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1. Introduction

Since the accidental discovery of penicillin by Alexander Fleming in 1928 and

the first widespread use of antibiotics in the 1940s, they remain today among

the most essential class of drugs worldwide. However, resistance to antibiotics

was also identified as early as the 1940s, and indeed the negative externality

was recognized in Fleming’s 1945 Nobel Prize speech.1 For the 150 million

annual prescriptions written in the early 1980s in the US, one estimate places

the unaccounted costs due to resistance to be between $.35-$35 billion (Phelps,

1989). Significantly high costs and welfare losses have also been estimated for

EU/UK, and 23K-25K annual deaths in the US and EU each are attributed

to resistance (Elbasha, 2003, Smith et al., 2005, ETAG, 2006, ECDC/EMEA,

2009, CDC and Prevention, 2013). Today antimicrobial resistance (AMR) has

become a global threat with an estimated 700K deaths worldwide annually and

has prompted calls for a global response (WHO, 2001, CMO, 2013, O’Neill,

2016). Based on these concerns, the British government commissioned a review

of AMR, which was tasked with identifying causes of rising drug resistance and

proposing policy actions that can be taken internationally. The final report

of the commission warns that if the problem goes unchecked, as many as

10 million lives a year, and as much as cumulatively $100 trillion in output

worldwide would be at risk by 2050 (O’Neill, 2016). A key issue identified in

this report, and relevant to this paper, is stewardship of demand management

towards appropriate/optimal use.

Antibiotics can be classified as narrow- or broad-spectrum, where narrow-

spectrum drugs work against a select group of bacteria and will not kill other

microorganisms in the body and thus help in slowing AMR. However, they

can only be prescribed when the causative organism is known. On the other

hand, broad-spectrum antibiotics are prescribed more generally and when the

causative organism is unknown, but they also exacerbate the AMR problem

the most (Steinman et al., 2003b,a, Wood et al., 2007, Kaier and Moog, 2012,

CMO, 2013).

1“... Mr. X. has a sore throat. He buys some penicillin and gives himself, not enough to kill

the streptococci but enough to educate them to resist penicillin. He then infects his wife. Mrs. X

gets pneumonia and is treated with penicillin. As the streptococci are now resistant to penicillin the

treatment fails. Mrs. X dies.” Fleming, Nobel Lecture, December 11, 1945.

1



The O’Neill (2016) report makes several recommendations to tackle the rise

of AMR. For instance, it recommends taxing pharmaceutical firms that man-

ufacture these drugs. However, firms that invest in research and develop-

ment (R&D) beneficial for controlling AMR can deduct their investments from

the imposed tax. It also recommends demand management via testing for

pathogens before prescribing, and where appropriate, using narrow-spectrum

drugs. If there is a cost to finding which narrow-spectrum antibiotic is ap-

propriate, broad-spectrum antibiotics will be overprescribed relative to the

narrow-spectrum antibiotics and contribute to AMR. In the same vein, a cost-

side intervention could tax broad-spectrum drugs as well as aim to reduce

testing time and costs. This intervention could potentially help manage the

demand for antibiotics by adjusting the relative pricing of these drugs and

encouraging the use of narrow-spectrum agents.

In this paper, we test the feasibility of such cost-side interventions to affect

demand. We focus on human use of antibiotics as it has been identified as the

primary driver of antibiotic resistance in Adda (2020). Giubilini (2019) makes

a case for antibiotic tax for human use for mild and self-limiting cases, and

Ribers and Ullrich (2023) make a similar suggestion when evidencing the large

heterogeneity in physicians’ prescribing decisions for antibiotics. To that end,

we use sales data from 2003 to 2013 from the UK and estimate demand via

discrete choice models. We combine demand estimation with Nash-Bertrand

pricing behavior and jointly estimate the supply-side equations where multi-

product firms maximize their profits in an oligopolistic setting. We then sim-

ulate and compute the effect of various tax-based interventions where the tax

is imposed on physician practices. Specifically, we inquire about the extent to

which a tax on broad-spectrum antibiotics would shift the demand from broad-

to narrow-spectrum antibiotics and the associated societal costs in terms of

short-term reductions in consumer and producer surplus.

There is a large theoretical literature on the role of taxes in dealing with the

high use of antibiotics as well as empirical studies focusing on the rise in pre-

scriptions due to competitive pressures and/or financial incentives linked to

physicians. We contribute to this literature by providing computation of coun-

terfactual price equilibria within oligopoly markets under alternative taxes.

This helps us evaluate the effects of different cost-saving measures in address-

ing the rising use of antibiotics and the problem of AMR.

2



We find that at the individual drug level, demand is elastic.2 The share-

weighted mean own-elasticity is −2.58 with a standard deviation of 1.61 and

the unweighted mean is −3.73. The weighted mean cross-price elasticity is

0.10 with a standard deviation of 0.17 and the unweighted mean is 0.02 and

a max of 4.08. In general, drugs within the same spectrum class are more

easily substituted than those across different spectrum classes. A 1% increase

in the price of a broad-spectrum drug leads to a 0.14% increase in demand

for another broad-spectrum drug, while it only leads to a 0.08% increase in

demand for a narrow-spectrum drug. Our estimates also suggest that there

is significant heterogeneity in individual taste parameters for the associated

spectrum of a drug and switching patients from broad- to narrow-spectrum

would have implications on short-run consumer welfare over and above any

price effects.

We estimate the effect of ad valorem and unit taxes for all and by sub-group

of drugs. In the former case, we impose a 5 or 20% tax either on (i) all

antibiotics, (ii) on all broad-spectrum antibiotics, or (iii) a subset of broad-

spectrum drugs that have been identified in the public health literature as

contributing the most to the AMR problem. These alternative taxes generate

a range of effects on consumption. For instance, a 20% tax on all antibiotics

reduces the overall antibiotics consumption by 12.71% while the consumption

2Two other papers also estimate demand for antibiotics and report elasticities, though those are

for groups of drugs rather than for individual brands as in our case. In the context of how new

drugs impact the calculations for a price index, Ellison et al. (1997) use sales data from the US for

the cephalosporins which belong to the class of antibiotics, and estimate an AIDS demand model.

They report group-wide elasticities by brand and generic groups, where each group itself consists of

individual drugs aggregated across different manufacturers and alternative forms of the drug, but

all within the same molecule. The own-elasticities range from −4.34 to +1.06. Alternatively, in the

context of the impact of TRIPS on welfare, Chaudhuri et al. (2006) use data on quinolones, which

too is a class of antibiotics, from India and also estimate AIDS demand by product groups. Their

focus is on foreign versus domestic manufacturers and so they also provide group-wide elasticities

by molecule and domestic and foreign status of manufacturers, where individual brands and forms

are grouped to that level. Most of the own-price elasticities are lower than −2 but range from −5.94

to −0.08. While these estimates are at the group level, there are examples of estimates at the brand

level as well, albeit not for antibiotics, which are more in line with our estimates. For instance, Duso

et al. (2014) estimate nested logit models at the brand level for anti-diabetic drugs from Germany,

and reports a range from −37.349 to −0.991 with a mean value of −6.65, while Björnerstedt and

Verboven (2016) estimates nested-logit and random coefficients models using brand-level data from

the Swedish analgesics market and report own-elasticities in the range of −15.45 to −5.16 for the

nested logit and −6.5 to −1.99 from the random coefficients models.
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of the latter sub-group of broad-spectrum drugs is reduced by 29.35%. By

contrast, imposing a similar 20% tax on just the sub-group of broad-spectrum

with the highest AMR contribution reduces the consumption for this group by

37.73% with an overall reduction of only 2.38% as most patients are switched

to narrow-spectrum and other broad-spectrum antibiotics.

For the 20% tax, the yearly consumer welfare loss is £322 per 1,000 inhabitants

if it is levied on all antibiotics. If the same tax is imposed on just the sub-

group of antibiotics identified above, the loss in consumer surplus is £78.2 per

1,000 inhabitants. Multiplied by the average UK population of 61.8 million

over the same period, this translates to £19.9m and £4.8m per year. We also

compare the effectiveness of the ad valorem tax to flat unit tax on a sub-group

of drugs where the unit tax is bench-marked to the estimated marginal cost

differential between broad- and narrow-spectrum drugs. Here we find that the

total welfare cost if such a tax is imposed on the sub-group of broad-spectrum

drugs is £252.5 per 1,000 inhabitants, i.e., £15.6m in total per year, while the

reduction in their quantity is 69.60%.

Our total welfare calculations account for the change in consumer surplus, firm

profit, tax revenue, and additional testing costs. However, we do not account

for any long-term benefits that accrue to consumers due to a reduction in

AMR, which would further reduce long-term loss in consumer surplus. Thus

our estimates should be interpreted as an upper bound on the total cost of

such a supply-side intervention. Considering the societal cost of AMR, which

includes 10 million lives lost annually and a cumulative $100 trillion in lost

output by 2050 cited earlier, this may not be a high price to pay for reducing

AMR. Thus, the cost-side intervention as suggested in O’Neill (2016) seems

well worth it.

The rest of the paper is structured as follows. The next section describes how

our paper is related to prior literature. The section following that describes the

antibiotics UK market and the data. Section four outlines the model as well

as discusses estimation issues. Section five has all the main results including

the regression coefficients, substitution patterns, and simulations. The last

section concludes.
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2. Related Literature on AMR

There is a small but growing empirical literature in economics related to the

use of antibiotics. In Denmark, which shares similarities with the UK health

care system, Huang and Ullrich (2024) find that physicians’ preferences play a

substantial role in driving the use of second-line broad-spectrum antibiotics. A

higher prescription rate is linked to physician age, while it is negatively associ-

ated with the availability of diagnostic tools and the staff size of clinics. Ribers

and Ullrich (2023) provide further evidence that both the variation in diag-

nostic information and physicians’ awareness of the social cost of increasing

antibiotic resistance are associated with antibiotic overuse. This paper finds

that improving diagnostic information is important to help avoid negative

health consequences, but it also supports the motivation for an antibiotic tax.

In the context of Taiwan health care, Bennett et al. (2015) find that antibiotic

prescriptions increase with the level of competition among health providers,

largely due to pressure from patients, but antibiotic prescriptions decreased

when physician’s cost of prescribing drugs increased due to a policy reform

targeting antibiotic consumption. On the other hand, for a field experiment

conducted in China, Currie et al. (2011) and Currie et al. (2014) find that mis-

use of antibiotics is not driven by pressure from patients, but rather by financial

incentives linked to prescribing drugs. Similarly, others have investigated the

link between appropriate antibiotic prescription and physician incentives. For

instance, Elleg̊ard et al. (2018) report that relative to broad-spectrum, the

share of narrow-spectrum prescriptions increased significantly among children

diagnosed with respiratory tract infection after physicians were exposed to

pay-for-performance schemes tied to the use of narrow-spectrum antibiotics.

Others have also reported positive results relating to pay-for-performance and

more appropriate antibiotic prescriptions (Mullen et al., 2010, Yip et al., 2014,

Gong et al., 2016).

By comparison to the above empirical literature, there is a much more substan-

tial but mostly theoretical literature that discusses the role of taxes, subsidies,

tradable permits, and optimal patent designs in addressing problems associ-

ated with AMR. Several studies highlight differences between optimal levels

of antibiotic use chosen by a social planner versus those that may emerge in

different settings, including, but not limited to, single versus multiple periods,
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farm versus human use, choice of drugs within a hospital or community set-

tings, global versus single country, competitiveness of the health care system,

and when antibiotics may be renewable or a non-renewable resource (Tisdell,

1982, Brown and Layton, 1996, Laxminarayan and Brown, 2001, Rudholm,

2002, Laxminarayan and Weitzman, 2002, Herrmann and Gaudet, 2009, Her-

rmann and Nkuiya, 2017, Albert, 2021). For instance, since antibiotic use

lowers the burden of treatable infections but also increases the resistance to

antibiotics, Albert (2021) highlights the tradeoffs in incentives among fee-for-

service healthcare providers among different market structures. Relative to

a social planner, the providers over-prescribe in a competitive system and

under-prescribe in a monopoly as they earn a profit on two margins due to an

increased efficacy over the long run, but also by maintaining a higher infection

rate in the population. He finds a Goldilocks zone in the oligopolistic markets

and suggests subsidies at the low level of competition and a tax when the

market is more competitive.

In parallel, others have considered the role of various instruments into account

for the negative externality such as direct regulation, user charges, physician

charges, and tradable permits when physicians are subject to defined drug bud-

gets, as in the case of the UK (Coast et al., 1998, Smith and Coast, 1998, Smith

et al., 2006, Herrmann and Nkuiya, 2017). For instance, Rudholm (2002) con-

siders a Pigouvian tax to eliminate the departure of market equilibrium from

the global optimal resource allocation problem, while in a simulation-based

study to control resistance to anti-malaria treatments, Laxminarayan et al.

(2006) study the impact of global subsidies for artemisinin-based combination

therapy (ACT) over artemisinin monotherapy (AMT), and find that even a

partial subsidy can have a significant impact on delaying the emergence of

artemisinin resistance. There is a third strand of literature that highlights the

role of markets and optimal patent designs to address problems associated with

AMR. We do not review that here but refer the interested reader to Gallini

(2017) for a review of that literature.

3. Background, Data, and the sample

3.1. Background. Antibiotics are prescription-only medicines in the UK, and

about 74% are prescribed via general practitioners (GPs), followed by 18% use

in hospitals (PHE, 2015). With some exceptions for certain groups, after a
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physician issues a prescription, patients can have it filled at a pharmacy and

pay a fixed co-pay, regardless of the drug’s actual cost. The National Health

System (NHS) will reimburse pharmacies based on a set tariff as long as the

drug has been approved for reimbursement. Rules for setting the tariffs are

different for branded versus generic/unbranded drugs. For the latter, NHS

reimbursement is based on the weighted average of wholesale prices supplied

by main generic manufacturers or wholesalers. For branded drugs, the UK

does not directly control prices but instead regulates profit on sales of drugs

dispensed to NHS-covered patients under its Pharmaceutical Price Regulation

Scheme (PPRS), and the terms are updated roughly every five years. Gen-

erally, manufacturers can set the price of new drugs without pre-approval by

the Department of Health (DH), but any increases over the years need to be

justified and approved by the DH (see Habl et al., 2006).

Prior literature shows that GPs are aware of prices and that they may be

sensitive to them. See for instance, NAO (2007), Scoggins et al. (2006), Carthy

et al. (2000) for the case of the UK, and Hauschultz and Munk-Nielsen (2020)

for a comparable healthcare system in Denmark. In the UK this is enforced by

NHS’s budgeting strategy which has been in place since April 1999 and aims to

achieve cost savings and efficiency where the NHS sets an annual prescribing

budget for each Primary Care Trust (PCT) at the beginning of a financial

year (Jacobzone, 2000). PCTs in turn set individual prescribing budgets for

each contracted GP in their group who are then responsible for keeping their

prescription payment within the budget.3 PCTs track GPs’ spending and

3See for instance Majeed (2000), which is an editorial in BMJ, a journal widely read by prac-

titioners, explaining the relationship between a GP’s prescribing budget and that of the PCT.

PCTs have since been replaced by Clinical Commissioning Groups (CCGs) but the prescribing

budgets exist even now. See also the NHS’s Business Services Authority webpage about Pre-

scribing Budgets at https://www.nhsbsa.nhs.uk/sicbls-icbs-and-other-providers/organisation-and-

prescriber-changes/prescribing-budgets which states, “CCGs are responsible for setting a prescrib-

ing budget against each GP practice within their organisation” (Last accessed Aug/20/2023).

Similarly, the Vale of York’s CCG states on its website, “Groups of GPs taking part in this

work are asked to manage the prescribing budget in line with the York and Scarborough for-

mulary, and by using cost-effective medicines and prescribing in line with local policies” (see

https://www.valeofyorkccg.nhs.uk/gps-take-over-budgets-to-help-manage-scarce-resources/. (Last

accessed Aug/20/2023.) On the other hand, the cost of pathology services is not integrated and

could be covered by doctor’s offices, laboratory services, or outpatient services in hospitals. Only

if the phlebotomy is done in a primary care setting, the cost would fall on the provider (see p.28

DH, 2006).
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report it to the NHS Prescription Services. Some PCTs also reward GPs who

underspend their budget to achieve cost-saving goals (Ashworth et al., 2004).

Thus, drug prices may affect the GPs’ decision.

3.2. Data Source. Our data comes from the British Pharmaceutical Index

(BPI) data series by IMS Health Inc, which provides monthly sales informa-

tion for pharmacies in the UK between 2003 and 2013. It covers all antibiotic

prescriptions from general practices and outpatient hospital use. Residual

consumption in hospital inpatient use, dental practices, and other community

settings are not included. A drug is defined as a unique combination of man-

ufacturer, molecule, product name, and formulation, and we aggregate over

different pack sizes and strengths so that drugs in different strengths/sizes

are not counted as different products. A limitation of our data is that generic

manufacturers are not separately identified in the IMS database. Thus, if mul-

tiple manufacturers are producing a drug by a non-proprietary name within the

same molecule and formulation, and in the same anatomical therapeutic chem-

ical (ATC) class, then they are lumped into one product. We also standardize

quantity as daily defined dosage (DDD), which is an assumed maintenance

dose per day for a specific molecule-route-of-administration combination used

for its main indication among adults.4 Prices are computed as sales divided

by quantity in DDD units and revenues and prices are deflated using UK CPI

and are reported in 2003 real terms.

We separate the sales into two main broad- and narrow-spectrum groups

based on the classification of molecules given in PHE (2014), EARS (2015), or

Madaras-Kelly et al. (2014, 2015). We further subdivide the broad-spectrum

into two subgroups, henceforth labeled as broad-A and broad-B. The latter

distinction is based on a Department of Health’s AMR strategy document

that highlights a subset of broad-spectrum drugs that should be targeted to

reduce their consumption to less than the median number of scripts relative

to the total number of antibiotic scripts per year (see DH, 2016, Annex E).

Accordingly, we label these targeted classes, i.e., cephalosporins (antibiotics

with molecules cefalexin and cefixime), quinolones (molecules ciprofloxacin,

levofloxacin, and ofloxacin), and co-amoxiclav as broad-A to distinguish them

4Defined daily doses (DDD) adjustment is a measurement that allows for comparability of quan-

tity across drugs and is maintained by the World Health Organization (WHO). Note also that our

data is at ATC4 level, and that combined with molecule is effectively ATC5.
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from all other broad-spectrum antibiotics, broad-B. Similarly, (PHE, 2015)

states that broad-spectrum drugs are more likely to drive antibiotic resistance

than narrow-spectrum antibiotics, but their list of broad-spectrum drugs just

consists of what we refer to as the broad-A group.5

The total market for all antibiotics in our data is £160m per year and in real

terms has decreased from £208.6m in 2004 to £126.7m in 2012. This drop

is driven primarily by a decrease in average real prices, which declined from

£0.65 to £0.29 per DDD over the same period. By contrast, sales by volume

have increased over time, both in absolute units as well as per capita. For

example, in 2012, approximately 60 million packs of antibiotics were dispensed,

compared to 44.5 million packs in 2004. This is equivalent to 0.44 billion and

0.32 billion DDD units of active ingredients, respectively. This increase is only

partially explained by the rise in the UK population from 60m to 64m over

this period as the average DDD unit of antibiotic consumption per resident

per year also increased from 5.36 to 6.94 between 2004 and 2012.

Figure 1. Antibiotic consumption and average prices in the UK

Sales by volume and prices per DDD are given in Figure 1. Two things stand

out. First, the largest drop in prices was for broad-A drugs and came about in

2004 at the time of the new PPRS scheme and yet we do not see a correspond-

ing increase in the quantity at that time. Second, antibiotic consumption

5Table 0.2 in PHE (2015) defines broad-spectrum antibiotics as (i) penicillins and enzyme in-

hibitors, which are co-amoxiclavs, (ii) cephalosporins, (iii) quinolones and (iv) carbapenems. Of

these, carbapenems is a parenteral drug and we do not include it in our analysis since we restrict

the analysis to eternal drugs.
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fluctuates seasonally, with peaks in winter and dips in summer. The sea-

sonality is predominantly influenced by the consumption of broad-spectrum

antibiotics, particularly penicillins, and macrolides. This pattern is likely at-

tributed to the increase in respiratory tract infections and virus-induced sec-

ondary bacterial infections during colder seasons (Suda et al., 2014, Hendaus

et al., 2015). Figure A-1 in Appendix A plots the average relative shares of

broad- vs narrow-spectrum drugs by month and shows that relative shares of

the broad-spectrum also increase in the winter months.

Table 1. Relative shares and average prices by molecule

2004 2008 2012
ATC Spec- DDD # Share Price Share Price Share Price
J01 trum (g/d) Drug (%) (£) (%) (£) (%) (£)

Broad-spectrum 58.57 0.56 60.12 0.25 59.07 0.15

Broad-A 13.46 1.58 13.77 0.56 10.88 0.36

Co-amoxiclav C 29.50 1.0 11 5.59 1.66 6.25 0.69 6.41 0.38
Cefalexin D 19.25 2.0 15 4.03 0.69 3.73 0.46 1.80 0.29
Cefixime D 19.50 0.4 2 0.06 3.64 0.04 3.07 0.02 2.34
Ciprofloxacin G 39.75 1.0 5 3.20 2.39 3.34 0.30 2.36 0.24
Levofloxacin G 39.75 0.5 2 0.20 2.78 0.16 2.11 0.07 1.46
Ofloxacin G 39.75 0.4 3 0.38 1.98 0.26 0.90 0.22 1.20

Broad-B 45.11 0.26 46.35 0.16 48.19 0.10

Doxycycline A 38.75 0.1 7 8.75 0.30 9.45 0.11 12.26 0.07
Tetracycline A 38.75 1.0 1 0.78 0.14 0.58 1.12 0.33 0.99
Amoxicillin C 13.50 1.0 13 35.55 0.26 36.3 0.15 35.55 0.10
Pivmecillinam H 19.50 0.6 1 0.02 1.31 0.02 1.07 0.05 0.83
Neomycin K 19.50 1.0 1 0.02 0.22

Narrow-spectrum 41.43 0.70 39.88 0.53 40.93 0.42

Trimethoprim E 4.25 0.4 5 8.78 0.12 8.08 0.08 7.52 0.10
Azithromycin F 12.25 0.3 10 0.49 2.62 1.00 1.98 1.84 1.18
Clarithromycin F 12.25 0.5 10 4.23 1.61 5.65 0.63 9.50 0.34
Clindamycin F 10.75 1.2 3 0.16 4.4 0.2 8.22 0.21 2.01
Erythromycin F 12.25 1.0 22 14.85 0.58 12.36 0.42 8.64 0.27
Flucloxacillin H 4.25 2.0 8 7.45 0.96 7.52 0.72 8.38 0.62
Penicillin V H 13.50 2.0 12 5.47 0.56 5.08 0.53 4.84 0.58

Combined Inside (18) 39.66 0.62 46.56 0.36 53.76 0.26

Shares are relative to the total quantity (in DDD) of all the 1st/2nd line molecules
(inside option). Prices are weighted averages per DDD. “Combined Inside” refers
to the share of these drugs relative to the potential size of the market. Penicillin V
has the same spectrum score as amoxicillin but is typically classified as a narrow-
spectrum antibiotic.
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3.3. Sample. Enteral/oral drugs cover over 90% of the market in value, con-

sisting of 44 different molecules. Parenteral antibiotics, i.e., those injected or

infused, are used in more limited and serious situations. Of the oral drugs,

Public Health England (PHE, 2014) recommends 18 different molecules as

first- and second-line drugs to treat common primary community-acquired

diseases, while others are to be used more sparingly. Table A-1 in Appendix A

gives a mapping between these 18 molecules included in our analysis and if

they are first- or second-line treatments for specific primary indications such as

Urinary Tract Infection (UTI), Gastro-Intestinal Tract Infection (GITI), etc.

Hence, we model the demand for oral drugs that contain these 18 molecules as

the main active substances. The remaining 26 molecules, approximately 10%

of the potential market, are included in the outside option in our econometric

specification. The final data set consists of 11,417 observations of sales of 131

distinct products over 120 months and spanning across 18 molecules and 14

different formulations such as tablets, capsules, etc. Overall, the number of

products reduced slightly over the years.

Relative shares and average prices of antibiotic molecules are summarized in

Table 1. The top-selling broad-spectrum antibiotic is amoxicillin, whose shares

stayed stable at around 36% over the years while that of co-amoxiclav and

doxycycline increased slightly over time. Other broad-spectrum drugs listed

in the table lost market shares. There was also a movement of relative shares

within the narrow-spectrum drugs. For instance, erythromycin-based products

lost shares at the expense of clarithromycin. Remarkably, however, the broad-

to narrow-spectrum molecule share stayed relatively constant at 60/40 while

the relative prices changed significantly. Specifically, the ratio of the average

price of narrow- to broad-spectrum increased from 1.25 (= .70/.56) in 2004

to 2.80 (= .42/.15) in 2012. Overall, average prices declined from 0.62/DDD

in 2004 to 0.26/DDD as shown in the last row of the table, while the total

quantity consumed increased: the last row also shows the share of all drugs

for these 18 molecules relative to the potential size of the market, which we

will describe later, increased from 39.7% to 53.8%. Further, Table 1 also lists

the ATC3 class of the molecule, the spectrum score of a drug, the conversion

factor between grams and DDD, and importantly, the number of individual

drugs by molecule. This additional information is used for both, informing
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our empirical specification, as well as for interpreting some of the results that

follow.

4. Empirical Specification

In this section, we first briefly describe our demand and supply-side equations,

and then focus on issues related to identification and estimation.

4.1. Demand. We consider t = 1, . . . , T markets, each having a mass Mt

of patients that have contracted a bacterial infection in the period. In our

model, the decision-maker is a physician and patient hybrid who cares about

the patient’s well-being and is sensitive to drug prices, but not to the price

of a test as that may not fall on the physician’s budget.6 While there is no

direct financial cost of the test on either the patient or the physician, there

may be some disutility with prescribing the test. To that end, we introduce a

random coefficient for the spectrum variable to capture the inherent variabil-

ity in disutility around the mean spectrum value. This modeling framework

recognizes the possibility that certain consumers may experience disutility as-

sociated with the test. The decision-maker i faces the choice of j = 1, . . . , Jt+1

drugs belonging to Gt groups of antibiotics, where the groups are defined at

the third level of ATC (ATC3 hereafter) and the +1 denotes the outside op-

tion of no antibiotic treatment.7 Thus the decision-maker i in market t gets

indirect utility uijt from choosing drug j given by

uijt = xjtβi + ξjt + ζigt + (1− ρ)εijt. (1)

In the equation above, xjt is a (1 × k) vector of observed drug characteris-

tics, including price, count of pack varieties, and product dummies. Some

drug characteristics are invariant over markets. For instance, formulation,

branded/generic type, age of the molecule, or spectrum value, and hence they

are selectively included in the non-linear part of the specification via the ran-

dom coefficients which are described shortly. This vector also includes the

mean temperature during the month, monthly dummies for seasonality, and a

linear time trend. In some specifications, we use annual dummies instead of a

6A typical patient pays a flat co-pay for a prescription but the cost of the drug falls on GP

practice and hence they would be sensitive to its price as discussed earlier in Section 3.
7The third level of ATC classification corresponds to pharmacological similarities and groups

the 18 molecules in our data into eight nests.
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linear time trend. The scalar error term ξjt captures the drug characteristics

that are unobserved by the econometrician, such as the availability of the drug

in the local dispensary, the knowledge of the physician about the effectiveness

of the drug to treat the infection, localized detailing to the physician about

the specific brand, etc. The term ζigt is common to all the drugs that are part

of the same nest (ATC3 group) in the market and is a random variable with a

probability distribution function that depends on the within-group correlation

parameter ρ, with 0 ≤ ρ < 1. The idiosyncratic error term εijt is assumed

to be identically and independently distributed extreme value, and so is the

composite term ζigt + (1− ρ)εijt (see Cardell, 1997).

The βi are vectors of k × 1 random coefficients and can be expressed as the

sum of means, β, and dispersion around these means. These dispersions are

represented by k×1 unobservable random variables of individual heterogeneity

vi, drawn from a multivariate standard normal, and so βi = β + Σvi will be

a vector sampled from a multivariate normal distribution. The matrix Σ has

a vector of standard deviations σ along its diagonal and takes a value zero

outside of the diagonal. In our empirical analysis, the vector of standard

deviations sigma will be allowed to differ from zero only for the constant, the

price, the number of packages, and the spectrum, i.e., we will account for four

random coefficients that enter the non-linear part of the model.8

8Since physician budgets are fixed, there is a potential concern that physicians’ prescribing may

change over the year as the budget constraint may start to bind. Specifically, budgets are annual

and more likely to bind near the end of the financial year, GPs may start switching to cheaper drugs

at that time. For instance, our data shows that broad-spectrum drugs are on average cheaper than

narrow-spectrum drugs, and this in turn could create seasonality in the relative shares of broad- vs.

narrow-spectrum drugs. First, to check if this is a major issue in the data, in Figure A-1 we plot

the relative shares by month which are averaged over all the years in the data. While there is a

clear pattern of seasonality, the peak in the broad-spectrum shares does not coincide with the end

of the NHS fiscal year which is 31st March for years of our data. The peak is in fact in the winter

months. Second, such a seasonality in relative shares could also arise due to the seasonal nature of

underlying health issues if certain diseases are more likely in some seasons than others and require

specific types of antibiotics. Thus, even if we were to include seasonal dummies, a variable for the

spectrum value of a drug, and their interactions in the demand model, the dynamic aspect of GP’s

annually binding budget and its impact on demand and hence on the substitution patterns would

remain unidentified. Thus, to be parsimonious we do not include these additional interaction terms

but note that a random coefficient for prices in the model could alleviate this concern, if it exists,

to some extent.
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Equation (1) and βi = β+Σvi characterize the random coefficients nested logit

(RCNL) model described by Verboven and Grigolon (2014). The decision-

maker of the patient i in market t chooses the product j that gives the highest

utility. In the case of the RCNL model, the conditional probability of that

choice is,

φijt(xt, ξt, vi, θ1) =
exp ((xjtβi + ξjt) / (1− ρ))

exp (Iigt/ (1− ρ))

exp (Iigt)

exp (Iit)
, (2)

where θ1 = {β, σ, ρ}. McFadden’s (1980) inclusive values Iigt and Iit used in

equation (2) are the natural log sums:

Iigt = (1− ρ) ln

Jgt∑
l=1

exp ((xltβi + ξlt) / (1− ρ)) ,

Iit = ln

(
1 +

Gt∑
g=1

exp (Iigt)

)
. (3)

The market share of the drug j in market t, sjt, can be obtained by integrating

equation (2) with respect to the distribution of the vector of random variables

vi, whose solution can be approximated by Monte Carlo simulations (see Nevo,

2001, Berry et al., 1995) with the adjustment for the nested structure explained

in Verboven and Grigolon (2014).

One could also potentially use the UK income distribution and interact it with

the price coefficient to better understand the distributional implication of the

tax policies we later analyze in the counterfactual exercises. For instance, one

could proceed as in Nevo (2001) if we had data at sub-national markets and

we took income distribution drawn from different geographic markets to get

better identification. Unfortunately, our data is at the national level and hence

that is not possible. Alternatively, one could proceed as in Berry et al. (1995),

i.e., take a single draw of income from the national market. However, all

individuals pay the same co-pay regardless of income (with some exceptions)

and it is the GP practices drug budgets that are more relevant. These budgets

are (1) not financed by local council taxes in the UK but rather at the national

level and hence are not based on local incomes but rather on catchment and

population size and (2) not easy to track down by local areas even if we had

the data at the sub-national level. Thus we do not pursue the distributional

effects in this paper.
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4.2. Supply Side. Drugs are assumed to have asymmetric constant marginal

cost cjt. Each firm f = 1, · · · , F controls the set of prices (pft) that maximizes

its profit, given the prices of all drugs produced by the other firms p−ft. Thus,

the firm maximizes

max
pft

Πft (pft, p−ft) = max
pft

∑
l∈Jft

(plt − clt) qlt (pt), (4)

where Jft is the set of products produced by firm f in market t. Since the

total unit sales can be expressed as qjt = sjtMt, we can derive the first-order

conditions in each market t, leading to a system of Jt equations per market as

pt = ct + ∆−1
t st︸ ︷︷ ︸
mt

, (5)

where mt is the vector of mark-ups and ∆t is the Jacobian matrix whose

element j, k equals to −∂skt/∂pjt if j and k belong to the same firm and zero

otherwise.

We rewrite the pricing equation (5) in econometric form and it is estimated

jointly with the system of demand functions obtained by numerically deriving

the market shares (sjt) from equation (2) as

ln(pjt −∆−1
jt sjt︸ ︷︷ ︸
mjt

) = ln(cjt) ≡ wjtγ + ωjt. (6)

In the equation above, ωjt is the error term, γ is the vector of coefficients

and wjt is the vector of observable product characteristics.9 These include the

number of packages, a dummy for generic drug production, and formulation

dummies for liquid and capsule formulation where the baseline is tablets. We

include these variables in the cost side because, for instance, drugs with a

higher pack variety may have different unit marketing costs. We also include in

9Equation (6) is in log form but since marginal costs can be negative when markup is greater

than price, we used the transformation ln(1+p−m) = ln(1+c) so as not to lose these observations.

In our case, since the DDD prices in this market are often significantly below one pound, it is

common to encounter small values of (p−m) so that 1 +p−m is positive and we can take the logs.

This transformation does not cause a problem as ln(1+p−m) ≈ (p−m) for small values of (p−m)

as in our case. Note that negative marginal costs are still possible. In the econometric script, we

address instances of negative marginal costs by applying a slight penalty to the GMM function.

This precaution ensures that the parameters steer clear of excessive occurrences of negative marginal

costs, which would not be theoretically justifiable.
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wjt other cost shifters such as the price of diesel as it may affect transportation

costs, the exchange rate to account for the cost of imported material, as well

as a time trend.

4.3. Potential market and outside good. We rely on the WHO’s report on

antibiotic consumption in the Europe region to define the potential antibiotic

market for the UK (WHO, 2018). The report suggests that the median con-

sumption of antibiotics was 17.9 DDD per 1000 inhabitants per day in 2015,

ranging from 7.7 DDD to 38.2 DDD. Most European countries had antibiotic

consumption of less than 30 DDD per 1000 inhabitants per day, and the UK’s

antibiotic consumption was around 20 DDD. Based on this, we define the po-

tential UK market as 30 DDD per 1000 inhabitants per day, which is roughly

twice the EU median and 1.5 times the UK antibiotic consumption in 2015.

Therefore, the total potential UK market in our model is 30 DDD × 30 days

(in a month) × UK population in thousands in a given year. Accordingly, the

share of each product is relative to this potential market, so sjt = qjt/Mt, and

the share of the outside good is then s0t = 1−
∑

j sjt, where qjt is the quantity

of drug j measured in DDD units. We provide robustness checks around this

measure of the potential market.

4.4. Descriptive Statistics. Table 2 provides summary statistics of all the

relevant variables used in the model. The mean share of a drug is 0.48% but

varies from almost 0% to 26%. The mean price is £1.16 per DDD, also with

significant variation. The outside option varies from 32% to 67% with a mean

value of 54%. The dependent variable has a mean of −7.13 and that of the

logarithm of within-nest market shares is −4.92. Pack variety ranges from 1 to

10 with a mean of 2.68, and the mean spectrum score is 18.3 with a minimum

of 4.25 and a maximum value of 39.75. Note that the spectrum does not vary

by individual drugs but rather by molecules. The majority of observations,

around 57%, are on generics. The mean age of a molecule, computed as the

difference between 2003 and the earliest launch year of the molecule anywhere

in the world, is 39.58 years. About one-third of the sample consists of drugs

in liquid form while 66% are tablets or capsules.

Descriptive statistics for market-level variables, such as time and temperature

and number of products per market are also given in Table 2, along with cost

side shifters. We omit descriptive statistics for monthly or annual dummies.
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Due to entry and exit, there is significant variation in the number of drugs in

a market. Accordingly, we categorize the markets as high, medium, and low

based on the 25th and 75th percentile values of the total number of products

in a market. The mean values of these dummy variables are 0.31, 0.42, and

0.27 respectively, and are labeled as labeled as x10t, x11t and x12t in the table.

We discuss them further in the context of identification in the next subsection.

Table 2. Summary statistics and between and within variation of variables.

Variable Description Mean sd2
O sd2

B sd2
W Min Max

sjt Share of drug j (%) 0.48 1.67 0.08 1.66 0.00† 25.7
s0t Share of outside option (%) 54.0 6.95 7.01 0 31.80 67.0

Endogenous variables

ln(sjt/s0t) Dependent variable -7.13 2.47 2.35 1.10 -17.2 -0.21
ln(s(j∈g)t) Within nest ln(share) -4.92 2.55 2.50 1.09 -16.2 0.00
pjt Price (in £) per DDD 1.16 1.23 0.99 0.62 0.04 11.5

Demand shifters

x1jt Spectrum-score / 10 1.83 1.07 1.04 0 0.43 3.98
x2jt Pack varieties 2.68 1.72 1.50 0.65 1 10
x3jt Dummy: generics 0.57 0.50 0.50 0 0 1
x4jt Dummy: tablet 0.43 0.50 0.50 0 0 1
x5jt Dummy: capsule 0.23 0.42 0.42 0 0 1
x6jt Dummy: oral liquid 0.34 0.47 0.47 0 0 1
x7jt Age of molecule / 10 3.96 1.22 1.22 0 1.5 5.8
x8jt Temperature 10.2 4.59 0.63 4.58 -0.27 19.3
x9jt Time trend / 10 5.97 3.42 2.20 3.14 0.1 12
x10t Dummy: high #drugs 0.31 0.46 0.11 0.46 0 1
x11t Dummy: medium #drugs 0.42 0.49 0.16 0.48 0 1
x12t Dummy: low #drugs 0.27 0.45 0.19 0.43 0 1

Cost shifters

z1t Price of diesel (log) 0.56 0.15 0.09 0.14 0.34 0.81
z2t Exchange rate (log) 1.58 0.39 1.17 1.96 2.69 10.3
z3jt #other drugs by the same firm 4.06 5.55 5.31 0.96 0 19
z4jt #other drugs by the same firm 1.35 1.29 1.25 0.40 0 5

& within the same nest
z5jt #packs over other products by 3.54 3.67 3.54 1.22 0 17

the same firm and in the same nest
z6jt #packs by competitors in the 45.3 23.2 23.0 4.68 0 92

same nest as reference drug

Total 11,417 obs of 131 distinct products over 120 months spanning 18 molecules
and 14 formulations. †The minimum is small but not zero.
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4.5. Identification. The mean price coefficient can be identified via the ex-

ogenous cost shifters on the supply side. However, these are not sufficient to

identify other coefficients. The random coefficients, with no observable indi-

vidual demographics, can be identified with repeated cross-sections if there

is sufficient variation in product characteristics or in the number of products

over markets (Ackerberg and Rysman, 2005).

Table 2 shows variations in drug characteristics between and within drugs, i.e.

cross-sectionally across drugs as well as over time. For example, the number

of packs has an overall sample variance of 1.72, which is the result of both

between and within dispersion, 1.50 and 0.65, respectively. Most of the drug

characteristics vary more across drugs than over time. However, the exchange

rate, the price of diesel, and the mean monthly UK temperature only vary over

time.10 The dummy variable generic, the variable spectrum, and the dummies

of the formulation are time-invariant, and therefore, the between variation is

merely driven by the entry and exit of drugs.

Table 3 shows the variation in the number of drugs due to entry and exit over

time. Among the 131 drugs identified in the data, an average market has

95 of them, while an average drug is found in 87 out of 120 markets. There

are instances of drugs that are available in a much lower number of markets.

For example, one drug is observed in only five markets. These changes in the

number of products produce variations in the prices and the number of pack

varieties which are essential to identifying their coefficients in our analysis.

However, Ackerberg and Rysman (2005) demonstrate that variations in the

number of products can result in inaccurate price elasticities. This issue arises

from the presence of symmetric unobserved product differentiation (SUPD)

in logit errors. Logit models inherently assume that the introduction of an

additional product merely contributes one dimension to the SUPD space with

minimal congestion effects. Consequently, the price coefficient may be iden-

tified through changes in the number of products, even when prices remain

consistent. This susceptibility of SUPD can potentially lead to unreliable sub-

stitution patterns. In response to this critique, the authors recommend an

10The exchange rate is a weighted average of rates between the UK and the top five coun-

tries/regions from where the UK imports antibiotics or APIs for antibiotics. These are China,

India, Singapore, the US, and the EU, and the weights are based on import shares of antibiotics.
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approach that involves incorporating additional functions to address the influ-

ence of the number of products in the market to mitigate the problem. Thus

we adopt their proposed solution by categorizing the number of products into

three distinct groups: ‘small’, ‘medium’, and ‘large’ which vary over time.

Table 3. Entry and exit of drugs

Variable Obs Mean Std. Dev. Min Max

Number of drugs in a market 120 95.14 4.17 88 104
Number of markets a drug is on sale 131 87.15 37.82 5 120

Additionally, the ρ coefficient in the nested logit versions also needs to be iden-

tified. If patients switch drugs within the same ATC3 class across markets,

their behaviour can produce changes in within nest market shares. Variation

in the within nest share (ln s(j∈g)t) can allow for the identification of this pa-

rameter. However, this may be correlated with the error term as patients may

choose to switch drugs within an ATC3 class in response to shocks on unob-

served drug characteristics. When an unobserved drug characteristic such as

quality is high, the market share of that drug is high, but so is the within-nest

market share. The switchers can either be patients from the same ATC3 class

or from other ATC3 classes. Thus, the within nest share needs to be instru-

mented for which we use variation in the number of drugs and packs by the

reference firm or competitors within the nest.

The random coefficients models use the nonlinear method of moments es-

timator which requires orthogonality conditions between the observed drug

characteristics and the demand error term. Berry et al. (1995) suggest using

the sum of product characteristics of other products of the same firm, and the

sum of product characteristics of products of other firms to generate additional

instruments. Björnerstedt and Verboven (2016) suggest adding the count of

other products of the same firm, and the count of products of other firms as

instruments as they capture the intensity of competition. Further, they also

suggest generating additional instruments by nests. We construct our addi-

tional instruments following the same procedure. For a given drug j by firm

f in nest g we count the number of other drugs by the same firm, z3jt, and

the number of other drugs by the same firm within the same nest, z4jt. Simi-

larly, we also count the number of packs by the reference firm over other drugs

within the nest, z5jt, as well as the number of packs by all competitors within
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the same nest, z6jt. In some models, we also included the squared terms or

interactions of these additional variables. Further details on the construction

of the instruments and their interactions are described in Section A.3.

Finally, following Reynaert and Verboven (2014), we generate and use opti-

mal instruments for estimation. Briefly, Reynaert and Verboven (2014) show

through Monte Carlo simulations that the optimal instruments are more ef-

ficient than other instruments and that they are also helpful in attenuating

bias when there is limited product characteristic variation across markets. To

that end, we follow Chamberlain (1987) and construct optimal instruments

that are the expected value of the gradient of the structural error term (the

product-specific unobservable) for the parameter vector. In the case of lin-

ear parameters and exogenous regressors, the gradient would be (minus) the

covariates. In the case of nonlinear parameters, the optimal instruments are

nonlinear predicted variables. In the presence of multiproduct firms and differ-

entiated products, the joint estimation of demand and supply of the nonlinear

(predicted) prices can be approximated by regressing the prices on a poly-

nomial of demand and cost shifters and possibly BLP-type instruments. A

similar logic applies to the supply-side error, with the markup variable replac-

ing the price variable. For further details on the GMM estimator and the use

of optimal instruments in our context, see Appendix D.

5. Results

5.1. Regression Coefficients. Table 4 provides selected regression coeffi-

cients from alternative demand models, i.e., simple logit as OLS and 2SLS/IV

followed by a joint estimation of the demand and the supply-side moment con-

ditions in equation (6). We then estimate the nested logit model (Nlogit) and

then our final preferred specification as the random coefficients nested logit

(RCNL) model. All except the first two specifications are jointly estimated

with the supply-side and the RCNL additionally employs optimal instruments

as described earlier. The 2SLS/IV and the joint estimation with equation

(6) for the simple logit case are used to gauge the model’s incremental im-

provement attributed to the use of price instruments and the efficiency gains

derived from supply-side moments. Appendix B provides additional estimates
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from the random coefficients logit model, as well as the coefficients of the as-

sociated supply-side equation when we use joint estimation (see Table B-1 and

Table B-2 respectively).

Starting first with the OLS estimation of the simple logit in column (1), the

price coefficient is positive and not statistically significant.11 When we re-

estimate the model using instrumental variables via simple two-stage least

squares, the price coefficient becomes negative −0.872 and is significant at

the 1% level (see column (2)). The first-stage regression is in column (3) and

shows that the four excluded instruments are individually significant and the

joint F-test for the excluded instruments is 11.17 indicating that the instru-

ments are not collectively weak. Nonetheless, the demand is in the inelastic

region for most of the sample and the implied marginal costs are negative for

about 66% of the observations. Column (4) provides estimates from the joint

estimation with the supply side. The price coefficient is negative −7.069 and

significant. The average price-cost margin for the joint estimation is 0.235

with only 3.83% of the sample obtaining negative marginal costs, showing fur-

ther improvement in the estimates. Other coefficients of interest indicate that

demand increases with pack variety, is not statistically significant for gener-

ics and that the coefficient on the spectrum is positive but not statistically

significant.

Column (5) shows the impact of adding a nesting structure to the model.

The coefficient on price decreases to −4.838 but the nesting coefficient ρ on

ln(sig) is 0.348 and is significantly different from zero and one, suggesting that

drugs in the same nests (ATC3 classes) are more similar than drugs in other

groups. The coefficient on the spectrum also becomes negative and significant

though the number of observations with negative marginal costs increases to

5%. Finally, Columns (6) and (7) provide estimates from RCNL that over-

come the restrictive substitution patterns imposed due to the independence of

irrelevant alternatives (IIA) property for the simple logit models. The nesting

coefficient ρ increases to 0.456 and is again significantly different from zero

and one. Further, only 1.85% of the observations have a negative implied

11Note that all the regressions include product dummies and hence time-invariant product char-

acteristics like age of molecule or formulation, etc. drop out of the regressions. We retrieve the

coefficients for these product characteristics using Chamberlain’s GLS regression of product dum-

mies on fixed product characteristics. See Section D.3 for details or refer to Nevo (2000).

21



Table 4. Demand estimation

Logit NLogit RCNL

OLS IV/2SLS IV-Joint IV-Joint IV-Joint
(1) (2) (3) (4) (5) (6) (7)
β β 1st-stage β β β σ

‡Constant -4.654a -2.786a 1.372a -2.786b 0.113 0.240 0.111
(1.099) (1.073) (0.094) (1.132) (0.591) (0.733) (0.528)

Price 0.015 -0.872a -7.069a -4.838a -8.241a 4.168a

(0.016) (0.309) (0.278) (0.234) (0.053) (0.071)

ln(s(j∈g)) 0.348a 0.456a

(0.066) (0.021)

‡Spectrum 0.161 0.257b 0.26 -0.242a -0.017 0.150b

(0.119) (0.123) (0.185) (0.083) (0.155) (0.062)

Pack 0.542a 0.530a -0.009 0.464a 0.287a 0.379a 0.131a

(0.025) (0.025) (0.008) (0.012) (0.036) (0.027) (0.03)

‡Age 0.169 0.072 0.07 0.010 -0.082
(0.130) (0.125) (0.153) (0.066) (0.059)

‡Generic 1.240a 0.120 0.120 -0.034 -0.077
(0.296) (0.306) (0.329) (0.157) (0.166)

‡Capsule 0.291 -0.171 -0.171 0.184 0.046
(0.395) (0.395) (0.373) (0.175) (0.194)

‡Liquid -0.684b -0.388 -0.388 -0.036 0.133
(0.300) (0.314) (0.353) (0.163) (0.163)

Temperature -0.000 0.001 0.001 0.007 0.008 -0.002
(0.009) (0.010) (0.005) (0.008) (0.008) (0.008)

Time -0.013b -0.067a -0.089a -0.451a -0.307a -0.317a

(0.005) (0.020) (0.009) (0.018) (0.017) (0.008)

Med #drugs -0.012 -0.034 -0.016 -0.041c -0.082a 0.02
(0.025) (0.028) (0.014) (0.022) (0.021) (0.022)

Low #drugs 0.161a 0.184a 0.027 0.586a 0.300a 0.419a

(0.032) (0.039) (0.023) (0.033) (0.033) (0.033)

z1:Price of 0.537a

diesel (log) (0.166)

z2: Exchange 0.051
rate (log) (0.053)

z3 #drugs by 0.045a

firm j (0.008)

z4 #packs by -0.023a

firm j in nest g (0.006)

pseudo-Rsq 0.828 0.783 0.771 0.179 0.357 0.993
avg (p− c)/p 0.598 0.235 0.228 0.315
% mc<0 66.48 3.83 4.99 1.85
F-stat 11.17
Total 11,417 obs of 131 distinct products over 120 months spanning 18 molecules and
14 formulations (with three main characteristics, tablet, capsule, and oral liquid).
All regressions include product dummies and monthly dummies. Robust standard
errors are in parentheses. Superscripts (a), (b), and (c) imply significance at 1, 5 or
10% respectively.‡The mean β coefficients are retrieved from the minimum distance
method as product dummies are included.
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marginal cost and the average price-cost margin for the remaining sample is

0.315. The mean coefficient on price is −8.241 and significantly different from

zero, while the distribution parameter σp is 4.168 and is also significant, which

indicates that there is variation in marginal (dis)utility of price around the

mean value. Thus, price sensitivity varies in the underlying population and

may stem from the fact that practitioners have uneven professional experience,

and react differently to national media and guidelines on cost-saving (Scoggins

et al., 2006).

Similarly, the coefficient on the number of pack varieties is positive and sig-

nificant, indicating higher marginal utility if a drug is available in multiple

dosages and pack sizes. The variance coefficient is also significant, indicating

that there is some heterogeneity in the marginal valuation of pack variety. The

time trend is negative across all estimations, which implies that the utility of

consuming common antibiotics is reducing over time compared to the outside

option which may be induced by increasing resistance level. The coefficient on

average temperature which varies seasonally is not significant as we include

monthly dummies in all the estimates. However, the pattern of coefficients on

the monthly dummies shown in Figure B-1 in the appendix shows the demand

increases in winter months, perhaps due to a preference for using antibiotics

to treat respiratory tract infections, and virus-induced secondary bacterial in-

fection in cold seasons (Suda et al., 2014, Hendaus et al., 2015).

Among the coefficients recovered using the minimum distance method, the

mean marginal utility associated with the spectrum is not significant. However,

the variance parameter is significant so there is considerable heterogeneity in

the taste parameter for the spectrum. This suggests that although on average

patients and doctors do not exhibit strong preferences for broad- or narrow-

spectrum antibiotics, some individuals do derive higher marginal utility from

narrow- or broad-spectrum antibiotics, and hence, all else equal, their utility

level would change if they were given drugs with different spectrum values.

5.2. Substitution Patterns. Before turning to the tax simulations and their

effect on demand and upper-bound measures of welfare, we provide here es-

timates of substitution patterns as they help contextualize the results from

the simulations. Based on the estimates for RCNL, we computed own- and

cross-price elasticities for all the antibiotics in our sample. The distribution
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Figure 2. Own price elasticity (RCNL Model)

The green solid line, the blue short-dashed line, and the red long-dashed line
are the share-weighted mean, simple mean, and median values of own-price
elasticity.

of the own price elasticity is shown graphically in Figure 2. Weighted means

and standard deviations are given in columns (1) and (2) of Table 5 where the

weights are based on shares. The weighted mean own- and cross-price elastici-

ties are −2.58 and 0.10 with standard deviations of 1.61 and 0.17 respectively.

Column (3) provides the simple mean elasticities. We delay the discussion of

the results in the last three columns till the next subsection.

Aggregate own-price elasticities for all 18 molecules, along with a full 18× 18

matrix of cross-price elasticities is summarized in Table B-3 in the appendix.

Here instead, to understand the substitution possibilities across drugs with dif-

ferent antibacterial resistance, we partitioned cross-price elasticities by broad-

and narrow-spectrum groups, and within those, substitution to the same or

different molecules. From here on we only refer to the weighted mean values.

A 1%increase in the price of a broad-spectrum drug gives, on average, a 0.14%

increase in the quantity of other broad-spectrum drugs. The substitution to

drugs with the same molecule is, on average, higher than the substitution to

other broad-spectrum drugs with a different molecule. The cross-price elas-

ticities for the two cases are 0.27 and 0.09 respectively. This of course makes

sense given that there are typically lots of different products within the same
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molecule (see Table 1). Further, substitution into a narrow-spectrum drug,

which would always be a different molecule, for a 1% increase in the price of

a broad-spectrum drug is 0.08%.

Table 5. Price elasticities (alternative models)

RCNL RCL Mol 22D

Mean Std. Mean Mean Mean Mean

(1) (2) (3) (4) (5) (6)

Own-price elasticity %∆sj/%∆pj -2.58 1.61 -3.73 -2.46 -2.74 -2.57
Cross-price elasticity %∆sj/%∆pk 0.10 0.17 0.02 0.11 0.10 0.12

Cross-price elasticity wrt pBk, the price of a broad-spectrum drug

%∆sBj/%∆pBk (within broad) 0.14 0.20 0.03 0.15 0.15 0.17
%∆sBj/%∆pBk (j, k same molecule) 0.27 0.32 0.11 0.08 0.74 0.27
%∆sBj/%∆pBk (j, k different molecules) 0.09 0.11 0.01 0.14 0.04 0.12
%∆sNj/%∆pBk (j in narrow) 0.08 0.08 0.01 0.13 0.05 0.11

Cross-price elasticity wrt pNk, the price of a narrow-spectrum drug

%∆sNj/%∆pNk (within narrow) 0.13 0.28 0.04 0.05 0.18 0.14
%∆sNj/%∆pNk (j, k same molecule) 0.21 0.31 0.10 0.03 1.03 0.21
%∆sNj/%∆pNk (j, k different molecules) 0.11 0.24 0.02 0.06 0.02 0.12
%∆sBj/%∆pNk (j in broad) 0.04 0.04 0.01 0.06 0.03 0.06

Columns (1) and (2) provide the weighted mean and standard deviation of elastic-
ities based on the RCNL model in Table 4 while column (3) gives the unweighted
mean from the same model. Columns (4)-(6) give weighted mean elasticities based
on alternative specifications given in Table B-1. Column (4) is the weighted mean
price elasticities from the RCL model, column (5) is again the RCNL model with
molecule level nesting, and column (6) gives mean elasticities from an RCNL spec-
ification with ATC3 level nesting when the potential size of the market is changed
from baseline value to 22 DDD.

Next, a 1% increase in the price of a narrow-spectrum drug gives, on average a

0.13% increase in the quantity of another narrow-spectrum drug, with further

refined cross-elasticities being 0.21% and 0.11% into the same or different

molecules that are also with narrow-spectrum. The substitution to a broad-

spectrum drug on the other hand is only 0.04%. These patterns suggest that

broad-spectrum drugs are closer substitutes to each other, particularly to drugs

with the same molecule, than drugs in the narrow-spectrum. Similarly, narrow-

spectrum drugs are closer substitutes for each other, first to other narrow-

spectrum drugs with the same molecule, then to other narrow-spectrum drugs,

and least substitutable with broad-spectrum drugs.
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At first glance, these results seem odd. Substitution from a narrow-spectrum

drug to a broad-spectrum drug is surprisingly low, given that narrow-spectrum

drugs target specific pathogens. If their price increased, one would expect

substitution to broad-spectrum drugs. Indeed, as Table A-1 shows, Urinary

Tract Infection (UTI) can be treated by only one narrow-spectrum drug in

our dataset, trimethoprim, but by several broad-spectrum drugs. However,

this is not the case for several other indications. For instance, for Upper

Respiratory Tract Infection (URTI), there are six different narrow-spectrum

molecules available. If one of them is unavailable, it is conceivable that sub-

stitution would occur within the narrow-spectrum category. Nonetheless, we

further examine whether these substitution patterns result from our nesting

design, which was based on ATC3 classes.

5.3. Alternative specifications. We also estimated the main RCNL model

summarized in columns (6) and (7) in Table 4 with some alternative speci-

fications, and the results are given in Table B-1 in Appendix B. First, we

experimented with the nesting structure. We removed the ATC3 level nesting

and estimated an RCL model that does not impose any ex-ante substitution

pattern. The overall fit seems reasonable and as it turns out, the overall price

sensitivity is not very different.

Second, we replaced the ATC3 level nesting with a more restrictive molecule

level nesting (recall from Table 1 that there can be multiple molecules within

an ATC3 class). This increases the nesting parameter value from 0.456 to

0.843 and reduces the magnitude of the price coefficients from −8.241 and

4.168 (mean and sigma respectively) to −3.569 and 1.820. However, it also

increases the number of observations with negative marginal costs from 1.85%

to 4.49%.

Third, we went back to the ATC3 level nesting and replaced the linear time

trend with annual dummies to check if a linear time trend is sufficient to

capture the overall change in demand over the observed time period. The

price coefficients are similar to those in the main RCNL model, the nesting

parameter value drops to 0.160, and the percent of observations with negative

marginal costs increases to 4.93%. In most other respects the results are similar

so we do not think there is any significant difference between the preferred

model in the main analysis versus the one with annual dummies.
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Fourth, as an additional robustness check, we reduced the potential market

from 30 DDD per 1000 inhabitants per day to 22 DDD per 1000 inhabitants

per day.12 The model, using this revised definition of market size, yields results

that closely resemble our current model (see Table B-1). With the alternative

market size, the price coefficient is −7.324 as opposed to −8.241 in our main

model. The standard deviation of the random coefficient on price is 3.578

instead of 4.168 in the main model. Finally, the nesting coefficient ρ for ln(sjg)

is 0.425 compared to the 0.456 in the main model.13

We also compared weighted mean elasticities from our preferred specification,

i.e. RCNL with ATC3 nesting, with some of the additional ones discussed

above. The results are summarized in columns (4)-(6) in Table 5. The RCL

model does not impose any nesting structure. Compared to the baseline model,

RCL allows for slightly greater substitution from broad- to narrow-spectrum,

i.e., 0.08 in RCNL vs 0.13 in RCL (compare columns (1) and (4) in Table 5)

but similar substitution from narrow- to broad-spectrum, i.e., 0.04 in RCNL

vs 0.06 in RCL.

Next, we consider the case with molecule-level nesting rather than at the

ATC3 level. Note that the value of the nesting parameter increases from 0.456

to 0.843 and hence by construction, there is greater substitution within the

molecule than outside. We can see the effect of this nesting in the cross-price

elasticity matrix discussed above. Both within broad- and narrow-spectrum

drugs, the cross-price elasticity to other drugs in the same molecule increases in

12To ensure the outside share is always positive in all periods, we can only reduce the potential

market to 22 DDD. The average UK antibiotic consumption was around 20 DDD per 1000 inhab-

itants per day. By doing so, the mean outside share is 0.37 with min as 0.07 and max as 0.55.

Values beyond 22 DDD would encounter negative market shares.
13We also estimated the original RCNL model using the “differentiation instruments” proposed

by Gandhi and Houde (2020). In addition to our initial BLP type of and other instruments, we

incorporated the sum of differences in product characteristics among competing firms within the

same market segment. Specifically, we utilized pack varieties and the generic indicator variable to

create these supplementary instruments. The findings closely mirrored the primary specifications

detailed in columns (6) and (7) of Table 4 (the mean price coefficient changed from −8.241 to

−7.470, and the σp coefficient changed from 4.168 to 3.707). These additional instruments had

minimal impact on the instances of negative marginal costs and did not significantly enhance the

first-stage F-value in the basic 2SLS-logit model. Notably, the substitution patterns highlighted

in Table 5 in the subsequent section showed minimal deviation from those of the baseline RCNL

model. This suggests that the ensuing policy implications and calculations remain robust even with

the inclusion of differentiation instruments.
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magnitude. Importantly, the cross-price elasticity between narrow and broad-

spectrum drugs decreases even more. For instance, the number 0.08 decreases

to 0.05, and 0.04 decreases to 0.03 (these numbers are in columns (1) and (5)

in Table 5). Finally, the last column reverts to the original specification of the

nesting structure but uses an alternative definition for the potential size of the

market based on 22 DDD per 1000 inhabitants per day, and once again, the

estimated elasticities remain remarkably consistent (compare columns (1) and

(6) in Table 5).

In terms of model choice, we believe RCNL estimates provide a more reason-

able substitution pattern relative to RCL by imposing some nesting structure.

But between nesting at ATC3 vs molecule level, it is not clear which is neces-

sarily superior. Because ATC3 contains multiple molecules, it is less restrictive

than nesting at the molecule level, and based on this as well as on Table A-

1, which gives the mapping between molecules and indications, we prefer the

ATC3 level nesting. Between these two models, ATC3 level nesting also gives

better fits in terms of the number of negative marginal costs. Thus we focus

on this model in the next section on policy simulations, but it is clear from the

forgoing comparisons, that the results are fairly robust to these alternatives.

5.4. Policy Simulations. We next ask if we change the relative prices of

broad- and narrow-spectrum drugs via taxation, what would be the impact on

demand and on consumer and total welfare? The source of price sensitivity is

due to the NHS setting the annual prescribing budgets for each PCT, which

in turn sets budgets for individual physicians so that GPs are responsible for

keeping their prescription payments within those budgets.

To that end, we undertake two related tax exercises where we either impose

an ad valorem tax or a unit tax. For the ad valorem tax, we impose 5% and

then 20% on either (i) all antibiotics, (ii) all broad-spectrum antibiotics, or

(iii) the subset of broad-spectrum antibiotics labeled ‘broad-A’. As discussed

earlier, this latter group consists of molecules that have been identified in gov-

ernment AMR strategy documents as those that should be especially targeted

for reduced consumption due to their higher contribution to the rise in AMR

(PHE, 2015, DH, 2016). Accordingly, in the third exercise, we impose a tax

on just these drugs to see how much of a substitution is to the rest of the

broad-spectrum drugs, i.e., ‘broad-B’ versus narrow-spectrum antibiotics as
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well as to the outside option. We also use these tax simulations to compute

how much is the associated welfare loss from such a tax. In these calculations,

we account for the short-run change in consumer and producer surplus, as

well as any additional costs due to testing if more patients are switched to

narrow-spectrum costs.14

For these tax exercises, we use the estimated demand parameters and back out

marginal cost vector ct in market t. We then calculate the new equilibrium

net price vector p∗t and market shares st(p
∗
t � (1 + τt)) as,

p∗t = ct + ∆−1
t (st(p

∗
t � (1 + τt))) · st(p∗t � (1 + τt)).

In our three simulation exercises, we let τ be 5% and 20% for some drugs.

While not the focus of our paper, the marginal costs by broad- and narrow-

spectrum drugs are given in the appendix and show that (i) the marginal costs

are lower for broad-spectrum relative to narrow-spectrum drugs, and (ii) that

while average prices fell over the ten years, the marginal costs fell by even more

leading to greater margins and profitability. The tax simulation algorithm, the

marginal costs, and accompanying welfare calculations are explained further

in Appendix C.

We repeat the exercise where we impose a unit tax on all broad-spectrum

drugs. The unit tax is pegged to the average difference in estimated marginal

costs between broad- and narrow-spectrum drugs. Since we do not provide an

14We account for the testing cost in our simulations as follows. We assume that each infection

would be first tested for pathogens before prescribing any narrow-spectrum drugs. We convert the

change in the quantity of each drug due to the simulated policy (which is measured in defined daily

dosages) to bouts of illnesses under the assumption that an antibiotic script is prescribed either for

7 or 14 days. Thus, conservatively, we divide the change in quantity by seven and then multiply

it by the NHS tariff for microbiology as our measure of testing cost. The cost for microbiology

was obtained from the NHS Reference cost page https://www.gov.uk/government/collections/nhs-

reference-costs which provides data for 2009 onwards (earlier years data is archived but not avail-

able). We used the national average cost for “currency code” DAP831 for Microbiology/Virology

or for DAPS07 for Microbiology (the code changes across the years). For all the years from 2009-10

to 2011-12, the national average unit cost is £8 with the interquartile range from £5-10 or £6-10,

and the national average unit cost for 2012-13 is £7 with an interquartile range of £4-9. Since it

does not change much by year, we kept the testing cost to £8 until April 2012 and then changed

it to £7 for the observations after that. However, we also converted these costs to 2003 value to

be consistent with the rest of the data. The data sources mentioned here do not indicate if the

pathology cost varies by drug spectrum.
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optimal tax calculation, these sets of exercises can be used to gauge the likely

effects of alternative options. The detailed results from the second exercise are

relegated to the appendix, and only the main conclusions are discussed here.

It should be noted that the change in welfare in these exercises is only a partial

analysis: it captures the change in demand and welfare loss associated with

cost-side interventions but do not measure aggregate societal benefits accrued

in the long run from the increase in demand for drugs that do not exacerbate

the AMR problem as much. Thus, these exercises provide an upper bound on

the costs and change in demand from implementing such tax policies but does

not fully quantify the long-term welfare benefits of slowing AMR. Nonetheless,

given the dire predictions in the O’Neill (2016) if AMR goes unchecked, it is

well worth exploring these options.

Table 6. Ad valorem tax (5 or 20%)

Tax on all Tax on all Tax on
antibiotics broad-spectrum broad-A
5% 20% 5% 20% 5% 20%
(1) (2) (3) (4) (5) (6)

%∆ price Broad-A† 5.22 21.95 5.22 22.60 5.19 22.72
Broad-B‡ 4.45 17.66 4.37 17.62 -0.30 -0.89
Broad 4.96 20.52 4.94 20.94 3.35 14.83
Narrow 5.30 20.73 -0.13 -0.59 -0.12 -0.43

Combined 5.14 20.63 2.33 9.85 1.56 6.97

% ∆ quantity Broad-A -8.69 -29.35 -11.18 -36.01 -11.83 -37.73
Broad-B -0.36 -1.04 -1.75 -6.37 0.75 2.55
Broad -2.17 -7.19 -3.80 -12.81 -1.98 -6.20
Narrow -5.47 -18.96 1.60 5.64 1.02 3.55

Combined -3.73 -12.71 -1.71 -5.68 -0.79 -2.29

∆ CS -91.9 -322.5 -33.5 -117.0 -22.3 -78.2
∆ profits (PS) -41.3 -144.6 -20.9 -68.8 -7.7 -21.4
∆ tax revenue (TR) 92.6 298.8 40.2 121.6 20.9 57.0
∆ testing cost (TC) -114.7 -396.6 34.5 121.5 21.8 75.5

∆ Total welfare (TW) 74.1 228.3 -48.7 -185.7 -30.9 -118.1

The monetary change of welfare is measured as pounds per 1000 inhabitants per year
and is the average value from all years. All figures are converted to 2003 real value.
For equivalent values for 2012 only, see Table C-5. TW = CS + PS + TR − TC.
†Broad-A group consists of co-amoxiclav, quinolones (ciprofloxacin, levofloxacin,
and ofloxacin) and cephalosporins (cefalexin, cefixime). ‡All other broad-spectrum
drugs.
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The tax exercises use all years’ data where monetary values are set to 2003

real terms and the welfare calculations are expressed per 1,000 inhabitants

using the UK population of that year. Table 6 provides annual average values

related to the ad valorem tax of 5% and 20% tax under the three scenarios

described above. For comparison, the equivalent numbers for 2012, the last

full year of observations in our data, are given in the appendix in Table C-5.

Starting with the ad valorem tax of 5% on all antibiotics (column (1), Table 6),

it leads to a 4.96% increase in the price of broad-spectrum drugs and a 5.30%

increase in the price of narrow-spectrum drugs, for a combined price increase of

5.14%. However, the reduction in quantity for narrow-spectrum drugs is 5.47%

while that for broad-spectrum drugs is only 2.17% for an overall reduction of

3.73% in quantity (recall that the baseline relative shares of broad- and narrow-

spectrum are around 60% and 40%, see Table 1). This leads to an average loss

in consumer and producer surplus of £91.9 and £41.3, for a total of £133.2

per 1,000 inhabitants. In turn, this is offset by a tax revenue of £92.6 and

an additional £114.7 in avoided testing costs, for net positive change. The

testing costs decline because fewer patients are given narrow-spectrum drugs.

Overall, it leads to an increase in total welfare of £74.1.

Column (2) provides estimates when tax is set to 20%. Again there is an over-

all decrease in the use of antibiotics, but once again the percentage decline in

narrow-spectrum drugs is more than twice that of broad-spectrum antibiotics.

There is a large drop in consumer and producer surplus. However, the total

welfare change becomes positive again, considering the changes in tax rev-

enue and the savings due to avoided testing costs associated with prescribing

narrow-spectrum prescriptions.

By contrast, an ad valorem tax on just the broad-spectrum antibiotics changes

the calculus quite a bit (columns (3) and (4)). The drop in consumer surplus

with either a 5% or a 20% tax is less than a third of that when it was on all

drugs. Moreover, the usage of broad-spectrum drugs declines, while that of

the narrow-spectrum increases (for the 20% tax rate, by −12.81% and 5.64%

respectively). The total change in consumer and producer surplus net of tax

revenue and testing costs is a decrease of £185.7.

Note that in the foregoing cases, the decline in broad-spectrum prescriptions

is not even across the subgroups of the broad-spectrum drugs. For instance,
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in column (4), the decline in a subset of broad-spectrum antibiotics that are

associated with contributing the most to the rise in AMR is 36.01% (‘broad-A’)

while that of the other broad-spectrum drugs is 6.37% (‘broad-B’). As the last

two columns show (columns (5) and (6)), this balance changes even further if

the tax is imposed on only this subset of broad-spectrum antibiotics. This tax

allows for more substitution within broad-spectrum antibiotics from ‘broad-A’

to ‘broad-B’. With a 20% tax levied on the broad-A group of antibiotics, their

consumption declines by 37.73% with some increase in the broad-B group as

well as a smaller increase in narrow-spectrum drugs relative to that in the

column (4) scenario. The total decline in all antibiotics is only 2.29% and

consequently, the change in consumer surplus and change in total welfare net

of tax revenue and testing costs are also much smaller than before.15

Figure 3. 20% Ad valorem tax on broad-A antibiotics

15Table C-7 in Appendix C.2 compares the results of these counterfactual tax exercises with

those based on simpler logit and nested logit models. The implied substitution to the imposed

tax per the simpler models is quite unrealistic and, accordingly, we think that our RCNL-based

simulations are more plausible.
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Figure 3 shows the effect of the 20% ad valorem tax under the third scenario

of taxing only broad-A antibiotics for the entire data series, i.e., without ag-

gregating to a year and average over all years. Under this tax, for the entire

duration, the percentage change in narrow-spectrum and broad-B drugs is pos-

itive (see the top right panel) while that on broad-A is negative but is uneven

as the change is larger in earlier years, i.e., before 2007 and somewhat less

in later years. In part, this is due to the observed price drop in the broad-A

group of drugs noted earlier in Figure 1. The lower panel of Figure 3 shows

the evolution of consumer surplus and other components in the calculation of

the total welfare effects. Again the effects are larger pre-2005 when the base

prices of broad-A were higher and lower post the change in these prices. An

equivalent exercise with a 5% tax is given in the appendix in Figure C-2.

As these counterfactual exercises show, it is possible to shift demand from

broad-spectrum to narrow-spectrum, or at least away from the broad-A group

by up to around 35-40% with a relatively modest drop in short-run welfare or

total consumption. An alternative tax exercise where a unit tax is imposed

on either all broad-spectrum drugs or again on the same subset of ‘broad-

A’ leads to a similar conclusion (exact numbers are given in Table C-6 in

the appendix). In this exercise, we impose a unit tax which is equal to the

difference in marginal costs between broad- and narrow-spectrum drugs and

is of the order of £0.10 for all periods but varies slightly for each month and

year.

6. Summary and Discussion

In this paper, we studied the market structure of first- and second-line antibi-

otics in the UK between 2003 and 2013. Using aggregate levels of sales data,

we estimated discrete choice demand models. We find that while prices have

declined over the last decade, marginal costs have declined even more and

the marginal costs of broad-spectrum antibiotics are lower than that of the

narrow-spectrum antibiotics. The weighted mean own- and cross-price elastic-

ities are −2.58 and 0.10 with standard deviations of 1.61 and 0.17 respectively.

Importantly, a 1% increase in the price of a broad-spectrum drug shifts the de-

mand to narrow-spectrum drugs by 0.08%. In general broad-spectrum drugs

are closer substitutes to each other than drugs in the narrow-spectrum and

vice versa and greater substitution is to other drugs in the same molecule.
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Demand estimates reveal that there is a dispersion in tastes for antibiotics

that varies by the antibiotic spectrum of the drug (the marginal utility of

the spectrum). Price increases in one drug do lead to significant substitution

towards other cheaper drugs, but most of the substitution is within groups

by the spectrum of the antibiotics. This implies that while switching from

broad- to narrow-spectrum is possible via changes in relative prices, it will have

significant implications for consumer surplus. For an ad valorem tax of 20% on

all antibiotic drugs, the cost in terms of loss in consumer welfare is £322.5 per

1000 residents, and the reduction in quantity consumed is due to both broad-

spectrum drugs (7.19%) and narrow-spectrum drugs (18.96%). Alternatively, a

20% ad valorem tax on a subset of drugs that contribute the most to the AMR

problem, i.e., the broad-A (co-amoxiclav, quinolones, and cephalosporins) in

our sample, leads to a cost of £78.2 per 1000 residents in terms of reduction

in consumer surplus while the demand of broad-A declines by 37.73% and

that of narrow-spectrum increases by 3.55%. While our simulations show how

much demand is shifted from broad- to narrow-spectrum, and at what cost, it

does not calculate the long-term benefits of switching to drugs with a lower

AMR footprint. In addition, it is clear that the estimated loss in welfare is

much smaller than the estimates of worldwide costs in O’Neill (2016) and it

may be well worth our effort to consider such remedies to shift demand to

narrow-spectrum drugs.

Our analysis focuses on quantifying trade-offs from taxing by type of antibi-

otics because certain drugs contribute more to the AMR problem than other

drugs as highlighted by various public health documents discussed earlier.

Giubilini (2019) makes an ethical case for taxing individuals for antibiotics

in cases when the disease is mild and self-limiting, that is, where a patient

eventually recovers from a disease even without antibiotic treatment with suf-

ficiently high probability. Our drug level analysis and the taxation policies in

the counterfactual do not account for the severity of the disease and hence,

may miscalibrate the welfare impacts to some extent.

Nonetheless, in our analysis, the financial burden of the tax is not on the

patients but rather on the GP practices who may be overprescribing in some

cases, as also highlighted in Giubilini (2019) and other places. Moreover,

as Table A-1 shows, for each of the seven indications there is a choice of
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prescribing broad- and narrow-spectrum drugs, and the tax on broad or broad-

A would encourage prescribing the narrow-spectrum drugs. Thus, while our

analysis ignores the disease severity, we believe our counterfactual exercise

captures the main first-order effects of such policies. Also, we do not think

that such tax policies should be implemented without allowing for exemptions

based on the severity of the disease which the physicians could certify.

As discussed earlier, there is also no direct financial cost of the pathology

test on either the patient or the physician. Nonetheless, there may be some

disutility with prescribing the test. This is because susceptibility testing takes

time. If decisions are time-critical and it is not an option to wait for a precise

diagnostic to know which narrow-spectrum antibiotic to prescribe, this may

slow the switch from broad-spectrum to narrow-spectrum. Further, these can

vary by type of disease, a dimension of heterogeneity that is not considered

in the analysis. Susceptibility testing is also done when prescribing broad-

spectrum antibiotics because it can inform about the further course of action

in case the first antibiotic treatment is not successful. These issues can be

difficult to fully tease out in an aggregate demand analysis. To that end, our

model includes a random coefficient for the spectrum variable and estimates

show that consumers (patient-physician combination) exhibit strong variation

in tastes by the spectrum.

In principle, this could also be exploited to modify tastes in such a way as

to reduce the consumption of broad-spectrum drugs. Currently, demand-side

interventions are mainly educational campaigns, including raising awareness of

antibiotic resistance to the public, professional education to prescribers as well

as stewardship of preferred prescription in primary care and in hospitals (DH,

2013, Scoggins et al., 2006). However, those campaigns may not be sufficient.

Since part of the preference over broad-spectrum antibiotics may stem from

fear of treatment failure, especially in primary care when there is no clear clue

of the specific type of bacterial pathogen, a quick and cheap diagnosis test

may completely solve the puzzle. Although these tests are expensive, time-

consuming, and rarely used in primary care now, scientists have made progress

in reducing the cost and time of diagnostic methods. For example, Schmidt

et al. (2017) have successfully reduced the time of testing to four hours by

direct DNA sequencing. If the uncertainty of bacteria type or level of suscep-

tibility could be reduced by widely used accurate diagnosis, the inappropriate
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consumption of antibiotics would be calibrated. That combined with cost-side

interventions that we highlight above would imply shifting to narrow-spectrum

antibiotics with much lower distortions and lower loss in consumer welfare.
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Appendix A. Further details on Data and instruments

A.1. Mapping molecules to indications. Table A-1 maps molecules to
their indications and recommendations for 1st or 2nd use. If a molecule is sug-
gested for patients with allergies to the 1st/2nd line molecules, it is marked as
’3’. Some molecules have special instructions based on patient characteristics
like age, gender, pregnancy, and breastfeeding, which are noted in the table.
Table A-1 is not a comprehensive mapping based on pathogens but rather
based on indications and importantly, our reading of the various guidelines
related to antibiotic use.

Table A-1. Selected antibiotics and their recommended indications

ATC3 # of Spec-URTI LRTI UTI GITI GTI SKIN
J01 Drugs trum

Broad-spectrum

Selected-broad
Co-amoxiclavabc C 11 29.5 2 2 1,2 1 1 1,2
Cefalexinabc D 15 19.25 2 1,3 3 3 3
Cefiximeb D 2 19.5 1 1
Ciprofloxacinabc G 5 39.75 1 1 1,2 2,3 1 1
Levofloxacinbc G 2 39.75 2 1 2,3 2
Ofloxacinabc G 3 39.75 1 1 2

Other-broad
Doxycyclineabc† A 7 38.75 3 1,2 1 1,2,3
Tetracyclineabc A 1 38.75 2 2,3 2
Amoxicillinabc C 13 13.5 1 1,2 1,2 1,2 1 1,2
Pivmecillinambc H 1 19.5 1,2
Neomycinbc K 1 19.5 1

Narrow-spectrum
Trimethoprimabc E 5 4.25 1,2 2 2
Azithromycinabc F 10 12.25 2 2 1,2,3 2
Clarithromycinabc F 10 12.25 3 1,2,3 1,2,3 3 3
Clindamycinabc∗ F 3 10.75 3 2 2,3 1
Erythromycinabc‡ F 22 12.25 2,3 1,2 1,2,3 2,3
Flucloxacillinabc H 8 4.25 1 2 1 1
Penicillin Vabc H 12 13.5 1 1

Notes: Notes: Indications are URTI (Upper Respiratory Tract Infection), LRTI (Lower
Respiratory Tract Infection), UTI (Urinary Tract Infection), GITI (Gastro-Intestinal Tract
Infection), GTI (Genital Tract Infection), and SKIN (Skin Infection). Numbers (1) and (2)
indicate 1st/2nd line use (highest option is listed when it may be used in multiple ways for
the same indication); (3) indicates use in case of allergies. For example, if the indication is
URTI and the patient is allergic to 1st/2nd line drugs, Doxycycline may be prescribed.
∗Clindamycin is listed for GTI only for women.
†Doxycycline is listed as not suitable for pregnant and breastfeeding patients.
‡Erythromycin is listed for treatment of URTI and LRTI only when there is a penicillin
allergy and pregnancy. More suitable for pregnant or breastfeeding patients. Sources: Su-
perscripts a, b, c indicate PHE (2014), BNF (2023), and Pan Mersey APC (2023) respectively.
Disclaimer: This table is to guide the authors’ econometric choices and not to impart med-
ical advice to anyone. No one should use this or any other economics journal for medical
advice.
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A.2. Seasonality by spectrum. Figure A-1 plots the relative shares of broad-
vs. narrow-spectrum drugs by months averaged over the ten years of data. As
discussed in the main text, there is seasonality in the relative shares and the
peak for broad-spectrum is in the winter months. The NHS fiscal year is from
April/1 to March/31 the following year.

Figure A-1. Relative antibiotics consumption by month: the
total quantity of broad-spectrum to narrow-spectrum molecules

A.3. Instruments. We first describe all the excluded instruments, and then
how they were used in different models along with other exogenous variables
and counts of moment restrictions. The variables z1t and z2t are the log of
the price of diesel and of exchange rate and are not specific to any drug and
vary only by markets (average monthly values). The next set is BLP-style
instruments: z3jt is the total number of other drugs produced by the manu-
facturer of the reference drug j and z4jt is the total number of other drugs by
the reference firm of j restricted to the nest of the drug j. Similarly, z5jt is the
total number of packs across other products by firm producing drug j within
the nest of drug j, and z6jt is the total number of packs by competitors within
the reference nest of drug j. Interactions and higher powers include z7 = z2

4 ,
z8 = z2

5 , and z9 = z4z5.

For the logit model, the exogenous variables are constant, pack varieties, a
time trend, the weather temperature, and drug dummies (131 minus one ref-
erence). Note that the invariant product characteristics such as spectrum
value, formulation type, etc. do not enter this equation. Therefore, when the
logit specification is estimated via OLS, it has 4+130 = 134 demand-side in-
struments. We back out those coefficients on spectrum, age, generic, capsule,
liquid, and constant using Chamberlain’s method, which we describe below.
Further, when we estimate it via 2SLS, we use four additional instruments:
z1, z2, z3, and z4 for a total of 138-moment restrictions.
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Next, we estimate the logit jointly with the supply side equation. The sup-
ply equation includes a constant, pack variety, the log of the price of diesel
(z1), the log of the exchange rate (z2), a time trend, a dummy variable for
broad-spectrum molecules, a dummy variable for generic, a dummy variable
for capsule, a dummy variable for liquid, for a total of nine instruments (the
supply side does not include drug dummies). Summing up, in the logit model
when estimated jointly with the supply side, there are 136 demand-side instru-
ments (134 plus z3 and z4) and nine cost-side instruments (including z1 and
z2) for a total of 145-moment restrictions.

Finally, for the RCNL estimation, we additionally use z5 and z6 (which provide
nest-specific counts) as well as z7 and z8 for a total of 149 moment conditions
(140 for the demand side and nine for the supply side). In the RCL model, we
drop z6 and z8 and instead use z9 for a total of 139+9=148 restrictions.

In the versions with optimal instruments, following Reynaert and Verboven
(2014) we further compute six instruments: four optimal instruments for the
random coefficients for the constant, price, pack variety, and spectrum, one for
the price in the linear part, and one for the within-group market share. The
optimal instruments for other variables are the exogenous variables themselves.
The optimal instruments replace the original instruments.
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Appendix B. Additional results

B.1. Monthly dummies. Figure B-1 plots the coefficients of monthly dum-
mies from the baseline RCNL model given in columns (6) and (7) of Table 4.
The error bar indicates the 95% confidence interval, and the base month is
March.

Figure B-1. Coefficients of monthly dummies in the RCNL model
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B.2. Robustness - Alternative specifications. The baseline model in the
main text Table 4 uses RCNL with ATC3 level nesting. Table B-1 provides re-
sults from some alternative specifications. Columns A is an RCL specification,
(B) is RCNL but with molecule-level nesting, (C) is like the baseline model
but with annual dummies instead of linear time trend, and (D) is also like the
baseline but with the alternative definition of the potential market based on
22 DDD per 1000 inhabitant per year.

Table B-1. Estimation results: Variations of RNCL and RCL

(A) (B) (C) (D)
RCL Molecule nesting Year dummies 22D

β σ β σ β σ β σ
‡Constant -2.93a 1.712a -2.198a 0.711b -0.285 0.792 0.409 0.532

(1.11) (0.31) (0.557) (0.324) (0.64) (0.503) (0.655) (0.714)

Price -9.270a 4.698a -3.569a 1.820a -7.841a 4.031a -7.324a 3.578a
(0.082) (0.082) (0.054) (0.032) (0.033) (0.082) (0.137) (0.068)

ln(s(j∈g)) 0.843a 0.160a 0.425a

(0.071) (0.023) (0.033)
‡Spectrum 0.243 0.564a -0.070 0.084 0.190b 0.825a -0.059 0.187b

(0.19) (0.085) (0.096) (0.076) (0.088) (0.06) (0.133) (0.094)

Pack 0.515a 0.019 0.142 0.032c 0.491a 0.169b 0.373a 0.115b
(0.028) (0.049) (0.096) (0.017) (0.037) (0.076) (0.032) (0.046)

‡Age 0.132 0.223a 0.064 -0.024
(0.13) (0.06) (0.069) (0.062)

‡Generic 0.306 0.063 -0.333c -0.034
(0.33) (0.14) (0.181) (0.157)

‡Capsule -0.568 -0.281c -0.049 0.058
(0.384) (0.16) (0.205) (0.187)

‡Liquid -0.634c 0.076 0.074 0.029
(0.324) (0.151) (0.175) (0.164)

Temperature -0.003 -0.012 -0.016c -0.023a

(0.008) (0.008) (0.009) (0.008)

Time -0.393a -0.142a -0.305a
(0.007) (0.006) (0.01)

Med #drugs 0.102a -0.011 0.024 0.007
(0.022) (0.023) (0.029) (0.023)

Low #drugs 0.626a 0.129a 0.215a 0.511a

(0.034) (0.033) (0.055) (0.042)

pseudo-Rsq 0.98 0.98 0.97 0.98
avg (p− c)/p 0.34 0.28 0.36 0.27
% mc<0 1.49 4.49 4.93 2.26

Total 11,417 obs. of 131 distinct products over 120 months spanning 18 molecules
and 14 formulations (with three main characteristics, tablet, capsule, and oral liq-
uid). All regressions include product dummies. Robust standard errors are in paren-
theses. Superscripts (a), (b), and (c) imply significance at 1, 5 or 10% respectively.
‡The mean β coefficients are retrieved from the minimum distance method as prod-
uct dummies are included.
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B.3. Supply Side Coefficients. Table B-2 provides supply-side coefficients
for equation (6) when jointly estimated with the demand models.

Table B-2. Supply Side equation (log(mc+1))

Supply-side Logit NLogit RCL RCNL

Main Mol Year D 22D
(1) (2) (3) (4) (5) (6) (7)

Constant 0.789a 0.794a 0.466a 0.470a 0.663a 0.362 0.663a
(0.107) (0.107) (0.108) (0.113) (0.139) (0.341) (0.114)

‡Broad-spectrum -0.037b -0.037b 0.003 -0.013 -0.071a 0.012 -0.002
(0.018) (0.018) (0.018) (0.021) (0.022) (0.093) (0.021)

Pack -0.031a -0.032a -0.011b -0.021a -0.017 0.002 -0.024a
(0.006) (0.006) (0.005) (0.007) (0.013) (0.008) (0.007)

Generic -0.195a -0.197a -0.157a -0.146a -0.093a -0.120 -0.183a
(0.019) (0.019) (0.019) (0.022) (0.035) (0.107) (0.02)

Capsule 0.047c 0.047c -0.068a -0.045c 0.049 -0.076a -0.047c

(0.027) (0.027) (0.024) (0.025) (0.03) (0.025) (0.025)
Liquid 0.239a 0.242a 0.147a 0.180a 0.127a 0.081 0.211a

(0.021) (0.021) (0.022) (0.024) (0.038) (0.063) (0.024)
Time -0.028b -0.028b -0.061a -0.066a -0.033b -0.058 -0.043a

(0.013) (0.013) (0.013) (0.013) (0.014) (0.069) (0.013)
z1:Price of 0.051 0.051 0.617a 0.606a 0.114 0.553 0.319
diesel (log) (0.227) (0.227) (0.226) (0.227) (0.243) (2.333) (0.229)
z2: Exchange 0.034 0.033 0.042 0.080 0.028 0.080 0.002
rate (log) (0.064) (0.064) (0.064) (0.064) (0.069) (0.302) (0.065)
Statistics
Obs 11417 11417 11417 11417 11417 11417 11417
pseudo-Rsq 0.15 0.15 0.17 0.14 0.13 0.18 0.14

Total 11,417 obs of 131 distinct products over 120 months spanning 18 molecules and
14 formulations (with three main characteristics, tablet, capsule, and oral liquid).
Robust standard errors are in parentheses. Superscripts a,b, and c imply significance
at 1, 5, or 10% respectively.
‡broad-spectrum is a dummy variable that indicates if the drug has a broad-spectrum
molecule. It is different from the Spectrum variable used in the demand equation.
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B.4. Elasticities by molecule. Table B-3 provides the share-weighted own-
and cross-price elasticities by molecule.

Table B-3. Share weighted own and cross-price elasticities by molecule

Cross-price elasticity

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

(1) -3.87 0.39 0.05 0.02 0.06 0.06 0.11 0.02 0.05 0.09 0.12 0.01 0.02 0.05 0.10 0.02 0.04 0.06 0.05
(2) -4.14 0.02 0.58 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.00 0.02 0.00 0.02 0.02 0.02
(3) -1.68 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
(4) -2.63 0.06 0.03 0.02 0.12 0.26 0.66 0.03 0.01 0.03 0.05 0.01 0.03 0.04 0.07 0.02 0.03 0.03 0.02
(5) -3.31 0.01 0.00 0.02 0.04 0.02 0.27 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.01 0.02 0.00 0.00 0.00
(6) -4.76 0.01 0.00 0.00 0.07 0.18 0.37 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00
(7) -1.52 0.01 0.03 0.00 0.05 0.00 0.00 0.08 0.53 0.07 0.00 0.02 0.06 0.00 0.01 0.00 0.04 0.03 0.03
(8) -2.88 0.01 0.01 0.01 0.00 0.02 0.02 0.07 . 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
(9) -1.68 0.18 0.10 0.00 0.17 0.00 0.01 0.22 0.08 0.29 0.01 0.05 0.19 0.00 0.05 0.00 0.12 0.09 0.10
(10) -4.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(11) -0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(12) -1.05 0.01 0.02 0.00 0.03 0.00 0.00 0.04 0.02 0.04 0.00 0.01 0.06 0.00 0.01 0.00 0.02 0.02 0.02
(13) -2.66 0.02 0.01 0.05 0.01 0.05 0.02 0.00 0.02 0.00 0.03 0.00 0.00 0.10 0.06 0.16 0.02 0.01 0.01
(14) -3.97 0.08 0.04 0.01 0.06 0.05 0.08 0.02 0.03 0.02 0.08 0.00 0.02 0.15 0.29 0.04 0.26 0.05 0.04
(15) -2.50 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.07 0.01 0.09 0.00 0.00 0.00
(16) -3.92 0.03 0.05 0.00 0.03 0.01 0.02 0.04 0.03 0.04 0.02 0.02 0.04 0.02 0.22 0.00 0.32 0.04 0.04
(17) -3.64 0.11 0.11 0.01 0.08 0.04 0.10 0.08 0.07 0.08 0.55 0.02 0.08 0.03 0.11 0.01 0.11 0.06 1.18
(18) -3.97 0.02 0.03 0.01 0.02 0.01 0.02 0.02 0.03 0.02 0.15 0.01 0.02 0.01 0.02 0.01 0.03 0.30 0.31

The 18 molecules are as follows: (1) Co-amoxiclav, (2) Cefalexin, (3) Cefixime, (4)
Ciprofloxacin, (5) Levofloxacin, (6) Ofloxacin, (7) Doxycycline, (8) Tetracycline, (9) Amox-
icillin, (10) Pivmecillinam, (11) Neomycin, (12) Trimethoprim, (13) Azithromycin, (14)
Clarithromycin, (15) Clindamycin, (16) Erythromycin, (17) Flucloxacillin, (18) Penicillin V.

The column marked (0) lists the weighted mean own-price elasticity for any drug. The
rest of the 18 × 18 provides the weighted mean cross-price elasticities. Note that the leading
diagonal in this part of the table is not the own-price elasticity. For instance, 0.39 on the
leading diagonal is the mean cross-price elasticity of a co-amoxiclav-based drug with respect
to a 1% change in the price of any other co-amoxiclav-based drug. Similarly, 0.02 is the mean
percent change in the quantity of a co-amoxiclav-based drug associated with a 1% change in
the price of a cefalexin-based drug while 0.05 is the mean percent change in the quantity of a
cefalexin-based drug associated with a 1% change in the price of a co-amoxiclav based drug.
The rest of the matrix should be read the same way.
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Appendix C. Tax Simulations

C.1. Tax simulation algorithm. We use the demand and pricing equations
to conduct a tax simulation exercise. We impose the tax rate τ on groups of
drugs of interest. Given the estimated demand parameters and the estimated
marginal cost vector in market t, ct, we calculate the new equilibrium price
vector p∗t and market shares st(p

∗
t � (1 + τt)) as,

p∗t = ct + ∆−1
t (st(p

∗
t � (1 + τt))) · st(p∗t � (1 + τt)).

In our simulation exercises, we let τ be 5% and 20% for some drugs. The
surplus gained by individual i in market t is

csit =
1

βpi
max
j∈Jt

uijt,

where βpi is the value of the random coefficient on prices (in absolute value)
associated with individual i. By diving by βpi we monetise the indirect utility
function.

This money metric utility varies across consumers and by markets, and we
can take its expectation to compute the average consumer welfare (Small and
Rosen, 1981). For the random coefficients nested logit model, the expression
of interest for the market t is

max
j∈Jt

uijt = ln

1 +
Gt∑
g=1

[
Jgt∑
l=1

exp

(
xltβi + ξlt

1− ρ

)]1−ρ .
Refer to Train (2009), among others, for an explanation of the procedure. The
expected consumer surplus can be simulated in the following way,

E(csit) ≈
1

ns

ns∑
i=1

1

βpi
ln

1 +
Gt∑
g=1

[
Jgt∑
l=1

exp

(
xltβi + ξlt

1− ρ

)]1−ρ+Kt

where Kt is a period-specific constant and the expected value is computed
over the cross-section of individuals. We do not know the value of this con-
stant. However, it drops out of calculations when we study the change in
expected consumer surplus associated with a variation in the price vector in
the counterfactual situation relative to the observed factual condition. The
total monetary consumer surplus is E(csit) times the potential market size.

We also account for the cost of testing incurred to diagnose the pathogen
before prescribing narrow-spectrum drugs. This step is not necessary when
prescribing broad-spectrum drugs. As a conservative estimate of the addi-
tional cost of testing, we divide the narrow-spectrum drug quantity by seven
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and convert it to bouts of illnesses under the assumption that an antibiotic
script is prescribed for seven days. We then multiply it by the NHS tariff for
microbiology testing that is in place that year.

The total welfare in a period t is the sum of consumer surplus, producer
surplus, the tax revenue, net of the testing cost

TWt = CSt + PSt + Tax revenuet − Testing costt.

As mentioned above, we focus on changes in total welfare. We convert the
monetary change of welfare to pounds per 1000 inhabitants, knowing that the
UK population between 2003 and 2013 was 61.8M.

C.2. Marginal costs. As described above, the first step for tax simulations is
to back out the marginal costs for each drug. Figure C-1 provides the marginal
costs aggregated by broad- and narrow-spectrum categories.

Figure C-1. Estimated marginal cost

The marginal cost of producing antibiotics is decreasing over time, perhaps
because of improvements in production technologies (Arcidiacono et al., 2013).

We also back out the price-cost margins for all drugs in all years. Table C-4
provides weighted averages by molecules for select years and overall. Note that
the implied margin is between the retail price and the marginal cost of pro-
duction and hence it contains margins earned by manufacturers, wholesalers,
and retailers. Our data and estimation strategy does not allow these to be
separated into individual components in the supply chain. There is consider-
able variation in profitability across individual molecules, ranging from as low
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as 13.3% to 99.5%. For some generics in the UK, margins can be considerably
high as noted elsewhere as well: by one estimate, the margin at the retail level
alone can be as high as 76.6% (Kanavos, 2007). Overall broad-spectrum drugs
are slightly more profitable (46% vs 43.8%), with the difference being larger
in the earlier years than later.

Table C-4. Average margins by molecule

Margins 2004 2008 2012 All
(100× (p− c)/p) Years

broad-spectrum 30.0 51.0 60.0 41.9
Narrow-spectrum 26.4 31.1 42.0 33.2
Overall 28.3 39.4 48.2 37.0

Means weighted by market shares
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C.3. Ad valorem tax, year 2012 only. Table C-5 is the analog of Table 6
and provides the estimates from the ad valorem tax exercises for just the year
2012.

Table C-5. Ad valorem tax (5 or 20%). 2012

Tax on all Tax on all Tax on
antibiotics broad-spectrum broad-A
5% 20% 5% 20% 5% 20%
(1) (2) (3) (4) (5) (6)

% ∆ price Broad-A† 4.99 21.5 4.84 21.1 4.80 21.1
Broad-B‡ 4.51 17.2 4.38 16.7 -0.60 -1.47
Broad 4.84 20.2 4.70 19.8 3.14 14.2
Narrow 5.01 20.4 -0.05 -0.16 -0.05 -0.16
Combined 4.93 20.3 2.22 9.38 1.48 6.71

% ∆ quantity Broad-A -7.47 -25.7 -9.09 -29.3 -9.07 -30.0
Broad-B 1.22 4.48 0.30 1.34 0.57 1.62
Broad -0.38 -1.08 -1.43 -4.31 -1.21 -4.21
Narrow -3.44 -12.2 0.65 2.12 0.54 2.01
Combined -1.63 -5.65 -0.58 -1.68 -0.49 -1.66

∆ CS -55.3 -201 -14.4 -49.8 -11.0 -42.1
∆ profits (PS) -39.0 -135 -14.4 -49.4 -3.8 -9.7
∆ tax revenue (TR) 70.3 234 23.8 75.7 10.3 30.0
∆ testing cost (TC) -66.5 -236 12.6 40.9 10.4 38.9

∆ Total welfare (TW) 42.5 134 -17.6 -64.4 -14.9 -60.7

The monetary change in welfare is measured as pounds per 1000 inhabitants per
year for 2012. All figures are converted to 2003 real value. For equivalent values for
the average from all years, see Table 6. TW = CS+PS+TR−TC. †Broad-A group
consists of co-amoxiclav, quinolones (ciprofloxacin, levofloxacin, and ofloxacin), and
cephalosporins (cefalexin, cefixime). ‡All other broad-spectrum drugs.
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C.4. 5% Ad valorem tax on broad-A only, all years. Figure C-2 is the
analog of Figure 3 given in the main text. Whereas the figure in the main
text provides welfare calculations by period for the ad valorem tax of 20% on
broad-A drugs, Figure C-2 does so for a 5% ad valorem tax on broad-A drugs.

Figure C-2. 5% Ad valorem tax on broad-A antibiotics
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C.5. Per unit tax. Table C-6 gives the results of imposing a unit tax on
either all broad-spectrum drugs or just on broad-A drugs as described in the
main text. The unit tax is equal to the difference in the marginal costs between
broad- and narrow-spectrum drugs and is of the order of £0.10 for all periods
but varies slightly for each month and year.

Table C-6. Per unit tax

2012 All years

Tax on Tax on Tax on Tax on
all broad broad-A all broad broad-A

(1) (2) (3) (4)

%∆ price Broad-A† 49.40 54.71 35.64 38.09
Broad-B‡ 87.64 -1.646 67.38 -1.134
Broad 61.13 37.42 46.24 24.99
Narrow -1.740 -0.466 -1.411 -0.660
Combined 28.38 17.68 21.71 11.78

% ∆ quantity Broad-A -63.83 -76.24 -56.24 -64.86
Broad-B -71.59 4.260 -73.26 4.324
Broad -70.16 -10.57 -69.56 -10.70
Narrow 32.56 4.924 26.32 5.250
Combined -28.22 -4.268 -30.42 -4.174

∆ CS -17.11 -23.55 -114.3 -57.4
∆ profits (PS) -134.6 -14.43 -144.6 -20.9
∆ tax revenue (TR) 611.0 103.5 526.8 109.4
∆ testing cost (TC) 631.5 95.30 520.4 106.2

∆ Total welfare (TW) -172.2 -29.80 -252.5 -75.1

The monetary change of welfare is measured as pounds per 1000 inhabitants per
year either for 2012 or as the average from all years. All figures are converted to 2003
real value. TW = CS + PS + TR − TC. †Broad-A group consists of co-amoxiclav,
quinolones (ciprofloxacin, levofloxacin, and ofloxacin), and cephalosporins (cefalexin,
cefixime). ‡All other broad-spectrum drugs.

C.6. Logit/Nested logit vs RCNL in ad valorem taxes. Substitution to
narrow-spectrum or broad-B drugs under the IV-logit model is very different
from our preferred RCNL model. For instance, a 5% or 20% tax on broad-A
drugs decreases the quantity of broad-A drugs by 11.83% or 37.73% (see the
last two columns of Table C-7). For the same tax, the logit model predicts
a decrease in quantities by 0.79% and 2.95% respectively. By contrast, the
nested-logit model gives results that are not too different from the RCNL when
the tax is imposed on just broad-A drugs (again, see the last two columns).
However, they differ quite substantially and do not generate plausible results
when we compare the tax on all antibiotics (first two columns of Table C-7) or
on all broad-spectrum drugs (columns 3 and 4 of Table C-7). In both of these
cases, the nested logit model predicts an increase in the quantity of broad-B
drugs whereas RCNL predicts a decrease in consumption of broad-B drugs.
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Accordingly, we think there is a benefit to using the RCNL model as it can
overcome IIA and at least in this application seems to generate more plausible
substitution patterns relative to the logit or nest-logit models.

Table C-7. Ad valorem tax. Comparing models

Tax on all Tax on all Tax on
antibiotics broad-spectrum broad-A
5% 20% 5% 20% 5% 20%
(1) (2) (3) (4) (5) (6)

RCNL
% ∆ quantity Broad-A† -8.69 -29.35 -11.18 -36.01 -11.83 -37.73

Broad-B‡ -0.36 -1.04 -1.75 -6.37 0.75 2.55
Broad -2.17 -7.19 -3.80 -12.81 -1.98 -6.20
Narrow -5.47 -18.96 1.60 5.64 1.02 3.55
Combined -3.73 -12.71 -1.71 -5.68 -0.79 -2.29

Nlogit
% ∆ quantity Broad-A -12.88 -37.44 -14.21 -39.38 -14.15 -38.70

Broad-B 2.19 5.78 0.80 2.93 0.84 2.26
Broad -1.09 -3.61 -2.46 -6.26 -2.41 -6.63
Narrow -5.78 -18.18 0.82 2.05 0.85 2.36
Combined -3.28 -10.30 -1.28 -3.32 -1.19 -3.23

Logit IV demand§

% ∆ quantity Broad-A -0.69 -2.63 -0.78 -2.93 -0.79 -2.95
Broad-B 0.09 0.30 -0.01 -0.01 0.04 0.13
Broad -0.15 -0.58 -0.24 -0.89 -0.21 -0.80
Narrow -0.54 -1.81 0.04 0.16 0.04 0.15
Combined -0.34 -1.19 -0.12 -0.45 -0.11 -0.40

The change is the average value from all years. †Broad-A group consists
of co-amoxiclav, quinolones (ciprofloxacin, levofloxacin, and ofloxacin), and
cephalosporins (cefalexin, cefixime). ‡All other broad-spectrum drugs. §In this
simulation, negative marginal costs are replaced by 0.

S-14



Appendix D. Estimation details

D.1. The nonlinear GMM estimator. To explain the estimator, we begin
by summarizing the demand and pricing equations. We establish a relation-
ship between the observed market shares, denoted as sjt, and the approximated
market shares derived from 100 simulations based on four independent stan-
dard normal distributions. These distributions are associated with the con-
stant, price, spectrum, and pack variety, respectively. The simulated market
share is then expressed as follows:

sjt(δt, σ, ρ) =
1

100

100∑
i=1

φijt(·). (D-1)

We utilize the previously defined φijt from equation (2) from the main text,
along with δt = Xtβ + ξt, which represents the Jt × 1 vector of mean utilities.
Notably, one of the columns in the matrix Xt corresponds to the (minus) price
vector (−)pt. It is important to address the mean price coefficient separately,
denoted as βp, as its entry in our estimator follows a non-linear relationship.

The compact form for each market t is a system of Jt equations. On the left-
hand side, we have the observed market shares, and on the right-hand side,
we represent the simulated market shares. This system of equations can be
expressed as:

st = st(δt, σ, ρ). (D-2)

By applying an inversion technique to the market share function with respect
to the corresponding mean utility, we obtain the following:

δ(st, σ, ρ) = s−1
t (st, σ, ρ). (D-3)

In the context of RCL and RCNL, the inversion of market share functions
necessitates the utilization of a contraction mapping technique, as detailed in
Berry 1994. By employing this inversion process, we can effectively determine
the demand-side residuals that play a pivotal role in characterizing the demand
side of the estimator. These residuals hold crucial information regarding the
relationships between market shares and the underlying demand factors, i.e.,

ξt(θ1) = δ(st, ρ, σ)−Xtβ, (D-4)

with θ1 ≡ {β, ρ, σ}.

Likewise, we can reframe the system of Jt pricing equations (6) from the main
text in terms of the residuals, resulting in the following representation:

ωt(θ) = ln(pt −mt(θ1))−Wtγ. (D-5)

Each demand and pricing residual can be represented compactly as ηjt(θ) ≡
(ξjt(θ1), ωjt(θ))

′, where θ denotes the set of all parameters.

For identification, we rely on the moment restrictions given by:

E(ηjt(θ)|Zt) = 0, (D-6)
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where Zt includes the non-overlapping exogenous variables Xt (excluding the
price), Wt, and the additional instruments discussed in the main text.

Following the approach in Berry et al. (1995), we standardize the residuals of
the demand and pricing equations, denoted as ηjt. Assuming homoscedasticity
in the variance-covariance of the residual pair, i.e., Ω = E(ηjt(θ)ηjt(θ)

′), we
perform the Cholesky decomposition to obtain:

T (Z)′T (Z) = Ω(Z)−1. (D-7)

Next, let Hjt(Zt) be the L × 2 matrix of instruments. Utilizing the moment
restrictions from equation (D-6) and the standardization from equation (D-
7), we can express the L × 1 moment restrictions, assumed to be iid over T
markets, as follows:

g(θ) ≡ E (Hjt(Zt)T (Z)ηjt(θ)) = 0. (D-8)

The objective is to minimize the sample-equivalent of the nonlinear (in some
parameters) general method of moments function:

arg min
θ
g′(θ)Wg(θ), (D-9)

where W represents an L× L weighting matrix.

D.2. The optimal instruments. Reynaert and Verboven (2014) propose the
use of optimal instruments to enhance the efficiency of the random coefficients
and provide insights into their application. In this section, we adapt their
explanation to suit our model.

Optimal instruments refer to the conditional expectations (based on a specific
set of instruments) of the gradients of the residual functions concerning the
parameters. These instruments aim to improve the precision and accuracy of
our estimation, and are expressed as:

E

(
∂ηjt(θ)

∂θ′
|Zt
)
, (D-10)

whose elements are:E (∂ξjt(θ)∂β′−[p]
|Zt
)

E
(
∂ξjt(θ)

∂βp
|Zt
)

E
(
∂ξjt(θ)

∂σ′
|Zt
)

E
(
∂ξjt(θ)

∂ρ
|Zt
)

0

0 E
(
∂ωjt(θ)

∂βp
|Zt
)

E
(
∂ωjt(θ)

∂σ′
|Zt
)

E
(
∂ωjt(θ)

∂ρ
|Zt
)

E
(
∂ωjt(θ)

∂γ′
|Zt
) ,

and denoting with β−[p] all the parameters β but the coefficient associated with
(minus) the price, βp. With ∆t defined in equation (5), the elements of the
matrix are:

• E
(
∂ξjt(θ)

∂β′−p
|Zt
)

= −E(x[−p]jt|Zt) = −x[−p]jt

• E
(
∂ωjt(θ)

∂γ′
|Zt
)

= −E(wjt|Zt) = −wjt

• E
(
∂ξjt(θ)

∂βp
|Zt
)

= E(pjt|Zt) ≈ p̂jt
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• E
(
∂ωjt(θ)

∂βp
|Zt
)

= −E

([
∆−1
t

(
∂∆t
∂βp

+
∂∆t
∂ξt

∂ξt
∂βp

)
∆−1
t st

]
j

cjt
|Zt

)
• E

(
∂ξjt(θ)

∂σ′
|Zt
)

= E
(
∂δjt(st,σ)

∂σ′
|Zt
)

• E
(
∂ξjt(θ)

∂ρ
|Zt
)

= E
(
∂δjt(st,σ)

∂ρ
|Zt
)

• E
(
∂ωjt(θ)

∂σ′
|Zt
)

= −E

([
∆−1
t

(
∂∆t
∂σ′ +

∂∆t
∂ξt

∂ξt
∂σ′

)
∆−1
t st

]
j

cjt
|Zt

)

• E
(
∂ωjt(θ)

∂ρ
|Zt
)

= −E

([
∆−1
t

(
∂∆t
∂ρ

+
∂∆t
∂ξt

∂ξt
∂ρ

)
∆−1
t st

]
j

cjt
|Zt

)
The sample equivalent of the transpose of equation (D-10) involves introducing
a new variant of the matrix H of instruments, while the GMM procedure ex-
plained in equations (D-8) and (D-9) remains unchanged. The only distinction
between our estimator and the approach described by Reynaert and Verboven
(2014) and Conlon and Gortmaker (2020) lies in the standardization of the
optimal instrument functions. Instead of using variance, we standardize with
respect to the Cholesky matrix, which corresponds to a standard deviation in
the univariate case. This approach aligns with the non-optimal instrument
variants of estimators used throughout the rest of the paper. For detailed
procedure steps, refer to Appendix A of Reynaert and Verboven (2014). Addi-
tionally, we fit the approximation of E(pjt|Zt), denoted as p̂jt, as described in
Berry et al. (1999). When we divide the elements of the system of equations
(D-10) by the marginal cost, we adjust it for our transformation, 1 + cjt.

D.3. Chamberlain’s Method. Due to the presence of product dummies,
some characteristics that remain constant over time cannot be discerned in
the linear part of the model due to multicollinearity. Following the approach
of Chamberlain (1982) and Nevo (2000), we employ the minimum distance
method to recover their coefficients.

Let d = (d1, d2, ..., dJ)′ represent the J×1 vector of coefficients for the product
dummies, X denotes the J ×K matrix containing K product characteristics
we aim to estimate, and ξ stand for the J × 1 vector of unobserved product
attributes. The minimum distance method essentially projects the values of
the product dummies onto X.

Formally, we have the equation: d = Xβ + ξ. Assuming E[ξ|X] = 0, the
estimated coefficients β associated with the K characteristics in X can be

calculated as β̂ =
(
X
′
V̂d
−1
X
)−1

X
′
V̂d
−1
d̂, where d̂ represents the estimated

coefficients of the product dummies from the main regression, and V̂d is the
estimated variance-covariance matrix associated with them.
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