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ABSTRACT

Spinor Bose-Einstein condensates (BECs) present an experimentally accessible quantum em-

ulator of universal phenomena that appear ubiquitously across physics, some of which are

difficult or impossible to study in the laboratory. In this thesis, we investigate a variety of

such phenomena in pseudospin-1/2, spin-1, and spin-2 BECs, ranging from quantum phase

transitions to topological interfaces. Our investigations start with the relaxation dynamics

of quantum turbulence in a two-component BEC containing half-quantum vortices. The

temporal scaling of the number of vortices and the correlation lengths are shown to be, at

early times, strongly dependent on the relative strength of the interspecies interaction. At

later times, the scaling is observed to be universal, independent of the interspecies interac-

tion, and follows scaling laws observed in the relaxation dynamics of scalar BECs, despite our

system containing topologically distinct vortices. A spin-1 BEC is then used as an example

system for investigating scaling behaviour in a discontinuous (first-order) quantum phase

transition. We show how the Kibble-Zurek mechanism can be generalised and applied to

our system, which gives associated scaling laws different from those observed in continuous

quantum phase transitions. Our predictions are confirmed by mean-field numerical simu-

lations and provide an experimentally accessible system for investigating properties of the

decay of metastable states. Spin-2 BECs exhibit multiple ground state phases with continu-

ous or discrete symmetries, making excellent candidates for studying topological interfaces.

We analytically construct sets of spinor wave functions that continuously connect two dis-

tinct ground state phases, and show how topologically distinct defects and textures can be

created that either terminate at the interface or continuously penetrate across it, connecting

non-trivially to an object representing a different topology on the other side. Numerical sim-

ulations of select examples reveal a range of dynamics, including the formation of composite

cores and splitting processes.
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INTRODUCTION

1.1 Bose-Einstein condensates

The first theoretical prediction of Bose-Einstein condensation occurred in 1924, when Indian

physicist Satyendra Nath Bose, by re-deriving Planck’s law of black-body radiation, developed

a theory of statistical mechanics of photons by treating them as a collection of particles [1].

Einstein firstly helped Bose publish his work, before later going on to generalise the theory

by applying it to a system of N interacting bosons [2]. This then led to the Bose-Einstein

distribution, which describes the statistical distribution of bosons over single-particle energy

states:

f (ϵi ) = 1

e(ϵi−µ)/kB T −1
, (1.1)

where ϵi is the energy of level i , µ is the chemical potential, kB is the Boltzmann constant,

and T is the temperature.

Since the average particle number is conserved, the chemical potential enters the above

distribution. The chemical potential itself is calculated from the total particle number N and

T by the condition that the total number of particles be equal to the sum of the particles in

the individual levels. Mathematically, N is written as

N =
∑

i
Ni =

∑
i

g (ϵi ) f (ϵi ), (1.2)

where Ni gives the mean occupation of level i and g (ϵi ) gives the degeneracy of level i (i.e.,

the number of distinct states with energy level ϵi ).

2



CHAPTER 1. INTRODUCTION 3

As T → 0, Eq. (1.1) diverges. This implies that the total excited states must decrease in

order to keep the number of particles fixed. At the precise point where the total excited states

cannot accommodate the total number of particles, Bose-Einstein condensation occurs. At

T = 0, all atoms must occupy the lowest energy level of the system, called the ground state.

1.1.1 Transition temperature

The critical temperature at which Bose-Einstein condensation occurs can be derived as fol-

lows. Let us consider a system of non-interacting bosons at thermal equilibrium at temper-

ature T . According to de Broglie, particles behave like waves and as such have an associated

wavelength termed the de Broglie wavelength. This wavelength characterises the length scale

of the localised wave packet of the particles, and is conventionally written as

λdB = h√
2πmkB T

, (1.3)

where h is Planck’s constant and m is the mass of the particle. Since λdB ∝ 1/
p

T , high

temperatures (T > Tc ) imply that the de Broglie wavelength is small compared to the aver-

age inter-particle spacing. In this limit, the system exhibits classical, particle-like behaviour

and the particles closely follow the Boltzmann distribution. Conversely, as the temperature

decreases, the de Broglie wavelength associated with each particle grows. At some critical

temperature, Tc , the wavelength of each particle becomes comparable to the average inter-

particle spacing and as such individual particles become indistinguishable. At this point

the system exhibits quantum behaviour, and the particles form a degenerate gas. Assuming

a uniform, three-dimensional system with volume V and number density N /V , the Bose-

Einstein transition for an ideal gas occurs when nλ3
dB ≤ ζ(3/2) [3], where ζ is the Riemann

zeta function. Substituting in Eq. (1.3), we find the critical temperature for Bose-Einstein

condensation:

Tc =
h2

2πmkB

(
n

ζ(3/2)

)2/3

. (1.4)

1.1.2 Experimental realisation

Alkali atoms, such as rubidium and sodium, present ideal candidates for Bose-Einstein con-

densate experiments due to being weakly-interacting, easily trapped magnetically, and their

ability to be cooled using laser techniques. Cooling such atoms, however, can lead to a transi-

tion into a liquid or a solid. To prevent this, it is necessary to reduce the atomic density of the

gas such that elastic, binary collisions dominate. Typical required densities for this to hold

are around n ∼ 10−14cm3. Using the expression for the critical temperature quoted above,
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one can then estimate that Bose-Einstein condensation would occur at Tc ∼ 10−6K for such a

system.

The first experimental realisations of Bose-Einstein condensates (BECs) occurred in 1995,

where the groups at JILA [4], MIT [5], and Rice University [6] successfully cooled atoms of
87Rb, 23Na, and 7Li, respectively, observing Bose-Einstein condensation. For their pioneering

work on “the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and

for early fundamental studies of the properties of the condensates”, Carl Wieman, Eric Cor-

nell, and Wolfgang Ketterle earned the 2001 Nobel Prize in Physics. These works gave birth

to a whole new field of research, and today, interest in BECs has only accelerated further,

with applications of such condensates ranging from precision measurements [7] to quantum

computing [8].

1.1.3 Spin degree of freedom: Spinor Bose-Einstein condensates

In experiments, a consequence of strong magnetic trapping of the atoms is the “freezing” of

the atomic spin, where such condensates are referred to as scalar (or spinless). An alterna-

tive method of trapping condensates is through the use of optical trapping potentials, which

utilise the AC-Stark shift of atom to form a conservative potential that traps all the Zeeman

sublevels equally. In this case, atoms can Bose-condense into each of the available compo-

nent spin states, mF , producing a multi-component condensate, and hence the atomic spin

of the is no longer frozen out. Such a condensate is called a spinor Bose-Einstein condensate,

and forms the main interest of this thesis.

The first experimental realisation of a spinor BEC occurred just three years after the pio-

neering work in scalar systems, where, in 1998, a group at MIT successfully produced a spin-1

condensate of 23Na atoms [9]. Around the same time, seminal theory works by Ho [10] and

Ohmi and Machida [11] were developed, which kickstarted a new wave of research into spinor

BEC systems. Advances in optical trapping and laser cooling since then have led to the for-

mation of spinor condensates in spin-1 and spin-2 87Rb [12, 13], spin-2 23Na [14], and even

spin-3 52Cr [15].

1.2 Topological defects in Bose-Einstein condensates

Atomic BECs can support various topological excitations: Objects that are free to move in

space and time without changing their characteristics that are defined by topological charges.

An example that arises in scalar BECs is the quantum phase vortex, a singular line defect

which carries mass circulation. The first experimental realisation of a quantum vortex in an
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(a) (b)

Figure 1.1: Experimental images of quantum vortices in atomic BECs. (a): First experimental
realisation of a quantum vortex in an atomic BEC, reproduced from Ref. [16]. (b): Quantum
vortex lattice, reproduced from Ref. [18].

atomic BEC occurred in 1999 [16], which was achieved in a two-component 87Rb condensate.

The process of generating the vortex was based on imparting angular momentum to the con-

densate by rotating the trap in which it was held [17]. However, instead of rotating the trap,

a laser was instead focused on a small region outside the condensate and rotated through a

circular path. Images taken from the experiment are shown in Fig. 1.1a. Further theoretical

work generalised this idea by allowing the amplitude of the rotating laser to spatially vary

instead of being confined to a point [19].

Advances in experimental techniques led to the development of so-called stirring lasers,

where an incident microwave field applied to the condensate causes it to stretch in the di-

rection of the applied field. Vortices could then be produced dynamically from the edge of

the rotating trap due to the slight asymmetries induced by the stirring laser. These advances

led to the formation of the first vortices within scalar condensates [18, 20, 21]. Interestingly,

rather than forming a single vortex with large angular momentum, vortices constructed in

this way form vortex lattices, i.e., the condensate comprises many individual vortices of small
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angular momentum (see Fig. 1.1b).

A system containing many vortices, sometimes referred to as a vortex tangle in 3D sys-

tems, gives rise to a turbulent flow called quantum turbulence. Due to their accessibility,

quantum turbulence in atomic BECs has attracted considerable theoretical [22–27] and ex-

perimental [28–33] attention. The rich family of topological defects in spinor and pseudospin-

1/2 systems presents a new avenue for studying the properties of quantum turbulence and

nonequilibrium dynamics [34–38]. In two-component condensates, when atomic mass and

mean density of the components are equal, vortices may arise which are characterised by a

phase winding in only one of the components, leading to what are known as half-quantum

vortices (HQVs) due to their similarities with vortices carrying half a quantum of superfluid

circulation in both 3He [39] and spin-1 BECs [40, 41]. These vortices have very different dy-

namics to scalar vortices arising in scalar BECs, and cannot be described by simple point-

vortex models [42, 43]. Chapter 4 is dedicated to the study of a 2D system filled with HQVs

undergoing quantum turbulence.

The combination of a macroscopic condensate phase together with spin rotations leads

to an even richer phenomenology of topological defects present within spinor BECs that

are otherwise unseen in scalar and two-component condensates. The existence and type of

topological defects allowed within spinor BECs can be found from the topology of the ground

state manifold, and detailed constructions of some topological defects present within these

systems are available in Chapter 3. Vortices, for example, are rich and varied in their charac-

teristics within spinor BECs. Some examples are: Fractional vortices, which carry circulation

in fractional units compared to vortices arising in scalar condensates, spin vortices, carrying

a circulation of the condensate spin only, and nonsingular vortices, textures that carry mass

and/or spin circulation. The existence of such vortices, however, does not imply their stabil-

ity, and many numerical studies have investigated the energetic stability of both singular and

nonsingular vortices in spinor condensates [44–50].

Since the expanded order parameter space of spinor BECs allows for a variety of differ-

ent vortex states, including both singular and nonsingular vortices, if one applies a stirring

laser to such a condensate to nucleate vortices then it is not always clear which types of vor-

tices will nucleate. Thus, instead of stirring lasers, other experimental techniques exist for

generating specific types of vortices in spinor systems. For example, a nonsingular vortex

was generated in a spin-1 23Na condensate by methods of phase-imprinting [51], where the

magnetic field bias was adiabatically reduced to zero along the trap axis. This distributed

the atomic population across the three internal spin states, producing the required coreless

spin texture. The same technique was used to realise both singly- and doubly-quantised vor-

tices in a spin-polarised BEC, the latter of which was observed to undergo a splitting pro-
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cess into two singly quantised vortices [52, 53]. More recently, experimental techniques have

been developed that allow for the controlled creation of vortices with internal point-group

symmetries [54], further opening up experimental accessibility for investigating the unique

properties of topological defects in spinor BECs.

Owing to their accessibility and high controllability, spinor BECs are also excellent candi-

dates for studying a range of nonequilibrium physics [13], including relaxation dynamics [55,

56] and quantum quenches [35, 37, 57–62]. By continuously changing an external param-

eter, such as the linear or quadratic Zeeman shifts (see Sec. 2.3.4) through the use of ap-

plied magnetic fields, the system can be ramped across a quantum critical point [63] and

undergo a quantum phase transition. Such a transition is defined as continuous (discontin-

uous) depending on whether the derivative of the internal energy of the system with respect

to the changing external parameter is also continuous (discontinuous). Spinor BECs posses a

number of both continuous and discontinuous quantum critical points between their ground

state phases, making them an ideal test bed for studying both types of quantum phase transi-

tions. An example of a second-order (continuous) quantum phase transition arises between

the polar and broken-axisymmetry phases in spin-1 BECs (see Chapter 3). Naturally, they also

make excellent candidates for investigating the Kibble-Zurek mechanism (KZM), which gov-

erns the observed scaling laws when the symmetry of a system is spontaneously broken after

undergoing a continuous phase transition [64]. Much theoretical and experimental work has

already confirmed Kibble-Zurek scaling in a multitude of continuous quantum phase transi-

tions in spinor condensates [57, 61, 65–74]. Furthermore, there has been the first experimen-

tal evidence of observed scaling laws across a discontinuous quantum phase transition in a

spinor BEC [75], showing their excellent eligibility for studying the lesser-known scaling laws

associated with discontinuous phase transitions.

1.2.1 Topological interfaces

When a system contains multiple topologically distinct phases described by different order

parameters, a topological interface may form between them. Such interfaces already arise in

many areas of physics, from the context of domains walls in the early universe [76–78] to the

A–B phase boundary in superfluid liquid 3He [79–84]. The different bulk regions may also

harbour topological defects, which either terminate on the interface or smoothly connect to

a topologically distinct object on the other side. Due to their rich phase diagram exhibiting a

range of symmetries and defects, spinor BECs provide an ideal testing ground for investigat-

ing topological interface physics in a highly-controllable system.

Topological interfaces in spin-1 systems can be engineered through spatial control of Zee-
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man shifts [85–87], leading to a condensate containing two topologically distinct bulk regions

described by different symmetries. In [85], a topological interface was formed between the

polar and ferromagnetic phases of a spin-1 BEC, and a range of topological defects were con-

structed. These defects ranged from simple singly-quantised vortices in both phases con-

necting across the interface, to the more complicated case of HQVs in the polar phase con-

necting to nonsingular vortices in the ferromagnetic phase, which may even exist together

with monopoles. Interfaces may also form within vortex cores, where the bulk order parame-

ter outside the core continuously transforms into a different symmetry within the core. Such

interfaces have already been created experimental in spin-1 [88, 89] and spin-2 [54] BECs.

Their even richer phase diagram and family of defects implies that spin-2 condensates of-

fer an even greater avenue of study for topological interface physics. They additionally have

ground state phases with discrete polytope point-group symmetries [54, 90–92] in which the

defects are non-Abelian [93] and hence are dependent on other defects within the system,

leading to intriguing interface physics.

1.3 Outline of the thesis

An outline of the structure of this thesis and a description of each chapter is given in this

section. The thesis is split into three main parts: Part I introduces the mathematical mod-

els required to understand atomic BECs, and introduces the ground states, symmetries, and

topological defects present in spin-1 and spin-2 BECs. Part II presents analytical and numer-

ical work carried out to investigate various areas of physics in spinor and pseudospin-1/2

condensates. In particular, we cover three main areas: relaxation dynamics, discontinuous

quantum phase transitions, and topological interfaces. Finally, part III is a collection of ap-

pendices relating to numerical methods or detailed derivations. The following publications

partially feature results shown in this thesis:

• Relaxation dynamics of half-quantum vortices in a two-dimensional two-component

Bose-Einstein condensate

M. T. Wheeler, H. Salman, and M.O. Borgh, EPL 135 30004 (2021).

Contribution: All code development and numerical computation, contributed to anal-

ysis, analytical derivations and writing.

• Dynamics of a Nonequilibrium Discontinuous Quantum Phase Transition in a Spinor

Bose-Einstein Condensate

M. T. Wheeler, H. Salman, and M.O. Borgh, Submitted to Physical Review Letters.
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Contribution: Code development and all numerical computation. Main contributor to

analytical derivations and analysis. Contributed to writing.

• Topological interfaces crossed by defects and textures of continuous and discrete point

group symmetries in spin-2 Bose-Einstein condensates

G. Baio, M. T. Wheeler, D. S. Hall, J. Ruostekoski, and M.O. Borgh, Submitted to Physical Review

Research.

Contribution: Main contributor to numerical computation, contributed to analysis

and writing.

Part I — Introduction and background

Chapter 1 introduces the notion of a Bose-Einstein condensate, as well as presenting an

overview of the history of experimental techniques used to achieve them, before transition-

ing to spinor and pseudospin-1/2 condensates and their respective histories. We also present

an overview of experimental techniques used to achieved different types of vortices within

spinor and pseudospin-1/2 condensates, and show how spinor BECs are ideal test beds for

investigate a wide range of different physics.

Chapter 2 introduces the mathematical models used to accurately describe scalar, two-

component, and spinor Bose-Einstein condensate systems. We start with the scalar sys-

tem, presenting the Hamiltonians using a quantum treatment, before introducing the mean-

field theory and constructing the Gross-Pitaevskii equation. We then generalise to the two-

component system and discuss the miscibility criterion. From here, we progress into the

mathematical models of spinor BECs. We generally construct the interaction Hamiltonian

of a spin- f system by linking projection operators to physical observables, and then dis-

cuss how the single-particle Hamiltonian differs between spinor and scalar systems. Finally,

we introduce the mean-field equations for spinor systems, showing detailed derivations of

their reduction to lower dimensionalities, and giving the equations in various dimensionless

forms.

Chapter 3 discusses the ground states, symmetries, and topological defects present within

spin-1 and spin-2 BECs. We first present the ground state phase diagram for both spin-1 and

spin-2 systems, before discussing each phase that arises individually. In each case we give

two different graphical representations of each phase, and discuss their respective symme-

tries. We finally introduce the topologically stable defects in each phase by constructing the

homotopy groups, before presenting a dynamical discussion of a select few examples.
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Part II — Numerical studies of spinor and pseudospinor condensates

Chapter 4 investigates the relaxation dynamics of HQVs in a two-component BEC. We first

present the two-component BEC as a pseudospin-1/2 system, and analytically construct the

form of the HQVs. We then present numerical simulations, investigating both the spatial and

temporal aspects of the relaxation dynamics. In particular, we focus on the decay rate of the

HQVs as the ratio of the inter- and intra-species interactions are varied.

Chapter 5 investigates a discontinuous quantum phase transition in a spin-1 BEC. We

first discuss the notion of a discontinuous quantum critical point and how it applies to our

system, thereby confirming we are working with a first-order phase transition. We then gen-

eralise the Kibble-Zurek theory to apply to our gapless spectrum, and derive a modified scal-

ing for the density of defects. Additionally, separate from the KZM, we linearise the resulting

Gross-Pitaevskii equations and derive scaling behaviour near the critical point. Finally, nu-

merical studies are presented that confirm our analytical predictions.

Chapter 6 extends the work of Borgh and Ruostekoski [85–87] to spin-2 systems, and in-

vestigates a variety of topological interfaces that can be constructed in spin-2 BECs. In partic-

ular, four interfaces are studied: Uniaxial nematic to biaxial nematic, cyclic to nematic (both

uniaxial nematic and biaxial nematic), cyclic to ferromagnetic, and finally ferromagnetic to

biaxial nematic. We construct a variety of defects spanning the interface in each case, ranging

from singular line defects to point defects such as monopoles. Finally, we present numerical

work simulating the connection of a select few topological defects in both a uniaxial nematic

to biaxial nematic interface, as we as a cyclic to ferromagnetic interface.

Finally, Chapter 7 ends with the overall conclusions of the thesis, before presenting av-

enues of future work.

Part III — Appendices

Appendix A presents the dimensionless form of the two-component Gross-Pitaevskii equa-

tions using the lattice length as our unit of length, which is relevant for Chapter 4. Finally,

Appendix B discusses the derivation of the interpolating stationary solutions used within

Chapter 6
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2
MATHEMATICAL MODELS OF BOSE-EINSTEIN

CONDENSATES

In this chapter we provide the theoretical background necessary to understand the dynamics

of ultracold atomic gases. We begin by introducing the most simple form of a BEC, the scalar

condensate. This lays the framework for building to more complex systems. We then go on to

discuss the two-component condensate, where additional interactions arise between atoms

of differing components. Finally, we construct the framework needed to understand spinor

BECs, which is the main focus of this thesis.

2.1 Mean-field description of scalar condensates

Consider a system of bosons which is dilute enough such that we may approximate inter-

actions between bosons as two-body interactions only. Such a system is described by the

Hamiltonian [94]

Ĥ = Ĥ0 + ĤI . (2.1)

Here, Ĥ0 is the single-particle Hamiltonian:

Ĥ0 =
∫
Ψ̂†(r, t )

[
−ħ2∇2

2m
+V (r, t )

]
Ψ̂(r, t )d3r, (2.2)

where Ψ̂(r, t ) is the field operator that annihilates a boson at position r at time t . The first

term represents the kinetic energy operator and V (r, t ) is a trapping potential. Additionally,

11
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ĤI represents the interacting part of the Hamiltonian, which describes binary collisions be-

tween bosons at positions r1 and r2 whose interactions are described by the interaction po-

tential U (r1,r2):

ĤI =
1

2

∫ ∫
Ψ̂†(r1, t )Ψ̂†(r2, t )U (r1,r2)Ψ̂(r2, t )Ψ̂(r1, t )d3r1 d3r2. (2.3)

The dilute nature of the BEC justifies that any binary interaction between two particles at

positions r1,r2 can be approximated by a contact interaction modelled by the following delta

function:

U (r1,r2) = gδ(r1 − r2), (2.4)

where the interaction coefficient, g , is related to the s-wave scattering length, as , as

g = 4πħ2as

m
, (2.5)

for a boson with atomic mass m.

2.1.1 The Gross-Pitaevskii equation

The Heisenberg picture states that the time evolution for the field operator Ψ̂(r, t ) is given

by [94]

iħ∂Ψ̂(r, t )

∂t
= [
Ψ̂(r, t ), Ĥ

]
, (2.6)

which, using Eq. (2.1), is calculated to be

iħ∂Ψ̂(r, t )

∂t
=

[
−ħ2∇2

2m
+V (r, t )

]
Ψ̂(r, t )+ gΨ̂†(r, t )Ψ̂(r, t )Ψ̂(r, t ). (2.7)

Now, since we consider a system close to absolute zero, we make the assumption that most

atoms occupy the same quantum state, and hence we can decompose the field operator into

a mean and fluctuation parts as [94]

Ψ̂(r, t ) =ψ(r, t )+δψ̂(r, t ), (2.8)

where ψ≡ 〈Ψ̂(r, t )〉 is a classical scalar field describing the wave function of the condensate,

which describes the spatially-coherent condensed state. Here, δψ̂(r, t ) describes deviations

from this mean and 〈δψ̂(r, t )〉 = 0. Substituting the above form of the field operator into

Eq. (2.7), taking the expectation and ignoring terms of δψ̂2 or higher yields the equation of

motion for the wave function of a Bose-Einstein condensate, the Gross-Pitaevskii equation

(GPE):

iħ∂ψ(r, t )

∂t
=

(
− ħ2

2m
∇2 +V (r, t )+ g |ψ(r, t )|2

)
ψ(r, t ). (2.9)
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Neglecting the fluctuation terms is only valid when considering a system at zero temperature,

where there are no contributions from thermal fluctuations and contributions from quantum

fluctuations are negligible in comparison to the classical field.

For g > 0 the interactions are repulsive and for g < 0 they are attractive. When g = 0 there

are no interactions present and the system reduces to the Schrödinger equation. The wave

function of the system is normalised to the number of particles∫
|ψ(r, t )|2 d3r = N , (2.10)

which remains conserved under the GPE. Finally, the total energy of the system is given by

E =
∫ [ ħ2

2m
|∇ψ(r, t )|2 +V (r, t )|ψ(r, t )|2 + g

2
|ψ(r, t )|4

]
d3r = Ekin +Epot +Eint, (2.11)

where Ekin,Epot and Eint describes the kinetic, potential, and interaction energies, respec-

tively.

2.2 Two-component Bose-Einstein condensates

We now generalise part of the theory introduced in the previous section to describe multi-

component condensates. The time-dependent coupled Gross-Pitaevskii equations each de-

scribe a condensate similar to the standard GPE given in Eq. (2.9), but now with an additional

non-linear term that describes the interactions of atoms between condensate components.

The coupled GPEs are given as

iħ∂ψ1(r, t )

∂t
=

[
− ħ2

2m1
∇2 +V1(r, t )+ g1|ψ1(r, t )|2 + g12|ψ2(r, t )|2

]
ψ1(r, t ),

iħ∂ψ2(r, t )

∂t
=

[
− ħ2

2m2
∇2 +V2(r, t )+ g2|ψ2(r, t )|2 + g12|ψ1(r, t )|2

]
ψ2(r, t ),

(2.12)

where ψ j (r, t ) corresponds to the wave function of component j with atomic mass m j for

j = 1,2, and V j (r, t ) is an external trapping potential. The interaction terms are a generalised

from of Eq. (2.5), given explicitly as

g j =
4πħ2a j

m j
, g12 =

2πħ2(m1 +m2)a12

m1m2
, (2.13)

which describe the intraspecies and interspecies interaction strengths, respectively. Simi-

lar to the scalar case, the wave function of each component is normalised to the number of

atoms of that component ∫
|ψ j |2d 3r = N j . (2.14)



CHAPTER 2. MATHEMATICAL MODELS OF BOSE-EINSTEIN CONDENSATES 14

The time-independent GPEs can be obtained by making the following substitution of the

wave function ψ j (r, t ) =ψ j (r)e−iµ j t/ħ in Eq. (2.12), yielding

µ1ψ1(r) =
[
− ħ2

2m1
∇2 +V1(r)+ g1|ψ1(r)|2 + g12|ψ2(r)|2

]
ψ1(r),

µ2ψ2(r) =
[
− ħ2

2m2
∇2 +V2(r)+ g2|ψ2(r)|2 + g12|ψ1(r)|2

]
ψ2(r),

(2.15)

where µ j is the chemical potential of component j . The total energy of the two-component

system comprises the same contributions to the energy as the scalar case given in Eq. (2.11),

i.e., E = Ekin +Epot +Eint, but with contributions from both components as

E =
∫ [ ħ2

2m1
|∇ψ1|2 +V1(r)|ψ1|2 +

g1

2
|ψ1|4

]
d3r

+
∫ [ ħ2

2m2
|∇ψ2|2 +V2(r)|ψ2|2 +

g2

2
|ψ2|4

]
d3r

+
∫ [

g12|ψ1|2|ψ2|2
]

d3r.

(2.16)

2.2.1 Miscible and immiscible regimes

Two-component condensates can be either miscible or immiscible, depending on the in-

teractions present within the system. Here, we derive the immiscibility criterion for two-

component condensates following the procedure in Ref. [95]. We start by assuming, for sim-

plicity, a BEC in the absence of a trapping potential such that V1(r) = V2(r) = 0. Assuming a

homogeneous stationary solution where the kinetic energy terms can be neglected, Eq. (2.15)

reduces to
µ1 = g1|ψ1|2 + g12|ψ2|2,

µ2 = g2|ψ2|2 + g12|ψ1|2.
(2.17)

Let us consider a miscible regime, where, inside the trap, the densities of each component can

be re-written as n j = N j /V , where V is the volume of the condensate. The above equations

then reduce to g1n1 + g12n2 =µ1 and g2n2 + g12n1 =µ2, and the energy becomes

Emisc =
1

2

[
g1

N 2
1

V
+ g2

N 2
2

V
+2g12

N1N2

V

]
. (2.18)

Provided g12 is small enough, any variation to this state will increase the system energy, im-

plying that this state is stable. When g12 gets large enough, however, it can be shown that

there exists a state with a lower energy.

Let us consider an immiscible regime, where the two condensates do not spatially over-

lap. The volume of condensate j is given as V j and the densities subsequently become n j =
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N j /V j . Assuming that the contribution to the energy arising from the interface between the

two condensates is negligible in comparison to the contribution from the bulk, Eqs. (2.15)

reduce to g j n j =µ j with the total energy

Eimmisc =
1

2

[
g1

N 2
1

V1
+ g2

N 2
2

V2

]
. (2.19)

Minimising the above energy with respect to V1 or V2 with V = V1+V2 results in the expressions

for the volume of each component

V1 =
1

1+
√

g2/g1(N2/N1)
V , (2.20)

V2 =
1

1+
√

g1/g2(N1/N2)
V . (2.21)

The corresponding densities then become

n1 =
(

1+
√

g2

g1

N2

N1

)
N1

V
, n2 =

(
1+

√
g1

g2

N1

N2

)
N2

V
. (2.22)

Substituting the above densities into the expression for the total energy in Eq. (2.19) yields

Eimmisc =
1

2

[
g1

N 2
1

V
+ g2

N 2
2

V
+2

p
g1g2

N1N2

V

]
, (2.23)

and the difference between the energies of the miscible and immiscible phases is subse-

quently calculated as

∆E = Emisc −Eimmisc = (g12 −
p

g1g2)
N1N2

V
. (2.24)

Therefore, the condition g12 >p
g1g2 reveals that for large enough interspecies interactions

the system favours an immiscible phase over a miscible one. This criterion only depends on

the interactions within the system, and is not affected by condensate particle numbers or

size. Fig. 2.1 shows the boundary between the two phases for g1 = 1 in a parameter space of

g2, g12.

2.3 Spinor Bose-Einstein condensates

Spinor systems are comprised of particles with total hyperfine spin f . The hyperfine spin

is made up of contributions from the atoms’ electron spin, s, the electron orbital angular

momentum, l , and the nuclear spin, i [96]. Canonical examples include 23Na and 87Rb, which

can be realised as both f = 1 and f = 2 systems, and 52Cr, which can be realised as an f = 3
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Figure 2.1: Boundary between the miscible and immiscible regimes for a two-component
condensate with g1 = 1.

system. A hyperfine spin f implies that there are 2 f + 1 possible spin states along a given

spin quantisation axis. Such a state is denoted
∣∣ f ,m

〉
, where m ∈ {− f ,− f +1, . . . ,0, . . . , f −1, f }

denotes the magnetic sublevel for an atom with total spin f . A system of identical spin- f

bosons is described by the field operators ψ̂m(r) which satisfy the following commutation

relations [96]: [
ψ̂m(r1),ψ̂†

m′(r2)
]
= δmm′δ(r1 − r2), (2.25)[

ψ̂m(r1),ψ̂m′(r2)
]= [

ψ̂†
m(r1),ψ̂†

m′(r2)
]
= 0. (2.26)

To construct the relevant spinor Hamiltonians we follow the methodology in Refs [10, 11,

96–98] and make the following assumptions: We assume only elastic and binary collisions

between atoms, implying that the total spin is conserved, as well as low incident collision

energy so that only s-wave scattering is observed. Additionally, we assume no spin-orbit cou-

pling and no mixing of hyperfine states.

2.3.1 Contributions from spin-channels

Collisions between two incoming spin- f atoms in magnetic sublevels m and m′ can undergo

spin-exchange interactions, where the outgoing particles can now be in entirely different

magnetic sublevels. In the case of s-wave scattering, where the orbital angular momentum is

zero, M≡ m+m′ is conserved [96]. For example, collisions between two spin-1 atoms located
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in sublevels m = 1 and m′ = −1 must collide to form M = 0, implying that the only allowed

exchange is:

(1,−1)⇆ (0,0). (2.27)

In general, a collision between two spin- f atoms can combine to have a total spin F ∈
{0,1, . . . ,2 f } andM≡ m+m′ ∈ {−F, . . . ,F}. In the s-wave scattering limit, the total spinF of two

colliding atoms must be a multiple of 2 f , i.e., F ∈ {0,2, . . . ,2 f }, since the wave function must

remain symmetric under the exchange of the two atoms [3]. The total interaction Hamilto-

nian is constructed as a sum of each contribution from individual spin channels as [96]

Ĥint =
∑

F=0,2,...2 f

V̂ (F), (2.28)

where V̂ (F) is the interaction Hamiltonian between two atoms with total spin F, which is

given as

V̂ (F) = 1

2

∫ ∫
U (F)(r1,r2)

F∑
M=−F

Â†
FM

(r1,r2)ÂFM(r1,r2)d3r1d3r2, (2.29)

where U (F) describes the interaction potential between two particles with total spin F. Here,

ÂFM are projection operators that project two spin- f particles with total component M onto

total spin F and component M. They are defined, explicitly, as

ÂFM(r1,r2) = ψ̂T AFMψ̂, (2.30)

where AFM are matrices of Clebsch-Gordon coefficients which couple individual spins of

atoms together to describe them using the total spin F [96]:

(AFM)m,m′ = 〈
F;M

∣∣ f ,m; f ,m′〉 . (2.31)

Since we are assuming binary collisions, we can make an assumption similar to the scalar

case and model the interactions by a contact potential of the following form:

U (F) = gFδ(r1 − r2), (2.32)

where gF is an interaction coefficient related to the s-wave scattering length of the total spin-

F channel, aF, as

gF = 4πħ2

M
aF. (2.33)



CHAPTER 2. MATHEMATICAL MODELS OF BOSE-EINSTEIN CONDENSATES 18

This then reduces Eq. (2.29) to

V̂ (F) = gF
2

∫ F∑
M=−F

Â†
FM

(r,r)ÂFM(r,r)d3r. (2.34)

From this, we can construct the full interaction Hamiltonian using Eq. (2.28). However, we

first want to connect the projection operators ÂFM(r,r) to physical observables of the system,

so that we can construct the Hamiltonian in terms of these observables.

2.3.2 Physical observables

In this subsection we introduce useful quantities and operators that arise in spinor conden-

sates, such as spinor Pauli-type matrices and the spin-singlet pair operator. In addition,

we show how physical observables can be constructed from powers of the spinor Pauli-type

matrices, and how these physical observables can be connected to the projection operators

ÂFM(r).

Spinor Pauli-type matrices

Spin- f Pauli-type matrices, f ≡ ( fx , fy , fz ), form the basis for constructing useful quantities

that arise in spinor BECs such as the condensate spin vector. Here we construct a general

representation for these matrices as well as give the explicit Pauli-type matrices for spin-1

and spin-2 systems.

A spin- f Pauli-type matrix is a (2 f +1)× (2 f +1) matrix. The (m,m′)-components of the

spin matrices are defined generally as [96]

( fx )mm′ = 1

2

[√
( f −m +1)( f +m)δm−1,m′ +

√
( f +m +1)( f −m)δm+1,m′

]
, (2.35)

( fy )mm′ =− i

2

[√
( f −m +1)( f +m)δm−1,m′ −

√
( f +m +1)( f −m)δm+1,m′

]
, (2.36)

( fz )mm′ = mδmm′ . (2.37)

The spin matrices act on a given spin state to transform it into a new spin state. For example,

the action of fz on a given state is

fz
∣∣ f ,m

〉= m
∣∣ f ,m

〉
. (2.38)

The spin-1 Pauli-type matrices are given below in their irreducible representation as [96]

fx = 1p
2


0 1 0

1 0 1

0 1 0

, fy =
ip
2


0 −1 0

1 0 −1

0 1 0

, fz =


1 0 0

0 0 0

0 0 −1

. (2.39)
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Similarly, the spin-2 Pauli-type matrices are

fx =



0 1 0 0 0

1 0
√

3
2 0 0

0
√

3
2 0

√
3
2 0

0 0
√

3
2 0 1

0 0 0 1 0


, fy = i



0 −1 0 0 0

1 0 −
√

3
2 0 0

0
√

3
2 0 i

√
3
2 0

0 0
√

3
2 0 −1

0 0 0 1 0


,

fz =



2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

.

(2.40)

Spin-singlet pair

The quantity Â00 is the spin-singlet pair operator, which describes interactions for atoms in a

singlet state (zero total spin, i.e., F= 0) and with M= 0. Using Eq. (2.30) and Eq. (2.31), along

with the substitution F=M= 0, yields the spin-singlet pair operator:

Â00(r1,r2) = 1√
2 f +1

f∑
m=− f

(−1) f −mψ̂m(r1)ψ̂−m(r2). (2.41)

Operator relations

Most physical observables can be constructed from powers of the spinor Pauli-type matrices,

f ≡ ( fx , fy , fz ) [96]. Firstly, the total density operator is defined as

n̂(r) =
f∑

m=− f
ψ̂†

m(r)ψ̂m(r). (2.42)

Secondly, the components of the condensate spin density operator, F̂ ≡ (F̂x , F̂y , F̂z ), also known

as the magnetisation operator, are constructed as

F̂ν(r) =
f∑

m,m′=− f

(
fν

)
mm′ψ̂

†
m(r)ψ̂m′(r), (ν= x, y, z). (2.43)

Finally, the general rank-k spin nematic tensor operator for k ≥ 2 is given by

N (k)
ν1ν2···νk

=
f∑

m,m′=− f

(
fν1 fν2 · · · fνk

)
mm′ψ̂

†
m(r)ψ̂m′(r), (ν1,ν2, . . . ,νk = x, y, z). (2.44)
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Spin-channel operators to physical observables

To construct the spinor interaction Hamiltonian in terms of physical observables, we need to

connect them to the projection operators, ÂF,M. The relationship between the two is con-

structed using a completeness relation that joins the irreducible observables to the compo-

sition law of angular momentum, then taking the expectation value (see Ref. [96] for details).

The result is the following relation [96, 98]:

∑
ν1ν2···νk

(Nν1ν2···νk )2 =
∑

F=0,2,...,2 f

[
1

2
F(F+1)− f ( f +1)

]k F∑
M=−F

Â†
F,M ÂF,M, (2.45)

where the left-hand side is a tensor inner product, reducing the tensor to a scalar energy term.

2.3.3 Spinor interaction Hamiltonian

Using the results of the previous subsection, namely, Eq. (2.45), we can now construct the

full spinor interaction Hamiltonian for spin- f systems. In particular, we explicitly construct

the interaction Hamiltonian for spin-1 and spin-2 systems, and then provide the general in-

teraction Hamiltonian for a spin- f system. The Hamiltonian will provide us with the form

of interaction strengths arising in spinor systems, and how they relate to the spin-channel

scattering lengths, aF.

Spin-1

In spin-1 we have F = 0 or F = 2, which, using Eq. (2.28), implies an interaction Hamiltonian

of the form

Ĥint = V̂ (0) + V̂ (2). (2.46)

Then, using Eq. (2.34), this becomes

Ĥint =
1

2

∫
g0 Â†

00(r)Â00(r)+ g2

2∑
M=−2

Â†
2M(r)Â2M(r)d3r. (2.47)

To simplify the above expression, we set f = 1 and k = 0,1 in Eq. (2.45), which yields the

following two expressions

n̂2(r) = Â†
00(r)Â00(r)+

2∑
M=−2

Â†
2M(r)Â2M(r), (2.48)

F̂2(r) =−2n̂2(r)+3
2∑

M=−2

Â†
2M(r)Â2M(r). (2.49)
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Solving the above simultaneous equations gives the following expressions for the projection

operators:

Â†
00(r)Â00(r) = 1

3

[
n̂2(r)− F̂2(r)

]
, (2.50)

2∑
M=−2

Â†
2M(r)Â2M(r) = 1

3

[
n̂2(r)+ F̂2(r)

]
. (2.51)

Finally, substituting the above expressions into Eq. (2.47) gives the full interaction Hamilto-

nian for a spin-1 BEC:

Ĥint =
1

2

∫
c0n̂2(r)+ c1F̂2(r)d3r, (2.52)

where

c0 =
1

3

(
g0 +2g2

)
, (2.53)

c1 =
1

3

(
g2 − g0

)
. (2.54)

Here, c0 gives the density, or spin-independent, interaction strength and c1 gives the spin-

dependent interaction strength. As we shall see in Chapter 3, the sign of the spin-independent

interaction strength, c1, determines the relevant ground states available in spin-1 systems.

Since c1 is the difference of two s-wave scattering lengths, which are comparable in magni-

tude experimentally, the spin-dependent interaction strength is usually much smaller than

the spin-independent strength (see Sec. 2.5.3).

Spin-2

In a spin-2 system we have F = 0,2,4. Eq. (2.28) then implies the interaction Hamiltonian for

a spin-2 system has the form

Ĥint = V̂ (0) + V̂ (2) + V̂ (4). (2.55)

Using Eq. (2.34) the above becomes

Ĥint =
1

2

∫
g0 Â†

00(r)Â00(r)+ g2

2∑
M=−2

Â†
2M(r)Â2M(r)+ g4

4∑
M=−4

Â†
4M(r)Â4M(r)d3r. (2.56)

Substituting f = 2 and k = 0,1,2 in Eq. (2.45) and solving the resulting equations for the pro-

jection operators gives the following relations

2∑
M=−2

Â†
2M(r)Â2M(r) = 1

7

[
4n̂2(r)−10Â†

00(r)Â00(r)− F̂2(r)
]

, (2.57)

4∑
M=−4

Â†
4M(r)Â4M(r) = 1

7

[
3n̂2(r)+3Â†

00(r)Â00(r)+ F̂2(r)
]

. (2.58)
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Substituting the above relations into Eq. (2.56) yields the full interaction Hamiltonian for a

spin-2 BEC:

Ĥ = 1

2

∫
c0n̂2(r)+ c1F̂2(r)+ c2 Â†

00(r)Â00(r)d3r, (2.59)

where the interaction strengths are defined as

c0 =
1

7

(
4g2 +3g4

)
, (2.60)

c1 =
1

7

(
g4 − g2

)
, (2.61)

c2 =
1

7

(
7g0 −10g2 +3g4

)
. (2.62)

Here, c0,c1 are the spin-independent and spin-dependent interaction strengths, respectively.

Since the spin-2 system has an extra contribution from the spin-channels compared to the

spin-1 system, there arises an additional interaction strength, c2, denoted the spin-singlet

interaction strength.

Spin- f

Generally, the spin- f interaction Hamiltonian has f +1 non-linear interaction terms to ac-

count for the f +1 spin-channels. The process to construct higher spin interaction Hamilto-

nians is the same as for the spin-1 and spin-2 cases, making use of Eq. (2.45). For example,

for a spin-3 system, we substitute f = 3 and k = 0,1,2,3 into Eq. (2.45) and follow the same

methodology as before.

2.3.4 Single-particle Hamiltonian

When a magnetic field is applied to a spinor system, the field causes energy shifts in the

spin components. When this field is aligned along the spin quantisation axis, linear, p, and

quadratic, q , Zeeman shifts arise. In such a case, the single-particle (non-interacting) Hamil-

tonian is given by [96]

Ĥ0 =
∫ f∑

m,m′=− f
ψ̂†

m

[
− ħ2

2M
∇2 +V (r)−p( fz )mm′ +q( f 2

z )mm′

]
ψ̂m′ d3r, (2.63)

where V (r) is a trapping potential. The linear Zeeman shift, p, introduces a Larmor pre-

cession of the condensate spin about the direction of the applied magnetic field, and hence

can be removed by transforming to a rotating basis. The quadratic Zeeman shift, q , how-

ever, breaks the spin symmetry, and thus affects the non-linear spin dynamics. Throughout

this thesis we consider a variety of applied magnetic fields providing different forms for the
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quadratic Zeeman shift. In Chapter 5 we consider a time-dependent but spatially-uniform

quadratic Zeeman shift, i.e., q = q(t ). Additionally, Chapter 6 sees the application of a non-

uniform magnetic field such that q = q(z).

2.4 Spinor mean-field theory

The mean-field theory for spinor BECs is obtained by expanding the field operator ψ̂m(r) into

a complete orthonormal set of basis functions and taking the expectation (see Ref. [96] for

details). The mean-field state of a spin- f system is then described by a (2 f +1)-component

order parameter of the form

Ψ(r) =


ψ f (r)

ψ f −1(r)
...

ψ− f (r)

=
√

n(r)


ζ f (r)

ζ f −1(r)
...

ζ− f (r)

, (2.64)

whereψ f is the wave function for magnetic sublevel m = f which can be further decomposed

into a normalised spinor ζ as ψm =p
nζm , where

n(r) =
f∑

m=− f
|ψm(r)|2, (2.65)

is the atomic density and ζ†ζ= 1. In this section we use the result of the mean-field theory to

construct the energy functional of both spin-1 and spin-2 systems, and then derive the spinor

Gross-Pitaevskii equations.

2.4.1 Spin-1 Gross-Pitaevskii equations

The mean-field wave function of a spin-1 system is given as a three-component vector of the

form

Ψ(r) =


ψ1(r)

ψ0(r)

ψ−1(r)

=
√

n(r)


ζ1(r)

ζ0(r)

ζ−1(r)

. (2.66)

Combining the results of the single-particle Hamiltonian in Eq. (2.63) and the spin-1 inter-

action Hamiltonian in Eq. (2.52) gives the full mean-field energy functional of the spin-1 sys-

tem [96]:

E [Ψ] =
∫ {

1∑
m=−1

ψ∗
m

[
−ħ2∇2

2M
+V (r)−pm +qm2

]
ψm + c0

2
n2 + c1

2
n2|〈F̂〉|2

}
d3r, (2.67)
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where 〈F̂〉 ≡ (〈F̂x〉,〈F̂y 〉,〈F̂z〉) is the spin expectation density vector of which the components

are defined as

〈F̂ν〉 =
1∑

m,m′=−1
ζ∗m(r)( fν)mm′ζm(r), (ν= x, y, z). (2.68)

Using the spin-1 Pauli-type matrices defined in Eq. (2.39), the individual components of the

spin vectors for a spin-1 system are given explicitly as

〈F̂x〉 =
1p
2

(
ζ∗1ζ0 +ζ∗0 (ζ1 +ζ−1)+ζ∗−1ζ0

)
, (2.69)

〈F̂y 〉 =
ip
2

(−ζ∗1ζ0 +ζ∗0 (ζ1 −ζ−1)+ζ∗−1ζ0
)

, (2.70)

〈F̂z〉 = |ζ1|2 −|ζ−1|2. (2.71)

The spin expectation 〈F̂〉 is related to the spin density vector F̂ as

〈F̂〉 = F̂

n
. (2.72)

The magnitude of the spin expectation takes values from |〈F̂〉| = 0 to |〈F̂〉| = f in a spin- f

system.

The mean-field equations that govern the time-evolution of the individual wave func-

tion components ψm(r) are derived from a variational derivative of the energy functional in

Eq. (2.67) as

iħ∂ψm(r)

∂t
= δE

δψ∗
m(r)

. (2.73)

This results in the spin-1 GPEs:

iħ∂ψm

∂t
=

[
−ħ2∇2

2M
+V (r)−pm +qm2 + c0n

]
ψm + c1n

1∑
m′=−1

〈F̂〉 · fmm′ψm′ , (2.74)

which describe the mean-field evolution of spin-1 Bose-Einstein condensates. The time-

independent GPEs are found through the substitution ψm = ψm(r)e−iµt/ħ, where µ is the

chemical potential. Substituting into Eq. (2.74) and writing the equation for each component

explicitly gives[
−ħ2∇2

2M
+V (r)−p +q + c0n + c1n〈F̂z〉−µ

]
ψ1 +

c1p
2

n〈F̂−〉ψ0 = 0, (2.75)

c1p
2

n〈F̂+〉ψ1 +
[
−ħ2∇2

2M
+V (r)+ c0n −µ

]
ψ0 +

c1p
2

n〈F̂−〉ψ−1 = 0, (2.76)[
−ħ2∇2

2M
+V (r)+p +q + c0n − c1n〈F̂z〉−µ

]
ψ−1 +

c1p
2

n〈F̂+〉ψ0 = 0, (2.77)
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where

〈F̂±〉 = 〈F̂x〉± i 〈F̂y 〉. (2.78)

These equations can be solved to reveal more about the ground states and stationary so-

lutions of spinor BECs, which forms the basis of Chapter 3. Note that, in contrast to two-

component BECs, spinor BECs have a common chemical potential, µ, rather than different

chemical potentials per component. This is due to the fact that spin-dependent interac-

tions lead to exchange of particles between the components and hence individual compo-

nent atom numbers are not conserved, but the total atom number, N , is (see Sec. 2.4.3).

2.4.2 Spin-2 Gross-Pitaevskii equations

The mean-field wave function of a spin-2 system is given as a five-component vector of the

form

Ψ(r) =



ψ2(r)

ψ1(r)

ψ0(r)

ψ−1(r)

ψ−2(r)

=
√

n(r)



ζ2(r)

ζ1(r)

ζ0(r)

ζ−1(r)

ζ−2(r)

. (2.79)

As before, combining the results of the single-particle Hamiltonian in Eq. (2.63) and the spin-

2 interaction Hamiltonian in Eq. (2.59) gives the full mean-field energy functional of the spin-

2 system [96]:

E [Ψ] =
∫ {

2∑
m=−2

ψ∗
m

[
−ħ2∇2

2M
+V (r)−pm +qm2

]
ψm + c0

2
n2 + c1

2
n2|〈F̂〉|2 + c2

2
n2|A00|2

}
d3r.

(2.80)

In the spin-2 case the components of the expectation of the condensate spin vector can be

constructed using the spin-2 Pauli-type matrices in Eq. (2.40) along with Eq. (2.68) to give

〈F̂+〉 = 〈F̂∗
−〉 = 2

(
ζ∗2ζ1 +ζ∗−1ζ−2

)+p
6
(
ζ∗1ζ0 +ζ∗0ζ−1

)
, (2.81)

〈F̂z〉 = 2
(|ζ2|2 −|ζ−2|2

)+|ζ1|2 −|ζ−1|2. (2.82)

The additional term in the spin-2 energy functional is the spin-singlet pair amplitude, defined

in terms of the condensate spinor as

A00 =
1p
5

(
2ζ2ζ−2 −2ζ1ζ−1 +ζ2

0

)
. (2.83)
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Similar to the spin-1 case, the spin-2 GPEs are obtained by substituting Eq. (2.80) into

Eq. (2.73) resulting in five coupled equations that model the mean-field dynamics of spin-2

Bose-Einstein condensates:

iħ∂ψ±2

∂t
=

[
−ħ2∇2

2M
+V (r)∓2p +4q + c0n ±2c1n〈F̂z〉

]
ψ±2 + c1n〈F̂∓〉ψ±1 +

c2p
2

n A00ψ
∗
∓2

(2.84)

iħ∂ψ±1

∂t
=

[
−ħ2∇2

2M
+V (r)∓p +q + c0n ± c1n〈F̂z〉

]
ψ±1 + c1

(p
6

2
n〈F̂∓〉ψ0 +n〈F̂±〉ψ±2

)
− c2p

2
n A00ψ

∗
∓1 (2.85)

iħ∂ψ0

∂t
=

[
−ħ2∇2

2M
+V (r)+ c0n

]
ψ0 +

p
6

2
c1

(
n〈F̂+〉ψ1 +n〈F̂−〉ψ−1

)+ c2p
2

n A00ψ
∗
∓2. (2.86)

Following the same procedure as in the spin-1 case, the time-independent GPEs can be found

through the substitution ψm(r, t ) =ψm(r)e−µt/ħ.

2.4.3 Conserved quantities

In spinor BECs, there are three conserved quantities. Firstly, assuming that the linear and

quadratic Zeeman shifts as well as the external potential are independent of time, the total

energy of the system [Eq. (2.67) and Eq. (2.80)] is conserved. In addition, the total atom num-

ber of the condensate

N =
∫ f∑

m=− f
|ψm |2 d3r, (2.87)

is also conserved. Furthermore, the z-component of the magnetisation, defined as

Mz =
∫
〈F̂z〉d3r, (2.88)

is also conserved. The conservation of the longitudinal magnetisation can be seen from the

fact that spin-exchange interactions leave the wave function symmetric. For example, in a

spin-1 system the only allowed exchanges are given in Eq. (2.27). Hence, having a particle

that leaves (or enters) the m = 1 component implies there is also an additional particle that

leaves (or enters) the m = −1 component. Then, by the definition of F̂z in Eq. (2.69), we see

that the integral of the longitudinal spin vector, i.e., the longitudinal magnetisation defined

above, would remain constant.



CHAPTER 2. MATHEMATICAL MODELS OF BOSE-EINSTEIN CONDENSATES 27

2.4.4 Reduction to lower dimensions

One can reduce the full 3D coupled GPEs to lower dimensions by considering sufficiently

tight confinement of the condensate in one or more directions. Here, we reduce the spin-1

GPEs to their 2D and 1D counterparts.

Reduction to 2D

To begin, we start with the full 3D dimensional equations given in Eq. (2.74), written in matrix

form as

iħ∂Ψ
∂t

=
[
−ħ2∇2

2M
+V (r)+ c0n + c1n〈F̂〉 · f−p fz +q f 2

z

]
Ψ, (2.89)

whereΨ= (ψ1,ψ0,ψ−1) is the three-component wave function and f ≡ ( fx , fy , fz ) are the spin-

1 Pauli-type matrices defined in Eq. (2.39). To reduce the dimensionality, we assume the

condensate has been tightly confined in the z-direction by means of a harmonic oscillator

which has trapping frequencies (ωx ,ωy ,ωz ) in the (x, y, z) directions, respectively. A tight

confinement in the z direction is achieved by having ωz ≫ ωx ,ωy . In addition, we assume

the trapping frequencies are sufficiently such that only the ground state of the condensate is

occupied. With these assumptions, we can write the wave function of the condensate in a

separable form:

Ψ(x, y, z, t ) = Ψ̃(x, y, t )Φ(z), (2.90)

whereΦ(z) is normalised as
∫ ∞
−∞ |Φ(z)|2 dz = 1.

Substituting Eq. (2.90) into Eq. (2.89) we obtain

iħ∂Ψ̃
∂t
Φ=

[
− ħ2

2M
Φ∇2

⊥− ħ2

2M

∂2Φ

∂z2 + [V⊥(x, y)+Vz (z)]Φ+ c0Ψ̃
†Ψ̃|Φ|2Φ

+c1Ψ̃
†Ψ̃|Φ|2Φ〈F̂〉 · f−pΦ fz +qΦ f 2

z

]
Ψ̃Φ.

(2.91)

To reduce the equation further, we multiply from the left by Φ∗ and integrate over the z di-

rection, which gives:

iħ∂Ψ̃
∂t

=
[
− ħ2

2M
Φ∇2

⊥− ħ2

2M

(∫ ∞

−∞
Φ∗ d2Φ

dz2 dz

)
+V⊥(x, y)+

(∫ ∞

−∞
Vz (z)|Φ|2dz

)
+c0ñ

(∫ ∞

−∞
|Φ|4dz

)
+ c1ñ〈F̂〉 · f

(∫ ∞

−∞
|Φ|4dz

)
−p fz +q f 2

z

]
Ψ̃,

(2.92)

where ñ = Ψ̃†Ψ̃. In the above equation, the constant C =− ħ2

2M

∫ ∞
−∞Φ

∗ d2Φ
dz2 dz+∫ ∞

−∞Vz (z)|Φ|2dz

can be removed from the equation via the appropriate transformation Ψ̃→ Ψ̃e−C t/N , where
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N is the total atom number. Now, we take Φ(z) to be the harmonic oscillator ground state,

which has the form

Φ(z) =
(
β

π

) 1
4

e−
β

2 z2
, (2.93)

where β= Mωz /ħ. This then leads to the integral∫ ∞

−∞
|Φ(z)|4dz =

√
β

2π
. (2.94)

We can then appropriately rescale the interaction strengths to obtain their 2D counterparts:

c2D
0 = c0

√
β

2π
, c2D

1 = c1

√
β

2π
. (2.95)

Finally, substituting back into Eq. (2.92) yields the 2D GPEs for a spin-1 system:

iħ∂Ψ̃
∂t

=
[
− ħ2

2M
∇2
⊥+V⊥+ c2D

0 n + c2D
1 n〈F̂〉 · f−p fz +q f 2

z

]
Ψ̃, (2.96)

where we have dropped the tildes for notational convenience.

Reduction to 1D

A similar process can be used to reduce the full 3D equations into their 1D counterparts. We

now assume that the condensate is tightly confined in two directions, which we will take to

be the x, y directions (ωx ,ωy ≫ωz ). This time, we separate the wave function according to

Ψ(x, y, z, t ) = Ψ̃(z, t )Φ(x, y), (2.97)

and once again assuming Φ(x, y) to be normalised as
∫ ∞
−∞

∫ ∞
−∞ |Φ(x, y)|2dxdy = 1. We substi-

tute the above expression into the GPEs in Eq. (2.89) and find

iħ∂Ψ̃
∂t
Φ=

[
− ħ2

2M
Φ
∂2

∂z2 − ħ2

2M
∇2
⊥Φ+ [V⊥(x, y)+Vz (z)]Φ+ c0Ψ̃

†Ψ̃|Φ|2Φ

+c1Ψ̃
†Ψ̃|Φ|2Φ〈F̂〉 · f−pΦ fz +qΦ f 2

z

]
Ψ̃Φ.

(2.98)

Following a similar procedure to before, we multiply from the left by Φ∗ and integrate over x

and y which yields

iħ∂Ψ̃
∂t

=
[
− ħ2

2M
Φ
∂2

∂z2 − ħ2

2M

(∫ ∞

−∞

∫ ∞

−∞
Φ∗ d2Φ

dz2 dxdy

)
+V⊥(x, y)+

(∫ ∞

−∞

∫ ∞

−∞
Vz (z)|Φ|2dxdy

)
+c0ñ

(∫ ∞

−∞

∫ ∞

−∞
|Φ|4dxdy

)
+ c1ñ〈F̂〉 · f

(∫ ∞

−∞

∫ ∞

−∞
|Φ|4dxdy

)
−p fz +q f 2

z

]
Ψ̃.

(2.99)
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Now, the constant term C = −ħ2/2M
∫ ∞
∞

∫ ∞
∞ |∇2

⊥Φ|2dxdz + ∫ ∞
∞

∫ ∞
∞ V⊥|Φ|2dxdy can again be

dropped from the equation via the appropriate substitution Ψ̃ = Ψ̃e−iC t/N . We then take Ψ̃

to be the lowest harmonic oscillator ground state, which in 2D becomes

Φ(x, y) =
(
β

π

)1/2

e−
β

2 (x2+y2), (2.100)

where β= mω⊥/ħ, which leads to the relation∫ ∞

−∞

∫ ∞

−∞
|Φ(x, y)|4dxdy = β

2π
. (2.101)

This then leads to the 1D rescaled interaction strengths

c1D
0 = c0

β

2π
, c1D

1 = c1
β

2π
. (2.102)

Finally, we arrive at the 1D GPE given in matrix form:

iħ∂Ψ
∂t

=
[
− ħ2

2M

∂2

∂z2 +Vz (z)+ c1D
0 n + c1D

1 〈F̂〉 · f−p fz +q f 2
z

]
Ψ, (2.103)

again dropping the tildes for notational convenience.

2.5 Dimensionless spinor Gross-Pitaevskii equations

Systems that can undergo Bose-Einstein condensation, and hence become a superfluid, can

form at a variety of length scales, ranging from Bose-Einstein condensates at the micron scale

all the way to the cores of neutron stars, which are theorised to be superfluid on the kilo-

metre scale [99]. In addition, atomic BECs in experiment take on a wide range of variable

parameters and geometries. Such geometries include box-like potentials [100], toroidal ring

geometries [101, 102], both quasi-2D [103] and quasi-1D systems [104], and even arbitrary

potentials [105]. Due to these reasons, rescaling the quantities used in the corresponding

GPEs allows one to reformulate any calculation into a desired scale and parameter regime.

In practice, this is done by casting the GPEs into a dimensionless form, where each di-

mensional parameter in the equation is rescaled using an appropriate quantity such that it

becomes dimensionless. An advantage of using a dimensionless form is that the parameters

used within numerical computation become normalised on the scale of unity, which, when

compared to values in the dimensional equation such asħ= 1.054×10−34, can reduce numer-

ical errors that arise due to the floating point representation used by computers. The process

of making the GPEs dimensionless can be carried out in different ways, where the scaling pa-

rameters chosen typically depend on whether the system is trapped or not. Here, we derive

the dimensionless 3D GPEs for both a homogeneous spin-1 BEC and a trapped spin-2 BEC,

which will aid in the analysis of subsequent chapters.
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2.5.1 Homogeneous spin-1 BEC

Consider a homogeneous system in the absence of a trapping potential V (r) = 0. In a spin-

1 system, there are two choices of length scales one can choose as their unit of length: the

density healing length ξd =ħ/
p

2Mc0n0, or the spin healing length ξs =ħ/
p

2M |c1|n0, where

n0 is the background density of the uniform system. Both choices are valid, but for this thesis

we shall choose the spin healing length, ξs . Then, an appropriate unit of energy is the spin

energy: Es = 2|c1|n0, which leads to the spin time τs =ħ/Es . Now we have found appropriate

units for length, time, and energy, we can rescale each quantity as

r → ξs r̃, t → τs t̃ , Ψ→p
n0Ψ̃, (2.104)

where a tilde denotes the dimensionless quantity. Substituting these into Eq. (2.89) leads to

the dimensionless spin-1 GPEs:

i
∂ψ̃1

∂t̃
=

[
−1

2
∇̃2 + c̃0ñ + c̃1ñF̃z − p̃ + q̃

]
ψ̃1 +

c̃1p
2

ñF̃−ψ̃0, (2.105)

i
∂ψ̃0

∂t̃
=

[
−1

2
∇̃2 + c̃0ñ

]
ψ̃0 +

c̃1p
2

ñ
(
F̃+ψ̃1 + F̃−ψ̃−1

)
, (2.106)

i
∂ψ̃−1

∂t̃
=

[
−1

2
∇̃2 + c̃0ñ − c̃1ñF̃z + p̃ + q̃

]
ψ̃−1 +

c̃1p
2

ñF̃+ψ̃0, (2.107)

where the rescaled interaction strengths and Zeeman shifts are

c̃0 =
n0c0

Es
=

∣∣∣∣ c0

2c1

∣∣∣∣ , c̃1 =
n0c1

Es
= 1

2
· sgn(c1), p̃ = q

Es
, q̃ = q

Es
. (2.108)

By choosing our unit of length and time as ξs and τs , respectively, the dimensionless spin-

dependent interaction strength is fixed at |c̃1| = 1/2. Therefore, to set the spin-independent

interaction strength, c̃0, we need the ratio of the interaction strengths, c0/c1, which is set by

the atomic species itself.

2.5.2 Trapped spin-2 BEC

Consider now a spin-2 BEC trapped by a uniform harmonic trap V (r). Now, instead of choos-

ing the healing length as our unit of length, it makes more sense to instead choose the har-

monic oscillator length ℓ=pħ/(Mω), where ω is the trapping frequency. Then, time is mea-

sured in units of ω−1 and energy in ħω, which leads to the rescaling of the following units:

r → ℓr̃, t →ωt̃ . To construct the dimensionless wave function, it is conventional to define the

dimensionless wave function as being normalised to unity
∫ ∞
−∞ |Ψ̃|2d3r̃ = 1. Then, recalling

that the dimensional wave function is normalised to the number of atoms
∫ ∞
−∞ |Ψ|2d3r = N ,
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and that d3r = ℓ3d3r̃, it follows that the dimensional wave function can be rescaled as

Ψ→
√

N

ℓ3 Ψ̃. (2.109)

Substituting these rescaled quantities into Eqs. (2.84) - (2.86) yields the dimensionless spin-2

GPEs for a trapped system

i
∂ψ̃±2

∂t̃
=

[
−1

2
∇̃2 +V (r̃)c̃0ñ ±2c̃1ñF̃z ∓2p̃ +4q̃

]
ψ̃±2 + c̃1ñF̃∓ψ̃±1 +

c̃2p
2

ñ Ã20ψ̃
∗
∓2 (2.110)

i
∂ψ̃±1

∂t̃
=

[
−1

2
∇̃2 +V (r̃)c̃0ñ ± c̃1ñF̃z ∓2p̃ +4q̃

]
ψ̃±1 + c̃1ñ

(p
6

2
F̃∓ψ̃0 + F̃±ψ̃±2

)
− c̃2p

2
ñ Ã20ψ̃

∗
∓1

(2.111)

i
∂ψ̃0

∂t̃
=

[
−1

2
∇̃2 +V (r̃)+ c̃0ñ

]
ψ̃0 +

p
6

2
c̃1ñ

(
F̃+ψ̃1 + F̃−ψ̃−1

)+ c̃2p
2

ñ Ã20ψ̃
∗
±2, (2.112)

where now the rescaled interaction strengths and Zeeman shifts are

c̃0 =
N c0

ħωℓ3 , c̃1 =
N c1

ħωℓ3 , c̃2 =
N c2

ħωℓ3 , p̃ = p

ħω , q̃ = q

ħω . (2.113)

2.5.3 Mapping to experimental parameters

Numerical simulations are an extremely useful tool for gaining insight into what experiments

of BEC systems might look like. Therefore, it is useful to calculate the values of the interac-

tion strengths for different atomic species so that they can be mapped to our dimensionless

parameters. In particular, we investigate both the spin-1 and spin-2 atoms of 23Na and 87Rb.

Here, we are taking our unit of length and time to be the harmonic oscillator length ℓ and

inverse trap frequency ω−1, respectively.

Spin-1

Recall that the dimensional interaction strengths for a spin-1 system are given as

c0 =
4πħ2

3M
(a0 +2a2), c1 =

4πħ2

3M
(a2 −a0), (2.114)

where aF is the s-wave scattering length for the spin-F channel. To calculate the dimen-

sional interaction strengths, we list the scattering lengths obtained by Crubellier [106] for
23Na and Ho [10] for 87Rb in Table 2.1. With these values, we are free to calculate the di-

mensional interaction strengths using Eq. (2.114). To calculate the numerical, dimensionless

interaction strengths we assume an atom number of N = 2× 105 and a trapping frequency

of ω = 2π×130Hz. Both the dimensional (with uncertainties) and dimensionless values for
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a0 a2

23Na 50.0±1.6 55.0±1.7
87Rb 110.0±4.0 107.0±4.0

Table 2.1: Table of scattering lengths for spin-1 atomic species 23Na and 87Rb in units of the
Bohr radius.

23Na Dimensional (units of kgm5s−2) Dimensionless

c0 1.03±0.00321×10−50 3.91×103

c1 3.21±0.0640×10−52 122

Table 2.2: Dimensional (with uncertainties) and dimensionless interaction strengths of 23Na.

87Rb Dimensional (units of kgm5s−2) Dimensionless

c0 5.43±0.201×10−51 2.10×103

c1 −5.03±10.3×10−53 −19.1

Table 2.3: Dimensional (with uncertainties) and dimensionless interaction strengths of 87Rb.

a spin-1 23Na system are given in Table 2.2. Calculating the ratio of interaction parameters

gives c0/c1 = 32.0, which predicts the ground state of 23Na to be polar (see Sec 3.2 for details

on spin-1 ground states).

For the 87Rb system, we again assume an atom number of N = 2× 105 with a trapping

frequency of ω= 2π×130Hz. The dimensional (with uncertainties) and dimensionless inter-

action strengths for a spin-1 87Rb are given in Table 2.3. Calculating the ratio of interaction

strengths for this system gives c0/c1 = −110, which predicts the ground state of 87Rb to be

ferromagnetic (see Sec 3.2 for details on spin-1 ground states).

Spin-2

Recall that the dimensional interaction strengths for a spin-2 system are given as

c0 =
4πħ2

7M
(4a2 +3a4), c1 =

4πħ2

7M
(a4 −a2), c2 =

4πħ2

7M
(7a0 −10a2 +3a4), (2.115)

To determine the values of the interaction strengths, we first list the s-wave scattering lengths

in units of the Bohr radius given by Ciobanu [107] for 23Na and Klausen [108] for 85Rb and
87Rb in Table 2.4. With these scattering lengths we can calculate the dimensional interac-

tion strengths using Eq. (2.115). To calculate the corresponding dimensionless interaction

strength, we assume N = 2×105 and ω= 2π×130 Hz. Both the dimensional (with uncertain-

ties) and dimensionless values for a spin-2 23Na system are given in Table 2.5. The ratios of
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a0 a2 a4

23Na 34.9±1.0 45.8±1.1 64.5±1.3
85Rb −740±60.0 −570±50.0 −390±20.0
87Rb 86.2±1.0 90.2±1.0 97.4±1.0

Table 2.4: Table of scattering lengths for spin-2 atomic species 23Na, 85Rb, and 87Rb in units
of the Bohr radius.

23Na Dimensional (units of kgm5s−2) Dimensionless

c0 1.03±0.00654×10−50 3.91×103

c1 5.10±0.654×10−52 195
c2 −5.51±0.927×10−52 −210

Table 2.5: Dimensional (with uncertainties) and dimensionless interaction strengths of 23Na.

87Rb Dimensional (units of kgm5s−2) Dimensionless

c0 4.71±0.0144×10−51 1.32×104

c1 5.19±1.44×10−53 146
c2 −4.61±2.16×10−53 −129

Table 2.6: Dimensional (with uncertainties) and dimensionless interaction strengths of 87Rb.

interaction parameters are
c0

c1
= 20.1,

c0

c2
=−18.6, (2.116)

which predicts the ground state of 23Na to be nematic (see Sec 3.3 for details on spin-2 ground

states).

For 87Rb we once again assume an atom number of N = 2×105 with a trapping frequency

ω = 2π× 130Hz. The dimensional (with uncertainties) and dimensionless parameters for a

spin-2 87Rb system are listed in Table 2.6. In this case, the interaction strength ratios are

c0

c1
= 90.7,

c0

c2
=−102.0, (2.117)

which again predict the ground state to be nematic (see Sec 3.3 for details on spin-2 ground

states).
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3
GROUND STATES AND TOPOLOGICAL DEFECTS IN

SPINOR BOSE-EINSTEIN CONDENSATES

Spinor BECs offer a rich phase diagram, where the ground states of each system exhibit dif-

ferent symmetry properties. In this chapter we investigate the ground states of spin-1 and

spin-2 BECs, which are obtained by minimizing the corresponding mean-field energy func-

tional. In particular, we construct the phase diagram for both cases in the presence of Zee-

man shifts. Additionally, we investigate the symmetry properties of each ground state using

different graphical representations: namely Majorana and spherical harmonics. Finally, we

delve into the topological defects that can arise in spinor BECs. In particular, we first intro-

duce the homotopy theory used to describe the types of stable defects allowed in each phase.

From here we construct the wave functions of some illustrative examples of vortices arising

in both spin-1 and spin-2 condensates, and, using the spherical harmonic representation of

the order parameter, visualise the properties of each vortex. There are numerous references

(e.g., see [96, 97, 107, 109]) that already provide most of these results, but we reproduce them

here to provide reference for subsequent chapters.

3.1 Graphical representations of spinor ground states

Graphical representations help us to visual the symmetry properties of different ground states

in spinor systems. In particular, they can provide valuable insight to what is occurring within

the order parameter when, e.g., topological defects form or the symmetry of the system is

34
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spontaneously broken. Here we focus on two types of graphical representation: spherical

harmonics and Majorana representations. Spherical harmonics in particular are widely used

in Chapter 6, where the system exhibits multiple ground states, and hence different symme-

tries at once. Before we discuss individual ground states in depth, we first mathematically

define the different graphical representations. Then, throughout the subsequent sections we

shall provide both the spherical harmonic and Majorana representations of the discussed

ground states and discuss the symmetries that arise in each phase.

3.1.1 Spherical harmonic representation

We first consider the spherical harmonic representation, which maps the order parameter

onto spherical harmonics using the relation

Z (ŝ) =
∑
m
ζmY m

f (ŝ), (3.1)

where ŝ is a unit vector in 3D spin space, and Y m
f are the spherical harmonics for a spin- f

state. Then, by taking a surface plot of |Z (ŝ)|2, the symmetry of the order parameter can be

visualised, where the surface colour is represented by the argument of Z (ŝ).

As we shall see, the orientation of the spherical harmonics corresponds to the conden-

sate spin, and so as the spin vector rotates, the orientation of spherical harmonics rotates to

match. In addition, the colour of the spherical harmonics corresponds to the global phase,

τ. Therefore, the spherical harmonics give an accurate description of the physical symme-

tries of the wave function, along with a pictorial representation of how the phase is changing.

Throughout this thesis we will use the spherical harmonics to construct a picture of what is

happening to the wave function at different locations in space, where the symmetry of the

wave function can rapidly transform in a non-trivial manner (see Chapter 6). In spin-1, there

are three ( f = 1) spherical harmonics given by

Y 0
1 (θ,φ) = 1

2

√
3

π
cosθ, (3.2)

Y ±1
1 (θ,φ) = 1

2

√
3

2π
e±iφ sinθ, (3.3)

and in spin-2 there are five ( f = 2) spherical harmonics given by

Y 0
2 (θ,φ) = 1

4

√
5

π
(3cos2θ−1), (3.4)

Y ±1
2 (θ,φ) =∓1

2

√
15

2π
e±iφ sinθcosθ, (3.5)

Y ±2
2 (θ,φ) = 1

4

√
15

2π
e±2iφ sin2θ. (3.6)
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3.1.2 Majorana representation

An alternative description to visualising the symmetries of spinor BECs is through the use

of the Majorana representation [110, 111], where a spin- f system can be represented as 2 f

points on the Bloch sphere. The points on the sphere are numerically calculated as the 2 f

roots z j of the polynomial equation

P ( f )(z) =
2 f∑
α=0

√√√√(
2 f

α

)
ζ∗f −αzα = 0, (3.7)

where each root represents a stereographic mapping z j = tan(θ/2)e iφ of the spherical coor-

dinates (θ,φ). The disadvantage of this representation, however, is that one is not able to

visualise the condensate phase. The individual polynomials for both spin-1 and spin-2 sys-

tems are listed below. For the spin-1 system, we calculate the 2 f = 2 roots of the polynomial

P (1)(z) = ζ∗1 z2 +
p

2ζ∗0 z +ζ∗−1, (3.8)

and for the spin-2 system we calculate the 2 f = 4 roots of the polynomial

P (2)(z) = ζ∗2 z4 +2ζ∗1 z3 +
p

6ζ∗0 z2 +2ζ∗−1z +ζ∗−2. (3.9)

3.2 Ground states of spin-1 BECs

To obtain ground states for a spin-1 BEC, we consider the interaction part of the energy func-

tional given as (see Sec. 2.3.3)

Eint =
1

2

∫
c0n2 + c1n2|〈F̂〉|2d3r, (3.10)

which contains two independent non-linear interaction terms, namely the condensate den-

sity and the condensate spin. Here, |〈F̂〉| =
√

|〈F̂x〉|2 +|〈F̂y 〉|2 +|〈F̂z〉|2 is the magnitude of the

spin expectation, where the spin vectors 〈F̂ν〉 for ν= (x, y, z) are defined in Eq. (2.68). To sim-

plify our analysis we assume a uniform ground state where the condensate density remains

fixed, and so only the spin term remains relevant for determining ground states. This then

implies that the sign of c1 determines the energetic ground state in a spin-1 system.

In the absence of a magnetic field, the energy of a given spinor is degenerate with respect

to a global U(1) phase e iτ and an SO(3) spin rotation U (α,β,γ) parameterized by three Euler

angles α,β, and γ, as

ζ→ e iτU (α,β,γ)ζ. (3.11)
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A spin rotation can be defined generally as a rotation around the z − y − z axes as

U (α,β,γ) = e−i F̂zαe−i F̂yβe−i F̂zγ. (3.12)

For a spin-1 system the above spin rotation can be cast explicitly in matrix form [96]:

U (α,β,γ) =


e−i (α+γ) cos2 β

2 − e−iαp
2

sinβ e−i (α−γ) sin2 β
2

e−iγp
2

sinβ cosβ − e iγp
2

sinβ

e i (α−γ) cos2 β
2

e iαp
2

sinβ e i (α+γ) sin2 β
2

. (3.13)

3.2.1 Ferromagnetic phase

Consider the case c1 < 0, sometimes referred to as ferromagnetic interactions. Then, Eq. (3.10)

is minimised when |〈F̂〉| takes its maximal value of |〈F̂〉| = 1. This type of ground state, where

the spin is maximised, is referred to as a ferromagnetic state. The wave function of the ferro-

magnetic state takes the form

ψ=p
nζFM, (3.14)

where the representative spinor, i.e., a spinor that minimises the energy, is given as [96]

ζFM =


1

0

0

. (3.15)

Substitution of the above spinor into the expression for the condensate spin indeed reveals

that |〈F̂〉| = 1. Note that ζFM = (0,0,1)T is an equally valid representative spinor. However, in

this case, the magnetisation now becomes negative [see Eq. (2.88)]. The general ferromag-

netic wave function is constructed by applying the spin rotation in Eq. (3.13), coupled with a

condensate phase, to the representative spinor as

ψFM =p
ne iτU (α,β,γ)ζFM =p

ne iτ′


e−iα cos2 β

2
1p
2

sinβ

e iα sin2 β
2

, (3.16)

where τ′ = τ−γ, which describes all possible ferromagnetic states.

Both the spherical harmonic and Majorana representations of the spin-1 ferromagnetic

ground states are shown in Fig. 3.1. We see that the ferromagnetic order parameter has an

SO(2) symmetry about the direction of magnetisation, which in this case is the z-axis. The

order parameter space, which describes the symmetries associated with the order parame-

ter of the system, is MFM = SO(3)F̂,τ, i.e., the full 3D rotation group, where τ and F̂ denote

contributions to the symmetry from the global phase and spin, respectively.
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Figure 3.1: Graphical representation of the spin-1 ferromagnetic phase, with the representa-
tive spinor given by Eq. (3.15). (a): Spherical harmonic representation, |Z (ŝ)|2, using Eq. (3.1),
where the black dashed arrow represents the direction of the condensate magnetisation. (b):
Majorana representation, where the colour of the points represent cosθ = (1−|z|2)/(1+|z|2)
and a number next to a point represents the root when the polynomial P (1)(z) has an n-
multiple root.

3.2.2 Polar phase

Now consider the case of c1 > 0, typically referred to as polar (or antiferromagnetic) interac-

tions. Then, Eq. (3.10) becomes minimised by having the spin magnitude vanish |〈F̂〉| = 0. For

this case, the ground state is called polar, with a representative spinor given as

ζEAP =


0

1

0

. (3.17)

Similar to the FM case, a general polar wave function is constructed as

ψP =p
ne iτU (α,β,γ)ζEAP =p

ne iτ


− e−iαp

2
sinβ

cosβ
e iαp

2
sinβ

. (3.18)

It is also often useful to characterise the polar state using the condensate phase and an unori-

ented unit vector, d̂ ≡ (dx ,dy ,dz ), referred to as the nematic director [112]. A wave function

in this representation is given as

ψP =
p

ne iτ

p
2


−dx + i dyp

2dz

dx + i dy

. (3.19)
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Figure 3.2: Graphical representation of the EAP and EPP polar ground states. (a): Spher-
ical harmonic representation of the EAP phase, with the representative spinor given as
ζP = (0,1,0)T . The nematic director d̂ is aligned with the z-axis. Note that the EPP phase
looks equivalent, but with the nematic director now laying in the x y-plane. The order pa-
rameter remains unchanged about π rotations about the C2 axis coupled with a π change of
the condensate phase as

(
d̂,τ

)→ (−d̂,τ+π)
. (b) and (c): Majorana representation of the EAP

and EPP phase, respectively.

The nematic director can, in the absence of a magnetic field, be used to distinguish between

the state given in Eq. (3.17) and an alternative representative spinor of

ζEPP = 1p
2


1

0

1

. (3.20)

The former has the nematic director aligned with the z-axis, and is typically referred to as the

easy-axis polar (EAP) phase. The latter instead has the nematic director perpendicular to the

z-axis, and is either referred to as the easy-plane polar (EPP) phase or the antiferromagnetic

phase. Throughout this thesis we shall prefer the term EPP when describing an unmagnetised

polar spinor of the form of Eq. (3.20).

Both the spherical harmonic and Majorana representations of the EAP and EPP polar

ground states are shown in Fig. 3.2. The polar state is distinguished by two nematic lobes

which have a π phase difference, hence the name polar. These lobes are aligned along an

axis of symmetry given by the nematic director, d̂. In the above figure, the EPP phase is dis-

tinguished from the EPP phase by having the nematic director lay in the x y-plane. There

is a further axis of symmetry about the C2 axis, about which π rotations preserve the sym-

metry, but not the phase. It can be seen that the order parameter will remain invariant un-

der a change of ζ
(
d̂,τ

) → ζ
(−d̂,τ+π)

. The corresponding order parameter space is given as
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Figure 3.3: Ground state phase diagrams of spin-1 BECs for c1 > 0 (left) and c1 < 0 (right) in-
teractions in a parameter space of (p, q). Solid or dashed white lines represent discontinuous
and continuous phase transitions, respectively.

M =
[

S2
F̂
×U (1)τ

]
/(Z2)F̂,τ [96]. Note that the Z2 factor in the order parameter space arises

from the fact that the polar order parameter described in Eq. (3.18) remains invariant under

the transformation described above.

3.2.3 Ground states in the presence of magnetic fields

The presence of an external magnetic field drastically changes the ground state phase dia-

gram of the spin-1 system. Fig. 3.3 shows the ground state phase diagram for spin-1 BECs

with c1 > 0 (left) and c1 < 0 (right) in the presence of a magnetic field. The full derivation of

the ground state phase diagram can be found in reviews [96, 97]. There are five total ground

states shown in Fig. 3.3, which are summarised in Table 3.1.

There exists a fully magnetised ferromagnetic state with ζ = (1,0,0)T and 〈F̂z〉 = 1 (state

I) or ζ = (0,0,1)T and 〈F̂z〉 = −1 (state II), depending on the sign of the linear Zeeman shift

p. A non-magnetised polar phase (state IV) arises with ζ = (0,1,0)T and 〈F̂z〉 = 0. For polar

interactions c1 > 0, there exists a partially-magnetised polar phase (state III) with

ζPMP =
√

1+p/(c1n)

2
,0,

√
1−p/(c1n)

2

T

, (3.21)

and 〈F̂z〉 = p/(c1n). At p = 0, this state transforms into the non-magnetised EPP phase given

in Eq. (3.20), equivalent to state IV with the nematic director in the x y-plane. As p →±c1n this

state tends toward the ferromagnetic states I or II, respectively. Finally, a broken-axisymmetry
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Ground state Spinor, ζT 〈F̂z〉
Ferromagnetic (I) (1,0,0) 1
Ferromagnetic (II) (0,0,1) -1

Polar (III)

(√
1+p(c1n)

2 ,0,
√

1−p(c1n)
2

)
p

c1n

Polar (IV) (0,1,0) 0

Broken-axisymmetry (V) Eq. (3.22) p(−p2+q2+2qc1n)
2c1nq2

Table 3.1: Summary of the ground state phases in a spin-1 BEC with their respective spinors
and magnetisation.

(BA) phase (state V) occurs in a condensate with c1 > 0 which has a spinor of the form

ζBA
±1 =

q ±p

2q

√
−p2 +q2 +2c1nq

2c1nq
,

ζBA
0 =

√
(q2 −p2)(−p2 −q2 +2c1nq)

4c1nq3 .

(3.22)

This corresponds to a magnetisation that tilts against the quantisation axis, given by

〈F̂z〉 =
p(−p2 +q2 +2qc1n)

2c1nq2 . (3.23)

These five ground states fully encapsulate the phase diagram of spin-1 BECs in a magnetic

field.

The spherical harmonic representations of the partially-magnetised polar (state III) and

broken-axisymmetry (state V) phases are shown in Fig. 3.4. For the partially-magnetised po-

lar state, we see the effect of the linear Zeeman shift breaking the symmetry of the spin when

compared to the polar state shown in Fig. 3.2a. The broken-axisymmetry phase is seen to tilt

against the z-axis, which arises due to the linear Zeeman shift, p.

3.3 Ground states of spin-2 BECs

To find the ground states of a spin-2 system we follow a similar procedure to the spin-1 case.

The interacting part of the spin-2 Hamiltonian reads (see Sec. 2.3.3)

Eint =
1

2

∫
c0n2 + c1n2|〈F̂〉|2 + c2n2|A00|2d3r. (3.24)

As before, we assume a uniform ground state so that the density remains fixed. Therefore, dif-

ferent ground states arise from the competition between the spin-dependent, c1, and singlet-

dependent, c2, interaction strengths. The magnitude of the spin expectation is now defined
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Figure 3.4: Spherical harmonics representation of both the partially-magnetised polar state
and the broken-axisymmetry phase calculated using the appropriate representative spinor in
Eq. (3.1). (a): The partially-magnetised polar state given by Eq. (3.21) with p ̸= 0. Note that for
this state the direction of the spin vector is aligned with the applied magnetic field. (b): The
broken-axisymmetry state given by Eq. (3.22) with p, q ̸= 0. The direction of the spin vector is
tilted away from the magnetic field axis, which is assumed to be along the z-axis.

in terms of the spin-2 spin vectors given in Eqs. (2.81) and (2.82), and the spin-singlet pair

amplitude, A00, given in Eq. (2.83).

As in the spin-1 case, the energy of a given spinor in the absence of a magnetic field is

degenerate following the application of a global U (1) phase and an SO(3) spin rotation. In a

spin-2 system, a general spin rotation is instead represented as a 5×5 matrix of the form [96]

U (α,β,γ) =

e−2i (α+γ)C 4 −2e−i (2α+γ)C 3S
p

6e−2iαC 2S2 −2e−i (2α−γ)C S3 e−2i (α−γ)S4

2e−i (α+2γ)C 3S e−i (α+γ)C 2(C 2 −3S2) −
√

3
8 e−iα sin2β −e−i (α−γ)S2(S2 −3C 2) −2e−i (α−2γ)C S3

p
6e−2iγC 2S2

√
3
8 e−iγ sin2β 1

4 (1+3cos2β) −
√

3
8 e−iγ sin2β

p
6e2iγC 2S2

2e i (α−2γ)C S3 −e i (α−γ)S2(S2 −3C 2)
√

3
8 e iα sin2β e i (α−γ)C 2(C 2 −3S2) −2e i (α+2γ)C 3S

e2i (α−γ)C 4 2e i (2α−γ)C S3
p

6e2iαC 2S2 2e i (2α+γ)C 3S e2i (α+γ)C 4


,

(3.25)

where S ≡ sin
(
β/2

)
and C ≡ cos

(
β/2

)
.

The ground states of the spin-2 system in a parameter space of (c1,c2) are summarised

in Fig. 3.5. In the following subsections we shall discuss each phase individually, along with

their respective graphical representations and order parameter spaces. Note, for the case

of c1,c2 < 0, there is a competition between the ferromagnetic and nematic phases. For this

case, the energy functional is minimised by either having maximal spin density and |A00|2 = 0
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Figure 3.5: Ground state phase diagram for spin-2 BECs in a parameter space of (c1,c2) in the
absence of a magnetic field. White dashed lines indicate a first-order phase transition region
between the phases.

as in the ferromagnetic phase, or by having minimal spin density and |A00|2 = 1/5 as in the

nematic phase, which leads to a phase boundary at c2n = 20c1n (see below).

3.3.1 Ferromagnetic phase

If we first consider c1 < 0 and c2 > 0, then the energy functional is minimised when the spin

density is maximised, |〈F̂〉| = 2, and the singlet-duo amplitude is minimised, |A00| = 0. This

state is denoted as the spin-2 ferromagnetic phase, where |〈F̂〉| is now |〈F̂〉| = 2 for this ground

state, as opposed to |〈F̂〉| = 1 in the spin-1 system. Note that there exists a ferromagnetic state

in a spin-2 BEC with |〈F̂〉| = 1, but this state is not the ground state since the |〈F̂〉| = 2 state has

lower energy. To avoid confusion, we refer to the ferromagnetic state with |〈F̂〉| = 2 as the FM2

state, and the state with |〈F̂〉| = 1 as the FM1 state. It should be noted, however, that the FM1

state can remain stable in certain situations, such as in the cores of vortices (see Chapter 6).

The representative spinors for the spin-2 ferromagnetic states have the form

ζFM2 =



1

0

0

0

0

, ζFM1 =



0

1

0

0

0

. (3.26)

Following the same procedure as the spin-1 case, applying a general spin rotation U (α,β,γ)

with a global phase τ and condensate density n yields the general FM2 wave function which
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Figure 3.6: Spherical harmonic and Majorana representations of the spin-2 ferromagnetic
ground states, with representative spinors given in Eq. (3.26). (a) and (b): Spherical harmonic
representation for the ferromagnetic states with |〈F̂〉| = 2 and |〈F̂〉| = 1, respectively, where the
dashed line represents the direction of the magnetisation. (c) and (d): Equivalent Majorana
representations.

describes all ferromagnetic states that have |〈F̂〉| = 2 in a spin-2 system:

ψFM2 =p
ne i (τ−2γ)



e−2iα cos4 β
2

2e−iα cos3 β
2 sin β

2p
6cos2 β

2 sin2 β
2

2e iα cos β2 sin3 β
2

e2iα sin4 β
2

. (3.27)

Equivalently, the general spinor for the FM1 phase is given as

ζFM1 =p
ne i (τ−γ)



−2e−2iα cos3 β
2 sin β

2

e−iα cos2 β
2

[
cos2 β

2

2 −3sin2 β
2

]√
3
8 sin2β

−e iα sin2 β
2

[
sin2 β

2 −3cos2 β
2

]
2e2iα cos β2 sin3 β

2


. (3.28)

Fig. 3.6 shows the spherical harmonic and Majorana representations of the spin-2 ferro-

magnetic ground states. It is clear from Figs 3.6a, b that the ferromagnetic order parameters

have the same SO(2) symmetry about the direction of the magnetisation as in the spin-1 case.

However, the difference between the FM2 phase of the spin-2 system and the FM phase of the

spin-1 system is apparent in the phase: the FM2 state winds by 4π about the spherical har-

monic as opposed to 2π (see Fig. 3.1). Therefore, the order parameter space of the FM2 phase

is slightly different, and given as MFM2 = SO(3)F̂,τ/(Z2)F̂,τ. The (Z2)F̂,τ factor arises from the

double winding of the condensate phase seen above.
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3.3.2 Nematic phases

Instead, let us now consider the case of c1 > 0 and c2 < 0. We see that the energy functional

is minimised when the spin is minimised, |〈F̂〉| = 0, but the singlet-duo amplitude is max-

imised, |A00|2 = 1/5. Such a state is called nematic, and takes two forms: the uniaxial nematic

(UN) or biaxial nematic (BN), depending on the sign of the quadratic Zeeman shift, q . A rep-

resentative spinor for the UN state, where the nematic director d̂ is aligned along the z-axis,

is given as

ζUN =



0

0

1

0

0

, (3.29)

and a representative spinor for the BN state reads

ζBN = 1p
2



1

0

0

0

1

. (3.30)

Applying a general spin rotation and condensate phase leads to the general wave functions

for the UN and BN states, respectively, as

ψUN =
p

6n

4
e iτ



e−2iα sin2β

−2e−iα sinβcosβ√
2
3 (3cos2β−1)

2e iα sinβcosβ

e2iα sin2β


, (3.31)

ψBN =
√

n

2
e iτ



e−2iα
[(

1− 1
2 sin2β

)
cos2γ− i cosβsin2γ

]
e−iα sinβ(cosβcos2β− i sin2γ)√

3
2 sin2βcos2γ

−e iα sinβ(cosβcos2γ+ i sin2γ)

e2iα
[(

1− 1
2 sin2β

)
cos2γ+ i cosβsin2γ

]


. (3.32)

In the absence of a magnetic field, these two states are degenerate. However, a quadratic

Zeeman shift, q , can be used to manipulate the system into choosing one or the other, since
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Figure 3.7: Spherical harmonic and Majorana representations of the spin-2 nematic ground
states. (a): Spherical harmonic representation of the uniaxial nematic spinor given in
Eq. (3.29) where d̂ is the nematic director. The order parameter exhibits a two-fold symmetry
about the C2 axis. (b) Spherical harmonic representation of the biaxial nematic state given
by Eq. (3.30) which has a four-fold symmetry about the C4 axis, and two additional two-fold
symmetries about the C2,C ′

2 axes. (c) and (d): Equivalent Majorana representations.

the energies of each ground state now change (energetic stability of these states is discussed

in Sec. 6.2.1).

The spherical harmonics and Majorana representation of both nematic states are plot-

ted in Fig. 3.7. The UN phase is seen to differ slightly from the polar phase of spin-1 (see

Fig. 3.2a) in that the nematic lobes have the same phase. This implies that a π spin rotation

about the C2 axis leaves the order parameter unchanged, and no appropriate transformation

of the condensate phase has to occur. In addition, this order parameter also has an SO(2)

symmetry about the nematic director. The order parameter space for this phase is then cal-

culated as
[

S2
F̂
×U (1)τ

]
/(Z2)F̂. This is identical to the polar phase of the spin-1 BEC, except

now the (Z2)F̂ arises only from the condensate spin due to the nematic lobes having the same

phase. The BN phase, shown in Fig. 3.7b, breaks the SO(2) symmetry due to the perpendic-

ular nematic lobes, which have a π phase difference. The symmetry of the order parameter

is preserved under π/4 rotations about the C4 axis and π rotations about both the C2 and

C ′
2 axes. The order parameter space for this phase is calculated as

[
U(1)τ×SO(3)F̂

]
/(D4)F̂,τ,

where D4 is the fourth dihedral group [113].

3.3.3 Cyclic phase

Now consider c1,c2 > 0. The energy functional is minimised when both the spin magnitude

and singlet-duo amplitude is minimised: |〈F̂〉| = 0, |A00|2 = 0. Such a state is referred to as the
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cyclic state and has the representative spinor

ζC1 = 1

2



1

0

i
p

2

0

1

. (3.33)

The general wave function is calculated as

ψC =
p

n

2
e iτ



e−2i (α+γ)C 4 +2i
p

3e−2iαC 2S2 +e−2i (α−γ)S4

2e−i (α+2γ)C 3S −
p

3
2 i e−iα sin2β−2e−i (α−2γ)C S3

p
6e−2iγC 2S2 + i

p
2

4 (1+3cos2β)+
p

6e2iγC 2S2

2e i (α−2γ)C S3 +
p

3
2 i e iα sin2β−2e i (α+2γ)C 3S

e2i (α−γ)S4 +2i
p

3e2iαC 2S2 +e2i (α+γ)C 4


. (3.34)

In addition to the three-component cyclic state, there is also a two-component cyclic state

that is useful for understanding the general cyclic state:

ζC2 = 1p
3



1

0

0p
2

0

, (3.35)

which is obtained from Eq. (3.33) via the spin rotation [96]

ζC2 =−i e i π4 F̂z exp

[
i

F̂x − F̂yp
2

arccos

(
1p
3

)]
ζC1 . (3.36)

The spherical harmonic and Majorana representations of both orientations of the cyclic

state are plotted in Fig. 3.8. The cyclic order parameter has the symmetry of a tetrahedron,

where each nematic lobe has a two-fold symmetry about each C2 axis. Furthermore, the order

parameter has a three-fold symmetry about the C3 axis, of which 2π/3 rotations about this

axis preserve the symmetry of the order parameter. In Fig. 3.8a, this axis is the (1,1,1)-axis,

whereas in Fig. 3.8b the three-fold axis of symmetry is the z-axis. The order parameter space

of the cyclic phase can be written as
[
U(1)τ×SO(3)F̂

]
/TF̂,τ [96], where TF̂,τ is the tetrahedral

group [113].
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Figure 3.8: Spherical harmonic and Majorana representations of two different orientations of
the spin-2 cyclic ground state. (a): Cyclic state given by Eq. (3.33) which has a two- and three-
fold symmetry about the C2,C3 axes, respectively. (b): Alternative, two-component cyclic
state, given by Eq. (3.35) which is obtained from (a) by the spin rotation given in Eq. (3.36).
(c) and (d): Equivalent Majorana representations.

3.4 Topologically stable defects in spinor BECs

Due to their rich phase diagrams discussed in the previous sections, spinor BECs give rise to

multiple different types of topological defects. Such defects range from vortices, both singu-

lar [45, 48, 50, 54, 57, 88–90, 114–116], including singular fractional vortices [40, 41, 48, 50,

54, 89, 90, 116–120], and nonsingular [10, 11, 46, 49, 51, 88, 121–124], to point defects such as

monopoles [112, 125–131].

The types of topologically stable defects within a given system can be found from a group-

theoretical approach using homotopy theory [93, 96]. The theory states that the nth ho-

motopy group, πn , classifies topological excitations with dimension of homotopy n, where

n = d −ν− 1 for singular excitations and n = d −ν for nonsingular excitations [113]. Here,

d and ν describe the dimensionality of the system and the dimensionality of the excitation,

respectively. To calculate whether a given defect is stable in a particular system, one needs

to first find the relevant order parameter space, M , that describes the symmetries associated

with the order parameter of that system. Then, calculating a given homotopy group, πn(M ),

states whether the types of topological defects described by πn are stable in that order pa-

rameter space. For example, given an order parameter space M , one can calculate whether

point defects (n = 2) are stable within the system by seeing if π2(M ) ̸= 0. Homotopy groups

and the topological excitations they describe are listed in Table 3.2 [96].

In this section, we list the order parameter space for each ground state in both spin-1 and

spin-2 systems, which we then use to deduce the possible stable defect structures in each

phase by calculating the homotopy groups of the space.
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πn Defects Solitons

π1 Vortices Nonsingular domain walls
π2 Monopoles 2D Skyrmions
π3 (3D) Skyrmions, knots

Table 3.2: A list of different homotopy groups and the corresponding topological de-
fects/solitons they describe [96].

Spin-1 phase M π1 π2 π3

Polar
[

S2
F̂
×U (1)τ

]
/(Z2)F̂,τ Z Z Z

Ferromagnetic SO(3)F̂,τ Z2 0 Z

Table 3.3: Spin-1 phases and their relative order parameter space, M along with the corre-
sponding first (π1), second (π2), and third (π3) homotopy groups [113]. Here, F̂ and τ indicate
contributions from the condensate spin and phase, respectively.

3.4.1 Homotopy groups for a spin-1 system

Recall that a spin-1 system has two phases in the absence of a magnetic field: ferromagnetic

and polar. The order parameter space and the first three homotopy groups for these phases

are calculated and listed in Table 3.3 [93, 96, 113].

We start with the polar phase, with the representative spinor defined as in Eq. (3.18). The

first homotopy group is calculated to be the additive group of integers, π1(Mpolar) =Z, which

indicates vortices are stable and classified by integers within this phase. It is worth noting

that the first homotopy group for a scalar BEC system, which has an order parameter space of

Mscalar = U(1), is the same: π1(Mscalar) =Z. However, due to the Z2 symmetry, the minimum

unit of circulation becomes half that of a scalar U(1) vortex, giving rise to what are known

as half-quantum vortices (HQVs) [96] (see Sec. 3.5.1). In addition, the polar phase supports

stable point defects since π2(MUN) =Z, where the point defects are classified by integers.

The FM phase, described generally by Eq. (3.16), has an order parameter space consist-

ing of the full 3D rotation group: MFM = SO(3)F̂,τ. This leads to a first homotopy group of

π1(MFM) = Z2, which states that vortices are classified one of two ways in this phase. One

class represents singular vortices and the other nonsingular, where the vortex is classified by

a fountain-like texture of the condensate spin vector (see Sec. 3.5.1). Additionally, unlike the

polar phase, the FM phase does not support stable point defects since π2(MFM) = 0.
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Spin-2 phase M π1 π2 π3

Uniaxial nematic
[

S2
F̂
×U (1)τ

]
/(Z2)F̂ Z×Z2 Z Z

Biaxial nematic
[
U(1)τ×SO(3)F̂

]
/(D4)F̂,τ Z×h (D∗

4 )F̂ 0 Z

Cyclic
[
U(1)τ×SO(3)F̂

]
/TF̂,τ Z×h TF̂,τ 0 Z

Ferromagnetic SO(3)F̂,τ/(Z2)F̂,τ Z4 0 Z

Table 3.4: Spin-2 phases and their relative order parameter space, M , along with the corre-
sponding first (π1), second (π2), and third (π3) homotopy groups. Here, F̂, τ indicate contri-
butions from the condensate spin and phase, respectively. Additionally, D4 and T represent
the fourth dihedral and tetrahedral groups, respectively, and a ∗ denotes a lift of that partic-
ular group [93]. Finally, ×h is the h-product (see [113] for details).

3.4.2 Homotopy groups for a spin-2 system

As shown in Sec. 3.3, spin-2 BECs have a richer phase diagram, and with that an even richer

family of topological defects. The order parameter spaces along with the first three homotopy

groups are given in Table 3.4 [93, 96, 113].

Firstly, note that the order parameter space for the FM phase is slightly different from

the spin-1 case in that it is now divided by a (Z2)F̂,τ factor. This contribution arises from

the double winding of the condensate phase seen in the spherical harmonic representation

in Fig. 3.6a. The first homotopy group is also different, allowing now for an additional two

classes of line defects as π1(MFM) = Z4, but the second and third homotopy groups are the

same.

The UN phase has an identical order parameter space to the polar phase of a spin-1 BEC,

except now the (Z2)F̂ factor arises only from the condensate spin since the nematic lobes

are no longer π out of phase (see Fig. 3.7a and Fig. 3.2b). In addition, the first homotopy

group differs slightly as now it reads π1(MUN) =Z×Z2 [113], which allows for the creation of

additional types of line defects such as spin vortices, which are vortices which carry no mass

circulation, but instead only carry a circulation of the condensate spin (see Sec. 3.5.2).

The BN phase has an order parameter space of
[
U(1)τ×SO(3)F̂

]
/(D4)F̂,τ, where D4 is

the fourth dihedral group [113]. This leads to a first homotopy group that is non-Abelian:

π1(MBN) =Z×h (D∗
4 )F̂, where ×h is the h-product (see [113] for details). A non-Abelian group,

by definition, has members which do not commute [93], which implies that the BN phase can

host non-Abelian vortices, i.e., vortices whose topological charges do not commute. A recon-

nection between two non-Abelian vortices leaves a trace of the reconnection in the form of a

rung vortex [93].

The cyclic phase has an order parameter space of MC = [
U(1)τ×SO(3)F̂

]
/TF̂,τ, where TF̂,τ
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is the tetrahedral group [113]. Like the BN phase, this leads to a non-Abelian fundamental

group: π1(MC) = Z×h TF̂,τ, and hence the cyclic phase also supports non-Abelian vortices.

One class of non-Abelian vortex is the fractional vortex, where the mass circulation is quan-

tised in different fractional units to other fractional vortices arising in, e.g., the BN phase (see

Sec. 3.5.2).

3.5 Spinor vortices and their hydrodynamic properties

The properties of a vortex can be characterised by determining how the order parameter

changes on a loop, C , encircling the vortex. Let us first take the example of a scalar BEC,

described by the order parameter ψ=p
ne iτ for condensate density n and phase τ. The su-

perfluid velocity, v, for a scalar system with atomic mass M is [132]

nv = ħ
2Mi

(
ψ∗∇ψ− (∇ψ∗)ψ

)
, (3.37)

which, upon substitution of the general scalar order parameter into the above, leads to the

relation v = (ħ/M)∇τ. The mass circulation is then calculated as the integral of the superfluid

velocity around the loop as [132] ∮
C

v ·dℓ= ħ
M

∮
C
∇τ ·dℓ, (3.38)

where dℓ is the line element of integration. The single-valuedness of the wave function states

that ψ(r0) =ψ(r1), where r0,r1 are points denoting the start and the end of the loop, respec-

tively. This implies that the change in phase around the loop is ∆τ = 2πnw , where nw ∈ Z,

showing that the circulation is quantised in scalar BECs, with the unit of circulation given as

κ = h/M . For nw ̸= 0 a phase defect arises, where at a point in space the phase simultane-

ously takes on every value and therefore, to avoid this singularity, the density must vanish at

this point.

In spinor BECs, the situation becomes more complex. Consider the general spinor wave

function given as ψ = p
ne iτU (α,β,γ)ζrep, where the spin rotation U (α,β,γ) is defined in

Eq. (3.12) and ζrep is a representative spinor. If we consider a closed loop in space with the

start and end points denoted r0 and r1, respectively, then the single-valuedness condition for

the wave function of a spinor BEC states [96]√
n(r0)e iτ(r0)U (α(r0),β(r0),γ(r0))ζrep(r0) =

√
n(r1)e iτ(r1)U (α(r1),β(r1),γ(r1))ζrep(r1). (3.39)
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Following a similar procedure as the scalar case, the superfluid velocity for a spin- f system,

vs , is given as [96]:

nvs =
ħ

2Mi

f∑
m=− f

(
ψ∗

m∇ψm − (∇ψ∗
m)ψm

)
. (3.40)

Substituting the general spinor wave function into the above equation yields the following

expression for the superfluid velocity

vs =
ħ
M

[∇τ−|F̂|(cosβ∇α+∇γ)
]

. (3.41)

When |F̂| = 0, as is the case for non-ferromagnetic ground states in spin-1 and spin-2 BECs,

then the superfluid velocity results in vs = (ħ/M)∇τ, similar to the scalar BEC case. This im-

plies circulation is quantised in these phases, but as we shall see, the circulation can be quan-

tised in fractional units of κ. On the other hand, Eq. (3.41) implies that ∇×vs ̸= 0 when |F̂| ̸= 0

due to the cosβ∇α term. Hence, ferromagnetic spinor BECs do not have quantised mass cir-

culation, which can lead to some interesting vortex structures such as coreless vortices (see

the below sections).

3.5.1 Vortices in spin-1 systems

Here, we analytically construct wave functions corresponding to different classes of vortices

arising in spin-1 condensates, and investigate their properties using spherical harmonics. We

begin with the polar phase, and construct a wave function that corresponds to a HQV. If we

consider a vortex that is oriented along the z-axis, and the nematic director is oriented in

the (x, y)-plane, then such a vortex corresponds to the choice of τ = α = ϕ/2 and β = π/2 in

Eq. (3.18) to yield the wave function

ψP
hqv =

√
n

2


−1

0

e iϕ

, (3.42)

where ϕ is the azimuthal angle about the vortex core. Similar, but topologically distinct vor-

tices arise in the A phase of superfluid 3He [81, 133]. In experiment, for the vortex constructed

as in Eq. (3.42), the vortex consists of density depletion along the core in theψ−1 component,

where the phase winding is located. This core is then filled with atoms of the ψ1 component,

which lifts the core out of the polar phase and into the ferromagnetic phase. Fig. 3.9a shows

the spherical harmonic representation of the HQV. By substituting τ=ϕ/2 in Eq. (3.41), and
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Figure 3.9: Spherical harmonic representation of vortices in a spin-1 BEC. (a): Spin-1 polar
HQV defined by Eq. (3.42). A complete circuit of the vortex results in a π spin rotation of
the nematic director coupled with a π change to the condensate phase. (b): Ferromagnetic
coreless vortex. The vortex takes on a characteristic fountain-like texture of the condensate
spin vector.

taking |F̂| = 0 since this is the polar phase, the superfluid velocity becomes vs =ħ/(2M)∇ϕ. It

immediately follows that the mass circulation is calculated as∮
C

vs ·dℓ= κ

2
, (3.43)

showing that the unit of circulation is quantised in units of κ/2 for this system, and hence the

name HQV.

For the case of the ferromagnetic phase, recall that the first homotopy group is calculated

as [96] π1(MFM) =Z2, which corresponds to two different classes of line defects: singular and

nonsingular. The singular vortex configuration can be constructed from Eq. (3.16) using the

choice τ′ = 0 along with α=ϕ, which leads to the wave function

ψFM
pcv =

p
n


e−iϕ cos2 β

2
1p
2

sinβ

e iϕ sin2 β
2

. (3.44)

In this configuration, the single-valuedness condition could be satisfied by having the con-

densate density vanish along the vortex core. However, in spinor BECs, we typically have

c0 ≫ |c1|, which implies that it is more energetically favourable to vary the condensate spin

instead. Therefore, the condensate can instead choose to lift atoms out of the ferromagnetic

state and into the polar state (i.e., occupy the m = 0 component) within the vortex core. For

this reason, such a vortex is referred to as a polar-core vortex [96].
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An example of a nonsingular vortex arising in the FM phase is the coreless vortex [51,

121], which can be constructed from Eq. (3.16) by choosing τ′ =α=ϕ and having β=β(ρ) be

a function of the transverse radial coordinate, ρ =
√

x2 + y2, as:

ψFM
cl =p

n


cos2 β

2
e iϕp

2
sinβ

e2iϕ sin2 β
2

. (3.45)

The single-valuedness condition of the wave function is satisfied by choosing β(ρ) in one of

two ways, resulting in slightly different configurations of a coreless vortex. If we choose β(ρ)

such that β(ρ = 0) = 0 and β(ρ = ρ0) =π/2, where ρ0 is the radius of the system, then we have

what is known as a Mermin-Ho vortex [46, 134]. In this configuration, the spin starts aligned

with the z-axis at ρ = 0, then gradually tilts away as ρ→ ρ0 until the spin lies in the x y-plane

at ρ = ρ0. A different configuration is obtained if instead one chooses β(ρ) such that β(ρ =
0) = 0 and now β(ρ = ρ0) =π, leading to what is known as an Anderson-Toulouse-Chechetkin

vortex [135, 136]. In this configuration, the spin follows a similar path, but now tilts through

the x y-plane, and ends up aligned with the z-axis once more at ρ = ρ0, with the spin now

pointing in the opposite direction to the spin at ρ = 0. A spherical harmonic representation

of the Mermin-Ho vortex is shown in Fig. 3.9b, where the characteristic fountain-like spin

texture is apparent.

3.5.2 Vortices in spin-2 systems

Like the subsection before, we construct a few illustrative examples of vortices arising in the

spin-2 phases and investigate them using spherical harmonics. We start with the UN phase,

as given by Eq. (3.31). Unlike the spin-1 polar phase, the UN phase does not support frac-

tional vortices with mass circulation. This is apparent from the spherical harmonic represen-

tation given in Fig. 3.7a, where the two-fold symmetry about the C2 axis is not coupled to the

condensate phase, τ. This phase instead accommodates a spin vortex, i.e., a vortex which

carries only spin circulation. Such a vortex is constructed from Eq. (3.31) with the choice

τ= 0,α=−ϕ/2,β=π/2:

ψUN
sv =

p
6n

4



e iϕ

0

−
√

2
3

0

e−iϕ


. (3.46)

The spherical harmonic representation of this vortex state is shown in Fig. 3.10a. Indeed,
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Figure 3.10: Spherical harmonic representation of select vortices in the spin-2 nematic
phases. (a): A spin vortex in the UN phase. A complete circuit of the vortex results in a π
winding of the condensate spin vector, with no change to the condensate phase, and hence
this vortex has no mass circulation. (b): One type of half-quantum vortex in the BN phase.
The condensate phase winds by π about the vortex core which is coupled to a π/2 spin rota-
tion.

we see that as the core of the vortex is traversed, the spin vector winds by π about the axis

perpendicular to the nematic director (see Fig. 3.7a), but the condensate phase remains un-

changed.

Recall that the first homotopy group of the BN phase (π1(MBN) = Z×h (D∗)F̂) is non-

Abelian, and hence supports non-Abelian vortices. Unlike the UN phase, the BN phase can

support fractional vortices with mass circulation. One such example is of the BN HQV, which,

due to the differing first homotopy group, is topologically distinct from that of the spin-1

polar case presented in Fig. 3.9a. Such a vortex can be constructed from Eq. (3.32) using the

choice τ= 2α=ϕ/2 and β= γ= 0:

ψBN
hqv =

√
n

2



1

0

0

0

e iϕ

. (3.47)

The spherical harmonic representation of this vortex is shown in Fig. 3.10b. It is clear this

vortex has the typical π phase winding about the vortex core associated with HQVs, which

is also coupled to a π/2 spin rotation. When a vortex consists of a 2πw winding of the con-

densate phase coupled to a 2πσ winding of the spin vector about some axis of symmetry, the

vortex charge can be described as (w,σ). The particular case of the vortex shown in Fig. 3.10b

is classed as a (1/2,1/4) vortex, where the 1/2 and 1/4 denote the phase and spin windings,

respectively. Additionally, there exists a half-quantum spin vortex, also called a (0,1/2) vortex,
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Figure 3.11: Spherical harmonic representations of cyclic fractional vortices. (a): A one-third
vortex. A complete circuit reveals a 2π/3 winding of the condensate phase, coupled with a
π/2 spin rotation. (b): A two-third vortex. Similarly, a complete circuit of the vortex results in
a 4π/3 winding of the condensate phase, again coupled to a π/2 spin rotation.

in this phase, in which the condensate spin winds by π about the core, but the condensate

phase remains unchanged [96].

Like the BN phase, the cyclic phase also supports non-Abelian vortices. Additionally, this

phase also supports fractional vortices, but instead of the half-quantum of circulation that

arises in the nematic phases, the cyclic phase has circulation that is quantised in units of

κ/3, leading to one-third and two-third vortices. These vortices can be constructed from

Eq. (3.34) by applying a condensate phase and general spin rotation, where a one-third vortex

is constructed from the choice τ=−α=ϕ/3 with γ= 0 and a two-third vortex is constructed

by choosing τ = 2ϕ/3, α = ϕ/3 and γ = 0. The result is a phase winding in the ψ2 and ψ−1

components for the one-third and two-third vortices, respectively:

ψC
1
3
=

√
n

3



e iϕ

0

0p
2

0

, ψC
2
3
=

√
n

3



1

0

0p
2e iϕ

0

. (3.48)

Spherical harmonic representations are plotted in Fig. 3.11. As we did for the spin-1 HQV

in the polar phase, one can use the above wave function to see that the circulation is now

quantised in units of κ/3. Substituting τ=ϕ/3 in Eq. (3.41), and taking |F̂| = 0 since this is the

cyclic phase, the superfluid velocity becomes vs = ħ/(3M)∇ϕ. It then immediately follows

that the mass circulation is calculated as∮
C

vs ·dℓ= κ

3
, (3.49)

showing the mass circulation in this phase is quantised in units of κ/3.
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Numerical studies of spinor and
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4
RELAXATION DYNAMICS OF HALF-QUANTUM

VORTICES IN A TWO-COMPONENT SYSTEM

Since the realization of superfluidity, quantum turbulence has been studied in systems rang-

ing from superfluid liquid Helium [137, 138] to quasi-particle condensates in solid-state sys-

tems [139]. Due to their unprecedented experimental accessibility, quantum turbulence in

dilute, ultra-cold atomic gases has attracted considerable theoretical [22–27] and experimen-

tal [28–33] interest in both 2D and 3D configurations. In a scalar BEC, the quantum turbu-

lence state is typically made up of many vortices with quantised circulation. The collective

behaviour of the vortices plays a key role in the hydrodynamics, recovering features of classi-

cal turbulence that can exhibit the characteristic Kolmogorov power-law spectrum [140].

In contrast to the scalar superfluids, multi-component and spinor BECs are described

by multi-component order parameters and allow for a wider range of topological defects,

which give rise to novel dynamics [43, 88, 119, 141]. Consequently, there has been increas-

ing interest in the properties of quantum turbulence and non-equilibrium dynamics in such

systems [34–38]. The simplest non-scalar topological excitation appears in a two-component

BEC, described by two complex fields, as the appearance of a phase singularity in only one

component. When the atomic mass and mean density of the components are equal, such

vortices are often referred to as HQVs, due to their similarities with vortices carrying half a

quantum of superfluid circulation in superfluid 3He [39] and spin-1 BECs [40, 41]. These vor-

tices are sometimes also referred to as coreless vortices in a pseudospin-1/2 system, but note
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that the vortex is still singular when the order parameter space is U(1)×U(1) (which is the case

in two-component systems, see below), different from, e.g., the coreless vortices that arise in

the spin-2 ferromagnetic phases (see Sec. 3.5.2). Throughout this thesis we shall prefer the

HQV terminology when discussing this class of vortex in a pseudospin-1/2 system.

The study of quantum turbulence in BECs can be separated into two distinct categories.

Firstly, there is forced turbulence, where a statistically stationary state is established. Sec-

ondly, there is decaying turbulence, where a non-equilibrium initial condition, typically in-

volving vortices, relaxes towards equilibrium. In this chapter, we focus on the latter case, and

investigate the relaxation dynamics of HQVs in a two-dimensional, two-component conden-

sate. Our interest is in studying the scaling laws that govern the decay rate of the vortices, and

consequently the growth of the length scales associated with domains in the system, whilst

varying the ratio of inter- to intra-species interactions. We study these scales by starting from

an initially turbulent state containing HQVs and subsequently letting the system relax in time.

Upon relaxation, vortices will annihilate leading to domain growth within the system.

To extract the appropriate length scales of these domains, we construct correlation func-

tions, originally defined for an antiferromagnetic spin-1 system [60], which then allow us to

extract relevant length scales associated with spin and mass order. By investigating these

length scales temporally, we reveal interesting, novel dynamics occurring at early times for a

sufficiently high ratio of inter- to intra-species interactions. This result is then confirmed by

considering the total vortex number of the system. Furthermore, we contrast our observa-

tions for this system with similar simulations that have been performed for scalar BECs and

reported in [142–144]. Finally, we discuss how our observations of anomalous vortex decay

can be explained by relating to previous work [42, 43].

4.1 The two-component Bose-Einstein condensate as a

pseudospin-1/2 system

4.1.1 Mapping of a spin-1 Bose-Einstein condensate to a two-component system

In order to treat the two-component BEC as a pseudospin-1/2 system, we discuss how a

spin-1 condensate can be directly mapped to a two-component configuration for particular

ground states. Recall from Sec. 3.2 that the spin-1 condensate with polar interactions (c1 > 0)

supports a polar ground state with |〈F̂〉| = 0. This state can be categorized in two different

ways depending on the sign of the quadratic Zeeman shift, q . The first occurs when q > 0, in

which case the nematic director, is aligned along the spin quantisation axis (which we take

to be the z-axis without loss of generality), and has a representative spinor of the form in
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Eq. (3.17) called the EAP phase. The second case has q > 0, in which the nematic director

is perpendicular to the spin quantisation axis, with a representative spinor of the form in

Eq. (3.20) called the EPP phase. Due to the unpopulated middle component, the EPP phase

presents a configuration of a spin-1 BEC that can be mapped directly to a two-component

condensate, assuming that scattering into and out of the ζ0 component can be neglected.

To begin the mapping procedure, recall the spin-1 GPEs listed in Eq. (2.74), in which the

time-independent GPEs can be found using the substitution ψm =ψm(r)e−iµt/ħ. Since we’re

considering the EPP phase, we construct the time-independent GPEs for the spin-1 system

with a wave function that assumes an empty middle component:[
−ħ2∇2

2M
+ (c0 + c2)|ψ1|2 + (c0 − c2)|ψ−1|2 +q −µ

]
ψ1 = 0,[

−ħ2∇2

2M
+ (c0 + c2)|ψ−1|2 + (c0 − c2)|ψ1|2 +q −µ

]
ψ−1 = 0,

(4.1)

where we have taken p = 0. Now, one can compare the above spin-1 GPEs to the equivalent

two-component time-dependent GPEs, given here as (see Sec. 2.2)(
−ħ2∇2

2m1
+ g1|ψ1|2 + g12|ψ2|2 −µ1

)
ψ1 = 0,(

−ħ2∇2

2m2
+ g2|ψ2|2 + g12|ψ1|2 −µ2

)
ψ2 = 0.

(4.2)

Using these time-independent equations, we can map the two-component system to that of

the spin-1 by comparing the coefficients of the above with that of Eq. (4.1). Doing this we find

g1 = g2 = c0 + c2, g12 = c0 − c2, µ1 =µ2 = µ̃, m1 = m2 = M , (4.3)

where µ̃ = µ− q . The above equations then directly maps the EPP phase of a spin-1 BEC to

the equivalent two-component system, hence providing a pseudospin-1/2 description of the

two-component BEC.

4.1.2 Hydrodynamic properties of a pseudospin-1/2 condensate

The wave function for a two-component BEC can be written generally as(
ψ1

ψ2

)
=

(
|ψ1|e iθ1

|ψ2|e iθ2

)
= e iΘ

(
|ψ1|e iΦ

|ψ2|e−iΦ

)
, (4.4)

where θ j = Arg(ψ j ) for component j = 1,2 and

Θ= θ1 +θ2

2
, Φ= θ1 −θ2

2
. (4.5)
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Since there are two condensates, each with a global U(1) symmetry, the order parameter

space for a two-component system is U(1)1 ×U(1)2, where U(1) j denotes the contribution

from the phase θ j of component j . In the pseudospin-1/2 picture, this can be thought of as

a contribution from the global condensate phase,Θ, and pseudospin,Φ, leading to the order

parameter space [42]

M2C = U(1)Θ×U(1)Φ
Z2

. (4.6)

The Z2 factor comes from the fact that the order parameter remains invariant under the

choiceΘ=Φ=π in Eq. (4.4), and hence gets factored out.

To understand the dynamical role that Θ and Φ play, it is useful to construct a hydrody-

namic picture. In a two-component system, each component has an associated mass current

given by the formula

(nv) j =
ħ

2i m j

[
ψ∗

j ∇ψ j − (∇ψ∗
j )ψ j

]
. (4.7)

for component j = 1,2. Substituting Eq. (4.4) into the above expressions yields the mass cur-

rent for both components:

v1 =
ħ

m1
∇(Θ+Φ), v2 =

ħ
m2

∇(Θ−Φ). (4.8)

If we consider the total superfluid mass current, i.e., v = v1 +v2, for our case of m1 = m2 = m,

then we arrive at

v = 2ħ
m

∇Θ. (4.9)

This reveals that gradients in Θ are associated with a total, superfluid mass current. We can

perform a similar analysis to determine the importance of Φ. Instead of looking at the total

mass current, we instead take the difference of the individual mass currents, resulting in the

expression

v2 −v1 =
2ħ
m

∇Φ. (4.10)

The difference of the two mass currents, and hence gradients ofΦ, are interpreted as a pseu-

dospin current.

4.1.3 Vortices in two-component systems

As we have seen in Chapter 3, the types of stable topological defects within a system can be

obtained using homotopy theory. For a pseudospin-1/2 system, the first homotopy group is

calculated as [42]

π1(M2c) =Z×Z, (4.11)



CHAPTER 4. RELAXATION DYNAMICS OF HALF-QUANTUM VORTICES IN A
TWO-COMPONENT SYSTEM 62

which specifies that two types of vortices are topological stable within this system. The first

is integer vortices, which are described by a 2π winding of the global phase,Θ, with no wind-

ing in the pseudospin, Φ. This is achieved in Eq. (4.4) by having θ1 = θ2 = ϕ, where ϕ is the

azimuthal angle about the core. These vortices share similarities with U(1) vortices arising

in scalar condensates, due to their both having a 2π winding of the condensate phase. The

second class of vortex can be distinguished as a πwinding of the condensate phase,Θ, which

is coupled to a ±π winding of the pseudospin Φ, where the sign of the winding in Φ is deter-

mined by which component the phase singularity is located. For example, consider a vortex

state which consists of a phase singularity in theψ1 component such that about the singular-

ity θ1 winds by 2π and θ2 remains unchanged, i.e., it is a smooth phase field. Such a state can

be written as (
ψ1

ψ2

)
=

(
|ψ1|e iϕ

|ψ2|

)
= eϕ/2

(
|ψ1|e iϕ/2

|ψ2|e−iϕ/2

)
. (4.12)

By comparing the above to Eq. (4.4), we haveΘ=Φ=ϕ/2. Due to the global phase winding by

π, we call such a vortex a HQV. Note however that this vortex is different from, e.g., the HQV

arising in the polar phase of spin-1 condensates [40, 41] (see Sec. 3.5.1). One key difference

arises in the quantisation of circulation. Using Eq. (4.9), the mass circulation along a closed

contour C about the vortex can be calculated as∮
C

v ·dℓ= κ, (4.13)

where κ = h/m is the quantum of circulation. This shows that, despite being classed as a

HQV, the circulation of such a vortex is still quantised in the typical units of κ, similar to

U(1) vortices in scalar condensates. Here, however, we use the term HQV for convenience to

distinguish it from the integer vortex also arising in the psueodspin-1/2 system.

4.2 Investigating half-quantum vortex relaxation dynamics

To begin studying the relaxation dynamics of HQVs in a turbulent system, we numerically

solve the two-component Gross-Pitaevskii equations, given here in dimensionless form (see

Appendix A.1 for details):

i
∂ψ1

∂t
= (−∇2 + g |ψ1|2 +γ|ψ2|2)ψ1,

i
∂ψ2

∂t
= (−∇2 + g |ψ2|2 +γ|ψ1|2)ψ2,

(4.14)

where we have assumed each component has the same atomic mass (m1 = m2 = m) and

interspecies interaction strength (g1 = g2 = g ) to comply with the mapping of the spin-1
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EPP phase to a two-component system. This type of condensate, with equal mass and inter-

species interactions, can be achieved experimentally using two hyperfine states of the same

atom [145, 146]. The key parameter is the ratio of inter- to intra-species interaction

γ= g12

g
. (4.15)

We consider the case 0 < γ < 1, with all interactions repulsive such that the condensate is

stable against the separation of the components. Throughout our simulations we treat γ as a

free parameter within this range.

The inter- and intra-component interactions give rise to two important length scales

within the system. These are, respectively, associated with variations in the total superfluid

density and the difference in density between the components. The density and spin healing

lengths are then defined as [42]

ξd = ħ√
2mg n0

, ξs = ξd

√
1+γ
1−γ , (4.16)

where n0 is the background number density, which we assume to be the same in each com-

ponent. The size of the HQV core can be understood from the energetic hierarchy of these

healing lengths. Since a HQV consists of a phase singularity in one component and not the

other, the vortex core is free to fill with the atoms in the component with no phase singular-

ity. This corresponds to spatial variations in the z-component of the pseudospin, the size of

which is set by the pseudospin healing length, ξs . The vortex core can expand when ξs ≳ ξd ,

which lowers the total energy. We see from Eq. (4.16) that γ directly determines the core sizes

within our systems. Similar energetic hierarchies exist in spinor BECs, which can facilitate

deformations of vortex cores such as the splitting of singly quantised vortices into fractional

vortices [41].

4.2.1 Numerical setup

Our numerical setup is as follows. We solve Eq. (4.14) on a periodic domain with N 2
s = 10242

grid points which has dimensionless area L2 = N 2
s with side length L = Ns . We take N =

3.2×109 atoms per component and fix dimensionless g = L2/4N . The dimensionless density

healing length is then fixed at ξd = Ns/
√

g N = 2 in our system. Our goal is to explore the

effect of the inter-component interaction on HQV relaxation dynamics by varying γ within

the range 0 < γ< 1.

We first need to construct an initial state that consists of many HQVs, which we can sub-

sequently relax. Our numerical procedure for generating such a system is outlined here. We
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Figure 4.1: Density of ψ1 component in a 100ξd × 100ξd subregion of the initial state after
imaginary time propagation. We see the HQVs in this component by the density depletion.
The density peaks correspond to the location of HQV cores in the other component, which
have been filled by atoms in this component.

start with a grid of positions such that the i -th vortex is to be constructed at position (xi , yi ).

The grid in each component is offset by some amount in both the x and y directions to avoid

overlapping vortex positions, which would subsequently generate a system of integer vor-

tices. To generate a random distribution of vortices, we displace each position by some small

amount (xi , yi ) → (xi +δxi , yi +δyi ), where δxi ,δyi are random number drawn from a uni-

form distribution and |δxi |, |δyi | < 3ξd . The phase of each component is then constructed to

contain a 2πphase winding about each vortex position using the method described in [25]. To

ensure that the overall circulation is zero, each position alternates the winding of the phase,

leading to an equal number of HQVs with positive and negative charge. For our system in

particular, we imprint 482 HQVs each component. Finally, the vortices themselves are con-

structed using a short imaginary time propagation of Eq. (4.14), whilst keeping the phase

profile of each component fixed to not alter the positions of the vortices. This imaginary time

propagation imprints the cores of the vortices, and therefore results in an initially turbulent

system of HQVs.

The HQV cores correspond to a density depletion in one component at the position of

the phase singularity with a corresponding density peak at the same position in the other

component (see Fig. 4.1). Previous work has shown that clustering of vortices can lead to

anomalously slow coarsening dynamics [144] and thus constructing the initial state this way

ensures that there is no clustering of like-signed vortices. From this initial state, the system

evolves according to Eq. (4.14). Two HQVs in the same component with opposite winding
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Figure 4.2: Density (a) – (c) and pseudo-vorticity (d) – (f) of the ψ1 component in a 256ξd ×
256ξd subregion at a time t/τ = 2.5× 104ξ2

d for γ = 0.1 (left), γ = 0.6 (middle), and γ = 0.8
(right). The density depletions correspond to HQVs in this component. For γ≳ 0.6, density
peaks reveal the locations of HQVs with the phase singularity in the other component, where
the vortex cores have filled with atoms in this component. Vortices with positive (blue) and
negative (red) circulation are identifiable in the pseudo-vorticity field.

can annihilate, leading to a decay of the total vortex number within the system.

4.3 Spatial aspects of half-quantum vortex decay

We begin our investigations by considering the spatial aspects of the relaxation dynamics.

Firstly, we wish to investigate how γ affects the HQVs within our systems. Fig. 4.2 shows the

density field of the ψ1 component for γ = 0.1,0.6,0.8. One sees that as γ increases, the core

size (i.e., the radial size of the density depletion) also increases. From Eq. (4.16) we see that

the size of the HQV core is dependent on γ, where ξs → ξd as γ→ 0. The healing lengths can

explain why, for γ ≥ 0.6, bright density peaks also appear within the ψ1 field. For small γ,

the density and spin healing lengths become comparable, ξd ∼ ξs . However, an increasing

γ implies a larger spin healing length. Consequently, atoms of the other component will fill

the vortex core as the resulting lowering of the kinetic energy offsets the cost of interaction

energy. This results in the expansion of the vortex cores to the size of the spin healing length.
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Hence, bright density peaks in Fig. 4.2 correspond to atoms in the ψ1 component that have

filled the core of an HQV in the ψ2 component.

To locate the HQVs in the system, we make use of the pseudo-vorticity [147], given as:

ωpj =
1

2
∇× (nv) j , (4.17)

where (nv) j is the mass current of component j = 1,2 defined as in Eq. (4.7). The pseudo-

vorticity has the unique property of remaining regular and non-zero within the vortex cores,

and, on length scales greater than the spin healing length away from a vortex core, quickly

relaxes to zero. Therefore, this becomes a useful tool to identify where vortices are in the sys-

tem by checking for regions of non-zero pseudo-vorticity. Fig. 4.2 (d) – (f) shows the pseudo-

vorticity for the same systems in (a) – (c). We see that non-zero regions of pseudo-vorticity are

in alignment with the density depletions, confirming the cores of vortices. Additionally, the

sign of the pseudo-vorticity also determines the charge of the vortex, where positive pseudo-

vorticity corresponds to a vortex with a positive charge and vice versa.

4.3.1 Investigating the kinetic energy spectrum

A useful property to investigate in turbulent systems is the kinetic energy spectrum, which

provides useful insights into the spatial aspects of the relaxation dynamics. We start with the

kinetic energy of the two-component system which is written in terms of the density n j and

velocity v j of the j -th component as

Ekin =
∫ (|∇pn1|2 +|∇pn2|2

)
d2r+ 1

4

∫ (|pn1v1|2 +|pn2v2|2
)

d2r. (4.18)

The kinetic energy can be further decomposed into quantum pressure (E q ) and classical ve-

locity (E v ) contributions:

E v = 1

4

∫ (|pn1v1|2 +|pn2v2|2
)

d2r, (4.19)

E q =
∫ (|∇pn1|2 +|∇pn2|2

)
d2r. (4.20)

To extract energy spectra from these contributions we define the generalized velocities for

the incompressible (i), compressible (c), and quantum pressure (q) parts as [35]

wi ,c =p
n1vi ,c

1 +p
n2vi ,c

2 (4.21)

wq = 2(∇pn1 +∇pn2). (4.22)
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Here, the incompressible and compressible parts of the velocity field, v, are extracted from

a Helmholtz decomposition which splits the velocity into a divergence-free incompressible

part, ∇·vi = 0, and an irrotational, compressible part, ∇×vc = 0. Hence, in Fourier space, the

kinetic energy spectrum can be calculated by taking the Fourier transform of the generalized

velocities and integrating over the k-space angle as

Eδ(k) = 1

4

∫ 2π

0
|w̃δ(k)|2 dΩk (δ= i ,c, q), (4.23)

where w̃δ denotes the Fourier transform of the generalised velocity wδ for wave number k =
|k|. The total kinetic energy is then given by the sum of each contribution, integrated over all

k

Ekin =
∑
δ

∫
Eδ(k)dk (δ= i ,c, q). (4.24)

The occupation numbers of each contribution are extracted as

nδ(k) = k−2Eδ(k) (δ= i ,c, q). (4.25)

Finally, the total occupation number of the system is given as

n(k) =
∫ 2π

0

[
ψ̃∗

1 (k)ψ̃1(k)+ ψ̃∗
2 (k)ψ̃2(k)

]
dΩk . (4.26)

We plot the occupation number for each energy contribution, as well as total occupation

number, at a late time for γ= 0.6 in Fig. 4.3. The total occupation number exhibits two differ-

ent scaling: A k−4 in the ultraviolet (UV), and k−2 in the infrared (IR). The same scaling have

been found in some 2D, turbulent, scalar BEC systems containing scalar vortices [143]. The

decomposition of the kinetic energy into its respective contributions allows us to see that the

incompressible contribution dominates the spectrum in the IR region, and is therefore re-

sponsible for the transition to the k−4 scaling. This incompressible contribution is directly

associated with the vortices in the system, as vortices are the only excitations that can arise

in an incompressible, irrotational superfluid [3, 132]. Similarly, we see it is both the com-

pressible and quantum pressure contributions that dominate in the UV region, facilitating

the transition to the k−2 scaling, which is characteristic of weak-wave-turbulence [148–150].

This scaling of the kinetic energy was observed throughout all values of γ tested, indicating

that it is quantitatively insensitive to variations in γ. The investigation into the kinetic energy

spectrum thus reveals that γ has negligible effects on the spatial aspects of the relaxation dy-

namics. In addition, it shows that, despite containing a different type of vortex, the dynam-

ics follow quantitatively similar behaviour to some turbulent scalar BEC systems containing

scalar vortices [143].
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Figure 4.3: Occupation numbers for the quantum pressure (purple), incompressible (red di-
amonds), and compressible (blue) contributions for γ = 0.6. The total occupation number
(black) is obtained from the sum of each contribution. The total occupation number has two
distinct scaling: a k−2 (dotted line) in the ultraviolet region, and a k−4 scaling (dashed line) in
the infrared.

4.4 Temporal aspects of half-quantum vortex decay

4.4.1 Growth of correlation lengths

To measure the temporal aspect of the relaxation dynamics, we will consider correlation func-

tions. Since our pseudospin-1/2 order parameter is composed of a mass part and a spin part

[c.f. Eq. (4.5)], it is natural to then construct both a mass and spin correlation function. To

begin, we need to identify appropriate quantities that serve as order parameters for our sys-

tem. Motivated by the form of the EPP phase in spinor BECs, one such quantity is the planar

tensor [60]

Q=
(

Qxx Qx y

Qx y −Qxx

)
, (4.27)

where Qxx = Re(ψ∗
1ψ2) and Qx y = Im(ψ∗

1ψ2). The eigenvalues of Q are given by
{−1

2 |α|, 1
2 |α|

}
,

where α=−2ψ1ψ2. If we consider the general wave function defined in Eq. (4.4), then evalu-

ating Q and α gives

Qxx = |ψ1||ψ2|cos(2Φ), Qx y =−|ψ1||ψ2|sin(2Φ), (4.28)
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Figure 4.4: Correlation functions for the mass (left) and spin (right) parts of a two-component
system as functions of time for γ= 0.6. As time increases the correlation functions decay over
a larger range, indicating long-rang ordering within the system. Insets: Collapse of the mass
(left) and spin (right) correlation functions when scaled by the appropriate correlation length.

α=−2|ψ1||ψ2|e2iΘ. (4.29)

This shows that Q is dependent on the phase of the spin,Φ, whereasα is dependent upon the

global phase,Θ.

Armed with these quantities, we can then construct correlation functions related to the

mass and spin parts of our pseudo-spinor order parameter. These are defined, respectively,

as

GΘ(r, t ) = 1

n2 〈α
∗(0)α(r)〉, (4.30)

GΦ(r, t ) = 2

n2 Tr[〈Q(0)Q(r)〉], (4.31)

where 〈·〉 denotes ensemble averaging. By exploiting the fact that our system is homoge-

neous, we can replace ensemble averages with spatial averages. To obtain the 1D spectrum,

we perform an angular integration in k-space. The spin correlation function is then com-

puted as

GΦ(r, t ) =
∫

dΩk

∫
d 2r′

L2

2

n2 Tr[〈Q(r′)Q(r′+ r)〉], (4.32)

where
∫

dΩk denotes integration over the k-space angle, whilst
∫

d 2r′/L2 is spatial averaging.

We perform the same averaging for the mass correlation function.

Fig. 4.4 shows both correlation functions for γ = 0.6 for various times through the simu-

lation. We see that as time increases, the correlation functions extend over larger distances

which indicates that the respective domains are growing over time, showing long-range order

is being established. From these correlation functions, we may extract a correlation length, Lδ
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Figure 4.5: (a): Mass and spin correlation lengths as a function of time for γ= 0.3,0.6,0.8. For
early-time dynamics, a larger γ is associated with a faster growth of the correlation length. At
late times, however, all correlation lengths tend to a universal t 1/5 scaling. (b): Inter-vortex
spacing, ℓd , as a function of time for scalar systems prepared using different initial condi-
tions. Grid corresponds to a grid of vortices, similar to the setup in (a), random (with noise)
corresponds to a random distribution of vortices where each position is drawn from a uni-
form distribution (with numerical noise added to the initial state). For early-time dynamics
the inter-vortex spacing follows a t 1/5 for each initial state. At late times, this scaling transi-
tion to t 1/2, which is typically observed in scalar vortex relaxation dynamics [143].

withδ ∈ {Θ,Φ}, that enables us to determine a length scale over which the correlation function

decays. We take the correlation length to be the value at which the corresponding correlation

function decays to a quarter of its value at r = 0: Gδ(Lδ, t ) = 1
4Gδ(0, t ). Using the correlation

length, we can determine whether the correlation functions exhibit dynamical scaling, which

implies the form of the functions remains self-similar at different times throughout the sim-

ulation. This means the function collapses to a universal, time-independent function when

scaled by the correlation length: Hδ(r ) =G(r /Lδ(t ), t ). The insets of Fig. 4.4 show the scaling

of the correlation functions when scaled by the respective correlation length. This confirms

that the correlation functions within our system do exhibit dynamical scaling.

Fig. 4.5 shows the correlation lengths for γ= 0.3, γ= 0.6, and γ= 0.8 as functions of time.

We see that at late times in the evolution, all correlation lengths tend to a universal t 1/5 scal-

ing. However, the early-time dynamics are remarkably different for the various γ. As γ in-

creases, there is a faster growth of the correlation lengths at early times, which signifies the

correlation length being γ-dependent. We investigate this behaviour by considering the total

vortex number of the system as a function of time. We can then extract the mean distance

between the vortices as ℓd = 1/
p

Nvort, where Nvort is the total number of vortices in the two
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components. In a scalar BEC containing an initially large number of vortices, it has been

observed that ℓd ∼ tβ [144], where β characterizes the annihilation rate of vortices. In par-

ticular, there were two distinct β observed: Firstly, a β = 1/5 scaling after some short period

of evolution. This scaling is included in Fig. 4.5a as a comparison. Secondly, after a much

longer period of evolution, a β = 1/2 scaling emerges. This second scaling can be delayed if

the initial vortex distribution is highly clustered [144].

Fig. 4.5b is a reproduction of both the early- and late-time scaling of the mean vortex

distance, ℓd , for a scalar system using the parameters of [144]. We consider three initial con-

ditions: Firstly, we constructed a grid of vortices analogous to our two-component system

(see Sec. 4.2.1). Secondly, we considered a random distribution of vortices; one with noise

added to the energy spectrum, and one without. We see that at early and intermediate times,

there is a clear t 1/5 scaling in all the initial states tested. Furthermore, at late times we recover

the t 1/2 scaling for all initial states. This indicates the scaling is robust and insensitive to the

initial conditions.

4.4.2 Vortex decay rate

Motivated by this previous work in scalar BECs [144], we conduct a similar analysis on our

two-component system containing HQVs, and determine how γ affects the vortex decay rate.

In particular, we consider the early-time evolution in which Fig. 4.5a suggests interesting dy-

namics. The variation of the total vortex number with time is plotted in Fig. 4.6 for γ = 0.3,

γ= 0.7, and γ= 0.9. We see that for γ= 0.3, the vortex decay rate is mostly consistent through-

out the evolution, which tends to a t−2/5 (ℓd ∼ t 1/5) scaling at later times. More interesting

dynamics are revealed for γ = 0.7,0.9 where two different scaling regimes emerge at early

times (2.5×102ξ2
d ≲ t/τ≲ 2.5×103ξ2

d ) with Nvort ∼ t−1 for γ= 0.7 and Nvort ∼ t−3/2 for γ= 0.9.

After the initial differing early-time dynamics, the systems then tend to a universal t−2/5 scal-

ing, which corresponds to ℓd ∼ t 1/5 similar to the scalar BEC simulation shown. These re-

sults show a better fit to the theoretical t 1/5 scaling than indicated by the correlation lengths

shown in Fig. 4.5. This further suggests that LΦ,Θ differs slightly from ℓd , even though the

growth of the correlation lengths is driven by vortex annihilation. Fig. 4.6 only extends up to

t/τ= 5×104ξ2
d , and we expect to see a universal transition to Nvort ∼ t−1 (ℓd ∼ t 1/2) at much

later times for sufficiently small γ. For large γ, due to the rapid annihilation of vortices at early

times, there may not be enough vortices left within the system to facilitate the transition to

the Nvort ∼ t−1 regime.

We wish to investigate further the effect of γ on the initial decay rate of the vortices. We
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Figure 4.6: Total vortex number as a function of time for γ= 0.3,0.7,0.9 (red circles). Larger γ
leads to a faster decay rate of vortices at early times due to the rapid annihilation of opposite-
signed vortices within the same component. Despite vastly different early-time dynamics,
the vortex decay rates tend to a universal t−2/5 at late times. For comparison the vortex decay
rate of a scalar system is shown (black circles). This system is set up using the grid method as
defined in Sec. 4.2.1, with 482 vortices in total. Note that the black line is multiplied by two to
have it be the same total vortex number as the two-component system.

can model the vortex decay rate as a simple kinetic-like equation of the form

∂Nvort

∂t
∼ Nη

vort, (4.33)

where η> 1. The form of this equation states that the decay rate of the vortices is dependent

on the total number of vortices facilitating the annihilation. Using this simple model, we can

extract a scaling for the total vortex number as

Nvort ∼ t−2/z , (4.34)

where z = −2(1−η). An exponent of z = 2 corresponds to a two-body collision process, in

which only two vortices are required to annihilate. On the contrary, an exponent of z = 5

corresponds to a three-body collision process, where three vortices are necessary to facilitate

annihilation. Fig. 4.7 shows the exponent, z, as a function of γwhere z is extracted within the

time interval 2.5×102ξ2
d < t/τ < 2.5×103ξ2

d . We see a rapid decrease of the exponent after

γ≳ 0.6, in which Fig. 4.6 shows the rapid annihilation of vortices is prevalent. The decrease

of the exponent in our simulations signals an additional vortex interaction mechanism not

present in scalar BEC systems.
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Figure 4.7: The exponent z in Eq. (4.34) as a function of γ. Here, z is calculated in the region
2.5×102ξ2

d < t/τ< 2.5×103ξ2
d , where early-time dynamics take place. We see that after γ≳ 0.6

a rapid decrease of the exponent occurs, signalling a rapid change in vortex dynamics.

Numerous studies have been conducted to try to understand the inter-vortex forces be-

tween HQVs in two-component systems [42, 43]. In particular, Kasamatsu et al. [43] tried

to derive a point vortex model to explain the dynamics shown in Fig. 4.7, but found that the

model failed to accurately predict the resulting vortex dynamics. They conducted simple tests

involving a dipole of HQVs in which they found that an increase in γ dramatically changes

the motion of the dipole. For γ >= 0.6, it was found that the individual vortices move to-

gether and undergo annihilation. For weaker γ, the two vortices move in parallel, similar to

the behaviour observed for dipoles consisting of scalar U(1) vortices. The strength of γ also

determines the rate at which the vortices annihilate (see Fig. 11 of Ref. [43]).

4.5 Conclusions

In this chapter we have investigated the relaxation dynamics of HQVs in a two-dimensional,

two-component BEC. After detailing the numerical set up, we first investigated the spatial as-

pects of the relaxation dynamics. In particular, we investigated the kinetic energy spectrum

by splitting it into incompressible, compressible, and quantum pressure parts. We found

that the kinetic energy spectrum exhibits two different scaling in the infrared and ultraviolet

regions. The former had a scaling of k−2, whilst the latter had k−4. The splitting of the spec-

trum into its constituent parts revealed that the transition to the k−2 scaling was due to the

incompressible component, whilst the k−4 arose due to the compressible component. Sim-

ilar scaling has been observed in scalar BEC systems containing scalar vortices [143]. This

shows that, despite being an entirely different class of vortex, relaxation dynamics of HQVs
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exhibit similar spatial aspects to those observed in scalar systems with scalar vortices

After considering the spatial aspects, we then considered the temporal aspects of the re-

laxation dynamics. We started with investigating the correlation functions, for which we con-

structed both a mass and spin part. It was revealed that the correlation functions extended

over larger regions as time increased, which indicates long-range order within our systems.

We also showed our system exhibits dynamical scaling, by showing that the correlation func-

tions collapsed to a universal, time-independent function when scaled by the appropriate

correlation length. Investigations into these correlation lengths suggested anomalous early-

time dynamics was taking part. It was revealed that the correlation lengths had a faster initial

growth for larger γ, but at late times all correlation lengths scaled as t 1/5.

Motivated by the previous scalar BEC work in [144], we investigated the decay rate of

the vortices. We showed that for sufficiently high γ ≳ 0.6 the vortices had an increasingly

steeper decay rate at early times, which then tended to a universal t−2/5 at late times in all γ

tested. We tested this theory further by modelling the vortex decay rate as a simple kinetic-

like equation, for which we then manually extracted the scaling of the total vortex number.

Plotting the exponent of the scaling against γ confirmed that after γ ∼ 0.6 there is a rapid

increase the exponent, and therefore the decay rate of the vortices.
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5
GENERALISED KIBBLE-ZUREK SCALING IN A

SPIN-1 BOSE-EINSTEIN CONDENSATE

Nonequilibrium phase transitions are ubiquitous, arising in many areas of physics, including

cosmology [78, 151], condensed matter [152–157], and ultracold atomic gases [158–161]. A

quantum phase transition (QPT), in contrast to its classical counterpart, is a zero-temperature

transition driven by quantum fluctuations [63]. In such a transition, a fundamental change

of ground state occurs as an external parameter is varied across the quantum critical point.

For a continuous phase transition, as this critical point is passed, the timescale governing

the dynamics diverges, resulting in the system no longer adiabatically following the ground

state. This non-adiabatic evolution implies that the symmetry of the system is broken inde-

pendently in causally disconnected regions, which typically results in the formation of topo-

logical defects. The Kibble-Zurek mechanism (KZM) is a theory that describes the resulting

dynamics and predicts the scaling properties of the excitations from the details of the univer-

sality class of the transition. It was first introduced by Kibble in the context of cosmological

phase transitions in the early universe [77, 78], before being extended by Zurek to condensed

matter systems [162–164].

Any continuous phase transition can be modelled using the KZ theory, and due to this ro-

bustness, it has been successfully applied to both classical [165, 166] and quantum [67, 167,

168] phase transitions. Whilst the theory has had great success in applications to continu-

ous, second-order transitions, direct application to discontinuous phase transitions does not

75
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typically give an accurate description of observed scaling laws. This is due to the fact that at

the critical point of a continuous phase transition the energy spectrum is gapped, in which

well-defined correlation lengths and time scales can be derived. In a first-order, discontin-

uous phase transition, the energy spectrum at the critical point is gapless, and hence the

traditional KZ theory breaks down. Recently, there has been the first experimental evidence

of the existence of scaling laws for a first-order QPT [75], where standard KZ theory failed to

predict the observed scaling. However, the KZM was generalised by considering the energy

gap between the metastable state and its first corresponding excited state, which then gave

an accurate prediction of the observed scaling laws. There is current interest in trying to gen-

eralise the KZM and applying it to discontinuous transitions and deriving appropriate scaling

laws [169, 170].

The seminal work of Fisher and Berker [171], in the classical case, first discussed a particu-

lar type of discontinuous, first-order transition and introduced the notion of a discontinuous

critical point (DCP). Such a DCP separates two distinct phases, characterized by a discon-

tinuous jump in the order parameter. Despite the discontinuity, the transition can still be

characterized by a diverging length scale and hence critical exponents can be derived. This

framework was then extended to the quantum case, specifying the conditions for a discon-

tinuous quantum critical point (DQCP) [170]. The DQCP leads to a prediction of the scaling

of the defect density that is modified from the typical KZ scenario.

Spinor BECs offer a highly controllable platform for studying non-equilibrium physics,

ranging from topological defects [49, 116] to quantum quenches [35, 37, 60]. In addition,

their rich phase diagram has seen the KZM applied both numerically and experimentally in

various continuous phase transitions [66, 68, 69, 71–73]. For a ferromagnetic spin-1 BEC,

there exists a first-order QPT between a three-component broken-axisymmetry (BA) phase

and a ferromagnetic (FM) phase, making this system an ideal platform for investigating the

KZM across discontinuous transitions.

In this Chapter we analytically and numerically investigate the KZM in a 1D FM spin-1

BEC. By quenching the quadratic Zeeman shift, we are able to quench the system through

both continuous and discontinuous phase transitions. In particular, we first examine the

resulting scaling laws associated with quenching through the continuous phase transition

from the polar phase to the BA phase, and confirm that these are in excellent agreement with

the KZ theory. Then, we extend the KZM to predict the scaling laws of the discontinuous, first-

order phase transition between the BA and FM phases. Quenching the quadratic Zeeman

shift allows the system to change from the BA phase into a phase-separated FM phase, where

domains with opposing condensate-spin projection develop [96]. We show that, despite this

particular transition having a gapless spectrum, the standard KZ theory can be generalised
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and extended to cover discontinuous, first-order transitions. In addition, scaling behaviour

near the critical point is derived by means of linearising the mean-field equations for the

spin-1 condensate [66, 172]. Predicted scaling laws are then confirmed by direct numerical

simulations.

5.1 The Kibble-Zurek mechanism

Consider a system that undergoes a spontaneous breaking of symmetry when a control pa-

rameter, λ, is ramped across a phase transition that occurs at the critical point, λc . A contin-

uous, second-order phase transition can be characterized by a divergence of the equilibrium

correlation length [64]

ξ(ϵ) ∼ |ϵ|−ν, (5.1)

and an equilibrium relaxation time

τ(ϵ) ∼ ξz ∼ |ϵ|−νz , (5.2)

where

ϵ= λ−λc

λc
(5.3)

is the dimensionless distance from the critical point. The equilibrium relaxation time τ de-

scribes the time it takes for the system to react to an external change of a parameter. In a

quantum phase transition, the relaxation time is set by the inverse of an energy gap ∆ be-

tween the ground state and the first excited state [65, 173]

τ≃∆−1. (5.4)

As we approach the critical point, the energy gap vanishes as

∆∼ |ϵ|νz . (5.5)

The system is initially prepared in a high-symmetry phase (ϵ> 0), but breaks that symmetry

as the critical point is crossed (ϵ < 0). In the above equations, the exponents z and ν are the

dynamical and correlation length critical exponents, respectively. Different systems which

have the same critical exponents are said to belong to the same universality class [63, 64].

The KZM describes the dynamics of crossing the critical point when λ is continually var-

ied. We assume the form of a linear quench (cases concerning non-linear quenches are dis-

cussed in Refs. [174, 175]), such that the control parameter can be written as

λ(t ) =λc [1−ϵ(t )] , (5.6)
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Figure 5.1: A schematic representation of the dynamics of a system during a linear quench.
The system starts in a high-symmetry phase (t > 0) and is quenched across a critical point to
a low symmetry phase (t < 0) by the reduced control parameter (red dashed line) ϵ(t ) = t/τQ .
As the critical point is approached, the equilibrium relaxation time (blue line) diverges, and
the order parameter can no longer follow the ground state, leading to frozen dynamics in the
interval t ∈ [−t̃ , t̃ ]

.

where the distance to the critical point is

ϵ(t ) = t

τQ
, (5.7)

for a quench time τQ . This form gives a transition rate |ϵ̇/ϵ| = t−1 which diverges as we ap-

proach the critical point. Here, t ∈ [−τQ ,τQ ], where the critical point is reached at t = 0. The

dynamics of the system can be broken into three stages as ϵ is ramped from ϵ > 0 to ϵ < 0:

adiabatic, frozen, and adiabatic again (see Fig. 5.1 for a schematic representation).

Far from the critical point, the equilibrium relaxation time is small compared to the in-

verse transition rate |ϵ/ϵ̇|, meaning the system adiabatically follows the instantaneous ground

state for ϵ(t ). This stage of adiabaticity lasts until the relaxation time becomes comparable to

|ϵ/ϵ̇|:
τ≈ |ϵ/ϵ̇| = t̃ . (5.8)

Using Eqs. (5.5) and (5.7), the above equation can be solved to yield the freeze-out time, t̃ :

t̃ ∼ τ
zν

1+zν
Q . (5.9)

After the freeze-out time is passed, however, the relaxation time diverges and the system can

no longer keep up with the externally imposed changes. The system then enters the so-called

impulse regime, where the dynamics are frozen and remains in this regime until −t̃ , when

the relaxation time becomes faster than the transition rate once again. The consequence of
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the impulse region, however, is that the system arrives at −t̃ , in which the true ground state

is in a broken-symmetry phase, whilst remaining in the state set at t̃ , which corresponds to a

symmetric phase. This state at t̃ then becomes the initial state for the last adiabatic stage of

evolution beginning at −t̃ . At this point, the system is no longer in its current ground state

and rectifies this by breaking the symmetry of the initial state. This results in the formation

of distinct domains in the system whose size is set by the value of the equilibrium correlation

length at the freeze-out time

ξ̂= ξ(t̃ ) ∼ τ
ν

1+zν
Q . (5.10)

If the system supports topological defects such as vortices, then the defect density is given by

Nd ≃ ξ̂−d ∼ τ
−dν
1+zν
Q , (5.11)

where d is the number of spatial dimensions. This key result provides a foundation in test-

ing the KZM in subsequent sections, and has already been successfully applied to numerous

spinor BEC systems [66, 68, 69, 71, 73] to determine the validity of the KZM.

5.2 Numerical studies of the Kibble-Zurek mechanism across a

second-order quantum phase transition

To verify the key results of the KZ theory presented in the previous section, we perform nu-

merical simulations using a spin-1 BEC. As shown in Sec. 3.2, there are four ground state

phases of spin-1 BECs; namely, the ferromagnetic, partially-magnetised polar, polar, and

broken-axisymmetry phases, where each ground state phase has an associated symmetry.

The Kibble-Zurek mechanism can be studied in spin-1 BECs by considering how the change

of a control parameter causes the order parameter to change from one ground state to an-

other. As it does this, the symmetry of the system is spontaneously broken, and hence the

Kibble-Zurek theory can be applied.

Spin-1 BECs support numerous first- and second-order quantum phase transitions when

the linear, p, or quadratic, q , Zeeman shifts are ramped across a critical point [96]. A second-

order quantum phase transition is characterised by the continuous first derivatives of the

internal energy with respect to variations in p and q at the critical point. In this section,

we aim to test the predictions of the Kibble-Zurek mechanism for a second-order quantum

phase transition in a spin-1 BEC.
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5.2.1 Polar to broken-axisymmetry quench

Motivated by previous work [66], we will investigate the Kibble-Zurek mechanism across the

second-order phase transition occurring between the polar and broken-axisymmetry phases

in a ferromagnetic spin-1 BEC. The polar phase is the energetic ground state when Q =
q/|c1|n > 2. The critical point Q = 2 (for p = 0) represents the second-order phase transi-

tion to the BA phase. The BA phase contains three Bogoliubov modes [172], but only one is

non-zero in the long wavelength limit (see Sec. 5.3.2 for further details on Bogoliubov modes

in a spin-1 BEC). This mode is gapped, and has the scaling form

∆∼
√

4−Q2. (5.12)

We temporally vary Q according to

Q(t ) = 2− t

τQ
, (5.13)

where τ−1
Q is the quench rate. To investigate Kibble-Zurek scaling, we consider the freeze-out

time, t̃ , which occurs when the equilibrium relaxation time is equal to the rate of change of

the control parameter [see Eq. (5.8)]. Using the above form of the linear quench, the freeze-

out time is calculated as [66]

t̃ ∼ τ1/3
Q . (5.14)

We now analyse the resulting dynamics when linearly decreasing Q according to Eq. (5.13),

starting from the polar phase (t < 0) and end the simulation precisely at Q = 0 (t = 2τQ ) in the

BA phase. The initial state is a polar wave function that is slightly perturbed:

ψ=
(
δψ1,

1p
L
+δψ0,δψ−1

)
, (5.15)

where |δψm |≪ 1/
p

L are small noise terms and L is the length of the computational domain.

The real and imaginary parts of these terms at individual grid points are drawn from the

probability distribution p(x) = exp
(−x2/2σ2

)
/
p

2πσ. To ensure we remain close to the po-

lar ground state, we take σ= 10−4. We consider a 1D system with Nx = 2048 grid points with

L = 78 and choose dimensionless spin-independent interaction c0 = 1.4× 105 and c0/c1 =
−222. Note that these choice of parameters give a condensate close to that of 87Rb, in which

c0/c1 ≈−111 (see Sec. 2.5.3). We start with the initial state in Eq. (5.15) and integrate the spin-

1 Gross-Pitaevskii equations using a symplectic integrator [176] (see Appendix A.2 for details

on the numerical integration scheme).

5.2.2 Evolution of the transverse magnetisation

To determine the freeze-out time within our system, we need to find a quantity that grows as

the transition point is crossed. This freeze-out time is then measured by the time it takes for
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Figure 5.2: (a) The transverse magnetisation as a function of Q(t ) for τQ = 11. Plotted are the
numerical values (black line) and the analytical prediction (red line). (b) The extracted value
of t̃ versus the quench time. Overlaid is the power-law scaling τ1/3

Q .

the onset of that growth to occur. The quantity that satisfies this condition in the polar to BA

transition is the transverse magnetisation

M⊥ =
∫
〈F̂ 2

x 〉+〈F̂ 2
y 〉dz, (5.16)

where F̂x and F̂y are the x, y components of the condensate spin vector, respectively. In the

polar phase this quantity is zero, but becomes non-zero in the BA limit where it is M⊥ =
(1−Q2/4)/L. Fig. 5.2a shows a typical evolution of the transverse magnetisation for τQ = 11.

One sees that after the critical point is crossed at Q = 2, the transverse magnetisation grows in

a non-trivial fashion. This growth starts precisely after the system exits the freeze-out stage,

which occurs at t = t̃ . The magnetisation then grows rapidly, exceeding the analytical pre-

diction at certain time intervals, and begins to oscillate with the amplitude of the oscillation

decaying over time. Using this quantity, we can test the Kibble-Zurek prediction in Eq. (5.9).

We define t̃ as the instant when M⊥L intersects 1% of the maximum value given by M⊥L =
1. Fig 5.2b shows the extracted value of t̃ for a range of τQ . We see an unambiguous power-

law scaling of τ1/3
Q for τQ ≥ 10. The gradual departure from the t̃ ∼ τ1/3

Q scaling indicates that

the quench has to be sufficiently slow to capture the Kibble-Zurek scaling. We note that the

choice of the 1% threshold used here is arbitrary. We have tested a range of values up to a

maximum of 10%, and obtain quantitatively similar behaviour for all values tested.
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5.3 Extending the Kibble-Zurek theory to first-order quantum

phase transitions

The preceding sections were concerned with the KZM across second-order phase transitions.

Describing the KZM across discontinuous, first-order transitions, however, has been difficult

due to lack of universality [177–179]. More recent work has aimed to bridge the gap between

the KZM and first-order transitions [170], and here we present an overview of how the KZM

can be adapted to describe a discontinuous phase transition that will form the focus in the

remainder of this chapter.

Fisher and Berker [171] demonstrated that first-order phase transitions occurring at a

DCP can also give rise to scaling behaviour. Such a DCP results in a discontinuity in the order

parameter as the critical point is passed. Despite this, the transition can still be characterised

by a divergent length scale, and hence, critical exponents can be derived. Suzuki et al. [170]

aimed to extend the notion of a DCP to a DQCP, of which we will summarise here. Let us

consider a system that contains a critical point at q = qc , where q is a tunable parameter and

contains the presence of a symmetry-breaking field, p. For one to have a DQCP five condi-

tions need to be satisfied. Firstly, the energy density ϵ(q, p) must be a continuous function of

q and p across the critical point

ϵ(qc +0,0) = ϵ(qc −0,0). (5.17)

The derivative of this energy density, however, is discontinuous

∂ϵ(qc +0,0)

∂q
̸= ∂ϵ(qc −0,0)

∂q
. (5.18)

The order parameter m(q, p), where m =−∂ϵ(q,p)
∂p , has a discontinuous jump as a function of

q as the critical point is passed

|m(qc −0,0)| > |m(qc +0,0)| = 0, (5.19)

whilst also having a discontinuous jump as a function of p

|m(qc ,±0)| > 0. (5.20)

Finally, we require that the derivative of the energy density be bounded as q → qc ±0∣∣∣∣∂ϵ(qc ±0,0)

∂q

∣∣∣∣<∞. (5.21)

These five conditions encapsulate a DQCP.
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5.3.1 The Broken-axisymmetry to ferromagnetic transition as a discontinuous

quantum critical point

Let us now consider a specific example. We are interested in the phase transition that occurs

between the BA and FM phases. The energy densities for the two states are given by [96]

ϵBA = (−p2 +q2 +2qc1n)
2

8c1nq2 + 1

2
c0n, ϵFM± =∓p +q + 1

2
n(c0 + c1), (5.22)

where ϵFM± corresponds to the energy density in the FM phase for the spinor ζ = (1,0,0)T

(+) and ζ = (0,0,1)T (-). One sees that at the critical point q = qc = 0 and p = 0 the energy is

continuous. On the other hand, the derivative of the above energies with respect to q yields

∂ϵBA

∂q
= 1

4c1n

(
q − p4

q3

)
− p2

q2 + 1

2
,

∂ϵFM±

∂q
= 1. (5.23)

Indeed, there is a discontinuity in these derivatives at q = p = 0, although they still remain

bounded. The relevant order parameters for this transition are given by

mBA = p(p2 −q2 −2qc1n)

8c1nq
, mFM± =±1, (5.24)

which is precisely the local magnetisation, F̂z = |ψ1|2 − |ψ−1|2, in both phases (see Sec. 3.2).

Again, one sees that at the critical point and for p = 0 the order parameter becomes zero in

the BA phase whilst becoming non-zero in the FM phase. In addition, as the linear Zeeman

shift p is varied both above and below zero, the order parameter becomes non-zero. We have

shown that the BA to FM phase transition satisfies all conditions specified in Eqs. (5.17) -

(5.21) and therefore is a DQCP.

5.3.2 Determining the relevant Bogoliubov mode

In order to determine the relevant energy spectrum for our system, we consider the Bogoli-

ubov modes of the BA phase of a spin-1 BEC, which we derive explicitly from the relevant

Bogoliubov transformations. The broken-axisymmetry phase can be parameterised as [172]

ζBA =
(

sinθp
2

,cosθ,
sinθp

2

)
, (5.25)
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where sinθ =
√

1/2+q/(4nc1). Then, the fluctuation operators for this state are then defined

as [172]:

âk,d = sinθp
2

(âk,1 + âk,−1)+cosθâk,0, (5.26)

âk, fz =
1p
2

(âk,1 − âk,−1), (5.27)

âk,θ =
cosθp

2
(âk,1 + âk,−1)− sinθâk,0, (5.28)

where on the right-hand side âk,m is the annihilation operator for a spin-1 boson in magnetic

level m (for m =−1,0,+1), determined by expanding the wave function field operator as

ψ̂m(x) = 1p
V

∑
k

âk,me i k·x, (5.29)

where V is the volume of the system.

The sub-Hamiltonian for the spin fluctuation mode âk, fz can be diagonalised using the

transformation

b̂k, fz =
√
ϵk +q/2+Ek, fz

2Ek, fz

âk, fz +
√
ϵk +q/2−Ek, fz

2Ek, fz

â†
−k, fz

, (5.30)

where ϵk =ħ2|k|2/2M is the kinetic energy. The Bogoliubov spectrum is then given by

Ek, fz =
√
ϵk(ϵk +q). (5.31)

The sub-Hamiltonians for the density fluctuation mode âk,d and the θ mode âk,θ can be sim-

ilarly diagonalised using operators b̂k,+ and b̂k,−, which yields the remaining two Bogoliubov

modes [172]:

Ek,± =
√
ϵ2

k +n(c0 − c1)ϵk +2(nc1)2(1− q̃2)±E1(k), (5.32)

where q̃ =−q/2c1n and

E1(k) =
√[

n(c0 +3c1)ϵk +2(c1n)2(1− q̃2)
]2 −4c1(c0 +2c1)(nq̃ϵk)2. (5.33)

The final, diagonalised Hamiltonian then reads

Ĥ BA = E BA
0 +

∑
k̸=0

[
Ek, fz b̂†

k, fz
b̂k, fz +Ek,−b̂†

k,−b̂k,−+Ek,+b̂†
k,+b̂k,+

]
, (5.34)

where E BA
0 is the ground state energy for the BA phase [172].

For simplicity, we now consider a 1D system. In the long-wavelength limit (k → 0), the

only non-zero (gapped) mode is given by Ek,+ =
√

4(c1n)2(1− q̃), which has the form Ek,+ ∼
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Figure 5.3: Imaginary parts of the energies defined in Eq. (5.31) and Eq. (5.32) in a parameter
space of mode k and Q = q/|c1|n. Note that Ek,− = 0 for our range of k and hence is not
shown.

√
q ′

c
2 −q2, where q ′

c = 2c1n. The relevant mode for the BA to FM transition can be found by

considering the imaginary parts of the derived Bogoliubov energies (see Fig. 5.3). For |Q| > 2,

Im(Ek,+) becomes non-zero, indicating an instability. The critical point Q = 2 corresponds

to the second-order phase transition from the polar to the BA phase, indicating that Ek,+ is

the desired Bogoliubov energy for that particular transition. However, we see that for Q < 0

the imaginary part of Ek, fz becomes non-zero, and hence unstable. This critical point cor-

responds to the transition between the BA and FM phases, which precisely describes our

transition of interest. Therefore, Ek, fz is the correct Bogoliubov mode for our transition. Note

that for k = 0 an instability does not occur in the Ek, fz mode, and so studies focussing on this

mode in particular (the so-called uniform mode approximation) will not capture the phase

transition that occurs at Q = 0 [75, 180, 181]. In contrast, choosing the k = 0 mode is sufficient

to capture the phase transition at Q = 2 since it is the most unstable mode indicated in Ek,+.

In practice, the Q =−2 transition is not realised since the instability at Q = 0 for any k ̸= 0 will

typically arise and take precedent when Q is quenched from positive to negative values.

5.3.3 Predicting the density of defects

Recall from Sec 5.1 that the density of defects takes the form Nd ≃ ξ−d . Therefore, to predict

the density of defects for the BA to FM transition, we need to find the appropriate form for the

correlation length, ξ. With the relevant Bogoliubov mode found, we can predict the scaling of

the density of defects for a BA to FM phase transition. Since our relevant mode is gapless, it
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is instructive to consider a generalisation of the spectrum, given by

E 2
k ∼ |q(t )−qc |αϵηk +ϵ

2z
k . (5.35)

We focus on the case of approaching the critical point from the BA phase, since this deter-

mines the crossover from the adiabatic regime to the impulse regime which sets the metastable

state after the DQCP is crossed. To be consistent with the KZM, where Ek ∼ |q(t )− qc |z , we

make the ansatz k ∼ ξ−1 ∼ |q(t )− qc |ν, equivalent to k ∼ ξ−1. For a scaling solution to arise

that is consistent with the relaxation time, we require Ek ∼ kz . This, combined with Eq. (5.35),

leads us to the relation

α= ν(2z −η). (5.36)

Now, in our system, we have qc = 0 and q =−t/τQ and thus Eq. (5.35) simplifies to

E 2
k ∼ |t |α

ταQ
kη. (5.37)

Recall now the adiabatic-impulse approximation described in Sec. 5.1, with an energy

gap given by ∆(t ). In this case, the relaxation time scales as τ ∼ 1/∆, which implies that far

from the critical point the relaxation time is small, and the system adiabatically follows the

instantaneous ground state. However, as the critical point is approached ∆ → 0, and the

relaxation time then diverges. At some time t̃ the relaxation time becomes comparable to the

transition time,∆/∆̇, and the system can no longer adiabatically follow the ground state. This

time (often denoted the freezing time), t̃ , signifies the onset of the impulse regime, where the

system becomes frozen. Therefore, the freezing time can be evaluated from the expression

1

∆(t̃ )
∼ ∆(t̃ )

∆̇(t̃ )
. (5.38)

For our gapless spectrum, we work with a dispersion relation of the form given by Eq. (5.37).

Then, the adiabatic-impulse approximation states that E 2
k = Ėk , which leads to

α

2τα/2
Q

|t̃ |(α/2−1)k̃η/2 ∼ |t̃ |α
ταQ

k̃η, (5.39)

which then leads us directly to the freezing time

|t̃ | ∼ τα/(2+α)
Q k̃−η/(2+α) ∼ τνz/(1+νz)

Q . (5.40)

Now, to obtain the characteristic momentum scale, we substitute Eq. (5.40) back into Eq. (5.37),

which yields

k̃ ∼ τ−ν/(zν+1)
Q . (5.41)
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The density of defects is then finally calculated as

Nd ∼ k̃d ∼ τ−dν/(zν+1)
Q , (5.42)

where d is the dimensionality of the system. Hence, we have shown how the density of defects

can be predicted for a system containing a gapless spectrum.

For the BA to FM transition specifically, Eq. (5.31) implies that α = 1, η = 2, and z = 2.

Considering a 1D system (d = 1), that leads to a scaling of the density of defects as

Nd ∼ τ−1/4
Q , (5.43)

which corresponds to choosing z = 2 and ν= 1/2 in Eq. (5.11). Despite the Hamiltonian of our

model being the same as previous works, this scaling obtained is different from that reported

in previous studies on the KZM in spinor BECs [66, 68, 69, 71, 182]. These studies focused on

continuous phase transitions through a QCP, and our results indicate a new scaling regime

that is associated specifically with the DQCP of this system.

5.3.4 Extracting a power-law scaling near the critical point

Having identified the relevant mode of the transition, we now follow a procedure similar to

Damski [66] and analytically determine the scaling behaviour of the system near the critical

point by linearising our system of equations. To begin, we start with a wave function close to

the BA state

ΨT =
(p

2n0

4

√
2−Q0 +δψ1(t ),

p
n0

2

√
2+Q0 +δψ0(t ),

p
2n0

4

√
2−Q0 +δψ−1(t )

)
e−iµt ,

(5.44)

where 0 <Q0 < 2 is a constant, µ is the chemical potential and |δψm |≪ 1 are time-dependent

noise terms. The noise terms must satisfy
∫ ∑

m δψm +δψ∗
m dz to ensure normalisation of the

wave function. Additionally, they must also satisfy
∫

(δψ1+δψ∗
1δψ−1+δψ∗

−1)dz = 0 to ensure

that magnetisation is conserved.

Recall the spin-1 GPEs are given as (see Sec. 2.4.1):

iħ∂Ψ
∂t

=
[
−ħ2∇2

2M
−p fz +q f 2

z + c0n + c1n〈F̂〉 · F̂
]
Ψ. (5.45)

Substituting Eq. (5.44) into the above equations and keeping terms linear in δψm yields the
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following two equations for δψ±1 (p = 0)

iħ∂δψ1

∂t
=

[
− ħ2

2M

∂2

∂z2 +q −µ+ n0(10c0 +6c1 − (c0 − c1)Q)

8

]
δψ1

+ n0

√
2(4−Q2)

8

[
(c0 +3c1)δψ0 + (c0 + c1)δψ∗

0

]
+ n0(2−Q)

8

[
(c0 − c1)δψ−1 + (c0 + c1)δψ∗

1

]+ n0

8
[(2−Q)c0 + (2+3Q)c1]δψ∗

−1, (5.46)

iħ∂δψ−1

∂t
=

[
− ħ2

2M

∂2

∂z2 +q −µ+ n0(10c0 +6c1 − (c0 − c1)Q)

8

]
δψ−1

+ n0

√
2(4−Q2)

8

[
(c0 +3c1)δψ0 + (c0 + c1)δψ∗

0

]
+ n0(2−Q)

8

[
(c0 − c1)δψ1 + (c0 + c1)δψ∗

−1

]+ n0

8
[(2−Q)c0 + (2+3Q)c1]δψ∗

1 . (5.47)

Now, subtracting Eq. (5.47) from Eq. (5.46) results in the partial differential equation

iħ∂Gy

∂t
=

[
− ħ2

2M

∂2

∂z2 +q −µ+n0(c0 + c1)

]
Gy −

c1n0Q

2
G∗

y , (5.48)

where Gy = δψ1−δψ−1. The chemical potential of the system is calculated from theψ0 com-

ponent of Eq. (5.45) by keeping leading order terms and assuming a stationary state which

leads to µ = c0n0 + c1n0(2 −Q0)/2. Using this expression for the chemical potential and

q(t ) =−c1n0Q(t ) Eq. (5.48) simplifies to

iħ∂Gy

∂t
=

[
− ħ2

2M

∂2

∂z2 − c1n0

(
Q − Q0

2

)]
Gy −

c1n0Q

2
G∗

y . (5.49)

To proceed with our analysis, we now split Gy into real and imaginary parts and make use

of Fourier transforms, ay =
∫

Re(Gy )e i kz d z and by =
∫

Im(Gy )e i kz d z to progress our analysis.

Substituting these expressions in Eq. (5.49) yields the following matrix equation

d

dt

[
ay

by

]
=

(
0 ħk2

2M − c1n0
2ħ (Q −Q0)

c1n0
2ħ (3Q −Q0)− ħk2

2M 0

)[
ay

by

]
. (5.50)

To solve the above system of equations, we rewrite the equation in terms of a single
d2ay

dt 2 and

substitute the critical point value Q = 0 to obtain

d2ay

dt 2 = c1n0

2ħτQ
by +

(ħ2k2

2M
− c1n0Q

2ħ

)
dby

dt
. (5.51)



CHAPTER 5. GENERALISED KIBBLE-ZUREK SCALING IN A SPIN-1 BOSE-EINSTEIN
CONDENSATE 89

Now, expressions for by and
dby

dt can be found from Eq. (5.50), which transforms the above

equation to

d2ay

dt 2 = 1

τQ

(
ħ2k2

Mc1n0
−Q

) day

dt
−

(
ħ2k4

4M 2 − k2c1n0Q

M
+ 3c2

1n2
0Q2

4ħ2

)
ay . (5.52)

Finally, to simplify the above expression, we use the spin healing length ξs =ħ/
p

2|c1|n0 and

the spin time τs =ħ/(|c1|n0), along with the substitution Q =−t/τQ :

d2ay

dt 2 = −1(
2ξ2

s k2τQ − t
) day

dt
−

(
ξ4

s k4

4τ2
s
− ξ2

s k2t

2τ2
sτQ

+ 3t 2

16τ2
sτ

2
Q

)
ay . (5.53)

Now, to extract scaling solutions, we rescale time as t → tλwhere λ=p
τsτQ , which leads

to the final differential equation

d2ay

dt 2 = −1(
2κ2 − t

) day

dt
− 1

4

(
κ4 −2κ2t + 3t 2

4

)
ay , (5.54)

where κ2 = ξ2
s k2√τQ /τs . This scaling ensures that the last term of the above equation is

independent of τQ . Then, the remaining dependence on τQ is eliminated if we require that

κ is constant, implying that k ∼ τ−1/4
Q . Under these conditions, we have now, independent of

the KZM, derived scaling solutions for k, which are seen to be consistent with the alternatively

derived scaling of the density of defects following the KZ theory (compare the above scaling

for k with the density of defects given in Eq. (5.43)). The main advantage of this approach

over the KZM is in treating the time-dependence of the quadratic Zeeman shift directly rather

than working with instantaneous dispersion relation as in the standard KZM. The agreement

of the scaling obtained from the two methods provides further verification of the validity of

the arguments used to extend the KZM to our gapless spectrum.

5.4 Numerical studies of the Kibble-Zurek mechanism across a

discontinuous quantum phase transition

5.4.1 Broken-axisymmetry to ferromagnetic quench

To check our predictions, we perform numerical simulations of a spin-1 Bose-Einstein con-

densate crossing a DQCP. We start from the BA wave function with (p = 0):

ψ±1 =
p

2n0

4

√
2−Q(t ), ψ0 =

p
n0

2

√
2+Q(t ), (5.55)

where Q(t ) = q(t )/|c1|n and n0 is the background density in a uniform system. The BA wave

function is the ground state for c1 < 0 and 0 < Q < 2. There exists a critical point at Q = 0



CHAPTER 5. GENERALISED KIBBLE-ZUREK SCALING IN A SPIN-1 BOSE-EINSTEIN
CONDENSATE 90

where the ground state changes from the BA phase to the ferromagnetic phase. To check

our predictions of the previous section we perform mean-field numerical simulations of this

quench by integrating the spin-1 GPEs using a symplectic integrator [176] (see Appendix A.2

for details on the numerical integration scheme). We measure length and time in units of the

spin healing length, ξs , and the spin time, τs , respectively. Our simulations are performed

on a 1D grid of Nz = 16384 grid points with a grid spacing of ∆z = 0.125ξs , and we consider

a ring-shaped geometry by assuming periodic boundary conditions and V (z) = 0. We follow

the same methodology as in the continuous QPT discussed in Sec. 5.2.1 and perturb the initial

BA state by adding small noise, δm , to each component where |δm | ≪ 1. Then, we generate

the real and imaginary parts ofδm for each grid point using the probability distribution p(z) =
e−z2/2σ2

(
p

2πσ)
−1

, choosing σ= 10−4 so that we start close to the BA ground state.

5.4.2 Phase boundaries in the ferromagnetic phase

As the system is quenched across the critical point at Q = 0, the ground state changes to the

ferromagnetic phase. The order parameter for this phase takes the form ψ = (
p

n0,0,0)T or

ψ= (0,0,
p

n0)T depending on the orientation of the spin. From Eq. (5.55), however, we have

ψ±1 =
p

n0

2 and ψ0 =
p

2n0
2 at Q = 0. The question that remains is: Which state will the system

choose after the critical point is passed?

Fig. 5.4 shows the full evolution of the density of each component for a quench time τQ =
1000τs . As the Zeeman shift is quenched, we see the density of the ψ0 component linearly

decrease as the ψ±1 components increase. After the critical point at t/τs = 0 is passed, there

is a freeze-out time (see Sec. 5.1) before the system crosses into the ferromagnetic phase.

During this new phase, we see the formation of ferromagnetic domain walls (characterised

by the bright density peaks) in the ψ±1 components as the order parameter adjusts to the

new ground state. These domains are spatially separated and where there is zero density in

one of the components, there is maximal density in the other, so that overall the total density

n =∑
mψ∗

mψm is uniform.

The KZM predicts in Eq. (5.10) that the size of the domains grow as the quench rate de-

creases. Fig. 5.5a shows the average domain size for two different simulations with τQ = 500

and τQ = 5000. We see that the quench with larger τQ produces domains that have a larger

width than those of faster quenches, supporting the Kibble-Zurek theory. In addition, we plot

the time evolution of |ψ1|2 for τQ = 500 and τQ = 1000 in Fig. 5.5b. We see the ferromagnetic

domain formation is delayed in the simulation with a slower quench rate, again supporting

the prediction in Eq. (5.9).

One can count the number of ferromagnetic domains in the system and see the depen-
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Figure 5.4: Plots of |ψ1|2 (top) |ψ0|2 (middle) and |ψ−1|2 (bottom) as a function of time for a
256ξs spatial subregion of the condensate for τQ = 1000τs . After the critical point is passed
(t/τs = 0), FM domains form in the ψ±1 components, indicated by the bright density peaks.
The location of a bright density peak in one component matches with a density minimum in
the other component, showcasing the opposite spin-projection.

dence on τQ . To do this, we identified that each domain is associated with a corresponding

density peak, and subsequently developed a numerical algorithm that counts the number of

density peaks in each component and sums the result to give the total number of domains,

Nd . We calculate this quantity at the end of each simulation to ensure that the domains are

frozen and avoid the early-time coarsening taking place which could affect the total num-

ber of domains present. In Fig. 5.6 we plot the total number of domains as a function of

the quench time, where each point represents fifty ensemble runs for each simulation. We

find excellent agreement with the predicted value of Nd ∼ τ−1/4
Q for sufficiently fast quenches

(τQ < 2× 103). However, for slower quenches, a clear deviation from the predicted scaling

occurs. Similar deviation from the predicted KZM scaling has been observed in other works

where the quantities investigated were measured far past the critical point [71, 183]. The de-

viation observed in our system can be attributed to a crossover into a different regime that

follows the predictions of a Landau-Zener model [168, 169, 173, 184].

5.4.3 Power-law scaling near the critical point

Since we know the relevant unstable mode within our system, we can investigate power-law

scaling near the critical point. To begin, we start with the fluctuation operator associated
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Figure 5.5: (a): Density profile of theψ1 component across an average domain in a simulation
with τQ = 5000τs (black line) and τQ = 500τs (gold line). Domain size appear proportional
to the quench time τQ , with slower quenches having large domains, which supports the KZ
theory (see Eq. (5.10)). (b): Time evolution of |ψ1|2 for a 256ξs spatial subregion for τQ = 500τs

(top) and τQ = 1000τs (bottom) showcasing the difference in the time it takes for domain
formation to occur, which faster quenches leading to an earlier onset of domain formation
when compared with slower quenches.

with the Bogoliubov spectrum Ek, f z given in Eq. (5.27). Fig. 5.7a shows the above quantity for

a quench time of τQ = 5000 with k = 1. The quantity remains zero until after the critical point

is passed, where a rapid period of growth occurs. This onset of this growth corresponds to

the ferromagnetic domains forming within the system (see Fig. 5.4). Motivated by previous

work [66, 75], we define a time, t̃ , which is the time when |âk, fz | first exceeds 1% of its maxi-

mum value: |âk, fz (t̃ )| = 0.01×max |âk, fz (t )|. Using this time, we can extract the critical value of

q that this growth occurs at, Q(t̃ ) =Qa . Fig. 5.7b shows |Qa | as a function of the quench time.

We see a clear power-law scaling of Qa ∼ τ−
1
2

Q for all values of τQ tested. This exponent differs

from observed results in previous works investigating second-order phase transitions [66, 71,

73] where an exponent of −1/3 is observed. Our observation of a −1/2 exponent signifies a

deviation from the Kibble-Zurek theory which appears to be a consequence of the properties

of the DQCP.

5.4.4 Crossing two phase transitions

To test the robustness of the observed scaling, we combine the effort of the previous two

numerical studies into one. Namely, we investigate the scaling of the density of defects using

a simulation that spans two phase transitions. Starting from the polar phase at Q = 2.5, we

quench the quadratic Zeeman shift such that we cross over to the BA phase at Q = 2 and
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Figure 5.6: The number of ferromagnetic domains as a function of the quench time. Each
point represents 50 simulations and the error bar gives one standard deviation. Overlaid
is the scaling line τ−1/4

Q (black dashed line), which confirms the prediction in Eq. (5.43) for

τQ ≲ 103.
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Figure 5.7: (a): The modulus of the fluctuation operator in Eq. (5.27) for k = 1 and τQ = 5000.
The plot shown is obtained by averaging over all runs in the ensemble. (b): The critical value
|Qa | as a function of the quench time. Each point represents an ensemble of 50 runs, and the
error bars give ±1 standard deviation.
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Figure 5.8: Number of ferromagnetic domains as a function of the quench time, τQ , after the
system has crossed two phase transitions. Each point is averaged over 5 runs, with the error
bars giving ±1 standard deviation.

finally the FM phase at Q = 0. This quench then evidently spans two phase transitions: one

second-order, and one first-order. Our numerical set up is exactly the same as the previous

section.

We once again count the number of ferromagnetic domains present at the end of the

simulation when the system is in the FM phase. Results for the density of defects are plotted

in Fig. 5.8. Despite passing through two phase transitions, we observe qualitatively similar

behaviour to that of previous transition crossing only the first-order phase transition (see

Fig. 5.6). For fast quenches (τQ ≲ 103), the scaling of the density of defects follows closely

to Nd ∼ τ−1/4
Q . Similar to the previous case, there is a deviation from this scaling when the

quench time becomes slower (τQ > 103). This shows that the scaling of the density of defects

for fast quenches is robust, and is unaffected by passing through other phase transitions.

5.5 Conclusions

In this chapter we have investigated the KZM across both second-order, continuous QPTs

and first-order, discontinuous QPTs using a spin-1 BEC with c1 < 0as a test bed system. We

initially reproduced a known result, and showed that the KZM accurately predicted observed

scaling laws across a second-order, continuous QPT in a spin-1 BEC between the polar and

BA phases. In particular, we measured the freeze-out time directly by measuring the time at

which the transverse magnetisation (initially zero in the polar phase) became non-zero after
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crossing to the BA phase.

The primary work of this chapter consisted of analytical and numerical investigations

into a first-order, discontinuous QPT across the BA and FM phases in a spin-1 BEC with c1 < 0.

We showed that by accounting for a gapless dispersion relation, the KZM can be generalised

to such a discontinuous QPT, which, for our spin-1 system in question, lead to a scaling of

the density of defects as Nd ∼ τ−1/4
Q . The observed scaling laws of our generalised KZM dif-

fered from those observed across continuous quantum critical points for the same spin-1

BEC model discussed initially. Furthermore, by linearising the resulting spinor GPEs, we ob-

tained scaling laws governing the growth of the unstable excitations as the system transitions

to the FM phase.

Numerical simulations provided excellent agreement for both the short-time growth of

unstable excitations in addition to the number of FM domains formed after the critical point

was passed. The robustness of our theory was confirmed by performing similar simulations

which crossed both a second-order QPT (polar to BA) and a first-order QPT (BA to FM), which

gave quantitatively similar results to the previously observed scaling laws.
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6
TOPOLOGICAL INTERFACES IN SPIN-2

BOSE-EINSTEIN CONDENSATES

In this chapter, we both analytically and numerically investigate the physics of topologi-

cal defects when connected across topological interfaces in spin-2 Bose-Einstein conden-

sates. We begin by introducing the concept of a topological interface, and discuss systems

where they can arise. We then construct interpolating spinor wave functions for a spin-2 sys-

tem that smoothly connect states with different symmetries, forming a topological interface.

Such interfaces include connections between the UN and BN phases, cyclic to both nematic

(UN/BN) phases, cyclic to FM phases, and also between the FM and BN phases. With these

interpolating solutions, we then construct a rich phenomenology of different defect states

connecting across the interface. These defects range from singular phase vortices, spin vor-

tices, nonsingular textures, and even to point defects such as monopoles. Additionally, we

also perform numerical simulations for select examples, highlighting the interesting physics

occurring at the interface.

6.1 Introduction to topological interfaces

Topological interfaces may form at the phase boundary between topologically distinct phases

that are described by different order parameters. In such an interface, the phases can co-

exist in such a way that the different symmetries connect smoothly across the boundary.

These interfaces arise in many areas of physics, such as in the context of domain walls in

96
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the early universe [76–78], the A–B phase boundary in superfluid liquid 3He [79–84], and in

atomic BECs [85–87, 185–187]. When the order parameters on either side of the interface ex-

hibit point-group symmetries [54], families of vastly different defects and textures may exist,

where the topological charges of each defect depends on other defects within the system [93,

188]. An example is the cyclic and BN phases of spin-2 BECs, which, as we calculated in

Sec. 3.4.2, have non-Abelian first homotopy groups, and hence support non-Abelian defects

whose topological charges do not commute. Due to the different symmetries on either side

of the interface, defects cannot typically cross the interface unchanged. Instead, the defect

must either terminate at the boundary, or continuously and non-trivially connect to an object

representing a different topology on the other side of the interface.

As shown in Chapter 3, spin-1 and spin-2 systems offer a rich ground state phase dia-

gram with a myriad of different order parameter symmetries. In spin-1 systems, methods

have already been proposed to engineer topological interfaces between the different order

parameter symmetries by use of Zeeman shifts [85–87]. Naturally, since the spin-2 system

offers even more choice of order parameter symmetry, they make an excellent candidate for

further investigating topological interfaces. Additionally, spinor BECs support wide family of

topological defects exhibiting different order parameter symmetries, cementing them as an

ideal test bed for connections of topological defects across such interfaces. A small selection

of vortices in the spin-2 system has already been considered in Sec. 3.5.2. However, spin-2

systems support a much larger family of vortices and higher order topological defects. These

include, but are not limited to, integer vortices [45, 48, 50, 54, 57, 88–90, 114–116], vortices

with fractional charges [40, 41, 48, 50, 54, 89, 90, 116–120], nonsingular vortices such as 2D

Skyrmions [10, 11, 46, 49, 51, 88, 121–124] and point defects such as monopoles [112, 125–

131, 189].

6.1.1 Engineering topological interfaces in spinor Bose-Einstein condensates

In a continuous spinor superfluid, it is possible for distinct phases with varying order pa-

rameter symmetry to coexist. A spinor BEC may be engineered such that separate regions

of the condensate have distinct ground state phases, e.g., nematic or cyclic, and hence have

different order parameter symmetries, creating a topological interface within the condensate

itself. This can be achieved through variation of parameters in the Hamiltonian, such as the

linear and quadratic Zeeman shifts, which locally stabilise the different regions. If the pa-

rameter fluctuation is sufficiently acute, then the wave function will interpolate between the

bulk phases across a distance given by an appropriate healing length. In addition, as pro-

posed for the spin-1 system [87], linear p and quadratic q Zeeman shifts form the basis for
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engineering interpolating solutions that model the topological interface. Such steady-state

solutions are found from the mean-field Hamiltonian density functional discussed in Chap-

ter 2 for a uniform system in the presence of an external magnetic field using the relation

δH /δζ∗m = 0 [96]:[
−pF̂z +qF̂ 2

z + c0n ζ†ζ+ c1n 〈F̂〉 · f+ c2n

5
(T̂ ζ)

†
ζT̂ −µ

]
ζ= 0, (6.1)

where µ is the chemical potential and T̂ is a time-reversal operator defined as (T̂ ζ)m =
(−1)mζ∗−m . Eq. (6.1) presents a non-linear system of equations that can be solved for the

unknown ζm [96, 107]. Detailed derivations of each interpolating solution used in the subse-

quent sections can be found in Appendix B.

Using the constructed interpolating stationary states, defect states for a given spin-2 phase

can, in principle, be constructed from the representative spinor by defining an appropriate

azimuthal phase winding, χm , in each component, i.e., Arg(ζm) = χm = kmϕ, where km is an

integer which denotes a generalisation to multiple quantisation, andϕ is the azimuthal angle

around the vortex core. In addition, we also create a unitary framework which is applicable

for constructing other types of defect states across topological interfaces in a spin-2 BEC,

such as monopoles or nonsingular textures. A given defect state can be constructed from the

uniform interpolating state by applying a global phase winding, τ, coupled with a spin rota-

tion defined by three Euler angles (α,β,γ) as in Eq. (3.25). When the same transformation is

supported by two phases, A and B, of a spin-2 condensate, a general defect connection across

an interface between the two phases is given as

ζ= e iτU (α,β,γ)ζA-B. (6.2)

Through the subsequent sections we provide various steady-state solutions that interpolate

between the different phases of a spin-2 BEC. Using these solutions, we then construct in-

teresting defect states that connect across the topological interface, by using either the com-

ponent phase windings χm , or by applying a spin rotation with specified Euler angles to con-

struct a particular state.

6.1.2 Interfaces arising within defect cores

In addition to the topological interface within the condensate itself, interfaces may also form

within the cores of topological defects. This situation can arise, for example, due to energy

relaxation in vortex core structures [48, 50, 54, 88, 89, 112, 116, 190]. In a spin-2 BEC, the three

contributions to the interaction energy each give rise to a healing length, which describe,

respectively, the length scale over which perturbations of the superfluid density, condensate
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spin, and singlet duo amplitude heal to the bulk value:

ξd = ℓ
√

ħω
2nc0

, ξs = ℓ
√

ħω
2n|c1|

, ξa = ℓ
√

ħω
2n|c2|

, (6.3)

where ℓ= (ħ/Mω)1/2 is the harmonic oscillator length. Typically, ξs ,ξa > ξd , allowing the core

of a singular vortex to reduce its energy by expanding and filling with a different superfluid

phase [112]. The condensate wave function then smoothly interpolates between the coexist-

ing phases in the superfluid and the phases within the defect core, establishing a topological

interface between them. This type of interface can be described by the interpolating spinor

when the interpolation parameter, η, is a function of the radial distance from the singular

defect line, ρ, as η= η(ρ). Such a vortex core interface is investigated in Sec. 6.3.1.

6.2 Interface crossing solutions in a spin-2 Bose-Einstein

condensate

In this section we analytically construct interpolating spinor solutions that model connec-

tions between different ground states of spin-2 systems. In particular, we focus on four differ-

ent topological interfaces, which are: UN to BN, cyclic to nematic (either UN or BN), cyclic to

FM, and FM to BN. For each case we construct various topological defects connecting across

the interface, ranging from simple phase vortex connections to more complicated connec-

tions involving monopoles and nonsingular textures.

6.2.1 Uniaxial nematic to biaxial nematic

We first focus on a family of solutions interpolating between the UN and BN phases (see

Sec 3.3 for details on these ground states). Such an interpolating solution is given as

ζUN-BN = 1

2



e iχ2
√

1−η
0

e iχ0
√

2(1+η)

0

e iχ−2
√

1−η

, (6.4)

where η = 10q/|c2|n ∈ [−1,1] and χm = Arg(ζm) for component m. Here, χm are arbitrary

phase coefficients that can either take fixed values, or be spatially wound in order to produce

different vortex states. This solution depends only on the quadratic Zeeman shift, which can

alter the spinor between the different phases: When q = |c2|n/10 the system is in the UN
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phase with only the ζ0 = 1 component occupied, where the nematic director is aligned with

the z-axis. In the opposite limit, when q = −|c2|n/10, the system is in the BN phase with

the ζ±2 = 1/
p

2 components occupied. This spinor therefore provides interpolating solutions

between the UN and BN phases, engineered through manipulation of the quadratic Zeeman

shift.

To determine the energetic stability of this interpolating spinor, we compare the energy

per particle given by [96]

E = Ĥ
[
ΨUN-BN]− c0n

2
, (6.5)

where Ĥ = Ĥ0 + Ĥint is the spin-2 Hamiltonian where Ĥ0 and Ĥint are defined in Eq. (2.63)

and Eq. (2.59), respectively. The energy of the interpolating spinor given in Eq. (6.4) reads

E UN-BN = c2n
10 +2q(1−η). Comparing this energy with that of the UN phase (E UN = c2n/10) and

the BN phase (E BN = c2n/10+4q) reveals that the ground state is UN for q ≥ 0 and BN for q ≤
0. Therefore, the UN-BN interface can be stabilised through careful choice of a longitudinal

quadratic Zeeman shift q(z) such that q(z) changes sign at some transverse plane, which we

typically take to be z = 0.

A consequence of a spatially-dependent η is revealed from the spin singlet-duo and -trio

amplitudes, given in terms of the spinor ζ, respectively, as

|A00|2 =
1

5

∣∣2ζ2ζ−2 −2ζ1ζ−1 +ζ2
0

∣∣2
, (6.6)

|A30|2 =
∣∣∣∣∣3
p

6

2

(
ζ2

1ζ−2 +ζ2
−1ζ2

)+ζ0
(
ζ2

0 −3ζ1ζ−1 −6ζ2ζ−2
)∣∣∣∣∣

2

. (6.7)

Upon substitution of Eq. (6.4) into the above, we get

|A00|2 =
1

10

[
(η2 −1)cosχ+η2 +1

]
,

|A30|2 =
1+η

4

[
3
(
η2 −1

)
cosχ+η(5η−8)+5

]
,

(6.8)

where χ = χ2 +χ−2 −2χ0 is the relative phase difference between the components. We plot

both the singlet-duo and -trio amplitudes in Fig. 6.1 in a parameter space of (η,χ). Upon

investigation, we see interesting behaviour arise in both quantities. In particular, we see that

this spinor can interpolate between the different phases of UN, BN and cyclic depending on

both η and the relative phase difference χ. For example, if one were to maintain χ = 0 and

interpolate η, then there would be multiple transitions between the UN (|A00|2 = 1) and BN

(|A00|2 = 0) phases. In addition, maintaining a relative phase difference of χ= π, the singlet-

trio amplitude reveals that a cyclic phase is present when −0.5 ≲ η≲ 0.5. As we shall see in

our numerical investigations, this has profound effects on the structure of topological defects

connecting across such an interface.
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Figure 6.1: Spin singlet-duo (left) and -trio (right) amplitudes for the interpolating spinor in
Eq. (6.4). Due to the spatially-dependent η, this spinor continuously interpolates between
the UN, BN, and cyclic phases depending on the relative phase difference χ=χ2 +χ−2 −2χ0.

Connections involving phase vortices

To begin our investigations of defects connecting across topological interfaces, we first con-

sider vortex connections. We start by constructing a connection of k-quantised phase vor-

tices on either side of the interface, which can be achieved by allowing χm = kϕ in Eq. (6.4),

which results in a spatially overlapping 2kπ phase winding in each component. Such a spinor

is given explicitly as

ζUN-BN
pv-pv = 1

2



e i kϕ
√

1−η
0

e i kϕ
√

2(1+η)

0

e i kϕ
√

1−η

. (6.9)

Note that an alternative construction of the above interface is achieved using Eq (6.2) withτ=
kϕ and the Euler angles kept constant, which then acts on the uniform spinor in Eq. (6.4)

with χm = 0. One can see that in the above spinor we recover the individual phase vortex

case in both the UN ζUN
pv = (0,0,e i kϕ,0,0)

T
and BN ζBN

pv = (e i kϕ,0,0,0,e i kϕ)
T

/
p

2 limits when

η = ±1, respectively. It is important to note that, despite being characterised by the same

phase winding, the phase vortices on either side of the interface represent entirely different

objects due to the differing topologies of the UN and BN phases.

Instead of connecting two vortices on either side of the interface, one can instead con-

struct a vortex that terminates on the interface itself, essentially connecting to a vortex-free

region on the other side. This can be achieved by selectively removing the phase winding
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from particular components. For example, to achieve a k-quantised phase vortex in the UN

limit that connects to a vortex-free region in the BN limit, we can set χ0 = 0 and χ±2 = kϕ in

Eq. (6.4), which gives

ζUN-BN
pv-vf = 1

2



√
1−η
0

e i kϕ
√

2(1+η)

0√
1−η

. (6.10)

Similarly, by reversing this and setting the winding χ±2 = 0 and χ0 = kϕ one instead con-

structs a k-quantised phase vortex in the BN phase which connects to a vortex-free region in

the UN limit, given by the spinor

ζUN-BN
vf-pv = 1

2



e i kϕ
√

1−η
0√

2(1+η)

0

e i kϕ
√

1−η

. (6.11)

Connections involving spin vortices

Vortices other than singular phase vortices may also be connected across the interface. One

such example is of singular spin vortices, which, allowing for the fact that spinor BECs sup-

port the non-dissipative flow of spin, carry a circulation only in the condensate spin and not

the mass (see Sec. 3.5.2). An example containing a k-quantised spin vortex in the BN phase

can be constructed by considering opposite phase windings in the outer components, i.e.,

choosing χ±2 =±ϕ in Eq. (6.4), resulting in the spinor

ζUN-BN
vf-sv = 1

2



e i kϕ
√

1−η
0√

2(1+η)

0

e−i kϕ
√

1−η

. (6.12)

Since there is no condensate phase winding in the ζ0 component in the above equation, this

implies that the spin vortex exists only within the BN limit, and therefore smoothly connects

to a vortex-free state in the UN limit. It is, however, possible to construct a k-quantised spin

vortex on both sides of the interface using spin rotations. Applying the spin rotation U (α =
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kϕ/2,β=π/2,γ= 0) to the initial interpolating spinor in Eq. (6.4) results in

ζUN-BN
sv-sv = 1

4



e−i kϕ(
√

1−η+
√

3(1+η))

0√
6(1−η)−

√
2(1+η)

0

e i kϕ(
√

1−η+
√

3(1+η))

. (6.13)

The result of the spin rotation means that in the UN (η = 1) and BN (η = −1) limits we now

have three-component spinors given, respectively, as

ζUN
sv =



e−i kϕ
p

6

0

2

0

e i kϕ
p

6

, ζBN
sv =



e−i kϕ
p

2

0

2
p

3

0

e i kϕ
p

2

, (6.14)

thereby allowing spin vortices to appear in both phases, and hence connect across the topo-

logical interface.

Connections involving half-quantum vortices

As discussed in Sec. 3.5.2, the BN phase supports vortices which have a fractional winding

of the condensate phase, the spin, or a combination of both. The charge of such a vortex

can be described as (w,σ), where 2πw denotes the winding of the condensate phase, τ, and

2πσ denotes the winding of the spin about some axis of symmetry. A (1/2,1/4) HQV in the

BN phase can be constructed from Eq. (6.4) using the choice χ2 = χ0 = 0 and χ−2 =ϕ, which

connects it to a vortex-free state in the UN limit. Such an interpolating spinor reads

ζUN-BN
vf-hqv = 1

2



√
1−η
0√

2(1+η)

0

e iϕ
√

1−η

. (6.15)

Note that χ2 =ϕ and χ0 =χ−2 = 0 would also connect a HQV in the BN phase to a vortex-free

region in the UN phase. The same (1/2,1/4) HQV in the BN phase can connect to a singly

quantised phase vortex in the UN limit by allowing χ2 = 0 and χ0 = χ−2 = ϕ, resulting in the
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UN-BN — Vortices from spinor-component phase winding

UN limit BN limit χ2/ϕ χ0/ϕ χ−2/ϕ

Phase vortex Phase vortex k k k
Vortex-free Phase vortex k 0 k

Phase vortex Vortex-free 0 k 0
Vortex-free Spin vortex −k 0 k

Phase vortex Spin vortex −k k k
Vortex-free Half-quantum vortex 0 0 1

Phase vortex Half-quantum vortex 0 ±1 1

Table 6.1: Representative examples of different vortex connections possible across a UN-BN
interface, constructed from the winding of the phase coefficientsχm in Eq. (6.4). Additionally,
generalisations to multiply quantised vortices are given by k ∈Z.

spinor

ζUN-BN
pv-hqv = 1

2



√
1−η
0

e iϕ
√

2(1+η)

0

e iϕ
√

1−η

. (6.16)

A summary of the possible phase, spin, and half-quantum vortex connections across a UN-

BN interface are listed in Table 6.1.

Connections involving monopoles and nonsingular textures

So far, we have considered only singular vortices connecting across the interface. It is, how-

ever, possible to construct interpolating solutions that contain other types of defects, such

as monopoles and nonsingular textures. For example, the UN phase supports nonsingu-

lar spin vortices, which are defined by a fountain-like texture of the nematic director, d̂ =
(cosαsinβ, sinαsinβ,cosβ). The nonsingular fountain-like texture can be achieved by hav-

ing β be a monotonically increasing function of the radial coordinate, ρ. Applying the spin

rotation U (α=ϕ,β=β(ρ),γ= 0) to Eq. (6.4) with χm = 0 results in the spinor

ζUN-BN = 1p
2

(√
1+ηζUN

nsv +
√

1−ηζBN
sv

)
, (6.17)
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where the UN and BN single phase limits are given, respectively, as

ζUN
nsv =

√
3

8



e−2iϕ sin2β(ρ)

−e−iϕ sin2β(ρ)
1p
6

[
1+3cos2β(ρ)

]
e iϕ sin2β(ρ)

e2iϕ sin2β(ρ)


, (6.18)

ζBN
sv = 1p

8



e−2iϕ
(
cos2β(ρ)+1

)
e−iϕ sin2β(ρ)p

6sin2β(ρ)

−e iϕ sin2β(ρ)

e2iϕ
(
cos2β(ρ)+1

)

. (6.19)

This spinor now represents a connection between a nonsingular spin vortex in the UN limit

which smoothly connects to a singular spin vortex in the BN limit.

Sinceπ2(MUN) ̸= 0 (see Sec. 3.4.2), an interesting example can be constructed by thinking

about a monopole placed in the UN side of the interface. In such an interface, a monopole

may form at the termination point of a singular line vortex. Similar structures, called boo-

jums, have been observed in 3He [84, 191]. A monopole can be realised as a radial hedgehog

texture of the nematic director, d̂. This achieved via the spin rotation U (α = ϕ,β = θ,γ = 0),

where θ is the polar angle in spherical coordinates. Applying this spin rotation to the state in

Eq. (6.4) with χm = 0 results in

ζUN-BN = 1p
2

(√
1+ηζUN

mp +
√

1−ηζBN
sv

)
, (6.20)

where the UN and BN single phase limits are given, respectively, as

ζUN
mp =

√
3

8



e−2iϕ sin2θ

−e−iϕ sin2θ
1p
6

(1+3cos2θ)

e iϕ sin2θ

e2iϕ sin2θ


, (6.21)

ζBN
sv = 1p

8



e−2iϕ
(
cos2θ+1

)
e−iϕ sin2θp

6sin2θ

−e iϕ sin2θ

e2iϕ
(
cos2θ+1

)

. (6.22)
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UN-BN — Vortices, textures, and monopoles using Euler angles

UN limit BN limit α/ϕ γ/ϕ β

Spin half-quantum vortex Spin half-quantum vortex 1 0 π/2
Nonsingular spin vortex Spin vortex 1 0 β(ρ)

Monopole Spin vortex 1 0 θ

Spin vortex Monopole 1 -1 θ

Table 6.2: Summary of other types of defect connections possible in a UN-BN interface.
Given solutions are characterised by winding of the condensate phase, τ, and Euler angles
(α,β,γ), expressed in units of the azimuthal angle ϕ. Here, k is an integer which provides a
generalisation to higher quantisation. Additionally, θ is the polar angle in spherical coordi-
nates, and β describes a monotonically increasing function of the transverse radius ρ.

This interpolating spinor describes a monopole in the UN limit that terminates on a singular

spin vortex in the BN limit. A summary of types of defects one can construct using Euler

angles in a UN-BN interface is given in Table 6.2.

6.2.2 Cyclic to nematic

As we have discussed already in the context of vortex cores, topological interfaces can arise

between the cyclic and nematic phases. From Fig. 6.1, we see that by maintaining a constant

χ=π one can interpolate between the UN, cyclic and BN states. This can be achieved by the

following family of spinors

ζC-N = 1

2



e iχ2
√

1−η
0

i e iχ0
√

2(1+η)

0

e iχ−2
√

1−η

, (6.23)

where we now require that χ2 +χ−2 −2χ0 = 0. Then, due to the i term in the middle compo-

nent, this leads to a constant phase difference of χ2+χ−2−2(χ0+π/2) =−π, and hence allows

us to use the quadratic Zeeman shift to interpolate the above solution between the different

phases. At η = 0 the above solution becomes the three component cyclic state with a spinor

of the form ζC = (1,0, i
p

2,0,1)
T

/2. The sign of the quadratic Zeeman shift determines which

nematic state is chosen, where η=±1 recovers the familiar UN and BN states, respectively.

The uniform mean-field energy of Eq. (6.23) reads

E C-N = c2n

10
η2 +2q(1−η). (6.24)
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The energy becomes minimised at η= 10q/c2n for c2 > 0 and fixed q . Since the interpolating

spinor ζC-N is a function of q only, the stability of the interface is guaranteed since E C-N =
2q −10q2/c2 ≤ E C,E UN,E BN for |q| < c2n/10.

Connections involving phase and spin vortices

Firstly, one can construct the same phase vortex and spin vortex connections considered in

the UN-BN interface upon the substitution
√

1+η → i
√

1+η. For example, a connection

between k-quantised phase vortices is obtained from Eq. (6.9), where the resulting spinor

reads

ζC-N
pv-pv =

1

2



e i kϕ
√

1−η
0

i e i kϕ
√

2(1+η)

0

e i kϕ
√

1−η

, (6.25)

identifying the cyclic limit as η = 0. This is obtained from Eq. (6.23) by the choice χ2 = χ0 =
χ−2 = kϕ. Additionally, a connection involving spin vortices is constructed as

ζC-N
sv-sv/vf =

1

2



e−i kϕ
√

1−η
0

i
√

2(1+η)

0

e i kϕ
√

1−η

, (6.26)

which equates to spin vortices in the cyclic and BN limits, connecting to a vortex-free state in

the UN limit. These connections can be achieved from Eq. (6.23) with the choice χ±2 =∓kϕ

and χ0 = 0. Vortices that can be constructed from component phase windings are sum-

marised in Table 6.3. It is worth noting that choosing the phase windings χm in Eq. (6.23)

such that χ ̸= 0 leads to defect states which are undefined in the cyclic limit, and hence we

omit them from the discussion.

In addition to these connections, it is also possible to construct topologically distinct spin

vortex connection between the cyclic and both nematic phases. This arises from the common

axis of symmetry between the cyclic and BN phases (see C ′
2 axis in Fig. 3.7b). A spin rotation

around this particular axis can be achieved by using the following spin rotation, given here in

axis-angle representation:

U (C ′
2,δ) = exp

{
−i

F̂x + F̂yp
2

δ

}
, (6.27)
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C-N — Vortices from spinor-component phase winding

Cyclic limit UN limit BN limit χ2/ϕ χ0/ϕ χ−2/ϕ

Phase vortex Phase vortex Phase vortex k k k
Spin vortex Vortex-free Spin vortex −k 0 k

Table 6.3: Summary of the phase and spin vortices possible in a cyclic to nematic interface.
Different vortices are constructed from appropriate choices of the phase windings χm . Note
that χ= 0 for all cases considered as to ensure identifiable vortices within the cyclic limit.

where C ′
2 represents the axis being rotated about and δ represents the angle of rotation. When

δ is chosen to be the azimuthal angle such that it winds by 2π about a vortex core (δ=ϕ), then

the above spin rotation applied the general cyclic to nematic spinor in Eq. (6.23) results in the

following spinor:

ζC-N
sv−sv =

1p
2

(
i
√

1+ηζUN
sv +

√
1−ηζBN

sv

)
, (6.28)

where the spinors in the UN and BN limits are given as

ζUN
sv =

√
3

8



−i sin2ϕ

−e−
iπ
4 i sin2ϕ

1p
6

(
1+3cos2ϕ

)
e

iπ
4 sin2ϕ

i sin2ϕ


, (6.29)

ζBN
sv = 1p

2



cosϕ

e−
3iπ

4 sinϕ

0

e−
iπ
4 sinϕ

cosϕ

. (6.30)

This yields a connection between singular, singly quantised spin vortices in all three limits.

Connections involving monopoles and nonsingular textures

As discussed in the previous section, the nematic phases give rise to nonsingular spin vortices

and point defects such as monopoles. Those same defect connections can be constructed in

this interface by using the transformation
√

1+η→ i
√

1+η in Eq. (6.17) and Eq. (6.17). This

then still results in, for example, the nonsingular vortex/monopole in the UN limit, which

now also connects/terminates to a singular spin vortex in the cyclic and BN limits. These

defects are summarised in Table 6.4.
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C-N — Vortices, textures, and monopoles using Euler angles

Cyclic / BN limits UN limit α/ϕ γ/ϕ β

Spin vortex Spin vortex α=π/4 γ=−α kϕ
Spin vortex Nonsingular spin vortex 1 0 β(ρ)
Spin vortex Monopole 1 0 θ

Table 6.4: Summary of other types of defect structures possible in a cyclic to nematic in-
terface. Each defect is identified by windings of the condensate phase τ and Euler angles
(α,β,γ), expressed in terms of the azimuthal angle ϕ. For nonsingular vortices, β denotes a
monotonically increasing function of the transverse radius ρ. Additionally, for the monopole
case, θ is the polar angle in spherical coordinates.

6.2.3 Cyclic to ferromagnetic

Since spin-2 BECs support an FM phase, which has inherent magnetisation, one can con-

struct an interface between this state and one with zero magnetisation. This would then

result in spatially distinct regions which have different values of the spin magnitude, and

hence would create a spatially-dependent magnetisation. By restricting ourselves to the case

of zero transverse magnetisation, F̂ = F̂z , one such case that arises is between the cyclic and

FM phases, given by the following family of spinors:

ζC-FM = 1p
3



e iχ2
√

1+η
0

0

e iχ−1
√

2−η
0

, (6.31)

where η now becomes the longitudinal magnetisation, 〈F̂z〉. At zero magnetisation, 〈F̂z〉 =
0, equivalent to setting η = 0, this solution becomes the two-component cyclic state given

in Eq. (3.35) which naturally has no magnetisation. Then, since this is a spin-2 system, the

condensate spin is free to vary between 〈F̂z〉 = 0 and 〈F̂z〉 = 2. Recall from Chapter 3 that the

spin-2 system supports two FM ground states, one with |〈F̂〉| = 1, which we denote FM±
1 , and

another with |〈F̂〉| = 2, which we denote FM±
2 . Here, the + (-) represents the FM state with spin

pointing up (down). Therefore, this spinor can interpolate between the cyclic and both FM

phases, depending on the value of the condensate spin, 〈F̂z〉.
The uniform mean-field energy of the above spinor reads

E C-FM = c1n

2
η2 − (p −q)η+2q, (6.32)



CHAPTER 6. TOPOLOGICAL INTERFACES IN SPIN-2 BOSE-EINSTEIN CONDENSATES 110

which becomes minimised upon the choice η= (p −q)/c1n for c1 > 0 and fixed p, q . The in-

terface is expected to be stable within the range −c1n ≤ p ≤ 2c1n since E C-FM ≤ E C = 0,E FM1 =
c1n/2+p. Therefore, assuming, e.g., q = 0, we can stabilise the interface by an appropriate

choice of a longitudinally-dependent linear Zeeman shift p(z), where p(z) = 0 represents the

cyclic phase, whilst p(z) =−c1n and p(z) = 2c1n represent the FM1 and FM2 phases, respec-

tively.

Connections involving phase, spin, and fractional vortices

Following the procedure similar to the previous interfaces, we first focus on constructing

phase vortices connecting across this topological interface, which can be obtained by ap-

propriate winding of χ2 and χ−1. Again, one can construct k-quantised phase vortices con-

necting in all three limits by crossing χ2 =χ−1 = kϕ, which yields

ζC-FM
pv-pv =

e i kϕ

p
3



√
1+η
0

0√
2−η
0

, (6.33)

In addition to these singly quantised vortices, the cyclic phase supports vortices with frac-

tional charges, such as one-third and two-third vortices (see Sec. 3.5.2). One can then con-

struct such a vortex in the cyclic limit by limiting the winding of the phase to only one com-

ponent. Due to the spin-gauge symmetry of the FM phase, this choice of winding would then

lead to either singular phase vortices and vortex-free regions in this limit. For example, the

following spinor connects a one-third vortex in the cyclic limit to a singular phase vortex in

the FM+
2 and a vortex-free region in the FM−

1 limit:

ζC-FM
1
3 -pv

= 1p
3



e iϕ
√

1+η
0

0√
2−η
0

, (6.34)

which corresponds to the choice of χ2 = ϕ and χ−1 = 0 in Eq. (6.31). Similarly, a two-third

vortex in the cyclic limit can connect to a vortex-free region in the FM+
2 limit or a singular
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C-FM — Vortices from spinor-component phase winding

Cyclic limit FM2 limit FM1 limit χ2/ϕ χ−1/ϕ

Phase vortex Phase vortex Phase vortex k k
One-third vortex Phase vortex Vortex-free 1 0
Two-third vortex Vortex-free Phase vortex 0 1

Spin vortex Phase vortex Phase vortex −2k k

Table 6.5: Summary of the vortex connections possible in a cyclic to FM interface. Each vortex
can be constructed by choosing the appropriate phase winding χm , expressed in terms of the
azimuthal angle ϕ. Here, k is an integer that allows one to represent vortices of arbitrary
quantisation.

phase vortex in the FM−
1 limit, given by the spinor

ζC-FM
2
3 -pv

= 1p
3



e iϕ
√

1+η
0

0√
2−η
0

, (6.35)

equivalent to setting χ2 = 0 and χ−1 = ϕ in Eq. (6.31). Note that equivalent constructions

can be made for the above two spinors using Eq. (6.2) with τ = −γ = ϕ/3 and τ = 2γ = 2ϕ/3,

respectively. A summary of the phase vortex connections possible in this interface are sum-

marised in Table 6.5.

Connections involving monopoles and nonsingular textures

In addition to phase vortices, the FM phase also supports nonsingular vortices, which are

identified from a characteristic fountain-like texture of the condensate spin (see Fig. 3.9b for

the spin-1 analogue.) To construct such a defect across an interface, we first construct the

most general C-FM interface spinor by applying the general spin rotation U (α,β,γ) to the

interpolating spinor in Eq. (6.31), which results in

ζC-FM = 1p
3

(√
1+ηζFM+

2 +
√

2−ηζFM−
1

)
, (6.36)
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where the individual FM limits are given as

ζFM+
2 = e i (τ−2γ)



e−2iα cos4 β
2

2e−iα cos3 β
2 sin β

2p
6cos2 β

2 sin2 β
2

2e iα cos β2 sin3 β
2

e2iα sin4 β
2

, (6.37)

ζFM−
1 = e i (τ+γ)



−2e−2iα cos β2 sin3 β
2

e−iα sin2 β
2

(
3cos2 β

2 − sin2 β
2

)
p

6
(
cos β2 sin3 β

2 −cos3 β
2 sin β

2

)
e iα cos2 β

2

(
cos2 β

2 −3sin2 β
2

)
2e2iα cos3 β

2 sin β
2


. (6.38)

To construct the characteristic fountain-like spin texture, we choose β as a monotonically in-

creasing function of the transverse radius, ρ. In the FM2 and FM1 cases, the order-parameter

is kept single-valued by a combined winding of the condensate phase coupled to a winding

of the spin vector, achieved, respectively, by

τ−2γ=±2α=±2ϕ, (6.39)

τ+γ=±α=±ϕ. (6.40)

Choosing these Euler angles results in nonsingular vortices in the FM limits connecting to

singular vortices in the cyclic limit. The type of singular vortex present in the cyclic limit

depends on how γ and τ are specifically chosen. Choosing γ = 0 or τ = 0 results in phase

vortices or spin vortices, respectively. Additionally, the choice of τ = ϕ/3 or τ = 2ϕ/3 results

in fractionally quantised vortices in the cyclic limit connecting to nonsingular vortices in the

FM phases. The spherical harmonic representation of the nonsingular vortices arising in the

FM phases are shown in Fig. 6.2, where we see the characteristic fountain-like texture emerge.

A generalisation of the Dirac monopole, which consists of a hedgehog texture of the con-

densate spin, 〈F̂〉, that terminates on a singular vortex, can be constructed in the FM phases.

Similar generalisations have already been constructed in spin-1 systems [85, 126]. Such a

structure is achieved by taking β = θ in Eqs. (6.37) and (6.38), where θ is the polar angle

in spherical coordinates, along with the same required limits on the Euler angles given in

Eqs. (6.39) and (6.40). This creates the required hedgehog texture of the condensate spin and

embeds a singular vortex line terminating on the monopole. These choices of angles then
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Arg(Z ) = 0 2π

(a) (b)

Figure 6.2: Spherical harmonic representation of the nonsingular vortices constructed in
Eq. (6.36). (a): Nonsingular vortex in the FM+

2 limit given by Eq. (6.37) with the choice
τ−2γ= 2α= 2ϕ. (b): Nonsingular vortex in the FM−

1 limit given by Eq. (6.38) with the choice
τ+γ=α=ϕ.

connect the generalisation of the Dirac monopole in the FM limits to either phase, spin, or

fractional vortices in the cyclic limit using the choice of angles discussed for the nonsingular

case. A table of vortices, textures, and monopoles that can be constructed using Euler angles

in the C-FM interface are presented in Table 6.6.

6.2.4 Ferromagnetic to biaxial nematic

Another interface containing non-zero magnetisation is that between the FM and BN phases,

given by the following family of spinors:

ζFM-BN = 1

2



e iχ2
√

2+η
0

0

0

e iχ−2
√

2−η

, (6.41)

where η relates to the longitudinal magnetisation as η = 〈F̂z〉. This state then interpolates

between the BN state at η= 0, to an FM state with spin pointing up (down) for η= 2(−2). The

energy of this interpolating spinor is obtained by substituting the above into Eq. (6.5), which

reads

E FM-BN = n

2

(
c1 −

c2

20

)
η2 −pη+4q + nc2

10
. (6.42)
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C-FM — Vortices, textures and monopoles using Euler angles

C limit FM2 limit τ/ϕ α/ϕ γ/ϕ β

Phase vortex Nonsingular vortex 2 1 0 β(ρ)
Spin vortex Nonsingular vortex 0 1 ±1 β(ρ)

Two-third vortex Nonsingular vortex 2/3 1 -2/3, 4/3 β(ρ)
Phase vortex Dirac monopole 2 1 0 θ

Spin vortex Dirac monopole 0 1 ±1 θ

Two-third vortex Dirac monopole 2/3 1 -2/3, 4/3 θ

C limit FM1 limit τ/ϕ α/ϕ γ/ϕ β

Phase vortex Nonsingular vortex 1 1 0 β(ρ)
Spin vortex Nonsingular vortex 0 1 ±1 β(ρ)

One-third vortex Nonsingular vortex 1/3 1 -4/3, 2/3 β(ρ)
Phase vortex Dirac monopole 1 1 0 θ

Spin vortex Dirac monopole 0 1 ±1 θ

One-third vortex Dirac monopole 1/3 1 -4/3, 2/3 θ

Table 6.6: List of vortices, textures, and monopoles that can be constructed in a cyclic to FM
interface using a combination of the condensate phase τ and the Euler angles α,β,γ. Here,
τ,α,γ are given as multiples of the azimuthal angleϕ, whilst β is either a multiple of the polar
angle θ, or a monotonically increasing function of the transverse radius, ρ.

This energy becomes minimised precisely when η= p/[(c1−c2/20)n] for c1 ≥ c2/20 and fixed

p and q . Substitution of η= p/[(c1 − c2/20)n] into Eq. (6.42) reveals that E FM-BN ≤ E BN,E FM2

for |p| < (2c1−c2/10)n. Thus, as in the previous FM interface, we can stabilise the interface by

relying on a longitudinal dependence of the linear Zeeman shift, p(z). One can see that at p =
±2(c1 − c2/20)n the above solution becomes the FM state with spin 〈F̂z〉 = ±2. Alternatively,

the solution becomes the BN state precisely when p = 0, and hence has zero magnetisation.

Therefore, this spinor provides an interpolating solution between the FM and BN phases,

which is controlled by a longitudinal dependence of the linear Zeeman shift, p(z).

Connections involving phase, spin, and half-quantum vortices

We start from the interpolating spinor between the FM and BN phases in Eq. (6.41) and

first construct various vortex states using different combinations of the phase windings χ±2.

Again, similar to the previous cases, k-quantised phase vortices are connected across the

interface by the choice χ±2 = kϕ. An interesting case arises between a k-quantised phase

vortex in the FM phases connecting to a spin vortex in the BN phase. This can be achieved by

again allowing opposite phase windings in the outer components, i.e., χ±2 =±kϕ, where the
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Ferromagnetic to biaxial nematic — Vortices

FM+
2 limit FM−

2 limit BN limit χ2/ϕ χ−2/ϕ

Phase vortex Phase vortex Phase vortex k k
Phase vortex Vortex-free Half-quantum vortex 1 0
Vortex-free Phase vortex Half-quantum vortex 0 1

Phase vortex Phase vortex Spin vortex −k k

Table 6.7: Summary of possible vortex connections across an FM to BN interface. Each vortex
is given in terms of the windingχm , given in multiples of the azimuthal angleϕ. The FM limits
are specified by the direction of the condensate spin, where a spin pointing up denotes a
spinor of the form ζ= (1,0,0,0,0)T , and a spin pointing down denotes a spinor of the form ζ=
(0,0,0,0,1)T . Additionally, k is an integer that allows one to generalise to higher quantisation.

interpolating spinor reads

ζFM-BN
pv-sv = 1p

2



e i kϕ
√

1+η
0

0

0

e−i kϕ
√

1−η

. (6.43)

As observed in Fig. 3.10, the BN phase allows for the creation of a HQV, characterised by a

half-winding of the condensate phase. Such a vortex can be constructed by allowing a phase

winding in only one of the outer components, i.e., χ2 =ϕ and χ−2 = 0 or vice versa. Using this

first choice in Eq. (6.41) leads to the spinor

ζFM-BN
pv-hqv = 1p

2



e iϕ
√

1+η
0

0

0√
1−η

, (6.44)

which connects a HQV in the BN limit to a phase vortex in the FM2 limit when η = 2, or a

vortex-free state when η = −2. Choosing χ±2 the opposite way around would reverse this

connection. A summary of possible vortex connections constructed using the component

phase windings is provided in Table 6.7.

Connections involving monopoles and nonsingular textures

As in the previous subsection discussing a cyclic to FM interface, we can apply the same logic

and construct nonsingular defects in the FM phase that connect to singular defects in the BN
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FM-BN — Vortices, textures and monopoles from Euler angles

FM2 limit BN limit τ/ϕ α/ϕ γ/ϕ β

Nonsingular vortex Phase vortex 2 1 0 β(ρ)
Nonsingular vortex Spin vortex 0 1 ±1 β(ρ)
Nonsingular vortex Half-quantum vortex 1/2 1 -3/4 β(ρ)

Dirac monopole Phase vortex 2 1 0 θ

Dirac monopole Spin vortex 0 1 ±1 θ

Dirac monopole Half-quantum vortex 1/2 1 -3/4 θ

Table 6.8: List of vortices, textures, and monopoles that can be constructed in an FM to BN
interface using a combination of the condensate phase τ and the Euler angles α,β,γ. Here,
τ,α,γ are given as multiples of the azimuthal angleϕ, whilst β is either a multiple of the polar
angle θ, or a monotonically increasing function of the transverse radius, ρ.

phase, as well as Dirac monopoles that form the termination point of vortices. We begin by

re-writing Eq. (6.41) in the general form

ζFM-BN = 1p
2



√
1+ηζFM+

2

0

0

0√
1+ηζFM−

2

, (6.45)

where FM+
2 is defined in Eq. (6.37) and FM−

2 is similarly obtained by applying a general spin

rotation to ζ= (0,0,0,0,1)T . Then, choosing the Euler angles according to Eq. (6.39) results in

FM±
2 becoming

ζFM+
2 =



e−4iϕ cos4 β
2

2e−3iϕ cos3 β
2 sin β

2p
6e−2iϕ cos2 β

2 sin2 β
2

2e−iϕ sin3 β
2 cos β2

sin4 β
2

, (6.46)

ζFM−
2 =



e−4iϕ sin4 β
2

−2e−3iϕ sin3 β
2 cos β2p

6e−2iϕ cos2 β
2 sin2 β

2

−2e−iϕ cos3 β
2 sin β

2

cos4 β
2

, (6.47)

respectively. Then, choosing β as a monotonically increasing function of the transverse ra-

dius results in nonsingular vortices in both FM limits which connect to either phase, spin,
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or HQVs in the BN limit (η = 0) depending on whether τ = 2ϕ,0,ϕ/2, respectively. Similarly,

choosing β = θ represents a generalisation of the Dirac monopole in both FM limits, which

connects to either phase, spin, or HQVs in the BN limit depending on the choice of τ. A sum-

mary of vortices, textures, and monopoles that can be constructed using the Euler angles in

an FM-BN interface is given in Table 6.8.

6.3 Numerical investigations of defect crossing physics

In this section we numerically investigate some topological interfaces defined in the preced-

ing section, along with a subset of the possible defect connections. Our numerical setup is as

follows. We numerically evolve the spin-2 GPEs defined in Eqs. (2.84) - (2.86) using a symplec-

tic integrator [192] (see Appendix A.2 for details on the numerical integration scheme) with,

for simplicity, a purely isotropic trapping potential V = Mω2r 2/2. We simulate the energy

loss during experiments by introducing a phenomenological damping coefficient, ν, through

the substitution t → (1−iν)t . In all simulations considered, we choose ν= 1e−2. We perform

our simulations on a 3D of N 3
s = 1283 points, with side lengths L = 20ℓ, where (ℓ=ħ/Mω)1/2

is the (isotropic) harmonic oscillator length. We choose parameters that correspond to a 87Rb

condensate [108] with c0n = 1.32×104ħωℓ3, c0/c1 = 90.7, and c0/c2 =−102, where the ground

state is predicted to be nematic (see Sec. 2.5.3 for details on the choice of numerical param-

eters). In each simulation, we perform a small spin rotation to the initial state to avoid com-

ponents that are identically zero. Additionally, when constructing states with defects, the

position of each defect is perturbed slightly to avoid artificial stability when placed at exactly

the centre of the trap. Details of the trapped, dimensionless units can be found in Sec. 2.5.2.

6.3.1 Uniaxial nematic to biaxial nematic interface

The first interface we consider is that between the UN and BN phases, considered in Sec. 6.2.1.

Since the UN and BN phases are energetically degenerate in the absence of a magnetic field,

we introduce a spatially-dependent quadratic Zeeman shift q(z) such that q(z) > 0 on the

UN side and q(z) < 0 on the BN side to lift the degeneracy, and the maximum strength of

our quadratic Zeeman shift is set to qmax = 0.1ħω. The quadratic Zeeman shift linearly in-

terpolates over a small transition region (which we take to be small compared to the spin-

dependent healing lengths) from q =−0.1ħω in the BN phase to q = 0.1ħω in the UN phase.

Our investigation begins with that of the phase vortex connection, where the initial state

is constructed as in Eq. (6.9). To imprint the vortices, we perform a short imaginary time

propagation, then proceed to numerically evolve the spin-2 GPEs. The dynamics of this con-
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Figure 6.3: Spin singlet-trio amplitude for the UN-BN phase vortex connection given in
Eq. (6.9) at t̃ = 300. (a): Longitudinal cut showing the spatial separation of the two vortex
lines. (b) and (c): Transverse cut on the UN (z/ℓ= 3.125) and BN (z/ℓ=−3.125) sides, respec-
tively, showing the phase vortices and their composite core structure. (d) and (e): Magnified
transverse cuts with an overlay of the spherical harmonics, showing the non-trivial change of
symmetry of the order parameter within the vortex cores.

nection is split into two distinct parts, which are plotted in Fig. 6.3. Firstly, upon evolution,

the two overlapping SQVs spatially separate due to an instability occurring at the interface

z ≈ 0. Each phase vortex then connects to a vortex-free state on the other side of the inter-

face shown in Fig. 6.3a. After the initial separation, the cores of the vortices fill with atoms

occupying different ground states, drastically altering the order parameter symmetry within

the cores. In the UN case, the initially empty core fills with atoms occupying both the cyclic

and BN phases, generating a topological interface within the core itself. This likely arises due

to the differing phases factors between the spinor components, as seen in Fig. 6.1. The phase

vortex on the BN side undergoes a similar filling of the empty vortex core, filling with atoms in

the UN, BN and cyclic phases, also generating an interface within the core. The development

of this composite core structure signifies the start of a splitting process, whereby the phase

vortex is expected to split into two HQVs [41, 89]. Since our system has no rotation of the
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trapping potential to stabilise the vortices, the timescales considered here reveal that both

vortices eventually leave the condensate cloud. Additionally, the phase vortex on the BN side

of the interface is observed to leave the condensate before the splitting into two HQVs has

occurred.

Note that it is possible to use the UN-BN interpolating spinor given in Eq. (6.4) to predict

the topological interface formed within the core structures. For example, consider that η now

has a radial dependence, with the radial distance given as ρ =
√

x2 + y2. Then vortex on the

UN side can be modelled using Eq. (6.10) by requiring η(0) =−1 along the vortex core, which

then interpolates smoothly to η(ρ) = 1 away from the vortex core, where we have assumed

the vortex to be located at ρ = 0. This then results in the core taking on the BN phase, which

smoothly interpolates back to the UN phase far from the vortex core. In addition, the phase

difference arising between the components becomes χ=∓2ϕ, which implies that χ can take

values between 0 and 4π about the vortex line. Comparing this with Fig. 6.1 we see that at

some point this phase difference will cross χ = π (and also χ = 3π) in a region about the in-

terface (η= 0), which implies that a transition to the cyclic phase will occur within the vortex

core. This results in an interface forming within the vortex core itself, containing the BN, UN,

and cyclic phases, which is clearly observed in Fig. 6.3. Similar analysis can be performed for

the state in Eq. (6.11) to model the core on the BN side.

We next investigate a vortex connection that terminates on the interface. We start with

the initial state in Eq. (6.11), which contains no phase winding in the middle component. The

result is a phase vortex in the BN phase that smoothly connects to a vortex-free state in the UN

phase. The resulting spin magnitude and singlet-trio amplitude after purely imaginary-time

relaxation are plotted in Fig. 6.4. The dynamics of this connection closely resembles what

the later dynamics of the BN side of the phase vortex connection would look like, provided

that the vortices were stabilised against leaving the condensate. We see that the initial phase

vortex on the BN side has undergone a splitting process into two HQVs, each of which can be

seen to terminate at the interface. The cores of the HQVs are easily identified from the |〈F̂〉| =
2 regions. Similar splitting of a phase vortex into HQVs has been observed in the polar phase

of spin-1 condensates [41, 89]. For the timescales considered, the resulting HQVs remain

stable against leaving the condensate. Additionally, we see the clear presence of the cyclic

phase emerging at the interface z/ℓ ∼ 0, arising due to the phase difference between the

spinor components (see Fig. 6.1).
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Figure 6.4: Vortex-free to phase vortex connection defined by Eq. (6.9) with β = 0 and no
winding in the middle component. (a): Spin magnitude at t̃ = 5. The HQV cores are identified
where |〈F̂〉| = 2. (b): Spin-singlet trio amplitude at t̃ = 5. A cyclic region is revealed where
|A30|2 = 2, which arises due to phase differences (see Fig 6.1).

6.3.2 Cyclic to ferromagnetic interface

We numerically investigate vortex connections across a topological interface between the

cyclic and FM2 phases, given by Eq. (6.31). Since our numerical simulations use parameters

that predict a nematic ground state, we introduce a spatially-dependent c1 term such that

c0/c1 = 90.7 on the cyclic side but c0/c1 =−90.7 on the FM side, effectively changing the sign

of the c1 term [193, 194]. Now, in the FM region, the parameters ensure that the FM region

remains stable. Despite the cyclic state not being the predicted ground state, the interface is

observed to remain stable for the timescales considered in our simulations.

We firstly investigate the connection of a third vortex in the cyclic phase connecting to a

singular phase vortex in the FM2 phase using Eq. (6.34) as the initial state. This initial state

is then propagated using a short imaginary-time evolution to imprint the vortex cores and,

once the core is imprinted, we switch to complex-time simulations using a damping coef-

ficient of ν = 10−2. The resulting spin magnitude and spin-singlet duo amplitude for this

interface after time t̃ = 5 are plotted in Fig. 6.5. Here, |〈F̂〉| reveals non-trivial core structures

emerging. Clearly one can see the third vortex on the cyclic side of the interface (z/ℓ< 0) ev-

idenced by the |〈F̂〉| = 1 core. However, unlike the previous case where the vortices spatially

separated, this |〈F̂〉| = 1 region then extends throughout the longitudinal extent of the con-

densate, and penetrates into the FM region, revealing that the initial phase vortex of the FM

phase has developed a composite core structure. This composite core structure is separated

into three distinct parts: Inside is the |〈F̂〉| = 1 region, which is then encased in a cyclic shell as
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Figure 6.5: One-third vortex to phase vortex connection in an interface between the cyclic and
FM2 phases given by Eq. (6.34) at t̃ = 50. (a): Longitudinal cut of |〈F̂〉| at y/ℓ = 0. The third
vortex on the cyclic side (z/ℓ< 0) is evident from the |〈F̂〉| = 1 core which extends throughout
the FM region. (b): Zoomed transverse cut of |〈F̂〉| inside the core in the FM region. Overlaid
are the spherical harmonics showing the non-trivial change of order parameter symmetry
inside the core. (c): Longitudinal cut of |A30|2 at y/ℓ = 0. Cyclic regions are identified from
|A30|2 = 2.

seen from the |A30|2 = 2 regions in Fig. 6.5c. Then, far away from the vortex core, the system

smoothly interpolates back to a |〈F̂〉| = 2 region in the bulk of the condensate. The spherical

harmonics of the internal core structure plotted in Fig. 6.5b reveal the non-trivial change of

order parameter symmetry within the composite core.

As we did in the UN to BN case, one can use the general spinor in Eq. (6.34) to analyti-

cally predict the vortex core structures observed when η is a function of the transverse radius

ρ =
√

x2 + y2. The core can be described by choosing an appropriate function for η(ρ) that

interpolates between all three phases. In particular, we choose η(ρ) = 3tanh
(
ρ/2

)−1, which

becomes η = −1 (FM−
1 ) at ρ = 0 along the vortex core, η = 0 (cyclic) at ρ = tanh−1(1/3), and

finally η= 2 (FM+
2 ) at large ρ. Thus, this interpolating spinor accurately models the behaviour

observed in Fig. 6.5.

Instead of considering only singular vortices, we can also investigate the nonsingular

vortex connection given in Eq. (6.36). We choose this as the initial state and choose β =
π

[
1+ tanh

(
ρ−1

)]
/2 to model the required monotonically increasing function. Here we fo-

cus only on the cyclic to FM2 limit, but equivalently the cyclic to FM1 limit can be chosen by

an appropriate choice of p and q that interpolates η between −1 and 0. We perform purely

imaginary-time simulations to simulate energy relaxation. We start by discussing the dynam-

ics of the doubly quantised vortex on the cyclic side of the interface, shown in Fig. 6.6. As

expected for a doubly quantised vortex line, it very rapidly undergoes a splitting process. In

this case, it splits into four one-third vortices, evidenced by the |〈F̂〉| = 1 regions, and a fur-
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Figure 6.6: Schematic representation of the splitting process occurring on the cyclic side of
the interface (z/ℓ< 0) given by the state in Eq. (6.36). (a): Spherical harmonic representation
of the initial doubly quantised vortex line. By traversing a point about the vortex line, the con-
densate phase is seen to wind by 4π. (b) Transverse cut of |〈F̂〉| at z/ℓ ≈ −3 after imaginary-
time evolution at t̃ = 1.5 showing the splitting of the initial doubly quantised vortex into frac-
tional vortices. The one-third and two-third vortices are clearly identified from the |〈F̂〉| = 1
and |〈F̂〉| = 2 regions, respectively. (c) and (d): Spherical harmonic representations about the
one-third and two-third vortices, respectively. The spherical harmonics shows the non-trivial
change of the order parameter symmetry as we move away from the vortex cores.

ther two-third vortex, evidence by the large |〈F̂〉| = 2 region. The discrepancy of the core

size could arise from the different vortices being set by different healing lengths. Analysis of

the spherical harmonics in Fig. 6.6c,d shows the non-trivial order parameter symmetry both

within and outside the vortex cores. By following the spherical harmonics about the vortex

cores, the condensate phase changes by 2π/3 and 4π/3 confirming that these structures are

one-third and two-third vortices. Due to the energy relaxation, the one-third vortices quickly

leave the condensate. However, the two-third vortex is first observed to undergo a further

splitting process in which it splits into two one-third vortices, which then proceed to exit the

condensate cloud.

The initial nonsingular vortex on the FM side of the interface also undergoes a complex

splitting process, shown in Fig. 6.7. The nonsingular vortex is observed to split into four sin-

gular vortices, observed from transverse cuts of |〈F̂〉|. Analysis of the spherical harmonics

reveal the non-trivial symmetry within the singular vortex cores. As in the case on the cyclic

side, these vortices rapidly leave the condensate due to the energy relaxation. On both sides

of the interface the vortex structures are observed to terminate at the interface itself, and do

not connect in a way that is observed in the phase vortex to one-third vortex connection (see
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Figure 6.7: Schematic representation of the splitting process occurring on the FM side of the
interface (z/ℓ > 0) of the state in Eq. (6.36). The initial state on this side of the interface is
given explicitly in Eq. (6.37) with Euler angles given in Eq. (6.39). (a): Transverse cut of |〈F̂〉|
at z/ℓ≈ 3 after complex-time evolution at t̃ = 1.5. The singular vortex structures can be seen
from the |〈F̂〉| ≈ 1 cores. (b): Spherical harmonic representation of the internal structure of
the singular vortex, showing the non-trivial symmetry within the core.

Fig. 6.5).

6.4 Conclusions

In this chapter we have presented spin-2 BECs as a medium for investigating topological in-

terface physics. We constructed topological interfaces within the condensate by means of in-

terpolating spinor wave functions which are derived from steady-state solutions to the spin-2

GPEs, which smoothly connect different phases using an interpolation parameter. In each

case we constructed multiple different classes of topological defects which either connected

smoothly across the interface, or terminated on the interface itself. In particular, we showed

how phase, spin, and fractional vortices could be constructed simply from the component

phase windings, and how more complicated connections could be constructed by applying a

spin rotation to the general interface spinor with appropriate choices for the Euler angles. It

was shown that interfaces between the nematic phases allow for monopoles and nonsingular

vortices on one side of the interface to smoothly connect to singular line defects on the other

side. In addition, interfaces involving the FM phases can be engineered to contain a general-

isation of the Dirac monopole in the FM limit, which connects to a singular vortex line in the

opposite limit.

Numerical investigations of the UN to BN and cyclic to FM interfaces were also per-
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formed. We showed that phase vortices in a UN to BN interface had two distinct parts to their

dynamics. The initially overlapping vortex lines quickly spatially separated, arising from an

instability at the interface itself. Each vortex then developed composite core structures that

contained UN, BN, and cyclic phases, forming a topological interface within the vortex cores

themselves. A phase vortex in the BN phase terminating at the interface was also investigated,

which was observed to split into a pair of HQVs with FM cores, which also terminated at the

interface. In the cyclic to FM interface, we observed a phase vortex in the FM phase smoothly

connect to a one-third vortex in the cyclic limit by forming a composite structure that had

an inner |〈F̂〉| = 1 core, encased by a surrounding cyclic region, before smoothly interpolating

back to the |〈F̂〉| = 2 bulk. Lastly, a connection involving a nonsingular vortex was numeri-

cally simulated. We showed that the initial nonsingular structure on the FM side connected

smoothly to a doubly quantised phase vortex in the cyclic limit. The nonsingular vortex was

then observed to split into four singular structures, whilst the doubly quantised phase vortex

split into four one-third vortices, with a large two-third vortex in the centre of the condensate.
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7
CONCLUSIONS & FUTURE WORK

In this Chapter we give an overview of the overarching conclusions of the thesis, in addition

to suggesting some avenues for future work.

In Part I we introduced the necessary mathematical framework needed to understand

these systems in detail. We started with the scalar system, constructing the full Hamiltonian

using a quantum treatment before introducing the mean-field theory and resulting GPEs.

Then, we generalised the theory to two-component systems, and derived the miscibility cri-

terion. The theory necessary to understand spinor BECs was introduced, where we con-

structed the single-particle and interaction Hamiltonians using a quantum treatment, then

introduced the mean-field equations along with their reduction to lower dimensions and di-

mensionless versions. Finally, an overview of the ground states, symmetries, and topologi-

cally stable defects that arise in spin-1 and spin-2 systems was introduced. For each ground

state we presented two different graphical representations, and then discussed the dynamical

properties of certain vortex states arising in these systems.

7.1 The versatility of spinor Bose-Einstein condensates

In this thesis we have shown the robustness of spinor and pseudospin-1/2 systems for in-

vestigating a variety of different physics. We showed how the relaxation dynamics of HQVs in

pseudospin-1/2 systems exhibit similarities in its spatial properties compared to similar stud-

ies concerning scalar vortices in scalar BECs [143, 144], despite being a topologically distinct

125
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vortex. However, there was a multitude of differences found in the temporal aspects of the

scaling. It was shown that the decay rate of the vortices at early times was strongly correlated

to the ratio of the inter- and intra-species interactions, leading to wildly different dynamics

at these early times, before the decay rate at later times tended to a universal scaling which

has been observed in scalar systems [144].

In addition, we showed how spinor condensates can be used as a test bed to discern more

about the scaling laws associated with discontinuous, first-order quantum phase transitions.

We presented the broken-axisymmetry to ferromagnetic phase transition as an example, and

showed that it did indeed fit the requirements of a first-order transition. We generalised the

KZM, and showed how scaling laws that govern the density of defects can still be found de-

spite having a gapless spectrum. Independent of the KZM, we also derived scaling laws for the

onset of the decay of the metastable state after the transition point is crossed, which aligned

with the predictions of our generalised KZM, further justifying the robustness of our theory.

Finally, we showed that spinor BECs are excellent candidate for investigating topologi-

cal interface physics due to their rich phase diagrams. In particular, we presented station-

ary solutions derived from the spinor GPEs that offered interpolating solutions between two

distinct ground states dependent on an interpolating parameter. It was also shown how a

myriad of different defect states can be connected across the interface, ranging from simple

quantised phase vortices to more complicated structures representing generalisations of the

Dirac monopole. Our work concluded with mean-field numerical simulations of select ex-

amples, and showed vastly different results between the cases, ranging from the formation of

composite core structures and splitting of phase vortices in an interface between the uniaxial

nematic and biaxial nematic phases, to complex splitting process of nonsingular vortices in

a cyclic to ferromagnetic interface.

7.2 Future work

7.2.1 Understanding more about half-quantum vortex dynamics

Our numerical investigation of the relaxation dynamics of HQVs investigated in Chapter 4

revealed interesting behaviour unseen in similar relaxation studies involving scalar conden-

sates [144]. In particular, a clear attractive force between the vortices dominates at suffi-

ciently high γ, which simple point-vortex models have been unable to account for [42, 43], so

discerning more about the dynamics of these objects is an active topic. In fact, recent theo-

retical work has already shed more light on the topic [195]. They showed that the atoms filling

the large cores of the HQVs act as a pinning potential, driving the HQVs to collide. This work
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therefore explains previously observed numerical simulations of HQV dynamics in these sys-

tems [42, 43], and provides a better insight into our observed decay laws.

In addition, experimental work has already been conducted investigating the relaxation

dynamics of HQVs in a spin-1 BEC [196]. However, corresponding numerical investigations

of the decay rate of the vortices has not been carried out, and it would indeed be interesting

to see whether there is overlap with our pseudospin-1/2 work.

7.2.2 Quantum phase transitions and metastability

Recently, there has been new interest in understanding quantum phase transitions where

metastability plays a crucial role such as in false-vacuum decay [197–200]. However, a lack of

theoretical understanding of first-order quantum phase transitions leads to confusion to ex-

actly how the metastable state decays. Our work presented in Chapter 5 presents a theoretical

framework for extracting scaling laws associated with first-order quantum phase transitions

both for the onset of the decay of the metastable state itself and the density of defects far past

the transition point. In addition, the work carried out is applicable in experimentally-relevant

parameter regimes, which opens up the avenue of spin-1 BECs being used as emulators to

understand the recent interest in false-vacuum decay.

7.2.3 Experimental realisations of topological interfaces

Our work in Chapter 6 already extends the work of Refs. [85–87] by considering topological

interfaces between the ground state phases of spin-2 BECs, but can be used as a further step-

ping stone to understand more about topological interface physics. Interfaces formed within

vortex cores has recently been achieved in both spin-1 [88, 89] and spin-2 BECs [54], but

current experimental realisations of interfaces formed between bulk regions has remained

elusive due to lack of proper experimental techniques. Once an experimental realisation of

such an interface is achieved, our work can be used to understand the resulting core struc-

ture of defects connected across the interface. Naturally, further numerical studies of more

complicated examples, e.g., monopoles, present an avenue for studying the dynamics of such

objects when constrained to topological interfaces.



Part III

Appendices

128



A
P

P
E

N
D

I
X

A
NUMERICAL TECHNIQUES

A.1 Dimensionless two-component Gross-Pitaevskii equations

As mentioned in Sec 2.5, dimensionless equations offer numerous benefits, including in-

creased numerical stability and the ease of reformulating calculations into a desired scale

and parameter regime. Here we derive the dimensionless two-component GPEs which are

stated in Eq. (4.14).

To begin we start with the full 3D dimensional GPEs for a two-component system:

iħ∂ψ1

∂t
=

(
−ħ2∇2

2m1
+ g1|ψ1|2 + g12|ψ2|2

)
ψ1, (A.1)

iħ∂ψ2

∂t
=

(
−ħ2∇2

2m2
+ g2|ψ2|2 + g12|ψ1|2

)
ψ2. (A.2)

Our simulations are performed on space-time grid lattices with a spatial side length of L =
Ns as , where as is the lattice spacing and the total number of grid points is given as N d

s where

d is the dimensionality of the system. With these, we make use of the following dimensionless

variables

r̃ = r

as
, g̃ j =

2mg j as
2−d

ħ2 , t̃ = tħ
2ma2

s
, ψ̃ j =

√
ad

s e2i t̃ψ j , (A.3)

where m = m1 = m2. Using the above dimensionless quantities, we can rescale the dimen-
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sional variables in Eqs (A.1) - (A.2), which leads to the dimensionless equations

i
∂ψ̃1

∂t
= (−∇̃2 + g̃1|ψ̃1|2 + g̃12|ψ̃2|2

)
ψ̃1, (A.4)

i
∂ψ̃2

∂t
= (−∇̃2 + g̃2|ψ̃2|2 + g̃12|ψ̃1|2

)
ψ̃2. (A.5)

Now, if we have atomic species where g1 = g2 = g , then the above equations simplify to (drop-

ping the tildes for notational convenience)

i
∂ψ1

∂t
= (−∇2 + g |ψ1|2 +γ|ψ2|2

)
ψ1, (A.6)

i
∂ψ2

∂t
= (−∇2 + g |ψ2|2 +γ|ψ1|2

)
ψ2, (A.7)

where γ= g12/g is the ratio of inter- to intra-species interaction.

A.2 Symplectic integrators for spinor Bose-Einstein condensates

The numerics of Chapters 5 and 6 are based on second-order symplectic integrators: a type

of numerical scheme for Hamiltonian systems. In particular, we make use of the work of

Symes et al. for both our spin-1 [176] and spin-2 [192] systems. Symplectic integration

schemes provide highly accurate solutions for Hamiltonian systems over extended periods

of time, making them ideal for studying the long-time dynamics in Chapter 5. In addition,

the second-order numerical schemes devised by Symes et al. have been shown to be both

simpler and more efficient than other second-order composition methods [201], which is

critical for compute-heavy 3D simulations as in Chapter 6.

The spinor symplectic integration schemes work by splitting the spinor GPEs into two

subsystems. The first is a single-particle-like subsystem, which includes the kinetic energy

and the Zeeman terms of the Hamiltonian, which is solved exactly in Fourier Space. The sec-

ond system comprises the non-linear subsystem, which includes the remaining non-linear

terms in the spinor GPEs. Due to the nature of the splitting, this remaining subsystem be-

comes exactly solvable in position space. Note that the Zeeman terms are assumed to be

spatially-uniform (a good approximation in experiments), which allows them to be included

in the single-particle-like subsystem. However, if the Zeeman shifts are not spatially-uniform

they must instead be included with the non-linear subsystem, which still leads to analyti-

cal solutions in the form of Jacobi elliptic functions (see Refs. [176, 192] for details). Finally,

though not used in this thesis, the two-way splitting implies that the scheme can be extended

using the composition method of Blanes and Moan [202] to fourth-order, should a higher-

order symplectic scheme be required.
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The numerical methods throughout this thesis have been implemented using the personally-

developed Python package PyGPE [203]: a CUDA-accelerated library for numerically solving

the GPEs for scalar, two-component, spin-1, and spin-2 BEC systems. It supports 1D, 2D, and

3D grid lattices, as well as possessing the ability to run on both CPUs or Nvidia-native GPUs.

In addition, it provides tools for data handling, as well as a suite of diagnostics functions use-

ful for handling data from BEC simulations.

https://github.com/wheelerMT/pygpe
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B
DERIVATION OF STATIONARY SOLUTIONS IN A

SPIN-2 BOSE-EINSTEIN CONDENSATE

B.1 Time-independent spin-2 Gross-Pitaevskii equations

Here we derive stationary solutions to the spin-2 GPEs that provide the interpolating spinor

wave functions that are used throughout Chapter 6. Firstly, recall that the stationary solutions

of the spin-2 GPEs are obtained by substituting ψm = p
nζme−iµt/ħ into Eqs. (2.84)-(2.86).

Assuming a uniform system with V (r) = 0, this results in

µζ2 =
(−2p +4q + c0n +2c1n〈F̂z〉

)
ζ2 + c1n〈F̂−〉ζ1 +

c2p
5

n A00ζ
∗
−2, (B.1)

µζ1 =
(−p +q + c0n + c1n〈F̂z〉

)
ζ1 + c1

(p
6

2
n〈F̂−〉ζ0 +n〈F̂+〉ζ2

)
− c2p

5
n A00ζ

∗
−1, (B.2)

µζ0 = c0nζ0 +
p

6

2
c1

(
n〈F̂+〉ζ1 +n〈F̂−〉ζ−1

)+ c2p
5

n A00ζ
∗
0 , (B.3)

µζ−1 =
(
p +q + c0n − c1n〈F̂z〉

)
ζ−1 + c1

(p
6

2
n〈F̂+〉ζ0 +n〈F̂−〉ζ−2

)
− c2p

5
n A00ζ

∗
1 , (B.4)

µζ−2 =
(
2p +4q + c0n −2c1n〈F̂z〉

)
ζ−2 + c1n〈F̂+〉ζ−1 +

c2p
5

n A00ζ
∗
2 . (B.5)

Follow the literature of Ref. [96], we make the following assumptions. We can choose the over-

all phase such that ζ0 is real and, since the system has SO(2) symmetry about the direction of

the applied magnetic field (which we take to be the z-axis), we choose the coordinate system

132
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such that 〈F̂y 〉 = 0 without loss of generality, implying 〈F̂+〉 = 〈F̂−〉. In addition, to simplify fur-

ther, we consider the specific case where the transverse magnetisation is zero 〈F̂±〉 = 0 which

is valid in a system where q < 0 such that the system favours atoms in the outer components

[see Eq. (2.81)]. Assuming the above, the stationary equations can be transformed into the

following simplified set of equations:

0 = (−2p +4q + c0n +2c1n〈F̂z〉−µ)ζ2 +
c2p

5
n A00ζ

∗
−2, (B.6)

0 = (2p +4q + c0n −2c1n〈F̂z〉−µ)ζ−2 +
c2p

5
n A∗

00ζ2, (B.7)

0 = (−p +q + c0n + c1n〈F̂z〉−µ)ζ1 +
c2p

5
n A00ζ

∗
−1, (B.8)

0 = (p +q + c0n − c1n〈F̂z〉−µ)ζ−1 +
c2p

5
n A∗

00ζ1, (B.9)

0 =
(
c0n + c2p

5
n A00 −µ

)
ζ0. (B.10)

Noting that the above equations are decoupled in three parts, we can construct the following

matrix equations relating to Eqs. (B.6)-(B.7) and Eqs. (B.8) - (B.9), respectively, as(
4q +2β̃− µ̃ α̃

α̃∗ 4q −2β̃− µ̃

)(
ζ2

ζ∗−2

)
= 0, (B.11)

(
q + β̃− µ̃ −α̃
−α̃∗ q − β̃− µ̃

)(
ζ1

ζ∗−1

)
= 0, (B.12)

with Eq. (B.10) being recast as

(α̃− µ̃)ζ0 = 0, (B.13)

where µ̃ = µ− c0n, α̃ = c2n A00/
p

5 and β̃ = c1n〈F̂z〉 − p. The stationary solutions are then

classified according to the determinant of the coefficient matrices of the above equations.

Explicitly, these are

D2 = (4q − µ̃)2 −4β̃2 −|α̃|2, (B.14)

D1 = (q − µ̃)2 − β̃2 −|α̃|2. (B.15)

From these determinants and Eq. (B.13), we can derive stationary solutions that interpolate

between different ground states of the spin-2 system.
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B.2 Stationary solutions involving interpolating spinors

B.2.1 Uniaxial nematic, biaxial nematic, and cyclic limits

First consider the case D1 ̸= 0 and D2 = 0. Then, Eq. (B.12) and D1 ̸= 0 implies that ζ1 =
ζ−1 = 0. Here, consider the case that µ̃ = α̃. Then all three of the ζ±2,ζ0 components can be

non-zero. From the definition of the longitudinal magnetisation given in Eq. (2.81), we have

|ζ2| =
√
|ζ−2|2 +

〈F̂z〉
2

. (B.16)

The normalisation condition states |ζ2|2 +|ζ0|2 +|ζ−2|2 = 1, which leads to

|ζ−2| =
√

1−ζ2
0 −〈F̂z〉/2

2
, (B.17)

|ζ2| =
√

1−ζ2
0 +〈F̂z〉/2

2
. (B.18)

Thus, the total spinor now reads

ζ=



e iχ2

√
1−ζ2

0+〈F̂z〉/2
2

0

ζ0

0

e iχ−2

√
1−ζ2

0−〈F̂z〉/2
2


. (B.19)

The substitution of the above spinor into Eq. (B.11) leads to the relations µ̃= 2q−β̃2/(2q) and

〈F̂z〉 = (β̃+p)/(c1n), where β̃ can be calculated from the following equation [96]:

β̃3 +pβ̃2 +4q[q +2c1n(1−ζ2
0)]β̃+4pq2 = 0. (B.20)

Let us consider the case p = 0, then the above equation transforms to

β̃2 =−4q
[
q +2c1n(1−ζ2

0)
]

. (B.21)

Then, since the left-hand side is positive, we derive the condition |q | > |2c1n(1−ζ2
0)|. Under

this condition β̃ is determined to be β̃ = 0 [96], and hence 〈F̂z〉 = 0. To determine ζ0 we

minimise the energy per particle [96]

ϵ=
2∑

m=−2
(−pm +qm2)|ζm |2 + 1

2
c0n + 1

2
c1n|〈F̂〉|2 + 1

2
c2n|A00|2. (B.22)
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Substituting Eq. (B.19) and 〈F̂z〉 = 0 into the above expression yields

ϵ= 4q(1−ζ2
0)+ 1

2
c0n + c2n

10

∣∣∣e i (χ2+χ−2)(1−ζ2
0)+ζ2

0

∣∣∣2
. (B.23)

Note that since

α̃= µ̃= c2n

5

e i (χ2+χ−2)

√
(1−ζ2

0)− 〈F̂z〉
4

+ζ2
0

 , (B.24)

which must be real, we require χ2 +χ−2 = 0 or π. If c2 < 0, then the energy is minimised by

χ2 +χ−2 = π. Taking the derivative of Eq. (B.23) with respect to ζ0 and setting equal to zero

leads to the expression for ζ0:

ζ0 =
√

1+10q/(c2n)

2
. (B.25)

Substituting ζ0 back into Eq. (B.19) leads to the final interpolating spinor

ζC-N =



i e iχ
p

1−10q/(c2n)
2

0√
1+10q/(c2n)

2

0

i e−iχ
p

1−10q/(c2n)
2


, (B.26)

where we have chosen χ±2 = π/2+χ to satisfy χ2 +χ−2 = π and χ is an arbitrary phase. This

solution continuously becomes the three-component cyclic state when q = 0, and the BN

(UN) when q =−c2n/10 (q = c2n/10).

Alternatively, when c2 < 0 the energy is minimised by having χ2 +χ−2 = 0, which instead

leads to the interpolating spinor

ζUN-BN =



e iχ
p

1−10q/(c2n)
2

0√
1+10q/(c2n)

2

0

e−iχ
p

1−10q/(c2n)
2


, (B.27)

which now interpolates between the UN phase at q = |c2|n/10 and the BN phase at q =
−|c2|n/10.
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B.2.2 Cyclic to ferromagnetic

Consider the case that D2 = D1 = 0. Then, we have the following system of equations for the

determinants

0 = (4q − µ̃)2 −4β̃2 −|α̃|2, (B.28)

0 = (q − µ̃)2 − β̃2 −|α̃|2, (B.29)

which can be solved to find µ̃:

µ̃= 5q2 − β̃2

2q
. (B.30)

Then, for the case that µ̃ ̸= α̃ and q ̸= 0, Eq. (B.13) implies ζ0 = 0. Now, since we assumed zero

transverse magnetisation, Eq. (2.81) leads to

2c1n(ζ∗2ζ1 +ζ∗−1ζ−2) = 0. (B.31)

We can use the matrix Eqs (B.11) and (B.12) to find expressions for ζ∗−1 and ζ−2 or ζ∗2 and ζ1

which when substituted into the above equation leads, respectively, to the following equa-

tions

2c1nζ∗2ζ1

(
1− β̃+3q

β̃−3q

)
= 0, (B.32)

2c1nζ∗−1ζ−2

(
1− β̃−3q

β̃+3q

)
= 0, (B.33)

where we have substituted µ̃ according to Eq. (B.30). This implies that, generally, ζ∗2ζ1 =
ζ∗−1ζ−2 = 0. To be consistent with Eqs. (B.11) and (B.12) either ζ1 = ζ−2 = 0 or ζ2 = ζ−1 = 0.

Here we focus on the former case, since it relates to our discussion in Sec. 6.2.3. The longitu-

dinal magnetisation in Eq. (2.81) implies we now have

|ζ2| =
√

〈F̂z〉+ |ζ−1|2
2

. (B.34)

Then, using the normalisation condition |ζ2|2 +|ζ−1|2 = 1 leads to

|ζ−1| =
√

2−〈F̂z〉
3

, (B.35)

|ζ2| =
√

1+〈F̂z〉
3

, (B.36)
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and thus the final interpolating spinor now reads

ζC-FM = 1p
3



e iχ2

√
1+〈F̂z〉
0

0

e iχ−1

√
2−〈F̂z〉
0


. (B.37)

Substituting this back into Eqs. (B.11) and (B.12) leads to 〈F̂z〉 = (p −q)/(c1n). This state now

continuously becomes the two-component cyclic state at 〈F̂z〉 = 0 and the FM+
2 state at 〈F̂z〉 =

2.

B.2.3 Ferromagnetic to biaxial nematic

Consider the case D2 ̸= 0 and D1 = 0. Then, D2 ̸= 0 implies that ζ2 = ζ−2 = 0. Consider

also the case that µ̃ ̸= α̃, then Eq. (B.13) implies that ζ0 = 0. Now, from the definition of the

longitudinal magnetisation given in Eq. (2.81), we have

|ζ2| =
√
|ζ−2|2 +

〈F̂z〉
2

. (B.38)

Using the normalisation condition |ζ2|2 +|ζ−2|2 = 1 then leads to

|ζ−2| =
√

1−〈F̂z〉/2

2
, (B.39)

|ζ2| =
√

1+〈F̂z〉/2

2
. (B.40)

Thus, the final interpolating spinor now reads

ζFM-BN =



e iχ2

√
1+〈F̂z〉/2

2

0

0

0

e iχ−2

√
1−〈F̂z〉/2

2


. (B.41)

Substituting the above spinor into Eq. (B.11) and using D2 = 0 leads to 〈F̂z〉 = p/[(c1−c2/20)n].

Note that the above spinor becomes the BN phase at p = 0 and FM±
2 for p =±(2c1 − c2/10)n.



BIBLIOGRAPHY

[1] Bose, “Plancks Gesetz und Lichtquantenhypothese”, Z. Physik 26, 178–181 (1924).

[2] A. Einstein, “Quantentheorie des einatomigen idealen Gases”, in Albert Einstein: Akademie-

Vorträge, edited by D. Simon, 1st ed. (Wiley, Dec. 2005), pp. 237–244.

[3] C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd ed. (Cam-

bridge University Press, Sept. 2008).

[4] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Ob-

servation of Bose-Einstein Condensation in a Dilute Atomic Vapor”, Science 269, 198–

201 (1995).

[5] K. B. Davis, M. Mewes, M. R. Andrews, N. J. Van Druten, D. S. Durfee, D. M. Kurn, and

W. Ketterle, “Bose-Einstein Condensation in a Gas of Sodium Atoms”, Phys. Rev. Lett.

75, 3969–3973 (1995).

[6] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, “Evidence of Bose-Einstein

Condensation in an Atomic Gas with Attractive Interactions”, Phys. Rev. Lett. 75, 1687–

1690 (1995).

[7] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell,

“Measurement of the Temperature Dependence of the Casimir-Polder Force”, Phys.

Rev. Lett. 98, 063201 (2007).

[8] T. Byrnes, K. Wen, and Y. Yamamoto, “Macroscopic quantum computation using Bose-

Einstein condensates”, Phys. Rev. A 85, 040306 (2012).

[9] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger,

and W. Ketterle, “Optical Confinement of a Bose-Einstein Condensate”, Phys. Rev. Lett.

80, 2027–2030 (1998).

[10] T.-L. Ho, “Spinor Bose Condensates in Optical Traps”, Phys. Rev. Lett. 81, 742–745

(1998).

138

https://doi.org/10.1007/BF01327326
https://doi.org/10.1002/3527608958.ch27
https://doi.org/10.1002/3527608958.ch27
https://doi.org/10.1126/SCIENCE.269.5221.198
https://doi.org/10.1126/SCIENCE.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.75.1687
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevLett.98.063201
https://doi.org/10.1103/PhysRevA.85.040306
https://doi.org/10.1103/PhysRevLett.80.2027
https://doi.org/10.1103/PhysRevLett.80.2027
https://doi.org/10.1103/PhysRevLett.81.742
https://doi.org/10.1103/PhysRevLett.81.742


BIBLIOGRAPHY 139

[11] T. Ohmi and K. Machida, “Bose-Einstein Condensation with Internal Degrees of Free-

dom in Alkali Atom Gases”, J. Phys. Soc. Jpn. 67, 1822–1825 (1998).

[12] M. D. Barrett, J. A. Sauer, and M. S. Chapman, “All-Optical Formation of an Atomic

Bose-Einstein Condensate”, Phys. Rev. Lett. 87, 010404 (2001).

[13] H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. Van Staa, L. Cacciapuoti, J. J.

Arlt, K. Bongs, and K. Sengstock, “Dynamics of F = 2 Spinor Bose-Einstein Conden-

sates”, Phys. Rev. Lett. 92, 040402 (2004).

[14] A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw, A. P. Chikkatur, S. Gupta, S. Inouye,

D. E. Pritchard, and W. Ketterle, “Sodium Bose-Einstein Condensates in the F = 2 State

in a Large-Volume Optical Trap”, Phys. Rev. Lett. 90, 090401 (2003).

[15] Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E. Maréchal, L. Vernac, J.-C.

Keller, and O. Gorceix, “All-optical production of chromium Bose-Einstein conden-

sates”, Phys. Rev. A 77, 061601 (2008).

[16] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell,

“Vortices in a Bose-Einstein Condensate”, Phys. Rev. Lett. 83, 2498–2501 (1999).

[17] J. E. Williams and M. J. Holland, “Preparing topological states of a Bose–Einstein con-

densate”, Nature 401, 568–572 (1999).

[18] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, “Observation of Vortex Lat-

tices in Bose-Einstein Condensates”, Science 292, 476–479 (2001).

[19] J. Ruostekoski, “Topological phase preparation in a pair of atomic Bose-Einstein con-

densates”, Phys. Rev. A 61, 041603 (2000).

[20] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortex Formation in a Stirred

Bose-Einstein Condensate”, Phys. Rev. Lett. 84, 806–809 (2000).

[21] K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortices in a stirred Bose-

Einstein condensate”, Journal of Modern Optics 47, 2715–2723 (2000).

[22] M. Kobayashi and M. Tsubota, “Quantum turbulence in a trapped Bose-Einstein con-

densate”, Phys. Rev. A 76, 045603 (2007).

[23] R. Numasato, M. Tsubota, and V. S. L’vov, “Direct energy cascade in two-dimensional

compressible quantum turbulence”, Phys. Rev. A 81, 063630 (2010).

[24] M. T. Reeves, T. P. Billam, B. P. Anderson, and A. S. Bradley, “Inverse Energy Cascade in

Forced Two-Dimensional Quantum Turbulence”, Phys. Rev. Lett. 110, 104501 (2013).

https://doi.org/10.1143/JPSJ.67.1822
https://doi.org/10.1103/PhysRevLett.87.010404
https://doi.org/10.1103/PhysRevLett.92.040402
https://doi.org/10.1103/PhysRevLett.90.090401
https://doi.org/10.1103/PhysRevA.77.061601
https://doi.org/10.1103/PhysRevLett.83.2498
https://doi.org/10.1038/44095
https://doi.org/10.1126/science.1060182
https://doi.org/10.1103/PhysRevA.61.041603
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1080/09500340008232191
https://doi.org/10.1103/PhysRevA.76.045603
https://doi.org/10.1103/PhysRevA.81.063630
https://doi.org/10.1103/PhysRevLett.110.104501


BIBLIOGRAPHY 140

[25] T. P. Billam, M. T. Reeves, B. P. Anderson, and A. S. Bradley, “Onsager-Kraichnan Con-

densation in Decaying Two-Dimensional Quantum Turbulence”, Phys. Rev. Lett. 112,

145301 (2014).

[26] T. Simula, M. J. Davis, and K. Helmerson, “Emergence of Order from Turbulence in an

Isolated Planar Superfluid”, Phys. Rev. Lett. 113, 165302 (2014).

[27] A. W. Baggaley and C. F. Barenghi, “Decay of homogeneous two-dimensional quantum

turbulence”, Phys. Rev. A 97, 033601 (2018).

[28] E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, and V. S. Bagnato, “Emer-

gence of Turbulence in an Oscillating Bose-Einstein Condensate”, Phys. Rev. Lett. 103,

045301 (2009).

[29] W. J. Kwon, G. Moon, J.-y. Choi, S. W. Seo, and Y.-i. Shin, “Relaxation of superfluid tur-

bulence in highly oblate Bose-Einstein condensates”, Phys. Rev. A 90, 063627 (2014).

[30] S. W. Seo, B. Ko, J. H. Kim, and Y. Shin, “Observation of vortex-antivortex pairing in

decaying 2D turbulence of a superfluid gas”, Sci Rep 7, 4587 (2017).

[31] N. Navon, C. Eigen, J. Zhang, R. Lopes, A. L. Gaunt, K. Fujimoto, M. Tsubota, R. P.

Smith, and Z. Hadzibabic, “Synthetic dissipation and cascade fluxes in a turbulent

quantum gas”, Science 366, 382–385 (2019).

[32] G. Gauthier, M. T. Reeves, X. Yu, A. S. Bradley, M. A. Baker, T. A. Bell, H. Rubinsztein-

Dunlop, M. J. Davis, and T. W. Neely, “Giant vortex clusters in a two-dimensional

quantum fluid”, Science 364, 1264–1267 (2019).

[33] S. P. Johnstone, A. J. Groszek, P. T. Starkey, C. J. Billington, T. P. Simula, and K. Helmer-

son, “Evolution of large-scale flow from turbulence in a two-dimensional superfluid”,

Science 364, 1267–1271 (2019).

[34] H. Salman and N. G. Berloff, “Condensation of classical nonlinear waves in a two-

component system”, Physica D: Nonlinear Phenomena 238, 1482–1489 (2009).

[35] C.-M. Schmied, T. Gasenzer, and P. B. Blakie, “Violation of single-length-scaling dy-

namics via spin vortices in an isolated spin-1 Bose gas”, Phys. Rev. A 100, 033603

(2019).

[36] M. Karl, B. Nowak, and T. Gasenzer, “Universal scaling at nonthermal fixed points of a

two-component Bose gas”, Phys. Rev. A 88, 063615 (2013).

[37] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann, C. M. Schmied, J. Berges, T.

Gasenzer, and M. K. Oberthaler, “Observation of universal dynamics in a spinor Bose

gas far from equilibrium”, Nature 563, 217–220 (2018).

https://doi.org/10.1103/PhysRevLett.112.145301
https://doi.org/10.1103/PhysRevLett.112.145301
https://doi.org/10.1103/PhysRevLett.113.165302
https://doi.org/10.1103/PhysRevA.97.033601
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevA.90.063627
https://doi.org/10.1038/s41598-017-04122-9
https://doi.org/10.1126/SCIENCE.AAU6103
https://doi.org/10.1126/SCIENCE.AAT5718
https://doi.org/10.1126/SCIENCE.AAT5793
https://doi.org/10.1016/j.physd.2009.01.003
https://doi.org/10.1103/PhysRevA.100.033603
https://doi.org/10.1103/PhysRevA.100.033603
https://doi.org/10.1103/PhysRevA.88.063615
https://doi.org/10.1038/s41586-018-0659-0


BIBLIOGRAPHY 141

[38] J. Hofmann, S. S. Natu, and S. Das Sarma, “Coarsening Dynamics of Binary Bose Con-

densates”, Phys. Rev. Lett. 113, 095702 (2014).

[39] S. Autti, V. V. Dmitriev, J. T. Mäkinen, A. A. Soldatov, G. E. Volovik, A. N. Yudin, V. V.

Zavjalov, and V. B. Eltsov, “Observation of Half-Quantum Vortices in Topological Su-

perfluid He 3”, Phys. Rev. Lett. 117, 255301 (2016).

[40] U. Leonhardt and G. E. Volovik, “How to create an Alice string (half-quantum vortex)

in a vector Bose-Einstein condensate”, Jetp Lett. 72, 46–48 (2000).

[41] S. W. Seo, S. Kang, W. J. Kwon, and Y.-i. Shin, “Half-Quantum Vortices in an Antiferro-

magnetic Spinor Bose-Einstein Condensate”, Phys. Rev. Lett. 115, 015301 (2015).

[42] M. Eto, K. Kasamatsu, M. Nitta, H. Takeuchi, and M. Tsubota, “Interaction of half-

quantized vortices in two-component Bose-Einstein condensates”, Phys. Rev. A 83,

063603 (2011).

[43] K. Kasamatsu, M. Eto, and M. Nitta, “Short-range intervortex interaction and inter-

acting dynamics of half-quantized vortices in two-component Bose-Einstein conden-

sates”, Phys. Rev. A 93, 013615 (2016).

[44] T. Isoshima, K. Machida, and T. Ohmi, “Quantum Vortex in a Spinor Bose-Einstein

Condensate”, J. Phys. Soc. Jpn. 70, 1604–1610 (2001).

[45] T. Mizushima, K. Machida, and T. Kita, “Axisymmetric versus nonaxisymmetric vor-

tices in spinor Bose-Einstein condensates”, Phys. Rev. A 66, 053610 (2002).

[46] T. Mizushima, K. Machida, and T. Kita, “Mermin-Ho Vortex in Ferromagnetic Spinor

Bose-Einstein Condensates”, Phys. Rev. Lett. 89, 030401 (2002).

[47] M. Takahashi, V. Pietilä, M. Möttönen, T. Mizushima, and K. Machida, “Vortex-splitting

and phase-separating instabilities of coreless vortices in F = 1 spinor Bose-Einstein

condensates”, Phys. Rev. A 79, 023618 (2009).

[48] J. Lovegrove, M. O. Borgh, and J. Ruostekoski, “Energetically stable singular vortex

cores in an atomic spin-1 Bose-Einstein condensate”, Phys. Rev. A 86, 013613 (2012).

[49] J. Lovegrove, M. O. Borgh, and J. Ruostekoski, “Energetic Stability of Coreless Vortices

in Spin-1 Bose-Einstein Condensates with Conserved Magnetization”, Phys. Rev. Lett.

112, 075301 (2014).

[50] J. Lovegrove, M. O. Borgh, and J. Ruostekoski, “Stability and internal structure of vor-

tices in spin-1 Bose-Einstein condensates with conserved magnetization”, Phys. Rev.

A 93, 033633 (2016).

https://doi.org/10.1103/PhysRevLett.113.095702
https://doi.org/10.1103/PhysRevLett.117.255301
https://doi.org/10.1134/1.1312008
https://doi.org/10.1103/PhysRevLett.115.015301
https://doi.org/10.1103/PhysRevA.83.063603
https://doi.org/10.1103/PhysRevA.83.063603
https://doi.org/10.1103/PhysRevA.93.013615
https://doi.org/10.1143/JPSJ.70.1604
https://doi.org/10.1103/PhysRevA.66.053610
https://doi.org/10.1103/PhysRevLett.89.030401
https://doi.org/10.1103/PhysRevA.79.023618
https://doi.org/10.1103/PhysRevA.86.013613
https://doi.org/10.1103/PhysRevLett.112.075301
https://doi.org/10.1103/PhysRevLett.112.075301
https://doi.org/10.1103/PhysRevA.93.033633
https://doi.org/10.1103/PhysRevA.93.033633


BIBLIOGRAPHY 142

[51] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, “Coreless Vortex

Formation in a Spinor Bose-Einstein Condensate”, Phys. Rev. Lett. 90, 140403 (2003).

[52] A. E. Leanhardt, A. Görlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, and W.

Ketterle, “Imprinting Vortices in a Bose-Einstein Condensate using Topological Phases”,

Phys. Rev. Lett. 89, 190403 (2002).

[53] Y. Shin, M. Saba, M. Vengalattore, T. A. Pasquini, C. Sanner, A. E. Leanhardt, M. Pren-

tiss, D. E. Pritchard, and W. Ketterle, “Dynamical Instability of a Doubly Quantized

Vortex in a Bose-Einstein Condensate”, Phys. Rev. Lett. 93, 160406 (2004).

[54] Y. Xiao, M. O. Borgh, A. Blinova, T. Ollikainen, J. Ruostekoski, and D. S. Hall, “Topolog-

ical superfluid defects with discrete point group symmetries”, Nat Commun 13, 4635

(2022).

[55] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. A.

Smith, E. Demler, and J. Schmiedmayer, “Relaxation and Prethermalization in an Iso-

lated Quantum System”, Science 337, 1318–1322 (2012).

[56] M. T. Reeves, K. Goddard-Lee, G. Gauthier, O. R. Stockdale, H. Salman, T. Edmonds,

X. Yu, A. S. Bradley, M. Baker, H. Rubinsztein-Dunlop, M. J. Davis, and T. W. Neely,

“Turbulent Relaxation to Equilibrium in a Two-Dimensional Quantum Vortex Gas”,

Phys. Rev. X 12, 011031 (2022).

[57] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, “Spon-

taneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein con-

densate”, Nature 443, 312–315 (2006).

[58] R. Barnett, A. Polkovnikov, and M. Vengalattore, “Prethermalization in quenched spinor

condensates”, Phys. Rev. A 84, 023606 (2011).

[59] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, “Critical dynamics of sponta-

neous symmetry breaking in a homogeneous Bose gas”, Science 347, 167–170 (2015).

[60] L. M. Symes and P. B. Blakie, “Nematic ordering dynamics of an antiferromagnetic

spin-1 condensate”, Phys. Rev. A 96, 013602 (2017).

[61] S. Kang, S. W. Seo, J. H. Kim, and Y. Shin, “Emergence and scaling of spin turbulence

in quenched antiferromagnetic spinor Bose-Einstein condensates”, Phys. Rev. A 95,

053638 (2017).

[62] I.-K. Liu, J. Dziarmaga, S.-C. Gou, F. Dalfovo, and N. P. Proukakis, “Kibble-Zurek dy-

namics in a trapped ultracold Bose gas”, Phys. Rev. Research 2, 033183 (2020).

https://doi.org/10.1103/PhysRevLett.90.140403
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1103/PhysRevLett.93.160406
https://doi.org/10.1038/s41467-022-32362-5
https://doi.org/10.1038/s41467-022-32362-5
https://doi.org/10.1126/science.1224953
https://doi.org/10.1103/PhysRevX.12.011031
https://doi.org/10.1038/nature05094
https://doi.org/10.1103/PhysRevA.84.023606
https://doi.org/10.1126/science.1258676
https://doi.org/10.1103/PhysRevA.96.013602
https://doi.org/10.1103/PhysRevA.95.053638
https://doi.org/10.1103/PhysRevA.95.053638
https://doi.org/10.1103/PhysRevResearch.2.033183


BIBLIOGRAPHY 143

[63] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, May

2011).

[64] A. Del Campo and W. H. Zurek, “Universality of phase transition dynamics: Topologi-

cal defects from symmetry breaking”, Int. J. Mod. Phys. A 29, 1430018 (2014).

[65] B. Damski and W. H. Zurek, “Adiabatic-impulse approximation for avoided level cross-

ings: From phase-transition dynamics to Landau-Zener evolutions and back again”,

Phys. Rev. A 73, 063405 (2006).

[66] B. Damski and W. H. Zurek, “Dynamics of a Quantum Phase Transition in a Ferromag-

netic Bose-Einstein Condensate”, Phys. Rev. Lett. 99, 130402 (2007).

[67] A. Lamacraft, “Quantum Quenches in a Spinor Condensate”, Phys. Rev. Lett. 98, 160404

(2007).

[68] H. Saito, Y. Kawaguchi, and M. Ueda, “Kibble-Zurek mechanism in a quenched ferro-

magnetic Bose-Einstein condensate”, Phys. Rev. A 76, 043613 (2007).

[69] H. Saito, Y. Kawaguchi, and M. Ueda, “Topological defect formation in a quenched

ferromagnetic Bose-Einstein condensates”, Phys. Rev. A 75, 013621 (2007).

[70] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-Kurn, “Spontaneously

Modulated Spin Textures in a Dipolar Spinor Bose-Einstein Condensate”, Phys. Rev.

Lett. 100, 170403 (2008).
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