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Abstract

Coastal monitoring is a complex mapping problem for environments that exhibit distinct

physical variations through the energy expended from water and sediment movement. In

recent years, sensor platforms that capture imagery from these environments have reached

centimeter level pixel resolution, which allowed object-based image processing methods

to become a standard mapping tool. However, this tool still adheres to shallow machine

learning methods, whereby the construction of a learning system is broken into two steps:

feature extraction and machine learning model optimisation.

In the last decade, deep learning and convolutional neural networks have established state-

of-the-art performance on a myriad of computer vision applications. However, deep learning

models perform best with large, labelled, training datasets. For coastal monitoring, ground-

truth observations can be acquired either in-situ or through post-processed imagery, but

both avenues require manual process in producing the ground-truth annotations. In turn,

this requires laborious and expensive efforts with domain expertise of coastal processes,

posing a bottleneck and challenge for accurate coastal monitoring.

In this thesis, practical applications of coastal monitoring using deep learning and convolu-

tional neural networks are discussed. These methods attempt to improve the performance

and generalisation of convolutional neural networks with limited amounts of labelled data,

which could ease costs of producing ground-truth annotations. A number of approaches

are described that reduce the effort required to produce them, or analyse the feasibility of

non-domain expert labels.
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1 Introduction

Presently around 40% of the Earth’s population live within 100 kilometers of the coast but

far more benefit from resources and ecosystem services derived from coastal environments.

As population density and economic activity grow, coastal environments will be subject

to increasing pressure to meet human needs [Seas and Plans, 2011; Millennium ecosystem

assessment, 2005]. Burke et al. [2001] describe coastal environments as either near-shore,

intertidal, benthic and pelagic, with these habitats often coexisting to represent dynamic

systems that directly or indirectly provide a vast range of ecosystem services for humans.

Some of these services include: sequestering carbon [Fourqurean et al., 2012], cycling nutri-

ents and elements [Nixon, 1981] and providing nurseries and fishing grounds for commercial

fisheries [Sheaves et al., 2015]. Table 1.1 lists different coastal zones along with the common

marine communities within them.

From these ecosystems, the intertidal coastal zone comprises some of the world’s most pro-

ductive and ecologically significant ecosystems. These environments represent physically

varying environments through the energy expended with water and sediment movement

[Alongi, 2020]. In these environments, intertidal seagrass and algae play an important

role due to their contribution to tidal and energy management from currents and waves

[Bouma et al., 2005], sediment quality and stability [Koch, 1999; Fonseca et al., 1983], with

Near-shore Dunes, cliffs, rocky and sandy shores,
urban, industrial and agricultural landscapes

Intertidal Estuaries, deltas, lagoons, mangrove forests,
mudflats, salt marshes, salt pans and
aquaculture beds

Benthic Kelp forests, seagrass beds and coral reefs

Pelagic Open waters and freestanding fish farms:

Table 1.1: Various types of coastal environments with associating communities.
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studies indicating sediment erosion following seagrass loss [Ramage and Schiel, 1999]. Fur-

thermore, intertidal seagrass meadows contribute to the development of coastal ecosystem

health by providing safe and rich fish nurseries [Whitfield and Pattrick, 2015]. The cyclical

and delicate balance of nutrients, trophic pathways and ecological energetics that maintain

ecosystem health are subtle and complex, with much of the temporal and spatial varia-

tion in intertidal marine organism stocks explained by intrinsic factors, such as genetics

and reproductive strategies [Alongi, 2020]. Climate change poses an extrinsic challenge for

intertidal ecosystems as changing atmospheric and ocean temperatures, sea levels, ocean

chemistry and weather patterns disturb the delicate nutrient cycle and cause intertidal sea-

grass extents to regress [Waycott et al., 2011; Mieszkowska et al., 2013]. The impacts result

in increased sediment erosion [Amos et al., 2004; Adriano et al., 2005] that in turn degrade

coastal ecosystem health and reduce estuarine fish stocks due to underlying impacts to the

nurturing grounds for fish nurseries [Moussa et al., 2020]. The evidence for extrinsic hu-

man pressure affecting global marine communities in intertidal coastal zones has been well

documented over the last six decades. These include: excessive coastal development and

sediment deposits, overfishing, mechanical damage by boats and fishing gear, logging and

impacts from invasive species [Duarte et al., 2008; Adam, 2002; Duarte, 2002; Bellwood

et al., 2004; Lotze et al., 2006]. Furthermore, sea-level rise consequent of climate change

has long-term consequences for coastal ecosystems such as wetlands and coral reefs [Morris

et al., 2002].

Open shore environments also represent a dynamic and variable environment in coastal

zones [Alongi, 2020]. In particular, shoreline change analysis is a common monitoring

application for evaluating health dynamics and vulnerability of communities and habitats

to erosion hazards [Dewi et al., 2016]. However, extrinsic human pressure and climate

change allow for erosion hazards, such as sea level rise and increased storminess [Dolan

et al., 1991; Pendleton, 2010]. Furthermore, shorelines provide various vital regional and

local services, including tourism, recreation, fisheries, trade, and aesthetic and cultural value

[Astsatryan et al., 2022]
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These pressing concerns to marine coastal ecology emphasise the need to create and act

on strategies that maintain a sustainable balance of coastal ecosystem health, while also

effectively managing the use of resources that are derived from these ecosystems [McCarthy

et al., 2017; Pereira et al., 2010]. Coastal marine ecology requires the investigation of or-

ganisms and their environmental setting which can be provided with spatially explicit data,

given the basic need for knowledge about the location and distribution of species [Aplin,

2005]. Consequently, aerial imagery through remote sensing has become a common data

acquisition approach for ecological investigations providing ecologists with tools to monitor

biophysical properties and controlling processes at high spatial and temporal resolutions,

while also integrating in-situ and field techniques for mapping methodologies [Kerr and

Ostrovsky, 2003; Klemas, 2009].

1.1 Coastal remote sensing

Richards and Richards [1999] define remote sensing as the process of measuring reflected

energy from the Earth’s surface using a sensor mounted on an aircraft platform. The

generated image data from these sensors provide a platform for ecologists to assess and

monitor sites on a wide variety of applications [Gens, 2010]. But also pose a challenge

from an image processing perspective due to high-volumes of generated data [Chi et al.,

2016].

Traditionally, satellite remote sensing is an excellent tool for monitoring coastal waters.

The periodic sample period allows routine collection of a variety of observations over large

and often inaccessible expanses of the coast and adjacent waters [Miller et al., 2005, Ch. 1,

p. 21] [McCarthy et al., 2017].

However, due to different satellite sensors, imagery is captured at various temporal, spatial

and spectral scales. Therefore, in order to efficiently use satellite imagery the user must con-

sider three key parameters: spatial resolution, Field of View (FoV) and sampling frequency

[Pease, 1991]. For coastal monitoring, spatial resolution is the key parameter of consider-
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ation because of its obvious and apparent effects on imagery. If the spatial resolution is

low (approx. 10m), then objects of interest will exhibit coarse texture. Contrarily, if the

spatial resolution is high (approx. 10cm), then objects of interest may exhibit fine-grained

texture. The choice of sensor should take into account the objective needs of the coastal

monitoring application and the trade-off between high resolution imagery and generated

data volume.

Fixed-wing Remotely Piloted Aircraft (RPA) along with commercially available cameras

are a prominent avenue for coastal remote sensing as the altitude during data capture

is low enough to produce high-resolution imagery. Adding to this, collecting overlapping

Very-high resolution (VHR) images allows for Structure from Motion (SfM) techniques to

be leveraged in order to create high-resolution orthomosaics that span past the FoV of a

single image whilst maintaining high-resolution (commonly 0.1 - 2m per pixel) [Duffy et al.,

2018; Turner et al., 2012]. Latest advancements in remotely sensed data acquisition make

use of rotor-based drones for stable capture of optical imagery. The ability to pilot drones

at lower altitudes is the driving factor for increased spatial resolution (usually less than

0.1m) [Bansod et al., 2017; Tang and Shao, 2015; Gray et al., 2018]. Miniaturization and

integration of multispectral cameras into rotor-based drones also increase spectral resolution

and prevent common problems in multispectral data acquisition such as registration and

subsequent fusion [Wang et al., 2018; Ghassemian, 2016]. However, image registration is

still a challenge in remotely sensed imagery, if images are captured at different sample times

and illuminant [Zitova and Flusser, 2003].

1.2 Deep learning for remote sensing

Generally, the main goal for coastal monitoring is to accurately map various species and

organisms within a coastal environment in order to capture the current health and intrinsic,

or extrinsic, dynamics that contribute to the coastal ecosystem [Klemas, 2015]. The use of

aerial imagery to depict spatial data is used to create a habitat map by segmenting images
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into sets of meaningful classes such that the spatial distribution of ecological features can be

assessed [Foody, 2002]. The need for rapid, cost-effective methods that capture the highly

varying nature of intertidal and open-shore environments not only necessitates the use of

remote sensing but also accurate mapping methodology [Hardisky et al., 1986; Cracknell,

1999].

Object Based Image Analysis (OBIA) [Blaschke, 2010] has been the main approach for su-

pervised and unsupervised habitat mapping of coastal environments [Sreekesh et al., 2020;

Ventura et al., 2018; Dronova, 2015; Heumann, 2011b]. The latter method is defined in two-

stages: first, an initial unsupervised segmentation clusters pixels into image-objects which

provides the grounds for extracting textural, spatial and spectral features [Su et al., 2008;

Flanders et al., 2003]. Then, in a supervised learning setting, in-situ data are transcribed

and superimposed on generated image-objects in order to learn the underlying relationship

between known outcomes (in-situ records) and extracted features [Husson et al., 2016; Ra-

suly et al., 2010; Duffy et al., 2018; Innangi et al., 2019; Janowski et al., 2020] using conven-

tional machine learning models such as: Decision Trees [Quinlan, 1990], Random Forests

[Breiman, 2001], Naive Bayes [Rish et al., 2001] and Support Vector Machines (SVMs)

[Boser et al., 1992]. The stated method for semantic segmentation fits under conventional

supervised machine learning techniques, where the construction of a learning system can be

broken down into two components: feature extraction and model tuning.

The issues for the current approach are two-fold:

1. Feature extraction is known as the process of transforming raw natural data into

suitable internal representations of descriptive features that require careful engineering

and considerable domain expertise. Therefore, ecologists in coastal monitoring are

required to understand the underlying methodology of OBIA and correlate the image-

object outputs with spatial features found in aerial imagery.
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2. Recently deep learning has shown to be a robust alternative to conventional machine

learning techniques and also produce state-of-the-art performance on various computer

vision applications, including semantic segmentation Long et al. [2015].

Therefore, in parallel to the advancements in remote sensing and data acquisition, the field

of Computer Vision (CV) has also improved in the last decade with Deep Learning (DL) and

the introduction of Convolutional Neural Networks (CNNs) [Krizhevsky et al., 2012].

Deep learning methods are a form of representation learning that use raw natural data as

an input to extract multiple levels of representation obtained by composing hierarchical

non-linear modules in an end-to-end fashion [Bengio et al., 2013]. The impetus to each

non-linear module is two-fold:

1. A discrete convolution filters the image. This operation has a plethora of applications

in image processing but the desirable property of filtering images with respect to

weights in a convolutional kernel [Goodfellow et al., 2016, Chapter 9.1].

2. A pooling operation semantically merges local patches in an image to a single pixel

which reduces the spatial dimensions of internal representations and introduces trans-

lation invariance [Goodfellow et al., 2016, Chapter 9.2].

Each convolution kernel in a non-linear module is connected to subsequent modules through

a shared weight mechanism [Bengio et al., 2013]. Therefore, each non-linear module layer

filters the input image with respect convolutional weights and pools filtered images in order

to create hierarchical representations, also known as feature maps. These operations exploit

the hierarchical description of natural signals where higher-level features are composed of

lower-level features. For instance in an image, local combinations of edges form motifs,

motifs assemble into parts, and parts form objects [Zeiler and Fergus, 2014]. The network

topology of CNNs can also be adapted for a wide variety of CV applications, such as image

classification [Krizhevsky et al., 2012], semantic segmentation [Long et al., 2015], object

detection [He et al., 2017].
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Irrespective of network topology and intended application, the optimisation of CNNs in a

supervised setting is based on an objective error metric computed between CNN outcomes

and known outcomes, equation 1.2.

f(x) = fM (...(f2(f1(x))) (1.1)

E = L(y, f(x)) (1.2)

Where, x is the input image, f1 is the first non-linear layer, f2 is the second layer, and

so on until the last layer M . E is the computed error between known outcomes y and

CNN outcomes f(x) using an objective error metric L. The choice of L is fundamental in

order to achieve state-of-the-art CNN performance as the error derivative of E is used to

optimise the weights of convolutional kernels in the network. Since each layer is connected

through a shared weight mechanism, the initial error derivative between y and f(x) can

be propagated from the output layer to the initial layer using the chain rule of derivatives

[Rojas, 1996; LeCun et al., 2015a]. Then, each weight is adjusted using a gradient-descent

solver, e.g. SGD [Sutskever et al., 2013], Adam [Kingma and Ba, 2014]. The ability of CNNs

to learn hierarchical abstract representations of input imagery in a self-learning fashion using

gradient descent in effect combines feature learning and supervised classifier training in one

optimisation [LeCun et al., 2015a].

The known outcomes y in equation 1.2 are also referred to as labels. Labels are a pivotal

concern in many real-world scenarios as CNNs are optimised based on an objective error

metric between model outcomes and labels. For coastal environments, labels can be obtained

through in-situ surveys which involves high logistic efforts, potential inaccuracies due to geo-

location errors as well as sampling and observation bias [Congalton, 1991; Leitão et al., 2018],

or through visual identification and delineation of polygons directly from orthomosaics

[Kattenborn et al., 2019b; Wagner et al., 2019; Lopatin et al., 2019]. And so, the quality

of labelled records in an image dataset is just as important as the choice of error metric

[Zlateski et al., 2018; Alonso, 2015].
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In spite of CNNs’ success, these models perform best with large labelled training datasets

[Tarvainen and Valpola, 2017] that are often unavailable in coastal monitoring. Semi-

supervised deep learning are a branch of methods that attempt to achieve state-of-the-art

performance with a few labelled training examples in tandem with a significant amount of

unlabeled samples. In such a setting, semi-supervised methods are more applicable to real-

world applications where the unlabeled data are readily available and easy to acquire, while

labeled instances are often hard, expensive, and time-consuming to collect [Ouali et al.,

2020] such as the case in coastal monitoring.

Overall, with improvements to remote sensing data acquisition and the introduction of

CNNs, an opportunity surfaces to leverage the parallel improvements in both fields with

application for accurate and efficient mapping of coastal marine features. Deep learning

methods have been applied successfully to remotely sensed imagery in a variety of applica-

tions [Bowler et al., 2020; Xu et al., 2018; Hamdi et al., 2019; Li et al., 2017]. However, the

general contributions of the thesis focus on the application of semi-supervised deep learning

for coastal marine features with small labelled datasets in an attempt to bridge the gap be-

tween laborious labelling tasks, e.g., in-situ surveys and photo-interpretation, and efficient

thematic habitat mapping. The following aims are listed:

The first aim and contribution was to develop a consistency-based regularisation loss func-

tion to aid the optimisation of fully convolutional neural networks in the presence of unla-

belled training samples in the image dataset. This work was inspired by the use of mean-

teacher networks and dual loss functions that achieve state-of-the-art performance with

a subset of labelled samples for image classification and semantic segmentation datasets

[Tarvainen and Valpola, 2017; French et al., 2020a].

As mentioned, labels for coastal monitoring can be acquired either through in-situ surveys,

or through visual identification and delineation of polygons directly from orthomosaics

[Kattenborn et al., 2019b; Wagner et al., 2019; Lopatin et al., 2019]. The second aim

was to investigate the feasibility of crowdsourcing labels directly from very high resolution
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orthomosaics, and compare the performance of fully convolutional neural networks trained

with image samples that use crowdsourced labels versus labels derived from the in-situ

survey. This aims to reduce laborious labelling efforts by a single domain expert and

to investigate the feasibility of supplementing image datasets with crowdsourced labels in

coastal monitoring applications.

The third and last aim was to develop a novel semi-supervised approach using fully convo-

lutional neural networks that leverages multi-task learning. Multi-task deep learning aims

to enhance the performance of a main image task by leveraging internal representation

from auxiliary image tasks [Ruder, 2017]. In this scenario, the main image task is seman-

tic segmentation given the objective in coastal mapping is to identify and accurately map

multiple species in a particular coastal environment. The auxiliary image task is unsuper-

vised spectral reconstruction which also provides another semi-supervised approach since

the optimisation of fully convolutional neural networks is also performed with a significant

amount of unlabeled image samples.

1.3 Thesis outline

During the research period I collaborated with the Centre for Environmental Fisheries

and Aquaculture Sciences (Cefas) and the Environmental Agency (EA) whom provided

two datasets with VHR imagery and in-situ records for developing supervised and semi-

supervised deep learning models. Given each dataset represent different mapping objectives,

the following chapters examine each study site individually. The following subsection lists

the thesis structure as contributions to literature.

Chapter 2 reviews relevant literature regarding data acquisition in remote sensing and

methods for habitat mapping in a variety of environments. The reviewed methods cover

both pixel-based and object-based methods, both of which are heavily used for coastal

habitat mapping. The literature review also introduces various CNN architectures for image
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classification and semantic segmentation, and the final subsections cover semi-supervised

deep learning methods for datasets with limited amounts of labelled data.

Chapter 3 shows the first contribution to research using consistency based dual loss with a

mean-teacher framework to train Fully Convolutional Neural Networks (FCNs) on multiple

marine species [Hobley et al., 2021a], section 3.3. The first dataset was an intertidal estuary

located in Budle Bay, Northumberland, England (55.625◦N, 1.745◦W), captured using two

miniaturized sensors with complementing properties. The intent with this dataset was to

map species of intertidal seagrass among other vegetation species and unvegetated sediment.

First, a description of the study site shows captured imagery and describes the target class

domain for the mapping objective. The discussion includes mapping results and conclusions

by providing a comparison with the object-based method known as OBIA and supervised

and semi-supervised FCNs trained for semantic segmentation. Previous attempts to semi-

supervised seagrass mapping perform image classification using methods such as domain

adaption and consistency based regularisation with mean-teacher [Islam et al., 2020; Noman

et al., 2021].

The second contribution in Chapter 3 focuses on analysing the feasibility of incorporating

crowdsourced labels with an inter-observer variability experiment. Participants were invited

to label a set of points spread across imagery of Budle Bay. The experiment population

included experts in geomorphology and marine ecology as well as other fields in computing

science and chemistry. The goal was to determine whether given crowdsourced annotations

can supplement or even replace in-situ or single expert photo-interpreted polygons from

aerial imagery in an effort to reduce logistical costs, Section 3.4.

The last contribution for the Budle Bay dataset (shown in the Appendix A) uses the linear

Monge-Kantorovich Transform (MK-T) for accurate image registration using multiple cam-

eras with different properties. Aerial surveys of Budle Bay were performed with two com-

plementing cameras. One camera had high spatial resolution and low spectral resolution,

while the other had low spatial but high spectral resolution. Common image registration
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methods for remote sensing, e.g., SIFT + RANSAC for homography estimation, can be

improved by applying the MK-Transform before image-registration in order to reduce the

covariance shift between colour distributions in pairs of images to be registered [Hobley

et al., 2021b].

Chapter 4 shows the final contribution in the thesis using a semi-supervised approach with

Multi-task learning (MTL). The second dataset was an open-shore beach in Sizewell, Suffolk,

England (55.2◦N, 1.633◦W). The target species to map were substantially different to Budle

Bay and belong to strandline, supra-tidal and sand-dune communities. In Britain, the

plant communities from natural, semi-natural and common artificial habitats are classified

into distinct categories known as National Vegetation Classes (NVCs) [Rodwell and nature

conservation committee , GB]. For Sizewell, the in-situ survey recorded samples for SD1,

SD2, SD6 and SD7 NVCs that represent a rare and declining habitat worldwide that is

found around the UK coastline [Randall, 2004]. Classifying these particular NVCs poses a

challenge due to the variable and short-lived nature of these species. Shingle foreshores are

unvegetated or sparsely vegetated, and the specialist plants belonging to these NVCs adapt

to survive in harsh coastal conditions [Fuller and Randall, 1988; Scott, 1963; Fuller, 1987].

In turn, accurate mapping of coastal vegetated shingle can provide an indicator for coastal

erosion and shoreline analysis.

The in-situ survey also presented an opportunity to incorporate hyperspectral measurements

into the optimisation of deep learning models and allowed for the evaluation of deep hyper-

spectral reconstruction methods. A high-resolution spectroradiometer measured intrinsic

reflectance properties of various species in the stated NVCs between 350-2500nms.

First, two methods for hyperspectral reconstruction were evaluated on the ICVL dataset

in Section 4.3. These methods include a shallow method described in [Arad and Ben-

Shahar, 2016] and deep learning models adapted for hyperspectral reconstruction [Shi et al.,

2018]. The deep learning models developed for the ICVL dataset were applied to imagery of

Sizewell in Section 4.4. Finally, Section 4.5 shows an MTL framework with a shared model
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to learn semantic segmentation and hyperspectral reconstruction. The discussion of results

compares fully convolutional neural networks trained in supervised and semi-supervised

settings as shown in Section 3.3 with fully convolutional neural networks trained in a MTL

framework, as well as a further comparison with OBIA.

Chapter 5 presents the final conclusions of the thesis and discusses future work.

1.4 Publications

This thesis covers three publications.

Semi-Supervised segmentation for coastal monitoring seagrass using RPA im-

agery - This work uses consistency-based regularisation with a teacher-student network

topology to map multiple species of seagrass and algae among sediment. Published as

“Semi-supervised segmentation for coastal monitoring seagrass using RPA imagery” Hob-

ley, Brandon and Arosio, Riccardo and French, Geoffrey and Bremner, Julie and Dolphin,

Tony and Mackiewicz, Michal. Remote Sensing, 13(9), 1741 [Hobley et al., 2021a].

Improving image registration using colour transfer methods in remote sensing

applications - Leverages the properties of each camera used to survey Budle Bay and ap-

plies the MK-Transform to transfer the colour statistics of high spectral resolution images

onto high spatial resolution images in an effort to improve the subsequent image registration

process. Published as “Improving image registration using colour transfer methods in re-

mote sensing applications” by Hobley, Brandon and Finlayson, G. D. and Arosio, Riccardo

and Bremner, Julie and Dolphin, Tony and Mackiewicz, Michal. In The Congress of the

International Color Association (No. 14, pp. 299-304) [Hobley et al., 2021b].

Crowdsourcing experiment and deep learning techniques for coastal remote

sensing of seagrass and macro-algae - Explores the feasibility of crowdsourced labels for

mapping multiple species of seagrass and algae at Budle Bay. An inter-observer experiment

is conducted with multiple participants grouped into different levels of expertise. Then, the
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discussion compares FCNs trained with crowdsourced labels versus FCNs trained solely with

transcribed in-situ labels. Published as “Crowdsourcing experiment and fully convolutional

neural networks for coastal remote sensing of seagrass and macro-algae” Hobley, Brandon

and Bremner, Julie and Dolphin, Tony and Arosio, Riccardo and Mackiewicz, Michal. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Hobley et al.,

2023].
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2 Literature Review

The following sections review relevant literature in coastal remote sensing and deep learning

methods. As such, the review is split into two main sections: first, different sensor plat-

forms in remote sensing are compared in order to contrast different spatial and temporal

resolutions for data acquisition. Then, two main methodologies for coastal mapping are

reviewed that also contrast increasing spatial resolution in data acquisition. The second

part introduces deep learning principles and various state-of-the-art network architectures

for image classification and semantic segmentation. Then, methods for training networks

with limited amounts of labelled data in an image dataset are reviewed. Finally, Sections

2.4 and 2.5 review methods for hyperspectral reconstruction and multi-task learning.

2.1 Sensor platforms

As mentioned in Section 1.1, coastal remote sensing platforms allow ecologists to assess

the intrinsic, or extrinsic, factors of a coastal ecosystem by processing spatially explicit

aerial imagery across multiple temporal perspectives [Anderson and Gaston, 2013]. A vari-

ety of coastal monitoring applications require broad captures of spatial extents to efficiently

observe large areas of interest [Klemas, 2015]. Therefore, remotely sensed imagery and map-

ping techniques address application needs such as identifying and detailing the biophysical

characteristics of species habitats, predicting the distribution of species and spatial variabil-

ity, and detecting natural or human-caused changes at various scales [Kerr and Ostrovsky,

2003].

Sensor platforms for coastal mapping are available in a myriad of complementing properties

regarding spatial, spectral and temporal scales. To distinguish spectral resolutions the cen-
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ter wavelengths corresponding to each filter in a camera are registered on an electromagnetic

spectrum. Standard Red Green and Blue (RGB) imagery captured from commercial wide-

band cameras filter reflect light at wavelengths ranging from 400-700nm but for remote

sensing platforms, and also in particular for coastal remote sensing, narrow-band multi-

spectral cameras are used to filter reflected light at wavelengths ranging from 400-1200nm

[Khorram et al., 2012]. A further extension is the use of hyperspectral sensor that comprise

of large number of narrow-band filters relative to multispectral cameras and cover a higher

range of wavelengths, commonly between 400-2500nm. These sensor platforms are expen-

sive and produce a hyperspectral data cube for further Geographic Information System

(GIS) processing. The distinction between standard wide-band RGB, narrow-band multi-

spectral and narrow-band hyperspectral is key for remote sensing monitoring applications

as the resulting data volume and or available imagery will directly impact the mapping

outcome [Ramanath et al., 2005].

2.1.1 Satellite imagery

The use of imagery obtained from satellite instruments provide regional to global scale

observations at repeated sampling intervals and are appropriate for continued monitoring

of large geographic areas [Gould, 2000]. Furthermore, satellite data are in digital format and

can be integrated with GIS that are useful for processing imagery and deriving habitat maps

[Dahdouh-Guebas, 2002]. Given orbit cycles of satellites, this branch of sensor platforms

are also useful for change detection studies on large geographical areas [Willis, 2015; Asokan

and Anitha, 2019].

Current sensor platforms for satellite imagery include: Landsat 8-9 and Sentinel-2. The

Landsat program is a NASA driven project that is the longest running project for satellite

imagery acquisition of the Earth’s surface. The seminal satellite known as Landsat-1 was

launched in July 23rd, 1972 with a repeat coverage of 18 days, a spectral range of 0.5-1.1 µm

and a spatial resolution of 60m per pixel. The latest launch was Landsat-8, which launched

in February 11th, 2013 with a repeat coverage period of 16 days, a spectral range of 0.43-1.38
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µm and a spatial resolution that varies between 15m for panchromatic image channels, 30m

for multispectral channels and 100m for thermal imaging channels [Acharya and Yang, 2015].

The Sentinel-2 is another Earth observation mission lead by the Coppernicus Program that

acquires optical imagery at high spatial resolution over land and coastal waters. The current

revisit period for Sentinel-2A is ten days with a multispectral resolution that covers 0.44-2.2

µm wavelengths and a spatial resolution that varies between 10m for RGB and Near-infrared

bands, 20m for multispectral tailored for vegetation mapping and 60m for aerosol and water

vapour detection bands.

These image sources and associated projects are free and open-source and have been exten-

sively used for a variety of coastal monitoring activities. The following studies show the use

of satellite sensors for various coastal mapping applications and change detection.

Chopra et al. [2001] mapped the coastal wetland ecosystems of Harike in Punjab, India

where large areas of land use surrounding a coastal wetland were classified into the following

categories: built-up land, agricultural land, forest, wasteland and wetland. The scale of

captured images was 1:50000 which was complementary for the mapping objective as the

features mapped cover large geographical areas.

Fuller et al. [1998] used Landsat-TM imagery with 30m spatial resolution and integrates in-

situ information to map the Sango Bay that comprises of swamps, grasslands, cultivated land

and forests, bordering the shore of Lake Victoria in Uganda. The imagery was processed

and classified into 14 land-cover classes that cover a total area of 2250km2. The scale of

features in tandem with low resolution imagery from the Landsat-TM used a maximum

likelihood classifier for coarse pixel classification.

Doren et al. [1999] also used Landsat-TM imagery to map the Florida Everglades in the USA

that comprises of freshwater marshes and coastal mangrove estuaries that support a rich

diversity of plants and animals. The imagery was classified into broad land cover classes.

However, the mapping results have salt-and-pepper appearance which presents a confusing

map compared to the manual mapping efforts described in Doren et al. [1999].
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Ramsey III and Laine [1997] used Landsat-TM imagery with 30m spatial resolution to map

the Louisiana marsh in the USA over a period of 3 years to examine loss of land. The change

detection study examines a binary classification problem defined as wetland loss and gain.

However, Ramsey III and Laine [1997] states that even with a simple binomial classification

scheme, complex marsh systems exhibiting extremely convoluted and heterogeneous land-

scapes cause problems in the classification process. These scenarios are a product of the low

spatial resolution provided by the Landsat-TM that hamper the generation of a binomial

land and water mask.

Macleod and Congalton [1998] also used two image captures from the Landsat-TM to mon-

itor eelgrass change detection in Great Bay estuary of New Hampshire. Eelgrass is subtidal

plant specie that live on very low shores and present long and thin leaves, however the

study site was a large geographical area with 20.7 km2 which was suitable for the low reso-

lution imagery provided by the Landsat-TM. The orbital cycle of the Landsat-TM was also

suitable for the change detection study in order to analyse the net gain or loss of eelgrass

extents.

Hossain et al. [2015] used Landsat-5, Landsat-7 and Landsat-8 with a spatial resolution of

30m to photograph aerial extents of multi-species seagrass meadows on the shores of Lawas,

Pengkalan and Paka in Malaysia. Respectively, the study areas cover large geographical

areas of 185 km2, 100 km2 and 20 km2 that was suitable for the low resolution imagery

provided by the satellite sensors. The objective was to analyse the spatial distribution

change of subtidal and intertidal seagrass meadows that in turn was suitable given the

orbital cycles of the sensor platform. The seagrass meadows vary in size from 120m to km

in length and 50m to 120m in width which again was suitable for the spatial resolution

provided by the satellite sensors.

Ha et al. [2021] used Landsat-4 TM, Landsat-5 TM, Landsat-7 ETM+ and Landsat-8 OLI

to with a spatial resolution of 30m to map the change of intertidal seagrass over a three

decades of the Tauranga harbour in New Zealand. The study site is a large intertidal coastal
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environment (201km2) with widely distributed but patchy seagrass cover and the availability

of historic ground-truth information. Images were acquired in 1990, 2001, 2011, 2014, and

2019 at low-tide to maximise the visibility of intertidal seagrass. The binary classification

models were used to calculate net gain a loss masks over the mentioned sample years.

The mentioned studies cover large geographical areas which are suitable for the imagery

collected with Landsat and Sentinel satellites. The meter resolution from these sensor

platforms can allow for large land-cover classes to be mapped, or allow for large geographical

areas to be surveyed. The orbital cycles of these sensor platforms are also pivotal for

change detection studies but struggle with complex and convoluted landscapes as product

of provided low spatial resolution [Ramsey III and Laine, 1997]. Therefore, large land cover

classes are suitable but mapping objectives with multiple individual species may struggle

due to spatial resolution relative to the size of the feature to be mapped [Fuller et al., 1998;

Ramsey III and Laine, 1997; Doren et al., 1999].

2.1.2 Commercial satellite imagery

Another avenue for remotely sensed imagery acquisition is to purchase imagery from mul-

tispectral or hyperspectral sensors on board satellite platforms. Commercial satellites pro-

vide higher spatial resolution relative to open-source imagery provided by platforms such

as Landsat and Sentinel and are often part of constellation satellites that communicate

together as a system that provide finer temporal resolution [Patino and Duque, 2013]. The

higher spatial resolution relative to open-source platforms is because these image sources

produce a panchromatic band. This capture is a very high-resolution image band with a

spatial resolution that ranges between 30cm to 1m. Panchromatic images exhibit high spa-

tial resolution which is complemented by the corresponding multispectral or hyperspectral

capture that exhibits lower spatial resolution but higher spectral resolution. Combining

the panchromatic image with the multispectral images is known as pan-sharpening that is

achieved through image registration and fusion. A survey of image fusion techniques for

remote sensing applications can be found in [Ghassemian, 2016]. However, multispectral
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image bands also present higher spatial resolution relative to imagery from open-source

platforms such as Landsat and Sentinel.

Current commercial sensor platforms include WorldView-3 and Planet satellite systems.

WorldView-3 is a commercial Earth observation satellite owned by DigitalGlobe. It was

launched on 13 August, 2014 with a repeat cycle of three days, a spectral range of 0.45-0.92

µm and a spatial resolution of 30cm per pixel for panchromatic channels and 120cm per

pixel for multispectral channels. The Planet Labs satellite system is also a commercial

Earth observation satellite that consists of a constellation of satellite platforms. The com-

pany currently operates a global constellation of over 200 active satellites [Marshall and

Boshuizen, 2013]. Therefore, the temporal resolution of this particular satellite system is

high relative to open-source platforms as the constellation of satellites can be coordinated

and tailored for application needs and objectives.

Again, imagery captured from commercial satellite platforms have been extensively used for

a variety of coastal monitoring activities. The following studies show the use of commercial

satellite platforms for various coastal mapping applications and change detection.

Valderrama-Landeros et al. [2018] used multiple satellite platforms to map mangrove forests

in Teacapán-Agua Brava-Las Haciendas, Pacific coast Mexico. The study site is large

geographical area with an estimated mangrove forest cover of 80000 ha which is suitable

for the low resolution imagery provided by Sentinel-2 and Landsat-8. However, the results

stated in Valderrama-Landeros et al. [2018] show that images captured with the WorldView-

2 sensor platform had the best objective performance and also exhibited clear inter-class

boundary separation due to the higher spatial resolution relative to Landsat and Sentinel

platforms.

Zhu et al. [2015] used imagery photographed from WorldView-2 to map mangrove forests

at Lingding Bay, Guangdong Province, China. Again, the study site is a large geographical

area with 700 ha with a dynamic landscape characterised by uneven-aged trees and high

spatial variability. The target species were S. Apetala and K. Candel which are both tree
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species that flourish at different tidal zones. The spatial resolution was 2m which similarly

to the study conducted by Valderrama-Landeros et al. [2018] provided precise inter-class

boundary definition due to the high resolution imagery and the high spectral resolution

provided the means to use several vegetation indices for accurate classification. The high

spatial resolution allowed for object-based image segmentation methods to be used instead

of pixel classification methods as shown in Fuller et al. [1998].

Wang et al. [2004b] used Quickbird and IKONOS satellite platforms to map the mangrove

forests at Punta Galeta on the Caribbean coast of Panama. The study site is a large ge-

ographical area with three tree species that comprise the canopy of the mangrove forest.

These species are Avicennia germinans, Laguncularia racemosa and Rhizophora mangle.

The average crown cover of these tree species are respectively 164 to 231 m2, 90 to 141

m2 and 127 to 241m2 which is suitable for satellite platforms used to photograph aerial

imagery. The spatial resolution of the Quickbird was 1m for panchromatic channels and

4m for multispectral channels whereas the IKONOS had 0.7m for panchromatic and 2.8m

for multispectral channels. The mapping results showed that images captured with the

IKONOS satellite platform were objectively better by a fine margin. Wang et al. [2004b]

recommends the use of commercial satellite platforms that can achieve less than 10m reso-

lution for accurate delineation of canopy crown cover for mangrove forests if the study site

is a large geographical area.

Collin et al. [2018a] used imagery captured from the WorldView-3 satellite platform to

map subtidal saltmarsh in Emerald Coast, Brittany, France. The study site has an area

of 2.11km2 with most the cover populated with saltmarsh ecosystems, however small den-

dritic tidal channels (approx. 2m wide) are present and bordering the channels are areas of

saltmarsh. The study used a combination of elevation data, very-high resolution imagery

captured from a rotor-based drone and hyperspectral image bands from the WorldView-3

satellite platform. In this scenario, spatial resolution was not the key factor for accu-
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rate mapping but elevation combined hyperspectral bands yielded the best objective re-

sults.

Campbell andWang [2019] also used imagery fromWorldView-2 andWolrdView-3 platforms

to map intertidal saltmarsh ecosystems in Fire island, New York, USA. The study site is a

large geographical area with 7000 ha and images had 1m spatial resolution that was optimal

to map small dendritic tidal channels often present in saltmarsh ecosystems. Similarly to

Zhu et al. [2015], the mapping results were achieved with object-based image segmentation

methods to be used instead of pixel classification because of a higher spatial resolution

relative to open-source satellite platforms.

Comparing the mentioned studies with the work conducted using open-source satellite plat-

forms shows that commercial satellite platforms are also suitable for surveying large geo-

graphical areas. The increased spatial resolution from commercial satellite platforms rel-

ative to open-source platforms has the potential of providing better inter-class boundary

separation, while also maintaining a large field of view to survey large geographical areas.

The latter is because current commercial satellite platforms orbit at the same altitude as

Landsat-7 and Sentinel-2. Studies such as Valderrama-Landeros et al. [2018] also show that

increasing spatial resolution can resolve ambiguity in mapping results.

2.1.3 Uncrewed aircraft system imagery

A recent prospect for very-high resolution remote sensing addresses operational issues re-

lated to commercial satellite missions with the use of Uncrewed Aircraft System (UAS).

These platforms for data capture are lightweight, low-cost and are operated from the ground.

UASs offer ecologists a cost-effective solution with suitable temporal and spatial resolutions

for monitoring environmental phenomena with a smaller field of view related to satellite

platforms appropriate to the scales of regional to local objectives [Anderson and Gaston,

2013]. These platforms can be classified into the following categories [Watts et al., 2012]:

large to medium UASs, and small to nano UASs.
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Large to medium UASs are adapted from military-grade platforms and incur high opera-

tional costs relative to smaller platforms. This is due to complex ground operations that

often require a runway for take-off and landing, and expert ground support staff for every

mission. Even with these constraints, this class of UASs have been used in low-altitude

missions for Earth science investigations such as: tropospheric chemistry and Arctic ice re-

connaissance [Fladeland et al., 2011], and broader applications including ecological surveys

[Fladeland et al., 2008].

Small to nano UASs are suitable aircraft platforms for most ecological surveys, including

coastal monitoring [Duffy et al., 2018; Collin et al., 2018b; Rossiter et al., 2020]. The

successful use of these platforms has been facilitated by miniaturization and cost reductions

among inertial sensors, global positioning system (GPS) devices, and embedded computers

[Berni et al., 2009]. Presently, there are now numerous miniaturized sensors suited to UAS

deployment.

Two main types of small UASs exist: fixed-wing and rotor-based systems. Fixed-wing sys-

tems can travel at faster speeds and are larger than rotor-based systems. During flight,

navigation is available through GPS-based autopilot guidance tools that navigate the air-

craft along a predetermined flight path [Hardin and Jensen, 2011]. Rotor-based systems

differ in capability and are able to hover over fixed targets that is suitable for vertical pro-

filing experiments and spatial surveys [Anderson and Gaston, 2013]. The ability for stable

capture of imagery allows for overlapping Very-high resolution (VHR) imagery and Struc-

ture from Motion (SfM) techniques to create high-resolution orthomosaics [Duffy et al.,

2018; Turner et al., 2012] (commonly less than 0.1m pixel resolution). Rotor-based drones

are widely used in fields such as hydrology [DeBell et al., 2015], forestry science [Inoue

et al., 2014], polar studies [Ryan et al., 2015] and wildlife monitoring [Chabot et al., 2015;

Hodgson et al., 2013]. Furthermore, rotor-based drones have also been used for coastal

monitoring activities.
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Gonçalves and Henriques [2015] used a lightweight Swinglet UAV to monitor the topographic

dune change in Aguda on the bank of river Douro, Portugal. The study site was relatively

smaller to mentioned studies in previous sub-sections with 2.1km2 and the spatial resolution

of the stitched orthomosaic from overlapping imagery was 4.5cm which allowed for sharp and

accurate delineation of dune topography. However, the key-factor for the study described

in Gonçalves and Henriques [2015] was the revisit period because of ease with deployment

and lightweight nature of the UAS used to photograph the site. Rotor-based drones are not

constrained by operational requirements such as orbital cycles of satellite platforms.

Ventura et al. [2016] used a quadcopter with a ArduPilot guidance system to map four

species of Diplodus spp. which are seagrass species that provide nursing grounds for fisheries.

The study site was Giglio Island and again was relatively small to previous studies with a

coastline extent of 2.6km. The four species of Diplodus spp. were D. puntazzo, D. sargus, D.

annularis and D. vulgaris all of which represent dynamic ecosystems that present variable

cover. The spatial resolution was 1cm which allowed for accurate delineation of seagrass

cover in relation to background sediment that often presented a diameter of 1-3m. Ventura

et al. [2016] also provided a comparison between maximum-likelihood pixel classification and

object-based segmentation methods, with the latter providing stable and better objective

scores.

Duffy et al. [2018] used a multi-rotor drone to map seagrass species of Zostera noltii in two

study sites at Pembrokeshire in Wales: Angle Bay and Garron Pill with both sites covering

an area of 2km2. Z. noltii requires specific environmental conditions to successfully grow

and survive and therefore can present a dynamic and variable cover from an aerial point

of view. The spatial resolution of generated orthomosaics was 4mm which allowed for very

fine delineation of dendritic channels of water that could impact Z. noltii growth. Duffy

et al. [2018] also shows the impacts of increasing spatial resolution for mapping species such

as lugworms and cockels with an apparent distortion of features that represent each specie

as the spatial resolution is lower.
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Rossiter et al. [2020] used a DJI Matrice rotor drone to map intertidal macroalgae at

Kilkieran Bay, Ireland. The species were Ascophyllum nodosum, Fucus spp., Himanthalia

elongata, Laminaria digitata and Pelvetia canaliculata that individually represent small

species of macro-algae that can grow up to 2m. Rossiter et al. [2020] states that for fine-

scale intertidal macro-algae mapping is limited by the coarse spatial resolution and restricted

operational flexibility of satellite platforms, whereas the sub-decimeter resolution allows for

accurate results. Furthermore, high-resolution imagery can be used to collect ground-truth

data, or labels, only possible because of the low flight altitude and consequent high spatial

resolution afforded by UAVs.

2.1.4 Critical analysis

From a chronological view, the open-source satellite platforms available with Landsat and

Sentinel have shown to be useful for mapping objectives where the study site is a large

geographical area in tandem with target classes that represent agglomerated landcover

semantics that span from 20m up to 50m [Fuller et al., 1998; Chopra et al., 2001], e.g.

distinguishing wetland, built-up land, among others. The latter is because of the altitude

to which Landsat and Sentinel satellites operate as well as constraints to the sensor used

to photograph imagery. The spatial resolution for sensors on board open-source satellite

platforms is approximately 30m therefore coastal features that represent a physical size

inferior to the spatial resolution of the sensor would appear blurred and cause cascading

issues for the mapping objective, as shown in Ramsey III and Laine [1997].

The commercial satellite platforms with WorldView and Planet Lab constellation systems

have also proven to be useful for mapping objectives where the study site is a large geographi-

cal area. However, unlike the open-source satellites, commercial platforms produce the same

field of view but have higher spatial and spectral resolution. This has allowed coastal moni-

toring studies for large areas but also fine scaled mapping of individual species, as opposed to

agglomerated target classes. The spatial resolution for sensors on board commercial satellite

platforms is approximately 1m which allows finer scale mapping for coastal features such
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as corral reefs, saltmarsh ecosystems and mangrove forests [Valderrama-Landeros et al.,

2018; Collin et al., 2018a]. Commercial satellites also operate as a constellation offering

higher temporal resolution than open-source satellites that is suitable for change detection

studies.

The switch to fixed-wing and rotor-based UASs for coastal monitoring further pushed the

capabilities for fine scale mapping of individual target species. This is because of the

operational altitude of these sensor platforms that in turn capture very-high imagery with

a limited field of view. SfM allows for production of VHR orthomosaics that span past the

field of view of a single photograph, however data and memory constraints can become an

issue for large geographical areas surveyed at sub-decimeter spatial resolution. The spatial

resolution for sensors on board UASs is often sub-decimeter that allows for very small

coastal features such as lugworms and intertidal macro-algae to be identified [Duffy et al.,

2018; Rossiter et al., 2020]. Lastly, the production of very-high resolution orthomosaics

allow user’s to collect ground-truth data, or labels, directly from processed imagery instead

of laborious in-situ that is only possible because of the low flight altitude and consequent

high spatial resolution afforded by UASs [Hobley et al., 2023].

Given the properties of different sensor platforms, the use of small rotor-based UASs pro-

vides the appropriate spatial and temporal resolutions necessary to capture the complex

and highly varying nature of coastal environments that reside in the intertidal coastal zone.

In this thesis, both study sites described in Sections 3.2 and 4.2.1 represent local mapping

objectives with complex and varying target class domains. For this reason, the thesis focuses

on imagery derived from UAS platforms.

2.2 Thematic mapping

As mentioned in Section 1.2, the main goal of coastal monitoring with remote sensing is to

produce a thematic map such that the spatial distribution of multiple biophysical properties

and controlling processes that govern a particular coastal site can be analysed over time
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[Phinn et al., 1999]. In image processing this is also known as semantic segmentation,

the process of assigning pixels to a semantic class such that clusters of classified pixels

delineate objects of interest within imagery [Thoma, 2016]. The following sections will

review established methods in coastal remote sensing for semantic segmentation.

2.2.1 Pixel-based mapping

A wide range of classification methods have been developed to derive semantic information

from remotely sensed images [Qian et al., 2007]. The Maximum Likelihood Classification

(MLC) is an approach to remote sensing mapping [Foody et al., 1992]. The latter method

leverages multispectral radiometric pixel properties to assign a class according to the spec-

tral similarities between a test pixel and a reference train dataset [Jensen, 1986; Gong et al.,

1992; Casals-Carrasco et al., 2000; Vatsavai et al., 2011]. MLC assumes that the data for

each ecological class to be mapped are normally distributed in each image band of data.

Selected training samples, either through visual identification from post-processed imagery

or in-situ surveying, are used to build normal distribution models and classification is car-

ried in maximum likelihood fashion [Gao, 1999; Richards and Richards, 1999]. Formally,

each pixel is represented as an n-dimensional feature vector and compared to a prototype

feature vector constructed from prior spectral information. Spectral features include mean

grey levels for individual bands, vegetation indices, e.g, normalised difference vegetation

index (NDVI), principal components and band ratios [Wang et al., 2004a; Green et al.,

1998; Zerrouki and Bouchaffra, 2014; Held et al., 2003]. The main drawback of MLC is the

failure to incorporate contextual texture and spatial features in the per-pixel classification

process [Zhou and Robson, 2001].

An alternative approach to MLC is Spectral Angle Mapper (SAM). Again, this approach

considers pixels as n-dimensional feature vectors, whereby the number of dimensions is equal

to the number of image bands. The magnitude of the vector represents pixel brightness,

while the angle represents the spectral feature of the pixel [Kruse et al., 1993]. Then, SAM

classifies pixels according to the angular distance between two vectors, with small angles

Chapter 2 Brandon Hobley 26



Monitoring Coastal Environments using UAS Imagery and Deep Learning

reflecting similar spectral feature vectors. During classification, a minimum spectral angle

threshold is defined for class-boundary separation [Demuro and Chisholm, 2003; Kamal and

Phinn, 2011].

Another approach is Linear Spectral Unmixing (LSU) derived from Linear Mixture Models

(LMM). The LSU assumes that the reflectance of a pixel is a linear combination of the

reflectance of all sub-pixel components also known as endmembers [Horwitz et al., 1971],

and the linear combination weighted by the respective endmember abundance [Adams et al.,

1995]. Thus, each pixel contains information about the proportion and spectral response

of each component, and each pixel spectrum of a multispectral image can be modeled as a

linear combination of a finite set of components [Sohn and McCoy, 1997]. Formally, given

a linear system of m equations (image bands) and n unknowns (endmembers), a system of

equations can be formulated:

a11x1 + a12x2...+ a1mxn + ϵi = b1

a21x1 + a22x2...+ a2mxn + ϵi = b2

.

.

.

am1x1 + am2x2...+ amnxn + ϵi = bm

(2.1)

The system of equations Ax = b has a unique solution x = A−1b. The linear system of

equations is generally solved in a least-squares approach [Drake et al., 1999; Gong and

Zhang, 1999; Van der Meer and Jia, 2012]. The integrity of the model is dependent on the

assumption that photons only have a single interaction with a surface represented by a pixel

[Adams, 1993].

The endmember selection is a crucial step in LSU since the residual error is based on the

number of selected endmembers. Semi-automated endmember extraction algorithms include

the Pixel Purity Index (PPI) [Chang, 2013], that are aimed at isolating and selecting purest
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spectral pixels from a dataset. However, this method is prone to errors through hyper-

parameter selection [Chang and Plaza, 2006]. Adding to this, a standard assumption in

spectral mixture is that a single endmember signature can be an exact and an invariable

representation of its reciprocal component. However, in practice, image components are

capable of experiencing multiple degrees of intra-class variability, and subsequent inter-

class separability [Wang and Jia, 2009]. In an ecological context, this could be due to

plant phenology [Song, 2005] and biochemical properties [Smith et al., 1994; Serrano et al.,

2002]. Numerous LSU techniques have been developed to account for spectral variance

within endmembers. Spectral averaging has traditionally been a popular technique [Small,

2012], however this approach is based on the assumption that spectral variations of an

endmember are normally distributed [Somers et al., 2011]. An alternative method known as

Multiple Endmember Spectral Mixture Analysis (MESMA) does not assume the underlying

distribution of candidate endmember signatures [Roberts et al., 1998].

2.2.2 Object-based mapping

Images captured by early remote sensing sensors such as Landsat-MSS and TM, SPOT

and AVHRR had pixels large enough to cover the same ground feature, often requiring

sub-pixel or per-pixel feature mapping. The launch of commercial satellites and UASs

with miniaturized multispectral sensors significantly increased spatial resolution of remotely

sensed imagery which in turn nullified pixel-based methods used for moderate and low-

resolution [Blaschke, 2010; Hossain et al., 2015]. OBIA is an alternative to a pixel-based

method where the basic unit is an image-object instead of individual pixels [Castilla and

Hay, 2008]. By grouping a number of pixels into shapes with a meaningful representation

of objects, the aim of OBIA is to address more complex classes that are defined by spatial

and hierarchical relationships during the classification process [Lang, 2008].

OBIA is defined in three main phases: an initial image segmentation to delineate image-

objects, feature extraction in image-objects and classification using machine learning mod-

els. The most important step is image segmentation as the accuracy of the following feature
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extraction and classification mainly depends on the quality of image segmentation [Blaschke

et al., 2008; Cheng et al., 2001; Mountrakis et al., 2011; Su and Zhang, 2017]. Image seg-

mentation is defined as a method of dividing an image into homogeneous regions [Pal and

Pal, 1993]. In OBIA and remote sensing, these regions could represent land covers such as

buildings, trees, water bodies and grasslands [Costa et al., 2018; Heumann, 2011a].

Many methods for high-resolution remote sensing image segmentation exist but many al-

gorithms are not applicable in OBIA [Zhang, 2006; Davis and Wang, 2003]. Literature for

OBIA image segmentation can be categorised into the following: edge-based, region-based

and hybrid methods.

Edge-based methods first identify edges and then close each boundary using a countour

algorithm [Zhou et al., 1989; Cao et al., 2016]. The assumption is that between edges the

pixel properties change abruptly, and therefore edges are regarded as boundaries between

objects [Shih and Cheng, 2004; Martin et al., 2004]. Edge detection is split into three

steps [Jain et al., 1995]: filtering, enhancement, and detection. After edge detection, the

next step is to connect edges to form closed boundaries. Multiple edge-linking and Hough

transform are suitable linkage algorithms, while also attempting to exclude noisy edges from

the filtering process [Lu and Chen, 2008; Ballard, 1981].

Region based segmentation methods are the counterpart to edge based methods. Region

based methods start from inside an object and then expand outward until meeting the object

boundaries [Zhang, 2006]. Theoretically, edge-based and region-based are different repre-

sentations of the same object. However, region-based approaches may generate radically

different results than edge-based approaches [Kavzoglu and Tonbul, 2017]. Region-based

methods assume that neighboring pixels within the same region have similar values and

have two basic operations: merging and splitting [Tremeau and Borel, 1997; Fan et al.,

2001]. The basic approach is to either obtain an initial (over or under) segmentation of the

image and merge or split those adjacent segments according to a criterion of similarity or

dissimilarity and repeat until no segments should be merged or split [Bins et al., 1996].
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One method to region-based segmentation is the watershed transformation based on Math-

ematical morphology [Vincent and Soille, 1991; Hossain and Chen, 2019]. Watershed sim-

ulates a flooding approach and transforms the image into a gradient that identifies objects

with a topographical surface [Mezaris et al., 2004; Muñoz et al., 2003]. Performance of wa-

tershed segmentation depends on the method used to compute gradients. Typical gradient

operators produce an over-segmented result in watershed segmentation due to noise or tex-

ture patterns in remotely sensed imagery [Zuva et al., 2011]. Another common region-based

segmentation for OBIA is Multi-resolution segmentation (MRS) [Blaschke, 2010; Nussbaum

and Menz, 2008]. The segmentation starts with individual pixels and clusters of pixels to

image-objects using one or more criteria of homogeneity. The subsequent clustering of two

adjacent image-objects or image-objects that are a subset is based on the criterion that eval-

uates the change in homogeneity during fusion of image-objects. If this change exceeds a

certain threshold value, then the fusion is not performed. In contrast, if the change in image-

objects is below the threshold, then both candidates are clustered to form a larger region.

The segmentation procedure stops when no further fusions are possible without exceeding

the threshold value. Multi-resolution segmentation has been extensively implemented in

remote sensing research and OBIA for inter-disciplinary applications [Rossiter et al., 2020;

Husson et al., 2016; Gao et al., 2017; Mallinis et al., 2008; Li et al., 2016; Johnson, 2013;

Schmidt et al., 2004]. Figure 2.1 shows the output of multi-resolution segmentation.

Given the basic unit for OBIA is a segmented partition of an image because of an image

segmentation algorithm, each image-object provides the basis to extract several features

for machine learning models to learn the problem domain [Bengoufa et al., 2021; Clark

et al., 2022]. A common approach is to calculate vegetation and non-vegetation indices

that are band ratios that leverage reflected signals captured in the red edge and near infra-

red spectral range. In addition, these features are combined with expert site knowledge,

either through in-situ surveying or photo-interpretation, in order to associate features with

a semantic class during the classification process [Andrés et al., 2017; Belgiu et al., 2014; Gu

et al., 2017]. Texture features can also be extracted with a popular and classic method in
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CV - the Grey Level Co-occurance Matrix (GLCM). The latter is a tabulation of different

combinations of pixel values in a greyscale image with respect to their abundance [Haralick

et al., 1973]. From a GLCM matrix different features can be calculated with homogene-

ity proving to be suitable for remote sensing applications [Zhang et al., 2010]. Principal

Component Analysis (PCA) can also be used in an OBIA framework to reduce the set

of extracted features by transforming the data to a new coordinate system such that the

underlying variance is captured in the first couple of principal components [Li et al., 2021b;

Kavzoglu and Tonbul, 2017].

2.2.3 Critical analysis

Section 2.1.4 provided an analysis of different sensor platforms with respect to spatial resolu-

tion. The analysis correlated the size, or scale, of features to be mapped with the associated

sensor platform used to survey the study site. The analysis showed a chronological pattern

of increasing spatial resolution due to sensor improvements, or lower flight altitude of the

sensor platform, used to photograph a study site. In turn, this allowed for smaller features

to be detected which in turn increased the complexity of mapping objectives.

The choice of classifier for image data that are derived from remote sensing platforms

is in direct relation to the physical size of each pixel that followed the aforementioned

chronological pattern of increasing spatial resolution from sensor platforms. Pixel-based

methods were originally used for satellite imagery as the information conveyed in each pixel

in relation to the features to be mapped were appropriate. For instance, mapping land

cover classes that represent agglomerated landcover semantics that span from 20m up to

50m [Fuller et al., 1998; Chopra et al., 2001]. However, with increasing spatial resolution,

the volume of data associated to large geographical study sites in tandem with 1m spatial

resolution nullified the use of pixel-based method due to computational costs and lack of

accurate classification results. The paradigm shift to object-based methods are largely due

to higher resolution imagery and failure to integrate contextual spatial information during

the classification process for pixel-based methods.
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Multiple studies using UAS and satellite imagery with high resolution (below 5m range) and

very-high resolution (below 1dm range) imagery of coastal environments have shown that

the use of object-based methods outperform pixel-based methods for supervised semantic

segmentation [Hantson et al., 2012; Kamal and Phinn, 2011; Zerrouki and Bouchaffra, 2014;

De Giglio et al., 2019]. The common factor of discussion among these studies was the use of

a prior image segmentation algorithm in order to cluster homogeneous image-pixels that in

turn allowed contextual spatial information to be incorporated in the classification process.

Furthermore, the clustering of pixels to image-objects also allowed separability between

derived features, e.g., statistical moments and image-band ratios, from each image-object

and target classes.

Object-based methods have been shown to perform well in supervised semantic segmen-

tation applications of intertidal and subtidal species in coastal environments using con-

ventional machine learning models, such as Random Forests and SVMs. [Butler et al.,

2020; Husson et al., 2016; Purkis et al., 2019; Rasuly et al., 2010; Schmidt et al., 2004;

Rossiter et al., 2020; Duffy et al., 2018; Fakiris et al., 2019; Innangi et al., 2019; Janowski

et al., 2020]. However, the performance of machine learning models is dependant on the

choice of hyper-parameters used during the feature extraction which in turn requires do-

main expertise [LeCun et al., 2015a]. For instance, with object-based methods the result-

ing image segmentation/clustering of pixels directly impacts the segmentation accuracy as

over-segmentation, or under-segmentation, affect the distribution of features used for con-

ventional machine learning models, as well as the underlying spatial structure of predicted

image-objects during inference. This process of feature extraction and subsequent modelling

with sophisticated machine learning models can also be referred to as shallow learning or

classical supervised machine learning.

Deep learning deviates from the latter method by combining the feature extraction and

model tuning processes into a single joint optimisation. The use of convolutional neural

networks and fully convolutional neural networks for computer vision applications, such as
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classification, object detection and semantic segmentation, have pushed the boundaries of

objective results and state-of-the-art which provides a tantalising opportunity to leverage

these highly parameterised models for remotely sensed optical imagery. Indeed, for coastal

environments, deep learning has already found successful applications whilst outperforming

well-established methods in remote sensing literature, e.g, OBIA with SVMs or Random

Forests, [Tsiakos and Chalkias, 2023].

Given the advances in computer vision machine learning with the advent of convolutional

neural networks, the use of deep learning methods will be reviewed in the following Section.

Then, for both study sites described in Sections 3.3.1 and 4.2.1, practical applications of

fully convolutional neural networks will be used to map complex target class domains using

very-high resolution optical imagery derived from UAS platforms.

2.3 Deep neural networks

The following sub-sections review literature in deep neural networks. The first sub-sections

introduce convolutional neural networks and fully convolutional networks for image clas-

sification and semantic segmentation, respectively Sections 2.3.1 and 2.3.2. Then, Section

2.3.5 will review methods to improve CNN and FCN generalisation with limited labelled

datasets. Lastly, Sections 2.4 and 2.5 review methods for hyperspectral reconstruction and

multi-task learning.

2.3.1 Image classification

Deep neural networks have been state-of-the-art models for image classification for nearly

a decade. The ImageNet challenge is an image classification benchmark dataset used to

evaluate image classifiers [Russakovsky et al., 2015]. The introduction of CNNs and effective

use of GPUs allowed these models to reduce the top-5 test set error on the ImageNet

challenge from from 28.2% to 17.0% [Krizhevsky et al., 2012]. The top-5 test set error rate

shows the percentage of times the image classifier failed to include the correct class among
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the top-5 highest probable classes. Previous methods revolved around separating two key

components to machine learning: feature extraction and model tuning. Generally, feature

extraction methods for image classification relied on carefully engineered scale invariant

image features (SIFT [Lowe, 1999]) with a powerful classifier to discern different features

to corresponding semantic classes in an image [Sánchez et al., 2013]. In contrast, CNNs

replace the separation of machine learning with a joint optimisation of both procedures that

is an enabling factor for their success. The feature extraction process consists of repeated

convolution and pooling operations that transform the input image into hierarchical abstract

representations of data.

The joint optimisation is achieved by adjusting convolutional kernel weights and biases that

minimises the error between network outputs and annotated labels [LeCun et al., 2015a].

The choice of error metric is fundamental in order to achieve good CNN performance as

the error derivative drives the optimisation of convolutional weights in the network. Since

each layer is connected through a shared weight mechanism the initial error derivative is

propagated from the output layer to the initial layer using the chain rule of derivatives

[Rojas, 1996; LeCun et al., 2015a]. Then, each weight is adjusted using a gradient-descent

solver, e.g. SGD [Sutskever et al., 2013], Adam [Kingma and Ba, 2014]

While the introduction of CNNs can be traced all the way to an architecture called LeNet

[LeCun et al., 1989, 2015b], the rise of CNNs starts with an architecture commonly referred

to as AlexNet [Krizhevsky et al., 2012]. Since then, research has tailored more complex and

sophisticated network topologies that further improve image classification accuracy.

The introduction of VGG architectures reduced the top-5 test set error to 8.0% [Simonyan

and Zisserman, 2014]. Prior work commonly used convolutional layers with large kernels,

whilst the VGG architecture use smaller 3×3 kernels in convolutional layers. These offer the

same receptive field while requiring fewer parameters and also improving accuracy. Con-

volutional layers comprised of 3×3 kernels have become common practice for architectural

design and engineering because of their effectiveness and simplicity.
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The first very deep networks such as VGG required the training procedure to be done in two

stages; the first convolutional blocks were pre-trained before attaching the final layers. The

introduction of batch normalization permits deeper networks to be trained in end-to-end

fashion by reducing the internal covariance shift that occurs after multiple convolutional

layers [Ioffe and Szegedy, 2015]. CNNs are highly parameterised machine learning models

comprised of several non-linear modules or layers. Prior to batch normalization, the depth

of CNNs would be limited and thus plateau performance of image classifiers.

The introduction of residual architectures further reduced the top-5 test set error rate to

4.49%. Figure 2.2 shows different convolutional blocks that comprise a layer. For residual

blocks, instead of stacking multiple convolutional layers in order to fit the underlying non-

linear relationship between input image to classification, a skip connection in a residual

layer acts as an identity function, thus allowing convolutional layers to learn the residual

mapping [He et al., 2016].

ResNet architectures present a low top-5 test set error rate but still present a top-1 test set

error rate of 21.2%. The next generation CNN architecture at the start of the 2020s does

not explicitly change the overall residual nature for each convolutional block in a ResNet but

alters the contents of each residual convolutional block. Again, Figure 2.2 shows the pro-

gression of convolutional blocks. The introduction of VGG networks standardised network

design with 3×3 kernels, Batch Normalisation (BN) to reduce the covariance shift and a

non-linear activation function, such as Rectified Linear Unit (ReLU) [Nair and Hinton, 2010;

Dahl et al., 2013]. A recent architecture known as ConvNeXt explores using convolutional

blocks with 7×7 kernels, layer normalisation instead of batch normalisation, a multi-layer

perceptron approximated with 1×1 discrete convolutions (as per network in network [Lin

et al., 2013]) followed by GeLU and a final multi-layer perceptron with a residual skip [Liu

et al., 2022b]. This architecture reduced the top-1 test set error to 13.4%.
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Figure 2.2: The progression of convolutional blocks for CNN feature extraction. The

VGG architecture standardised network design with with 3×3 kernels, batch normalisa-

tion and a non-linear activation function [Simonyan and Zisserman, 2014]. The addition

of residual connections allows training signals to propagate the identity function, and

thus learn the residual function [He et al., 2016]. The ConvNeXt explores a different

strategy by approximating a MLP with 1×1 discrete convolutions (as per network in

network [Lin et al., 2013]).

2.3.2 Semantic segmentation

Semantic segmentation systems can be regarded as pixel classifiers, predicting the class of

the object or material type that covers each pixel in an image.

Many semantic segmentation algorithms reported in literature are derived from Fully Con-

volutional Neural Networks (FCNs) [Long et al., 2015]. This particular deep neural network

architecture adapted for segmentation by discarding fully-connected layers that lead to pre-

dict image class probabilities. These layers are replaced with new layers that generate

pixel-wise class predictions across the image, commonly known as dense predictions. This

is possible using of 1×1 convolutional layers, where the number of output channels can
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be modified without decimating spatial information. Furthermore, it has been shown that

fully connected layers can be approximated with 1×1 convolutional layers [Lin et al., 2013]

which in effect allow 1×1 convolutional layers to act as pixel-wise classifiers.

Pooling operations in CNNs reduce the spatial resolution of extracted feature maps to merge

local patches to a single pixel and introduce translation invariance [LeCun et al., 2015a].

Fully convolutional neural networks need to restore lower resolution feature maps to the

original spatial resolution of the input image. Bilinear interpolation is a common image

upsample method used for restoring feature map resolution, and transposed convolutions,

also known as deconvolution, can also upsample feature maps while also providing learnable

parameters. The upsample method is a trade-off between classifier accuracy and accurate

inter-class delineation as transposed convolutions offer learnable parameters but introduce

checkerboard artifacts [Gao et al., 2019; Sanjar et al., 2020].

Fully convolutional networks demonstrate the effectiveness of deep neural networks for seg-

menting the PASCAL VOC 2012 dataset [Everingham and Winn, 2012]. The pioneering

implementation of FCNs used dense prediction classifiers to the third and fourth convo-

lutional block and replaced the fully connected layer with a convolutional equivalent to a

VGG-16 encoder network [Long et al., 2015; Lin et al., 2013]. This results in class predic-

tions at 1/8th, 1/16th and 1/32nd resolution respectively. The final layer upsamples dense

predictions by a factor of two using transposed convolution, and combines these with dense

predictions from the fourth convolutional block. In turn, the combined feature maps are

also upsampled and combined with predictions from the third block. Finally, the combined

feature map is upsampled by a factor of eight, resulting in a full-resolution pixel-wise class

prediction for the image. This architecture is also known as FCN-8 [Long et al., 2015].

Further work on semantic segmentation explores modifying network topology. Figure 2.3

shows different semantic segmentation architectures which can be broadly described in the

following categories: image pyramid, encoder-decoder, context models, spatial pyramid

pooling and dilated convolutions.
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Image pyramid architectures leverage the same model, typically with shared weights,

to multiple resized copies of the input image at various resolutions. Feature responses from

low resolution copies encode long-range context, while high resolution copies preserve and

encode detail in smaller objects. Some examples transform the input image through a

Laplacian pyramid, feed each scale input to a CNN and merge the feature maps from all

the scales [Farabet et al., 2012]. Other methods apply multi scale copies sequentially from

coarse-to-fine resolution [Eigen and Fergus, 2015] or resize the input image at several scales

and then fuse the features from all scales [Lin et al., 2016]. The main drawback to these

models are failure to scale well with deeper CNNs due to limited GPU memory. Therefore,

most of the multi scale copies are usually applied during the inference stage [Dai et al.,

2015].

Encoder-decoder networks consist of two parts: the encoder network where the spatial

dimension of feature maps are gradually reduced, allowing low resolution information to be

captured in later convolutional blocks. A decoder network that in effect mirrors the encoder

network with equivalent decoder layers in opposite order. Encoder-decoder architectures

draw data from intermediate layers in the encoder to assist in the decoding process. This

adds fine detail as later layers in the encoder tend to represent high level features rather than

precise detail [Long et al., 2015]. Encoder networks can be standard network architectures

described in Section 2.3.1 but the decoder network can explore various strategies or archi-

tectures. Pooling indices from max-pooling layers of the encoder drive equivalent unpooling

layers in the decoder in an architecture known as SegNet [Badrinarayanan et al., 2017].

Other strategies use a transposed convolution to learn the upsample process in the decoder

network [Long et al., 2015; Noh et al., 2015]. Skip connections from the encoding stages of

the network to the corresponding decoding stages were found to be powerful for fine scale

semantic segmentation resulting in a network architecture known as U-Net [Ronneberger

et al., 2015]. The latter has widespread use in many semantic segmentation applications due

to its interchangeability of encoders, learnt upsample process with transposed convolutions

and skip connections for accurate pixel prediction.
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Context models contain extra modules laid out in cascade manner to encode low res-

olution detail. An effective method is to incorporate dense conditional random fields to

CNNs [Krähenbühl and Koltun, 2011; Chen et al., 2017a]. The use of Conditional Randon

Fields (CRFs) for segmentation has a rich previous work body prior to the wide adoption

of deep learning [Krähenbühl and Koltun, 2011]. When used for semantic labelling, CRFs

perform probabilistic inference and incorporate assumptions such as class agreement be-

tween similar or neighbouring pixels [Zheng et al., 2015]. CRFs can be seen to smoothen

the classifier predictions within similarly coloured regions, while encouraging semantic seg-

mentation boundaries to align to edges in the RGB image. Therefore, the use of CRFs can

refine the segmentation output of the network and encourage segmentation to align with

boundaries in the RGB [Chen et al., 2017a].

Spatial pyramids have been an effective multi-scale feature extraction method for many

computer vision applications [Grauman and Darrell, 2005; Lazebnik et al., 2006]. CNNs

for segmentation can incorporate pyramid pooling layers to extract large scale contextual

features to aid in the pixel classification. The contextual features provide the segmentation

head with additional information on the surroundings of a particular region of the image,

improving the accuracy of the segmentation of objects against common backdrops [Zhao

et al., 2017].

Dilated convolutions can also incorporate multi-scale information in CNNs [Chen et al.,

2017a,b, 2018]. Dilated convolutions insert zeros between two consecutive filter values

along each spatial dimension. A standard discrete convolution is a case where there is

no inserted zeros, and dilated convolutions allow the network to filter at various fields of

view by changing the number of inserted zeros between consecutive filter values. These

convolutions are explored in a spatial pyramid sense in a module called Atrous Spatial

Pyramid Pooling (ASPP) [Chen et al., 2017a]. This module is inspired by the success of

spatial pyramid pooling that is an effective method to resample features at different scales

for accurate pixel classification of regions at various scales [Zhao et al., 2017]. ASPP applies
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four parallel dilated convolutions with different dilation rates on extracted feature maps and

also applies a global average pooling layer [Chen et al., 2017b]. Dilated convolutions can

also be explored in an encoder-decoder architecture [Chen et al., 2018]. These architectures

are also known as DeepLabV2 [Chen et al., 2017a], DeepLabV3 [Chen et al., 2017b] and

DeepLabV3Plus [Chen et al., 2018].

Critical analysis

Section 2.1.4 showed a clear progression in spatial resolution from imagery derived using

satellite or UAS sensor platforms. Consequently, in Section 2.2.3 the shift to object-based

mapping methods for coastal remote sensing is mainly because of the increase in spatial

resolution for remotely sensed imagery that rendered the capabilities of pixel-based meth-

ods since these were not capable of using contextual spatial data in the classification pro-

cess.

The use of deep learning methods, and in particular, pixel-wise classifiers such as fully

convolutional neural networks were not motivated by data and increasing spatial resolu-

tion. Instead, the use of fully convolutional neural networks in coastal remote sensing is

fueled by the advances in computer vision machine learning, and because of the fact that

this branch of algorithms have shown state-of-the-art performance on various benchmark

datasets from different computer vision applications, e.g., semantic segmentation, image

classification, object detection [Ronneberger et al., 2015; He et al., 2016, 2017]. Thus, fully

convolutional neural networks for coastal remote sensing semantic segmentation has found

extensive successful use for various coastal study sites at different spatial resolutions.

For instance, Lin et al. [2017] used multi-scale fully convolutional neural networks to delin-

eate shorelines and classify ships using Google Earth satellite imagery, and Li et al. [2018a]

used a U-Net to perform sea/land segmentation also with Google Earth imagery.

Liu et al. [2018] compared fully convolutional neural networks with object-based methods

using several different conventional classifiers, such as: random forests and support vector
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machines. The comparison was conducted on very-high resolution UAS imagery (approx.

6cm per pixel) and classified large interconnecting marsh of native grass wetlands with

fully convolutional neural networks outperforming object-based with conventional classi-

fiers.

La Rosa et al. [2021] used a multi-task learning framework with an encoder-decoder archi-

tecture to map tree species dense forests for a coastal site in Santa Catarina state, southern

region of Brazil. The study site was captured at very-high resolution (approx. 11cm) and

also provided a comparison with object-based methods using random forests and SVMs.

The multi-task U-Net was found to outperform OBIA with conventional classifiers.

Hobley et al. [2021a] used U-Nets to map intertidal seagrass at Budle Bay, England using

very-high resolution orthomosaics (approx. 3cm). The study provided a comparison of

mapping results with OBIA and random forest and also showed that fully convolutional

neural networks provide more accurate objective scores.

These use-cases along with extensive review publications [Osco et al., 2021; Yuan et al.,

2021] showcase the practicality of deep methods for pixel-wise classification of remotely

sensed coastal imagery. Given this, both study sites described in Sections 3.3.1 and 4.2.1,

show practical applications of fully convolutional neural networks to map complex target

class domains using very-high resolution optical imagery derived from UAS platforms.

2.3.3 Transfer learning

Transfer learning is the process of using an existing model that has already learnt a task from

a different domain and using it to transfer knowledge for a related task in order to improve

the learning/training procedure [Torrey and Shavlik, 2010]. The most common approach

involves adapting a network pre-trained on an ImageNet dataset to a different purpose.

The VGG and ResNet network architectures are also commonly used for this purpose.

High level convolutional features extracted by AlexNet could be used in place of features

extracted using classical computer vision feature extraction methods, e.g. Histograms of
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Gradients (HoG) [Dalal and Triggs, 2005], for the purpose of training a classifier, e.g.

SVM, for a different classification [Donahue et al., 2014]. Transfer learning can also be

applied to different computer vision applications such as semantic segmentation. In this

scenario, a pre-trained network on the ImageNet dataset is tuned for image classification

but by removing the fully connected layers and replacing the final layer with a new layer

suitable for semantic segmentation in the form of pixel-wise classification. The results can

be improved through careful fine-tuning where the pre-trained layers are further optimised

at a lower learning rate [Long et al., 2015]. Transfer learning has been successfully used in

many computer vision tasks, including object detection and image segmentation [He et al.,

2016; Long et al., 2015; Yosinski et al., 2014].

2.3.4 Data-augmentation

Data augmentation is a simple method used to increase the variability of samples during

training procedures. This process artificially expands the training set by applying linear

affine transforms, e.g. rotation, translation, flips and shear, to existing image samples while

also preserving ground truth quality. Many state of the art image classifiers incorporate

data augmentation during training regimes [Krizhevsky et al., 2012; Szegedy et al., 2015;

He et al., 2016].

For small image datasets such as CIFAR-10, random crops are a useful method to augment

training samples by padding each 32×32 image with four pixels on each edge to a resolution

of 40×40. Then, a random crop of 32×32 resolution is selected which effectively is equivalent

to random translation [Krizhevsky et al., 2009]. For larger datasets such as ImageNet more

elaborate augmentation schemes have been reported. The Inception architecture for image

classification uses an augmentation method known as Inception crop. A random crop is

chosen from the image such that it covers between 8% and 100% of the image area with the

aspect ratio also varying between 3/4 and 4/3. This crop is extracted from the image and

resized to the network input size [Szegedy et al., 2015].
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Significant effort in literature has also been devoted to elaborate augmentation schemes in

order to push networks to reach state of the art results. The CutOut method augments an

image by masking a randomly chosen rectangular region to zero. The rectangles have a fixed

size but are randomly positioned [DeVries and Taylor, 2017]. In effect, this is similar to a

geometric DropOut, encouraging the network to utilise a wider variety of image features by

randomly choosing regions of the image to mask out [Srivastava et al., 2014]. CutOut yielded

significant improvement on supervised image classification accuracy on various benchmark

datasets. Similarly, another method known as RandErase randomly chooses a rectangle

to be replaced with noise also improves performance in classifier accuracy [Zhong et al.,

2020].

The MixUp method uses interpolated samples during training. Pairs of input images and

target labels are randomly chosen, along with corresponding per-pair blending factors, p.

The images, xa and xb, and labels, ya and yb, are blended using the blending factors:

xm = (1− p) ∗ xa + p ∗ xb and ym = (1− p) ∗ ya + p ∗ yb, with xm and ym used for training

[Zhang et al., 2017]. CutMix combines aspects of MixUp and CutOut. Instead of mixing

samples using a constant per-pair blending factor, the blending procedure uses a mask and

blends target labels with respect to the blending factor. In effect, a rectangular region from

one image is cut and pasted over the other. In contrast to CutOut, CutMix uses a rectangle

whose size is randomly selected from a normal distribution, such that: p ∼ U(0, 1). For

supervised classification problems, CutMix was found to outperform CutOut and MixUp

[Yun et al., 2019].

Recently and inspired on the performance of CutMix, CowMix is also an augmentation

procedure where a region of one image is cut and pasted over another. However, the main

difference is that CowMix uses a Gaussian filter at a certain scale σ to normally distributed

noise. The filtering process produces Friesian cow-like masks that are applied on image

pairs before blending them together [French et al., 2020b]. This method also achieved state

of the art results in semi-supervised classification - see Section 2.3.5.
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Mixing and masking methods are one avenue of data augmentation, another path is to

explore the use of rich augmentation schemes during training. AutoAugment and the more

recent RandAugment use a repository of 14 image transformations and learned augmenta-

tion policies [Cubuk et al., 2019, 2020]. An augmentation policy comprises five sub-policies,

each of which combines two image augmentation operations that are applied with a given

probability and strength. The probability, strength and choice of operations are optimised

to maximise classification performance using reinforcement learning that in turn requires

a large amount of computation. RandAugment reduces computational demand with two

hyper-parameters: the number of image operations to use to augment each sample and

a global strength parameter that determines the strength of every operation used. The

hyper-parameters are optimised using grid search [Cubuk et al., 2020].

2.3.5 Semi-supervision

Deep neural networks have set state-of-the-art results in many computer vision problems

[Krizhevsky et al., 2012; He et al., 2017; Ronneberger et al., 2015]. However, benchmark

datasets such as ImageNet, PASCAL VOC and COCO contain thousands of images with cor-

responding high-quality labels in order to ensure algorithmic fairness ([Russakovsky et al.,

2015; Everingham and Winn, 2012; Lin et al., 2014]). Commercial and widely available

cameras provide the means for large quantities of image data to be acquired at very low

cost. But, producing ground-truth labels for imagery and desired application is often a

laborious bottleneck that is time consuming and expensive, if expert knowledge is required.

As mentioned in Section 1.2, coastal remote sensing is also prone to bottlenecks related

to labelling issues. In these environments, ground-truth labels can be obtained through

in-situ surveys, or through visual identification and delineation of polygons directly from

orthomosaics [Congalton, 1991; Leitão et al., 2018; Kattenborn et al., 2019b; Wagner et al.,

2019; Lopatin et al., 2019] that often results in a small ratio between area covered via in-

situ surveying and the total area covered in imagery [Bowler et al., 2020; Hobley et al.,

2021a].
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Semi-supervised training methods offer a potential solution to practical applications where

only a subset of ground truth labels from training dataset are used, and the remaining un-

labelled image samples are incorporated in an unsupervised fashion; while still maintaining

classifier performance.

However, semi-supervision is effective under certain assumptions of the underlying problem

structure in the training dataset. If these assumptions are not met, this could hinder

classification performance [Zhu, 2005]. There are three main assumptions in semi-supervised

learning:

• Smoothness assumption - If two data points x1, x2 are similar and reside in a high-

density region, then the corresponding outputs ŷ1, ŷ2 should also be similar. Meaning

that if two inputs are of the same class and belong to the same cluster that is a

high-density region of the input space, then their corresponding outputs should be

similar.

• Cluster assumption - If two data points x1, x2 are in the same cluster, then the

corresponding semantic classes y1, y2 should be the same.

• Manifold assumption - high-dimensional data lie on a low-dimensional manifold. In

high dimensional spaces, where the volume grows exponentially with the number of

dimensions, it is hard to estimate the true data distribution. If the input data lies

on a lower-dimensional manifold, then a low dimensional representation can be found

using unlabeled data. Then, the labelled task can be solved in a lower-dimensional

manifold.

Further to the assumptions on data distribution, semi-supervised approaches assume two

learning paradigms: transductive or inductive learning. Inductive semi-supervised learning

attempts to generalise a classifier to unobserved instances at test time from both labelled

and unlabelled data in the image dataset [Zhu, 2005; Ouali et al., 2020]. Transductive semi-

supervised learning attempts to make predictions on a specific set of test instances, given
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a combination of both labeled and unlabeled data during the training phase. The model is

trained to leverage the relationships and structures within the unlabeled data to improve

its predictions for the particular instances of interest. Therefore for most applications of

semi-supervised deep learning, inductive learning is more popular because of the practical

implications of learning a classifier capable of generalising to unobserved instances at test

time instead of a predefined set of instances.

Ouali et al. [2020] describes five distinct methods to semi-supervision, these being: con-

sistency regularisation, pseudo-labels, generative models and graph-based models. Graph-

based models will not be included in this review as it refers to the transductive approach

Grover and Leskovec [2016] which is out of scope to this thesis.

Consistency regularisation

Consistency regularization describes a class of techniques in that the network is encouraged

to give consistent predictions for unlabelled samples under a perturbation, e.g., Gaussian

noise and/or standard linear transform augmentations. These methods enforce models to

be in line with the cluster assumption that states that decision boundaries must lie in low-

density regions. Therefore, if a realistic perturbation is applied to an unlabeled example,

then the prediction should not change significantly [Zhu, 2005].

More formally, given a neural network model f with weight parameters θ. A consistency

loss favours functions fθ that return consistent predictions for similar data points, x and x̂.

Therefore, given an unlabeled data point x ∈ Du and the perturbed version x̂, the objective

is to minimise the distance between the two outputs d(fθ(x), fθ(x̂)). Popular distance

metrics for d are mean squared error, Kullback-Leibler divergence and Jensen-Shannon

divergence.

The majority of literature in consistency regularisation revolves around complex architecture

engineering such that the inputs, x and x̂, can be processed to produce outputs, fθ(x) and

fθ(x̂), that enforce the cluster assumption. One architecture makes use of ladder networks to
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train a CNN in semi-supervision for image classification [Rasmus et al., 2015]. This network

consists of two encoders, one for clean and the other for perturbed inputs, and a decoder

to remove the perturbation from noisy predictions. The unsupervised training loss is then

the mean squared error between the activations of the clean encoder and the reconstructed

activations of the noisy encoder. A variant of this network known as Γ-Model removes

the decoder network and computes the mean squared error between the outputs fθ(x) and

fθ(x̂) [Rasmus et al., 2015].

The Π-Model is a simplification of the Γ-Model, where the noisy encoder is removed and

the same network is used to get the predictions for both clean and perturbed inputs [Laine

and Aila, 2016]. This model takes advantage of common regularization techniques, such as

data augmentation and dropout, that do not alter predictions. Formally, for a given input

x, two augmentation schemes will produce inputs x̂ and x̄ producing outputs fθ(x̂) and

fθ(x̄). Then, an unsupervised loss is computed using mean squared error between fθ(x̂)

and fθ(x̄). An extension to the Π-Model uses temporal ensembling to aid with the unsu-

pervised task. Instead of perturbing an input with two separate stochastic augmentations,

an exponential moving average (EMA) of predictions is used to compute the mean squared

error between the current output and the EMA output [Laine and Aila, 2016].

Inspired with Π-Models and temporal ensembling, the mean-teacher approach is another

extension where two networks are used: a student network fθ and a teacher network fθ̂.

Both networks process the same input x and produce two sets of predictions fθ(x) and fθ̂(x),

however both networks are updated differently. The supervised loss is cross-entropy between

fθ(x) and known labels y and the unsupervised loss is the mean-square error between fθ(x)

and fθ̂(x). The combined loss updates the student network using standard gradient descent,

while the teacher network is updated using an EMA of student weights [Tarvainen and

Valpola, 2017]. Figure 2.4 lists different semi-supervised network architectures.
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Self-training methods

Self-training methods are a class of semi-supervision algorithms that produce labels from

unlabeled data using predictions from a model without any supervision. These generated

labels are then incorporated with known labeled data to provide more training samples for

the model to learn from [Ouali et al., 2020].

More formally, given a model f with parameters θ, the labeled dataset Dl is initially used

to train a prediction function fθ. The model is then used to assign labels to unlabeled

data points x ∈ Du. Given an output fθ(x), for an unlabeled data point x in the form of

a probability distribution. The new data entry (x, argmax(fθ(x))) is added to the labeled

set if the probability exceeds a threshold t [Riloff, 1996; Riloff and Wiebe, 2003].

The impact of self-training is similar to that of entropy minimization such that the network

learns more confident predictions. However, this could lead to the model amplifying erro-

neous labels on unlabeled data points. Some approaches to self-training use mean teacher

models to generate labels by allowing the teacher model to learn the problem domain us-

ing labeled examples, while also generating soft labels on unlabeled data. The student is

updated using the labeled set and the generated self-trained labels from the teacher model

[Xie et al., 2020]. In addition to image classification, self-training can also be applied to

semantic segmentation [Babakhin et al., 2019].

Pseudo-labeling is similar to self-training but the objective of pseudo-labeling is to gen-

erate labels that enhance the learning process [Lee et al., 2013; Iscen et al., 2019]. A first

attempt at adapting pseudo-labeling for deep learning constrained the usage of the pseudo-

labels during the fine-tuning stage after pre-training the network for ImageNet classification

[Lee et al., 2013]. Label-propagation with pseudo-labeling alternates between training the

network on labeled examples and pseudo-labels and then leveraging the learned representa-

tions to build a nearest neighbor graph where label propagation is applied to refine pseudo-

labels [Iscen et al., 2019]. However, naive pseudo-labeling overfit to incorrect pseudo-labels

due to the confirmation bias. In this context, confirmation bias refers to the tendency of
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the model to reinforce its own incorrect predictions, i.e, if the initial pseudo-labels are inac-

curate, then models may develop a bias for incorrect labels, leading to poor performance.

Some methods use MixUp and set a minimum number of labeled samples per mini-batch

in order to reduce confirmation bias [Arazo et al., 2020].

Meta pseudo-labels show that adding pseudo-labels to the training set is a key feature

to ensure optimal classifier performance. Previous work show that using a mean teacher

model, where the teacher model produces pseudo-labels based on an efficient meta-learning

algorithm called Meta Pseudo Labels (MPL) [Pham et al., 2021]. This algorithm encourages

the teacher to adjust the target distributions of training examples in a manner that improves

the learning of the student model. The teacher is updated through gradient descent by

evaluating the student model on a validation set.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a recent trend of unsupervised generative

models that attempt to match the distribution of a dataset [Goodfellow et al., 2020]. A

GAN is composed of two networks: a discriminator and a generator. The discriminator

learns to discern training samples that are either part of the true data set or from the

generator. The generator learns to produce samples that can fool the discriminator. Thus,

the loss gradient is propagated from discriminator to the generator through its ability to

judge real from fake samples. Intermediate feature maps in the discriminator can be used

to aid the classification process [Radford et al., 2015].

Due to the robust and symbiotic nature of discriminators and generators, GANs can be

trained in semi-supervised or unsupervised fashion by allowing samples from the generator

to be included in the training process. This way the discriminator operates as a classifier and

is trained to maximise the entropy predictions for real samples and maximise entropy for

generated ones. The generator learns to generate samples that will maximise discriminator

predictions for a given class [Springenberg, 2015].
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Other approaches use a discriminator with N + 1 classes, with the extra class representing

classified fake samples [Salimans et al., 2016]. The discriminator learns to minimise the

error between network predictions and labelled samples, and also learns to classify gener-

ated samples from the generator. In Salimans et al. [2016], two techniques for improved

GANs generalisation are also introduced, these being: mini-batch discrimination and fea-

ture matching. Mini-batch discrimination allows the discriminator network to operate

on multiple samples rather than individual samples. This allows to detect lack of diversity

among generated samples which is a good metric for generator performance by checking

whether the generator has a constant output. Feature matching uses a generator trained

to produce samples that induce latent features in the discriminator network, and attempts

to match the latent features induced by real samples.

GANs are trained such that the discriminator is used to guide the generator towards pro-

ducing samples whose distribution closely approximates that of the target dataset. Semi-

supervised classification performance can be improved by training a complement generator

to approximate a target distribution that assigns high densities for data points with low

densities in the true distribution [Dai et al., 2017].

Semi-supervised segmentation

A standard approach for semi-supervised semantic segmentation is to use additional data.

For instance, two datasets from different domains can be used to learn the similarity between

per-class embeddings from each dataset [Kalluri et al., 2019].

However, there are few approaches for semi-supervised segmentation that use the techniques

mentioned thus far. GANs can be used to generate dense predictions and allow the discrim-

inator network to distinguish between predicted segmentation maps and per-pixel labels.

For unsupervised samples the segmentation model learns to fool the discriminator network

by producing fine-grained accurate segmentation maps [Hung et al., 2018; Mittal et al.,
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2019]. The work in Mittal et al. [2019] also reports using a mean teacher model, further

improving performance.

Consistency regularisation for segmentation tasks is a challenging problem [French et al.,

2019, 2020a]. Standard linear transformations for augmentation procedures drive the consis-

tency metric and thus enforce the cluster assumption. In a segmentation task, low-density

regions do not correspond to class boundaries [French et al., 2019], and therefore, semi-

supervised segmentation through consistency regularisation has to be achieved without the

cluster assumption. Applications of consistency regularisation methods originate from the

medical imaging community [Perone and Cohen-Adad, 2018; Li et al., 2018b]. These meth-

ods use a MRI volume dataset to detect skin lesions with standard augmentation techniques

for perturbed samples. The mean teacher model has also been documented with methods

exploring augmenting unlabelled images with noise [Cui et al., 2019].

Given the advances in fully convolutional neural networks and semi-supervised optimisation

strategies [Long et al., 2015; Ronneberger et al., 2015; Tang and Shao, 2015], an opportu-

nity surfaces to not only demonstrate a practical application of fully convolutional neural

networks using very-high resolution orthomosaics derived from UASs but also to explore the

use of semi-supervised optimisation methods given that very-high resolution orthomosaics

of coastal environments may cover a substantial spatially-continuous area with respect to

the real-world, yet the ratio between the area covered via in-situ surveying and the total

area covered in imagery is often relatively small Bowler et al. [2020]; Hobley et al. [2021a].

This said, the use of semi-supervised segmentation methods have been used for remote

sensing:

Wang et al. [2022] used consistency-based regularisation and student/teacher networks with

pseudo-labels to drive a semi-supervised loss function with fully convolutional neural net-

works. The method was evaluated on the Inria aerial dataset with a spatial resolution of

0.3m where images cover densely populated cities to alpine towns. The objective was a

binary class problem of building and no building. The method was also evaluated on the
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15-class ISAID dataset. In both scenarios, the use of a semi-supervised loss function was

found to improve objective performance.

Wang et al. [2020b] also used consistency-based regularisation and pseudo-labels to drive a

semi-supervised loss function using UNets and DeeplabV3. The method was evaluated on

the 15-class ISAID dataset, and again, the use of a semi-supervised loss function was found

to improve objective performance.

Sun et al. [2020] used a complex semantic segmentation architecture with channel-weighted

multi-scale feature modules, boundary attention modules to alleviate boundary blur in

predicted segmented maps. Furthermore, the semi-supervised approach used an auxiliary

discriminator network designed to generate high-confidence pseudo-labels for unlabeled im-

ages. The method was evaluated on a ten class problem aerial dataset known as ISPRS

Vaihingen. The dataset has tiled orthomosaics with a spatial resolution of 9cm.

Patel et al. [2021] evaluated a self-supervised network with and semi-supervised method,

respectively known as SimCLR and FixMatch [Chen et al., 2020; Sohn et al., 2020], us-

ing a DeeplabV3+ neural network. These methods were evaluated on three datasets: a

riverbed segmentation derived from Google Earth of several riverbeds in India with a spa-

tial resolution of 4m, the publicly available Chesapeake Land Cover dataset sourced from

the Chesapeake conservancy region in the eastern United States with a spatial resolution

of 1m, and Sen1Floods11 that pairs raw satellite imagery with classified permanent and

flood water at a 10m spatial resolution. The discussion of results showed that the SimCLR

architecture using FixMatch outperformed the baseline DeeplabV3+ (trained with only the

supervised loss).

These use-cases show the practicality of semi-supervised methods for semantic segmentation

remotely sensed imagery. In general, the use-cases leverage consistency-based regularisation

with student/teacher network architectures to produce pseudo-labels with the main discus-

sion of results noting the increase in objective performance metrics when semi-supervision is

enabled. Both study sites described in Sections 3.3.1 and 4.2.1, show practical applications
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of semi-supervised fully convolutional neural networks to map complex target class domains

using very-high resolution optical imagery derived from UAS platforms. The method de-

scribed in Section 3.3 used a similar method to the aforementioned described use-cases, and

the method described in Section 4.5 shows a novel semi-supervised optimisation strategy

that leverages multi-task learning and an unsupervised auxiliary image task to promote

accurate and correct delineation of target classes.

2.4 Hyperspectral reconstruction

Hyperspectral Imagery (HSI) correspond to captures of scenes or objects where each pixel

contains an approximation of a continuous spectral curve to identify the substance of the

corresponding objects. In coastal remote sensing, acquiring HSI can aid distinguish different

species of vegetation [Liu et al., 2020a, 2022a] and better understand plant phenology [Song,

2005]. However, the devices for acquiring HSIs are complex and incur high costs over

common cameras [Descour and Dereniak, 1995; Cao et al., 2011]. Common methods for

data acquisition rely on precise scanning to generate hyperspectral data cubes which limits

sensor portability unlike standard commercial RGB cameras that require a single snapshot

with a centre perspective. Instead, these sensors rely on capturing detailed information

about the electromagnetic spectrum across numerous narrow and contiguous wavelength

bands with a general scan of the scene. Some literature attempts to solve portability issues

by recording a hyperspectral snapshot without scanning at the compromise of degrading

spatial resolution [Wagadarikar et al., 2009].

Another avenue is to extract hyperspectral information from a standard RGB image in a

process known as hyperspectral reconstruction. The latter is an ill-posed problem as there

are many physically plausible hyperspectral metamers that could correspond to the same

RGB capture [Cohen and Kappauf, 1982; Morovic and Finlayson, 2006]. Equations 2.2 and
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2.3 state the fundamental image formation equation for RGB images.

Ic(x, y) =

∫
ω
R(x, y, ω)L(ω)Sc(ω) dω (2.2)

Ic(x, y) =

∫
ω
H(x, y, ω)Sc(ω) dω (2.3)

Where, Ic is an RGB image with channels c = (r, g, b), R is the spectral reflectance property

at a pixel location (x, y) and wavelength ω, Sc is the spectral sensitivity function of the

camera at a channel c and wavelength ω and L is the light spectrum for the scene at a

wavelength ω. A hyperspectral image is defined as the multiplication of the reflectance

matrix R with the light spectrum L. Therefore, hyperspectral reconstruction attempts to

invert the image formation model to find the data-cube H from an RGB image Ic.

To promote solutions, several benchmark datasets have been released to objectively evaluate

methods for hyperspectral reconstruction. Open-sourced datasets include: CAVE, ICVL

and both NITRE challenges, respectively [Yasuma et al., 2010; Arad and Ben-Shahar, 2016;

Arad et al., 2018, 2020] that contain high-quality hyperspectral images of scenes and objects

along with RGB images projected into sRGB colour space. From these datasets, two main

types of hyperspectral reconstruction methods have been formulated in literature [Zhang

et al., 2022]: prior-base and data-driven using deep learning.

Prior-based methods attempt to represent an HSI data cube as a linear combination of

basis spectra, known as endmembers, weighted proportionally to the abundance of each

endmember in a image pixel. Formally, the HSI can be defined as the multiplication of the

basis spectra matrix (E) with its proportional abundance (A) for each pixel i.

Hi = EAi (2.4)

Then, the HSI cube can be projected to RGB camera space (X) using the sensor S.

Xi = ESAi (2.5)
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The latter equation has many non unique solutions which can be constrained with prior

knowledge of the hyperspectral dataset.

HSI exhibit sparse encoding and spectral information which can be expressed as a sparse

combination of basis spectra [Chakrabarti and Zickler, 2011]. One approach is to create a

dictionary representation to store the basis functions of E and abundance coefficients A.

Once a dictionary is built from hyperspectral imagery, the sensor response S can project

to RGB space and the projected dictionary can then be used to recover the hyperspectral

information of an input RGB image. Arad and Ben-Shahar [2016] creates a hyperspec-

tral dictionary by randomly selecting pixels in HSI that in turn correspond to continuous

spectral measurements. For selected samples, K-SVD [Aharon et al., 2006] creates a sparse

dictionary that can be projected to RGB colour space using the sensor responses. Dur-

ing inference, the Orthogonal Match Pursuit (OMP) algorithm [Pati et al., 1993] maps

the input RGB image to an intermediate representation using the projected dictionary and

then the intermediate representation is mapped to hyperspectral dictionary, thus recovering

spectral information. Another method establishes the RGB to HSI mapping with a local

dictionary instead of a global sparse dictionary. Then, it solves the mapping abundance

coefficients from neighboring anchor points in a least-squares optimisation [Aeschbacher

et al., 2017].

Prior-based methods rely on selected samples and known spectral responses. Deep learning

approaches leverage the highly parameterised nature of CNNs and high-quality labels from

benchmark datasets to learn accurate RGB to HSI mappings. One of the first approaches

to accurate hyperspectral reconstruction was achieved with a CNN architecture known as

HSCNN. This deep model restores hyperspectral information from RGB using principles

from the spatial super-resolution algorithm VDSR [Kim et al., 2016]. Networks are trained

using mean squared error and achieve good reconstruction fidelity but error rates increase

as network depth also increases [Xiong et al., 2017]. An extension to HSCNN tackles

model depth by introducing residual connections in each convolutional block (HSCNN-
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R) or dense blocks with path-widening fusion scheme (HSCNN-D), and achieves spectral

upsample through 1×1 convolutional layers [Shi et al., 2018]. Networks are trained with

mean relative absolute error on 50×50 image patches.

The current state of the art for hyperspectral reconstruction leverages attention modules

for accurate hyperspectral reconstruction. In reconstruction tasks, an adaptive weighted

attention network known as SRWAN uses the sensor responses as a prior and integrates

various strategies, such as: attention and residual learning [Li et al., 2020]. The attention

module is inspired from Squeeze-and-Excitation Hu et al. [2018]. Networks are trained using

a combined loss from the sensor response prior and hyperspectral reconstructed images both

evaluated using mean relative absolute error.

2.5 Multi-task learning

Generally in deep learning, networks are optimised to learn an objective metric in order to

achieve a specific image task, such as image classification [Krizhevsky et al., 2012], semantic

segmentation [Long et al., 2015], object detection [He et al., 2017], among other image tasks.

While optimising networks for a single specific task achieves state-of-the-art performance

on established benchmark challenges, auxiliary image tasks can aid the optimisation of

a single image task. By sharing internal representations and allowing information from

auxiliary training signals to flow through the network, models can learn different internal

representations and prevent overfit on the original image task. This approach is called

Multi-task learning (MTL) [Ruder, 2017].

The goal of MTL is to improve model generalisation by leveraging the domain-specific infor-

mation contained in the training signals of related tasks [Caruana, 1997]. The architecture

design of deep neural networks trained to perform MTL follow two paradigms: hard pa-

rameter sharing and soft parameter sharing. Figure 2.5 shows the general network

architecture for each MTL paradigm.
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The standard approach for network architectures with hard parameter sharing is to use

the same hidden layers, or convolutional layers in a CNN, and have multiple output layers

for each specific image task. Hard parameter sharing reduces the risk of overfit by allowing

networks to consider different solutions from auxiliary image tasks. In general, as the num-

ber of tasks increase, neural networks will attempt to find different internal representations

that capture all of the image tasks to be learnt jointly [Baxter, 1997]. Thus, reducing the

likelihood of overfit on each specific image task. Deep relationship networks are a hard

parameter that incorporates matrix priors on fully connected layers that allow the shared

model to learn the relationship between auxiliary image tasks [Long et al., 2017]. Adap-

tive feature sharing is another hard parameter sharing method that proposes a bottom-up

approach. An initial thin network is dynamically widened during training using a criterion

that promotes grouping of similar image tasks [Lu et al., 2017]. Dynamic network widening

entails that the topology of the network is adjusted during training to accommodate more

complex or diverse tasks or data representations. This widening can involve adding more

layers, units, or other architectural elements to the network as needed.

The alternative method for MTL is soft parameter sharing. In this scenario, multiple

networks are trained, each for a specific image task, and a joint multi-task loss drives the

optimisation of all the networks. Networks are then encouraged to learn auxiliary image

tasks by allowing networks to optimise based on representations from auxiliary networks.

One form of soft parameter sharing is to calculate the Euclidean distance and trace norm

between auxiliary networks [Duong et al., 2015; Yang and Hospedales, 2016]. Another

method for soft parameter sharing is to use individual networks for each image task. But,

the input to each layer is a linear combination of the outputs of the previous layer from

every auxiliary network [Misra et al., 2016]. This neural network architecture is also known

as Cross-stitch networks.
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2.6 Conclusions

The review in chapter 2 covered topics related to sensor platforms, methods for thematic

mapping in coastal remote sensing, state-of-the-art deep learning architectures, different

optimisation procedures with limited amounts of labelled records and deep learning appli-

cations for hyperspectral reconstruction and MTL.

Section 2.1.4 provided a critical review of different sensor platforms in coastal remote sens-

ing. The choice of a particular platform depends on the application and scale of the coastal

study site. For large coastal extents with target classes that may span several meters,

features of interest can be captured using satellite imagery at repeated sampling intervals

and are appropriate for continued monitoring of large geographic areas [Gould, 2000]. For

regional to local coastal extents where the scale of features may present in sub-decimeter

range, the use of UAS imagery provides suitable temporal and spatial resolutions for mon-

itoring environmental phenomena, such as coastal vegetation for intertidal and open-shore

beaches [Anderson and Gaston, 2013]. In particular rotor-based drones allow for stable

capture of optical imagery where detailing features for target classes resolve to centimeters

[Duffy et al., 2018]. Features and mapping objectives vary from one coastal environment to

another but the choice of sensor must consider the scale of features to be mapped.

Section 2.2.3 showed a chronological progression of methods used to map features from

remotely sensed coastal imagery. The first set of methods, known as pixel-based methods,

whereby the analysis and subsequent pixel-classification do not include contextual spa-

tial detail. With increasing spatial resolution due to advances to sensor platforms, these

methods were super-seeded by object-based methods whereby the use of contextual spatial

information improved objective performance in various coastal mapping surveys. Sections

2.3.2 and 2.3.5 showed modern deep neural networks for pixel-wise classification, or semantic

segmentation that provides an equivalent output to methods described in 2.2.3. Deep learn-

ing and fully convolutional neural networks have shown to outperform shallow supervised
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machine learning, and therefore an opportunity surfaces to apply this branch of computer

vision to very-high resolution optical imagery using rotor-based UASs.

During the research period, Cefas provided two datasets with VHR imagery captured with

UAS instruments and miniaturised multispectral sensors that provided the basis to extract

fine scale orthomosaics of Budle Bay, Northumberland, England (55.625◦N, 1.745◦W) and

Sizewell, Suffolk, England (55.207◦N, 1.602◦W) with multispectral resolution using SfM

[Turner et al., 2012]. The Environmental Agency (EA) provided in-situ data for Budle Bay,

while the in-situ survey for Sizewell was a combined effort of Cefas and the UEA. Given

these datasets, the following chapters examine each study site individually. Each dataset

had a different mapping objective, and each chapter attempts to map either problem domain

using different methods.

The main goal for Budle Bay is to map intertidal seagrass extents due to its contribution to

intertidal coastal ecosystem health. The scale of intertidal seagrass, and other macro-algae

species, present at the study site warrant the use of fixed wing UASs to allow for stable

capture at very-high resolutions (approx. 3cm per pixel resolution). Furthermore, Cefas

was able to provide thematic maps of Budle Bay that were generated using object-based

methods with supervised machine learning, as described in Section 2.2.3, which provides

the opportunity to compare these methods with fully convolutional neural networks and

sophisticated optimisation procedures, as shown in Section 2.3.2 and 2.3.5. Section 3.3

shows a practical application of consistency-based regularisation methods for intertidal sea-

grass mapping and the discussion addresses the challenges and problems associated with

mapping these species of intertidal seagrass among species of algae. Section 3.4 explores

these problems by conducting an inter-observer experiment to investigate the feasibility of

crowdsourcing labels. The discussion was two-fold: the variability among participants in

the experiment was analysed with respect to discipline expertise, and then the use of par-

ticipant annotations to train deep learning models is also analysed to discuss the feasibility

of crowdsourcing labels from aerial imagery.
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The main goal for the Sizewell study site is to map the strandline and sand-dune commu-

nities belonging to SD1, SD2, SD6 and SD7 National Vegetation Classes (NVCs). Again,

the scale of shingle vegetation species present at Sizewell necessitate the use of rotor-based

drones to allow for stable capture at very-high resolutions (approx. 1cm per pixel resolu-

tion). In particular, the detailing features that separate each of species found at Sizewell

are often less than 15cm that further stressed the need to use UAS. Furthermore, the in-situ

survey for Sizewell also provided the opportunity to evaluate hyperspectral reconstruction

methods described in Section 2.4. Therefore, an opportunity also surfaces to evaluate the use

of CNNs for hyperspectral reconstruction with a comparison of previous methods. Then, in

Section 4.5, the use of an MTL framework to jointly learn hyperspectral reconstruction and

semantic segmentation is investigated with the discussion comparing results of supervised

and semi-supervised methods, as shown in Section 3.3, and fully convolutional networks

trained using MTL.
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Figure 2.4: Different semi-supervised network architectures used for generating

consistency-based loss functions. The Π-Model (top architecture) generates pairs of

predictions using a single model and two different stochastic image augmentation pro-

cesses, generating two different sets of predictions, ŷ and ȳ. The latter drive the un-

supervised consistency loss function and the label y and ŷ drive the supervised loss.

Temporal ensembling (middle architecture) generates a single set of predictions ȳ which

drives the standard supervised loss and the unsupervised consistency loss through an

EMA of predictions from the previous iteration ŷ. Mean-teacher (bottom architecture)

uses two networks to generate pairs of predictions, the student network which drives the

supervised loss and a teacher network which is an EMA of the weights in the student

network. The unsupervised consistency loss is driven by the predictions generated from

the student and teacher network [Tarvainen and Valpola, 2017]
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3 Budle Bay - semi-supervised and

crowd sourced learning for intertidal

seagrass mapping

3.1 Introduction

The research for this chapter was focused on Budle Bay, Northumberland, England (55.625◦N,

1.745◦W). The coastal site has one tidal inlet, with previous maps also detailing the same

inlet [Ladle, 1975; Meyer, 1973; Olive, 1993]. Sinuous and dendritic tidal channels are

present within the estuary, and bordering the channels are areas of seagrass and various

species of macroalgae. The tidal range varies between 1-4m for the majority of the year

and the estuary is fully drained on low spring tides.

The research for this chapter will focus on developing methods to map intertidal seagrass

in Budle Bay using limited amounts of labelled data. As mentioned in Section 1, these

environments are physically varying through the energy expended with water and sediment

movement [Alongi, 2020]. And in particular, intertidal seagrass and algae play an important

role to tidal and energy management from currents and waves [Bouma et al., 2005], sediment

quality and stability [Koch, 1999; Fonseca et al., 1983].

First, Section 3.2 shows the collected data and imagery for Budle Bay. The target class

domain for the mapping exercise is detailed as well as the cameras used to survey the study

site.
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Then, Section 3.3 shows a semi-supervised approach for semantic segmentation using deep

learning models for intertidal seagrass mapping. The discussion includes a comparison

with standard mapping techniques for intertidal seagrass, and compares objective scores

and visual habitat maps derived from models trained in supervised and semi-supervised

settings, with the results obtained using OBIA.

The second method in Section 3.4 continues to find alternatives for mapping intertidal sea-

grass with limited amounts of labelled data. Instead of devising semi-supervised methods

for semantic segmentation, an annotation experiment was conducted to illustrate the feasi-

bility of supplementing training labels derived from the in-situ survey with labels obtained

directly from aerial imagery. First, the goal is to examine inter-observer variability sub-

ject to annotator expertise, and then deep learning models are trained with crowdsourced

annotations.

3.2 Data collection and in-situ survey

Ground and aerial surveys of Budle Bay were conducted in September 2017 by the Centre for

Environmental Fisheries and Aquaculture Sciences (Cefas) and the Environmental Agency

(EA). The aerial survey performed two flights using a fixed-wing UAS with each flight

using one of two attached available sensors: a SONY ILCE-6000 camera with filters for

Red, Green and Blue channels and a ground sampling distance of approximately 3 cm

(Figure 3.1, bottom right). And a MicaSense RedEdge3 camera with five narrow banded

filters for Red (655-680 nms), Green (540-580 nms), Blue (459-490 nms), Red Edge (705-

730 nms) and Near Infra-red (800-880 nms) channels and a ground sampling distance of

approximately 8 cm (Figure 3.1, top right).

Very high resolution orthomosaics of Budle Bay were created with Agisoft’s MetaShape

[Agisoft, 2018] and SfM. SfM techniques rely on estimating intrinsic and extrinsic camera

parameters from overlapping imagery [Cunliffe et al., 2016]. A combination of appropriate

flight planning in terms of altitude and aircraft speed, overlap between successive pho-
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tographs, weather conditions, and the camera’s field of view were important for producing

good quality orthomosaics.

The resulting VHR orthomosaic was further processed with GPS logs of camera positions

and ground control markers spread out across the site to ensure that the mosaic was well

aligned with real-world coordinates and ecological features present within the coastal site.

The multispectral orthomosaic from the MicaSense RedEdge3 sensor had 32,647×26,534

pixels in five image bands, while the SONY ILCE-6000 was 87,730×72,328 pixels in three

image bands. For ease of processing, each orthomosaic was split into 6,000×6,000 non-

overlapping tiles along with geographic information to be used for further processing. The

SONY orthomosaic was split into 140 tiles and the MicaSense RedEdge3 into 24. Figure

3.1 shows very-high resolution orthomosaics of the study site with the SONY ILCE-6000

camera and the MicaSense RedEdge3 multispectral camera and Figure 3.2 shows a close up

of each orthomosaics with intertidal vegetation amongst background sediment.

During the in-situ survey, expert ecologists from Cefas and the EA surveyed the Western,

Central and Southern parts of Budle Bay estuary. The survey found 13 ecological features

of interest that can be grouped into background sediment, algae, seagrass and saltmarsh.

Classes defining background sediment were rock, gravel, mud and sand. These measure-

ments of unvegetated sediment were predominately in the presence of water and moisture.

However, as parts of the orthomosaic included dry sand, an extra sediment class was added

through photo-interpretation from VHR orthomosaics (16 polygons). For the purpose of

this work, two heuristics for delineating dry sand polygons were defined: first, the spectral

reflectance of sand varies with presence of surface moisture and presents higher reflectance

intensity for patches of dry sand [Nolet et al., 2014]. Therefore, polygons were delineated

by examining bright unvegetated areas in Figure 3.1. Second, each generated polygon was

cross-checked with the topographic Digital Surface Model (DSM) to ensure that patches of

dry sand only occur if the surface level was raised.
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For vegetation, the following species for algae were found: Microphytobenthos, Enteromor-

pha spp. and a generic other macroalgae which included Fucus. The remaining vegetation

classes were seagrass and saltmarsh. Given the aim of the mapping objective for Budle

Bay was to examine areas of intertidal seagrass, both species of seagrass that were found:

Zostera noltii and Angustifolia were merged to a single class.

Therefore, a total of seven target classes can be listed that includes background sediment

features, and vegetation species of seagrass, algae and saltmarsh.

• Background sediment: Dry sand

• Background sediment: Other bareground

• Algae: Microphytobenthos,

• Algae: Enteromorpha

• Algae: Other macroalgae (including Fucus)

• Seagrass: Zostera noltii and Angustifolia merged to a single class

• Other plants: Saltmarsh

The team of expert ecologists from Cefas and the EA sampled 108 geographically referenced

tags. For each tag, quadrat sampling was used to estimate the percentage cover of classes

of interest, with each quadrat defining a 300×300mm square [Shuman and Ambrose, 2003;

Mumby et al., 1997]. Quadrat sampling is a common method for ecologists to sample

ecological features within a study site and accurately calculate the percentage cover of each

target class (as shown in the list of bullet points). The process entails placing a see through

square over the stated area and then sub-divisions within the square allow ecologists to

quantify the percentage cover of each target class by adding up the number of sub-divisions

that contain a particular ecological feature. This process can be seen in Figure 3.3. In order

to apply fully convolutional neural networks for semantic segmentation, each sample point

that contains the percentage cover of seven target classes was reduced to a single label by
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selecting the class value with maximum percentage. Figure 3.4 shows the distribution of

recorded tags across the site, and as mentioned, these were dispersed mainly on the Western,

Central and Southern portions of the site.

Figure 3.3: Example of quadrat sampling for monitoring Zostera marina at Porth

Dinllaen. Figure from [Davies et al., 2017]

3.3 Semi-supervised intertidal seagrass mapping

Intertidal seagrass plays a vital role in estimating the overall health and dynamics of coastal

environments due to its interaction with tidal changes. However, most seagrass habitats

around the globe have been in steady decline due to human impacts, disturbing the already

delicate balance in environmental conditions that sustain seagrass. Miniaturization of multi-
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spectral sensors has facilitated very high resolution mapping of seagrass meadows that

significantly improve the potential for ecologists to monitor changes.

Accurate and efficient mapping of intertidal seagrass ecosystems play a key role for esti-

mating and assessing the health and dynamics of coastal ecosystems due to their sensitive

response to tidal processes [Fonseca et al., 1983; Fonseca and Bell, 1998; Gera et al., 2013;

Pu et al., 2014]; or human-made artificial interference [Short and Wyllie-Echeverria, 1996;

Marbà and Duarte, 2010; Duarte, 2002]. Furthermore, seagrass plays a vital part in var-

ious coastal processes such as: sediment stabilization [McGlathery et al., 2012], pathogen

reduction [Lamb et al., 2017], carbon sequestration [Fourqurean et al., 2012; Macreadie

et al., 2014] and as an indicator for water quality [Dennison et al., 1993]. However, there is

evidence seagrass areas have been in steady decline due to human disturbance for decades

[Waycott et al., 2009].

In the following Section, two analytical approaches are used for classifying intertidal seagrass

habitats; reviewed in chapter 2 are investigated: Object-based Image Analysis (OBIA) and

Fully Convolutional Networks (FCNs). Both methods produce equivalent outputs in the

form of semantically segmented maps. OBIA has been a prominent solution for coastal

remote sensing, with many studies leveraging in-situ data and multiresolution segmentation

to create habitat maps [Rasuly et al., 2010; Ventura et al., 2018; Butler et al., 2020; Husson

et al., 2016; Purkis et al., 2019; Janowski et al., 2020]. This work demonstrates the utility

of FCNs in two settings: a standard supervised approach and semi-supervised setting to

map seagrass and other coastal features.

3.3.1 Methodology

Data pre-processing for FCNs

The recorded percentage covers were used to classify each point in Figure 3.4 to a single

ecological class listed in Section 3.2 based on the highest estimated cover during the in-

situ survey. The classification for each point provides the basis to create geographically
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referenced polygon files through photo interpretation. This process generated a total of 72

polygons (56 generated from the site survey + 16 polygons from dry sand) that were split

into train and test sets. The train set had 50 polygons and the test set 22. The use of photo

interpretation instead of selecting segmented image-objects from OBIA segmentation is to

avoid introducing bias from the OBIA method during FCN training.

Polygons to segmentation masks for FCNs

Each polygon contains a unique semantic value depending on the recorded class. FCNs were

trained with segmentation maps that contain a one-to-one mapping of pixels encoded with

a semantic value, with the goal to optimise this mapping [Long et al., 2015]. Segmentation

maps used for training FCNs were created using the geographic coordinates stored in each

polygon and converting real-world coordinates for each vertex to image-coordinates. As

mentioned, each orthomosaic was split into 6000×6000 non-overlapping tiles. If a polygon

fits within an tile, then the tile was cropped to an image size of 256×256 centered on the

polygon. By cropping images centered on polygons the edges of each image have a number

of pixels that were not labelled, Figure 3.7. The difference in spatial resolution for each

camera results in a difference in labelled pixels, since each polygon covers the same area

within the real-world. This process generated 534 images with the MicaSense RedEdge3

multispectral camera that were split into 363 images for training, 69 images for validation

and 102 images for testing. The SONY camera produced 1108 images that were split

into 770 images for training, 125 images for validation and 213 images for testing. Figure

3.5 shows the process of generating training images for FCNs using generated rasterised

polygons and orthomosaics tiles. Figure 3.6 shows the examples of converting each in-situ

point, shown in Figure 3.4, to a rasterised polygon through photo interpretation for each

target class listed in Section 3.2. Figure 3.7 displays a gallery of images for each class with

some example polygons.
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Figure 3.6: Gallery of images for each class with accompanying in-situ points that were

used to annotate polygons. On the right are rasterised polygons which were generated

through expert photo-interpretation and the knowledge conveyed by the classified in-

situ point which can be seen in the middle column of images. The left column of

images provides the same orthomosaic crop with no overlay of in-situ classified points

and rasterised polygons.
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Vegetation, soil and atmospheric indices for FCNs

Vegetation, soil and atmospheric indices are derivations from standard Red, Green and Blue

and/or Near-infrared image bands that can aid discerning multiple vegetation classes [Xue

and Su, 2017]. Near-infrared, Red, Green and Blue bands from the MicaSense RedEdge3

were used to compute a variety of indices, adding five bands of data to each input image.

These extra bands were: Normalised Difference Vegetation Index (NDVI) [Rouse et al.,

1974], AAtmospheric Resistant Vegetation Index (IAVI) [Ren-hua et al., 1996], Modified

Soil Adjusted Vegetation Index (MSAVI) [Qi et al., 1994], Modified Chlorophyll Absorption

Ratio Index (MCARI) [Daughtry et al., 2000] and Green Normalised Difference Vegetation

Index (GNDVI) [Louhaichi et al., 2001]. The Red, Green and Blue channels for both

cameras were used to compute additional four indices, namely: Visible Atmospherically

Resistant Index (VARI) [Gitelson et al., 2002], Visible-band Difference Vegetation Index

(VDVI) [Xiaoqin et al., 2015], Normalised Green-Blue Difference Vegetation Index (NGBDI)

[Verrelst et al., 2008] and Normalised Green-Red Difference Vegetation Index (NGRDI)

[Tucker, 1979]. The choice of these indices was mostly due to the importance of the Green

channel for measuring reflected vegetation spectra, while also providing more data for FCNs

to model complex one-to-one mappings for each pixel.

The mentioned index images were stacked onto the channel dimension which resulted in

images for the MicaSense RedEdge3 and the Sony camera having 14 and seven bands,

respectively. Furthermore, each individual image band was scaled to a value between zero

and one.

Fully Convolutional Networks

Fully Convolutional Neural Networks [Ronneberger et al., 2015; Long et al., 2015; Chen

et al., 2018] are an extension of traditional CNN architectures for image classification [Le-

Cun et al., 2015b; Krizhevsky et al., 2012] adapted for semantic segmentation. Figure 3.8

displays the architecture used for this chapter. The overall architecture is a U-Net [Ron-
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neberger et al., 2015] and the encoder network is a ResNet101 [He et al., 2016] pre-trained

on ImageNet. Residual learning has proven to surpass very deep neural networks [He et al.,

2016] and is a suitable encoder network for the overall U-Net architecture. The decoder

network applies a transposed 2 × 2 convolution for upsampling while also concatenating

feature maps from each encoding stage at appropriate resolutions followed by a 3× 3 con-

volution. The final layer uses 1×1 convolution and condenses feature maps without spatial

decimation to have the same number of channels as the total number of classes before a

softmax transfer function classifies each pixel.

Figure 3.8: U-Net architecture and loss calculation. The input channels are stacked

and passed through the network. The encoder network applies repeated convolution

and max pooling operations to extract feature maps, while in the decoder network

upsamples these and stacks features from the corresponding layer in the encoder path.

The output is a segmented map that is compared with the mask using cross-entropy loss.

The computed loss is used to train the network, through gradient descent optimisation

For semi-supervised training the Teacher-Student method was used [Tarvainen and Valpola,

2017]. This approach requires two networks: a teacher and a student, both having the same

architecture as shown in Figure 3.8. The student network is updated through gradient

descent minimising the sum of two loss terms: a supervised loss calculated on labelled

Chapter 3 Brandon Hobley 79



Monitoring Coastal Environments using UAS Imagery and Deep Learning

pixels of each segmentation map, and conversely, an unsupervised loss calculated using

non-labelled pixels. The teacher network is updated using an Exponential Moving Average

(EMA) of weights from the student network. The EMA is a popular statistical calculation

used to analyse data points over time, with a particular emphasis on the most recent data.

Therefore, the moving average provides more weight to recent data points which in turn

allows responsive to changes in the underlying data. In this scenario, the teacher network

provides the EMA which passes knowledge about the underlying trends to guide the learning

process given the student learns from both labeled and unlabeled data.

Weighted training for FCNs

Section 3.3.1 detailed the process of creating segmentation maps from polygons. Both sets

of images from each camera had an imbalanced target class distribution. Figure 3.9 shows

the number of labelled pixels per class and also the number of non-labelled pixels for each

camera. The recorded distribution poses a challenge for classes such as other macroalgae

Figure 3.9: Distribution of labelled pixels within the polygons for each class and non-

labelled pixels on a log-scale. Given each training image was a 256×256 crop of the

orthomosaic centered around each polygon, the number of non-labelled pixels refers to

image pixels outside the polygon that reside within the 256×256 crop.

and Microphytobentos due to the relatively low number of labelled pixels in comparison
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with the remaining classes. The pixel counts shown in Figure 3.9 were used to calculate the

probability of each class in the training set. For each class, a weight was computed using

the inverse of each probability. During training the supervised loss was scaled with respect

to calculated weights based on class abundance.

wi = (piK)−1 (3.1)

Where, wi is ith weight for a given class probability pi and K is the total number of

classes.

Supervised loss

For the supervised loss term, consider X ∈ RB×C×H×W and Y ∈ ZB×H×W to be respec-

tively, a mini-batch of images and corresponding segmentation maps; where B, C, H and

W are respectively, batch size, number of input channels, height and width. Processing a

mini-batch with the student network outputs per-pixel scores Ŷ ∈ RB×K×H×W ; where K

is the number of target classes. The softmax transfer function converts network scores into

probabilities by normalising all K scores for each pixel to sum to one.

Pk(x) =
exp Ŷk(x)∑K

k′=1 exp Ŷk′(x)
(3.2)

Where, x ∈ Ω; Ω ⊆ Z2 is a pixel location and Pk(x) is the probability for the kth channel at

pixel location x, with
∑K

k′=1 Pk′(x) = 1. Then, the negative log-likelihood loss is calculated

between segmentation maps and network probabilities.

Ls(P, Y ) =


0, if Y (x) = −1

−
∑K

k=1 Yk(x) log(Pk(x)),

if Y (x) ̸= −1

(3.3)
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For each image, the supervised loss is the sum of all losses for each pixel using eq. 3.3 and

scaled according to the number of labelled pixels in Y .

Unsupervised loss

Previous work in semi-supervised segmentation details using a Teacher-Student model and

advanced data augmentation methods in order to create two images for each network to

process [French et al., 2020a; Olsson et al., 2021]. While this work did not use data aug-

mentation methods, pairs of images were created by leveraging labelled and non-labelled

pixels in Y .

As with the supervised loss term, a mini-batch of images is passed through both the student

and the teacher networks, respectively producing per-pixel scores Ŷ and Ȳ . Again, pixel

scores are converted to probabilities with softmax, equation 3.2, respectively producing P̂

and P̄ . The maximum-likelihood of teacher predictions was used to create pseudo-labels to

compute the loss for non-labelled pixels in Y . Thus, the unsupervised loss is also calculated

similarly to equation 3.3 but the negative log-likelihood is computed between predictions

from the student model (P̂ ) and a pseudo-label map (Y p) generated by the teacher model

on pixels that are initially non-labelled.

Lu(P̂ , Y p) =


0, if Y (x) ̸= −1

−
∑K

k=1 Y
p
k (x) log(P̂k(x)),

if Y (x) = −1

(3.4)

For each image, the unsupervised loss was the sum of all losses for each pixel using equation

3.4 scaled according to the number of non-labelled pixels within Y . Confidence thresh-

olds were also used so that only confident or high probability predictions from the teacher

network would aid the unsupervised loss, and also so that initial optimisation steps focus

more on the supervised loss term. Classes with a relatively low number of labelled pixel

would benefit from the unsupervised loss term, as confident teacher predictions can guide
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the decision boundaries of student models by adding pseudo-label maps to consider. Figure

3.10 shows the overall architecture of the method that was used to generate the results in

Section 3.3.3.

Figure 3.10: Mean-Teacher architecture for semi-supervised segmentation using

pseudo-labels. The student network produces predictions that are used to compute

the supervised loss with known polygons. The teacher network produces predictions

that are then converted to hard pseudo-labels which are then used to drive the unsu-

pervised loss. The student is updated using the combined loss and gradient descent,

and the teacher network is updated with an EMA of the student network weights.

Training parameters

Combining both loss terms yields the objective cost used for optimising FCNs in a semi-

supervised setting.

L = wLs + γLu (3.5)
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Where, Ls and Lu are respectively the supervised and unsupervised loss term. The super-

vised loss was scaled according to the weights computed in Eq. 3.1 and the unsupervised

loss to γ that was set to 0.1 for all experiments.

All networks were pre-trained on ImageNet. Networks for each camera were trained for 150

epochs with a batch-size of 16 using Adam optimiser [Kingma and Ba, 2014]. The learning

rate was initially set to 0.001 and reduced by a factor of ten every 70 epochs of training. The

confidence threshold for teacher predictions was set to 0.97. The hyper-parameters were

chosen through an exhaustive search of various settings and monitoring the convergence

with loss plots and accuracy metrics using the validation set without cross-validation. All

FCNNs were implemented and trained using Pytorch version 10.2.

OBIA

The OBIA method for modelling multiple coastal features was performed using eCognition

v9.3 [Benz et al., 2004]. This software possesses the tools to process high resolution ortho-

mosaics and shape file exports from GISs to create supervised machine learning models.

Section 3.3.1 detailed a number of methods used to pre-process the orthomosaics and shape

polygons, however the OBIA does not require this.

The first step in OBIA is to process each orthomosaic using a multi-resolution segmentation

algorithm to partition the image into segments [Benz et al., 2004]. The bottom-up segmen-

tation process starts with individual pixels and clusters pixels to image-objects using one

or more criteria of homogeneity. The subsequent clustering of two adjacent image-objects

or image-objects that are a subset of each other is based on the following criterion:

h =
∑
c

N(omc − o1c) +M(omc − o2c), (3.6)

Where o1, o2 and om respectively represent the pixel values for objects one, two and a

candidate virtual merge m. N and M are the number of total pixels, respectively for

objects one and two. This criterion evaluates the change in homogeneity during fusion of
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image-objects. If this change exceeds a hyper-parameter threshold value, then the fusion is

not performed. In contrast, if the change in image-objects is below the threshold, then both

candidates are clustered to form a larger region. The segmentation procedure stops when no

further fusions are possible without exceeding the threshold value. In eCognition, this hyper-

parameter is also known as the scale parameter. The geometry of each shape is defined by

two other hyper-parameters: shape and compactness. For this work, the scale parameter

was set to 200, the shape to 0.1 and the compactness to 0.5. Figure 3.11 shows image

objects overlaid on top of both orthomosaics. These values were determined by the expert

geomorphologist at Cefas responsible for generating the results with OBIA. Again, the choice

of these hyper-parameter was through an exhaustive search and correlating the segmented

objects, using multi-resolution segmentation, with the physical size of ecological features

that were present within the orthomosaics. This in turn requires expert domain knowledge

to accurately correlate the outputs of the segmentation with ecological features.

In Section 3.3.1, the split of polygons for training and testing was detailed. Each polygon,

as shown in Figure 3.7, from the training set was superimposed on top of image-objects to

select the candidate segments for extracting spectral features. Selected image-objects cre-

ate a database for the in-built Random Forest [Breiman, 2001] in eCognition. The spectral

features for the MicaSense RedEdge3 camera were: channel mean and standard devia-

tion, vegetation and soil indices (NDVI, RVI, GNDVI, SAVI), ratios between Red/Blue,

Red/Green and Blue/Green image layers and the intensity and saturation components of

the HSI colour space. The features for the SONY were the same but the vegetation and soil

indices were not added. Once the features and image-objects were selected, the Random

Forest modeller produced a number of Decision Trees [Quinlan, 1986] with each tree being

optimised using the GINI Index [Lerman and Yitzhaki, 1984].

Overall efforts - time and hyper-parameter adjustments

The overall effort in terms of time spent between the OBIA and the proposed FCN methods

was similar.
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To start with, both methods require the same labels, or polygons, in order to drive the

optimisation of machine learning models. The use of spatially explicit labels was the key

factor for optimisation, and both methods require this in order to effectively learn complex

relationships from features derived using orthomosaics to target classes. Therefore, the time

spent creating the labelled dataset via rasterised polygons exported from GIS was the same

for both OBIA and FCNs.

The use of OBIA relies on the use of eCognition v9.3 [Benz et al., 2004] which streamlines

the process of training and testing and thus circumvents the pre-processing steps required

for FCNs. During supervised training procedures, the OBIA method requires two steps

of hyper-parameter adjustment. The first step was to adjust hyper-parameters for the

MRS, such as scale, shape and compactness, with the scale parameter being critical for

image-object creation. In turn, this requires the user using eCognition v9.3 [Benz et al.,

2004] to understand the target class domain for a particular mapping objective in order

to correlate segmented image-objects with known aerial extents of the class domain which

often requires multiple runs of the MRS in a trial and error fashion. The latter step can vary

on time depending on size of the orthomosaics, which impacts the run-time of MRS, and

the satisfaction of the end user when correlating image-objects with the underlying features

in the orthomosaics, which requires domain expertise. The second step was to to adjust the

hyper-parameters used for optimising Machine Learning models, such as Random Forests

and Support Vector Machines (SVMs). During inference procedures, OBIA allows for the

segmented orthomosaics (as a product of MRS) to be loaded and then individual image-

objects were classified using optimised models in order to create thematic maps. Again,

this process can vary on time depending and the satisfaction of the end user with regards

to objective metrics as well as subjective visual analysis of generated thematic maps.

As mentioned, the proposed FCN method requires several pre-processing steps such that

the dataset format is suitable for FCN optimisation. This requires tiling the orthomosaics

and center cropping images using the rasterised polygons with additional geographic in-
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formation. The time spent pre-processing the orthomosaics and rasterised polygons was

static and depends on the number of polygons and the size of the orthomosaics. During

training, the main objective was to ensure that the convergence of FCNs was appropriate

by adjusting the batch size, learning rate and total number of iterations parameters. The

latter was achieved by monitoring loss plots and validation accuracies that required several

runs in a trial and error fashion. During inference, optimised FCNs were used to classify

the non-overlapping tiles which were then stitched together using QGIS v3.10. The time

taken for stitching individual tiles was also static and depends on the total number of tiles

generated during the pre-processing stages.

Overall, both methods require similar time in order to produce accurate thematic maps with

appropriate training and inference. The OBIA has the advantage with the use of eCognition

v9.3 that allows each step to be streamlined. However, the main drawback with OBIA was

to adjust two sets of hyper-parameters, one for feature extraction with MRS and the other

during model tuning. The use of FCNs requires additional pre-processing steps for training

and then additional post-processing steps after inference but the time taken for optimising

FCNs was relatively lower.

3.3.2 Accuracy assessment

The measurements used to objectively quantify results were pixel accuracy, precision, recall

and F1-score. Pixel accuracy is the ratio between pixels that were classified correctly and

the total number of labelled pixels in the test set for a given class. Precision and recall

are metrics that can show how a classifier performs for each specific class. F1-score is

the harmonic mean of recall and precision and is therefore a suitable metric to quantify

classifier performance when a single figure of merit is needed. Equation 3.7 details each of

these metrics where TP , TN , FP and FN were respectively, True Positive, True Negative,

False Positive and False Negative pixel classifications.
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pixel accuracy =
TP + TN

TP + FP + TN + FN
(3.7)

precision =
TP

TP + FP
(3.8)

recall =
TP

TP + FN
(3.9)

F1 = 2× recall × precision

recall + precision
(3.10)

3.3.3 Experiments and Results

The outputs for both the FCNs and OBIA were compared with the test set polygons.

Figures 3.12 and 3.13 display confusion matrices scoring outputs from each method and

camera as pixel accuracy. The confusion matrices also show pixel accuracies for FCNs that

were optimised using equation 3.3 and models that were optimised using both equations

3.3 and 3.4. The confusion matrices are average results over three sequential train-test

runs with the set of hyper-parameters described in Section 3.3.1. Overall results for OBIA

and FCNs in a semi-supervised setting for each camera can be viewed in Table 3.1, where

precision, recall and F1-score are reported. Figure 3.14 displays habitat maps for each

method and camera.

SONY ILCE-6000 results

Predictions with the OBIA method had an average pixel accuracy of 90.6%. Classes related

to sediment had scores of 100% and 98.38%, respectively for dry sand and other bareground.

Algal classes scored 97.6%, 88.09% and 83.18%, respectively for Enteromorpha, Microphyto-

bentos and other macroalgae (inc. Fucus). Seagrass predictions were found to score 93.67%

and saltmarsh was the worst performing class for the OBIA with 73.32%.

FCNs yielded an average class accuracy of 76.79% and 83.3%, respectively for supervised

and semi-supervised settings. Both approaches scored close to 100% for dry sand and
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other bareground performed better in a semi-supervised setting scoring 96.88%. Scores for

Enteromorpha and other macroalgae (inc. Fucus) were respectively 38.72% and 32.29% for

supervised training and 57.05% and 55.90% for semi-supervised training. Seagrass scored

similarly in both training settings with approximately 90% and saltmarsh scored better in

a supervised setting with 87.78%, while the semi-supervised setting scored 81%.

MicaSense RedEdge3 results

The OBIA method had an average pixel accuracy of 73.44%. Sediment classes such as dry

sand and other bareground scored 63.18% and 42.80%. Algal classes scored 93.42%, 72.54%

and 49.31%, respectively for Enteromorpha, Microphytobentos and other macroalgae (inc.

Fucus). The remaining vegetation classes of seagrass and saltmarsh both presented high

scores of 95.48% and 96.38.

FCNs yielded an average class accuracy of 83.68% and 88.7%, respectively for supervised

and semi-supervised settings. Both models had good scores for sediment classes scoring

above 95% in pixel accuracy. Algal classes of Enteromorpha, Microphytobentos and other

macroalgae (inc. Fucus) respectively scored for supervised and semi-supervised training

(91.5%, 91.3%), (87.3%, 93.6%) and (45.5%, 63.6%). Seagrass predictions scored 69.6%

and 76.2, while saltmarsh was found to score 97.4% and 98.9%, respectively for supervised

and semi-supervised training.

Overall results

Table 3.1 shows the scores for precision, recall and F1-score for OBIA and FCNs trained in

semi-supervision.

Habitat maps

Figure 3.14 shows the habitat maps of Budle Bay for each camera and method previously

described.
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Figure 3.14: Segmented habitat maps for both cameras and methods. The top row

- RedEdge3 and SONY cameras orthomosaics. The second row - habitat maps using

the OBIA approach. The third row - FCNN maps in a supervised setting. The bottom

row - FCNN maps in a semi-supervised setting. The left column - RedEdge3 images

and segmented maps, the right column - the SONY images and maps. Legend: OM

- Other Macroalgae inc. Fucus; MB - Microphytobentos; EM - Enteromorpha; SM -

Saltmarsh; SG - Seagrass; DS - Dry Sand; OB - Other Bareground.
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P R F1

DS 0.99 0.62 0.76
OB 0.56 0.42 0.48
EM 0.73 0.95 0.83
MB 0.008 0.72 0.01
OM 0.25 0.49 0.33
SG 0.67 0.95 0.78
SM 0.99 0.96 0.98

MicaSense: OBIA

P R F1

0.98 0.99 0.99
0.99 0.97 0.98
0.77 0.91 0.83
0.84 0.93 0.88
0.47 0.63 0.54
0.67 0.76 0.71
0.98 0.98 0.98

MicaSense: FCNN

P R F1

1.0 1.0 1.0
0.99 0.98 0.99
0.25 0.97 0.40
1.0 0.88 0.93
0.02 0.83 0.05
0.64 0.93 0.76
0.99 0.73 0.84

SONY: OBIA

P R F1

0.99 1.0 0.99
0.99 0.97 0.98
0.18 0.57 0.27
0.30 0.99 0.46
0.66 0.55 0.60
0.27 0.93 0.42
0.97 0.81 0.88

SONY: FCNN

Table 3.1: Precision, recall and F1 scores for both algorithms on both cameras.

The results for FCNs reflect models trained using semi-supervision. DS - Dry Sand;

OB - Other bareground; EM - Enteromorpha; MB - Microphytobentos; OM - Other

macroalgae; SG - Seagrass; SM - Saltmarsh

3.3.4 Discussion

Figures 3.12, 3.13 and 3.14 as well as Table 3.1 indicate that FCNs provide comparable

performance to OBIA. Figures 3.12 and 3.13 also show an increase in performance for the

semi-supervised FCN models in comparison to the supervised setting.

FCNs convergence

The convergence of FCNs was analysed by testing multiple settings and hyper-parameters.

The optimal set of hyper-parameters was determined by assessing computed confusion ma-

trices and validation losses over three sequential train/test runs with a given set of hyper-

parameters. Figures 3.12 and 3.13 show average pixel accuracy scores over three sequential

runs with the same hyper-parameters described in Section 3.3.1.

SONY ILCE-6000 analysis

Habitat maps from the SONY camera were found to perform better with the OBIA than

FCNs in terms of average pixel accuracy and F1-score. Respectively, the OBIA had an

average accuracy and F1-score of 90.6% and 0.71, while FCNs in a semi-supervised setting

had 83.3% and 0.65.
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Sediment class predictions for both methods scored well, with both metrics either scoring

above 90% or above 0.9, respectively for pixel accuracy and F1-score. This suggests that the

OBIA and FCNs methods successfully predicted test polygons for sediment classes while

also avoiding false positive and false negative pixel classifications.

Algal classes were found to have mixed performance depending on the method used. Scores

in Figure 3.12 with OBIA noted that classes of Enteromorpha and other macroalgae (inc.

Fucus) scored better, while Microphytobentos were more accurate with FCNs. However,

scores in Table 3.1 for the same classes suggest that OBIA performed better for classes

of Enteromorpha and Microphytobentos, while FCNs scored better for other macroalgae.

Analysing areas in Figure 3.14 that were predicted as Enteromoprha with OBIA and com-

paring these areas with FCN habitat maps show that the latter method interchangeably

predicts Enteromorpha and saltmarsh. This observation can be supported by Figure 3.12

where 60.43% and 41.14% of test labels for Enteromorpha were predicted as saltmarsh,

respectively for supervised and semi-supervised settings. These points suggest that habitat

maps detailing areas for Enteromorpha with OBIA were more likely to be correct. Pixel

classifications in Figure 3.12 for Microphytobentos indicate that FCNs performed well and

accurately mapped test polygons of Microphytobentos, however figures for precision and F1

in Table 3.1 also indicate that FCNs have high false positive rate for this class. Conversely,

OBIA produced a perfect figure for precision which indicates that no pixel classifications for

test polygons were false positive. This high false positive rate for Microphytobentos can be

noticed by comparing the areas mapped as other bareground using OBIA that were mapped

as Microphytobentos for FCNs. Therefore, habitat maps with OBIA were more likely to be

correct for predictions of Microphytobentos. Other macroalgae (inc. Fucus) was found to

be a problematic class for FCNs due to the low number of labelled pixels relative to the rest

of the dataset (Figure 3.9). Confusion matrices in Figure 3.12 show that other macroalgae

were often classified as Enteromorpha which is another algae present in Budle Bay. How-

ever, they also show that the semi-supervised results were much better than the results

in the supervised setting that supports the premise in Section 3.3.1 that an unsupervised
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loss term on pseudo-label segmentation maps can help datasets with a relative low number

of labelled pixels. While scores show that OBIA performs better on classification of other

macroalgae, Table 3.1 shows that the F1-score was lower with OBIA than FCNs that was

mainly due to the OBIA low precision score. Habitat maps in Figure 3.14 show that most

areas classified as other macroalgae are similar for both approaches.

The confusion matrix also shows that scores for seagrass are high for both methods. How-

ever, Table 3.1 also shows that precision figures were 0.64 and 0.27, respectively for OBIA

and FCNs. This again suggests a high false positive rate for FCNs, with habitat maps

in Figure 3.14 also detailing more areas mapped as seagrass with FCNs than with OBIA.

Therefore, areas mapped as seagrass with OBIA were more likely to be correct than FCNs.

The results for saltmarsh were in general very similar for both methods. Scores in the con-

fusion matrix show that saltmarsh polygons was 73.32% for OBIA, and 87.78% and 81.0%

for FCNs, respectively for supervised and semi-supervised settings. The F1-score was 0.84

and 0.88, respectively for OBIA and FCNNs. This suggests that OBIA was more likely to

classify pixels within saltmarsh polygons incorrectly, although overall both maps present

similar areas mapped as saltmarsh.

MicaSense RedEdge3 analysis

Habitat maps from the MicaSense RedEdge3 multispectral camera were found to be more

correct with the FCNs than OBIA in terms of both average pixel accuracy and F1-score.

The OBIA had an average accuracy and F1-score of 73.4% and 0.60, while semi-supervised

FCNN had 88.7% and 0.84.

In terms of both pixel accuracy and F1-score for sediment classes, FCNs were found to

perform better than OBIA. The confusion matrix for the latter method in Figure 3.13

shows that 35.82% of pixels in dry sand polygons were classified as other bareground, while

Table 1 shows figures of 0.99 for precision and 0.62 for recall. This would suggest that false

negative classifications for dry sand were mostly other bareground. Figure 3.13 shows FCNs
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in both settings achieved scores of 98% and the semi-supervised setting had an F1-score

of 0.98 that suggests that FCNs accurately mapped dry sand test polygons. However, the

habitat maps in Figure 3.14 note some differences in areas mapped as dry sand for each

method. In particular, supervised FCNs were found to classify larger areas as dry sand,

whereas semi-supervised FCNs produced similar results to OBIA. OBIA classified 56.49%

of other bareground polygon pixels as Microphytobentos. In Section 3.2, other bareground

was noted to include wet sand, while Microphytobentos is a unicellular eukaryotic algae and

cyanobacteria that grow within the upper millimeters of illuminated sediments, typically

appearing only as a subtle greenish shading [MacIntyre et al., 1996]. This could provide

some reasoning for other bareground and Microphytobentos being interchangeably classified

with one another with OBIA. Similarly to dry sand, FCNs performed well in terms of both

pixel accuracy and F1-score which suggest that other bareground polygons were classified

correctly without producing many false positives.

Figure 3.13 and Table 3.1 show the scores for algal classes were higher with FCNs than

with OBIA. However, both methods were in fact similar in terms of these figures, with

the exception of F1-score for other macroalgae with OBIA. The confusion matrix in Figure

3.13 shows that both OBIA and FCN classifications for Microphytobentos exhibited poor

precision. Similarly to the SONY camera, this can be noticed by large areas in Figure 3.14

being predicted as Microphytobentos instead of other bareground, especially for FCNs in

a supervised setting. Both methods mapped Enteromorpha in similar areas but FCNs in-

cluded classifications for Enteromorpha in the center and the south eastern boundary of the

site, while OBIA predicted mostly seagrass and other bareground for the same stated areas.

Other macroalgae class was found to have better results with FCNs over OBIA. Moreover,

comparing supervised and semi-supervised models notes an increase in performance when

the unsupervised loss term was added to the training algorithm which again supports the

initial hypothesis that the unsupervised loss term aids FCNs with target classes that have

a low number of labelled pixels relative to the remaining classes.
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The remaining vegetation classes of seagrass and saltmarsh were found to have good per-

formance with both methods, however the OBIA was found to perform better with respect

to seagrass classifications. Both Figure 3.13 and Table 3.1 supported this with recall scores

being lower with FCNs than OBIA. As mentioned, low recall indicates high false negative

rate and interestingly all FCNs did not predict seagrass along the north western part of the

site (area covered in Figure 3.11). While it is not possible to quantify which method was

correct without surveying the site again, the confidence in seagrass predictions for OBIA

along with FCNs predicting bareground sediment instead of vegetation can lead to users

being more confident with OBIA for seagrass mapping. Both methods performed the same

for saltmarsh predictions and habitat maps in Figure 3.14 show that most predicted areas

were similar. However, FCNs were found to be more likely to interchangeably classify salt-

marsh and seagrass that is also supported by Figure 3.13, where each confusion matrix for

FCNs predicted a number of seagrass test polygon pixels as saltmarsh.

Overall analysis

In the discussion of the results for both cameras two key results were established.

The first result is that OBIA continues to be a suitable method for intertidal seagrass map-

ping while assessing multiple coastal features of algae and sediment within a site. Figures

3.12 and 3.13 as well as Table 3.1 reported pixel accuracy and F1-score that would suggest

some degree of confidence for areas classified as seagrass with OBIA in the maps shown

in Figure 3.14. Many other studies have mapped intertidal seagrass using OBIA with

encouraging results [Martin et al., 2020; Ventura et al., 2018; Duffy et al., 2018; Chand

and Bollard, 2021]. However, this work also attempted to make a direct comparison be-

tween FCNs and OBIA and showed that the latter outperformed the proposed method

with respects to intertidal seagrass mapping. Furthermore, the provided analysis recorded

accuracies for supervised classifications at a pixel-level. Some work on intertidal seagrass

mapping give confusion matrices for supervised classification where accuracies reflect the

percentage of segmented image-objects through multi-resolution segmentation that were
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classified correctly [Ventura et al., 2018] and geographically referenced shape points [Chand

and Bollard, 2021]. The work in [Martin et al., 2020] also performed an analysis of OBIA

for intertidal seagrass mapping at a pixel-level, however this work also considered mapping

intertidal seagrass at various density levels which adds complexity to the mapping task. In

fact, seagrass mapping can also be considered as a regression problem instead of classifica-

tion [Duffy et al., 2018; Perez et al., 2020]. Other work using FCNs for seagrass mapping

was found in [Reus et al., 2018; Weidmann et al., 2019; Yamakita et al., 2019]. However,

these studies were mainly concerned with subtidal seagrass meadows instead of intertidal

seagrass. FCNs have been used for mapping intertidal macroalgae [Balado et al., 2021] with

reported average accuracies for a five class problem to be 91.19%. Yet, this work considered

mapping intertidal macroalgae, seagrass and sediment features at a coarser resolution.

The second key result is that although FCNs performed less well for seagrass mapping,

overall results shown in Section 3.3.3 noted that FCNs had a comparable performance

with OBIA in terms of average pixel accuracy and F1-score. Moreover, Figures 3.12 and

3.13 as well as habitat maps in Figure 3.14 showed that a semi-supervised setting could

increase the overall performance of FCNs, reducing the need for more labelled data. This

was particularly true for other macroalgae (inc. Fucus) that benefited the most from a

semi-supervised training mode. Recent applications for semi-supervised segmentation have

shown to produce state of the art results with subsets of labelled data [French et al., 2020a;

Olsson et al., 2021; Kervadec et al., 2019; Perone and Cohen-Adad, 2018] that can provide

alternate modelling approaches for FCNs in practical applications where labelled data is

limited. Studies within remote sensing often have very limited amounts of labelled data

while the recent trends show the use of weakly-supervised and semi-supervised training

regimes may be utilised to overcome this problem [Wang et al., 2020c; Kang et al., 2019;

Islam et al., 2020]. In particular, [Islam et al., 2020] applies adversarial training for seagrass

mapping to overcome the domain shift from mapping in different coastal environments,

whereas Section 3.3.1 leverages non-labelled parts of each image to produce pseudo-labels

in a Teacher-Student framework.
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3.3.5 Summary

Section 3.3 showed that FCNs trained from a small set of polygons can be used for segmen-

tation of intertidal habitat maps in high resolution aerial imagery. Each FCN was evaluated

in two training modes, supervised and semi-supervised, with results indicating that semi-

supervision helps with segmentation of target classes that have a small number of labelled

pixels. This prospect may be of benefit in studies where in-situ surveying is an expensive

effort to conduct.

This section also showed that OBIA continues to be a robust approach for monitoring

multiple coastal features in high resolution imagery. In particular, OBIA was found to be

more accurate than FCNs in predicting seagrass for both cameras. However, as noted in

Section 3.3.3, OBIA results were highly dependant on the initial parameters used for MRS,

with the scale parameter being critical for image-object creation. Therefore, OBIA requires

the user to understand the target class domain for a particular mapping objective in order

to correlate segmented image-objects with known aerial extents of the class domain. Figure

3.11 shows the disparity of using the same scale parameter for imagery with different spatial

resolutions, even though the underlying geographical area is the same. Without knowledge

or prior experience of the study site, the choice of segmented map that best describes the

underlying vegetation features can be a limiting factor for accurate thematic mapping.

The study site and problem formation exhibits a complex mapping exercise given that the

classes listed in Section 3.2 pertinent to intertidal vegetation show similar colour and tex-

ture from an aerial point of view. This in turn can make confidence in seagrass predictions

decrease as ambiguity over multiple vegetation classes increases, in particular with Entero-

morpha sp.. OBIA was found to overcome this for both cameras accurately predicting

seagrass polygons while maintaining relatively high precision when compared to FCNs. On

the other hand, FCNs were found to be more accurate in classifying algae classes, in par-

ticular other macroalgae which had the least number of labelled pixels. Therefore, while

this work shows that OBIA is a suitable method for intertidal seagrass mapping, other
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applications in remote sensing for coastal monitoring with restricted access to in-situ data

can utilise semi-supervised FCNs.

3.4 Crowdsourcing experiment for intertidal seagrass map-

ping

Section 3.3 describes and analyses the use of semi-supervision for FCNs. However, crowd-

sourcing can also bridge the gap between laborious labelling efforts by a single individual

that in turn limits training data. Crowdsourcing labels can increase the volume of training

data but may compromise label quality and consistency. The following section assesses

the reliability of crowdsourced labels in order to provide a cost effective alternative for ac-

quiring labels in remotely sensed environmental mapping. A crowdsourcing experiment is

conducted in order to assess the statistical differences in human annotations for estuarine

coastal plant species and (unvegetated) sediment. The statistical differences were evaluated

using the Cochran’s Q-test and the annotation accuracy of each group was examined for

observation biases. Subsequently, several FCNs were trained with majority-vote annota-

tions from each group to check whether observation biases were propagated into the FCN

performance. The analysis covers two tests: first, a comparison between FCNs trained on

crowdsourced annotations are compared with FCNs trained solely from in-situ data, and

second, a crowdsourcing scenario is mimicked whereby in-situ reference data was supple-

mented with crowdsourced annotations. Discipline experts (ecologists and geomorpholo-

gists) familiar with the survey site performed better than experts with no prior knowledge

of the site and non-experts. The combined dataset of in-situ annotations and crowdsourced

labels from the best performing group yields a normalised average accuracy of 89.6% , while

FCNs trained on the same imagery with in-situ labels achieved 87.8%.
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3.4.1 Background

Section 3.3 noted the importance of intertidal seagrass for monitoring coastal ecosystem

health or human made interference [Fonseca et al., 1983; Fonseca and Bell, 1998; Gera

et al., 2013; Pu et al., 2014; Short and Wyllie-Echeverria, 1996; Marbà and Duarte, 2010;

Duarte, 2002].

This said, the quantity and quality of data labels is a pivotal concern in many real-world

scenarios because deep learning models perform best with large, labelled, training datasets

[LeCun et al., 2015a; Eickhoff and de Vries, 2013]. In remote sensing, reference observations

involve high logistic efforts, potential inaccuracies due to geo-location errors as well as sam-

pling and observation bias [Congalton, 1991; Leitão et al., 2018]. Moreover, the volume of

data generated with UAS imagery may cover a substantial spatially-continuous area with

respect to the real-world, yet the ratio between the area covered via in-situ surveying and

the total area covered in imagery is often relatively small [Bowler et al., 2020; Hobley et al.,

2021a]. Methods such as transfer learning [Tan et al., 2018], data-augmentation [Shorten

and Khoshgoftaar, 2019] and semi-supervision [Tarvainen and Valpola, 2017; French et al.,

2019] can provide tools for FCNs to self-learn if there are limited amounts of labelled data.

However, an alternative for efficient in-situ data collection is visual identification and de-

lineation of training data directly from orthomosaics [Kattenborn et al., 2019b; Wagner

et al., 2019; Lopatin et al., 2019] - possible in UAS imagery because the resolution is suf-

ficiently high that even features as small as 10 × 10 cm can often be accurately identified

and labelled. Further to this, the use of crowdsourced labels can provide an even more

cost-effective alternative to laborious labelling procedures from aerial imagery involving

individual domain specific experts. Indeed, previous work in Information Retrieval (IR) ap-

plications describes comparable performance in aggregated crowdsourced labels to expert

labels [Alonso et al., 2008; Kazai and Milic-Frayling, 2009]. However, instead of delineating

and assigning a meaningful value to polygons from high-resolution imagery, participants

are queried whether a particular document is relevant to a topic of interest. Still, the same
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concerns regarding label quality from crowdsourcing efforts in IR are echoed in supervised

FCN training. Furthermore, the notion that aggregated labels can provide better qual-

ity generalisation in machine learning modelling also draws parallels with field of expert

frameworks and ensemble learning [Hinton, 2002; Polikar, 2012].

Remote sensing applications have also leveraged the use of crowdsourced labels to supple-

ment aerial imagery datasets in a variety of manners [Saralioglu and Gungor, 2020]. Com-

monly, web-based applications prompt participants to classify binary tasks with known

GPS information for accurate geo-location. This has led to successful workflows that

combine deep learning and crowdsourcing for several study sites: Guatemala, Laos and

Malawi using MapSwipe [Herfort et al., 2019]; the Missing Maps humanitarian project us-

ing OpenStreetMap [Albuquerque et al., 2016]; settlements in Nigeria, Somalia, Pakistan

and Afghanistan using Tomnod platform [Gueguen et al., 2016]; and for crop mapping in

South East India using Plantix [Wang et al., 2020d]. Furthermore, coastal surveying has

also leveraged crowdsourced annotations for deep learning applications of litter mapping in

the shores of Xabelia beach in Lesvos, Greece [Papakonstantinou et al., 2021] and shoreline

change mapping in two open-coast sandy beaches located within the Sydney metropolitan

area [Harley et al., 2019].

However, the aforementioned studies focus on combining crowdsourced data with deep learn-

ing models on binary problem domains to avoid ambiguity for participants and erroneous

labelling [Saralioglu and Gungor, 2020]. In contrast, coastal mapping requires the identi-

fication of multiple feature classes, some of that are superficially similar depending on the

situation (e.g. sand and mud, seagrass and filamentous algae). The problem of training data

for these types of ecosystem is tackled with a complex multi-class classification target do-

main for estuarine vegetation (including seagrass, saltmarsh, macro-algae) and unvegetated

sediment.
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3.4.2 Inter-observer variability experiment with Cochran’s Q

Class distribution

The class distribution of in-situ measurements was not balanced, see Figure 3.9 which may

add cognitive bias and consequently skew results in human annotations for the experiment

[Eickhoff, 2018]. Recognising biases during crowdsourced data collection efforts is an im-

portant step to countering the effect these may impose on model training and is an enabling

factor for algorithmic fairness [Hajian et al., 2016]. As mentioned in Section 3.2, the team of

expert ecologists from Cefas and the EA sampled 108 geographically referenced tags which

were reduced to a single label by selecting the class value with maximum percentage cover.

These points, as shown in Figure 3.4, show the distribution of recorded tags across the

study site. However, the target class distribution of recorded in-situ points was not bal-

anced. Therefore, a set of points from the in-situ survey were combined with a set of extra

points added through expert photo-interpretation in order to balance the class distribution

for the experimental setup. From the original set of 108 geographically referenced tags, a

balanced set of 53 points was chosen and the remaining 55 in-situ points were selected to

evaluate FCN performance. For added points, the photo-interpretation was based on class

dependant heuristics.

First, no extra points for dry sand were added as the set of photo-interpreted polygons

covered a substantial area to generate enough points for both the experiment and FCN

testing. Other bareground was a sediment class that comprised wet sediment features such

as wet sand and mud. Selected points presented dark brown or gray color, rugged texture

and low elevation values relative to the rest of the site. Generally, added points were

sampled within a close vicinity of known in-situ records. But this was not considered as an

important factor for other bareground points as long as color, texture and elevation within

a 30×30cm square which corresponds to a 6×6 image crop in the RedEdge3 multispectral

orthomosaics.

Chapter 3 Brandon Hobley 104



Monitoring Coastal Environments using UAS Imagery and Deep Learning

Similarly to the previous analysis on semi-supervised methods, vegetation classes were split

into three sets: algae, seagrass and saltmarsh. The geo-location of extra points for vege-

tation classes was always in the vicinity of known in-situ points to establish a baseline for

comparing colour and texture.

Saltmarsh points were found to be easily identifiable due to slight elevation changes in the

DSM but also because coastal saltmarsh occupy the interface between land and sea [Adam,

1993]. Therefore, saltmarsh points were most present on estuary borders. Identifying points

for both species of intertidal seagrass was dependant on the following texture and colour

features: both species occur in mixed beds of waterlogged depressions between free-draining

hummocks dominated by Zostera noltii and presented sparse leaves with light yellow green

or green colour [Hootsmans et al., 1987; Jiménez et al., 1987; Hodges and Howe, 1997].

Microphytobenthos are microscopic organism that inhabit the upper millimetres of illumi-

nated wet sediments, typically appearing only as a subtle greenish shading [MacIntyre et al.,

1996]. Identifying extra points for microphytobenthos was only possible within very close

vicinity of known in-situ points, with colour (greenish shading) used as the identifier. Extra

points for Enteromorpha sp. had to present bright green colour while other macroalgae (inc.

Fucus), with similar texture to Enteromorpha sp., was presented in a dark brownish color

[Tillin and Budd, 2016; Catarino et al., 2018]. Enteromorpha sp. and other macroalgae

were spatially continuous compared to seagrass that were more likely to be sparse. This

further aided distinguishing and picking extra points for these classes. While the vegetation

species may be found in other circumstances (e.g. saltmarsh hummocks can grow amongst

seagrass slightly away from estuary borders), the intent was to maximise confidence that

selected points were classified correctly rather than to select across the range of possible

appearances for each species. Overall, an extra 54 points were added through expert photo-

interpretation to maintain the class distribution balance. Therefore, the set of points to be

annotated for each participant comprised 119 points where 53 points were drawn from the
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in-situ survey and an extra 54 were created through photo-interpretation with the remaining

12 points being randomly selected from dry sand polygons.

Experiment setup and data analysis

The experimental population consisted of 12 participants split into three groups based on

their discipline and level of expertise in habitat mapping. The experiment was analogous to

crowdsourcing labelled data in remote sensing applications as participants were prompted

to classify predetermined points. The experimental setup comprised two sets of points: a

set where the true semantic value of each human annotation was known according to the

in-situ survey described in Section 3.2, and an extra set of points created through expert

photo-interpretation to balance class distribution, Section 3.4.2.

The experiment proceeded as follows: first, an inter-observer variability analysis was per-

formed by assessing the annotations in each group using Cochran’s Q test, while also re-

porting accuracy metrics. Second, an analysis of crowdsourced annotations of target classes

for the study site was performed to assess any potential biases for each group.

Each participant was presented with a unique and random order of points to be annotated

and a small set of labelled sample images representative of the vegetation classes, to assist

with identification. Figures 3.15 and 3.16 respectively display the set of labelled sample im-

ages presented to each participant and the user interface available to participants during the

experiment. Participants used ArcMap 10.6.1 to visualise and annotate samples. Each par-

ticipant generated 119 annotations with each cell containing a semantic value corresponding

to the class domain in Section 3.4.2.

The participant population was split into three groups based on their level of expertise

to explore whether prior knowledge of the study site, research background and/or previ-

ous experience with marine annotation could influence experimental results. The criteria

separating each group were as follows:
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• Group A: expert ecologist or geomorphologist, present at the in-situ survey and/or

had previous experience with annotating marine biology for the study site.

• Group B: expert ecologist or geomorphologist, but was not present at the in-situ

survey and/or did not have experience with annotating marine biology for the study

site.

• Group C: not an expert ecologist or geomorphologist, nor had experience with anno-

tating marine biology from aerial imagery.

Therefore, annotations were grouped into three sets based on the stated groupings.

To evaluate the inter-observer variability within each group the Cochran’s Q test was used

to investigate the statistical significance of differences between K observations on the same

n elements with binomial distribution [Patil, 1975; Kanji, 2006]. For this work, K series of

observations corresponded to participants in a group and elements for each observation were

individual annotations of participants. Therefore, the null hypothesis was that annotations

for participants in a group were drawn from one common dichotomous distribution which

would imply low variability in annotations. However, the Cochran’s Q test states that each

annotation must be dichotomous and represented as zero or one. Since the experimental

annotation setup was a complex multi-class problem, each annotation was compared with

the assigned label (either in-situ or photo-interpreted) and represented as one if correct,

otherwise the annotation was represented as zero.

The Cochran’s Q test statistic with K − 1 degrees of freedom follows a χ2 distribution and

is given in equation 3.11.

Q =
K(K − 1)

∑
j(Cj − C̄)2

KS −
∑

iR
2
i

(3.11)

Where, Cj is a column total, Ri is a row total, C̄ is the average column total and S is the

total score, i.e. S =
∑

iRi =
∑

j Cj . In this context, a column total is the sum of correct

annotations for a single participant, and a row total is the sum of correct annotations for a

single point across all participants.
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Experiment results and interpretation

Participants Accuracy (%) Group Cochran Q DoF /α Outcome

1 70.09%
2 76.64% A 2.0842 4 / 0.05 Not reject
3 70.09%
4 72.90%

5 59.81%
6 27.10%
7 63.55% B 78.8 6 / 0.05 Reject
8 61.68%
9 75.70%

10 63.55%
11 42.06% C 14.39 3 / 0.05 Reject
12 55.14%

Table 3.2: Participant annotation accuracy and Cochran Q test statistic results.

Participants were grouped into three different groups. Group A were expert ecologists

or geomorphologists, present at the in-situ survey and/or had previous experience with

annotating marine biology for the study site based. Group B were expert ecologists

or geomorphologists that were not present at the in-situ survey and/or did not have

experience with annotating marine biology for the study site. Group C were non an

experts without experience in annotating marine biology from aerial imagery. The

significance level, defined by the parameter α, give critical values according to a χ2

distribution which in turn may or may not reject the statistical test.

Table 3.2 and Figure 3.17 give the results of the inter-observer experiment. The significance

level for each control group was set to 5% and the degrees of freedom were set according to

the number of participants in a particular group. Therefore, the critical values according

to a χ2 distribution were 9.49, 12.59 and 7.81, for participant groups A, B and C respec-

tively.

By comparing each annotation with the known in-situ label and representing correct anno-

tations as one and incorrect as zero, the Cochran’s Q test evaluates whether annotations,

which can be correct or incorrect, were drawn from the same binomial distribution. There-

fore, the test statistic for a group may not allow us to reject the null hypothesis which

would imply low inter-observer variability but participants in that group could collectively
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annotate test points incorrectly. Indeed, participants were more likely to be collectively

incorrect than correct due to different incorrect annotations being represented as zero. For

example, if the class label for a given point was dry sand but participants annotate the said

point as other bareground and microphytobenthos, then both annotations were represented

as zero that would contribute to a smaller test statistic value. Hence, the test statistic was

analysed along with the annotation accuracy metrics so that emphasis was placed on groups

that were collectively correct and also yielded a test statistic that does not reject the null

hypothesis.

From the results in Table 3.2, the null hypothesis that participant annotations were drawn

from the same distribution was not rejected only in group A. Moreover, group A also ex-

hibited the highest mean and lowest variance in accuracy for annotations with 72.43+−3.10%

that showed that participants in group A were more likely to be correct than the other

two groups. The pre-exposure of participants in group A to the target classes at the study

site justified the lowest test statistic for participant annotations in this particular group.

Furthermore, the latter statement can be also supported by examining the majority vote

confusion matrix for group A (top-left matrix in in Figure 3.17), where the accuracy of the

majority vote annotations was 81.31% for group A - higher than the highest accuracy of any

participant in the experiment. This illustrates that annotations for participants in group

A were better if performed collectively and as a whole group A were good candidates for

crowdsourcing labels for this particular study site. Given the low variability in annotations

for group A, examining Figure 3.17 also informed us about the problematic classes to anno-

tate from aerial imagery. As mentioned in Section 3.3.4, other bareground was a sediment

class composed of rock, mud and wet sand, and microphytobenthos typically appearing only

as a subtle greenish shading on wet sediment [MacIntyre et al., 1996], justifies why both

classes were mutually misannotated. The same reasoning can be applied to annotations for

Enteromorpha sp. and seagrass, since both classes exhibit similar colour and texture from

an aerial point of view.
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The null hypothesis for participants in group B was rejected by a significant margin. This

could be due to: (1) participants in this group were not familiar with annotating aerial

imagery for this study site. In Information Retrieval (IR) crowdsourcing, this is also known

as the ambiguity effect where missing information makes annotations appear more difficult

and consequently less attractive [Ellsberg, 1961]. Alternatively, (2) the participant popu-

lation contained experts from different disciplines who may have conflicting biases during

annotation. If participants do not agree with each other, then the test statistic yields a

high value based on whether annotations were correct or not. Specifically, the second high-

est overall annotation accuracy was from participant 9 while the lowest accuracy was from

participant 6, both of whom belong to group B. In fact, participant 9 is a benthic ecologist

with specific knowledge at identifying intertidal algae, while participant 6 is an expert in

sedimentology. This contrast in discipline is reflected in annotations and subsequently in

the test statistic due to correct or incorrect annotation on the same test points. The average

accuracy was lower than in group A - 57.50+−18.16% and the majority vote confusion matrix

paints a similar picture - high variability and feature ambiguity lead to erroneous labelling,

with an overall normalised majority-vote accuracy of 64.41% (middle-right matrix in Figure

3.17).

For participants in the final group C, the null hypothesis was also rejected, however by a

smaller margin than group B. Again, this implies that participants in this group exhibit

high inter-observer variability. Both the average accuracy and majority-vote accuracy were

the lowest out of all groups, with 53.5+−10.82 and 60.75% (bottom-left matrix in Figure

3.17) which also reflected low confidence in participant annotations. However, even with

lower accuracy, participants within group C showed less variability in correct/incorrect

annotations than the group B participants. This could be due to participants in group

C not having any prior knowledge of the study site or with annotating aerial imagery and

associating similar colour and texture based on the sample images in Figure 3.15 to the same

class. The confusion matrix for group C provides insights into problematic target classes

to annotate for subjects with the least experience. Algae classes, e.g. Enteromorpha sp.
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and other macroalgae, were often mutually mislabelled, while seagrass was often annotated

as Enteromorpha sp.. This implies that vegetation classes were hard to discern from an

aerial point of view with no prior knowledge. Furthermore and similarly to group A, other

bareground was also incorrectly annotated as microphytobenthos that again implies that

these two classes are hard to discern from each other.

Summary

To sum up, this analysis covers three groups and assessed the inter-observer variability in

participants with different backgrounds and expertise, while also assessing the accuracy of

each participant, average group accuracy and majority vote accuracy. Participants in group

A showed to have low inter-observer variability while also correctly annotating 81.31% of the

points collectively. Participants in group B and C exhibited high inter-observer variability.

Examining the criteria separating each group, having discipline expertise, prior knowledge

of the site and/or previous experience annotating marine biology play an important role in

minimising inter-observer variability and ensuring accurate annotation. Conversely, the lack

of exposure to these criteria leads to high variability and low confidence. While the results

suggest that an expert ecologist or geomorphologist without in-situ exposure produced

similar overall accuracy annotations as non-experts, this was influenced by the individual

accuracy result of participant 6 since the majority of participants in group B yielded a higher

accuracy in annotations than two of three participants in group C. Lastly, aggregating labels

based on majority-vote annotations also draw parallels with field of expert frameworks in

low-level image processing and ensemble learning [Hinton, 2002; Roth and Black, 2009,

2005; Polikar, 2012]. These frameworks model high-dimensional probability distributions

by taking the product of several expert distributions, where each expert works on a low-

dimensional subspace that is relatively easy to model. This is similar and accurate for

annotations in all groups. In general, aggregating labels showed an increase in accuracy

scores of 8.88%, 6.91% and 7.25%, respectively for groups A, B and C. This alludes to the
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specific and complementing nature of different research backgrounds aiding the accurate

annotation.

Data pre-processing

As in Section 3.3.1, FCNs were trained with segmentation maps that contain a one-to-one

mapping of pixels encoded with a semantic value. As with Section 3.3.1, segmentation maps

were generated using the geographic coordinates stored in each point and converting real-

world coordinates to image-coordinates. If a geographically referenced tag, corresponding

to a point in Figure 3.4, resided in an non-overlapping 6000×6000 image tile, then the tile

was cropped to an image size of 256×256 centered on the point. For each point, a bounding

box corresponding to a square area of 30×30cm was overlaid. This was to be consistent

with the area covered with quadrat sampling during the in-situ survey, whereas Section 3.3.1

detailed the use of polygons for semi-supervised methods. Images for training are similar

to figure 3.7 but the polygon is replaced with a bounding box. For this work, RedEdge3

multispectral orthomosaic is used.

Fully Convolutional Networks and training parameters

Two tests with trained FCNs were performed: an initial test with several trained FCNs

on different versions of labelled data based on majority-vote annotations for each group.

These models are compared with FCNs trained solely with in-situ labels to evaluate whether

biases in crowdsourced annotations were propagated in FCN performance. The second test

mimicked a crowdsourcing scenario where in-situ reference data were supplemented with

crowdsourced annotations.

Again, the U-Net architecture was found to be a suitable network. However, the encoder

network is a VGG-13 [Simonyan and Zisserman, 2014] pre-trained on ImageNet. Figure

3.18 shows the network architecture used for this experiment.
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Figure 3.18: U-Net architecture and loss calculation. The encoder network, now a

VGG-13, extracts feature maps. The decoder network upsamples features from the

corresponding layer in the encoder path.

The loss was computed in the same manner to the steps described in Section 3.3.1. For each

image, the loss was the sum of all individual pixel losses using equation 3.3 and averaged

according to the number of labelled pixels in Y . The unsupervised loss described in Section

3.3.1 improves the generalisation and performance of FCNs, as shown in Section 3.3.3.

However, the use of an unsupervised loss term would influence the analysis by allowing

networks to adjust weights based on non-labelled parts of the image, whereas the goal is to

determine the effects of aggregated crowdsourced labels. Therefore, the analysis of results

does not include the unsupervised loss during model training.

During training, each image was augmented with stochastic transformations that consist of

rotations up to 25◦ and horizontal or vertical flips. Each network was trained for 200 epochs

with a batch-size of 12 with Adam optimiser. The optimiser learning rate was constant and

set to 0.001. All FCNs were implemented and trained using Pytorch version 10.2.
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P R F1 P R F1

DS 0.982 0.956 0.968 0.982 0.997 0.989
OB 0.721 0.668 0.693 0.921 0.647 0.76
EM 0.433 0.769 0.554 0.517 0.738 0.608
MB 0.972 0.814 0.885 1.0 0.921 0.959
OM 0.99 1.0 0.995 0.982 0.809 0.887
SG 0.579 0.995 0.73 0.672 0.711 0.691
SM 0.928 0.944 0.936 0.918 0.915 0.917

In-situ labels Majority-vote group A

Table 3.3: Precision, recall and F1 scores for models trained with in-situ labels

and for models trained with majority-vote annotations from group A. DS—Dry Sand;

OB—Other bareground; EM—Enteromorpha; MB—Microphytobentos; OM—Other

macroalgae; SG—Seagrass; SM—Saltmarsh

3.4.3 Results and interpretation

The metrics to quantify FCNs are the same as those described in Section 3.3.2. The results in

Table 3.3 and Figures 3.19 and 3.20 show better results than described in Section 3.3.2. This

was mainly due to the nature of polygons used to drive the optimisation and subsequent

model testing described in Section 3.4.2. The pre-processing of labels for FCN training

used bounding boxes that were equivalent to the size of the quadrats used to sample the

study site. In turn, this results in an easier test case given the model does not have

to predict complex spatial relationships that would occur when segmenting background

sediment with foreground vegetation and in essence, the results obtained with FCNs during

the crowdsourcing experiment had a much simpler test set relative to the results obtained

with FCNs and semi-supervised optimisation.

The evaluation consisted of two different tests: the first test shows the effects of training

FCNs on different versions of labelled data based on majority-vote annotations from each

group. This test evaluated whether errors in the annotation experiment were propagated

to the FCN performance. For training the FCNs, the same points as in the inter-observer

variability experiment used - this includes a set of 53 randomly selected points from the

in-situ survey, an additional 54 points chosen through expert photo-interpretation and 12

points selected from dry sand polygons. The remaining 55 points recorded in-situ and a

Chapter 3 Brandon Hobley 117



Monitoring Coastal Environments using UAS Imagery and Deep Learning

Figure 3.19: Confusion matrices for FCNN models trained using different versions of

labelled data. Results for models trained on in-situ labels (top-left) and majority-vote

annotations for group A (top-right), group B (bottom-left) and group C (bottom-right).

The normalised percentage accuracy is shown along the diagonal of the confusion matrix

further 12 points from dry sand polygons were used for model testing . Therefore, FCNs

were trained on the combined set of 119 points and the remaining 67 points comprised the

test set.

For the second test, a crowdsourcing scenario was mimicked by reducing the combined train-

ing set to the same initial set of 53 randomly selected in-situ points and replacing labels

for the remaining 66 points (54 from photo-interpretation plus 12 points from dry sand

polygons) with majority-vote annotations from each group. The goal of the second exper-
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Figure 3.20: Confusion matrices for FCNN models trained using set of in-situ labels

(left), and using the same in-situ set supplemented with majority-vote annotations for

groups A, B and C (top-right, bottom-left, bottom-right). The normalised percentage

accuracy is shown along the diagonal of the confusion matrix

iment was to determine whether supplementing a reduced training set with majority-vote

annotations still achieves comparable results to models trained with in-situ labels.

Figure 3.19 shows the results of the first experiment and Table 3.3 provides further insight

into class specific performance on FCNs trained with in-situ data versus FCNs trained with

majority-vote annotations from group A. Figure 3.20 shows the results of training FCNs on

a reduced dataset of in-situ labels versus FCNs trained on a combined train set of in-situ

labels and majority-vote annotations. The confusion matrices and tabled metrics contain

the average results of 5 sequential train and test runs.
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Different versions of labelled data

The first test in the evaluation considered several FCNs trained with different versions of

the labelled data.

First, FCNs trained with in-situ labels (top-left matrix in Figure 3.19) were viewed as the

baseline for the remaining FCNs trained on majority-vote annotations from each group.

The normalised accuracy with in-situ labels was 87.79% and models exhibited high con-

fidence and accurate predictions for dry sand, other macroalgae, seagrass and saltmarsh.

Other bareground proved to be a problematic class to model with a majority of predictions

confused with microphytobenthos and Enteromorpha sp.. This paints a similar picture

to majority-vote annotations for participants in group A (top-left matrix in Figure 3.17)

whereby microphytobenthos was mislabelled as other bareground. However, FCNs do not

mutually mislabel seagrass with Enteromorpha sp. that implies that FCNs were better at

discerning these two specific vegetation classes than participants from group A.

The normalised accuracy for FCNs trained with majority-vote annotations from participants

in group A was 81.99% (top-right matrix in Figure 3.19). As mentioned in Section 3.4.2, this

particular group exhibited low inter-observer variability and accurate annotations with the

exception of microphytobenthos and other bareground; which may be due to both classes

being present in wet sand. Furthermore, Enteromorpha sp. was mutually mislabelled

with seagrass because both classes showed similar colour and texture from an aerial point

of view. The latter bias in annotations from participants in group A was propagated to

CNN performance - where 23.3% of seagrass labels were predicted as Enteromorpha sp.

(top-right in Figure 3.19). However, examining Enteromorpha sp. predictions showed

that this particular class was over represented due to erroneous predictions and confusion

with other vegetation classes such as saltmarsh, seagrass and other macroalgae. Therefore,

erroneous labels from participants in group A caused FCNs not only to mutually mislabel

Enteromorpha sp. with seagrass but also resulted in cascading errors for other vegetation

classes due to overfitting for Enteromorpha sp.. Similarly to previous work using aerial
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imagery for annotation, this test also showed that empirical models can compensate certain

degrees of erroneous human annotations [Kattenborn et al., 2019b,a].

FCNs trained with majority-vote annotations from participants in group B yielded a nor-

malised accuracy of 63.72% (bottom-left matrix in Figure 3.19). The analysis in Section

3.4.2 showed that annotations from subjects in group B exhibited high inter-observer vari-

ability, resulting in low confidence in majority-vote annotations. This was due to conflicting

biases between experts, i.e., ecologists, geomorphologists and sedimentologists, and the am-

biguity effect through lack of exposure to the in-situ survey or aerial annotation of marine

vegetation species from the study site. The main trends in human annotations from this

group were other bareground mislabelled as dry sand, and a general confusion of vege-

tation classes between Enteromorpha sp., other macroalgae and seagrass. These errors

were also propagated into CNN performance as 64.1% of other bareground predictions were

mislabelled as dry sand and seagrass was severely misclassified and predicted as Enteromor-

pha sp. and other macroalgae, respectively 60.4% and 35.6% (bottom-left matrix Figure

3.19).

The final set of majority-vote labels from group C yielded a normalised accuracy of 66.36%

(bottom-right matrix in Figure 3.19). Even though the average and majority-vote accuracy

for annotations provided by group C were lower than results yielded by group B - FCNs

trained with majority-vote annotations from subjects in group C yielded a higher test set

accuracy than majority-vote annotations from group B. The experiment also showed that

participants in group C presented high inter-observer variability but by less of a margin than

group B (Table 3.2 in Section 3.4.2). The analysis also showed that non-expert participants

in group C exhibited low confidence predictions for other bareground with 31.8% of points

labelled as microphytobenthos (bottom-left matrix in Figure 3.17). Similarly to participants

in group B, they exhibited a general confusion in annotations for vegetation classes - in

particular, seagrass and Enteromorpha sp. were often mutually misannotated. Again, these
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errors in human annotations were propagated to CNN errors, e.g. mutual misclassifications

for seagrass and Enteromorpha sp. classes.

The analysis supports the hypothesis that errors in crowdsourced human annotation were

propagated into the FCN performance. All groups had a similar trend whereby annotations

for microphytobenthos were mislabelled with wet sediment classes. This bias was propa-

gated into all models trained with majority-vote annotations where other bareground was

either under represented (bottom-left matrix in Figure 3.19), over represented (bottom-right

matrix in Figure 3.19) or confused with dry sand (top-right matrix in Figure 3.19). The

mutual mislabelling of Enteromorpha sp. and seagrass points for participants in group A

caused the FCN to misclassify all vegetation classes as Enteromorpha sp.. This showed that

poor annotations not only propagated errors into the CNN performance but could also cause

cascading errors with classes that exhibit similar colour and texture from an aerial point

of view. This stresses the need for good quality labels as FCNs optimise their weights and

biases based on a non-linear one-to-one mappings between image pixels and labelled maps

[Long et al., 2015]. However, results also showed that FCNs trained with low inter-observer

variability and high confidence annotations, as shown with subjects in group A, can demon-

strate comparable performance to the FCNs trained with in-situ labels. Conversely, training

with annotations from groups B or C that manifested high inter-observer variability and

higher rates of erroneous labelling, severely degraded CNN performance.

Balanced in-situ only versus crowdsourced supplemented labelled data

The second and final experiment in the evaluation considered several FCNs trained with

only the balanced in-situ labels supplemented with the majority-vote annotations from each

group. Therefore, the training set was the initial balanced set of 53 in-situ labels, refer to

Section 3.4.2, and the labels for the remaining 66 photo-interpreted points were replaced

with the semantic value of majority-vote annotations.
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For comparison, a FCN was trained with just the balanced set of 53 in-situ label. This

model yielded a normalised test set accuracy of 82.9% (top-left matrix in Figure 3.20). The

accuracy was lower than FCNs trained with the combined full training set of 53 in-situ labels

and 66 photo-interpreted labels (top-left Figure 3.19). This was expected as FCNs learn

hierarchical representations of data through gradient descent [LeCun et al., 2015a], and if

FCN kernel weight and bias adjustments were based on fewer image examples, then model

performance and generalisation also degrades. The main affected and under represented

class was seagrass where the accuracy dropped from 99.5% (top-left matrix in Figure 3.19)

to 43.6% (top-left matrix in Figure 3.20).

The normalised accuracy for FCNs trained with the in-situ set supplemented with the labels

from the participants in group A was 89.6% (top-right matrix in Figure 3.20) that was also

the highest accuracy of all FCNs in the analysis. This setting improved the test set accuracy

compared to the model trained with just in-situ labels. This was due to two reasons: first,

supplementing the dataset allows for more unique samples to be incorporated into the

training set, and second, the supplemented crowdsourced portion of the training set from

group A exhibited low inter-observer variability and accurate annotations. Furthermore,

this particular result provided an interesting comparison with the CNN trained on in-

situ plus photo-interpreted labels (the top-left matrix in Figure 3.19). Both CFNs yielded

satisfactory results which confirms that aggregated labels from multiple annotators within

group A were as good as the efforts of a single expert annotator (lead author). This

comparison also showed that in-situ efforts can be combined successfully with aerial imagery

annotation that could reduce costs and labour from in-situ surveys.

The accuracy for FCNs trained using in-situ labels supplemented with the labels from par-

ticipants in groups B and C were respectively 73.34% and 68.7% (bottom-left and bottom-

right matrices in Figure 3.20). The analysis of both datasets was performed jointly as FCNs

trained in both settings paint a similar picture. Both sets of models failed to achieve better

results than models trained with just the balanced set of in-situ labels (top-left in Figure
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3.20) that again stresses the need for good quality crowdsourced labels. FCNs trained with

majority-vote annotations from participants in group B over represented seagrass and also

misclassified all other macroalgae pixels, mostly as seagrass (bottom-left matrix in Figure

3.20). A similar outcome happened for models supplemented with the labels provided by

group C - again all other macroalgae class instances are misclassified, this time mostly as

saltmarsh (bottom-left matrix in Figure 3.20). In both settings this would be due to poor

annotation performance from these two groups, Figure 3.17.

3.4.4 Summary

This section analysed a crowdsourcing experiment with a population of 12 participants split

into three sets of groups based on discipline expertise and previous experience with either

annotating aerial imagery for this study site or marine biology in general. The aims were

to assess for statistical differences and biases for each group and to study the subsequent

effects on CNN model performance.

The results confirmed that discipline expertise, prior knowledge of the site and/or previous

experience annotating marine biology play an important role in minimising inter-observer

variability and ensuring accurate annotation, and that lack of exposure to either these

criteria leads to high variability and low confidence. Furthermore, the results also point

to a small performance gain between annotators with expert discipline knowledge versus

annotators with no previous experience in marine biology annotation or domain expertise.

Participant 6 can be viewed as an outlier to the experiment given the poor annotation accu-

racy. However, erroneous annotations from participant 6 should not influence the confusion

matrices shown in Figure 3.17 given the annotations were merged to form majority-vote

annotations. Therefore, by using majority-vote annotations, individual miss annotations

were suppressed and the general trends shown in the confusion matrix paint general miss

classifications between target classes that exhibit similar colour and texture from an aerial

point of view, i.e., separating species of algae and even separating algae from seagrass.
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This work also stressed the difficulty of labelling a complex multi-class marine biology

problem. Pre-exposure to the study site is important for intertidal classification,if good

quality labels are to be guaranteed, and that in-situ groundtruthing may be unavoidable

to prevent confusion by site experts. For instance, the general confusion between micro-

phytobenthos with other bareground and Enteromorpha sp. with seagrass, Sections 3.4.2

and 3.4.3. Therefore, site surveying is necessary but may result in sparse data points with

respect to the size of the coastal site. Domain experts can enhance training datasets in

coastal remote sensing but domain experts present during the site survey yield the best

quality labels.

Lastly, multiple FCNs were trained on different versions of labelled data based on the inter-

observer experiment. The results also showed that FCNs trained with low inter-observer

variability and high confidence annotations, as shown with subjects in group A, demon-

strate comparable performance to the CNNs trained with in-situ labels. For the mimicked

crowdsourcing scenario, whereby the balanced set of in-situ points was suplemented with

crowdsourced labels, the normalised accuracy for models trained in-situ labels plus majority-

vote labels from participants in group A was 89.6% (top-right matrix in Figure 3.20) that

was also the highest accuracy of all FCNs in the analysis. This showed that in-situ efforts

can be combined successfully with crowdsourced aerial imagery annotation which could re-

duce costs and labour from in-situ surveys, given that crowdsourced labels are consistent

and accurate.

However, this work does not fully exclude in-situ surveying but merely affirms that good

quality labels can be found in-situ but a healthy quantity of labels can also be supplemented

from aerial imagery which would reduce in-situ efforts and costs.

3.5 Conclusions

Here the findings for chapter 3 are summarised.
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The literature reviewed in Section 2.3.2 identified fully convolutional neural networks for

semantic segmentation that provides an equivalent output to object-based methods for

coastal remote sensing applications. Section 3.3 showed the utility of FCNs for a coastal

remote sensing application in order to map intertidal seagrass and algae.

Furthermore, Section 3.3 also showed a comparison with OBIA. The latter continues to

be a robust approach for monitoring multiple coastal features in high resolution imagery.

In particular, OBIA was found to be more accurate than FCNs in predicting seagrass for

both cameras. However, as noted in Section 3.3.3, OBIA results were highly dependant

on the initial parameters used for MRS, with the scale parameter being critical for image-

object creation. In turn, this requires the user to understand the target class domain for

a particular mapping objective in order to correlate segmented image-objects with known

aerial extents of the class domain. Therefore, while this work shows that OBIA is a suitable

method for intertidal seagrass mapping, other applications in remote sensing for coastal

monitoring with restricted access to in-situ data can utilise semi-supervised FCNs.

In essence, both methods produce equivalent outputs, but also require the same labels,

or polygons, in order to drive the optimisation of machine learning models. The use of

spatially explicit labels is the key factor for optimisation, and both methods require this

in order to effectively learn complex relationships from features derived using orthomosaics

to target classes such as intertidal seagrass and algae. Therefore, the use of FCNs can be

adapted for other applications of coastal remote sensing given, as shown in Section 2.3.2,

the requirements to drive the optimisation of FCNs is the same as object-based methods in

a supervised setting.

However, as mentioned in Section 2.3.5, deep neural networks require substantial amounts of

labelled imagery in order to effectively learn such relationships from orthomosaics to target

classes, irrespective of the class domain. Hence, the use of FCNs in two training modes:

supervised and semi-supervised. The results in Section 3.3.3 indicate that consistency-based

semi-supervised methods improve the pixel accuracy of target classes with a low number
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of labelled pixel counts. This prospect may benefit studies where in-situ surveying is an

expensive effort to conduct. Another avenue to explore was to supplement the number of

labels with crowdsourcing efforts in order to tackle the main drawback of FCNs. But, the

feasibility of crowdsourcing labels for coastal remote sensing applications may depend on

the complexity of the target class domain.

Section 3.4 analysed a crowdsourcing experiment with a population of 12 participants split

into three sets of groups based on discipline expertise and previous experience with aerial

imagery annotation. The results of the experiment confirmed that discipline expertise, prior

knowledge of the site and/or previous experience annotating marine biology play an im-

portant role in minimising inter-observer variability and ensuring accurate annotation, and

that lack of exposure to either of these criteria leads to high variability and low confidence.

This experiment also stressed the difficulty of labelling a complex multi-class marine biology

problem. Therefore, pre-exposure to the study site is important for intertidal classification,

if good quality labels are to be guaranteed and that in-situ groundtruthing may be un-

avoidable to prevent confusion by site experts. For instance, the general confusion between

microphytobenthos with other bareground and Enteromorpha sp. with seagrass, Sections

3.4.2 and 3.4.3.

The results from Section 3.4 also showed that FCNs trained with low inter-observer vari-

ability and high confidence annotations, as shown with subjects in group A, demonstrate

comparable performance to FCNs trained with in-situ labels. This is further confirmed dur-

ing the crowdsourcing scenario, where a combination of the balanced set of in-situ points

supplemented with crowdsourced labels were used to train FCNs, resulted in the highest

accuracy of all FCNs in the analysis. This showed that in-situ efforts can be combined suc-

cessfully with crowdsourced aerial imagery annotation which could reduce costs and labour

from in-situ surveys, given that crowdsourced labels are consistent and accurate. However,

this work does not fully exclude in-situ surveying but merely confirms that good quality
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labels can be found in-situ but a healthy quantity of labels can also be supplemented from

aerial imagery which would reduce in-situ efforts and costs.

To sum up, the use of FCNs can provide an alternative tool for coastal remote sensing

applications given the requirements for optimisation are the same as object-based methods.

However, FCNs require substantial amounts of labelled imagery that was tackled in this

Chapter with the use of semi-supervision and crowdsourcing.
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4 Sizewell - hyperspectral reconstruc-

tion and multi-task learning

4.1 Introduction

The research for this chapter was focused on Sizewell, Suffolk, England (55.207◦N, 1.602◦W).

The coastal site is a narrow shingle beach with a mixture of shingle, strandline and sand-

dune communities.

Coastal vegetated shingle is a rare and declining habitat worldwide that is found around

the UK coastline [Randall, 2004]. Understanding germination characteristics of shingle

beach species can aid ecologists understand and restore vegetation in shingle environments

[Walmsley and Davy, 1997a,b]. An alternative route is the use of remote sensing and

accurate thematic mapping in order to understand the underlying phenology of species

belonging to shingle, strandline and sand-dune communities. Therefore, the main goal in

this study was to map the pioneering marine species from these communities on shingle and

sand sediment with limited amounts of labelled data. The in-situ survey to the Sizewell

study site also collected hyperspectral measurements of vegetation and sediment features

from shingle, strandline and sand-dune communities.

The following chapter continues to leverage consistency-based semi-supervised segmenta-

tion, an also provides two alternative methods to optimise deep learning models using

multi-task learning (MTL) to incorporate the hyperspectral measurements.

Section 4.2 details the ecological importance of shingle, strandline and sand-dune commu-

nities present at the Sizewell study site. This section also shows collected data and imagery
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from the in-situ survey and details the mapping objective for the results described in Section

4.5.

4.2 Sizewell study site: background and rationale

As mentioned in Chapter 1, beaches and open shore coastal environments provide essential

ecosystem services, such as natural buffering of inland areas from the damaging impacts

of waves and elevated water levels during storm events [Splinter and Coco, 2021]. The

coastal zone for the Sizewell study site, see Figure 4.1, includes species communities that

belong to the SD national vegetation class (NVC). In Britain, the NVC describes plant

communities from natural, semi-natural and common artificial habitats and classifies them

into distinct categories [Rodwell and nature conservation committee , GB] - where the SD

NVC identifier refers to shingle, strandline and sand-dune communities. In particular, the

study site had species and assemblages of SD1, SD2, SD6, SD7, SD10, SD11 and SD19

NVCs. The guideline described in Rodwell and nature conservation committee [GB] also

states that each NVC identifier can be further expanded to include sub-communities of other

species. For instance, SD1 defines a shingle community with Rumex crispus and Glaucium

flavum species, and an extension to SD1 is SD1B which also defines a shingle community for

the same species with sub-communities such as Lathyrus japonicus and Crambe maritima.

Table 4.1 lists the mentioned NVCs with a general description of species belonging to each

SD assemblage. Figure 4.2 shows a close-up of the orthomosaic shown in Figure 4.1. In this

close-up, the Eastern part closest to the sea is dominated by shingle and sand sediment.

Then, transitioning from East to West along the orthomosaic, the pioneering species on

shingle or sand sediment mainly belong to SD1 and SD2 NVCs and the tall grassland

communities after the pioneering species mainly belong to SD6 and SD7 NVCs.

The species present in the Sizewell study site belonging to the NVCs listed in Table 4.1 pose

a challenge due to the variable and short-lived nature of these species on shingle sediment

[Fuller and Randall, 1988; Scott, 1963; Fuller, 1987; Walmsley and Davy, 1997a]. Shingle
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NVC Species present in community

SD1 Rumex crispus - Glaucium flavum shingle community

SD2 Honkenya peploides - Cakile maritima strandline community

SD6 Ammophila arenaria mobile dune community

SD7 Ammophila arenaria - Festuca rubra semi-fixed dune community

SD10 Carex arenaria dune community

SD11 Carex arenaria - Cornicularia aculeata dune community

SD19 Phleum arenarium - Arenaria serpyllifolia dune annual community

Table 4.1: Various NVCs present at the Sizewell study site.

beaches represent continuously varying environments due to beach composition and shingle

mobility, as well as interaction with other factors, such as topography, climate and water

supply. The variability in sediment features dictates the variability in vegetation habitats

from these particular NVCs [Scott, 1963]. Furthermore, the work related to the study site

described in Walmsley and Davy [1997a,b] requires laborious in-situ surveys and domain

expertise for species to be accurately identified which is time-consuming and an expensive

task. In order to create and act on conservation plans, accurate and efficient thematic

mapping is necessary in order to detect changes to the shoreline communities present at

Sizewell from external factors, such as climate change.

As such, the main goal was to circumvent laborious in-situ surveys and map the species

that compose assemblages belonging to SD1, SD2 and SD6 NVCs using processed VHR

orthomosaics and deep learning models. The focus to map these particular assemblages

was two-fold: during the site survey, the relative abundance of species that form these

assemblages stated in Table 4.1 were greater than other NVCs, and the delicate existence

of these species due to shingle and tidal processes can provide an indicator to extrinsic

factors, human or natural, affecting the overall ecosystem health [Walmsley and Davy,

1997a,b].

Section 4.2.1 details the in-situ survey and data collected from the study site, and defines

the mapping objective for the results shown in Section 4.5.
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4.2.1 Data collection and in-situ survey

The following sections describe the data collected during the site survey. One ground

and aerial survey were conducted in August 2020. The author was present at the ground

survey. The main objectives of the ground-survey were to identify species at the Sizewell

study site that assemble to SD1, SD2 and SD6 NVCs and collect a database of hyperspectral

measurements with a portable spectroradiometer. The aerial survey had the objective of

collecting overlapping VHR imagery which as discussed in Section 3.2, can create VHR

orthomosaics using Structure from Motion (SfM) techniques [Cunliffe et al., 2016].

Ground survey

The ground-survey was conducted by the Cefas and University of East Anglia on the 10th

of August 2020. The intent of this survey was to collect three sets of data:

1. a set of hand-gun hyperspectral measurements with a portable spectroradiometer

2. corresponding captures with a DSLR (NIKON D5100) and a X-Rite colour checker

[Pascale, 2006]

3. a RTK GPS logs for accurate transcription of in-situ data onto generated VHR or-

thomosaics

The vegetation classes recorded for this ground survey belong to SD1B, SD2, SD6A, SD7C

and SD19 NVCs. As mentioned, the SD1B NVC is an extension to SD1 that includes

Lathyrus japonicus and Crambe maritima sub-communities, SD6A extends SD6 to include

Elytrigia juncea and Honckenya peploides sub-communities and the SD7C NVC details

Ammophila arenaria-Festuca rubra semi-fixed dune communities with Ononis repens sub-

communities. Lastly, SD19 represents seasonal species from Phleum arenarium-Arenaria

serpyllifolia dune annual communities [Rodwell and nature conservation committee , GB].

The following lists the communities identified during the ground-survey for each NVC:
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• SD1B - Lathyrus japonicus, Glaucium flavum, Silene uniflora, Crambe maritima,

Senecio squadilus, Leontodon saxatilis, and Rumex crispus

• SD2 - Honckenya peploides, Atriplex prostastes, Eryngium maritimum, Silene uniflora

and Crambe maritima

• SD6A – Ammophila arenaria, Elytria juncea, Senecio jacobea, Senecio viscosus and

Honckenya peploides

• SD7C – Ononis repens, Phleum arenarium, Ammophila arenaria, Carex arenaria,

Leontodon saxatilis, Eryngium maritimum and Taraxacum officialis

• SD19 – Moss and Lichen

For each data entry during the in-situ survey, ten, fifteen or twenty five hyperspectral

measurements were recorded at different locations of the marine species or unvegetated

sediment. The choice of fifteen or twenty five recordings was based on the area covered by

the recorded data entry. Figure 4.3 shows plots of collected HS measurements using the

hand-gun instrument. Each species plot was an average of all collected HS measurements

during the survey. Certain bandwidths (1300-1400nm, 1800-1950nm and 2450-2500nm)

have radiometric distortions that could be caused by temperature and humidity [Hueni and

Bialek, 2017]. However, these bandwidths were not part of the analysis in Section 4.4. Table

4.2 gives details of recorded samples during the site survey. Along with the hyperspectral

measurements was a corresponding photograph of the identified species captured with a

DSLR (NIKON D5100) and a X-Rite colour checker [Pascale, 2006] and a RTK GPS log

which similarly to Section 3.3.1 was used to create geographically referenced polygons and

subsequent masks.

The recorded HS samples with the hand-gun instrument allow natural day-light to be in-

cluded in the measurement. To calibrate the sensor before each sample, a white-point

sample was measured in order to record a day-light illuminant spectrum. Then, the illu-
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minant spectrum was removed from each measurement so that HS measurements capture

intrinsic reflectance properties.

Figure 4.3: Plots of reflectance measurements using the hand-gun. The left plot shows

the entire bandwidth of the FieldSpec4 (400-2500nm) and the right plot has the same

bandwidth as the Sentera multispectral camera (400-900nm). Each species plot is an

average of all collected hand-gun measurements during the survey. AA - Ammophila

arenaria, CM - Crambe maritima, EM - Eryngium maritimum, GF - Glaucium flavum,

HP - Honckenya peploides, LJ - Lathyrus japonicus, RC - Rumex crispus, SU- Silene

uniflora

Aerial survey

The aerial survey was performed with a rotor-based UAS using a Sentera multispectral

camera with five narrow band filters for for Red (620-690 nm), Green (510-590 nm), Blue

(450-500 nm), Red Edge (735-750 nm) and Near Infra-red (840-870 nm) channels with a

ground sampling distance of approximately 1cm (Figure 4.1, top right and bottom right).

Figure 4.4 (right-plot) shows the sensor response function for wavelengths between 400-

900nm.

Very high resolution orthomosaics of Sizewell were created using Pix4D [Cubero-Castan

et al., 2018] and SfM techniques. Similarly to Section 3.2, the resulting VHR was orthorec-

tified using GPS logs of camera positions and ground control markers spread out across

the site ensuring the mosaic was well aligned with the GPS logs of the ecological features

sampled during the in-situ survey. The multispectral orthomosaic had 101,618×6,822 pixels
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Table 4.2: Recorded species from SD1B, SD2, SD6A, SD7C and SD19 NVCs along

with the number of recorded plants per species, number of HS samples and correspond-

ing DSLR captures

Class # recorded plants # of HS samples # of DSLR captures

Ammophila arenaria 5 75 15
Arctium minus 1 15 3
Beta vulgaris spp. Maritima 4 100 12
Crambe maritima 5 125 15
Elytrigia juncea 1 10 3
Eryngium maritimum 4 60 12
Glacium flavum 4 100 12
Honckenya peploides 3 45 9
Lathyrus japonicus 4 100 12
Lichen 1 15 3
Leontodon saxatalis 1 25 3
Moss 1 10 3
Ononis repens 3 50 9
Phleum arenarium 1 10 3
Rumex crispsus 6 100 18
Sand 2 20 3
Shingle 2 20 3
Senecio squadilus 2 30 6
Silene uniflora 5 125 15
Senecio sylvaticus 2 15 6

in five image bands with 1cm spatial resolution. For ease of processing, each orthomosaic

was split into 3,000×3,000 non-overlapping images along with geographic information to be

used for further processing. The orthomosaic was split into 102 tiles. Figure 4.1 shows the

study site and its geographical position in England and Figure 4.2 shows a close-up of the

study site with brightness adjusted for viewing purposes.

Mapping objectives

The mapping objective for the methods described in Section 4.5 focus on a reduced target

class domain for species that belong to the SD1B, SD2 and SD6A NVCs. The reduced

class domain was based on three heuristics: the number of recorded plants for a particular

species during the in-situ survey had to be greater than three (see Table 4.2), the recorded

vegetation species had to cover an area greater than 20×20cm and each class had to be

paired with hyperspectral measurements from the spectroradiometer positioned with RTK
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Figure 4.4: Sentera camera responses for RGB colour space (400-700nm) and RGB

+ NIR colour space (400-900nm).

GPS logs. Therefore, the class domain for the segmentation task in Section 4.5 using deep

learning models is as follows:

• SD1B - Lathyrus japonicus

• SD1B - Glaucium flavum

• SD1B - Rumex Crispus

• SD1B and SD2 - Silene uniflora

• SD1B and SD2 - Crambe maritima

• SD2 - Honckenya peploides

• SD2 - Eryngium maritimum

• SD6A – Ammophila arenaria

The class domain had eight vegetation classes and also included two unvegetated sediment

classes: shingle and sand. Figure 4.5 shows the reduced class domain for vegetation species

with ground captures using the DSLR (NIKON D5100) and a X-Rite colour checker [Pascale,

2006].
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Cefas provided the results for the OBIA method described in Section 4.5.3. The results with

OBIA were obtained with a further reduced target class domain [Private communication,

Arosio, 2021]. These classes were Ammophila arenaria, Crambe maritima, pioneering grass-

land, young pioneering species, sand and shingle. Pioneering grassland and young pioneering

species were target classes that join multiple species from SD1 and SD2 NVCs.

• Pioneering grassland: SD1 species, such as Rumex crispus and Glaucium flavum

• Young pioneering species: SD1 and SD2 species, such as Silene uniflora, Lathyrus

japonicus and Honckenya peploides.

The deep learning models and OBIA classified the orthomosaic of the study site with dif-

ferent target class domains which creates a discrepancy between the objective and visual

results described in Section 4.5 and the listed species in Table 4.2. Therefore, a further

analysis was shown to provide an equal comparison of methods by merging predictions of

deep learning models in the same manner as Cefas did with OBIA.

Furthermore, the target class domain for both methods shown in Section 4.5.3 do not

encompass the entire bio-diversity of vegetated shingle species found at the study site. In

particular, Ammophila arenaria, as shown in Figure 4.5, forms stiff and hardy stems that

can grow up to 1.2 metres, and is mostly present on Western parts of the orthomosaic, as

shown in Figures 4.1 and 4.2. However, these parts of the orthomosaic are predominately

represented by SD6 and SD7 NVCs that also represent other grass species such as Festuca

rubra.

4.2.2 Outline

Given the collected data and target class domains defined in Section 4.2.1, the following

sections focus on developing methods that can leverage collected hyperspectral measure-

ments and incorporate these into the optimisation of deep learning models for semantic

segmentation tasks.
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First, Section 4.3 shows methods for hyperspectral reconstruction from RGB images. The

shallow method described in Arad and Ben-Shahar [2016] was compared with deep learning

models tailored for hyperspectral reconstruction [Shi et al., 2018]. Furthermore, deep learn-

ing models were optimised in different training modes, and in particular the discussion in

Section 4.3.3 shows that self-supervised deep learning models can be developed under the

assumption that there exists many hyperspectral physically plausible metamers for the same

input image [Morovic and Finlayson, 2006]. The experiments also investigated extending

the proposed architecture in Shi et al. [2018] to a U-Net architecture. These methods were

evaluated on the ICVL challenge [Arad and Ben-Shahar, 2016].

Then, given the deep learning models developed in Section 4.3 and the hyperspectral mea-

surements described in Section 4.2; Section 4.4 shows two methods for hyperspectral recon-

struction from multispectral aerial imagery of the study site. Section 4.2.1 detailed collected

hyperspectral measurements data from the site survey that show intrinsic reflectance mea-

surements for SD1, SD2, SD6 and SD7 NVCs. This poses a challenge for evaluating the

methods developed in Section 4.3, since collected hyperspectral measurements discount the

illuminant spectrum, yet physically plausible hyperspectral radiance reconstruction needs

to account for the illuminant in the scene, as shown in equation 2.2. Therefore, one method

trains deep learning models in a supervised setting to learn hyperspectral reflectance re-

construction, and the self-supervised method in Section 4.3 instead reconstructs radiance

in accordance to equation 2.2.

Sections 4.3 and 4.4 investigate extending the architecture described in Shi et al. [2018] to

a U-Net architecture. Given the results in Section 4.4 with the U-Net architecture were

satisfactory, Section 4.5 uses a multi-task learning framework with a shared model to learn

both semantic segmentation and hyperspectral reconstruction. As mentioned in Section

2.5, the premise for adding an auxiliary image task is to prevent overfit on the main image

task which in this case was mapping the pioneering marine species from the stated NVCs

in Section 4.2.1. The auxiliary image task (hyperspectral reconstruction) causes shared
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models to prefer new hypothesis in higher-dimensional space. This in turn can prevent

models trained for semantic segmentation to overfit and seek better solutions [Ruder, 2017].

An analysis of models trained in supervised, semi-supervised, as described in Section 3.3,

MTL settings and OBIA was provided, both objectively and through visual subjective

analysis.

4.3 Hyperspectral reconstruction on ICVL

As mentioned in Section 2.4, the ICVL challenge is a hyperspectral imaging dataset that

contains various scenes and objects with the objective of developing hyperspectral recon-

struction solutions from RGB imagery [Arad and Ben-Shahar, 2016]. The database contains

200 images that were acquired using a Specim PS Kappa DX4 hyperspectral camera and

a rotary stage for spatial scanning. Images are captured at 1392×1300 resolution over

519 spectral bands for a bandwidth of 400-1,000nm at 1.25nm increments. The number

of spectral bands causes data volume constraints for image loading and subsequent model

training, therefore available images are downsampled to 31 spectral bands from 400-700nm

at 10nm increments. Each image pixel represents a continuous spectral measurement of

the underlying object across 31 spectral channels. Figure 4.6 displays a gallery of images

from ICVL along with a corresponding projection using the Sentera multispectral camera

responses (Figure 4.4 left-plot) to RGB colour space. For the next sub-sections the following

hyperspectral reconstruction methods were evaluated:

• sparse-dictionary representation of HSI [Arad and Ben-Shahar, 2016]

• a deep learning implementation with the the HSCNN-R [Shi et al., 2018]

The HSCNN-R was also extended to a U-Net architecture with added pooling operations

and a subsequent upsample track in the network design. The images were randomly split to

a 70/30 ratio, respectively for training and testing. Images from the train set that include

a colour checker were removed and added to the test set for evaluation, Section 4.3.3.
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Figure 4.6: A gallery of sample images and various outdoor scenes in the ICVL

dataset. The images represent a particular hyperspectral channel in the visible spec-

trum between 400-700nm. The images projected to the Sentera multispectral colour

space integrate the continuous hyperspectral signature captured with Specim PS Kappa

DX4 with the filters shown in Figure 4.4 (left-plot).

4.3.1 Sparse-dictionary representation for HSI reconstruction

The method presented in Arad and Ben-Shahar [2016] can be broken down into two steps.

The first part was to create a prior sparse-dictionary representation from HSI. As men-

tioned in Section 2.4, HSI exhibits sparse encoding and spectral information that can be

expressed as a sparse combination of basis spectrum [Chakrabarti and Zickler, 2011], as

shown in equation 2.4. Therefore, the goal was to create a dictionary representation such

that each key represents a basis-spectrum and the value is the relative abundance of each

basis spectrum. The first step was to collect a rich hyperspectral prior by randomly selecting

pixels from the HSI dataset. Then, the prior was reduced computationally to a dictionary

of hyperspectral signatures (Dh) using K-SVD [Aharon et al., 2006].

Dh = {h1,h2, . . . ,hn} (4.1)
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The hyperspectral dictionary can be projected to RGB colour space (Drgb) using the Sentera

sensor responses (S) from Figure 4.4 (left-plot). These projections were expressed as the

inner product of the sensor response matrix S with Dh.

Drgb = {c1, c2, . . . , cn} = Dh.S (4.2)

Where, ci = (cr, cg, cb)
T such that:

ci = hi.S ∀ ci ∈ Drgb (4.3)

Given the prior hyperspectral dictionary, the second step was to reconstruct a hyperspectral

image given an input image in RGB colour space. For each test pixel, ci = (cr, cg, cb)
T in

the RGB image, an intermediate weight vector w was computed using orthogonal match

pursuit (OMP) [Pati et al., 1993]. The sparsity imposed on the dictionaryDh during K-SVD

needs to match the sparsity imposed on the OMP.

ci = hi.S = Drgb.w =⇒ hi = Drgb.w.S−1 (4.4)

The underlying hyperspectral structure hi projected to ci was estimated using the linear

combination of basis functions found in Dh. The accuracy of hi generated the pixel ci

depends on the representational power of the dictionary.

hi = Dh.w (4.5)

Implementation details

The method was implemented in MATLAB using standard toolboxes for K-SVD [Aharon

et al., 2006] and OMP [Pati et al., 1993]. Images projected to RGB colour space use

the sensor response functions from a miniaturised Sentera multispectral camera (Figure
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Figure 4.7: Flowchart of imagery and methods used in [Arad and Ben-Shahar, 2016].

4.4 left-plot). For each image, 100 random samples were selected and combined to create

the over complete hyperspectral dictionary Dh using the K-SVD toolbox. The dictionary

size was limited to 500 atoms with a sparsity constraint of 28 non-zero weights per atom.

The resulting dictionary was then projected to RGB colour space to form Drgb. Once all

these components have been obtained, the dictionary representation of each RGB pixel was

computed with the OMP using the same sparsity constraint.

4.3.2 HSCNN-R and HS-UNet-R for HSI reconstruction

HSCNN is one of the first CNN-based methods for hyperspectral recovery from a single RGB

image [Xiong et al., 2017], inspired by the VDSR network for single image super-resolution

[Kim et al., 2016]. However, this network architecture has two limitations that hinder

performance: the use of a prior bicubic interpolation for spectral upsample [Smith et al.,

1994] and failure to solve RGB to HSI mapping when model depth increases. Furthermore,
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the prior spectral upsample requires knowledge of the sensor spectral response function and

is found to be sub-optimal [Xiong et al., 2017].

The HSCNN-R introduces two methods to solve the mentioned issues.

1. The first is to remove the prior spectral upsample and replace the input layer with a

single 1× 1 convolutional layer for learnt spectral upsample

2. The second is the use of residual skips in each convolutional block to promote the

network to learn the residual mapping [He et al., 2016]

The proposed method also disables pooling and batch normalisation during training and

inference as decimation of spatial resolution and/or the shift and centering of statistical

moments from each convolutional layer degrades performance [Shi et al., 2018].

The following sections also investigated the utility of U-Nets for hyperspectral recovery with

added pooling operations before each convolutional block after the input layer. Therefore,

the network topology of the encoder was the same as HSCNN-R but includes a pooling

operation before each residual block. The decoder network used transposed 2×2 convolution

for learnt feature map upsample and concatenates feature maps from each encoding stage at

appropriate resolutions followed by a 3×3 convolution. The final layer used 1×1 convolution

to output the same number of hyperspectral channels found in the ICVL dataset. In the

experiments, this network was named HS-UNet-R. Figures 4.8 and 4.9 show the network

architectures used for the experiments and results in Section 4.3.3.

Figure 4.8: Encoder network for HSCNN-R [Shi et al., 2018]. C - 3×3 represents a

convolutional block with ReLU non-linearity.
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Figure 4.9: The HS-UNet-R architecture using the HSCNN-R [Shi et al., 2018] as an

encoder network. C - 3×3 represents a convolutional block with ReLU non-linearity.

TC - 2×2 represents a transposed convolutional block for learnt feature map upsample.

Before each residual convolutional block in the encoder is a pooling operation that

downsamples the image resolution by a factor of 2

Loss functions

The experiments show networks trained in supervised, semi-supervised and self-supervised

settings in order to provide a complete analysis.

For the supervised loss term, consider X ∈ RB×C×H×W and Y ∈ RB×N×H×W to be re-

spectively, a mini-batch of RGB images and corresponding HSI; where B, C, N , H and

W are respectively, batch size, number of RGB channels, number of HSI channels, height

and width. Processing a mini-batch outputs per-pixel continuous spectral measurements
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Ŷ ∈ RB×N×H×W . Then, the mean relative absolute error (MRAE) was computed between

Y and Ŷ . The choice for MRAE over MSE loss is due to the luminance variation among

different bands in a given pixel, where a MSE loss favours image bands with high luminance

levels [Shi et al., 2018].

Ls(Y, Ŷ ) =
1

n

n∑
i=1

(
|Yi − Ŷi|

Yi

)
(4.6)

Where, i ∈ Ω; Ω ⊆ Z2 ∈ (H ×W ) is a pixel location.

For the unsupervised loss term, consider the same input image and the spectral response

function of the miniaturised Sentera camera, Figure 4.4 left-plot, respectivelyX ∈ RB×C×H×W

and S ∈ RN×C ; where B, C, N , H andW are respectively, batch size, number of RGB chan-

nels, number of HSI channels, height and width. The predicted HSI cube Ŷ ∈ RB×N×H×W

was flattened to Ŷ ∈ R(B×H×W )×N . Then, the spectral response function was used to

project the predicted tensor to RGB colour space.

X̂ = Ŷ S (4.7)

The reconstructed RGB image X̂ was permuted to match the original input image X̂ ∈

RB×C×H×W . Similarly to the supervised loss, the MRAE was computed between X and

X̂.

Lu(X, X̂) =
1

n

n∑
i=1

(
|Xi − X̂i|

Xi

)
(4.8)

Where, i ∈ Ω; Ω ⊆ Z2 ∈ (H ×W ) is a pixel location.

Furthermore, for self-supervised networks, a smoothing loss was added to constraint neigh-

bouring channels in Ŷ . Again, the predicted tensor was flattened to Ŷ ∈ R(B×H×W )×N .

Then, the MSE of neighbouring channels was computed.

Lsmo =
1

n

n−1∑
i=1

(Ŷi − Ŷi+1)
2 (4.9)

Where, i ∈ Ω; Ω ⊆ Z ∈ N is a predicted hyperspectral channel in Ŷ .
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Implementation details

The objective loss function used for optimising networks depends on the mode used for

training, as shown in equations 4.10, 4.11 and 4.12. If the mode is supervised, then networks

were trained with only Ls. If the mode is semi-supervised, then networks were trained with

Ls and Lu and the smoothing loss was omitted. If the mode is self-supervised, then networks

were trained with Lu and Lsmo. The reason for omitting the smoothing loss in supervised

and semi-supervised settings was due to Ls already imposing a smoothing constraint on

predicted spectra due to smooth high-quality labels from the ICVL challenge.

L = Ls (4.10)

L = Ls + αLu (4.11)

L = Lu + βLsmo (4.12)

Where α was set to 0.1 and β to 0.0001 for all experiments in Section 4.3.3.

The HSCNN-R and HS-UNet-R variant were trained on 50 × 50 RGB patches and the

corresponding hyperspectral data cubes. Each network architecture was trained for 800

epochs with a batch-size of 32 using Adam optimiser [Kingma and Ba, 2014]. The HSCNN-

R had a depth of 12 residual layers while the HS-UNet-R had a depth of five. The learning

rate was initially set to 0.0002 and reduced using polynomial decay of learning rate with

the power set to 1.5. The hyper-parameters were chosen through an exhaustive search of

various settings and monitoring the convergence with loss plots and accuracy metrics using

the test set without cross-validation. The optimal set of parameters also matched the set

of parameters described in [Shi et al., 2018]. During testing, the full size RGB image was

processed in order to obtain a hyperspectral image. All HSCNN-R and extension to U-Net

were implemented and trained using Pytorch version 10.2.
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4.3.3 Quality assessment

The following objective metrics were used to evaluate the stated methods: Root Mean

Square Error (RMSE) and Relative Root Mean Square Error (RRMSE).

RMSE(Y, Ŷ ) =

√√√√ 1

n

n∑
i=1

(
(Yi − Ŷi)2

n

)
(4.13)

RRMSE(Y, Ŷ ) =

√√√√ 1

n

n∑
i=1

(
(Yi − Ŷi)2∑n

i=1 Ŷi)
2

)
(4.14)

Where, Y, Ŷ ∈ RN×H×W are respectively the ground-truth and predicted HSI and i ∈ Ω;

Ω ⊆ Z2 ∈ (H×W ) is a pixel location. Table 4.3 lists the results using the stated metrics for

each method mentioned in the previous sub-sections. Figure 4.10 shows plots of predicted

spectra for each method and different training modes. The plots show continuous spectral

measurements for Red, Green, Blue samples from a colour checker present in some images

of the dataset. The number of pixels for each colour was 100 which is a significantly lower

number than the total number of pixels used to compute the values in Table 4.3. Figure

4.11 shows the visual results for each method at different wavelengths between 400-700nm

in a supervised setting with a corresponding image displaying absolute error. The error

units for equations 4.13 and 4.14 shown in Table 4.3 and Figure 4.10 are the same units as

the quantity being estimated using the Specim PS Kappa DX4 hyperspectral camera which

in this case are 12-bit pixel values.
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Figure 4.10: Plots for predicted reconstructed hyperspectral response from RGB.

Top-left shows a comparison of supervised models with the shallow method in [Arad

and Ben-Shahar, 2016]. Top-right shows plots for semi-supervised models. Bottom-left

show plots for self-supervised models. And, the bottom-right plots shows the effects

of varying the smoothing loss gain, Lsmo, for different training procedures. The plots

show continuous spectral measurements for Red, Green, Blue samples from a colour

checker present in some images of the dataset. The error units are the same units as

the quantity being estimated using the Specim PS Kappa DX4 hyperspectral camera

which in this case are 12-bit pixel values.
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Figure 4.11: Gallery of predicted images for the methods stated in Sections 4.3.1 and

4.3.2. The predicted images for HSCNN-R and HS-UNet-R are trained in a supervised

setting.
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Losses RMSE RMSE (RGB) RRMSE RRMSE (RGB)

Sparse-dict - 3.663 31.784 0.0618 0.323

Ls 2.134 20.573 0.0232 0.238
HSCNN-R Ls + αLu 2.168 20.707 0.0221 0.239

Lu + βLsmo 7.889 20.339 0.0783 0.239

Ls 2.742 20.618 0.0272 0.238
HS-UNet-R Ls + αLu 2.778 20.657 0.0281 0.236

Lu + βLsmo 7.956 20.796 0.0808 0.241

Table 4.3: Root mean squared error and relative RMSE for predicted HSI and pro-

jected to RGB colour space using the sensor response function in Figure 4.4 (left-

plot). The listed methods are sparse-dict as per Arad and Ben-Shahar [2016] and both

HSCNN-R [Shi et al., 2018] and HS-UNet-R trained in supervised, semi-supervised or

self-supervised settings

.

4.3.4 Discussion

The following sections discuss the results for Figures 4.10 and 4.11 and Table 4.3. First,

the convergence of HSCNN-R and HS-UNet-R is described. Then, the shallow method in

[Arad and Ben-Shahar, 2016] is compared with the deep learning models HSCNN-R and

HS-UNet-R in a supervised setting. Finally, different training modes are compared for each

network architecture.

HSCNN-R and HS-UNet-R convergence

The convergence of HSCNN-R and HS-UNet-R was analysed by testing multiple settings

and hyper-parameters. The optimal set of hyper-parameters was determined by assessing

computed errors for RMSE and RRMSE over five sequential runs; for each network and

hyper-parameter setting. Table 4.3 and Figures 4.10 and 4.11 show results over five se-

quential runs with the same hyper-parameters described in Section 4.3.2. The results in

Table 4.3 were an average of five sequential runs and the plots in Figure 4.10 were the best

performing models from these sequential runs.
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HSCNN-R and HS-UNet-R versus [Arad and Ben-Shahar, 2016]

From the results in Table 4.3, the method described in [Arad and Ben-Shahar, 2016] yielded

3.663 and 0.0618, respectively for RMSE and RRMSE, which was the worst performing

method for hyperspectral reconstruction, if considering supervised and semi-supervised set-

tings. This confirms the findings stated in [Xiong et al., 2017; Shi et al., 2018]. Furthermore,

for images projected back to RGB colour space using the sensor responses in Figure 4.4 (left-

plot), the same method had 31.784 and 0.323, respectively for RMSE and RRMSE, which

was again the worst performing method. Both error metrics for HSI reconstruction can

be confirmed with the plots shown in Figure 4.10 (top-left) - where the method in Arad

and Ben-Shahar [2016] deviates more often from the HSI label. The poor performance

with respects to both HSI reconstruction and RGB projection can be seen in Figure 4.11

- where the error map shows stronger intensity, especially around the edges of windows

and walls. This was due to artifacts around edges or image patches, where the intensity

changes abruptly. The latter issue was also stated in Aeschbacher et al. [2017]; Xiong et al.

[2017].

The results for supervised HSCNN-R yielded the best results for HSI reconstruction in

the experiment with 2.134 and 0.0232, respectively for RMSE and RRMSE. This can be

confirmed with the plots shown in Figure 4.10 (top-left) - where predicted spectra were closer

to the label compared to the method in [Arad and Ben-Shahar, 2016] and the HS-UNet-R.

The error maps in Figure 4.11 paint a similar picture with less intensity for wavelengths

beyond 470nm. However, predictions for 400nm were often blurred. The projection of

reconstructed HSI to RGB colour space yielded 20.573 and 0.238, respectively for RMSE

and RRMSE, which scored lower than the method in [Arad and Ben-Shahar, 2016]. As

mentioned, this was mainly due to artifacts around image edges.

The results for supervised HS-UNet-R yielded 2.742 and 0.0238, respectively for RMSE

and RRMSE, for HSI reconstruction. This particular architecture performed worse than

the HSCNN-R in [Shi et al., 2018] but better than the method in [Arad and Ben-Shahar,
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2016]. Again, this can be confirmed with the plots shown in Figure 4.10 (top-left) - where

predicted spectra were closer to the label compared to the method in [Arad and Ben-

Shahar, 2016] but not as precise as HSCNN-R. The error maps in Figure 4.11 show a

similar problem as the HSCNN-R - where predictions for 400nm were often blurry. The

projection of reconstructed HSI to RGB colour space yielded 20.618 and 0.238, respectively

for RMSE and RRMSE, which scored lower than the method in [Arad and Ben-Shahar,

2016] but higher than HSCNN-R.

Overall this experiment showed that deep learning methods outperformed the method pre-

sented in Arad and Ben-Shahar [2016] with respects to both HSI reconstruction and RGB

projection. Although the HS-UNet-R performed worse than the HSCNN-R, the degradation

in HSI reconstruction still yields better results than the method in [Arad and Ben-Shahar,

2016]. Furthermore, as the U-Net architecture is a robust model for semantic segmentation,

an opportunity surfaces to leverage an multi-task learning.

Different training modes for HSCNN-R and HS-UNet-R

From the results in Table 4.3, models trained in supervised and semi-supervised settings

yielded similar scores, while the self-supervised setting performed worse. Since both the

HSCNN-R and HS-UNet-R performed similarly with respect to different training modes,

the analysis of both architectures was conducted jointly.

As mentioned, in a supervised setting, the HSCNN-R yielded 2.134 and 0.0232, while the HS-

UNet-R yielded 2.742 and 0.238, respectively for RMSE and RRMSE. The same models in a

semi-supervised setting yielded slightly higher errors with 2.168 and 0.0221 for the HSCNN-

R and 2.778 and 0.238 for the HS-UNet-R, respectively for RMSE and RRMSE. Comparing

the plots in Figure 4.10 (top-left with top-right) confirms that both training settings pro-

duce precise RGB to HSI mappings with both network architectures, and that while the

unsupervised loss term degrades performance, the underlying structure of predicted spectra

was maintained. The projection to RGB colour space paints a similar picture - where the
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HSCNN-R in both settings had 20.579 and 20.707 RMSE, and the HS-UNet-R had 20.618

and 20.657 RMSE, respectively for supervised and semi-supervised settings.

The results for HSCNN-R trained with the self-supervised loss function yielded 7.889 and

0.0783, and the HS-UNet-R 7.956 and 0.808, respectively RMSE and RRMSE, which were

the worst results for HSI reconstruction from RGB. This was expected due to the ill-posed

and unconstrained nature of the problem, since the task was to predict a higher-dimensional

space from a lower-dimensional manifold without any known prior. This can be confirmed

by analysing the plots in Figure 4.10 (bottom-left) - where predictions deviate substantially

from the HSI label. However, the results for HSI to RGB projection confirm the hypothesis

that many physically plausible hyperspectral metamers could correspond to the same RGB

capture [Cohen and Kappauf, 1982; Morovic and Finlayson, 2006]. For self-supervised

models, the projection to RGB for HSCNN-R had 20.339 and 0.239, and for HS-UNet-R

20.796 and 0.241, respectively for RMSE and RRMSE, which were similar scores to models

trained in supervised and semi-supervised settings. For self-supervised methods, the effects

of changing the gain value for the smoothing loss in equation 4.9 was analysed. The gain

value was important to produce physically plausible continuous spectral predictions. If

the gain was too high, then the smoothing loss takes over the generalisation and produces

continuous predictions for spectra with no underlying structure. If the gain was too low, the

lack of constraint for neighbouring channels causes ragged predictions, Figure 4.10.

This analysis showed that models trained in a supervised setting produced the lowest error

for HSI reconstruction. Furthermore, the addition of the unsupervised loss term causeed

an increase in RMSE and RRMSE. For self-supervised models, the hypothesis that many

physically plausible hyperspectral metamers could correspond to the same RGB capture

was confirmed [Cohen and Kappauf, 1982; Morovic and Finlayson, 2006]. However, while

the HSI reconstruction fidelity was not as precise as models trained in supervised and semi-

supervised settings (Figure 4.10 - bottom left), the projection to RGB from HSI was as

precise for all training modes.
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4.3.5 Summary

This section shows two methods for HSI reconstruction. The first conclusion confirms

the findings in [Xiong et al., 2017] - where the shallow method in [Arad and Ben-Shahar,

2016] was outperformed by deep implementations, such as HSCNN-R and HS-UNet-R.

Furthermore, the addition of pooling operations and a subsequent upsample track in the

network topology results in objective score degradation that confirms the findings in [Zhang

et al., 2022]. However, while the pooling operation was not ideal for network design, the HS-

UNet-R still outperformed the shallow method in [Arad and Ben-Shahar, 2016] and presents

the opportunity to leverage multi-task learning (MTL); since the U-Net is a powerful model

for semantic segmentation, refer to Section 2.3.2.

The analysis of different training modes also confirmed that many physically plausible

hyperspectral metamers correspond to the same RGB capture [Cohen and Kappauf, 1982;

Morovic and Finlayson, 2006] with the projection to RGB from HSI scoring the same in all

training settings, Table 4.3.

4.4 Hyperspectral reconstruction for strandline and sand-

dune communities

Section 4.3.2 showed the use of deep learning methods trained in supervised, semi-supervised

and self-supervised settings for hyperspectral reconstruction.

As mentioned in Section 4.2.1, prior to each hyperspectral measurement, a white-point sam-

ple was measured in order to record a day-light illuminant spectrum. Then, the illuminant

spectrum was removed from each measurement so that recorded hyperspectral measure-

ments detail the intrinsic reflectance of plants that belong to SD1B, SD2, SD6A, SD7C and

SD19 NVCs, displayed in Figure 4.3. The HSCNN-R and HS-UNet-R, described in Sec-

tion 4.3.2, learn RGB to HSI mappings in accordance to the image formation fundamentals

given in equation 2.2 - where the hyperspectral data cube, H, is the product of a illuminant
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spectrum, L, with the intrinsic reflectance of the object, R. Therefore, given equation 2.2,

the use of in-situ hyperspectral measurements for supervised or semi-supervised settings

was not physically plausible without estimating the illuminant spectrum of the scene. In

this section, a supervised method for hyperspectral reflectance recovery was developed, and

the self-supervised method described in Section 4.3 instead reconstructs radiance, as given

in equation 2.2.

Section 4.4.1 provides a background for hyperspectral imagery in remote sensing and coastal

monitoring applications. Section 4.4.2 details the data pre-process for transcribing in-situ

records onto VHR orthomosaics of the study site and the network architecture used for the

experiments and results detailed in Section 4.4.3. For the results, the recorded hyperspectral

measurements were used to evaluate the supervised and self-supervised methods.

4.4.1 Background

In remote sensing, hyperspectral imagery is costly and rare avenue for data acquisition since

even with the introduction and widespread use of commercial satellites [Goetz, 2009]. HSI

sensors capture an image where each pixel has continuous measurements of the underlying

spectral structure that provide the opportunity to analyse land-cover materials or enhance

intended applications [Plaza et al., 2009], such as endmember extraction [Zhang et al., 2011],

spectral unmixing [Bioucas-Dias et al., 2013], target detection [Zhang et al., 2013] and image

classification [Kang et al., 2013]. For coastal remote sensing, HSI capture has found many

applications that aid in identification and discrimination of coastal and inland features

[Banerjee and Shanmugam, 2021]. These applications include: classifying algal blooms

[Ghatkar et al., 2019], red tides for large extents of the Korean South Sea, Yellow Sea,

East China Sea and Bohai Sea [Ahn and Shanmugam, 2006], coral reef mapping from two

sites on the Great Barrier Reef, Australia [Hedley et al., 2018], water quality assessment at

Muttukadu Lake and Chilika Lake on the east coast of India [Kulshreshtha and Shanmugam,

2018], seagrass mapping on the shores of the Ionian Sea and Greek part of the Aegean Sea

[Traganos et al., 2018]. Furthermore, many other studies have correlated vegetation health
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with leaf reflectance properties that in turn can provide the basis to investigate the overall

health and dynamics of a particular coastal ecosystem [Zinnert et al., 2012; Kearney et al.,

2009; Naumann et al., 2008; Peñuelas and Filella, 1998].

The main limitations to mentioned work is two-fold. First, the category of sensor platform

relates to commercial satellites which as mentioned in Section 2.1, incur high logistical

costs per scene, oblique views that cause geometric and radiometric distortions to pixel

[Loarie et al., 2007], and the spatial resolution of generated imagery can be too coarse

for regional to local mapping objectives [Gould, 2000]. Second, the manufacturing cost of

hyperspectral cameras is high and often results in a trade-off between high spectral but

low spatial resolution [Gutiérrez et al., 2019; Behmann et al., 2018]. Pan-sharpening is

a method to overcome coarse resolution in HSI by fusing a very-high resolution greyscale

image with a corresponding HSI capture [Zhou et al., 2016]. However, the generated HSI

cube is dependant on the quality of image fusion [Ghassemian, 2016]. Miniaturization

of hyperspectral cameras [Basedow et al., 1995; Gonzalez et al., 2016] with rotor-based

UAS could also solve issues related to spatial resolution. But, current implementations of

miniaturized sensors are physically limited [Deng et al., 2021].

As mentioned in Section 2.4, another avenue is to extract hyperspectral information from a

standard RGB image in a process known as hyperspectral reconstruction. In recent years,

deep learning methods have pushed the fidelity in hyperspectral recovery from RGB images

[Xiong et al., 2017; Shi et al., 2018; Lin and Finlayson, 2020] by using CNNs to learn accurate

RGB to HSI mappings from HSI datasets [Yasuma et al., 2010; Arad and Ben-Shahar, 2016;

Arad et al., 2018, 2020].

Given the hyperspectral measurements described in Section 4.2.1, this section also investi-

gates recovering hyperspectral reflectance from a multispectral image. Deep implementa-

tions of hyperspectral reflectance reconstruction have been proposed in [Deeb et al., 2019;

Zhang et al., 2020; Gong et al., 2022] that produce high fidelity reflectance recovery from

RGB images. In particular, Gong et al. [2022] consider correlating predicted leaf reflectance
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with chlorophyll concentration which is a marker for assessing plant health [Zinnert et al.,

2012; Naumann et al., 2008].

4.4.2 Methodology

Data pre-processing for HSCNN-R and HS-UNet-R

The recorded data points during the in-situ survey for species belonging to SD1B, SD2,

SD6A, SD7C and SD19 NVCs listed in Section 4.2.1 provide the basis to create geographi-

cally referenced polygon files through photo interpretation, in the same manner as described

in Section 3.3.1. This process generated 57 polygons, with one polygon for every recorded

sample in Table 4.2. These polygons contain recorded hyperspectral reflectance measure-

ments that can be accurately transcribed onto VHR orthomosaics because of RTK GPS

logs. For the experiments in Section 4.4.3, two datasets were created for each mode used

to train the HSCNN-R and HS-UNet-R.

The self-supervised dataset used all the polygons for model evaluation, since this method

does not require labelled data. The dataset used for supervised hyperspectral reflectance

recovery had polygons split to an 80/20 ratio, respectively for train and test set. Therefore,

the train set used 47 polygons and the test set used the remaining 10 polygons. The test set

polygons belong to the reduced class domain described in Section 4.2.1, with one polygon

for each class.

Polygons to masks for HSCNN-R and HS-UNet-R

HSCNN-R and HS-UNet-R models were trained and evaluated with masks that contain

one-to-one mappings of continuous hyperspectral measurements. These masks were created

using the geographic coordinates stored in each polygon and converting real-world coordi-

nates for each vertex to image-coordinates. If a polygon fits in an image, then the candidate

image was sampled into 256×256 image tiles centered on polygons. Figure 4.12 shows ex-
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amples of cropped aerial imagery with the corresponding mask. This process generated one

image per polygon.

For the self-supervised method, training images were collected using random 256×256 image

crops of the orthomosaic. A selection of 200 random images spread across the site were used

for model training. These models were evaluated on all 57 images with known hyperspectral

measurements. The supervised method for intrinsic reflectance recovery had a different

dataset with 47 images for training and ten images for model testing.

As mentioned in Section 4.2.1, fifteen or twenty five hyperspectral measurements were

recorded at different locations of each marine species. For each data entry recorded in

Table 4.2, the associated hyperspectral measurements were averaged so that each polygon

contains a single spectral signature. Then, the averaged spectral signature was copied to

every pixel in the polygon. Figure 4.13 shows this process for a sample of Crambe maritima,

where each pixel represents the averaged spectral signature along the channel dimension.

Furthermore, for input images used to train supervised reflectance recovery, the pixel values

for each channel in the polygon were averaged. Then, the average value was copied to every

pixel.

HSCNN-R and HS-UNet-R training parameters

The details for HSCNN-R and HS-UNet-R were described in Section 4.3.2. Figures 4.8 and

4.9 show the network architectures used for this experiment. This section evaluated the

HSCNN-R and the HS-UNet-R optimised with equations 4.10 and 4.12.

Self-supervised networks were optimised using equation 4.12 with the parameter β set to

1.0 for all results. Supervised networks were optimised with equation 4.10.

Each network architecture was trained for 600 epochs with a batch-size of four using Adam

optimiser [Kingma and Ba, 2014]. The HSCNN-R had a depth of 12 residual layers while

the HS-UNet-R had a depth of five. The learning rate was initially set to 0.0005 and

reduced using polynomial decay of learning rate with the power set to 1.5. The hyper-
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Figure 4.12: Gallery of images with corresponding masks used for training and testing.

AA - Ammophila arenaria, CM - Crambe maritima, EM - Eryngium maritimum, GF

- Glaucium flavum, HP - Honckenya peploides, LJ - Lathyrus japonicus, RC - Rumex

crispus, SU- Silene uniflora

parameters were chosen through an exhaustive search of various settings and monitoring

the convergence with loss plots and accuracy metrics. All HSCNN-R and extension to U-Net

were implemented and trained using Pytorch version 10.2.

4.4.3 Quality assessment

The objective metrics used to evaluate the stated methods are given in equations 4.13 and

4.14. Table 4.4 lists the results for each method using the stated metrics. Figure 4.14

shows plots of predicted reflectance using the supervised loss metric defined in Eq. 4.10 and

Figure 4.17 show plots of predicted radiance using the self-supervised loss metric defined in

Eq. 4.12. The plots show continuous spectral measurements for each species belonging to

Chapter 4 Brandon Hobley 162



Monitoring Coastal Environments using UAS Imagery and Deep Learning

Figure 4.13: Hand-gun measurement for a sample of Crambe maritima. Twenty

five hyperspectral measurements were recorded at different locations of this plant of

Crambe maritima. The measurements were averaged to a single spectral signature,

as shown with the red line (left-plot), and then copied to every pixel in the polygon

corresponding to this particular plant of Crambe maritima (arrows to right-figure).

the reduced class domain described in Section 4.2.1. Figures 4.15 -4.19 show visual results

at different wavelengths between 400-900nm for each network architecture optimised with

either Eq. 4.10 in a supervised setting or Eq. 4.12 in a self-supervised setting.

4.4.4 Discussion

The following sections discuss the results in Figures 4.14 - 4.19 and Table 4.4. First, the

convergence of HSCNN-R and HS-UNet-R is discussed. Then, both network architectures

are compared in a supervised setting (reflectance reconstruction) and self-supervised setting

(radiance reconstruction). The results in Table 4.4 show errors for each dataset described

in Section 4.4.2. The self-supervised method was evaluated on all 57 images, whereas the

supervised method was evaluated on ten images. Figures 4.14 - 4.19 were generated using the

10 images from supervised method test set to provide a comparison of both methods.

Chapter 4 Brandon Hobley 163



Monitoring Coastal Environments using UAS Imagery and Deep Learning

Losses RMSE RMSE (RGB) RRMSE RRMSE (RGB)

HSCNN-R Ls 0.2404 222.63 0.0049 3.461
Lu + βLsmo 1.794 0.656 0.0171 0.049

HS-UNet-R Ls 0.3023 240.10 0.0066 3.564
Lu + βLsmo 1.677 0.667 0.0166 0.063

Table 4.4: Root mean squared error and relative RMSE for predicted HSI and pro-

jected to RGB colour space using the sensor response function in Figure 4.4 (righ-plot)

.

HSCNN-R and HS-UNet-R convergence

The convergence of HSCNN-R and HS-UNet-R was analysed by testing multiple settings and

hyper-parameters. The optimal set of hyper-parameters was determined by assessing com-

puted RMSE and RRMSE over five sequential runs for each network and hyper-parameter

setting. Table 4.4 and Figures 4.14 - 4.19 show the results over five sequential runs with

the same hyper-parameters described in Section 4.4.2. The results in Table 4.4 were the

average from these sequential runs, and the plots and visual results in Figures 4.14 - 4.19

show the best performing model.

HSCNN-R and HS-UNet-R for supervised hyperspectral reflectance reconstruc-

tion

From the results in Table 4.4, the HSCNN-R trained for hyperspectral reflectance recon-

struction yielded 0.2402 and 0.0049, respectively for RMSE and RRMSE, which suggests

that these models produced accurate hyperspectral reflectance recovery for the dataset

stated in Section 4.4.2. These errors can be confirmed with the plots shown in Figure 4.14

- where continuous reflectance predictions were close to the hyperspectral measurement,

with the test image for Rumex crispus deviating the most. However, the projection to

multispectral colour space using the Sentera camera responses (Figure 4.4 - right-plot) had

222.63 and 3.461, respectively RMSE and RRMSE. This was expected given that the pro-

jection was not in accordance to equation 2.2, since the illuminant spectrum of the scene

was not known. The recorded illuminant spectrum during the calibration process described

Chapter 4 Brandon Hobley 164



Monitoring Coastal Environments using UAS Imagery and Deep Learning

F
ig
u
re

4
.1
4
:
P
lo
ts

fo
r
p
re
d
ic
te
d
re
co
n
st
ru
ct
ed

h
y
p
er
sp
ec
tr
a
l
re
fl
ec
ta
n
ce

fr
o
m

R
G
B
.
P
lo
ts

sh
ow

su
p
er
v
is
ed

m
o
d
el
s
u
si
n
g
eq
u
a
ti
o
n

4.
10

to
re
co
n
st
ru
ct

re
fl
ec
ta
n
ce
.

Chapter 4 Brandon Hobley 165



Monitoring Coastal Environments using UAS Imagery and Deep Learning

Figure 4.15: Visual results for reconstructed hyperspectral reflectance from multi-

spectral Sentera imagery using HSCNN-R. Visual results show supervised models using

equation 4.10 to reconstruct reflectance.
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Figure 4.16: Visual results for reconstructed hyperspectral reflectance from mul-

tispectral Sentera imagery using HS-UNet-R. Visual results show supervised models

using equation 4.10 to reconstruct reflectance.
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in Section 4.2.1 was not suitable for model training. The goal for recording a white-sample

was to calibrate and scale the recorded reflectance in Figure 4.3 to a range between zero

to one. However, the recorded scale of the illuminant spectrum was at a scale defined by

the spectroradiometer instrument. Therefore, subsequent scaling of recorded illuminant

spectrum to the same range was possible but would result in ad-hoc tuning during model

training.

The HS-UNet-R yielded 0.3023 and 0.0066, respectively RMSE and RRMSE. This was

the same result as discussed in Section 4.3.4, where the HS-UNet-R was worse than the

HSCNN-R. But, these scores still suggest that the HS-UNet-R can produce accurate hy-

perspectral reflectance recovery for the dataset stated in Section 4.4.2. This was confirmed

with the plots shown in Figure 4.14 - where the HS-UNet-R deviates more often from the

HSI measurements than the HSCNN-R, and in particular for the test image with sand.

The projection to multispectral colour space had 240.10 and 3.564, respectively RMSE and

RRMSE, which was worse than the HSCNN-R. Again, this was expected given that the

projection was not in accordance to equation 2.2.

Overall this experiment shows that the HSCNN-R and HS-UNet-R can learn hyperspectral

reflectance reconstruction using the dataset described in Section 4.4.2. Indeed, both models

learn reflectance but also learn to discount the illuminant from input images which entails

that this method cannot be used on another site without re-training the model with the

same set of hyperspectral measurements. This is a common issue in remote sensing that

requires normalised inputs from one study site to another which in this case would be the

reflectance of different shingle vegetation species.

Figures 4.15 and 4.16 also showed some of the limitations of the dataset described in Section

4.4.2. First, the number of images used for training and testing the HSCNN-R and HS-

UNet-R was limited in order to conclude whether this method for hyperspectral reflectance

was comparable to the work done in [Deeb et al., 2019; Zhang et al., 2020; Gong et al., 2022].

Furthermore, the pre-process of hyperspectral measurements and input images for generated
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polygons described in Section 4.4.2 results in visual artifacts and coarse boundaries for

reconstructed vegetation features. This was noticeable for rows showing showing Glaucium

flavum and Silene uniflora in Figures 4.15 and 4.16, where the vegetation features lack fine-

grain detail. Another visual artifact can be found for rows showing visual predictions of

sand, where salt and pepper artifacts can be found among casting shadows of sand pockets,

and the nature of shingle that may present small pebbles with distinct colours thus returning

different hyperspectral signatures. These artifacts could also be caused by the small number

of labelled samples in the dataset.

HSCNN-R and HS-UNet-R for self-supervised hyperspectral reconstruction

The results in Table 4.4 show that self-supervised models yielded similar scores for both

the HSCNN-R and HS-UNet-R. Therefore, the analyses for both network architectures was

conducted jointly.

The HSCNN-R had 1.794 and 0.0171, and the HS-UNet-R 1.677 and 0.0166, respectively for

RMSE and RRMSE, which performed worse than supervised models. As mentioned in Sec-

tion 4.3.4, this was expected due to the ill-posed and unconstrained nature of the problem,

since the task was to predict a higher-dimensional space from a lower-dimensional manifold

without any known prior. Again, this can be confirmed with the plots in Figure 4.17 -

where hyperspectral predictions deviate substantially from the hyperspectral measurement.

In fact, irrespective of the target vegetated or non-vegetated class in the reduced class do-

main, each predicted response details similar structure. The responses between 400-700nm

vary from species to species but then step up similarly from 700-900nm. Furthermore, it

was important to note that the hyperspectral measurements in Figure 4.17 show reflectance

measurements of the reduced class domain but the goal with self-supervised models was to

reconstruct radiance, as given in equation 2.2.

For the projection to multispectral colour space using the responses in Figure 4.4 (right-

plot), the HSCNN-R had 0.656 and 0.0049, and the HS-UNet-R 0.667 and 0.063, respectively
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Figure 4.18: Visual results for reconstructed hyperspectral radiance from multispec-

tral Sentera imagery using HSCNN-R. Visual results show self-supervised models using

equation 4.12 to reconstruct radiance.

AA - Ammophila arenaria, CM - Crambe maritima, EM - Eryngium maritimum, GF -
Glaucium flavum, HP - Honckenya peploides, LJ - Lathyrus japonicus, RC - Rumex

crispus, SU- Silene uniflora
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Figure 4.19: Visual results for reconstructed hyperspectral radiance from multispec-

tral Sentera imagery using HS-UNet-R. Visual results show self-supervised models using

equation 4.12 to reconstruct radiance.

AA - Ammophila arenaria, CM - Crambe maritima, EM - Eryngium maritimum, GF -
Glaucium flavum, HP - Honckenya peploides, LJ - Lathyrus japonicus, RC - Rumex

crispus, SU- Silene uniflora
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for RMSE and RRMSE. This suggests that both network architectures produce accurate

reconstructed multispectral images when optimised with equation 4.12. This can be con-

firmed with the visual results in Figures 4.18 and 4.19, where the reconstructed multispectral

image was identical to the input image. Again, this confirms that many physically plausi-

ble hyperspectral metamers can correspond to the same multispectral capture [Cohen and

Kappauf, 1982; Morovic and Finlayson, 2006].

This experiment confirms the findings in Section 4.3.4, where the HSI reconstruction fidelity

was not as precise for self-supervised, as shown in Figure 4.17 but the projection to multi-

spectral colour space from HSI was precise. Furthermore, comparing Figures 4.15 and 4.16

with Figures 4.18 and 4.19 shows that the visual artifacts, as a result of the pre-processing

steps described in Section 4.4.2, were not present for self-supervised models, and detail-

ing features for vegetation target classes from the input image were maintained for each

reconstructed hyperspectral channel.

While it is hard to confirm whether HSCNN-R and HS-UNet-R have overfit on the train

data given the test set comprises of ten images and the lack of a further dataset split to

include a validation set. The plots shown in Figure 4.14 show different spectral signatures

for each shingle vegetation specie with both models accurately predicting each hyperspectral

signature corresponding to a particular specie correctly that may confirm that the model

has learnt hyperspectral reflectance recovery on unseen data.

4.4.5 Summary

Section 4.4 continued to develop the methods in Section 4.3.

The hyperspectral measurements described in Section 4.2.1 were used to optimise the

HSCNN-R and HS-UNet-R in a supervised setting to learn reflectance recovery. The re-

sults with the supervised setting confirm the findings detailed in Section 4.3.4, where the

HSCNN-R outperformed the HS-UNet-R. However, the dataset and pre-processing stages

of hyperspectral measurements described in Section 4.4.2 resulted in visual artifacts for
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reconstructed hyperspectral channels, as shown in Figures 4.15 and 4.16. Furthermore, the

test set was limited to ten images that in turn does not provide the basis to compare with

methods presented in [Deeb et al., 2019; Zhang et al., 2020; Gong et al., 2022].

The self-supervised hyperspectral radiance reconstruction described in Section 4.3 was ap-

plied to multispectral imagery of the study site. The results in Section 4.4.3 also confirm

the findings described in Section 4.3.4, where the HSI reconstruction fidelity was not precise

due to the ill-posed and unconstrained nature of reconstructing a higher-dimensional space

from a lower-dimensional manifold. However, the projection to multispectral colour space

from HSI was precise.

4.5 Multi-task learning: segmentation with hyperspectral

reconstruction

Sections 4.3 and 4.4 showed the use of deep learning methods for hyperspectral reflectance

and radiance reconstruction. The utility of a U-Net architecture for hyperspectral recon-

struction was investigated to note for performance degradation, as stated in Zhang et al.

[2022]. However, given the performance degradation, the U-Net architecture still outper-

formed the shallow method described in Section 4.3.1.

In Section 3.3, deep learning models were trained using supervised and semi-supervised set-

tings. In the next section, an alternative semi-supervised optimisation method that lever-

ages multi-task learning (MTL) was used for semantic segmentation, instead of consistency-

based regularisation. The goal was to use MTL in order to learn both semantic segmenta-

tion and hyperspectral reconstruction with a shared model. As mentioned in Section 2.5, by

sharing internal representations from auxiliary training signals, models can learn different

internal representations and prevent overfit on the original main image task [Ruder, 2017].

In this case, the main image task was semantic segmentation, given the main objective was

to map the pioneering species belonging to SD1B, SD2 and SD6A NVCs, and the auxiliary

image task was hyperspectral reconstruction.
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The HS-UNet-R architecture described in Section 4.3.2 was adapted for the purpose of

learning both tasks. The tasks for MTL were either supervised semantic segmentation with

supervised reflectance recovery, or supervised semantic segmentation with self-supervised

radiance recovery. Therefore, the mapping results compared supervised and semi-supervised

methods, as described in Section 3.3, with supervised models trained in MTL. The mapping

results also include an analyses of the OBIA method with the objective metrics used in

Section 3.3.2.

4.5.1 Background

In remote sensing, MTL frameworks that attempt to solve semantic segmentation as a main

image task often attempt to improve inter-class boundary separation as an auxiliary task.

For instance, Volpi and Tuia [2018] learns semantic segmentation and semantic boundary

detection jointly. Bischke et al. [2019] uses a shared model to learn semantic segmentation

and also incorporates a self-supervised distance metric for accurate inter-class boundary

separation. Another method presented Li et al. [2021a] uses a boundary attention mod-

ule for refined segmentation boundaries. These methods leverage an auxiliary image task

closely related to the main image task. In Lu et al. [2022], the MTL framework learns two

different problem domains which in this case are semantic segmentation and depth estima-

tion. Another method following this trend presented in Wang et al. [2020a] learns semantic

segmentation in tandem with object detection. For coastal remote sensing, the trend of

MTL framework with semantic segmentation as the main image task is to also use auxiliary

boundary refinement tasks [Jing et al., 2021; Liu et al., 2020b] or semantic segmentation

with depth estimation [Carvalho et al., 2019].

The following section shows an MTL framework to jointly learn self-supervised radiance

reconstruction or supervised reflectance recovery with supervised semantic segmentation.

The premise was that the auxiliary training signals, unrelated to the main image task, can

refine semantic segmentation boundaries or improve inter-class separation. Section 4.5.2

shows the method for MTL with a shared model. Section 4.5.4 provides a discussion of
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visual mapping results and objective scores of supervised and semi-supervised methods, as

described in Section 3.3, supervised models trained with MTL and OBIA.

4.5.2 Methodology

Data pre-processing for MTL

Again, as in Section 4.4.2, the recorded data points during the in-situ survey were used to

create geographically referenced polygon files through photo interpretation. As described

in Section 4.2.1, the segmentation task had a reduced class domain. Therefore, from the

57 polygons described in Section 4.4.2, 40 polygons belonging to the reduced class domain

were selected.

From these classes, extra polygons were added in the vicinity of known points. The target

classes with extra polygons were Ammophila arenaria (14 polygons), Crambe maritima (11

polygons), Silene uniflora (five polygons), sand (eight polygons) and shingle (five polygons).

This brings the total number of polygons for the segmentation dataset to 83 polygons. The

use of photo-interpretation also draws from the conclusions stated in Section 3.4, where good

quality labels can be found in-situ, but a healthy quantity of labels can also be supplemented

from aerial imagery.

Therefore, each image task to be learnt used different sets of polygons. The supervised

reflectance reconstruction task used the 57 polygons described in Section 4.4.2, the semantic

segmentation task used 83 polygons and the self-supervised radiance reconstruction does

not require polygons for training.

The polygons for the segmentation task were split to an 80/20 ratio, with 68 polygons for

model training and the remaining 15 polygons for testing.

Polygons to masks for MTL

Depending on the task, each polygon either contains a semantic value for segmentation, or

hyperspectral signature for reconstruction. The HS-UNet-R were trained with segmentation
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maps that contain a one-to-one mapping of pixels encoded with a semantic value, and also

continuous hyperspectral measurements, if considering the supervised reflectance recovery

task.

Masks used for training HS-UNet-R were created using the geographic coordinates stored in

each polygon and converting real-world coordinates for each vertex to image-coordinates. If

a polygon fits within an image, then the candidate image was sampled into 256×256 image

tiles centered on labelled sections of the image. By cropping images centered on polygons

the edges of each image had a number of pixels that were not labelled. In turn, this allowed

the use of semi-supervised methods described in Section 3.3. This process generated one

image per polygon.

Therefore, the MTL framework had three datasets. The semantic segmentation task had

75 images, with 60 for model training and the remaining 15 images for testing. The hy-

perspectral reflectance recovery had 57 images and the self-supervised dataset had 200, as

described in Section 4.4.2.

Loss functions

For each dataset and task, different loss functions were used to optimise the network.

The segmentation task considers two training modes: a supervised mode using equation

3.3 and semi-supervised mode using a teacher-student architecture, see Figure 3.10, with

equations 3.3 and 3.4. As mentioned, the mapping results in networks trained using MTL

only consider the supervised loss with equation 3.3 to avoid bias from the teacher network.

The results for the consistency-based semi-supervised setting in Section 4.5.3 combined both

losses in the same way as equation 3.5. The parameter γ was set to 0.1 and the weights, w,

were computed using equation 3.1 and the class distribution of labelled pixels. Furthermore,

for teacher predictions the confidence threshold was set to 0.97.

The hyperspectral reconstruction task also considered two training modes depending on the

reconstruction objective. The supervised setting for hyperspectral reflectance reconstruction
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used equation 4.6 and the self-supervised setting for radiance reconstruction used equations

4.8 and 4.9. Given the main objective was to map the pioneering species on shingle and

sand sediment, the hyperspectral reconstruction task was viewed as auxiliary. Therefore,

for networks optimised with MTL, the following loss functions were used depending on the

hyperspectral reconstruction task.

If the goal was to apply MTL for supervised segmentation with supervised reflectance

recovery, then the loss function combines Eqs. 3.3 and 4.6 as follows:

L = wLseg + αLrecon (4.15)

Where, w was computed using equation 3.1 and the class distribution of labelled pixels, Lseg

was the supervised segmentation loss (Eq. 3.3), Lrecon was the supervised hyperspectral

reflectance loss (Eq. 4.6) and α was set to 0.1.

If the goal was to apply MTL for supervised segmentation with self-supervised radiance

recovery, then the loss function combines Eqs. 3.3, 4.8 and 4.9 as follows: were respectively

scaled down by a factor of 100 and ten.

L = wLseg + αLrecon + βLsmo (4.16)

Where, w was computed using equation 3.1 and the class distribution of labelled pixels, Lseg

was the supervised segmentation loss (Eq. 3.3), Lrecon was the self-supervised hyperspectral

reflectance loss (Eq. 4.8) with α set to 0.1 and Lsmo was the smoothing loss (Eq. 4.9) with

β set to 0.01.

The hyper-parameters α and β were chosen through an exhaustive search of various settings

and monitoring the convergence with loss plots and accuracy metrics.
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HS-UNet-R implementation and training parameters for MTL

The details for the HS-UNet-R were described in Section 4.4.2. Figure 4.8 shows the encoder

network for the U-Net version in Figure 4.9. As described in Shi et al. [2018], the number

of feature maps generated from each convolutional layer was consistent, with 64 feature

maps per convolutional layer. The experiments in Section 4.4 with the HS-UNet-R also

had a consistent number of feature maps generated per convolutional layer in the encoding

network, see Figure 4.9. Generally, in computer vision the number of feature maps expands

by a factor of two from each encoding stage [Simonyan and Zisserman, 2014; He et al., 2016,

2017; Long et al., 2015; Ronneberger et al., 2015]. Therefore, for the MTL framework, the

implemented HS-UNet-R increased the number of feature maps for each encoding stage,

then decreased with each decoding stage.

The MTL architecture shared the weights of the HS-UNet-R for each task to be learnt but

each image task had separate input and output layers. A full epoch consisted of forward

passing the segmentation dataset, followed by one of the versions of the hyperspectral

reconstruction dataset depending on the MTL framework, see Figure 4.20. Each network

architecture was trained for 200 epochs with a batch-size of six using Adam optimiser

[Kingma and Ba, 2014]. The HS-UNet-R had a depth of five with the following feature

map expansion after each encoding stage: 64, 128, 256, 512 and 512. The learning rate was

initially set to 0.001. All HS-UNet-Rs were implemented and trained using Pytorch version

10.2.

OBIA

The results from the OBIA method were provided by Cefas. As in Section 3.3, the OBIA

method for modelling multiple coastal features was achieved using eCognition v9.3 [Benz

et al., 2004].

The first step in OBIA was to process the orthomosaic using a multi-resolution segmentation

algorithm to partition the image into segments [Benz et al., 2004]. The scale parameter
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Figure 4.20: The MTL architecture used for the results shown in Section 4.5.3. The

shared model is the HS-UNet-R and the proposed MTL architecture alternates between

each task to be learnt by forward passing the segmentation dataset, followed by one of

the versions of the hyperspectral reconstruction dataset.

Chapter 4 Brandon Hobley 180



Monitoring Coastal Environments using UAS Imagery and Deep Learning

dictated whether two adjacent image-objects were fused, as given in equation 3.3.1. If the

criterion exceeds the scale parameter value, then the fusion was not performed. In contrast,

if the criterion was below the scale parameter value, then both candidates were clustered

to form a larger region. The segmentation procedure stops when no further fusions were

possible without exceeding the scale parameter. The geometry of each image-object was

defined by two other hyper-parameters known as shape and compactness. For the results

in Section 4.5.3, the scale parameter was set to 50, the shape to 0.2 and the compactness

to 0.5. The input layers for the segmentation process were Red, Green and Blue bands,

the Red Edge band and Near-Infrared, normalised difference vegetation index (NDVI) and

the digital surface model (DSM) [Private communication, Arosio, 2021]. Figure 4.21 shows

image objects overlaid on top of a crop of the study site.

In Section 3.3, the use of polygons derived from the in-situ survey were superimposed on top

of image-objects to select the candidate segments for extracting features to train shallow

machine learning models. However, for the results provided by Cefas in Section 4.5.3, seg-

mented image-objects were manually selected to create a dataset for the in-built Random

Forest in eCognition [Breiman, 2001]. The manual selection was a combination of expert

photo-interpretation and accurate transcription of data points from the site survey. As men-

tioned in Section 4.2.1, the target class domain for the OBIA method was further reduced by

joining Rumex crispus and Glaucium flavum labels to a single class called pioneering grass-

land, and merging Silene uniflora, Lathyrus japonicus and Honckenya peploides labels to

another single class named young pioneering species [Private communication, Arosio, 2021].

For each selected image-object, statistical moments, such as channel mean and standard de-

viation, NDVI, ratios between Red/Blue, Red/Green and Blue/Green image layers and the

DSM were used to train and validate the Random Forest modeller [Breiman, 2001].

4.5.3 Quality assessment

The objective metrics discussed in Section 4.5.4 will be pixel accuracy, precision, recall and

F1-score. As mentioned in Section 3.3.2, pixel accuracy measures the ratio between pixels
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that were classified correctly and the total number of labelled pixels in the test set for a

given class. Precision and recall are metrics that can show how a classifier performs for

each specific class. F1-score is the harmonic mean of recall and precision and is a suitable

metric to quantify classifier performance when a single figure of merit is needed. Equation

3.7 shows each objective metric. The analysis of results will be split into two threads of

discussion.

First, an analysis of results for FCNs trained with different optimisation strategies in order

to achieve fine-grained specie level mapping, as noted with the target class domain stated

in Section 4.2.1. Figure 4.22 shows the VHR orthomosaic generated from the aerial survey

described in Section 4.2.1 with an overlay of each part of interest used for this particu-

lar discussion. Figure 4.23 show cropped close-ups of the orthomosaic used in the visual

analysis.

As mentioned, the results from the OBIA with a further reduced target class domain which

creates a discrepancy between the objective and visual results with the listed species in

Table 4.2 and the discussion in Section 4.5.4. Therefore, while the discussion in Section

4.5.4 points to trends and patterns found in objective scores and generated thematic maps

for each optimisation strategy, Section 4.5.5 provides a one-to-one comparison by merging

predictions obtained with FCNs using the heuristics described in Section 4.2.1 for defining

the mapping schema used for OBIA. Figure 4.24 shows the VHR orthomosaic along with

the cropped regions of interest used for the visual analysis of results.

Experiments and Results

The mapping outputs of the HS-UNet-R trained in multiple settings were compared with

the 15 polygons that were not used for training. Figure 4.25 show confusion matrices scoring

outputs from each MTL setting as pixel accuracy. The confusion matrices also show pixel

accuracies for models without MTL that were optimised using equation 3.3 and models that
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Figure 4.23: Cropped close-ups of the orthomosaic used for the visual analysis of

FCNs optimised using various strategies as shown in Sections 3.3 and 4.5.
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Figure 4.24: Orthomosaic of Sizewell beach with geographical coordinates. The

figures A, B and C show close-ups of the shingle beach along with assemblages of

vegetated shingle communities used for the comparison of FCNs with the OBIA. For

the display, the Red, Green and Blue image bands were used.
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Supervised Semi-supervised MTL: supervised MTL: self-supervised
R P F1 R P F1 R P F1 R P F1

Shingle 0.933 0.994 0.963 0.907 0.991 0.947 0.891 0.984 0.935 0.775 0.974 0.863

Sand 0.997 0.929 0.962 0.997 0.897 0.945 1 0.857 0.923 1 0.767 0.868

Ammophila A 0.583 0.927 0.716 0.950 0.936 0.943 0.988 0.708 0.825 0.987 0.706 0.823

Hockenya P 0.958 0.294 0.450 0.703 0.700 0.702 0.764 0.747 0.752 0.437 0.248 0.317

Lathyrus J 0.006 0.208 0.0135 0.055 0.220 0.089 0.036 0.371 0.066 0.002 0.153 0.005

Glaucium F 0.906 0.174 0.292 0.891 0.490 0.632 0.702 0.480 0.570 0.631 0.482 0.546

Silene U 0.968 0.694 0.809 0.951 0.834 0.889 0.709 0.888 0.789 0.727 0.830 0.775

Crambe M 0.672 0.983 0.798 0.868 0.965 0.914 0.933 0.948 0.940 0.889 0.960 0.923

Eryngium M 0.871 0.121 0.211 0.842 0.163 0.273 0 0 0 0.457 0.263 0.334

Rumex C 0.069 0.489 0.122 0.158 0.500 0.240 0.313 0.565 0.403 0.215 0.788 0.338

Avg. score 0.702 0.532 0.533 0.732 0.664 0.563 0.633 0.654 0.62 0.612 0.617 0.579

Table 4.5: Recall, precision and F1-scores for supervised, semi-supervised and MTL

using the HS-UNet-R. The supervised column shows models optimised with equation

3.3, the semi-supervised column shows models optimised using both equations 3.3 and

3.4. MTL - supervised refers to models trained for supervised segmentation with super-

vised reflectance recovery. MTL - self-supervised refers to models trained for supervised

segmentation with self-supervised radiance recovery.

were optimised using both equations 3.3 and 3.4. The results in Table 4.5 reflect the specie

level mapping objective.

For the comparison with OBIA, the predictions for FCNs optimised with 3.3, or both

equations 3.3 and 3.4, and FCNs trained in semi-supervision using MTL were merged in

the same manner as the heuristics described for the further reduced target class domain

used with OBIA. The same subset of 15 rasterised polygons that were not used for training

compare both methods jointly. Figure 4.26 display confusion matrices scoring outputs from

each method as pixel accuracy. Overall results for OBIA and FCNs in supervised, semi-

supervised with consistency regularisation, and semi-supervised with MTL were reported

in Table 4.6.

Thematic maps

Figures 4.27 - 4.34 show thematic maps for HS-UNet-R trained in a supervised or semi-

supervised setting as described in Section 3.3. Figures 4.35 - 4.42 show thematic maps for

HS-UNet-R trained with MTL where the auxiliary image task was supervised reflectance

recovery or self-supervised radiance recovery as described in Section 4.5.2.
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Figure 4.25: Confusion matrices for both supervised, semi-supervised and MTL using

the HS-UNet-R. MTL - supervised refers to models trained for supervised segmentation

with supervised reflectance recovery. Each confusion matrix for FCNs shows the average

pixel accuracy over 5 independent train and test run. MTL - self-supervised refers to

models trained for supervised segmentation with self-supervised radiance recovery.
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Figure 4.26: Confusion matrices showing pixel accuracy scores for OBIA and

FCNs optimised in a supervised, semi-supervised with consistency regularisation and

teacher/student networks and semi-supervised multi-task learning. Each confusion ma-

trix for FCNs shows the average pixel accuracy over 5 independent train and test run.

Legend: Mature G - Mature Grassland; Pioneering G. - Pioneering grassland; Young

P. - Young pioneering; Crambe M. - Crambe Maritima
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OBIA Supervised Semi-supervised MTL: semi-supervised
R P F1 R P F1 R P F1 R P F1

Shingle 0.953 0.387 0.550 0.808 0.971 0.882 0.832 0.986 0.902 0.899 0.981 0.938

Sand 0.993 0.589 0.739 0.994 0.805 0.89 1 0.873 0.932 1 0.906 0.951

Mature G. 0.729 0.983 0.838 0.894 0.935 0.923 0.948 0.912 0.929 0.917 0.963 0.941

Pioneering G. 0.183 0.311 0.230 0.498 0.233 0.317 0.605 0.24 0.344 0.522 0.223 0.323

Young P. 0.590 0.934 0.726 0.975 0.881 0.926 0.857 0.909 0.883 0.965 0.861 0.911

Crambe M. 0.562 0.997 0.719 0.915 0.972 0.943 0.874 0.969 0.919 0.816 0.977 0.889

Avg. score 0.668 0.701 0.673 0.847 0.799 0.813 0.853 0.815 0.818 0.854 0.821 0.825

Table 4.6: Recall, precision and F1-scores for OBIA and FCNs in supervised, semi-

supervised, and MTL semi-supervised with the architecture shown in Figure 4.20. Leg-

end: Mature G - Mature Grassland; Pioneering G. - Pioneering grassland; Young P. -

Young pioneering; Crambe M. - Crambe Maritima

4.5.4 Discussion - species level mapping with FCNs

The results in Table 4.5 show precision, recall and F1-score for HS-UNet-Rs trained super-

vised, semi-supervised and MTL settings. In Table 4.5 and Figure 4.25, MTL supervised

refers to models trained for supervised segmentation with supervised reflectance recovery

and MTL self-supervised refers to models trained for supervised segmentation with self-

supervised radiance recovery. Figures 4.27 - 4.42 show thematic maps for each method and

for each cropped area shown in Figure 4.23.

HS-UNet-R convergence

The convergence of HS-UNet-Rs was analysed by testing multiple settings and hyper-

parameters. The optimal set of hyper-parameters was determined by assessing computed

confusion matrices and F1-scores over five sequential train/test runs with a given set of

hyper-parameters. Figure 4.25 show the average pixel accuracy score over five sequential

runs with the same hyper-parameters described in Section 4.5.2. Table 4.5 also shows

average scores over five sequential runs. The generated thematic maps display the best

performing model for a given train/test run.
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HS-UNet-R - supervised

The average normalised accuracy and average F1-scores for the HS-UNet-R trained in a

supervised setting were respectively, 70.23% and 0.533. The results for this setting provide

a baseline for the remaining deep learning models.

Sediment pixel classifications for shingle and sand yielded the highest pixel accuracies and

F1-scores, respectively scoring 93.3% and 99.7%, and 0.963 and 0.962. The thematic maps

in Figures 4.27 - 4.30 show accurate predictions for sand and shingle in all input images.

In particular, the separation between sand and shingle was clearly shown for input image

A). However, input images C) and D) also showed failure to accurately delineate sediment

channels among species belonging to SD6 NVC, e.g. Ammophila arenaria.

Classifications for Ammophila arenaria yielded the lowest pixel accuracy and F1-score,

respectively 58.3% and 0.716. The top-left confusion matrix in Figure 4.25 notes 32.3% of

labels for Ammophila arenaria were miss-classified as Silene uniflora. The latter error can

be seen in Figures 4.28 - 4.29 for input images B) and C), where a general confusion can be

noted between extents predicted as Ammophila arenaria and Silene uniflora.

The predictions for target classes belonging to SD1B NVC had a mixed performance. From

this NVC, Lathryrus japonicus and Rumex crispus yielded unsatisfactory results, respec-

tively scoring 0.7% and 7.0%, and 0.0135 and 0.122, in terms of pixel accuracy and F1-score.

The top-left confusion matrix in Figure 4.25 showed that 49.4% of Lathyrus japonicus la-

bels were miss-classified as Silene uniflora. Figures 4.5 and 4.12 showed ground and aerial

captures of each species for the mapping objective. From an aerial point of view, Silene

uniflora and Lathyrus japonicus can exhibit similar spectral and texture features, as shown

in Figure 4.12, and cover similar areas on the ground, as shown in Figure 4.5. This could

justify the over-representation of Silene uniflora and the under-representation of Lathryrus

japonicus for the thematic maps displayed in Figures 4.27 - 4.30. Figures 4.5 and 4.12 should

also allude to the complexity of mapping Rumex crispus from aerial imagery. In particular,

Figure 4.12 shows similar texture and spectral features between Rumex crispus and shingle
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sediment. Target classes such as Glaucium flavum and Silene Uniflora both yielded high

pixel accuracies, respectively scoring 90.6% and 96.8%. However, the results in Table 4.5

also show poor precision scores that suggests that performance for both target classes were

often false-positive. The thematic maps in Figures 4.28 and 4.29 for input images B) and

C) showed this issue, where Silene Uniflora was generally over-represented. The last target

class belonging to SD1B was Crambe maritima that yielded a pixel accuracy of 67.2% and

a F1-score of 0.798. These results were the lowest pixel accuracy and F1-score for Crambe

maritima. However, Table 4.5 showed that this class exhibited high precision that suggests

a low probability of false-positive predictions.

Pixel predictions for Honckenya peploides yielded high pixel accuracy with 95.8% but also

low precision. Again, this suggests a higher probability to generate false-positives. In fact,

21.0% of Lathyrus japonicus labels were miss-classified as Honckenya peploides. Eryngium

maritimum paints a similar picture with high pixel accuracy but low precision score. In this

case, 9.8% of Crambe maritima labels were miss-classified as Eryngium maritimum.

HS-UNet-R - semi-supervised

The average normalised accuracy and average F1-score for the HS-UNet-R trained in a

semi-supervised setting were respectively, 73.22% and 0.563. HS-UNet-Rs trained in a

semi-supervised setting yielded the highest average normalised accuracy but not the highest

F1-score.

Sediment predictions were found to have a similar performance to models trained in a

supervised setting. Respectively, shingle and sand pixel were 90.3% and 99.8% correct

and the F1-score also yields high scores with 0.947 and 0.945. Again, the thematic maps in

Figures 4.31 - 4.34 showed accurate delineation for sand and shingle in all input images, with

input image A) clearly detailing accurate classification and delineation of shingle and sand.

However, as with supervised models, input image D) showed failure to accurately delineate
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sediment channels among species belonging to SD6 NVC, e.g. Ammophila arenaria, but this

time input image C) showed accurate classification of the same sediment channels.

The scores in Table 4.5 showed that Ammophila arenaria yielded the highest F1-score, with

0.943 and high pixel accuracy with 95.8%. In general, for semi-supervised HS-UNet-Rs,

predictions for this target class exhibit high confidence and accurate separation between

vegetation and sediment among sediment channels with transitioning SD6 NVC. The latter

can be seen in Figure 4.33 with input image C), where the sediment track was clearly

delineated among Ammophila arenaria.

Again, the performance for Lathryrus japonicus and Rumex crispus yielded unsatisfactory

results, respectively scoring 5.6% and 15.8% in terms of pixel accuracy, and 0.089 and

0.240 in F1-score. The top-right confusion matrix in Figure 4.25 noted that 90.8% of

Lathyrus japonicus labels were miss-classified as Silene uniflora. Again, this could be due

to both species possessing similar spectral and texture features from an aerial point of

view. The poor performance of Rumex crispus also stressed the complexity of mapping

this particular species from aerial imagery. Pixel classifications for target classes such as

Glaucium flavum and Silene Uniflora both yielded high pixel accuracies, respectively scoring

89.1% and 95.1%. The results in Table 4.5 also showed that adding the unsupervised loss

term with a teacher-student architecture described in Section 3.3 increased the precision

scores of these particular target classes that in turn suggests that both target classes were

less likely to be false-positive. Examining input images B) and C) in Figures 4.28 - 4.29 and

Figures 4.32 and 4.33 confirms this result, where Silene Uniflora with the semi-supervised

HS-UNet-R were not over-represented among sediment gaps and Ammophila arenaria. The

last target class belonging to SD1B was Crambe maritima that yielded good results. The

pixel accuracy for this class was 86.8% and the F1-score 0.914. The semi-supervised method

has high recall with high precision that is apparent for input images C) and D) in Figures

4.33 and 4.34, where accurate predictions for pioneering Crambe maritima can be found on

shingle and sand sediment.
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Honckenya peploides had 70.2% pixel accuracy which is lower than supervised models.

However, the latter exhibited low precision, while semi-supervised models show higher pre-

cision. Figure 4.25 show that 12.2% and 14.8% of Honckenya peploides labels were re-

spectively miss-classified as Silene uniflora and Lathyrus japonicus. Again, suggesting that

these species were complex target classes to discern from an aerial point of view. Eryngium

maritimum paints a similar picture to models trained in a supervised setting, where Figure

4.25 show high pixel accuracy but Table 4.5 show low precision score. In this case, 9.3% and

6.4% of Eryngium maritimum labels were respectively miss-classified as Glaucium flavum

and Crambe maritima.

HS-UNet-R - MTL: supervised

The average normalised accuracy and average F1-score for the HS-UNet-R trained in MTL

with supervised segmentation and supervised reflectance recovery were respectively, 63.36%

and 0.620. HS-UNet-Rs trained in this particular MTL setting yielded the highest average

F1-score.

Sediment classes when using supervised reflectance recovery had a pixel accuracy of 89.1%

and 100%, and F1-score of 0.935 and 0.923, respectively for shingle and sand. However,

9.0% of shingle labels were miss-classified as sand, and 43.6% of Eryngium maritimum

labels were also miss-classified as sand. Suggesting that this particular sediment class was

over-represented. However, Figures 4.27 - 4.30 and 4.35 - 4.38 show similar patterns with

respect to shingle and sand predictions, where the separation between both classes was

clearly shown for input image A) but fail to accurately delineate sediment channels among

species belonging to SD6 for input images C) and D).

Ammophila arenaria yielded the highest pixel accuracy with 98.8%. However, the middle-

left confusion matrix in Figure 4.25 also shows that labels for target classes belonging to

SD1B NVC were often classified as Ammophila arenaria. Furthermore, Table 4.5 shows

lower precision with this particular MTL setting that suggests that this particular class was
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more likely to be false-positive. This error can be seen in Figures 4.36 and 4.37 for input

images B) and C), where Ammophila arenaria was clearly mapped more often compared

than the same images in Figures 4.28 - 4.29 and 4.32 - 4.33.

The mapping results for Lathyrus japonicus yielded unsatisfactory results, following the

same trend as supervised and semi-supervised settings. The pixel accuracy and F1-score

were respectively 3.6% and 0.066, with 42% of Lathyrus japonicus labels miss-classified

as Silene uniflora. As mentioned, this could be due to both species possessing similar

spectral and texture features from an aerial point of view. Rumex crispus pixels were

31.3% correct and the F1-score was 0.403 which was the highest pixel accuracy and F1-

score. However, Figures 4.36 - 4.37 clearly shows that Rumex crispus was over-represented

for input images B) and C). Therefore, while this particular training setting yields the

highest accuracy and F1-score - low scores for recall and precision clearly affect the visual

results shown in Figures 4.35 - 4.42. Crambe maritima was 93.3% correct with a F1-

score of 0.94 which was also the highest pixel accuracy and F1-score. Figures 4.35 - 4.42

shows accurate predictions for pioneering Crambe maritima in all input images on shingle

and sand sediment. Target classes such as Glaucium flavum and Silene Uniflora both

yielded satisfactory pixel accuracies, respectively with 70.3% and 70.9%. However, the

pixel accuracy was lower than both training settings without MTL, with 29.1% of Glaucium

flavum labels miss-classified as Crambe maritima and 26.1% of Silene uniflora labels miss

classified as Ammophila arenaria. However, both classes exhibited higher precision than

models trained in a supervised setting using equation 3.3 that suggests that these models

were less likely to generate false positives for Glaucium flavum and Silene uniflora. Both

species exhibit similar spectral and texture features from an aerial point of view and adding

the spectral reflectance signature of these species into the optimisation process may aid

discern specific shingle plants and prevent false positives.

The performance for target classes belonging to SD2 NVCs was also mixed. Honckenya

peploides had 76.4% pixel accuracy, with 13.3% of the pixel labels miss-classified as Am-
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mophila arenaria. As mentioned, this may be due to the latter being over-represented, as

shown in Figures 4.35 - 4.42 and Table 4.5, where the precision score was relatively lower.

The F1-score for Honckenya peploides prediction was 0.752 that was also the highest score.

The pixel predictions for Eryngium maritimum were unsatisfactory. For all train/test runs

this particular class was not predicted a single time. Instead, labels were predicted as

Ammophila arenaria and Crambe maritima.

HS-UNet-R - MTL: self-supervised

The average normalised accuracy and average F1-score for the HS-UNet-R trained in MTL

with supervised segmentation and self-supervised radiance recovery were respectively, 61.2%

and 0.579. HS-UNet-Rs trained in this particular MTL setting yielded the lowest average

normalised accuracy but the second highest average F1-score.

Sediment classes had a pixel accuracy of 77.5% and 100%, and an F1-score of 0.863 and

0.868, respectively for shingle and sand which were the lowest scores for sediment. The

pixel accuracy for shingle was also the lowest out of all training settings with 20.8% of

test labels predicted as sand. The thematic maps in Figures 4.39 - 4.42 show accurate

pixel classifications for shingle in all input images but fail to predict sand extents in input

image A). However, for input image B), the shingle sediment was accurately separated from

vegetation that was not possible for Figures 4.28 and 4.36. Furthermore, and similarly

to thematic maps generated from semi-supervised models, this training setting fails to

accurately delineate sediment channels among species belonging to SD6 in image D) but

accurate classification for sediment channels was shown in image C).

Ammophila arenaria also yielded the highest pixel accuracy with 98.8%. However, the

middle-right confusion matrix in Figure 4.25 also showed that labels for target classes,

such as Honckenya peploides, Silene uniflora and Rumex crispus were often classified as

Ammophila arenaria. Again, Table 4.5 shows that the precision of Ammophila arenaria was

also lower for this particular MTL setting, compared to supervised and semi-supervised HS-
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UNet-R without MTL. However, this error was not as prominent in thematic maps shown

in Figures 4.39 - 4.42, where Ammophila arenaria was mapped similarly to thematic maps

in Figures 4.31 - 4.34.

Following the trend, the mapping results for Lathryrus japonicus yielded unsatisfactory

results with 0.3% pixel accuracy and 0.005 F1-score. Again, this particular class had 76.5%

of test labels predicted as Silene uniflora. Rumex crispus were 21.6% correct with an F1-

score of 0.338. Glaucium flavum and Silene uniflora yielded satisfactory pixel accuracies,

respectively 63.1% and 72.7%. The F1-score for the same classes was 0.546 and 0.775. Silene

uniflora exhibit high precision but lower recall due to 27.3% of test labels being predicted

as Honckenya peploides. Comparing Figures 4.39 - 4.42 with the remaining thematic maps

showed that Silene uniflora was not predicted as often in all input images. The last target

class belonging to SD1B was Crambe maritima that had 88.9% test pixels classified correctly.

Crambe maritima also exhibited high recall and high precision that also suggests high

confidence for Crambe maritima predictions in Figures 4.39 - 4.42.

Honckenya peploides had 43.7% pixel accuracy, with 43.7% of the pixel labels miss-classified

as Ammophila arenaria. Again, this suggests that Ammophila arenaria was over-represented

but this was not noticed in Figures 4.39 - 4.42. The F1-score for Honckenya peploides pre-

diction was 0.317 that was also the lowest score. The performance for Eryngium maritimum

had 45.7% pixel accuracy that was lower than both training settings without MTL. How-

ever, the F1-score for Eryngium maritimum was the highest out of all training settings

with 0.334. This was mainly due to low precision scores for supervised and semi-supervised

HS-UNet-Rs without MTL.

4.5.5 Discussion - merged classes and comparison with OBIA

The results in Table 4.5 show precision, recall and F1-score for HS-UNet-Rs trained super-

vised, semi-supervised and MTL with a self-supervised auxiliary image task. Table 4.6 and

Figure 4.26 show that the average normalised accuracy and average F1-score for the OBIA
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were respectively, 66.8% and 0.633 with a reduced class domain, where Rumex crispus and

Glaucium flavum were merged to form a new class called pioneering grassland and Silene

uniflora, Lathyrus japonicus and Honckenya peploides were merged to form the young pio-

neering species class. The predictions with FCNs were merged in the same way in order to

provide a one-to-one comparison with OBIA. Figures 4.43 - 4.45 show thematic maps for

each method and for each cropped area shown in Figure 4.24.

Comparison with OBIA

The results in the Section 4.5.3 show two key findings.

The first was that the confusion matrices in Figure 4.26 and the scores in Table 4.6 showed

that FCNs, and in particular the U-Net architecture in Figure 4.9, performed better than the

standard OBIA methodology with eCognition [Nussbaum and Menz, 2008] used for coastal

habitat mapping. The F1-scores in Table 4.6 also reflected the same performance with each

target-class scoring lower F1 with the OBIA method than FCNs with any optimisation

strategy.

This trend of results has become standard with other studies also showing that CNN-based

applications for semantic segmentation and object detection can produce comparable or

better performance than OBIA mapping applications Guirado et al. [2017]; Huang et al.

[2020]; Hobley et al. [2021a]; Zheng et al. [2022]. Further research has attempted to combine

OBIA with FCNs by allowing the multiresolution segmentation to generate candidate image-

objects for FCN training. These studies have also shown to outperform standard OBIA

with shallow machine learning models, such as random forests and support vector machines

Zaabar et al. [2022]; Detka et al. [2023]. However, deep learning methods excel at learning

internal representations of input signals in end-to-end fashion, and therefore constraining

the input of deep learning networks to the outputs of multiresolution segmentation may

limit performance LeCun et al. [2015a].
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The second key finding was the increase in performance using semi-supervised optimisation

strategies instead of standard supervised training. The confusion matrices in Figure 4.26

and the scores in Table 4.6 reflected this finding for every target-class, except Crambe

Maritima and young pioneering species from SD1B and SD2.

The semi-supervised method using consistency regularisation described in Section 3.3.1

showed the same pattern of results for the dataset described in Section 4.2.1. As mentioned,

the dataset pre-process strategy resulted in a number of pixels on the edge of each training

sample to remain unlabelled. The loss function in Equation 3.3 discards these pixels for

supervised optimisation by use of a binary mask but the method in Section 3.3.1 leverages

the unlabelled pixels to gain a small performance boost without the addition of more labelled

training samples (rasterised polygons). This also confirms the validity of the methods

described in Tarvainen and Valpola [2017]; French et al. [2020a] for practical applications

of coastal remote sensing.

The method described in Section 4.5 yielded the best average recall (or pixel accuracy),

precision and F1 which also shows the practicality of semi-supervised MTL optimisation for

datasets where the quantity and distribution of labelled data within a coastal environment

may be limited due to associated costs.

Other applications of MTL in remote sensing tend to follow two trends. One trend was to

leverage two, or more, supervised image tasks to improve segmentation accuracy or inter-

class boundary separation [Lu et al., 2019; Jing et al., 2021; Ruiwen et al., 2022; Lu et al.,

2022]. However, the proposed method deviates from these studies by only leveraging one

labelled dataset whilst improving segmentation accuracy. The other trend in MTL ap-

plications in remote sensing was to incorporate temporal information by allowing a change

detection loss from multiple surveys to be added into the optimisation strategy [Hong et al.,

2023; Cui and Jiang, 2023]. This trend has shown to produce fine-grained accurate segmen-

tation for the datasets in Hong et al. [2023]; Cui and Jiang [2023] and could be incorporated

into future work for study site revisits.
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The results in Table 4.6 also follow a similar trend reported for other applications of semi-

supervised MTL. In particular, a study for lung cancer diagnosis found the use of semi-

supervised multi-task learning to produce better results than dual supervised image tasks

with a single shared model [Khosravan and Bagci, 2018].

The research in Wang et al. [2022] uses two partially labelled image tasks: semantic segmen-

tation and depth estimation. However, instead of allowing a single epoch to be the forward

propagation of both image datasets as shown in Figure 4.20, their method continuously

switches labelled samples for each image task, e.g., one epoch has supervised segmentation

and unsupervised depth estimation and the next epoch had unsupervised segmentation with

supervised depth estimation.

The study in Castillo-Navarro et al. [2021] also used semi-supervised MTL for remotely

sensed imagery. This particular study also showcased the use of reconstruction image loss

functions, such as: mean relative absolute difference, mean squared difference, and other un-

supervised loss functions, such as: relaxed k-means and Mumford-Shah [Kim and Ye, 2019].

For shared network architectures, the unsupervised reconstruction loss was found to produce

the best objective results which was also achieved with our proposed method. Incorporat-

ing the self-supervised reconstruction loss encodes the network with internal representations

that approximate the semantic segmentation performance to be as photo realistic and fine-

grained as the input image [Xia and Kulis, 2017]. However, the main difference between our

proposed method and the method described in Castillo-Navarro et al. [2021] was the inter-

mediate spectral upsample step to the original multispectral colour space with known sensor

sensitivities before reconstructing the images. As mentioned, this unsupervised intermedi-

ate step does not achieve high-fidelity hyperspectral reconstruction but many hyperspectral

metamers can integrate to the same multispectral image capture. Furthermore, the use of

hyperspectral reconstruction can bridge the domain gap when different sensors are used for

consecutive site surveys. On the whole, the proposed MTL optimisation strategy should
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allow shared networks to achieve similar photo realism and improved segmentation as shown

in Castillo-Navarro et al. [2021].

The latter can be seen with Figures 4.43 to 4.45 where the separation between background

sediment and foreground vegetation was more accurate with MTL semi-supervised than

OBIA and semi-supervision with consistency regularisation but was similar to supervised

FCNs. The main difference between supervised and semi-supervised MTL networks was

that networks trained with the former optimisation strategy tend to over-represent mature

grassland, as shown in Figure 4.44 and the precision scores in Table 4.6.

Visual analysis

This section provides a qualitative visual analysis of the segmented maps shown in Figures

4.43 to 4.45 using information and knowledge gained from the in-situ survey.

The thematic maps in Figures 4.43 to 4.45 produced fine-grained and similar results for

FCNs with any optimisation strategy that provides additional evidence regarding the ac-

curacy of the results. However, the visual results for OBIA were found to be coarse in

relation to FCNs that can be due to the partitioning of high-resolution orthomosaics into

homogeneous regions using multiresolution segmentation. Furthermore, OBIA was found

to produce large areas of erroneous pioneering grassland predictions that can be reflected

in Figure 4.44.

The qualitative analysis for FCNs in Figure 4.43 shows that the method in Section 4.5.2

produced the most accurate maps for both shingle vegetation and sediment classes. Su-

pervised FCNs optimised with Equation 3.3 yielded similar results but was found to have

erroneous classifications of pioneering grassland instead of young pioneering. Lastly, the

semi-supervised method with consistency regularisation had the same issue with erroneous

predictions of pioneering grassland and sand.

Figure 4.44 showed that the proposed method yielded the most accurate separation between

foreground vegetation and background sediment that shows that incorporating the self-
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supervised reconstruction loss encodes the network approximate segmentation performance

to be as photo realistic and fine-grained as the input image. However, the same method was

found to over-represent vegetation as young pioneering, whereas the area shown in Figure

4.44 was most found to have a mixture of young pioneering species and pioneering grassland.

Supervised FCNs optimised with Equation 3.3 reflected this mixture of vegetation classes

but indeed struggled to separate vegetation from sediment. The semi-supervised method

with consistency regularisation was found to be the worst among the FCNs due to erroneous

over-representation of mature grassland.

Figure 4.45 paints a very similar picture to the results in Figure 4.44. The separation

of sediment channels among mature grassland was found to be the best with the proposed

semi-supervised method. The supervised FCNs performed similarly to the proposed method

but the delineation of sediment channels was not as refined and the semi-supervised method

with consistency regularisation was found to over-represent mature grassland and failed to

find the same sediment channels.

4.5.6 Summary

Section 4.5 showed the utility of HS-UNet-Rs trained with a small set of polygons to segment

shingle, strandline and sand-dune communities belonging to SD1, SD2 and SD6 NVCs. Each

HS-UNet-R was evaluated in four training modes: supervised and semi-supervised without

MTL, and supervised with MTL, where the auxiliary task was either supervised reflectance

recovery or self-supervised radiance recovery. The results show that models trained without

MTL yield high accuracies but also lower precision which indicates a higher likelihood to

produce false-positives. The semi-supervised setting confirms the findings in Section 3.3,

where the unsupervised loss term with a teacher-student architecture helps with segmen-

tation performance. Models trained with MTL using self-supervised radiance recovery also

show an alternative method for segmentation that improves objective scores without adding

labels to the training dataset. Supervised models with MTL using supervised reflectance

recovery as an auxiliary task had the highest average F1-score which suggests that hyper-
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spectral signatures recorded in-situ can help with discerning vegetation species. However,

the latter results required supplementing the dataset with spectroradiometer measurements

which is not often available in coastal monitoring.

This section also showed a comparison with OBIA that yielded two key findings. The first

was that FCNs were a good alternative and the proposed architecture in Figure 4.9 was

shown to produce better objective scores and visually pleasing segmented maps. The second

key finding was the use of semi-supervision in two different strategies was found to perform

better than networks trained in standard supervised methodology.

The proposed network architecture and optimisation strategy in Figures 3.8 and 4.20 was

a simple extension to classic encoder–decoder U-Net architectures and was shown to be

effective in a semi-supervised scenario. With this architecture, an unsupervised auxiliary

loss based on hyperspectral reconstruction was used alongside with semantic segmentation.

The unsupervised hyperspectral reconstruction was based on the assumption that many

hyperspectral metamers correspond to the same multispectral capture Cohen and Kappauf

[1982]; Morovic and Finlayson [2006], and therefore while the method does not achieve high-

fidelity hyperspectral reconstruction, it does indeed produce accurate image reconstruction.

The experiments in Section 4.5.3 have shown that adding an unsupervised auxiliary image

task for the purpose of image reconstruction from higher-dimensional spectral cubes im-

proved semantic segmentation maps and allowed to generate finer and more homogeneous

thematic maps. Furthermore, the use of hyperspectral reconstruction can bridge the domain

gap when different sensors are used in consecutive surveys of the same study site.

However, many other semi-supervised strategies exist that could be developed in future

work. Further work could explore the use of change detection to add a temporal aspect to

the mapping process and unsupervised domain adaption could provide an alternative route

to generating labels from synthesised data Li et al. [2022]; Gao et al. [2023].

Chapter 4 Brandon Hobley 222



Monitoring Coastal Environments using UAS Imagery and Deep Learning

4.6 Conclusions

Chapter 4 continues to show the utility of fully convolutional neural networks for coastal

remote sensing and explores alternative semi-supervised optimisation strategies for par-

tially labelled datasets. In Chapter 3 FCNs were trained in two modes: supervised and

semi-supervised. The results in Section 3.3.3 show that consistency-based semi-supervised

methods improve the average pixel accuracy for intertidal seagrass mapping.

In Chapter 4, FCNs were trained using multi-task learning in order to map the pioneering

shingle vegetation species of SD1, SD2 and SD6 NVCs that can be found in the open-

shore beach of Sizewell in Suffolk, England. The in-situ survey described in Section 4.2

shows collected data from the study site and provided an ecological context for the mapping

objectives detailed in Section 4.5. The in-situ survey also collected hyperspectral reflectance

samples of several species from the stated NVCs that provided the basis of the multi-task

learning framework. In this framework, FCNs were trained for semantic segmentation,

given this provides an equivalent output with OBIA, and hyperspectral reconstruction as

an auxiliary image task.

Section 4.3 showed the use of HSCNN-R [Xiong et al., 2017] and the HS-UNet-R for HSI

reconstruction on the ICVL dataset. The utility of the U-Net was investigated in order to

check the feasibility of employing this architecture with multi-task learning. The results

show a small degradation in objective score that confirms the findings in [Zhang et al.,

2022].

Section 4.4 uses the methods derived in Section 4.3 for supervised hyperspectral reflectance

reconstruction based on the measurements described in Section 4.2.1. Section 4.4.3 con-

firms the results in Section 4.3.3, where the HSCNN-R outperforms the HS-UNet-R in a

supervised setting. However, the dataset and pre-processing of hyperspectral measurements

described in Section 4.4.2 also results in visual artifacts for reconstructed hyperspectral

channels, as shown in Figures 4.15 and 4.16. Furthermore, the test set was limited to
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10 images that in turn does not provide the basis to compare with methods presented in

[Deeb et al., 2019; Zhang et al., 2020; Gong et al., 2022]. The second method described a

self-supervised hyperspectral radiance reconstruction method. The results in Section 4.4.3

confirm the findings described in Section 4.3.4, where the HSI reconstruction fidelity was not

precise due to the ill-posed and unconstrained nature of reconstructing a higher-dimensional

space from a lower-dimensional manifold. However, the projection to multispectral colour

space from HSI was precise.

The results in Section 4.4.3 show that the HS-UNet-R was also suitable for hyperspectral

reconstruction which provides the opportunity to leverage MTL.

Section 4.5 showed the use of MTL to jointly learn self-supervised hyperspectral reconstruc-

tion or supervised hyperspectral reflectance recovery with semantic segmentation. The main

objectives were to incorporate hyperspectral measurements in the optimisation process, and

note whether the auxiliary image task could improve the boundary delineation of per pixel

predictions from the HS-UNet-R.

Section 4.5 also showed the utility of HS-UNet-Rs trained with a small set of polygons

to segment shingle vegetation communities belonging to SD1, SD2 and SD6 NVCs. Each

HS-UNet-R was evaluated in four training modes: supervised and semi-supervised without

MTL, and supervised with MTL, where the auxiliary task was either supervised reflectance

recovery or self-supervised radiance recovery. The results show that models supervised

models with MTL using supervised reflectance recovery as an auxiliary task had the high-

est average F1-score which suggests that hyperspectral signatures recorded in-situ can help

with discerning vegetation species. However, the latter results required supplementing the

dataset with spectroradiometer measurements that is not often available in coastal moni-

toring.

A comparison with OBIA also yielded two key findings. The first was that FCNs were a

good alternative and the proposed architecture in Figure 4.9 was shown to produce better

objective scores and visually pleasing segmented maps. The second key finding was the use
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of semi-supervision in two different strategies was found to perform better than networks

trained in standard supervised methodology.

The proposed network architecture and optimisation strategy was shown to be effective

in a semi-supervised scenario. The experiments in Section 4.5.3 have shown that adding

an unsupervised auxiliary image task for the purpose of image reconstruction from higher-

dimensional spectral cubes improved semantic segmentation maps and allowed to generate

finer and more homogeneous predictions. Furthermore, the use of hyperspectral reconstruc-

tion can bridge the domain gap when different sensors are used in consecutive surveys of

the same study site.

To sum up, this Chapter continues to show the use of FCNs as an alternative tool for

coastal remote sensing applications given the requirements for optimisation are the same as

object-based methods. Furthermore, an alternative method for semi-supervised semantic

segmentation using multi-task learning provided better objective scores than models trained

with standard supervised techniques. This builds on the conclusions set in Chapter 3 where

semi-supervised optimisation strategies can help bridge the gap between laborious in-situ

labelling efforts and accurate, yet effecient mapping methodologies with FCNs.
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5 Conclusions and future work

In this chapter, the findings and contributions are summarised along with a discussion of

potential future work.

During the research period, Cefas provided two datasets with VHR imagery captured with

UAS instruments and miniaturised multispectral sensors that provided the basis to extract

fine scale orthomosaics with multispectral resolution using SfM [Turner et al., 2012]:

1. Budle Bay, Northumberland, England (55.625◦N, 1.745◦W) with in-situ data provided

by the Environmental Agency.

2. Sizewell, Suffolk, England (55.207◦N, 1.602◦W) with in-situ data provided by Cefas

and the UEA.

Given these datasets, each chapter concerns different mapping objectives, and also considers

different methods to map either problem domain that aim to reduce the quantity of ground-

truth labels required.

5.1 Semi-supervised intertidal seagrass mapping

Chapter 3 shows the work conducted using the imagery and annotated samples from the

Budle Bay study site. The main goal for this particular site was to map intertidal seagrass

extents due to its contribution to intertidal coastal ecosystem health.

The literature reviewed in Section 2.3.2 identified fully convolutional neural networks for

semantic segmentation that provides an equivalent output to object-based methods. Given

both methods produce equivalent outputs and require the same labels, Section 3.3 showed

a successful application of FCNs for intertidal seagrass mapping. Section 3.3 also showed
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a semi-supervised approach for semantic segmentation and the discussion addresses the

challenges and problems associated with mapping intertidal seagrass among species of algae

and compares FCNs in two training modes: supervised and semi-supervised. The results

indicate that semi-supervision helps with segmentation of target classes that have a small

number of labelled pixels. Furthermore, Section 3.3 also showed that OBIA continues to

be a robust approach for monitoring multiple coastal features in high resolution imagery.

In particular, OBIA was found to be more accurate than FCNs in predicting seagrass

for both cameras. However, these results were highly dependant of the initial parameters

used for MRS, with the scale parameter being critical for image-object creation. However,

OBIA requires the user to understand the target class domain for a particular mapping

objective in order to correlate segmented image-objects with known aerial extents of the

class domain.

In essence, fully convolutional neural networks were identified and used efficiently with semi-

supervised optimisation strategies and the results show that FCNs can be used to create

effective tools or methodologies for robust analysis across different sites, given the common

use of spatially explicit labels, or polygons, between FCNs and OBIA.

5.2 Crowdsourcing experiment for intertidal seagrass map-

ping

Given Section 3.3 identified FCNs as an alternative mapping tool to OBIA. Section 3.4

continues to explore the use of FCNs for the same and also investigates alternative method-

ologies for efficient intertidal seagrass mapping.

An alternative for in-situ data collection could be visual identification and delineation of

training data directly from orthomosaics [Kattenborn et al., 2019b; Wagner et al., 2019;

Lopatin et al., 2019]. Section 3.4 showed the feasibility of crowdsourcing labels from aerial

imagery in order to provide a cost-effective alternative to laborious labelling procedures

from single domain specific experts. The second contribution explores the problems associ-
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ated with crowdsourced labels by conducting an inter-observer variability experiment and

training FCNs with crowdsourced labels.

The results in Section 3.4.2 confirmed that discipline expertise, prior knowledge of the site

and/or previous experience annotating marine biology play an important role in minimising

inter-observer variability and ensuring accurate annotation, and that lack of exposure to

the above leads to high variability and low confidence. Furthermore, the results also point

to a small performance gain between annotators with expert discipline knowledge versus

annotators with no previous experience in marine biology annotation or domain expertise.

However, this may be skewed due to the annotations from one of the participants, who is

an expert geomorphologist with no prior knowledge of the study site. Participant 6 can be

viewed as an outlier to the experiment given the poor annotation accuracy. However, erro-

neous annotations from participant 6 should not influence the confusion matrices shown in

Figure 3.17 given the annotations were merged to form majority-vote annotations. There-

fore, by using majority-vote annotations, individual miss annotations were suppressed and

the general trends shown in the confusion matrix paint general miss classifications between

target classes that exhibit similar colour and texture from an aerial point of view, i.e.,

separating species of algae and even separating algae from seagrass.

This Section stressed the difficulty of labelling a complex multi-class marine biology problem

and confirms that pre-exposure to the study site was important for intertidal classification,

if good quality labels were to be guaranteed, and that in-situ ground-truthing may be

unavoidable to prevent confusion by site experts. Therefore, site surveying was necessary

but may result in sparse data points with respect to the size of the coastal site. Domain

experts can enhance training datasets in coastal remote sensing but domain experts present

during the site survey yielded the best quality labels.

The results also showed that FCNs trained with low inter-observer variability and high

confidence annotations demonstrate comparable performance to the FCNs trained with in-

situ labels. The crowdsourcing scenario also showed that in-situ efforts can be combined
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successfully with crowdsourced aerial imagery annotation. Having said that, this work does

not fully exclude in-situ surveying but merely affirms that a good quality labels can be

found in-situ and a healthy quantity of labels can also be supplemented from aerial imagery

which would reduce in-situ efforts and costs.

5.3 Hyperspectral reconstruction on multispectral Sizewell

imagery

Chapter 4 shows the work conducted using the imagery and annotated samples from the

Sizewell study site. The main goal for this particular site was to map shoreline species that

belong to strandline, sand and shingle communities. This Chapter also continues to use

fully convolutional neural networks and investigates alternative semi-supervised optimisa-

tion strategies using multi-task learning with a shared model. Given the data collected, as

shown in Section 4.2.1, the MTL framework attempts to jointly learn semantic segmentation

and hyperspectral reconstruction.

Section 4.3 showed two methods for HSI reconstruction: a shallow method described in

Arad and Ben-Shahar [2016], and two deep implementations, the HSCNN-R [Shi et al.,

2018] and an extension U-Net architecture, known as HS-UNet-R. The results confirm the

findings in [Xiong et al., 2017] - where the shallow method in [Arad and Ben-Shahar,

2016] was outperformed by deep implementations. Furthermore, the addition of pooling

operations and a subsequent upsample track in the network topology resulted in objective

score degradation that confirms the findings in [Zhang et al., 2022]. However, while the

pooling operation was not ideal for network design, the HS-UNet-R still outperformed the

shallow method in [Arad and Ben-Shahar, 2016]. These network designs were optimised in

three settings: supervised, semi-supervised and self-supervised. The unsupervised loss used

the spectral response functions of the miniaturized Sentera multispectral camera to project

higher-dimensional hyperspectral data cubes to a lower-dimensional manifold in RGB colour

space. The predictions for self-supervised networks were optimised on the basis that many
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physically plausible hyperspectral metamers correspond to the same RGB capture [Cohen

and Kappauf, 1982; Morovic and Finlayson, 2006].

Given the deep learning models described in Section 4.3; the following methods showed

a supervised method to reconstruct hyperspectral reflectance from a multispectral image

using the hyperspectral measurements described in Section 4.2.1. And, the self-supervised

method was used to reconstruct hyperspectral radiance. The results confirm the findings

shown with the ICVL dataset. But, given the dataset and pre-processing stages of hyper-

spectral measurements described in Section 4.4.2, the results showed visual artifacts for

reconstructed hyperspectral channels. Furthermore, the analysis was constrained to ten

test images that in turn does not provide the basis to compare with methods presented in

[Deeb et al., 2019; Zhang et al., 2020; Gong et al., 2022]. The self-supervised hyperspectral

radiance reconstruction described in Section 4.3 was also applied to multispectral imagery

of the study site.

5.4 Multi-task learning for species at Sizewell study site

As discussed in Section 5.3 the HS-UNet-R showed robust results which provided the op-

portunity to leverage a multi-task learning.

Section 4.5 showed the utility of HS-UNet-Rs trained with a small set of polygons to segment

shingle vegetation belonging to SD1, SD2 and SD6 NVCs. Each HS-UNet-R was evaluated

in four training modes: supervised and semi-supervised without MTL, and supervised with

MTL where the auxiliary task was either supervised reflectance recovery or self-supervised

radiance recovery. The semi-supervised setting confirmed our earlier findings from Section

3.3, where the unsupervised loss term with a teacher-student architecture helps with seg-

mentation performance. Moreover, models trained with MTL using self-supervised radiance

recovery also showed an alternative method for segmentation that improves objective scores

without adding labels to the training dataset.
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Most of MTL frameworks aimed at semantic segmentation attempt to improve inter-class

boundaries and delineation but also leverage auxiliary image tasks closely related to seg-

mentation task [Volpi and Tuia, 2018; Bischke et al., 2019; Li et al., 2021a; Jing et al., 2021;

Liu et al., 2020b], or depth estimation [Lu et al., 2022; Wang et al., 2020a; Carvalho et al.,

2019]. In this case, the auxiliary task was hyperspectral reconstruction that also achieved

the objective set out in prior works - predictions of our method were sharper between

inter-class boundaries, and that leveraging an auxiliary image task that optimises image

reconstruction forces the MTL network to convey realistic and sharp features in imagery to

the later network stages.

Another comparison with OBIA that yielded two key findings. The first was that the

HS-UNet-R shown in Figure 4.9 was shown to produce better objective scores and visually

pleasing segmented maps. The second key finding was the use of semi-supervision in two dif-

ferent strategies was found to perform better than networks trained in standard supervised

methodology.

Section 4.5 continues to show the use of FCNs as an alternative tool for coastal remote sens-

ing applications given the requirements for optimisation are the same as object-based meth-

ods. Furthermore, an alternative method for semi-supervised semantic segmentation using

multi-task learning provided better objective scores than models trained with standard su-

pervised techniques. This builds on the conclusions set in Chapter 3 where semi-supervised

optimisation strategies can help bridge the gap between laborious in-situ labelling efforts

and accurate, yet efficient mapping methodologies with FCNs.

5.5 Thoughts on coastal remote sensing and Future work

Coastal remote sensing is an avenue of acquiring data that has seen improvements to sensor

platforms [Anderson and Gaston, 2013] that in turn have increased spatial resolution of

captured imagery. This provides an opportunity for accurate and fine scale mapping of

coastal features but also presents a gap in labelled data. The methods described in Chapters

Chapter 5 Brandon Hobley 231



Monitoring Coastal Environments using UAS Imagery and Deep Learning

3 and 4 attempt to bridge the gap between large and fine scale orthomosaics and sampled

in-situ records.

The thesis reviewed deep learning literature and identified fully convolutional neural net-

works as an alternative tool for mapping remotely sensed imagery with Chapters 3 and

4 using the U-Net architecture for mapping multiple coastal features in order to achieve

comparable, or better, performance to OBIA. Both methods produce equivalent outputs

but also require the same labels, or polygons, in order to drive the optimisation of machine

learning models. The use of spatially explicit labels is the key factor for optimisation, and

both methods require this in order to effectively learn complex relationships from features

derived using orthomosaics to target classes such as intertidal seagrass and algae. There-

fore, the use of FCNs can be adapted for other applications of coastal remote sensing given

the requirements to drive the optimisation of FCNs is the same as object-based methods

in a supervised setting, and ecologists may consider the use of deep learning models as an

alternative tool for robust analysis across different study sites.

However, as mentioned, deep learning models perform the best with large datasets with

high-quality labels [Everingham and Winn, 2012]. Practical applications to coastal remote

sensing where the amount of labels are limited may prefer simpler architectures in order to

achieve better model generalisation. This thesis also focused on deriving efficient optimisa-

tion strategies with semi-supervised semantic segmentation in two scenarios:

• consistency-based regularisation

• multi-task learning with self-supervised auxiliary image tasks.

And also focused on alternative label procurement through crowdsourcing. However, one av-

enue that was not explored during the research project was domain adaption and adversarial

training for semantic segmentation purposes [Souly et al., 2017; Luc et al., 2016].

Domain adaptation aims to transfer knowledge in the presence of the domain gap [You

et al., 2019]. More formally, real-world applications, including coastal remote sensing, can
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capture datasets that result in different distributions due to many factors, such as collection

of data from different sources or time [Farahani et al., 2021]. Domain adaptation is a sub-

field within machine learning that aims to align the disparity between domains. Coastal

remote sensing can experience domain shifts, where the same study site is analysed but in a

different point in time and imaging sensor. These methods have found use in remote sensing

and in particular, Islam et al. [2020] applies adversarial training for seagrass mapping to

overcome the domain shift from mapping in different coastal environments.

Also, Section 4.5 showed the utility of using hyperspectral reconstruction as an auxiliary

image task to improve inter-class predictions. While the results indicate that hyperspectral

reconstruction indeed improves inter-class delineation, future work could leverage an even

simpler auxiliary task that optimises image reconstruction in order to convey realistic and

sharp features in imagery to the later stages of the MTL network.

This work also stressed the importance of site surveys for mapping objectives that pertain

to local study sites. A range of studies in coastal remote sensing derive training labels

directly from VHR orthomosaics. However, while this may be cost effective, pre-exposure

to the study site can provide important biases that yield good quality labels, and that

in-situ survey may be unavoidable to prevent confusion by annotators from an aerial point

of view. Furthermore, coastal monitoring through remote sensing is an inter-disciplinary

problem that emphasises the need for ecologists to work in tandem with computer scientists.

Therefore, while site surveys concern ecologists due to their site knowledge of species that

contribute to coastal ecosystem health, the presence of computer scientists can also be

beneficial which would allow them to better understand the mapping objectives.

In 2021, the Sizewell study site was revisited with intent to identify the same species listed

in Section 4.2.1. This time, the aerial survey was performed with a ten band MicaSense

Blue/RedEdge-MX dual camera system that captured the study site with very fine mul-

tispectral resolution between 400-900nms. The second dataset to the Sizewell study site

has two applications that could be investigated. The first is efficient and accurate image
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registration between generated orthomosaics of both aerial surveys. Therefore, the goal

would be to register a five band multispectral orthomosaic from the Sentera multispectral

camera with the ten band multispectral orthomosaic from the MicaSense Blue/RedEdge-

MX dual camera system. This work can leverage the method developed in the Appendix

A, and combine it with spatial transformer networks [Jaderberg et al., 2015]. The latter

networks have shown state-of-the-art performance on image registration [Hernandez-Matas

et al., 2017; Hering et al., 2022] but the author’s hypothesis is that the linear MK-Transform

prior to the network forward pass can improve the subsequent registration process.

The second application would be to conduct a change detection study for the species and

NVCs stated in Section 4.5. Efficient thematic mapping is an important task in coastal

monitoring but accurate cataloging on a temporal scale in tandem with change detection

can provide ecologists with different perspectives of contributing factors to coastal ecosystem

health [Cook, 2017; Morgan and Hodgson, 2021]. The ten band MicaSense Blue/RedEdge-

MX dual camera system which as mentioned results in a domain shift of the underlying

image data distributions. This fits the key requirement for applying domain adaption [You

et al., 2019; Farahani et al., 2021]. The use of finer spectral resolution could allow for

improved hyperspectral radiance reconstruction which in tandem with MTL could improve

the mapping of plant species and communities present at the study site. Therefore, domain

adaption methods can be applied to the hyperspectral reconstruction task that in turn

would connect both surveys to the Sizewell study site over different periods of time.
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Abbreviations

ASPP Atrous Spatial Pyramid Pooling.

BN Batch Normalisation.

Cefas Centre for Environmental Fisheries and Aquaculture Sciences.

CNNs Convolutional Neural Networks.

CRFs Conditional Randon Fields.

CV Computer Vision.

DL Deep Learning.

DSM Digital Surface Model.

EA Environmental Agency.

EMA Exponential Moving Average.

FCNs Fully Convolutional Neural Networks.

FoV Field of View.

GANs Generative Adversarial Networks.

GIS Geographic Information System.

GLCM Grey Level Co-occurance Matrix.

GNDVI Green Normalised Difference Vegetation Index.
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GPS Global Positioning System.

HS Hyperspectral.

HSI Hyperspectral Imagery.

IAVI Atmospheric Resistant Vegetation Index.

LMM Linear Mixture Models.

LSU Linear Spectral Unmixing.

MCARI Modified Chlorophyll Absorption Ratio Index.

MESMA Multiple Endmember Spectral Mixture Analysis.

MK-T Monge-Kantorovich Transform.

MLC Maximum Likelihood Classification.

MRS Multi-resolution segmentation.

MSAVI Modified Soil Adjusted Vegetation Index.

MTL Multi-task learning.

NDVI Normalised Difference Vegetation Index.

NGBDI Normalised Green-Blue Difference Vegetation Index.

NGRDI Normalised Green-Red Difference Vegetation Index.

NVCs National Vegetation Classes.

OBIA Object Based Image Analysis.

OMP Orthogonal Match Pursuit.
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PCA Principal Component Analysis.

PPI Pixel Purity Index.

RANSAC Random Sample Consensus.

ReLU Rectified Linear Unit.

RGB Red Green and Blue.

RMSE Root Mean Square Error.

RPA Remotely Piloted Aircraft.

RRMSE Relative Root Mean Square Error.

RTK Real-Time Kinetics.

SAM Spectral Angle Mapper.

SfM Structure from Motion.

SGD Stochastic Gradient Descent.

SIFT Scale Invariant Feature Transform.

SVMs Support Vector Machines.

UAS Uncrewed Aircraft System.

VARI Visible Atmospherically Resistant Index.

VDVI Visible-band Difference Vegetation Index.

VHR Very-high resolution.
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Glossary

crowdsourced The process of acquiring labels for Machine Learning algorithm training

using members of the general public or non-experts.

hyperspectral sensor A type of camera that uses many narrow-band filters (typically

in the hundreds) to capture wavelengths between 400-2500nm. The range covers a

wide range of wavelengths in order to capture the spectral signature of an object in a

pixel. These sensors have a variety of scanning mechanisms dedicated for producing

a hyperspectral data cube at a comprise of reduced spatial resolution.

image segmentation The process of clustering image pixels, without supervision, in order

to delineate objects of interest.

narrow-band multispectral A type of camera that uses narrow-band filters (typically

ranging from five to ten) to capture wavelengths between 400-1200nm. The range

covers the visible spectrum (red, green and blue channels) as well near infra-red.

In comparison a commercial camera uses wide-band filters to capture wavelengths

between 400-700nm.

point A point is an in-situ RTK GPS measurement from the study site that can be used to

locate features in the orthomosaic using a GIS. For Budle Bay, each in-situ RTK GPS

had the percentage cover of features of interest estimates using quadrat sampling. For

Sizewell, each RTK GPS had an identified specie classified using an expert taxonomist.

polygon A polygon is a rasterised shape file from a Geographic Information System (GIS).

Each polygon was drawn using the semantic information from an in-situ point and
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leveraging the aerial point-of-view from the orthomosaic. The particular shape of

each polygon uses photo-interpretation of colour and texture and depends on the type

ecological feature to be mapped. Rasterised polygons were used to training image

samples for Fully Convolutional Neural Networks (FCNs).

quadrat sampling The process of used by ecologists to sample ecological features in a

small area (typically 50×50cm) in order to accurately calculate the percentage cover

of each ecological feature of interest..

semantic segmentation The process of assigning each pixel in an image to a semantic

value in order to delineate objects of interest.

semi-supervised The process of training Machine Learning algorithms with known out-

comes and without known outcomes in order to learn the relationship between said

outcomes and input features whilst also leveraging non-labelled samples in the dataset.

spatial resolution The physical distance measured in a single pixel.

supervised The process of training Machine Learning algorithms with known outcomes in

order to learn the relationship between said outcomes and input features.

tiles A tile is a rectangular orthomosaic crop that corresponds to a portion of the study

site. The image size for tiles were either 3000×3000 or 6000×6000.

unsupervised The process of training Machine Learning algorithms without known out-

comes in order to find clusters of data.
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A Colour transfer for improved im-

age registration

As noted in Section 3.2 two cameras were used to capture aerial imagery of Budle Bay

with complementing characteristics. The SONY ILCE-6000 camera has low spectral reso-

lution with three wide banded filters but high spatial resolution with approximately 3 cm

ground sample distance, whereas the MicaSense RedEdge3 camera has high spectral reso-

lution with five narrow banded filters but low spatial resolution with approximately 8 cm

sampling.

Image registration is described as aligning several images into a common image coordinate

system. For remote sensing, registration is often a key pre-processing step for combin-

ing aerial imagery from multiple sensors at different spatial and spectral resolutions. A

standard approach to automatic registration is to upsample the multispectral image to

match the resolution of the corresponding high-resolution image using interpolation; find

correspondences in pairs of images using SIFT features and compute an optimal geometric

transformation based on matching correspondences [Brown et al., 2003]. However, errors

in registration distort images by blurring edges of objects and affect any subsequent fusion

method [Ghassemian, 2016].

Registration errors can be caused either by subpar geometric transformation models or

distortions due to interpolation. In this section, the hypothesis is that subpar geometric

transformation models fail to incorporate colour information given SIFT functions on grey-

scale images [Lowe, 1999]. Adding to this, the use of different cameras results in two different

colour response distributions for each camera that needs to be accounted for in order to

303



Monitoring Coastal Environments using UAS Imagery and Deep Learning

incorporate colour information in the registration process. As such, each image is modelled

as a continuous probability density function (pdf) with each pixel value as a realization

of a colour random variable. Then, a linear colour transform is computed to minimise

the underlying covariance shift in colour responses from multiple cameras. Transferring

statistical moments between resulting pdfs is possible using the linear Monge-Kantorovitch

(MK) solution [Olkin and Pukelsheim, 1982] which has shown to be effective in media

production applications [Pitié and Kokaram, 2007]. Therefore, the MK solutions maps the

colours from the high-resolution reference image to match those in a multispectral target

image.

Given this, the automatic registration is applied, as described in Brown et al. [2003], was

applied on the following pairs of images: the high-resolution image from the SONY cam-

era with the multispectral image from the RedEdge3, and the high-resolution image with

transferred colour responses from the multispectral image with the same corresponding

multispectral image. The goal here is to register the datasets from each sensor used to

survey Budle Bay, and that the registration between the high-resolution image from the

SONY ILCE-6000 with transferred colour responses improves the automatic registration

process.

The method is evaluated using the processed VHR orthomosaics of Budle Bay. In Figure

A.1, the reference image from the SONY camera and the multispectral corresponding cap-

ture using the RedEdge3 camera are displayed respectively in images (A) and (B) both

which cover the same aerial extent but are not in registration. Using the MK transform,

the tone and colouring of the target image is mapped onto the reference image, with the

MK transformed (C) image looking like the target, even though it is not also registered.

By minimizing the shift in colour responses resulting from multiple cameras the evaluation

notes that the subsequent registration process is improved.
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Figure A.1: A is the high-resolution reference image with corresponding target image

(B) and the application of the linear MK transform (C) mapping the colours in the

reference image (A) to match those within the target image (B).

A.1 Background

Literature describes many different registration methods that can be applied to remote

sensing. A review of image registration methods can be found in [Zitova and Flusser, 2003].

For this work, the pipeline based on [Brown et al., 2003] is considered. The first step is

to match the resolution in pairs of images using interpolation. Generally, the image with

coarser resolution is upsampled to match the high-resolution image. The second step is

to extract SIFT features from the image pair [Lowe, 1999]. SIFT features describe local

features in an image that are invariant to translation, rotation and scaling, and partially

invariant to illumination. As described in Brown et al. [2003], SIFT features are suitable for

finding correspondences in image pairs. Given several matching points, the parameters for
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an affine transform are found in a linear least squares sense, and finally each transform is

scored and accepted/rejected using RANSAC [Derpanis, 2010]. The best scoring transform

warps pixels from both images into a common coordinate system.

Figure A.1 shows the affects of applying a linear transform based on the colour statistics

of the reference and target images. This linear mapping is achieved by representing each

image as a set of RGB colour samples, where in a probabilistic sense, each colour sample

is a realization of a three dimensional colour variable. The distributions of colour samples

for each image are denoted as u and v, with the assumption that both distributions have a

continuous probability density function (pdf) f and g, respectively for reference and target

images. The goal then is to find a continuous mapping u → t(u), such that the new colour

distribution t(u) matches the target distribution g [Pitié and Kokaram, 2007]. Figure A.2

illustrates this problem, also known as the mass preserving transport problem, to which the

goal of the MK-transform is to find the minimal displacement mapping.

Figure A.2: An example illustrating the mapping of multivariate Gaussian distribu-

tions for colour distributions u and v.
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A.2 Linear Monge-Kantorovich transform for colour trans-

fer

In Pitié and Kokaram [2007], the goal is to transfer the statistical moments of two images

represented as pdfs such that the displacement caused by a continuous mapping function

is minimal. In the general case this is known as Monge’s optimal transportation problem

[Evans, 1997].

Consider two images to be registered, X ∈ RH1×W1×3 and Y ∈ RH2×W2×3 , respectively as

a reference and a target image, where (H1 ×W1) and (H2 ×W2) are the height and width

respectively for the reference and target images. Before computing the linear MK-transform

the brightness of X is matched with Y by converting both images to CIELAB colour space.

Then, the histograms in corresponding lightness channels are matched before converting

both images back to the RGB colour space. Each image band is flattened and concatenated

column-wise so that each row represents an R, G and B colour sample.

The covariance matrices ΣX and ΣY are computed, respectively from X and Y . Equation

A.1 details the linear MK transform. In colour grading, the MK solution is desirable for

two reasons: firstly, the solution always exists for continuous pdfs and is unique, meaning

that there is no room left for ambiguity; secondly, the solution uses the gradient of a convex

function that is the equivalent of monotonicity for one dimensional functions in R. This

implies that the brightest areas of a picture remain the brightest areas after mapping.

T = Σ
− 1

2
X (Σ

1
2
XΣY Σ

1
2
X)Σ

− 1
2

X (A.1)

A.3 Experiments and results

Given the MK-transformed image, two pairs of images are used to compute geometrical

linear transforms, as per [Brown et al., 2003]. The first pair is the high-resolution original
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reference image with the low-resolution multispectral image (Figure A.1, (A) and (B)), and

the second pair is the high resolution MK-transformed with the low-resolution multispectral

image (Figure A.1, (C) and (B)). Each image-pair will result in a linear geometrical trans-

form that warp pixel values from the target image to the same image coordinate system as

the reference image.

The method was evaluated using cropped imagery from the generated very high resolution

orthomosaics of Budle Bay. As mentioned in Section 3.2, each orthomosaic was orthorecti-

fied with ground markers that were spread out across the site. For this work, ground control

markers will be used to mark control points in images in order to evaluate the pixel location

accuracy in registration. The evaluation uses fourteen control points and for each control

point an image is sampled to a 512×512 and 193×193 crop, respectively for images captured

with the SONY and RedEdge3. Figure A.3 shows a gallery of images to be registered with

control points used for evaluation.

Figure A.3: Gallery of images to be registered. Top-row are high-resolution reference

images from the SONY camera and the bottom-row are multispectral target images

from the RedEdge3 camera.
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# SIFT matches % inlier SIFT matches Euclidean distance
MK-transformed/Target 630±798 77.15±17.4 1.2±0.86

Original/Target 725±940 78.85±14.7 1.86±1.27

Table A.1: Mean (± standard deviation) of the number of SIFT matches, percentage

of inlier SIFT matches and Euclidean distance of pixel locations between control points

in pairs of registered images

For each registered image, the pixel locations of each edge of the control marker in a target

image are recorded and compared with the pixel locations of each edge in the reference

image. The list of errors resulting from each edge are averaged so that each image has a

single error metric. Table A.1 reports the mean Euclidean distance between control points

for all pairs of images after registration in the dataset, as well as the number of SIFT

matches and percentage of inlier matches after RANSAC.

The results in Table A.1 show that using MK-transform high-resolution image to com-

pute a geometrical linear transform improves on registration pixel accuracy. The mean

Euclidean distance between control points in pairs of registered images is lower for images

pre-processed using the MK colour transfer than for images using the original reference

image. This tells us that distortions caused by errors in registration, e.g. blur, will be more

noticeable for registered images where the reference image is not pre-processed using the

MK-transform.

The mean and variance of feature matches in pairs of images in the dataset is greater be-

tween the original reference and target images than with reference image pre-processed with

MK-transform. This may seem counter intuitive given the euclidean distance in pixel loca-

tions is lower for images pre-processed with MK-transform but the number of SIFT matches

does not correlate to improved image registration. SIFT generates key-points in images,

then correspondences are found in least-squares fashion by estimating linear affine trans-

formations. However, some key-points do not in fact lead to correspondences [Brown et al.,

2003], hence the use of RANSAC to eliminate outlier correspondences [Derpanis, 2010].

Therefore, the hypothesis here is that pre-processed images with the MK-transform result

Chapter A Brandon Hobley 309



Monitoring Coastal Environments using UAS Imagery and Deep Learning

in less but higher quality matches in pairs of images. This is supported by the percentage

of inlier SIFT matches where the MK-transformed/Target pair has 77.15% while the Origi-

nal/Target pair has 78.85%, but the number of matches is much greater for Original/Target

image pairs.

Figure A.4 shows the results of registration for pairs of images, where each registered image

is converted to grey scale. The left image is the registration result where the linear MK

transform is used to map the colours from the target image to the reference image and the

right image is the registration result using the original reference image. Figure A.4 subtly

confirms the results in Table A.1 - the left image is sharper around the edges of vegetation

and soil as opposed to the right image.

Figure A.4: Registered images from both cameras after conversion to grey scale.

A - pre-processed with the MK colour transfer and B – registered using the original

reference.

A.4 Summary

Image registration is a key-processing step in remote sensing applications that can be per-

formed in various manners, with more complex methods existing in literature [Zitova and

Flusser, 2003]. However, the method used and described in [Brown et al., 2003], where

corresponding SIFT features in images are used to compute a linear transform is a com-

mon approach for automatic registration. This section shows that using a simple colour
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transfer [Pitié and Kokaram, 2007] pre-registration reduces subsequent image registration

errors.
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