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Derivation of Equivalent Circuit Rotor Current from
Rotor Bar Current Measurements in Brushless
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Abstract— This paper presents a method to estimate the
BDFM equivalent circuit rotor current from rotor bar current
measurements. Rotor currents are measured using a specially
designed hardware that incorporates Rogowski coils and Blue-
tooth wireless transmission. The measurement of rotor currents
enables the parameters in the BDFM’s full equivalent circuit to be
extracted unambiguously. In particular, stator and rotor leakage
inductances can be estimated from experimental tests, which was
not possible before from terminal measurement. The method
is presented for a nested-loop rotor design and experimental
measurements are shown for a prototype D180 frame BDFM

Index Terms— Brushless doubly-fed machine, Nested-loop ro-
tor, Equivalent circuit model, Rotor current measurements,
Rogowski coils, Curve fitting methods, Wind energy.

I. INTRODUCTION

THe Brushless Doubly-Fed induction Machine (BDFM) is
an attractive proposition for variable speed applications,

especially in wind power generation [1], [2]. Several experi-
mental BDFMs have been built ranging from small laboratory
sizes up to several hundreds of kilowatts including a 250 kW
size built by the authors [3], [4] and most recently, an 800
kW machine built for hydropower generation by Chen et al.
[5]. Research on the BDFM has gained a fresh momentum in
recent years which has led to significant improvement in the
understanding, design and control of the machine [6]–[23].

The BDFM is a single-frame induction machine with two
three-phase stator windings of different pole numbers that do
not couple to each other directly. The coupling takes place
through a specially-designed rotor that couples to both stator
fields. The BDFM rotor is thus an important component of
the machine as its winding carries the magnetic motive force
(MMF) induced by both stator windings. Typically, one stator
winding, called the power winding (PW), is connected to
the mains and the other, called the control winding (CW) is
supplied through a partially rated converter [24], [25]. The
BDFM’s desirable operation is in the synchronous mode where
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the shaft speed is determined by the stator supply frequencies
[26], [27].

The vast majority of experimental BDFMs have utilised a
nested-loop design for the rotor, which comprises symmetrical
nests each containing one or several concentric loops [3], [14]–
[16], [28]–[37]. The loops are often made of solid bars which
are shorted at one end of the rotor with a common end ring.
Alternative rotor designs, such as the bar cage rotor with
internal loops [32], [38], [39], hybrid rotor [40] and wound
rotor [41], [42] have also been studied for the BDFM.

The BDFM can be thought of two induction machines of
different pole numbers with their rotors connected both me-
chanically and electrically [43]. The equivalent circuit model
of the BDFM, shown in Fig. 1(a), essentially represents this
cascade configuration [44], [45]. The equivalent circuit is a
simple tool to work out the steady state performance measures
of the BDFM and can be utilised in iterative machine design
optimisation [46], converter rating optimisation [47], [48],
and to understand the machine’s operating limits [49]. The
parameter values may be affected by the rotational speed and
exerted load, however, these effects are generally negligible
and can be neglected for the majority of machine analyses
[50].

Several studies have attempted to integrate iron losses
into the equivalent circuit model of the BDFM [31], [51].
However, as highlighted in these works, calculating iron losses
in the BDFM is challenging due to its complex and nonlinear
magnetic fields. Consequently, equivalent circuit models have
struggled to accurately predict these losses. Recent research
indicates that numerical methods, particularly finite element
analysis, offer a more accurate approach for estimating BDFM
core losses [7], [52]. In the present study, the impact of iron
losses in the equivalent circuit model is not taken into account.

In experimental BDFMs, obtaining precise estimations of
the equivalent circuit parameters is valuable to ensure the
validation of theoretical designs and achieve accurate predic-
tions of machine performance. This is of particular benefit
to machine manufacturers and researchers studying prototype
BDFMs. The equivalent circuit parameters may be calculated
from the machine’s geometrical dimensions and materials
specifications using analytical methods, such as the coupled
circuit and winding factor methods [50]. However, the accu-
racy of these calculations depends on having precise geometri-
cal data for the machine. There are particular limitations with
the accurate measurement of the air gap, which directly affects
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the inductances in the equivalent circuit. In addition, it is hard
to obtain precise estimates of certain parameters such as the
leakage reactances of end-windings.

An alternative approach for estimating the BDFM equiva-
lent circuit parameters involves utilising curve-fitting methods
applied to experimental tests [44] or Finite Element (FE)
results [53], [54]. These methods have demonstrated superior
accuracy in parameter estimation, but with a limitation: they
were only able to extract parameters for a simplified, yet
electrically equivalent, form of the equivalent circuit shown
in Fig. 1(b) [44]. This limitation arises due to challenges in
measuring rotor bar currents and their subsequent conversion
to the equivalent circuit rotor current, which result in elec-
trical measurements being confined to ‘terminal’ quantities
(i.e. stator windings). As a result, it was not possible to
unambiguously determine all the inductance values in the ‘full’
equivalent circuit shown in Fig. 1(a) [44]. Thus, instead of
obtaining three distinct inductances Lr, L1 and L2 in the
‘full’ model, a single inductance parameter L̂r is derived in
the simplified model, representing the combined effects of Lr,
L1 and L2.

Having specific knowledge of the rotor inductance (Lr) is
highly advantageous, as it allows for the evaluation of dif-
ferent rotor designs and optimisation of various performance
aspects, including reactive power management [55], converter
rating [10] and machine behaviour during grid low-voltage
ride-through (LVRT) events [56]. To obtain Lr accurately
through curve-fitting methods applied to experimental tests,
it is necessary to measure rotor bar currents and subsequently
convert them to the equivalent circuit rotor current. In previous
studies [57], [58], an instrumentation apparatus incorporating
Rogowski coils for current measurements and Bluetooth for
wireless data transmission was implemented. However, the
conversion of rotor bar currents to the equivalent circuit rotor
current remains an unexplored area of research.

This paper presents two important contributions to the
study of the BDFM. Firstly, it presents an analytical method
to estimate the equivalent circuit rotor current from rotor
bar current measurements in a nested-loop rotor. Secondly,
leveraging the method outlined and the hardware detailed
in [58], it derives distinct values for Lr, L1 and L2 in the
‘full’ equivalent circuit shown in Fig. 1(a). These parameters
are subsequently utilised to predict the performance of the
BDFM, and the predictions are validated through experimental
verification.

II. TRANSFORMING ROTOR LOOP CURRENTS INTO
EQUIVALENT CIRCUIT ROTOR CURRENT

Fig. 2 shows the sequence of transformations required to
obtain the equivalent circuit rotor current from measured rotor
loop currents in steady state conditions. The transformations
are described here for a general class of nested-loop rotors with
S = p1 + p2 nests, each comprising N concentric loops. p1
and p2 are the pole pairs of stator 1 and stator 2, respectively.
To clarify the terminology, consider Fig. 3 which is a nested-
loop design for a 2/4 pole pair BDFM. The rotor has six nests
(S = 6). Each nest comprises three concentric loops (N = 3):

I1 R1 1L1 j Ls r Rr

E1 E 1r
N1

s1

=

N1 : 1
IrIr /N1

I2 R2 j 2L2 N2 : 1
IrIr /N2

E2 E 2r= N2
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j 1Lm1
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j

(a) Full model

I1 R1 j 1Lr Rr /s1Ir R2

s2
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N1 : 1 N21 :

(b) Simplified model

Fig. 1. BDFM per-phase equivalent circuit
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Fig. 2. Transformations required to obtain the equivalent circuit rotor current
from measured rotor loop currents

inner, middle and outer loops. Therefore, there are three sets
of similar loops i.e. six inner loops, six middle loops and six
outer loops.

A. dq Transformation

Since the rotor cannot simply be presented as a three-phase
system, an appropriate dq transformation must be used for
the rotor currents. For a nested-loop rotor with S nests, a dq
transformation matrix was proposed in [59] which is similar
to that of an S-phase system. It was also shown in [59] that
the transformation can be represented for either p1 or p2 pole
pairs. The following transformation for p1 pole pairs is used
for one set of S similar loops (e.g. the set of six middle loops
in Fig. 3):

Cdq=

√
2

S

[
cos (0) cos( 2πp1

S ) ... cos( 2π(S−1)p1
S )

sin (0) sin( 2πp1
S ) ... sin( 2π(S−1)p1

S )

]
(1)

The transformation of loop currents into dq currents is thus
given by:

idq = Cdqir (2)

where ir ∈ RS comprises the loop currents and idqr ∈ R2 is
the dq currents.

In any balanced S-phase system, at steady-state operation,
the quantities such as the currents have the same amplitude,
with a suitable phase difference. This is physically justified due

This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2024.3395903

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of East Anglia. Downloaded on June 14,2024 at 10:32:46 UTC from IEEE Xplore.  Restrictions apply. 



3

Inner loops

Middle loops

Outer loops

Nest of three 
concentric loops

End ring

Fig. 3. A nested-loop design for a 2/4 pole pair BDFM

to the symmetrical geometry of the nested-loop rotor. Thus,
at steady-state, measurements of only one current in each set
of rotor loops is sufficient to derive the dq currents for that
set. However, in order to preserve the system rank which is
2 for the dq model, the currents in at least two loops of each
set (e.g. two inner loops, two middle loops, and two outer
loops in the rotor shown in Fig. 3) must be included in the
transformation [60, sect. 3.2]. This can be achieved by adding
a suitable phase offset to a loop current in one nest to obtain
the current of an identical loop in another nest:

ĩr = Pir =

[
IR∠φ(t)

IR∠(φ(t) + θo)

]
(3)

where ĩr ∈ R2 comprises the currents in two identical loops
of consecutive nests (e.g. the two inner loops shown in Fig.
3) and P ∈ R2×S is a matrix which has a single 1 in each
row, with all other elements zero, and is rank 2 (that is the 1s
must be in different columns). IR is the amplitude of the loop
current, φ(t) is some arbitrary function of time and θo is an
offset angle given by [61, sect. 3.3]:

θo =
2π

p1 + p2
gcd(p1, p2) (4)

where gcd(p1, p2) is the greatest common divisor of p1 and
p2.

Now, a transformation Cr ∈ R2×2 is sought such that:

idq = Cr ĩr (5)

From (3) and (5):

idq = CrPir (6)

Noting Cdq
TCdq = I2×2 [60, sect. 3.2], from (2):

ir = Cdq
T idq (7)

From (6) and (7):

idq = CrPCdq
T idq (8)

As CrPCdq
T is full rank, then:

CrPCdq
T = I2×2

⇒ Cr =
(
PCdq

T
)−1

(9)

Therefore, for a single set of S rotor loops (e.g. the six middle
loops in Fig. 3), Cr ∈ R2×2 determines the rotor dq currents
from knowing two loop currents (with a suitable choice of P).

For a nested-loop rotor with N loops per nest (i.e. N sets
of S identical loops), the dq transformation matrix for rotor
currents, Cdqr ∈ R2N×2N , is given by:

Cdqr =

 Cr 0 0

0
. . . 0

0 0 Cr

 (10)

where Cr is of the form of (9).

B. Rotor State Order Reduction

An important step to derive a single equivalent circuit rotor
current from the measurement of currents in a multi-loop per
nest rotor is to reduce the order of rotor states from N dq pairs
to a single dq pair. In other words, we wish to find a simplified
model of the rotor which is equivalent in complexity to the
special case when the rotor comprises of only a single loop
per nest. Physically speaking, we are trying to find a single set
of rotor loops which reasonably approximate the performance
of the true rotor which has multiple loops per nest.

Roberts et al. [59] proposed a model order reduction
method for the nested-loop rotor and showed experimentally
that the method has acceptable accuracy. McMahon et al.
[50] subsequently used the same approach to calculate the
BDFM equivalent circuit parameters from the coupled circuit
equations, and reported close agreement with experimental and
finite element results. Using the method described in [59], the
order of rotor dq currents may be reduced to a single pair by:

ĩdqr = TT
1 idqr (11)

where idqr ∈ R2N comprises N dq pairs of rotor currents (e.g.
three dq pairs for the rotor shown in Fig. 3, corresponding
to inner, middle and outer loops), and ĩdqr ∈ R2 is the
approximated single pair of rotor dq currents. T1 ∈ R2N×2 is
the eigenvector that corresponds to the largest eigenvalue of
the rotor inductance matrix in the dq model. For details about
how T1 is calculated, refer to [59].

C. Symmetrical Sequence Components

The single pair of rotor dq current may be transformed
into positive and negative sequence components using the
following transformation [62, sect. 3.7]:[

ir
+

ir
−

]
= Cs ĩdqr = Cs

[
ĩdr
ĩqr

]
(12)

where:

Cs =
1√
2

[
1 j
1 −j

]
(13)

Under balanced three-phase conditions, the positive and neg-
ative sequence components are related as [60, sect. 4.2]:

ir
+ = īr

− (14)

Therefore, either of positive or negative sequence components
may be utilised to derive the equivalent circuit rotor current.
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Considering the positive sequence component, the transforma-
tion for the rotor current is:

ir
+ = C+

s ĩdqr (15)

where:

C+
s =

1√
2

[
1 j

]
(16)

It was shown in [60, sect. 4.2] that under steady state condi-
tions, ir+ will become Ir in the equivalent circuit shown in
Fig. 1(a).

D. Equivalent Circuit Rotor Current
Noting that the dq and symmetrical sequence components

transformations will magnify the phase voltage and current
quantities by a factor of

√
3
2 , and assuming φ(t) = 0 in (3),

the rotor current in the equivalent circuit can be obtained from
the measurement of rotor loop currents using (10), (11) and
(16):

Ir =

√
2

3
C+
s T

T
1 Cdqr



[
1

cos(θo)

]
IR1[

1
cos(θo)

]
IR2

...[
1

cos(θo)

]
IRN


(17)

where IR1
, IR2

, . . . , IRN
are the amplitude of the measured

rotor loop currents in a single nest (e.g. inner, middle and
outer loop currents in a single nest in Fig. 3).

III. EXPERIMENTAL SETUP

The specifications of the prototype BDFM is given in Table I
and the test rig is shown in Fig. 4. The BDFM is mechanically
coupled to a DC drive (ABB DCS800) which enables running
the BDFM as a motor or generator. The mechanical coupling
is through HBM T30FN torque transducer. The shaft speed is
measured using an incremental encoder with a resolution of
2500 cycles/rev. The stator voltages and currents are measured
by LEM LV 25-p and LEM LTA 100-p transducers with
measurement accuracies 0.9% and 0.5%, respectively.

Rotor loop currents are sensed using Rogowski coils [63],
[64]. After an analogue integration, the output is digitised and
transmitted from the rotor to a PC using a wireless link, as
shown in Fig. 5(a) [58], [65], [66]. The measurement setup
comprises the elements shown in Fig. 5(b) and its installation
is shown in Fig. 5(c). It can measure bar currents up to 3000
A with resolution of <1%, from 1 to 100 Hz. The system
is powered by rechargeable batteries. Recharging in situ is
possible via connections brought out through a hole in the
shaft. Reading from four Rogowski coils are used to measure
the end ring currents at four locations, as shown in Fig. 5(b).
The rotor loop currents shown in Fig. 6 can be obtained from
the measured end ring currents as:

il1 = ir1 − ir2
il2 = ir2 − ir3
il3 = ir3 − ir4

(18)

TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL BDFM

Parameters Value

Frame size D180
PW/CW pole pairs 2/4
Natural speed 500 rpm
PW rated voltage 240 V (50 Hz, delta)
PW rated current 13 A (line)
CW rated voltage 240 V (30 Hz, delta)
CW rated current 13 A (line)
Rated torque 100 Nm
Stator slot number 48
Rotor slot number 36
Rotor design Nested-loop design consisting of

6 nests of 3 concentric loops of
pitch 5/36, 3/36 and 1/36 of
the rotor circumference. Each nest
offset by 1/6 of the circumference.

Fig. 4. Prototype D180 frame BDFM (left) on the test rig

IV. EQUIVALENT CIRCUIT PARAMETER ESTIMATION

The procedure adopted to estimate the equivalent circuit pa-
rameters from experimental measurements is shown in Fig. 7.
This procedure builds upon the previously proposed approach
in [50] by incorporating rotor current measurements into the
experimental data, thus extending its ability to estimate Lr,
L1 and L2 in the full equivalent circuit shown in Fig. 1(a).

The stator winding resistances were obtained from DC
measurements at 80 °C. The sums of stator winding leakage
and magnetising inductances, L1 +Lm1

and L2 +Lm2
, were
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(a) Functional block diagram of the rotor current measurement system

(b) Hardware arrangement diagram

(c) Installation of Rogowski coils and electronic hardware
Fig. 5. Rotor current measurement system [63]
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Fig. 6. End ring and loop currents in a nested-loop design

derived from no-load tests conducted at 90 V, 50 Hz.
Two cascade tests were conducted: one with the 4-pole

winding supplied at 90 V, 50 Hz and the 8-pole winding
shorted, and one with the 8-pole winding supplied at 110 V,
50 Hz and the 4-pole winding shorted. The supply voltages
were chosen to limit the stator currents to acceptable values
and to avoid saturation in the iron circuit. The BDFM was
run over the speed range of 0-1500 rpm and approximately
twenty operating points were logged in each cascade test. For
each operating point, the stator voltages, currents and power
factors, rotor loop currents, mechanical speed and torque were
measured at steady state.

The rotor loop currents were converted to the equivalent

Stator windings DC
measurements

R1, R2

No-load induction tests 
at synchronous speed 

L1 + Lm1

L2 + Lm2

T, wr

IR1, IR2, …, IRN

Bar currents to
equivalent circuit 
current conversion (17)

V1, I1, pf1

V2, I2, pf2

Cascade 
tests

Curve fitting 
optimisation: 
R1, R2, L1+Lm1

and L2 + Lm2

are fixed in the 
optimisation 
process

L1, Lm1

L2, Lm2

Lr, Rr

N1, N2

Ir

Fig. 7. Equivalent circuit parameter estimation procedure from experimental
tests

circuit rotor current (Ir) using the method outlined in section
II. Then, the transformed rotor current, together with stator
measurements, mechanical speed, and torque, were fed into the
curve-fitting optimisation process to estimate the parameters
of the equivalent circuit [44], [53]. Fig. 8 shows the measured
torque and rotor loop currents in the cascade tests, along with
the transformed equivalent circuit rotor current. The best-fitted
curve to the torque and transformed rotor current data points
are also depicted in Fig. 8.

Table II displays the parameter values for the ‘full’ equiva-
lent circuit depicted in Fig. 1(a). The table includes two sets
of parameters: one estimated using the curve-fitting method
described earlier, and the other calculated based on the ma-
chine’s geometric dimensions using the method proposed in
[50]. The disparity between the two parameter sets is less than
10%. Notably, the most significant discrepancies are observed
in the stator and rotor leakage inductance values, which is
to be expected due to the intricacies involved in calculating
leakage inductance, particularly in the BDFM with complex
magnetic field distributions [53].

TABLE II
EQUIVALENT CIRCUIT PARAMETERS FOR THE PROTOTYPE D180 BDFM,
DERIVED FROM THE EXPERIMENTAL METHOD DESCRIBED IN THIS PAPER

AND THE ANALYTICAL METHOD PROPOSED IN [50]

Parameters Experimental Analytical Difference
estimation calculation

R1(Ω) 2.4 2.3 4.2%
L1(mH) 4.9 4.4 10.2%
Lm1 (mH) 268 272 1.5%
R2(Ω) 4.0 3.9 2.5%
L2(mH) 12.4 11.4 8.1%
Lm2 (mH) 274 276 0.7%
Rr(µΩ) 96.9 95.4 1.5%
Lr(µH) 2.0 1.90 5.0%
N1 115.4 112.4 2.6%
N2 159.2 156.5 1.7%
N1/N2 0.725 0.718 1.0%
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(a) Measured rotor loop currents, obtained from the hardware described in Section III
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(b) Equivalent circuit rotor current derived from the transformation of measured rotor loop currents using the method described in II, overlaid with best-fitted
curve
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(c) Measured torque overlaid with best-fitted curve

Fig. 8. Measured torque (c) and rotor loop currents (a) obtained during the cascade tests, accompanied by the transformed equivalent circuit rotor current
(b). The figure also depicts the best-fitted curves for the transformed rotor current and torque data points (b and c). These plots (b and c) are integral to the
curve-fitting optimisation process used to estimate the equivalent circuit parameters listed in Table II.

V. STEADY STATE MODEL VERIFICATION

The equivalent circuit with parameters listed in Table II was
utilised to predict the steady-state performance of the BDFM,
providing an evaluation of the practicality and accuracy of
the proposed parameter estimation method. To validate the

predictions of the equivalent circuit, experimental tests were
conducted in the synchronous mode of BDFM operation. The
4-pole stator winding (PW) was supplied with a constant
voltage and frequency of 90 V, 50 Hz. The 8-pole stator
winding (CW) was connected to a variable voltage, variable
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frequency converter. The converter frequency was set at 30
Hz, corresponding to a shaft speed of 800 rpm. The converter
voltage was varied from 70 V (under-excitation) to 160 V
(over-excitation) which essentially allowed adjusting the reac-
tive power in the PW [67].

The stator voltages were chosen at sub-rating levels to
avoid saturation in the iron circuit. This was important in the
verification process since the equivalent circuit, being a linear
model, does not account for the effects of iron saturation [21].
With the chosen sub-rating stator voltages, the load torque
applied by the DC drive was adjusted to 30 Nm to ensure that
the stator currents remained within their specified ratings.

Fig. 9 presents the experimental results, overlaid with the
equivalent circuit predictions generated using the two sets
of parameters listed in Table II. Overall, all predictions fall
within an acceptable range. However, it is worth noting that
the parameters estimated from the experimental tests (the first
set of parameters listed in Table II) exhibit closer agreement
with the experimental results, as anticipated. These findings
highlight the significance of both methods for determining
the equivalent circuit parameters in the study of the BDFM.
The analytical method proves valuable for iterative design
optimisations, while the experimental method is crucial for
characterising experimental machines and assessing their per-
formance.

The measured rotor loop currents are shown in Fig. 10(a).
The outer loop carries the highest and the inner loop the lowest
currents, which signifies that the outer loop has the strongest
overall coupling to the stator windings. Fig. 10(b) shows the
equivalent circuit rotor current derived from transforming the
measured loop currents as described in Section II. The overlaid
predictions from the equivalent circuit models demonstrate a
close agreement with the experimental measurements. These
results highlight the practicality and acceptable accuracy of the
transformation procedure proposed in Section II, particularly
the state order reduction method.

VI. CONCLUSIONS

The equivalent circuit model serves as a valuable analytical
tool for assessing the steady-state performance and operating
limits of the BDFM. With each parameter holding a distinct
physical meaning, the model proves particularly useful in
design optimisation and the evaluation of different machine
configurations.

The nested-loop rotor, characterised by multiple concentric
loops per nest, poses a challenge in simplifying the BDFM
equivalent circuit representation. This paper addresses this
challenge by proposing a method to transform the rotor loop
currents in the nested-loop design into the rotor current in
the equivalent circuit model. This transformation enables the
utilisation of rotor current measurements in the parameter
estimation process, ensuring unambiguous derivation of all
inductances in the ‘full’ equivalent circuit. While the approach
is presented specifically for the nested-loop rotor, it can be
extended to other rotor designs, such as the bar cage rotor
with internal loops [32], [38].
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Fig. 9. Experimental validation of equivalent circuit predictions for the
BDFM operating in synchronous mode. The CW voltage was varied to adjust
the PW reactive power. The measured experimental data are overlaid with
predictions obtained from the equivalent circuit using both sets of parameters
listed in Table II
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