 5.10 ([Zie06, Theorem 1]). Vector space version. Let V be a K-vector space, V ′ ≤ V a
vector subspace, and let v1, v2, v3 ∈ V n. Suppose that v1 + v2 + v3 = 0V n and that

ldimK(vi/V
′vj) = ldimK(vi/V

′)

for each i, j in {1, 2, 3} with i ̸= j.
Then there is a K-linear subspace L ≤ V n such that v1, v2, v3 are generic points over V ′ of

V ′-cosets of L; in particular, ldimK(vi/V
′) = dimL for i = 1, 2, 3.
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Algebraic group version. Let H be a commutative algebraic group defined over an algebraically
closed field F , and let h1, h2, h3 ∈ H. Suppose that h1 + h2 + h3 = 0H , and that

td(hi/Fhj) = td(hi/F )

for each i, j in {1, 2, 3} with i ̸= j.
Then there is an algebraic subgroup G of H such that h1, h2, h3 are generic points over F of

F -cosets of G; in particular, td(hi/F ) = dimG for i = 1, 2, 3.

Proof of Proposition 5.9. We will show that δ(b/D0) > 0 for every tuple b in D4 \D0. Without loss
of generality we may assume that the tuple b is Q-linearly independent over D0. Assume first that
⟨D0, b⟩Q ∩D2 ̸= D0. Then we have

δ(b/D0) = δ(b/⟨D0, b⟩Q ∩D2) + δ(⟨D0, b⟩Q ∩D2/D0)

⩾ δ(b/D2) + δ(⟨D0, b⟩Q ∩D2/D0) (by submodularity of δ)

⩾ 0 + 1 > 0

because D2◁D4 and ⟨D0, b⟩Q∩D2 is contained in D2 which is a purely powers-transcendental extension
of D0.

Now we assume ⟨D0, b⟩Q ∩D2 = D0 and, symmetrically, ⟨D0, b⟩Q ∩D3 = D0.
By definition of free amalgam, there are b2 ∈ Dn

2 and b3 ∈ Dn
3 such that b = b2 + b3. We

denote by D′
2 and D′

3 the partial K-powered fields ⟨D0, b2⟩Q and ⟨D0, b3⟩Q respectively. We claim that
D2 ∩D′

3 = D′
2 ∩D3 = D0.

To see this, let v ∈ D2∩D′
3. Since it is in D

′
3, we may write it as v0+

∑n
i=1 qib

i
3 for some v0 ∈ D0,

q1, . . . , qn ∈ Q, where b3 = (b13, . . . , b
n
3 ). Let then u3 = v − v0 =

∑n
i=1 qib

i
3, and define analogously

u2 =
∑n

i=1 qib
i
2 and u = u2 + u3 =

∑n
i=1 qib

i. Since b2 ∈ Dn
2 , we have u = u2 + u3 ∈ D2: but we

have assumed that ⟨D0, b⟩Q ∩D2 = D0, and therefore u ∈ D0. Therefore all the qi’s are actually 0,
and we have v = v0 ∈ D0. Hence D2 ∩D′

3 = D0; the same argument proves that D′
2 ∩D3 = D0.

Consider now the K-powered field C = ⟨D′
2, b⟩Q and note that since b = b2 + b3, C = ⟨D′

2, b3⟩Q =
D′

2 +D′
3. Consider the following extensions of Q-vector spaces:

D0

D′
2 ⟨D0, b⟩Q D′

3

C

By assumption, ldimQ(b/D0) = n. By modularity of Q-linear dimension applied to the half-square
diagrams, we have

ldimQ(C/D
′
3) = ldimQ(C/D

′
2) = ldimQ(b/D0) = n

and
ldimQ(D

′
2/D0) = ldimQ(C/⟨D0, b⟩Q) = ldimQ(D

′
3/D0)
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while applying modularity to the full square we get

ldimQ(D
′
2/D0) = ldimQ(C/D

′
3)

ldimQ(D
′
3/D0) = ldimQ(C/D

′
2).

Combined, these imply that b2 and b3 are both Q-linearly independent over D0, and in fact over D1

since D1 ∩D′
2 ⊆ D3 ∩D′

2 = D0 (and similarly for D1 ∩D′
3).

We now consider some inequalities.

ldimK(b/D1) ⩾ ldimK(b/D1b3) = ldimK(b2/D1b3) = ldimK(b2/D1) (1)

where the first equality holds because b = b2 + b3 and the second one because D2 and D3 are
amalgamated freely in D4, and therefore b2 and b3 are independent over D1 in the sense of K-vector
spaces. With similar reasoning, we obtain

ldimK(b/D1) ⩾ ldimK(b3/D1) (2)

td(exp(b)/F1) ⩾ td(exp(b2)/F1) (3)

td(exp(b)/F1) ⩾ td(exp(b3)/F1). (4)

Moreover, we have

ldimK(b/D0) ⩾ ldimK(b/D1) (5)

td(exp(b)/F0) ⩾ td(exp(b)/F1) (6)

simply because linear dimension and transcendence degree do not increase when we extend the base.
Now if one of (5) and (6) is a strict inequality, we obtain

δ(b/D0) = ldimK(b/D0) + td(exp(b)/F0)− ldimQ(b/D0)

> ldimK(b/D1) + td(exp(b)/F1)− n

⩾ ldimK(b2/D1) + td(exp(b2)/F1)− ldimQ(b2/D1)

= δ(b2/D1) ⩾ 0

and therefore δ(b/D0) > 0, as we wanted.
Assume then that (5) and (6) are both equalities, and that one of (1) and (3) is strict. Again, we

obtain

δ(b/D0) = ldimK(b/D0) + td(exp(b)/F0)− ldimQ(b/D0)

= ldimK(b/D1) + td(exp(b)/F1)− n

> ldimK(b2/D1) + td(exp(b2)/F1)− n

= δ(b2/D1) ⩾ 0

and therefore again δ(b/D0) > 0. If (5) and (6) are equalities, and one of (2) and (4) is strict, we
obtain the same replacing b2 with b3. Thus we assume that none of the six inequalities is strict.

In this case, we obtain that

ldimK(b/D1) = ldimK(b/D1b2)

ldimK(b/D1) = ldimK(b/D1b3)

td(exp(b)/F1) = td(exp(b)/D1exp(b2))

td(exp(b)/F1) = td(exp(b)/D1exp(b3))
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which together with the fact that D4 is a free amalgam imply that b, b2, b3, and exp(b), exp(b2), exp(b3)
satisfy the assumptions of the two versions of Lemma 5.10. Thus there are a K-linear subspace
L ≤ V n

4 and an algebraic subgroup H ⊆ Gn
m such that b, b2, b3 are generic (over D1) points of D1-

translates of L and exp(b), exp(b2), exp(b3) are generic (over F1) points of F1-cosets of H. Thus we
have dimL = ldimK(b/D1) and dimH = td(exp(b)/F1), and as we are assuming that (5) and (6) are
equalities this says that dimL = ldimK(b/D0) and dimH = td(exp(b)/F0); in other words,

δ(b/D0) = dimL+ dimH − n.

Since ldimQ(b/D0) = n, we must have b /∈ Dn
0 , so ldimK(b/D0) > 0.

Assume now that m1, . . . ,mn ∈ Z satisfy

exp(b1)m1 · · · exp(bn)mn = c

for some c ∈ F0; then c = exp(a) for some a ∈ D0 (since D0 is full) and therefore

exp(m1b
1 + · · ·+mnb

n) = exp(a)

exp(m1b
1 + · · ·+mnb

n − a) = 1

so m1b
1 + · · · +mnb

n − a ∈ kerD2+D3
. All extensions are strong, and therefore kernel-preserving, so

kerD2+D3
= kerD0

⊆ D0: hence, this implies that m1b
1 + · · · + mnb

n ∈ D0, which can only hold
for m1 = · · · = mn = 0, again because ldimQ(b/D0) = n. Therefore, exp(b) is not contained in any
F0-coset of a proper algebraic subgroup of Gn

m; hence dimH = n. So we have

δ(b/D0) = dimL+ dimH − n

> 0 + n− n = 0.

This completes the proof.

5.4 The countable closure property

Definition 5.11. Let A be a set with a pregeometry cl. We say (A, cl) has the countable closure
property if for all finite X ⊆ A, cl(X) is countable.

We sum up in the following statement the main results obtained by the second author in [Kir10a].

Theorem 5.12 ([Kir10a, Theorems 1.1 and 1.2]). Any exponential field F has a pregeometry operator
eclF , with associated dimension etdF , such that every eclF -closed subset of F is an exponential subfield;
if C is such a set, then every z ∈ Fn satisfies

δexp(z/C) = td(z, exp(z)/C)− ldimQ(z/C) ⩾ etdF (z/C).

The fact that Bexp has the countable closure property is true by construction of Bexp (see for example
[Zil05b, Lemma 5.11]). The countable closure property for Cexp is [Zil05b, Lemma 5.12].

Consider now a countable subfield K of an exponential field F with the countable closure property.
For any exponential subfield C ⊆ F containing K we may consider the K-powered field CK .

Proposition 5.13. Let F be an exponential field which is algebraically closed, such that exp is surjective,
with the countable closure property for eclF . Let K be a countable subfield of F , and C ⊆ F an eclF -
closed exponential subfield of F containing K.

Then CK is a pclFK-closed, full K-powered subfield of FK .
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Proof. Since C is eclF -closed, it inherits algebraic closedness and surjectivity of exp from F . Hence
CK is a full K-powered field.

Now let z ∈ Fn. Then δK(z/C) ⩾ δexp(z/C) ⩾ 0, with equality holding if and only if z ∈ Cn.
Hence C is pclFK-closed.

Corollary 5.14. Let F be an exponential field with the countable closure property for ecl, K ⊆ F a
countable subfield. Then (FK , pclFK) satisfies the countable closure property.

In particular, if K is a countable subfield of Bexp (resp. C) then BK (resp. CK) has the countable
closure property.

Proof. Let A ⊆ F be finite. Then pclFK(A) ⊆ eclF (A ∪K), which is countable.

6 Classification of Extensions

In this section we introduce good bases of finitely generated extensions, that is, bases which determine
the extension up to isomorphism.

Definition 6.1. Let D1 ≤ D2 be a finitely generated, kernel-preserving extension of partial K-powered
fields. A good basis for the extension, or a good basis of D2 over D1, is a Q-vector space basis b of D2

overD1 such that if b
′ is a tuple in some extensionD ofD1 satisfyingK-pLoc(b/D1) = K-pLoc(b′/D1),

the partial K-powered field ⟨D1, b
′⟩Q is isomorphic to D2 over D1.

For any k ∈ N+, let [k] : (F×)n → (F×)n denote the componentwise multiplication-by-k map.

Definition 6.2. Let F be a field, W an algebraic subvariety of Gn
m defined over F . We say W is

Kummer-generic over F if for all k ∈ N+, [k]−1(W ) is irreducible over F .

This notion was introduced by Zilber (see [Zil06, Corollary 1.5]), while the terminology “Kummer-
generic” is due to Hils [Hil12, Definition 4.1] (who however only defines Kummer-genericity over alge-
braically closed fields.)

Lemma 6.3. Let D1 ≤ D2 be a finitely generated, kernel-preserving extension of partial K-powered
fields, b a basis for the extension. We have that b is a good basis if and only if Loc (exp (b) /F1) is
Kummer-generic over F1.

Proof. Let b be a basis for D2 over D1, and D an extension of D1 with a basis b′ such that
K-pLoc(b/D1) = K-pLoc(b′/D1); we denote this common K-powers locus by (L,W ).

For any k ∈ N+, we have that Loc
(
exp

(
b
k

)
/F1

)
is an irreducible component of [k]−1(W ), and

thus the K-powers loci of the points b
k and b′

k coincide for every k if and only if [k]−1(W ) has exactly
one irreducible component over F1 for each k, that is, if W is Kummer-generic over F1. Hence, we
conclude by Lemma 3.10.

Using Lemma 6.3 we will prove that if D is a K-powered field that is finitely generated or full then
every finitely generated extension of D has a good basis.

If D is full, we get it as a consequence of the following result of Zilber.

Theorem 6.4 ([Zil06, Corollary 1.5], see also [BGH14]). Let F be an algebraically closed field, W ⊆
(F×)n an algebraic subvariety. If W is not contained in a coset of an algebraic subgroup of (F×)n,
then there is m ∈ N+ such that [m]−1(W ) is Kummer-generic over F .

If D is finitely generated, then we follow the method of proof of [BK18, Section 3.3]. Recall the
notion of a division sequence for a point in the multiplicative group of a field.
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Definition 6.5. Let F be a field, w ∈ (F×)n. A division sequence for w is a sequence (wk)k∈N+ such
that w1 = w and for all h, k ∈ N+ we have (whk)

h = wk.

We denote by T̂ the group of division sequences of 1 ∈ (Qalg)n with componentwise multiplication.

Proposition 6.6. LetD be a partialK-powered field with cyclic kernel that is either finitely generated or
a finitely generated extension of a full K-powered field, let D1 be a finitely generated, kernel-preserving
extension of D, and let b be a basis for the extension.

Then there is m ∈ N+ such that Loc
(
exp

(
b
m

)
/F
)
is Kummer-generic over F .

Proof. Let ξb : Gal(F
alg
1 /F1) → T̂ denote the Kummer map defined by

σ 7→

(
σ
(
exp

(
b
k

))
exp

(
b
k

) )
k∈N+

.

The image of ξb has finite index in T̂ : this is proved in [BHP20, Proposition A.9] in the case of a
finitely generated K-powered field and in [BGH14, Section 3, Claim 2] in the case of full K-powered

field (see also [BK18, Proposition 3.24]). Let m be the exponent of the finite quotient T̂ /im(ξb): then

T̂m ⊆ im(ξb).

Let then ξ b
m

be defined analogously to ξb on Gal
(
F alg
1 /F

(
exp

(
b
m

)))
. We claim ξ b

m
is surjective.

In fact, if t = (tk)k∈N+ is a division sequence of 1, then tm ∈ im(ξb) and thus there is σ such that

ξb(σ) = tm. Hence we see that σ
(
exp

(
b
m

))
= exp

(
b
m

)
, that is, σ ∈ Gal

(
F alg
1 /F

(
exp

(
b
m

)))
, and

that for every k ∈ N+ we have

σ

(
exp

(
b

mk

))
= tmmkexp

(
b

mk

)
= tkexp

(
b

mk

)
where the first inequality holds by definition of ξb and the second one by definition of division sequence.
Hence, ξ b

m
(σ) = t. Since t was arbitrary, this proves surjectivity.

Then for all k ∈ N+, all the values of [k]−1
(
exp

(
b
m

))
are in the same orbit under Gal(F alg

1 /F ).

Hence, [k]−1
(
Loc

(
exp

(
b
m

)))
is irreducible over F .

Putting these results together we obtain the existence of good bases.

Proposition 6.7. Let D be a partial K-powered field with cyclic kernel that is either finitely generated
or full. Every finitely generated, kernel-preserving extension of D has a good basis.

Proof. Let b be a basis for an extension D ≤ D1, and (L,W ) := K-pLoc(z/D1). Since the extension
is kernel-preserving, exp(b) does not satisfy any multiplicative relation, and as it is a generic point of
W , this implies that W is not contained in any coset of an algebraic subgroup.

If D is full then F is algebraically closed and by Theorem 6.4, there is some m such that [m]−1(W )
is Kummer-generic. If D is finitely generated, then the same follows from Proposition 6.6. Either way,
we conclude applying Lemma 6.3.

Corollary 6.8. Let D be a countable partial K-powered field with cyclic kernel that is either finitely
generated or full. Up to isomorphism, there are only countably many finitely generated extensions of
D.

Proof. A finitely generated extension is determined up to isomorphism by the locus of a good basis.
Since D is countable, there are only countably many possible loci of points over it; therefore, there can
only be countably many finitely generated extensions.
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We conclude by using good bases to prove two statements which will be needed later on.

Lemma 6.9 (Uniqueness of the generic type). Let D0 ◁ D be an extension of K-powered fields, with
D0 partial and D full. If v ∈ D \ pcl(D0), then ⟨D0, v⟩Q ◁D. Moreover, v is a good basis for ⟨D0, v⟩Q
over D0, and hence ⟨D0, v⟩Q ∼= ⟨D0, v

′⟩Q for all v′ ∈ D \ pcl(D0).

Proof. Let z ∈ Dn. Then δ(z/D0v) = δ(vz/D0) − δ(v/D0) = δ(vz/D0) − 1. By assumption
vz /∈ (pcl(D0))

n+1 and therefore δ(vz/D0) > 0. Hence, δ(z/D0v) ⩾ 0, and ⟨D0, v⟩Q ◁ D.
To see that v is a good basis we just notice that since it is not in pcl(D0) its locus over A must be

the pair (V, F×). F× coincides with its preimages under multiplication-by-k maps, and it is irreducible:
hence v is a good basis.

Proposition 6.10 (Existence and uniqueness of full closures). Let D be a partial K-powered field with
cyclic kernel. Then there exists a full K-powered field Df that strongly extends D, such that there are
no intermediate full K-powered fields D1 with D ⊆ D1 ⊆ Df .

Moreover, if D is finitely generated, or a finitely generated extension of a countable full K-powered
field, then Df is unique up to isomorphism.

Proof. We only sketch the proof, as it is essentially the same as [Kir13, Theorem 2.18] (see also [BK18,
Theorem 4.17].)

For existence, we embed V into a large K-vector space V and F in a large algebraically closed
field F . We extend the exponential with an iterated procedure: we coherently map the Q-span of any
element of V that is not in D to rational powers of an element of F that is transcendental over F .
Moreover, for each element w ∈ F× that is algebraic over the image of exp at any given step, we take
an element in V that is not in V and map its Q-span (again, coherently) to rational powers of w. This
procedure yields a strong extension, and iterating we produce a full K-powered field. It is clear from
the construction that no intermediate D1 exists.

If D is finitely generated or a finitely generated extension of a countable full K-powered field, we
assume that there are two full K-powered field containing D as in the statement. We then break up
one of them into a countable union of finitely generated extensions of D, and embed each of these
extensions into the other full K-powered field using the good bases given by Proposition 6.7. These
embeddings will produce an isomorphism.

Given a partial K-powered field D, any full K-powered field obtained as in the proof of Proposition
6.10 will be called a full closure of D.

Lemma 6.11. Let D0 be a full K-powered field, D a purely powers-transcendental extension of D0.
If Df is a full closure of D, then D0 ◁cl D

f .

Proof. Df is obtained from D by an iterated construction, so it it sufficient to check that at every step
we have a purely powers-transcendental extension of D0. If z ∈ V \D then δ(z/D0) = 1. Similarly, if
w ∈ F× \ exp(D) and z′ ∈ Df is a point with exp(z′) = w, then δ(z′/D0) = 1. Hence the statement
holds.

7 Amalgamation and Excellence

Fräıssé’s original amalgamation theorem [Hod93, Chapter 7] gives the existence and uniqueness of a
countable ℵ0-saturated model F in a class C of relational structures which is specified by saying that
all finite substructures are from a certain subclass. The uniqueness is by the older back-and-forth
technique, and the existence is from an amalgamation construction.
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The first aim of this section is to use a variant of Fräıssé’s Theorem to show that two categories of
K-powered fields, denoted C(D0) and Ctr(D0), have Fräıssé limits FK(D0) and FK,tr(D0).

The second aim is to construct quasiminimal K-powered fields EK(D0) and EK,tr(D0) of size
continuum, and the last aim is to characterize these models semantically in the categories C(D0) and
Ctr(D0). We achieve these using the theory of quasiminimal excellent classes developed in [Zil05a],
[Kir10b], [Bay+14], showing that the Fräıssé limits FK(D0) and FK,tr(D0) generate such classes.

7.1 Amalgamation to a Fräıssé limit

There are many variants and generalisations of Fräıssé’s theorem, all with essentially the same proof.
We use a version from [Kir09, Theorem 2.18], extending [DG92], which allows us to replace the class
C by a category of countable structures where we can specify which embeddings we allow, and finite
becomes finitely generated in a suitable sense.

Definition 7.1. Let K be a countable field, D0 be a partial K-powered field with cyclic kernel.

1. C(D0) is the category of partial K-powered fields strongly extending D0, with strong embeddings
of D0 as the morphisms;

2. Ctr(D0) is the full subcategory of C(D0) whose objects are purely powers-transcendental exten-
sions of D0.

Definition 7.2. Let D0 be a partial K-powered field, and let C be one of the categories C(D0) and
Ctr(D0). An object A of C is ℵ0-saturated in C if for every finitely generated subobject A1 and every
finitely generated extension A2 of A1 in C, A2 embeds into A over A1 in C.

A Fräıssé limit for C is a countable, ℵ0-saturated object of C.

Remark 7.3. The usual back-and-forth argument shows that if an object D is ℵ0-saturated in C then
it is also ℵ1-universal in C (every object generated by a set of cardinality at most ℵ0 embeds in M)
and ℵ0-homogeneous in C (every isomorphism between finitely generated substructures extends to an
automorphism).

Theorem 7.4. Let C be C(D0) for a finitely generated or countable full K-powered field D0, or Ctr(D0)
for a countable full K-powered field D0.

Then C has a Fräıssé limit.

Notation 7.5. We denote by F(D0) and Ftr(D0) the Fräıssé limits of C(D0) and Ctr(D0) respectively.
We write just FK for F(SBK).

Proof. By [Kir09, Theorem 2.18] it suffices to prove that C is an amalgamation category in the sense
of [Kir09, Definition 2.17]. We use the numbering of the axioms of an amalgamation category from
[BK18, Definition 5.3].

(AC1) translates here as all morphisms in the category being embeddings and (AC2) to the category
being closed under unions of ω-chains; these are verified immediately.

(AC4) states in this context that every finitely generated object of C has countably many finitely
generated extensions up to isomorphism, and it holds by Corollary 6.8. (AC3) states that there are only
countably many finitely generated objects in C up to isomorphism, and it follows from (AC4) as D0 is
an object of C.

(AC5) is the amalgamation property for finitely generated objects, and it implies (AC6), the joint
embedding property for finitely generated objects. Hence it remains to prove (AC5).

Let D1, D2, D3 be finitely generated objects of C, with strong embeddings of D1 into D2 and D3.
By Proposition 6.10, each of the objects has a full closure that is unique up to isomorphism, which we
denote by Df

1 , D
f
2 , D

f
3 .
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By Proposition 6.10, the full closures of D1 inside Df
2 and Df

3 are both isomorphic to Df
1 , so we

can choose strong embeddings as in the dashed arrows in the diagram. Thus we let D4 be the free
amalgam of Df

2 and Df
3 over Df

1 .

D1 Df
1

D4

D2

D3

Df
2

Df
3

◁

◁

◁

◁

◁

By Proposition 4.5, D4 is a strong extension of Df
2 and Df

3 , and thus it is a strong extension of
D2 and D3. We take D = ⌈D2 ∪D3⌉D4

K , which is a finitely generated strong extension of D2 and D3

over D0, and is the amalgam we need.
Now assume D1, D2 and D3 are purely powers-transcendental extensions of the full K-powered

field D0. By Lemma 6.11 Df
1 , D

f
2 and Df

3 are also purely powers-transcendental over D0. Then by
Proposition 5.9, D4 is a purely powers-transcendental extension of D0. Hence D is a finitely generated,
purely powers-transcendental extension ofD0, with embeddings as in the definition of the amalgamation
property.

7.2 The models EK(D0) and EK,tr(D0)

Definition 7.6. Let M be an L-structure for a countable language L, equipped with a pregeometry cl.
We say that M is a quasiminimal pregeometry structure if it satisfies the following axioms, in which
qftp denotes the quantifier-free type:

(QM1) (The pregeometry is determined by the language) If a and b are finite tuples with qftp(a) =
qftp(b), then a and b have the same cl-dimension.

(QM2) (Infinite dimensionality) M is infinite-dimensional with respect to cl.

(QM3) (Countable closure property) If A ⊆M is finite, then cl(A) is countable.

(QM4) (Uniqueness of the generic type) If C,C ′ are countable closed substructures of M , they are
enumerated so that qftp(C) = qftp(C ′), a ∈ M \ C and a′ ∈ M ′ \ C ′, then qftp(C, a) =
qftp(C ′, a′).

(QM5a) (ℵ0-homogeneity over the empty set) Let a, b be finite tuples in M such that qftp(a) = qftp(b),
and let a′ ∈ cl(a). Then there is b′ ∈ cl(b) such that qftp(a, a′) = qftp(b, b′).

(QM5b) (Non-splitting over a finite set) Let C be a closed subset, and let b be a finite tuple. Then there
is a finite tuple c in C such that for all finite tuples a, a′ in C, if qftp(a/c) = qftp(a′/c) then
qftp(a/cb) = qftp(a′/cb).

A weakly quasiminimal pregeometry structure is an L-structure which satisfies all the axioms except
possibly (QM2) (it is not necessarily infinite dimensional).
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Definition 7.7. Given weakly quasiminimal pregeometry structures (M1, cl
M1) and (M2, cl

M2) (in
the same language), an embedding θ : M1 ↪→ M2 is a closed embedding if for every X ⊆ M1,
clM2(θ(X)) = θ(clM1(X)).

Given a quasiminimal pregeometry structure M in a language L, we denote by K(M) the smallest
class of L-structures which contains M and all its closed substructures and is closed under isomor-
phisms and under taking unions of directed systems of closed embeddings. Such a class is called the
quasiminimal class attached to M .

Fact 7.8 ([Bay+14, Theorem 2.3]). If K is a quasiminimal class, then every structure A ∈ K is a weakly
quasiminimal pregeometry structure. For every cardinal κ, there is exactly one structure of dimension
κ in K (up to isomorphism); in particular, K is uncountably categorical.

Definition 7.9. Let K be a countable field, and let LK be the language of K-powered fields from
Definition 3.5.

Let D0 be a countable K-powered field that is either finitely generated or full.
We extend this to a language LK,QE(D0) by adding constant symbols for all elements of D0 and,

for every pair (L,W ) where L is a K-linear subspace of V n+k
0 and W is an algebraic subvariety of

Gn+k
m defined over Q, a k-ary predicate φL,W,n(x). We interpret φL,W,n(a) as

∃b [(b, a, exp(b, a)) ∈ L×W ∧ ldimQ(b/D0a) = n] .

Lemma 7.10. Let D be an object of C(D0) or Ctr(D0), and let a, b ∈ Dk. Then qftp(a) = qftp(b)
if and only if there is an isomorphism of partial K-powered fields θ : ⌈D0, a⌉DK ∼= ⌈D0, b⌉DK fixing D0

pointwise and sending a to b.

Proof. (⇐) is obvious.
For (⇒), let a, b be k-tuples in F with the same LK,QE(D0)-quantifier free type. Let Da =

⌈D0, a⌉FK , and let a′ ∈ Dn
a be a good basis for Da over D0. Then let (L,W ) := K-pLoc(a′, a/D0).

By definition of LK,QE(D0), F ⊨ φL,W,n(a) and therefore since a and b have the same quantifier-
free type, F ⊨ φL,W,n(b), that is, there is b′ ∈ Fn such that (b′, b, exp(b′), exp(b)) ∈ L × W and
ldimQ(b

′/D0b) = n. We want to show that (L,W ) = K-pLoc(b′, b/D0), so let (L′,W ′) be the K-
powers locus of (b′, b) over D0. Again, a and b have the same quantifier-free type so there is a′′ ∈ Fn

such that (a′′, a, exp(a′′), exp(a)) ∈ L′ ×W ′ and ldimQ(a
′′/D0a) = n. Then

dimL′ + dimW ′ = δ(a′′, a/D0) + ldimQ(a
′′, a/D0)

= δ(a′′/D0) + n+ ldimQ(a/D0)

⩾ δ(a′/D0) + ldimQ(a
′, a/D0)

= δ(a′, a/D0) + ldimQ(a
′, a/D0)

= dimL+ dimW.

Therefore, we have that (L′,W ′) = (L,W ) = K-pLoc(b′, b/D0), and from this we deduce that
K-pLoc(a′/D0) = K-pLoc(b′/D0). Since a′ is a good basis for Da, there is an isomorphism between
Da and the K-powered field ⟨D0, b

′⟩Q which fixes D0 and maps a′ to b′ and hence a to b. Note that
by the above δ(b′, b/D0) = δ(a′, a/D0), and by the same proof for every tuple b′′ in D we must have
δ(b′′, b/D0) ⩾ δ(b′, b/D0). Hence ⟨D0, b

′⟩Q = ⌈D0, b⌉DK .

Theorem 7.11. Let K be a countable field; let F be one of the Fräıssé limits FK(D0) and FK,tr(D0)
(the latter only if D0 is a countable full K-powered field).

Then F in the language LK,QE(D0) and with the pregeometry pclFK is a quasiminimal pregeometry
structure.
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Proof. We denote by C the category of which F is the Fräıssé limit (so C(D0) or Ctr(D0)).
The arguments are then similar to the proof of [BK18, Theorem 6.9].
(QM3) holds because F is countable.
For (QM1) and (QM5a) we use Lemma 7.10: let a and b be tuples in F with qftp(a) = qftp(b), Da =

⌈D0, a⌉FK and Db = ⌈D0, b⌉FK . Then there is an isomorphism θ : Da → Db which fixes D0 pointwise

and maps a to b, hence K-tdDa(a/D0) = K-tdDb(b/D0). By Lemma 5.5 then K-tdF(a/D0) =
K-tdF(b/D0), so (QM1) holds. For (QM5a) we have that, since F is a Fräıssé limit and hence is ℵ0-
homogeneous, θ extends to an automorphism θ′ of F, so for every a′ ∈ pclFK(a) there is b′ ∈ pclFK(b)
such that qftp(a, a′) = qftp(b, b′).

Now we prove (QM2). Let n ∈ N. Then there is a strong extension Dn of D0 which is generated
by an n-tuple a that is generic over D0, so K-tdDn(a/D0) = δK(a/D0) = n; Dn is an object of C.
Since F is ℵ0-universal in C, Dn embeds into F, which thus contains a tuple a with K-tdF(a/D0) = n.
Hence F is infinite dimensional.

For (QM4), suppose D1 and D2 are countable pcl-closed full K-powered subfields of F, enumerated
so that qftp(D1) = qftp(D2), and let a ∈ F \ D1 and b ∈ F \ D2. By Lemma 6.9, the extensions
D1 ◁ ⟨D1, a⟩Q and D2 ◁ ⟨D2, b⟩Q are isomorphic, hence qftp(D1, a) = qftp(D2, b).

Finally we prove (QM5b). Suppose D is a pcl-closed full K-powered subfield of F, and let b
be a finite tuple in F; without loss of generality we assume that b is a good basis for the extension
D◁⌈D, b⌉FK =: Db. Let c be a finite tuple in D such that K-pLoc(b/D) is defined over ⟨D0, c⟩Q, and let
a, a′ be finite tuples in D such that qftp(a/c) = qftp(a′/c). By Lemma 7.10, there is an isomorphism
θ0 : Da,c

∼= Da′,c, where Da,c = ⌈D0, a, c⌉FK and Da′,c = ⌈D0, a
′, c⌉FK . Since K-pLoc(b/D) is

defined (and Loc(exp(b)/F ) is Kummer-generic) over ⟨D0, c⟩Q, we have that b is a good basis of
Da,c ≤ ⟨Da,c, b⟩Q. Hence, θ0 extends to an isomorphism θ1 : ⟨Da,c, b⟩Q ∼= ⟨Da′,c, b⟩Q.

Now we claim that ⟨Da,c, b⟩Q ◁ Db. To see this, let z be a finite tuple in Db: as we assumed that
b is a basis for the extension D ◁ Db, z is the sum of a tuple zD in D and a tuple zb in ⟨b⟩Q, and
thus δ(z/Da,c, b) = δ(zD/Da′,c, b). However, zD and Da,c are contained in the pcl-closed K-powered
field D, while b is Q-linearly independent over D, so δ(zD/Da,c, b) = δ(zD/Da,c). Since Da,c ◁ D
this is non-negative. Hence ⟨Da,c, b⟩Q ◁ ⟨D, b⟩Q as we wanted. By the same argument, ⟨Da′,c, b⟩Q
is also strong in Db, and since the latter is strong in F we have that ⟨Da,c, b⟩Q and ⟨Da′,c, b⟩Q are
finitely generated objects in C, strong in F, with the isomorphism θ1 between them. Hence there is an
isomorphism ⌈D0, a, b, c⌉FK ∼= ⌈D0, a

′, b, c⌉FK . This extends θ1, so it fixes b and c and maps a to a′;
this implies qftp(a′/bc) = qftp(a/bc), as we wanted.

By Fact 7.8 and Theorem 7.11, each of the quasiminimal classes generated by FK(D0) and FK,tr(D0)
contains a unique model of cardinality continuum (up to isomorphism). We denote these by EK(D0)
and EK,tr(D0). As with the Fräıssé limit, we write EK for EK(SBK).

7.3 Algebraic saturation

In this subsection we introduce a notion of algebraic saturation and use it to characterize the models
EK(D0) and EK,tr(D0).

Definition 7.12. Let C denote C(D0) or Ctr(D0). An object D in C is algebraically saturated in C if
for all finitely generated D1 ◁ D, and all finitely generated, powers-algebraic extensions D1 ◁ D2 in C,
D2 embeds (strongly) in D over D1.

Theorem 7.13. LetK be a countable field. LetD0 be a finitely generated or full, countableK-powered
field (resp. a full, countable K-powered field).

TheK-powered field EK(D0) (resp. EK,tr(D0)) is up to isomorphism the unique fullK-powered field
of cardinality continuum which strongly extends D0 (resp. is a purely powers-transcendental extension
of D0), is algebraically saturated in C(D0) (resp. Ctr(D0)) and has the countable closure property.
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Proof. Let E denote EK(D0) or EK,tr(D0), and let C and F accordingly denote C(D0) or Ctr(D0) and
FK(D0) or FK,tr(D0).

(⇒) As F is ℵ0-saturated, it is also algebraically saturated, and thus any of its pcl-closed substruc-
tures is also algebraically saturated. Since E is the union of a directed system of closed embeddings of
closed substructures of F the statement follows.

(⇐) Let D be a full object of C of size continuum that is algebraically saturated in C and has the
countable closure property. Any finite pcl-dimensional, pcl-closed substructure C of D is countable, and
hence it embeds into F as a pcl-closed substructure by ℵ1-universality of the Fräıssé limit. Hence C lies
in the quasiminimal class K(F). As D is the union of its finite pcl-dimensional, pcl-closed substructures,
D is also in K(F) and is therefore isomorphic to E.

8 K-powers-closed fields

In this section we introduce a notion of strong K-powers closedness, prove that it is equivalent to
algebraic saturation in the category C(D0), and that when D0 is finitely generated, so we have a
Schanuel property in C(D0), it can be reduced to the simpler notion of K-powers-closedness.

8.1 Classification of strong extensions

Definition 8.1. Let D be a partial K-powered field, L ≤ V n a K-linear subspace, and W ⊆ Gn
m an

algebraic subvariety defined and irreducible over F .
If W is absolutely irreducible, then we say the pair (L,W ) is free if L is not contained in any

Q-affine subspace of V n and W is not contained in an F alg-coset of a proper algebraic subgroup of
Gn

m. If W is just irreducible over F , we say (L,W ) is free if (L,W0) is free for some (any) absolutely
irreducible component W0 of W .

The pair (L,W ) is rotund if for every Q-linear subspace Q of V n with projections πQ : V n ↠ V n/Q
and πexp(Q) : Gn

m ↠ Gn
m/exp(Q) we have

dimπQ(L) + dimπexp(Q)(W ) ⩾ n− dimQ

and it is strongly rotund if for every proper Q we have

dimπQ(L) + dimπexp(Q)(W ) > n− dimQ.

The dimension of the pair (L,W ) is the sum of the dimension of L as a K-vector subspace of V n

and of W as an algebraic subvariety of Gn
m.

Remark 8.2. By taking Q = ⟨0⟩Q we have that in particular a rotund pair always satisfies dimL +
dimW ⩾ n and a strongly rotund pair always satisfies dimL+ dimW > n.

Proposition 8.3. Let D be a partial K-powered field, L ≤ V n a K-linear subspace, W ⊆ Gn
m an

algebraic subvariety defined and irreducible over F .
If the pair (L,W ) is free, there is a finitely generated, kernel-preserving extension D1 of D, with a

basis b of D1 over D such that K-pLoc(b/D) = (L,W ). Moreover:

(1) The extension is strong if and only if (L,W ) is rotund;

(2) If the extension is strong, it is powers-algebraic if and only if dimL+ dimW = n;

(3) The extension is purely powers-transcendental if and only if (L,W ) is strongly rotund.

Proof. The first part of the statement is by the same argument as [Zil03, Lemma 3.4].
For the “moreover” part, (1) and (3) are obtained by the same argument as [BK18, Proposition

7.3]; (2) follows easily.
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8.2 K-powers-closedness

Definition 8.4. Let D0 ◁ D be an extension of partial K-powered fields.
D is K-powers-closed if it is full and for every free, rotund, n-dimensional pair (L,W ) in Dn, we

have that exp(L) ∩W is Zariski-dense in W .
D is strongly K-powers-closed over D0 if it is full and for every free, rotund, n-dimensional pair

(L,W ) in Dn and every finite tuple a in D there is b ∈ Dn such that (b, exp(b)) ∈ L × W and
ldimQ(b/D0a) = n.

The main result obtained by the first author in [Gal23] is that CC is C-powers-closed.

Proposition 8.5. Let D0 be either a finitely generated partial K-powered field or a full countable K-
powered field. Recall that C(D0) denotes the category of partial K-powered fields strongly extending
D0.

An object in C(D0) is algebraically saturated in C(D0) if and only if it is strongly K-powers-closed
over D0.

Proof. (⇒) Let D be an object of C(D0) that is algebraically saturated in C(D0). It is straightforward
to show that D is full, so we show that it is strongly K-powers-closed.

Let (L,W ) be a free, rotund, n-dimensional pair in Dn, and a ∈ Dk a tuple. Replacing a by a basis
for ⌈D0, a⌉DK if necessary, we may assume that D1 := ⟨D0, a⟩Q ◁ D. Add to D1 a point b such that
(b, exp(b)) is generic in L×W over D1; by Proposition 8.3, this generates a strong, powers-algebraic
extension D2 of D1. By algebraic saturation of D, D2 embeds into D over D1. Hence there is a
point b′, the image of b under the embedding, such that (b′, exp(b′)) ∈ L ×W , and (by genericity)
ldimQ(b

′/D1) = n. Hence D is strongly K-powers-closed.
(⇐) Let D be an object of C(D0) that is strongly K-powers-closed over D0. Let D1 = ⟨D0, a⟩Q

be a finitely generated, strong extension of D0 that is strong in D, and let D2 be a finitely generated,
strong, powers-algebraic extension of D1. By Proposition 6.7, we may find a good basis b for D2 over
D1, so D2 = ⟨D1, b⟩Q.

We prove that D2 strongly embeds into D over D1 by induction on n := dimQ(D2/D1). Let
(L,W ) = K-pLoc(b/D1).

If (L,W ) is free, since the extension D1 ◁D2 is strong and powers-algebraic, by Proposition 8.3 we
have that (L,W ) is rotund and n-dimensional. By strong K-powers-closedness of D there is a point
b′ ∈ Dn such that (b′, exp(b′)) ∈ L ×W and ldimQ(b

′/D1) = n. Since D strongly extends D1, it
must be the case that ldimK(b′/D1) + td(exp(b′)/F1) ⩾ n. As dimL+ dimW = n, this implies that
(L,W ) = K-pLoc(b′/D1). Since b is a good basis, the extension ⟨D1, b

′⟩Q of D1 is then isomorphic
to D2 over D1, and it is contained in D, so D2 embeds in D over D1.

If (L,W ) is not free, then without loss of generality we may assume that either L is contained in
a Q-affine subspace over D1 of the form zi = c for some c ∈ V1, or W is contained in an algebraic
subvariety of the form wi = d for some d ∈ F alg

1 . In the first case we replace D1 by D′
1 := ⌈D1, c⌉DK

and consider D2 as a powers-algebraic strong extension of D′
1 of lower dimension (hence we may apply

induction); the second case is treated analogously.

StrongK-powers-closedness impliesK-powers-closedness: given (L,W ) free, rotund, and n-dimensional,
and some Zariski-closed subset W ′ of W , one may find a finite tuple a in D such that W and W ′

are defined over D0a and that D0a ◁ D. Then if D is strongly K-powers-closed over D0, there is
b ∈ Dn such that (b, exp(b)) ∈ L × W and ldimQ(b/D0a) = n, from which it easily follows that
td(exp(b)/F0exp(a)) = dimW and thus that exp(b) /∈W ′.

The rest of this subsection will be dedicated to proving the converse under a transcendence assump-
tion.
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Proposition 8.6. Let D be a full K-powered field. If D has a strong finitely generated partial K-
powered subfield D0 and it is K-powers-closed, then it is strongly K-powers-closed over D0, and hence
also algebraically saturated in C(D0).

We recall some basics from the theory of atypical intersections.

Definition 8.7. Let W ⊆ Gn
m be an algebraic subvariety, J a coset of an algebraic subgroup of Gn

m.
An irreducible component X of the intersection W ∩ J is typical if dimX = dimW +dim J − n, and
it is atypical otherwise.

We recall the following result, usually referred to as the weak CIT (weak Conjecture on Intersections
with Tori) or weak multiplicative Zilber-Pink.

Theorem 8.8 ([Zil02, Corollary 3], see also [Kir09, Theorem 4.6]). Let W ⊆ Gn
m be an algebraic

subvariety. There is a finite set TW = {J1, . . . , Jl} of algebraic subgroups of Gn
m such that for any

coset c ·J of an algebraic subgroup J of Gn
m and any atypical component X of an intersectionW ∩c ·J ,

there is Ji ∈ TW such that X is contained in a coset w · Ji.
Moreover, X is typical with respect to c · J , meaning that

dimX = dim(W ∩ c · J) + dim((w · Ji) ∩ (c · J))− dim(c · J).

Remark 8.9 (See [Zil15, Lemma 4.1]). With notation as in the statement of Theorem 8.8, if W
is defined over a field F0 then we may assume that w is algebraic over F0(c). This is because the
irreducible component X of W ∩c ·J is an algebraic variety defined over some finite extension of F0(c),
and therefore it contains points that are algebraic over this field.

Lemma 8.10. Let F be an algebraically closed field, W ⊆ (F×)n an algebraic subvariety, J ≤ (F×)n

an algebraic subgroup. There is a Zariski-closed proper subsetW ′ ofW such that for each w ∈W \W ′,
dim(w · J) ∩W = dimW − dimπJ(W ).

Proof. By applying the fibre dimension theorem to the projection πJ :W → (F×)n/J .

Lemma 8.11. Let D be a full K-powered field with a strong, finitely generated, partial K-powered
subfield D0. Suppose (L,W ) is a free pair in Dn, defined over D0, with dimL+ dimW ⩽ n. Then:

(a) There is a Zariski-closed proper subset W ′ of W such that if exp(b) ∈ exp(L) ∩ (W \W ′), then
td(exp(b)/F0) > 0.

(b) There is a Zariski-closed proper subset W ′′ of W such that if exp(b) ∈ exp(L)∩ (W \W ′′) then
ldimQ(b/D0) = n.

These proofs are inspired by Section 5 of the unpublished preprint [Zil15].

Proof of (a). Let H0 denote the maximal Q-affine subspace over D0 contained in L; then H0 is a
translate of some Q-linear subspace H. Let πH : Dn ↠ Dn/H and πexp(H) : (F

×)n ↠ (F×)n/exp(H)
denote the projections. Then

dimπH(L) + dimπexp(H)(W ) ⩽ (dimL− dimH) + dimW

⩽ n− dimH.

By fixing a Q-linear isomorphism between Dn/H and Dn−dimH and the corresponding isomorphism
of tori between (F×)n/exp(H) and (F×)n−dimH we may treat the pair (πH(L), πexp(H)(W )) as a pair

in Dn−dimH .
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Assume that (πH(L), πexp(H)(W )) satisfies the Lemma, and let Z be the corresponding Zariski-

closed proper subset of πexp(H)(W ). LetW ′ := π−1
exp(H)(Z), and assume exp(b) ∈ (exp(L)∩(W \W ′)).

Then πexp(H)(exp(b)) /∈ Z, so td(πexp(H)(exp(b))/F0) > 0. Thus, we obtain td(exp(b)/F0) > 0, as we
wanted.

Hence we may assume without loss of generality that L does not contain any positive-dimensional
Q-affine subspaces over D0.

Since D0 is finite dimensional as a Q-vector space, exp(D0) is a finite rank subgroup of (F×)n. By
Laurent’s Theorem [Lau84, Theorème 1] (the multiplicative group case of the Mordell-Lang Conjecture)
there is a finite union M of cosets of proper algebraic subgroups of (F×)n such that every point of
W ∩ exp(Dn

0 ) lies in M . Since (L,W ) is free, W ′ :=W ∩M is a proper Zariski-closed subset of W .
Suppose exp(b) ∈ exp(L) ∩ (W \W ′). Then in particular b /∈ Dn

0 , and ldimQ(b/D0) > 0.
Let Q = Q-AffLoc(b/D0). Since we assumed that L does not contain any positive-dimensional

Q-affine subspaces over D0, dim(L ∩Q) < dimQ. Then we have

ldimK(b/D0) ⩽ dim(L ∩Q) < dimQ = ldimQ(b/D0).

Since D0 ◁ D, we have that δ(b/D0) ⩾ 0. Then

td(exp(b)/F0) ⩾ ldimQ(b/D0)− ldimK(b/D0) > 0.

Proof of (b). For each Q-linear subspace H of Dn, with projections πH : Dn → Dn/H and πexp(H) :
(F×)n → (F×)n/exp(H), let WH denote the empty set whenever dim(πH(L)) + dim(πexp(H)(W )) >
n− dimH, and the Zariski-closed subset obtained applying (a) to the pair (πH(L), πexp(H)(W )) oth-

erwise (again, we can do this by identifying Dn/H with Dn−dimH). Note that for the trivial subspace
H = {0}, W{0} is the Zariski-closed set obtained by applying (a) to (L,W ) itself.

By Theorem 8.8 there is a finite set H of Q-linear subspaces of Dn such that every atypical
component of an intersection between W and an algebraic subgroup of (F×)n is contained in a coset
of exp(H) for some H ∈ H. By applying Lemma 8.10 to each of the projection maps πexp(H) : W →
(F×)n/exp(H) for H ∈ H, and taking the union of all the (finitely many) Zariski-closed sets thus
obtained, we find a Zariski-closed proper subset Wπ of W such that for each w ∈ W \Wπ and each
H ∈ H, dim(w · exp(H)) ∩W = dimW − dimπexp(H)(W ).

Let then
W ′′ :=Wπ ∪W{0} ∪

⋃
H∈H

π−1
exp(H)(WH).

Let b ∈ Dn be a point such that exp(b) ∈ exp(L)∩ (W \W ′′); we aim to show that ldimQ(b/D0) = n.
Let Q = Q-AffLoc(b/D0), and let S be the irreducible component of W ∩ exp(Q) which contains
exp(b). Since exp(b) /∈W{0}, exp(b) is not algebraic over F0, so dimS > 0.

Since S is positive dimensional, there is a Q-linear space H ∈ H∪{Dn} such that S ⊆ exp(b+H),

and S is typical with respect to exp(b+H). By Remark 8.9, the coset exp(b+H) is defined over F alg
0 .

The preimage of F alg
0 under exp is an infinite-dimensional Q-vector subspace of D, and hence we may

find c in exp−1(F alg
0 ) such that:

(i) b+H = c+H,

(ii) ldimQ(c/D0) = ldimQ(b/D0) = dimQ, and

(iii) ldimQ(c/D0b) = dim(Q ∩ b+H),

from which we obtain that ldimQ(b/D0c) = dim(Q ∩ c+H).
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Moreover, S is a typical component of the intersection (W ∩ (exp(c+H)))∩ (exp(Q)∩exp(c+H))
with respect to exp(c+H): this means that

dimS = dim(W ∩ exp(c+H)) + dim(exp(Q ∩ c+H))− dim(exp(c+H))

= dim(W ∩ exp(c+H)) + dim(Q ∩ c+H)− dimH. (7)

Note that we are allowing the possibility that H = Dn, i.e., that S is typical: we will see that under
our assumptions this is the only possible case.

Since exp(c) is algebraic over F0 and D0 ◁ D, δ(c/D0) = 0: this implies that δ(b/D0c) =
δ(b, c/D0) ⩾ 0. Then we have

0 ⩽ δ(b/D0c)

= ldimK(b/D0c) + td(exp(b)/F0)− ldimQ(b/D0c)

⩽ dim(L ∩Q ∩ (c+H)) + dimS − dim(Q ∩ (c+H)).

Combining this with (7) we find that

0 ⩽ dim(L ∩Q ∩ (c+H)) + dim(W ∩ exp(c+H))− dimH

⩽ dim(L ∩ (c+H)) + dim(W ∩ exp(c+H))− dimH.

Therefore
dimH ⩽ dim(L ∩ (c+H)) + dim(W ∩ exp(c+H)).

Since exp(b) /∈Wπ and exp(c) · exp(H) = exp(b) · exp(H), we have

dim(πexp(H)(W )) = dimW − dim(W ∩ exp(c+H)).

Hence

dimπH(L) + dimπexp(H)(W ) =(dimL− dim(L ∩ c+H))

+ (dimW − dim(W ∩ exp(c+H)))

=(dimL+ dimW )

− (dim(L ∩ c+H) + dim(W ∩ exp(c+H))

⩽n− dimH

Thus (πH(L), πexp(H)(W )) satisfies the assumptions the Lemma. However, as the irreducible com-
ponent S is contained in a translate of exp(H) by an element that is algebraic over F0, we have that
td(πexp(H)(exp(b))/F0) = 0. As we have taken b so that exp(b) /∈ WHj for each Hj ∈ H, by part (a)
of the Lemma this is only possible if H = Dn. Hence S is a typical component of W ∩ exp(Q), that
is, dimS = dimW + dimQ− n.

Since D0 ◁ D, we have

0 ⩽ δ(b/D0)

= ldimK(b/D0) + td(exp(b)/F0)− ldimQ(b/D0)

⩽ dim(L ∩Q) + dimS − dimQ

⩽ dimL+ dimS − dimQ

⩽ n− dimW + dimS − dimQ

= 0

where the last equality holds by typicality of the intersection. Therefore the chain of inequalities
collapses, and dim(L ∩ Q) = dimL: since (L,W ) is free, this only holds for Q = Dn. Hence,
Dn = Q-AffLoc(b/D0), so ldimQ(b/D0) = n, as required.
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This yields the proof that in this setting K-powers-closedness implies strong K-powers-closedness.

Proof of Proposition 8.6. Suppose D0 is a finitely generated strong substructure of the full K-powered
field D; let (L,W ) be a free, rotund, n-dimensional pair in Dn, a ∈ Dk.

Extending a if necessary, we may assume that (L,W ) is defined over ⟨D0, a⟩Q, and that ⟨D0, a⟩Q◁D.
By Lemma 8.11 there is a proper Zariski-closed subsetW ′′ ofW such that if exp(b) ∈ exp(L)∩(W \W ′′)
then ldimQ(b/D0, a) = n. Since D is K-powers-closed, exp(L) ∩ W is Zariski-dense in W , and
therefore such a point exp(b) exists. Now apply Proposition 8.5 to deduce D is algebraically saturated
in C(D0).

9 Generic powers

In this section we explore the consequences of our work for the K-powered fields CK and BK for which
we know an appropriate Schanuel statement. For particularly nice K, we can prove CK ∼= BK . Note
that the field K plays different roles. In EK , or in a general K-powered field, it is an abstract field. We
define CK and BK by taking K as a subfield of C (or B) and taking account of how the exponential
interacts with that subfield.

We first give the categoricity and quasiminimality result we have proved. It includes Theorem 1.4
as the special case in which D0 is the standard base SBK introduced in Example 3.4.

Theorem 9.1. Let K be a countable field of characteristic 0, D0 a finitely generated K-powered field
with cyclic kernel.

Then up to isomorphism there is exactly one K-powered field EK(D0) of cardinality continuum
which:

(i) is a strong extension of D0,

(ii) is K-powers closed, and

(iii) has the countable closure property.

Furthermore, it is quasiminimal.

Proof. By Theorem 7.13 there is only one K-powered field which satisfies (i) and (iii), and which is
algebraically saturated in the category C(D0). By Propositions 8.5 and 8.6, algebraic saturation in
C(D0) is equivalent to K-powers closedness.

Theorem 9.2. If K ⊆ Bexp has finite transcendence degree, then there is a finitely generated partial
K-powered subfield D0 ◁ BK such that BK ∼= EK(D0).

Proof. By Lemma 4.11 if K has finite transcendence degree then BK has a finitely generated strong
substructure D0 ⊆ ⌈K⌉exp. Proposition 5.14 gives the countable closure property. For K-powers-
closedness of BK , let (L,W ) be a free, rotund, n-dimensional pair. Consider the algebraic subvariety
L×W of Bn

exp × (B×
exp)

n. Since Bexp satisfies exponential-algebraic closedness (see [Zil05b, Section 5]
and [BK18, Section 9] for the precise definition of this property; note that freeness and rotundity of the
pair (L,W ) in the sense of Definition 8.1 imply that L×W is free and rotund in the sense of [BK18,
Definition 7.1]), L ×W contains a Zariski-dense subset of points of the form (b, exp(b)), and hence
exp(L) ∩W is Zariski-dense in W . Then we may apply Theorem 9.1.

We pick out those subfields K where D0 can be taken to be trivial.
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Definition 9.3. Let F be Cexp or Bexp. We say that a subfield K ⊆ F of finite transcendence degree
acts as a subfield of generic powers if FK ∼= EK .

If λ ∈ F is transcendental and such that Q(λ) acts as a subfield of generic powers, we say that λ
is a generic power.

Examples 9.4. (i) The generator τ of the kernel in Bexp is a generic power. If we consider the
predimension δQ(τ), we obtain:

δQ(τ)(z/τ) = ldimQ(τ)(z/τ) + td(exp(z))− ldimQ(z/τ)

⩾ td(z/τ) + td(exp(z))− ldimQ(z/τ)

⩾ td(z, exp(z)/τ)− ldimQ(z/τ)

= δexp(z/τ)

= δexp(z, τ)− δexp(τ)

= δexp(z, τ)

⩾ 0

where we have used that δexp(τ) = td(τ) − ldimQ(τ) = 0. This implies that ⌈∅⌉Q(τ) = SBQ(τ), and

hence BQ(τ) ∼= EQ(τ).
(ii) A similar argument shows that the number π = τ

2i in Bexp is a generic power.

(iii) Not all transcendental λ ∈ Bexp are generic powers. Let λ1 = log
√
2, λ2 = log

√
3, λ = λ1

λ2
.

Then:

δQ(λ)(λ1, λ2/τ) = ldimQ(λ)(λ1, λ2/τ) + td(exp(λ1), exp(λ2))− ldimQ(λ1, λ2/τ)

= 1 + 0− 2

= −1.

Therefore BQ(λ) ≇ EQ(λ).

The question of isomorphism between Cexp and Bexp is considered out of reach as it requires
Schanuel’s Conjecture. However, for “sufficiently generic” tuples of complex numbers, we can prove
the corresponding statement for powers.

Theorem 9.5. Let K = Q(λ1, . . . , λn) be the field of rational functions, and choose embeddings of
K into Cexp and into Bexp such that the λi are exponentially-algebraically independent.

Then K acts as a field of generic powers, so we have CK ∼= EK ∼= BK .

Proof. By [BKW10, Theorem 1.3] we have SBK ◁ CK and SBK ◁ BK . Hence, by Theorem 9.2,
BK ∼= EK . CK is K-powers-closed by [Gal23, Corollary 8.10], and it has the countable closure
property by Corollary 5.14. Therefore, by Theorem 9.1 CK ∼= EK .

Theorem 1.5 follows from Theorem 9.5.

10 Quasiminimality

In this last section we focus on the category Ctr(D0), for D0 a countable full K-powered field: we show
that in this category algebraic saturation is equivalent to a notion of generic strongK-powers-closedness,
which in turn follows from K-powers-closedness as we show using the Weak CIT again, although in a
different way. As a consequence, we obtain that every K-powers-closed field with the countable closure
property (in particular CK for any countable subfield K of C, and thus CC) is quasiminimal. The
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method of the proof and the terminology are similar to the ones used in [BK18, Section 11] to reduce
Conjecture 1.1 to exponential-algebraic closedness, but the technical details are different.

We note that the usage of the word “generic” in generic K-powers-closedness is not related to the
usage in the notion of generic power discussed in the previous section.

Definition 10.1. SupposeD0 is a full countableK-powered field andD is a purely powers-transcendental
extension of D0.

Let (L,W ) be a free, rotund, n-dimensional pair in Dn that is defined over some a ∈ Dk such
that ldimQ(a/D0) = k, and such that for all (c, exp(c)) generic in L ×W over D0, a we have that
K-pLoc(c, a/D0) is free and strongly rotund.

D is generically strongly K-powers-closed over D0 if it is full and for every (L,W ) and a as above,
there is (b, exp(b)) ∈ L×W such that b ∈ Dn and ldimQ(b/D0a) = n.

We have an analogue of Proposition 8.5, replacing C(D0) by Ctr(D0).

Proposition 10.2. Let D0 be a full countable K-powered field. Recall that Ctr(D0) denotes the full
subcategory of C(D0) whose objects are purely powers-transcendental extensions of D0.

An object in Ctr(D0) is algebraically saturated in Ctr(D0) if and only if it is generically strongly
K-powers-closed over D0.

Proof. (⇒) LetD be an object of Ctr(D0) that is algebraically saturated in Ctr(D0). It is straightforward
to show that D is full. We show that it is generically strongly K-powers-closed.

Let a ∈ Dk with ldimQ(a/D0) = k, let (L,W ) be a pair as in Definition 10.1, and a′ a basis for
⌈D0, a⌉DK over D0, say a tuple of length k′. Let c be generic in L ×W over D0a

′; then the tuple
(c, a′) satisfies ldimQ(c, a

′/D0) = n + k′. The extension it generates over D0 is a proper extension,
and it is contained in D, so it is purely powers-transcendental, hence the locus K-pLoc(c, a′/D0) is
strongly rotund. Hence if necessary we may replace a by a′ (and k by k′) preserving the assumptions
of Definition 10.1, and thus we assume that a is a basis for D1 := ⌈D0, a⌉DK ◁ D over D0.

Add to D1 a point b such that (b, exp(b)) is generic in L ×W over D1; by Proposition 8.3, this
generates a strong, powers-algebraic extension D2 of D1, which is purely powers-transcendental over
D0 and hence is an object of Ctr(D0). By algebraic saturation of D, D2 embeds into D over D1.
Hence there is a point b′, the image of b under the embedding, such that (b′, exp(b′)) ∈ L ×W , and
(by genericity) ldimQ(b

′/D1) = n. Hence D is generically strongly K-powers-closed.
(⇐) Let D be an object of Ctr(D0) that is generically strongly K-powers-closed over D0. Let

D1 = ⟨D0, a⟩Q be a finitely generated, purely powers-transcendental extension of D0 that is strong
in D, and let D2 be a finitely generated, strong, powers-algebraic extension of D1 that is purely
powers-transcendental over D0. By Proposition 6.7, we may find a good basis b for D2 over D1, so
D2 = ⟨D1, b⟩Q.

We prove that D2 strongly embeds into D over D1 by induction on n := dimQ(D2/D1). Let
(L,W ) = K-pLoc(b/D1) and (L1,W1) = K-pLoc(b, a/D0).

If (L,W ) is free, then since the extension D1 ◁ D2 is strong and powers-algebraic, we have that
(L,W ) is rotund and n-dimensional. Moreover, since D0 ◁cl D2, (L1,W1) is strongly rotund; by
genericity of b over D1 then (L,W ) satisfies the assumptions in Definition 10.1, so by generic strong K-
powers-closedness of D there is a point b′ ∈ Dn such that (b′, exp(b′)) ∈ L×W and ldimQ(b

′/D1) = n.
Since D strongly extends D1, it must be the case that ldimK(b′/D1) + td(exp(b′)/F1) ⩾ n. As
dimL+dimW = n, this implies that (L,W ) = K-pLoc(b′/D1). Since b is a good basis, the extension
⟨D1, b

′⟩Q of D1 is then isomorphic to D2 over D1, and it is contained in D, so D2 embeds in D over
D1.

If (L,W ) is not free, then without loss of generality we may assume that either L is contained in
a Q-affine subspace over D1 of the form zi = c for some c ∈ V1, or W is contained in an algebraic
subvariety of the form wi = d for some d ∈ F alg

1 . In the first case we replace D1 by D′
1 := ⌈D1, c⌉DK
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and consider D2 as a powers-algebraic strong extension of D1 of lower dimension (hence we may apply
induction); the second case is treated analogously.

We also have the analogue of Proposition 8.6. Some of the ideas in the proof are similar, but overall
the argument is different.

Proposition 10.3. Let D be a purely powers-transcendental extension of a countable full K-powered
field D0.

If D is K-powers-closed, then it is generically strongly K-powers-closed.

Before proving this proposition, we prove two lemmas about atypical intersections, the second a
uniform version of the first.

Lemma 10.4. Let D be a full K-powered field, and let (L,W ) be a free, strongly rotund pair in Dn.
Suppose W is defined over an algebraically closed subfield F0 of F .

For every Q-linear proper subspace Q ≤ Dn there is a Zariski-closed proper subsetW ′ ⊆W , defined
over F0, such that if w ∈W \W ′, then

dim(W ∩ w · exp(Q)) < dimW + dimL− n− dim(Q ∩ L) + dimQ.

This is similar to an atypical intersection statement, but we do not require the intersection W ∩w ·
exp(Q) to be typical - it is allowed to be atypical within a certain margin, determined by the interplay
of Q with L.

Proof. Let πQ : Dn ↠ Dn/Q and πexp(Q) : (F×)n ↠ (F×)n/exp(Q) denote the projections. By
strong rotundity of the pair we have

dimπQ(L) + dimπexp(Q)(W ) > n− dimQ.

By the fibre dimension theorem applied to the restriction of πexp(Q) to W , there is a Zariski-closed
proper subset W ′

π of πexp(Q)(W ) defined over F0, such that for all w · exp(Q) ∈ πexp(Q)(W ) \W ′
π,

dim
((
π−1
exp(Q)(w · exp(Q))

)
∩W

)
= dimW − dimπexp(Q)(W ).

LetW ′ = π−1
exp(Q)(W

′
π)∩W . We know π−1

exp(Q)(w ·exp(Q))∩W is by definition equal to w ·exp(Q)∩W
for all w ∈ W . On the other hand, since πQ(L) is a linear projection of a linear space, the dimension
of the fibres of the points in its image does not depend on the choice of point, and it is always equal
to dim(L ∩Q) = dimL− dimπQ(L).

Combining the fibre equalities, we obtain that for w ∈W \W ′,

dim(L ∩Q) + dim(W ∩ w · exp(Q)) = dimL− dimπQ(L)+

dimW − dimπexp(Q)(W )

and thus using the inequality obtained by strong rotundity

dim(L ∩Q) + dim(W ∩ w · exp(Q)) < dimL+ dimW − n+ dimQ

from which we obtain the statement.

Using the finiteness given by the weak CIT we show that the set W ′ can in fact be chosen uniformly
in Q.
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Lemma 10.5. Let D be a full K-powered field, and let (L,W ) be a free, strongly rotund pair. Suppose
W is defined over an algebraically closed subfield F0 of F .

There is a Zariski-closed proper subset W ′ of W , defined over F0, such that for every Q-linear
proper subspace Q of Dn and every w ∈W \W ′,

dim(W ∩ w · exp(Q)) < dimW + dimL− n− dim(L ∩Q) + dimQ.

Proof. By Theorem 8.8, there is a finite list H = {H1, . . . ,Hl} of Q-linear subspaces of Dn such that
every positive dimensional atypical component of an intersection betweenW and a coset of an algebraic
subgroup of (F×)n is contained in a coset of exp(Hj) for some Hj ∈ H, and it is typical with respect
to this coset.

For each Q-linear subspace H ∈ H, let W ′
H denote the Zariski-closed proper subset defined over

F0 given by Lemma 10.4. Let W ′ :=
⋃

H∈HW ′
H . This is a union of sets defined over F0, so it is also

defined over F0.
Suppose w ∈ W \W ′, let Q ≤ Dn be a proper Q-linear subspace, and let X be an irreducible

component of W ∩ w · exp(Q).
AssumeX is a typical component of the intersection, so that it satisfies dimX = dimW+dimQ−n.

Then, since (L,W ) is free and Q is a proper subspace, dimL− dimL ∩Q > 0 and therefore

dimX < dimW + dimL− n− dimL ∩Q+ dimQ

as required. Thus, we assume that X is atypical.
Then there is a Q-linear subspace H ∈ H such that

dimX = dimW ∩ w · exp(H) + dimQ ∩H − dimH. (8)

Since w /∈W ′
Hj

for any Hj ∈ H, and thus in particular w /∈W ′
H , we must have

dimW ∩ w · exp(H) < dimW + dimL− n− dimL ∩H + dimH (9)

The combination of (8) and (9) gives

dimX < dimW + dimL− n− dimL ∩H + dimQ ∩H. (10)

Since dimL ∩H ⩾ dimL ∩Q ∩H,

dimQ ∩H − dimL ∩H ⩽ dimQ ∩H − dimL ∩ (Q ∩H)

= dim(L+ (Q ∩H))− dimL

⩽ dim(L+Q)− dimL

= dimQ− dimL ∩Q. (11)

So combining (10) and (11),

dimX < dimW + dimL− n− dimL ∩Q+ dimQ

in this case as well.

Now we can prove that K-powers-closedness implies generic strong K-powers-closedness.

Proof of Proposition 10.3. Suppose D is a K-powers closed K-powered field which is a purely powers-
transcendental extension of a countable, full K-powered subfield D0. Let (L,W ) be a free, rotund,
n-dimensional pair in Dn defined over D0a for some a ∈ Dk that is as in the definition of generic
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strong K-powers-closedness. Then for (c, exp(c)) generic in L×W over D we have that (L1,W1) :=
K-pLoc(c, a, exp(c, a)/D0) is free and strongly rotund in Dn+k. Let W ′

1 be the Zariski-closed proper
subset of W1 defined over F0 given by Proposition 10.5. Let W ◦

1 :=W1 \W ′
1.

Consider the set
W ◦ := {w ∈W | (w, exp(a)) ∈W ◦

1 } .

Since exp(a) is generic over F0 in the projection of W1 to the last k coordinates, W ◦ is a Zariski-open
dense subset of W . By K-powers-closedness of D, there is a point (b, exp(b)) ∈ L ×W ◦; note that
then exp(b, a) ∈W ◦

1 and (b, a) ∈ L1. We will prove that ldimQ(b/D0a) = n.
Let Q := AffLocQ(b/D0a) and Q1 := AffLocQ(b, a/D0). Extending a if necessary, we assume that

D0a ◁D (we may do so by the same argument as the one at the beginning of the proof of Proposition
10.2.) Therefore we have

0 ⩽ δ(b/D0a)

= ldimK(b/D0a) + td(exp(b)/F0 exp(a))− ldimQ(b/D0a)

= ldimK(b, a/D0)− ldimK(a/D0) + td(exp(b, a)/D0)− td(exp(a)/D0)

− ldimQ(b, a/D0) + ldimQ(a/D0)

⩽ dim(L1 ∩Q1) + dim(W1 ∩ exp(Q1))− dimQ1

− (ldimK(a/D0) + td(exp(a)/F0)− k)

= dim(L1 ∩Q1) + dim(W1 ∩ exp(Q1))− dimQ1 − δ(a/D0). (12)

From the fibre dimension theorem we get that ldimK(a/D0) = dimL1 − dimL and td(exp(a)/F0) =
dimW1 − dimW , and we also have that dimL+ dimW = n, thus

δ(a/D0) = dimL1 + dimW1 − n− k (13)

Therefore, combining (12) and (13) we obtain

0 ⩽ dim(L1 ∩Q1) + dim(W1 ∩ exp(Q1))− dimQ1 − (dimL1 + dimW1 − n− k)

so
dim(W1 ∩ exp(Q1)) ⩾ dimL1 − dim(L1 ∩Q1) + dimW1 − n− k + dimQ1.

Recall that exp(Q1) is a coset of some algebraic subgroup by exp(b, a): since exp(b, a) ∈ W ◦
1 , this

inequality together with Proposition 10.5 implies that Q1 is not a proper subspace, so Q1 = Dn+k.
Then Q = Dn, and ldimQ(b/D0a) = n, as we wanted.

Finally we put everything together to prove our main quasiminimality theorems.

Proof of Theorem 1.3. Let K be a countable subfield of C, and D0 = pclCK(∅). Then CK is K-
powers-closed by [Gal23, Corollary 8.10], so by Propositions 10.2 and 10.3 it is algebraically saturated
in Ctr(D0). It has the countable closure property by Proposition 5.14, and it has cardinality continuum,
so by Theorem 7.13 it is isomorphic to EK,tr(D0), and hence is quasiminimal.

As noted in the Introduction, Theorem 1.2 follows directly from Theorem 1.3.
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