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ABSTRACT: Open quantum systems often operate in the non-
Markovian regime where a finite history of a trajectory is intrinsic to
its evolution. The degree of non-Markovianity for a trajectory may be
measured in terms of the amount of information flowing from the bath
back into the system. In this study, we consider how information flows
through the auxiliary density operators (ADOs) in the hierarchical
equations of motion. We consider three cases for a range of baths,
underdamped, intermediate, and overdamped. By understanding how
information flows, we are able to determine the relative importance of
different ADOs within the hierarchy. We show that ADOs sharing a
common Matsubara axis behave similarly, while ADOs on different
Matsubara axes behave differently. Using this knowledge, we are able to
truncate hierarchies significantly, thus reducing the computation time,
while obtaining qualitatively similar results. This is illustrated by comparing 2D electronic spectra for a molecule with an
underdamped vibration subsumed into the bath spectral density.

1. INTRODUCTION
Open quantum systems (OQS) are approaches used for
theoretically investigating the behavior of quantum particles
that are embedded in complex environments. The system of
interest is treated quantum-mechanically through a system
Hamiltonian, and the environment is generally described by a
bath that is composed of an infinite set of harmonic oscillators
conforming to a spectral density that describes environmental
fluctuations. Interaction between the system and the environ-
ment occurs via an interaction Hamiltonian.

Building a realistic OQS requires careful consideration of the
structure of the bath and the system−bath boundary. The bath
affects the system’s fluctuations and is responsible for
dissipation which involves energy transfer from the system to
the bath. In some cases, energy may also be transferred from
the bath back to the system. In chemical physics, OQS
approaches have been of particular importance within models
of electronic energy transfer,1−3 charge transfer,4 and
coherence.5−8

Broadly speaking, there are two main varieties of OQS
dynamics: Markovian and non-Markovian. The memory of a
system, with respect to the state of the bath, is formalized
through the Markov property which itself is a statement that a
stochastic process is memoryless if its evolution is independent
of its history. When considering an evolution, the classical
Markov property asserts that each state at a particular time
depends solely on the previous state in time. This means that
any process which evolves following a scheme such that
successive steps depend on more than the previous time step

(i.e., are dependent on the history of the bath) are termed non-
Markovian and do not satisfy the Markov property. However,
more formal definitions exist related to the divisibility of
quantum dynamical maps.9,10 These formal definitions lead to
the identification of quantum Markovianity in relation to the
flow of information between the system and the bath. In
Markovian cases, information flows unidirectionally out of the
system and into the bath throughout the entire trajectory. On
the other hand, non-Markovian cases include information flow
from the bath back into the system, a process referred to as
recurrence. We highlight the work of Li et al. for a rigorous
overview of different definitions of non-Markovianity.11

There have been a number of procedures that have been
developed for modeling non-Markovian OQS.12,13 In this work
we are focused on the hierarchical equations of motion
(HEOM),14−21 which is a nonperturbative approach derived
from path integrals that has been proven to be highly
successful in capturing quantum thermal effects in OQS,
such as relaxation of a quantum state, by comparison with
analytical models.20 Recently the HEOM has found use in the
dynamics of excitons,22−27 studies of electron transfer,28−34

and excited state dynamics within the condensed phase.35−37
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The HEOM is a system of equations that contain, in
principle, an infinite number of auxiliary density operators
(ADOs) possessing all the information about the system−bath
correlations. As the name suggests, one can think of these
coupled equations as being members of a hierarchical network.
This structure, however, must of course be truncated for
practical implementation. There have been a number of
procedures implemented for achieving this including various
decomposition techniques,38−44 basis set optimization,45

tensor network analysis, projection techniques, and ADO
normalizations.32,32,46,47 Other studies have focused on altering
the topology of the hierarchy to tailor it to more complicated
baths.15,44

In this work, we consider the importance of different ADOs
within a hierarchy by explicitly considering the flow of
information through the elements of the hierarchy. This
gives insights into which ADOs are fundamentally more
important to the dynamics for a specific bath and paves the
way for an alternative robust truncation procedure.

In Section 2, we overview the theory of quantum
information and its relationship to ADOs; in Section 3 the
specifics of the OQS used are described; and Section 4
presents the results and discussion prior to our conclusions in
Section 5.

2. THEORY
2.1. Quantum Information and Non-Markovianity.

Quantum information, the complement of entropy, exists
within OQSs and can be transferred between the system and
the bath via a quantum channel.9 In quantum information
theory, these channels are operators through which informa-
tion is transferred and as such are exact descriptions of the
evolution of the density matrix.

The Von-Neumann entropy function links the entropy of a
bulk material to discretized portions of the quantum
information.48 In the case of a pure state, there is a maximum
in the total knowledge of the system, and each state in the
system can be uniquely defined. This will subsequently
correspond to zero entropy. On the other hand, if we have a
mixed state where the magnitude of information is propor-
tional to the number of distinguishable microstates,49 then
there will be nonzero amounts of both information and
entropy. Analytically, the entropy function takes the form

S k( ) Tr( ln )B (1)

where ρ is the density matrix for a system describing an
ensemble of particles. Based on the previous example, it is clear
that the composite entropy function is zero if and only if ρ is a
pure state, when evaluated at a specific time through the trace.

The property of Markovianity is numerically explicit and can
be further defined through the entropy function and quantum
information theory. A Markovian process defines each future
state in time based solely on the previous time step, and this
corresponds to the entropy functional being concave such that
ρ → S(ρ), and S S( ) ( )i i i i i i , for nonvanishing
λi.13,48 Furthermore, when the system is composite, there is a
subadditivity condition: H = H(1) ⊗H(2) where S(ρ) ≤ S(ρ(1))
+ S(ρ(2)). Consequently, during a Markovian evolution, the
system monotonically loses information to the environment, as
each successive state evolves independently of its history
toward equilibrium.9,10,50 The monotonic loss of information
for quantum states is defined by decreasing distinguishability of

different quantum systems with time.51 In contrast, non-
Markovianity corresponds to any situation which invalidates
the Markovian condition of monotonic information loss. With
reference to the previous example, this could be considered as
a mixed state where information about the system in a
historical state imprinted onto the environment returns
through a quantum channel to influence the future dynamics.

Given these definitions of Markovianity, it is possible to
construct a metric on the space of density matrices in order to
quantitatively measure the relative distinguishability between
two quantum states. This metric is a generalization of the
classical Kolmogorov distance and a simplification of the more
general Helstrom metric. For a pair of states, ρ1 and ρ2, the
trace distance metric of distinguishability is defined as50,52,53

= | |D( , )
1
2

Tr1 2 1 2 (2)

where = †b (b b)1/2. It is important to note that the two
density matrices being compared correspond to two different
systems at the same time, not the same system at two different
times. For example, this may be one density matrix
representing a system that has interacted with a laser field
and another case where the system has not interacted with that
field, as is the case we consider in this work. As discussed in ref
54, this choice of construction ensures that the supports of the
kernel matrix are orthogonal when the flux of information is
negative, corresponding to an increase in entropy of the system
and a loss of distinguishability. The factor of half is omitted in
the Helstrom metric and is present here due to the simplifying
assumption that each state is equally probable. The maximum
and minimum values of the trace distance are observed when
the supports are orthogonal or parallel, respectively, which
physically correspond to completely distinguishable and
completely indistinguishable quantum states.

Given the quantitative distinguishability of quantum states, it
is now possible to define a measure of the information flux
within the total system. Again, this is usually defined with
respect to the system of interest such that a negative
information flux is Markovian and a positive information flux
is non-Markovian. The information flux55 is

i
k
jjj y

{
zzz= = | |

t
D

t
d
d

( , )
d
d

1
2

Tr1 2 1 2 (3)

Markovianity, in addition to resulting in a concave entropy
functional, requires a divisible dynamical map from the time
convolutionless master equation, Λ(t + τ, 0) = Λ(t + τ, t)Λ(t,
0).13 Based on the necessity of a negative flux for a Markovian
process, this means that a non-Markovian process must
correspond to a strictly positive flux, σ > 0. However,
divisibility is not a necessary condition for negative flux.
That is to say, a negative flux is a necessary but not sufficient
condition for Markovianity. Consequently, we take the
information flux for our system and set every negative value
to zero, leaving the purely non-Markovian contributions. Then,
by integrating over time for the maximum positive flux in the
system, we can define a magnitude for the information
returned to the system and hence the degree of non-
Markovianity. The Breuer−Laine−Piilo (BLP) measure, ,
has been used previously to quantify the non-Markovianity of a
general quantum system in this way51−53,56,57

=
>

t tmax ( )d
0s

1,2
(4)
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Therefore, a non-Markovian evolution has a strictly nonzero
information flux and a quantifiable non-Markovianity of .
Through this measure, we can relate microscopic non-
Markovianity with macroscopic spectral properties.54

2.2. Virtual Information and ADOs. The HEOM
comprise a number of terms, each of which operates on an
order of ADO. These auxiliaries are evolved through a series of
subequations and define the contributions to the full density
matrix. They are structured as an infinite hierarchy, and their
positions within that hierarchy dictate their contribution to the
density matrix.

The equation of motion for the ADOs of this expansion is
then54
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and Bn×ρ = [Bn,ρ] denotes the commutator of the bath coupling
operator and the density matrix and Bn°ρ = {Bn, ρ} the
corresponding anticommutator. The system Hamiltonian is
again renormalized to H′. The associated terminator for this
hierarchy is34

i
k
jjjjjj

y
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zzzzzz+×

= = = +

×
t

i i j jH ( ) B
n

N

n n n
n

N

l K
n nl

j
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1
0 1

1 2

(U)
B B

(8)

valid for integers j = (jn0,...,jNdBK), with

> =
= =

+
j

max( )
(min( ))

, 10max( )
n

N

l

K

nl
n

nl
n

1 0

1
0

max

B

(9)

In addition, computationally, the sum to infinity is truncated
with a sufficiently high value with respect to the criterion Γmax.

The terms acting on ρj in eq 5 describe the Markovian free
propagation of the system and the impact on this propagation
of integer multiples of Matsubara frequencies corresponding to
the interaction with bath phonons. By propagating a series of
ADOs, representing different arrangements of bath phonons,
the HEOM accounts for a history of interactions such that
non-Markovian effects are automatically included. The ADOs
are interconnected via raising and lowering terms which are
denoted by j± = (j10,...,jnl ± 1,...,jN dBK) vectors. The ρ−-

dependent terms are raising operations. The action of d Bi
nl n

and its conjugate is to destroy bath phonons, of coupling
amplitude dnl, as they are absorbed by the system. This
corresponds to an increase of the ADO tier resulting in a

“raising” of the ADO number along a Matsubara axis.
Subsequently, this process is associated with thermal
fluctuations and the real part of the correlation function
because of its temperature dependence. The final term,
dependent on ρ+, is the corresponding lowering term. The
action of ×Bi

n is to destroy the system states, corresponding to
the creation of bath phonons as they are emitted from the
system into the bath. Destruction of system states in this
manner is a consequence of the imaginary part of the
correlation function associated with system dissipation. In
this way, non-Markovian feedback can occur between the
system and bath via the ADOs. An abstract volume can be
deduced from the hierarchy structure, which while in principle
is infinite becomes finite by the termination of the ADOs based
on Markovianity constraints, eq 9. This constraint seals the
hierarchy volume. Those terms which include the operator
ψnl

(U) (6) relate to the truncation of the hierarchy and are
equivalent to a cumulant expansion treatment of the order of
the first neglected term in the truncation scheme, thereby
applying a partial ordering prescription.58 The application of
the truncation scheme, eq 9, therefore constitutes a nonsecular
Redfield treatment when more than one electronic level is
included in the excited state. The final term in eq 5 is a sum
over all thermal Matsubara frequencies and relates to the
degree of damping in an underdamped mode. This creates an
hierarchy structure where each level couples to the levels above
and below. Terminators are necessarily Markovian. Those
ADOs which we do not terminate can be either Markovian or
non-Markovian (in their virtual information content) based on
the physical system parameters.

The entire hierarchy structure defines the nature of the
system−bath interaction, and therefore we attribute a degree of
physical meaning to ADOs. A measurable quantity is obtained
by tracing over the bath, which is equivalent to the selection of
solely the reduced density operator from the hierarchy of
ADOs. Similarly, all ADOs can be obtained by applying
creation or annihilation operators to adjacent ADOs forming a
basis in the HEOM space,59 similar in contents to a vibrational
eigenstate basis. Even though physical information from this
HEOM space basis is not directly accessible by a measurement,
the system−bath coupling encoded on the ADOs manifests
itself by their connections within the hierarchy, which involves
feedback to the reduced density matrix.25,60 The Matsubara
space is a purely mathematical construction, but each
dimension relates to both the physical characteristics and the
magnitude of the Markovian constraint applied. In this
hierarchy, we require the sum of an infinite number of
Matsubara frequencies where the first two frequencies (νn0 and
νn1) are temperature-independent and related to the bath
dissipation rate, and subsequent thermal frequencies (νnl),
which are complex, result from the poles in the spectral
function.

= i
2n
n

n0 (10)

= + i
2n
n

n1 (11)
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2
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= l2 ( 1)
nl

(13)

As such, the Markovian constraint, Γmax, applied on each
ADO determines the number of auxiliaries and the total
number of Matsubara dimensions where each frequency
becomes its own independent axis.

# = l 1axes (14)

>l2 ( 1)
max

(15)

Figure 1 depicts an idealized underdamped hierarchy structure
with three Matsubara axes (x, y, z) to be generalized below. In
reality, these structures would be much more complex,
generally with dimensions >3, particularly for structured
spectral densities. Within this diagram (a) presents the
movement of information away from the density matrix,
ρ0,0,0, with each subplot representing two-dimensional slices
across the xy-plane for a different value of z. Similarly, (b)
shows information movement back toward the density matrix.
Each face of the cubes which represent the ADOs are colored
based on whether they permit a transfer of virtual information
in that particular direction. In addition, the cross-hatching of
some ADOs denotes that they are governed by the alternative
terminating equation of motion and will be unable to transfer
non-Markovian virtual information beyond this boundary. In
the discussion that follows, we refer to ADOs increasing in tier
as they move out along a Matsubara axis, away from the
density matrix.

Describing a Matsubara coordinate concisely is difficult due
to the (usual) high dimensionality of a Matsubara space. In
order to discuss individual ADOs, we need to define each of
the axes and positions along those axes. We can define each
Matsubara dimension as an integer M{·} and the ADO
position along that axis as n. From this definition, we could, for
example, write an ADO which is tier 3 in M1 and tier 2 in M5,
but zero along all other axes, within an eight-dimensional
Matsubara space as (3,0,0,0,2,0,0,0), or more concisely as 3125.

In Figure 1, each ADO has up to six possible quantum
channels. The left half of Figure 1 shows where information
can move outward, increasing in tier, from 00. The blue faces
indicate that information cannot move back to the M1M2 (xy)
plane from M3 (z). Similarly, information cannot move out of
23 as it is a terminator. The right side of Figure 1 indicates
where information moves back toward the density matrix,
decreasing in tier, toward 00. The red face in 23 denotes that it
is a terminator and that information cannot move down from
higher tiers, and the red plane M1M2 at M3 tier 0 indicates
that information cannot move down beyond M3 tier 0 (i.e., ntot
≥ 0). This can be written generally as nm, where n is the tier of
a specific Matsubara dimension and m is the index of that
dimension, e.g., m = 1 ≡ M1. The total tier, or distance
measure, of an individual ADO vector is written as ∑n = ntot.
In this notation, it is important to note the distinction between
those Matsubara frequencies which are explicit and temper-
ature-independent (νn0 and νn1) and those which are part of
the infinite sum of temperature-dependent frequencies (νnl),
particularly when the system is underdamped. The lowest
Matsubara dimensions (one for an overdamped system, and
two for underdamped systems) will be temperature-independ-

Figure 1. Idealized underdamped hierarchy structure. The freedom of information to flow upward or downward is depicted with blue and red
colors, respectively. Specifically, a blue boundary signifies that information can enter this ADO from ADOs in the plane with a lower z value. Red
boundaries signify that information can enter this ADO from ADOs in the plane with a larger z value.
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ent and associated with undamped vibrational oscillations, and
all remaining frequencies relate to the influence of damping on
this mode. Consequently, the temperature-independent
frequencies exhibit profoundly non-Markovian dynamics, but
the temperature-dependent frequencies do not.

At this point, it is pertinent to comment on the
mathematical structure of the ADOs and how they may be
interpreted physically. While information flow between
individual auxiliaries cannot be measured experimentally, the
specific structure of the Matsubara space containing the ADOs
nevertheless dictates the nature of the system−bath coupling
and therefore the actual dynamics of the specific OQS. The
trace distance is a purely mathematical metric used to compare
two different matrices of the same type (i.e., those occupying a
common Hilbert space). Typically, these measures are used to
quantify information flow with reference to real density
matrices (those describing a measurable state) and specifically
the direction of information flow between a system and a bath
in an OQS.

While ADOs do not represent measurable quantum states,
information contained within the bath is real, as it is exchanged
with the system. It is therefore useful to talk about the
exchange of phonons between ADOs, within the bath, and this
can be tracked theoretically via the trace distance metric. In
order to emphasize the fact that this information is not directly
measurable and does not constitute a useful resource from the
point-of-view of quantum information theory, we refer to this
as virtual information.

The nature of the auxiliaries and their intrinsic relation to
the system parameters are discussed by Fay et al.43 and Yan et
al.,61 but the level of physical insight that can be gained from
the auxiliaries is not discussed. In contrast, authors such as Zhu
et al.60 propose an explicit system−bath correlation by creating
a collective bath coordinate from the auxiliaries. Additionally,
Xing et al.62 produce an imaginary time HEOM and use this to
explicitly calculate real correlation functions through the path
integral formalism. Both of these methods are impactful studies
of the ADOs, but both craft bespoke operations to analyze the
auxiliaries; neither consider the transfer of information
between ADOs and how this might be used.

In this study, we consider a vibronic molecule with a
fundamental vibration subsumed into the spectral density to
systematically analyze how this impacts information flow
within the ADOs. This is linked directly to electronic spectral
broadening. From this, we aim to ascertain the form and
magnitude of information flow through the ADOs. We term
this information virtual information in order to abstract it from
the physical quantum information within the density matrix,
the former being a mathematical tool and the latter an
experimentally observable quantity. We analyze and character-
ize the behaviors within the ADOs with respect to their
Matsubara coordinate via the BLP metric. From this, we draw
conclusions to optimize the computational efficiency for OQS
dynamics in general and apply this specifically to two-
dimensional electronic spectroscopy (2DES) simulations. We
propose a new hierarchy termination constraint based on the
BLP metric which is useful when modeling vibronic molecules
within the condensed phase.

3. METHODOLOGY
3.1. System Hamiltonian. The model is constructed as a

two-level electronic monomer with ground and excited
electronic states, |g⟩ and |e⟩, with a fundamental transition

frequency of eg . Each electronic level has a set of N vibrational
states with the vibrational frequency 0. As described below,
these are produced by canonically transforming the single
vibrational mode into the environment ensemble of phonon
modes.63 The harmonic potentials for the electronic states
result in a monomer system Hamiltonian

= | | + | |g g e eH h hg eM (16)

where the nuclear constituents for the ground and excited
electronic states are

i
k
jjj y

{
zzz= +†h b b

1
2g 0 (17)

i
k
jjjj

y
{
zzzz= + + + +† †h ( ) b b

1
2 2

(b b )e eg 0
0

(18)

respectively, where b(†) is the lowering (raising) operator.64

Here, dissipation is defined as the relaxation of the system
excitation energy through coupling to environmental degrees
of freedom. Dephasing occurs as a direct consequence of
environmentally induced stochastic perturbations driving the
system’s potential energy surface away from equilibrium. This
manifests physically as a decoherence of wavepackets. A
reorganization energy, = 1

2 0 0
2, is induced through the

displacement of the excited-state potential, with respect to the
ground-state minimum, along the nuclear coordinate by Δ0.
This generates the monomer Hamiltonian.
3.2. Open-System Model. From the system Hamilto-

nians, an OQS can be constructed through coupling to the
environment spectral density. This makes use of the HEOM�
which is intrinsically dependent on its spectral function�the
details of which can be found in our previous work54,65 and in
the original derivation by Tanimura and Kubo.14

All environmental degrees of freedom, including all memory
effects due to non-Markovianity, are described by the
correlation function associated with the fluctuation−dissipa-
tion theorem

i
k
jjjj

i
k
jjj y

{
zzz

y
{
zzzz=L t J t i t( ) ( ) coth

2
cos( ) sin( ) d( )

0

(19)

where β = (kBT)−1. Within 19 dissipation terms arise from the
sine-dependent terms, whereas the thermally induced fluctua-
tions are a consequence of the cosine terms.

Our model is a reduction from the full vibrational structure
of the Hamiltonian, resulting in only the essential electronic
structure being explicit. To achieve this, the fundamental
intramolecular vibrational mode from the vibronic monomer
system of interest is subsumed into the bath degrees of
freedom through a canonical transform. The remaining
electronic states are then coupled to an underdamped (U)
Brownian oscillator and spectral density.
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The two components of the spectral density correspond to
the intramolecular vibrational mode in the underdamped
limit,66 ω1 ≫ γ1, such that ω1 = ω0 and η1 = λ, and the bath
modes, respectively. In the overdamped limit, where ω2 ≪ γ2,
the second contribution is reduced to the Debye form
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where

= 2
2

2 (22)

In contrast to the skewed Gaussian profile of the
overdamped spectral density, the underdamped spectral
density features a sharp Lorentzian peak at the intramolecular
mode frequency, with width determined by the damping
parameter γ1. For this approach, an underdamped HEOM is
derived from the multicomponent spectral density, resulting in
a multicomponent HEOM.67 Note that when the vibration is
subsumed into the bath, γ1 introduces additional damping
which is not present when the vibration is contained in the
Hamiltonian. Approaching the limit γ1 → 0, the two
approaches become equivalent, as discussed within ref 65,
but in practice some additional damping from the second bath
is unavoidable.

With this model, we are able to generate 2D electronic
spectra68−71 in the impulsive limit using the response function
formalism, as described in the appendix of ref 54.
3.3. Regimes of the Simulations. In the following set of

simulations, we consider three cases which we label the
overdamped (fastest dissipation rate), intermediate, and
underdamped (slowest dissipation rate). We note that
although the mathematical form of the bath is underdamped,
all cases can be constructed by the consideration of the
damping parameters. In all simulated 2D spectra, we use a
ground- and excited-state separation of = 10, 000 cmeg

1.

The vibrational mode of the system is = 500 cm0
1, where

the (dimensionless) displacement of the excited-state potential

is Δ0 = 1.09, giving a reorganization energy of λ̃ = 300 cm−1.
The parameters in the case of the overdamped regime (ODR)
are γ1̃ = 1750 cm−1 and γ2̃ = 2500 cm−1 such that Λ̃ = 100
cm−1. The intermediate damping regime (IDR) case has γ1̃ =
100 cm−1 and γ̃2 = 2500 cm−1 such that Λ̃ = 100 cm−1. The
underdamped regime (UDR) case has γ1̃ = 100 cm−1 and γ̃2 =
300 cm−1. In all cases, the bath coupling and vibrational mode
frequency are η̃1 = λ, ω1 = ω0, η̃2 = 50 cm−1, and

= 500 cm2
1. The simulations are performed at 300 K,

within the bounds of the high-temperature approximation, and
the Markovian limit Γmax = 2000 cm−1. The HEOM
simulations for the ODR, IDR, and UDR models contain
1264, 39149, and 98513 ADOs, respectively. Two-dimensional
spectra are generated with a coherence time up to τ = 200 fs in
steps of 0.5 fs, for population times of T = 0, 100, and 200 fs.

The two series of states for which the trace distance are
calculated, eq 2, correspond to one which has been excited by
interaction with a laser of fwhm 20 fs and one which has not.54

4. RESULTS AND DISCUSSION
4.1. Virtual Information Flow. Figure 2 presents all

ADOs where n = 1 for the UDR case. This hierarchy contains
eight Matsubara dimensions, so the ADOs considered are {11,
12, ..., 18}. All of these axes have similar trace distance profiles;
however, it is clear from the total virtual information flux that
each axis has a unique behavior. The smaller Matsubara
frequencies, 11 and 12, initially have a maximum Markovian
transfer of virtual information, followed by a recurrence of
virtual information on approximately 40% that of magnitude,
within the first 100 fs, whereas the ADOs in higher Matsubara
dimensions, 17 and 18, have a high non-Markovian feedback
before they become Markovian with a predominantly
monotonic loss of information. The fact that the total
information flux (c), positive information flux (b), and
resultant BLP metric (d) are so different for each case

Figure 2. UDR case (with = 1001 cm−1 and = 3002 cm−1) showing (a) normalized trace distance, (b) normalized positive flux, (c) normalized
flux, and (d) normalized BLP measure for 1{·}.
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suggests that the role of the different Matsubara axes in
contributing to the bath dynamics is unique.

In direct contrast to this, Figure 3 presents contributions of
consecutive ADOs from the Matsubara axis, M1, {11, 21, 31,
41}. All four subplots show very uniform oscillating patterns
with small changes in amplitude based on the position of the
ADO along the axis. There is a linear decrease in the
equilibrium value of the trace distance as a result of the
normalized positive virtual information flux having sharper
oscillations and a steeper gradient. Based on the uniformity of
oscillations and peak locations in the positive flux, it is clear
that information flow through ADOs in the same axis is very
similar, whereas ADOs of the same tier but in different
Matsubara axes are quite different. The linear increase in the
relative peak amplitude also highlights that higher tier ADOs
are accompanied by a corresponding increase in virtual
information recurrence. This does not mean that higher tier
ADOs contribute more virtual information but that relative to
their size each tier contributes a larger proportion of the
maximum virtual information content.

These findings can be generalized further based on the
analogous results from the FDR and IDR regimes. Despite
their smaller ADO numbers, the same trends exist. Namely,
ADOs from the same Matsubara axis behave in a similar
fashion, but auxiliaries of an equivalent tier within different

axes have little in common. Furthermore, we consider whether
this behavior can be extrapolated to multitier ADOs (i.e.,
ADOs with n > 0 across multiple axes) or some share
character. Results from the multitier analysis indicate that,
similar to the results in Figures 2 and 3, ADOs are most similar
to others in their own Matsubara axis, and all axes are largely
independent of each other.72

Next, we consider the magnitude of virtual information
contained within the ADOs as a function of time. Since the
information content of ADOs decreases in amplitude propor-
tionally with their tier position, the vast majority of auxiliaries
contain very little virtual information. For clarity, we consider
the first 200 ADOs and note that these should contain a large
percentage of the total virtual information. The aim of this
analysis is to determine whether there are some ADOs of
greater intrinsic importance to the OQS dynamics relative to
others.

Figure 4 presents contour plots for the change of the BLP
metric through time for the first 200 ADOs, for the ODR and
the UDR cases. The order of the first 200 ADOs is dependent
on the specific structure of the HEOM implementation;
however, this is equivalent to including those ADOs contained
by n1 ≤ 37, n2 ≤ 4, and nR = 0, where R = {3, 4, 5, 6, 7, 8}, tiers
bound. The vertical red lines depict which auxiliaries are
terminators. In the UDR regime, there are very few terminators

Figure 3. UDR case ( = 1001 cm−1 and = 3002 cm−1) showing (a) normalized trace distance, (b) normalized positive flux, (c) normalized flux,
and (d) normalized BLP measure for n1, n = {1, 2, 3, 4}.

Figure 4. Contour plot of time, ADO, and BLP metric for (a) ODR, (b) IDR, and (c) UDR regimes of the model system. Red dashed lines denote
terminators.
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in the first 200 ADOs, with each terminator representing the
end of a different Matsubara axis. Additionally, there is a
structure in the BLP for early ADOs, with each Matsubara axis
contributing to recurrence to the system from the bath. Within
these regions, the BLP is the lowest in the first few hundred
femtoseconds for the lowest ADO numbers. This corresponds
to the recurrence of virtual information feeding back toward
the density matrix most rapidly for lower ADOs and tiers. This
is consistent with the fact that higher tiers correspond to
thermal Markovian behaviors. Additionally, UDR relative to
IDR lacks the well-defined recurrence structure at early times.
This clearly correlates with the fact that recurrence of
information occurs much more readily in underdamped
cases, compared to overdamped scenarios.

We also consider 2D electronic spectroscopy for the UDR
and ODR regimes. Figure 5(a−c) presents spectra for the
ODR case for 0, 100, and 200 fs. The peak position is obscured
by the very large inhomogeneous broadening introduced by
the fast vibrational mode that is subsumed into the
environment. This broadening results in what appears to be
a single large peak, although the intensity differences at ∼

(10300, 10300) cm−1 for (a) and ∼ (10300, 9750) cm−1 for
(b,c) suggest that there is a large Stokes shift in which the
vibrational character and population relax into the ground
state. Clearly, a large number of terminators, relative to the
total ADO number, is associated with a significant increase in
inhomogeneous broadening. In contrast, in the UDR case, (g−
i) the spectra have very precise positions, and many cross-
peaks are present. Even at low times, the peaks are Lorentzian
in shape, with a mixture of inhomogeneous and homogeneous
broadening as a consequence of the underdamping of the
modes being subsumed into the spectral density. This results in
high positional precision and low broadening accuracy due to a
low number of terminators and a more uniform spread of
relative virtual BLP over all of the ADOs.

From these results, it is clear that there is some redundancy
with the behavior of individual auxiliaries along a specific
Matsubara axis. For example, in Figure 3, we observe that n1, n
= {1, 2, 3, 4} behave in an almost identical fashion such that
this characteristic is being replicated four times within the
hierarchy. These results present an opportunity for us to
develop a new strategy for terminating the ADO hierarchy.

Figure 5. Two-dimensional electronic spectra for ODR (left), IDR (center), and UDR (right) regimes of the model system at T = 0, 100, and 200
fs.
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The original termination approach used in these simulations,
found in (ref 73), is that developed by Dijkstra and
Prokhorenko.73 Now, we consider a new set of trajectories
that also exploit a new termination which effectively reduces
the number of auxiliaries based on the redundant behavior
presented above. We consider the termination of ADOs that
possess similar character to others but with the smallest
amount of virtual information content, that is, those with
higher ADO numbers within a Matsubara axis. Continuing the

example of n1 for n = {1, 2, 3, 4}, the new termination scheme
would reduce this to n1 for n = {1, 2}, where n = {3, 4} would
now become terminators.

By canonically subsuming a pure intramolecular vibrational
mode as an underdamped vibration, additional damping is
added to the model. This is referred to as canonically derived
damping or canonical damping. The additional termination
scheme based on this damping is therefore termed canonically
derived/canonical termination.

Figure 6. Contour plot of time, ADO, and BLP metric for the IDR model (a) with termination n{·} > 2, (b) with termination n{·} > 3, and (c)
without canonical termination. Red dashed lines denote terminators.

Figure 7. 2D electronic spectra for the IDR with an n{·} > 2 canonical termination (a−c), with an n{·} > 3 canonical termination (d−f), and without
canonical termination (g−i) at T = 0, 50, and 100 fs.
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4.2. Impact of Canonically Derived Termination. We
test the proposed secondary termination scheme by consider-
ing two cases: termination of ADOs n{·} > 2 and n{·} > 3, in
order to demonstrate a convergence toward the original BVM
hierarchy. By construction, this scheme will tend to terminate
thermal Matsubara axes preferentially over the nonthermal
ones, as they necessarily contain more non-Markovian virtual
information relating to the system vibration. Such schemes
significantly reduce the section of the hierarchy in which
information can flow back to the density matrix and
consequently constitute a computational saving. Figure 6
shows contour plots of the BLP measures for the IDR case in
each of the termination regimes. It is clear from comparing
Figure 6(a−c) that this system behaves very similarly to the
UDR case in Figure 4c however, the virtual information
recurrence at an early time is more pronounced based on the
reduced damping, leading to decreased damping. From Figure

6a, when n{·} > 2, it can be seen that the first 75 ADOs go in
sequence along the first two Matsubara dimensions. The third
block (the next ∼50 ADOs) is multitiered and therefore is not
terminated by the secondary criterion. These therefore
contribute significantly to the OQS dynamics. It is clear that
the majority of ADOs are terminated, in a manner similar to
the ODR regime, so we might expect equivalent levels of
broadening in the resultant 2DES. Additionally, in Figure 6b,
when n{·} > 3, it is clear that another set of multitier ADOs
remains as a consequence of the increased cutoff in the second
termination, as is evident in the two unterminated regions
between ADOs ∼75 and ∼150 which are separated by a single
terminated ADO. As the value of ntot increases, the number of
dimensions included, and consequently the number of
multiphonon processes included, increases up to the full IDR
in Figure 6c.

Figure 8. (a) Difference spectrum for IDR-terminated to include up to two phonon processes subtracted from the IDR with all phonons. (b)
Difference spectrum for IDR-terminated to include up to three phonon processes subtracted from the IDR with all phonons. (c) Integrated
absolute difference spectrum metric plotted for each of the three termination regimes for both the ODR and IDR damping regimes.

Figure 9. Schematic showing the closed hierarchy volume. (a,c) Arbitrary value of Γmax
(1) . (b) For Γmax

(2) < Γmax
(1) . (d) First Γmax

(1) and then the secondary
termination scheme. Movement from (a,b) demonstrates a self-similar volume, whereas (c,d) demonstrates a regime without this restriction.
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The spectra in Figure 7 show the corresponding 2DES
associated with the respective plots in Figure 6. We note that
the spectra in Figure 7(g−i) are exactly those in the study by
Humphries et al.,65 which employs the same model with the
IDR parameters. They show a reasonable level of inhomoge-
neous broadening as a consequence of the subsumed
vibrational mode, but vibronic peaks are still clearly
distinguishable. All peaks, including the cross-peaks, are
broadened individually by the coupling to the bath, resulting
in more broadening than in the UDR case but significantly
more peak precision than in the ODR regime.

In comparison, the spectra in panels (a−f) show qualitatively
similar peak profiles. Despite a significant percentage of the
total hierarchy being terminated, the individual peaks have
well-resolved positions and have not been overbroadened. As
demonstrated by Figure 5 (a−c), regimes which are far into
the overdamped limit tend to produce hugely overbroadened
peaks with very minimal positional resolution, but this is not
evident after canonical termination. In contrast, the peaks have
clear Lorentzian character, and additional peaks have become
apparent, examples being at approximately (10000, 11750),
(11750, 10000), and (11750, 9000) wavenumbers in Figure
7c.

In order to test the quality of the truncated hierarchies, we
generate difference spectra for the termination of n{·} > 2 and
n{·} > 3 with respect to the full IDR, in the absence of canonical
termination. We then integrate over their absolute values to
form a quantification of the total broadening difference as we
progress from the full number of ADOs and truncate the
hierarchy.

Figure 8(a,b) shows the two difference spectra for the IDR
spectrum in Figure 7(g) minus Figure 7(a,d), respectively.
Panel (c) shows the integrated absolute value for each of the
spectra. It is clear from the negative correlation shown in this
figure that there is a linear improvement in the accuracy of the
model as n increases toward the full number of phonon
processes. Terminating two phonon processes can be
quantified as having an area difference of ∼300 cm−2 and
that changing the termination to three phonon processes
halves this area to ∼150 cm−2.

Therefore, the most significant virtual information is stored
within the lowest tier ADOs. This gives a clear indication that,
in specific parameter regimes, it would be feasible and useful to
truncate the hierarchy at different ADOs along different axes,
thereby reducing its overall volume. Using the original
termination criteria, eq 9, the hierarchy is a sealed volume
which can only be reduced by decreasing Γmax, resulting in a
hierarchy of smaller volume but similar shape. However, we
propose that it may be possible to optimize the HEOM for
specific cases by setting different lengths for each Matsubara
axis. This could maximize the accuracy of the simulated spectra
relative to the experimental spectra while reducing the
hierarchy volume and hence reducing the simulation time
with a minimal impact on the quality of the spectra. The
hierarchy reduction is demonstrated pictorially in Figure 9.

5. CONCLUSIONS
The HEOM are an infinite system of equations that evolve
individual ADOs. The equations are coupled via raising and
lowering operators that allow the movement of phonons
between ADOs. Once truncated, the resulting ADO structures
can take on a variety of shapes with varying complexity. Within
these structures, ADOs are represented as elements lying along

independent Matsubara axes, with their positions along the
axes being referred to as tiers. In this work, we show that
ADOs contain virtual information whose flux through the
hierarchy can be monitored. This can provide insight into the
relative importance of individual ADOs in defining the bath.
Crucially, the new termination scheme intrinsically accounts
for the temperature dependence of each Matsubara axis upon
termination. Therefore, ADOs dependent on high, temper-
ature-dependent dimensions are preferentially terminated over
those which are of low dimensions and necessarily more non-
Markovian. A qualitative understanding about the nature of the
system−bath interaction can therefore be obtained directly
from the virtual information metric BLP measure when it is
applied to the ADOs. We have clearly demonstrated differing
recurrence times of virtual information for ADOs across the
hierarchy as a consequence of non-Markovian feedback. From
this, we can gain insight into the resulting impact on the
spectral broadening and peak precision in 2DES. Finally, we
employed a termination scheme based on the physical
understanding afforded by this analysis. The resulting spectra
from the canonical termination procedure are in qualitative
agreement with those produced using the original hierarchy,
thereby reducing the computational cost for 2D spectra of
OQS with complex baths. We quantify this as being a
difference of ∼300 cm−2 in total broadening for up to two
phonon processes, which is halved (resulting in twice as good
an approximation) for three phonon processes. Future work
will involve optimizing the approach for the development of a
new termination procedure for systems with strong non-
Markovian feedback.
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