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Abstract

Water entry problems are important for those who work in the naval sector.
Water impacts of practical rigid bodies in the presence of a submerged circular
cylinder or floating flat plates are studied in this thesis. The presence of these
bodies nearby the impact place can significantly change the water impact process

or cause a crash.

These two problems are two-dimensional. The gravity and surface tension
effects are neglected due to the impacting body is large and the acceleration of
the fluid particles during the impact are much greater than the gravitational
acceleration. The fluids in both problems are incompressible and inviscid. The
flows caused by impact are potential with with the velocity potentials of the
flows being solutions of the Laplace equation. The hydrodynamic pressure in
the flow regions are described by the Bernoulli’s equation, where the hydrostatic
pressure is neglected because the dynamic pressure components much higher
than the hydrostatic components in the water impact problems. Water impacts
of problems in the presence of a submerged circular cylinder or floating flat

plates are studied using Wagner model of water impact.

Both problems are boundary value problems with mixed boundary conditions.
Such problems are difficult to solve because of singularity of the solution at the
points where the boundary conditions change their type. The problems are solved
using conformal mappings of the flow regions onto a ring for the problem of
impact in the presence of a submerged body, and onto a circle for the problem

with several floating plates.



iii

The mixed boundary value problems are reduced to coupled singular integral
equations on the boundaries of the flow regions. The integral equations are
formulated in terms of the distributions of the velocity potentials along the solid
boundaries. The problems are studied with the submerged or floating bodies

being either stationary or free to move.

The solutions of the integral equations are obtained in the form of Fourier series
with unknown coeflicients, which are solutions of linear algebraic equations.
The systems of the algebraic equations are carefully analysed with obtaining
asymptotic behaviour of the matrices of the system for limiting cases. The
numerical distributions of the velocity potentials were compared with
approximate analytical solutions for the cases where floating or submerged

bodies are far away of the impact place.
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Water impact of a rigid body in the presence of other bodies and a free water
surface is studied. The presence of other bodies nearby the impact place may
significantly change the water impact process. Practical problems include water
entry of a lifeboat in the presence of floating ice floes or debris near the place of

the entry.

The aim of this research is to investigate how the body penetrating into the water
is affected by another body inside water or floating on water surface. We shall
investigate how strong is this effect in terms of the impact loads. The research
will produce useful results for deep understanding of the water impact processes
in complex environmental conditions, allowing us to apply these concepts in real

life, such as using lifeboats and emergency aircraft landing.

1.1 Literature review

When an object falls into water, it creates an impact force on the body’s surface.
The body impacts on water surface generate high impulsive pressures which may
damage the body. Because of the importance of this phenomenon, the water

entry problem has been investigated by numerous researchers.

The water entry problem has been firstly studied by Von Karman and Wagner
[32, 33]. They used asymptotic theory to develop theoretically formulas for water
entry. These works were for the case of wedge section, where the deadrise angle

of the wedge is small.

In 1929, Von Karman investigated the impact loads on seaplane floats during
water landings. His work is considered as the first physical model of water entry
using conservation of momentum and added mass [32]. He assumed that the
velocity of the entering body is reduced because the added mass of the body
rapidly increases with the penetration depth. The maximum impact forces are
evaluated through the added mass and its time derivative. If the added mass
m(h) is known, then the approximate velocity of free-falling body onto water
surface is given by

MV = (M +m)v, (1.1.1)
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where M is the body mass and V is the speed of the body just before the
impact, h(t) is the penetration depth. Because the approximations are often
made regarding the added mass, the solutions obtained are rough. The model
by Von Karman is a valuable physical picture of the water entry problem, which
was adopted in various later works. For instances of water entry are routinely
found in engineering and life science, such as water landings of crew capsules
and seaplanes in aerospace engineering [29], plunging and diving of seabirds [7],

and basilisk lizards running on water [12].

In 1932, Wagner published his paper on the theoretical analysis of water entry
by analysing the vertical water impact of a wedge in two-dimension [33]. His
solution accounts for the increase of the wetted part of entering body due to the

so-called piled-up effect [32].

The developed water impact theories for seaplane have been reviewed by
Monaghan [24]. He calculated the maximum deceleration during the impact by
taking into account the momentum shed in the wake. In 1952, Monaghan
re-examined the theoretical solution of a two-dimensional wedge entering water
vertically and compared the result with those of Wagner [33, 25]. He calculated

the wetted area of wedges with larger deadrise angles.

Zhao and Faltinsen presented a numerical method for studying water entry of
a two-dimensional body of arbitrary cross-section using a nonlinear boundary
element method with a jet flow approximation [31]. They verified the method by
comparisons with new similarity solution results for wedges with deadrise angles
varying from 4° to 81°. Also, the paper continued a simple asymptotic solution
for small o based on Wagner (1932) [33] and it showed to give good precdictions
of slamming pressures for small deadrise angles a. The researchers found when «a
larger than approximately 30°, the pressure distribution on the body surface does
not show the typical slamming behaviour of high impulse pressures concentrated

over small surface areas.

In 2004, Korobkin described different approaches that had been proposed to
improve the accuracy of Wagner’s theory [I6]. He investigated different

mathematical models for predicting the hydrodynamic pressure distribution and
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the force on a body entering liquid. Also, the analytical models were tested
against both numerical and experimental results in [16]. He took higher order
terms in the Bernoulli equation into account within the generalized Wagner
model and the Logvinovich model. Logvinovich model predicts the
hydrodynamic loads on an entering body, which are almost identical to the
measured ones even for moderate penetration depth and for bodies with
moderate deadrise angles. He found that the Logvinovich model corresponds
better to the experimental data than the generalized Wagner model, where a
rational derivation of the Logvinovich model is given for the two-dimensional

case.

In 2015, Facci and Ubertini investigated the influence of non-dimensional
parameters on hull slamming events, with particular attention to the
hydrodynamic loading exerted by the water during the impact [9]. Their
analysis focused on different flow regimes produced by the variation of inertia
and acceleration and was carried out by studying the water entry of a
two-dimensional wedge through computational fluid dynamics. This paper is
quantitatively assess the interplay between the relevant non-dimensional
parameters for the water entry of a two-dimensional body, evidencing the
similitude conditions that allow the transition from scaled experiments to
real-size applications. They proved when designing physical as well as numerical
experiments under laboratory scale dimensions or utilizing different parameters
compared to the real object in the study, the experimental parameters must be

selected carefully.

Compressibility effects in water entry of wedges and cylinders are studied where
the slamming force occurring in the free-fall impact of cylindrical bodies over the
water surface analysed in both compressible and incompressible stages [5]. In
these two phases, the hydrodynamic force is coupled to the rigid body motion
to update the entry velocity of the body. However, the hydrodynamic analysis
is carried out by the acoustic approximation and a closed-form expression for
the impact force for the compressible phase and for the incompressible stage is
approached through an unsteady boundary element method to compute the free

surface evolution and the slamming force on the body.
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Recently, the water entry of a rigid wedge in the presence of a neutrally buoyant
solid cylinder under the water surface was studied [15]. This paper delves into
critical interactions during water entry and provides an experimental study of
the water entry of a rigid wedge in the presence of a neutrally buoyant cylinder
below the water surface. The experimental setup used in the study is similar
to the one from [28]. It was found that the presence of the cylinder provides a
confined flow between the wedge and the cylinder, resulting in an asymmetric
velocity distribution with regard to the wedge keel. Additionally, the presence
of the cylinder causes an expected increase in pressure near the keel, but it also

causes a pressure reduction near the pileup.

1.2 Motivations

When the hull of a lifeboat impacts the water surface in the presence of another
body submerged or floating, the hydrodynamic pressures acting on the hull are
expected to be higher than in the case without other bodies nearby. As a results,
the deceleration of the lifeboat can exceed a critical value leading to injuries to
the people inside the lifeboat. Generally, water entry refers to problems in which
a solid body, rigid or compliant enters the surface of a fluid at high speed [1].
During the entry, there is a pileup region and spray jet forms at the periphery of
the wetted part of the body surface. Water entry of a rigid wedge in the presence
of a submerged cylinder under the water surface caused non-symmetric effect for
the pileup and spray jet, where the cylinder is fixed [15]. The velocity potential
was obtained through the method of Green’s functions [3]. In this research, the

velocity potential is obtained as Fourier series for fixed or free-to-move cylinders.

Hull slamming of marine vessels is considered to be the most studied part of water
entry, where the repeated entry of the hull of a vessel on the water surface induces
frequent and large impulsive loadings on the body structure, which potentially
reduce the lifetime of the vessel and hinder its manoeuvrability [10]. In addition
to naval engineering, there are applications of water entry in engineering and
life science, such as water landings of crew capsules and seaplanes in aerospace

engineering [29].
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In 2017, the Wagner model of water entry problem has been generalised to account
for several ice floes floating near the place of impact in two-dimensions [23]. The
obtained solution is for a ice floes of negligible thickness. This solution can not
be used for any shape of a floating body [23]. Also, the solution provided for a
submerged body [15] can be used for a fixed cylinder only . In the present thesis,
the conformal mapping technique is used, which helps to find a solution for any

floating or submerged body.

We study the water entry problems in presence of another body which is floating
or submerged under the liquids. This problem is with mixed boundary conditions

on the upper boundary of the flow region and with several free moving bodies.

This research has various applications, where it will be interesting to investigate
such problems deeply. For instance, securing the using of lifeboats, escape crew

capsule and aircraft emergency landing.



Formulation of the problem of water
impact in the presence of a

submerged body
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In this chapter, we formulate the problem of water impact in the presence of a

submerged body. Also, we introduce Wagner model of water impact.

2.1 Description of the problem

Two-dimensional unsteady flow caused by a body onto a liquid free surface is
considered. The gravity and surface tension effects are neglected due to the body
being large and the acceleration of the fluid particles being much greater than the
gravitational acceleration. The geometry of the problem, the coordinate system

and notation are depicted in figure 2.1.1

2L y=f(x,0]

L _ _ _ x

x, 1]

/‘_ "‘\\\
| |
N

Figure 2.1.1: Sketch illustrating a rigid body (red line) entering water in the
presence of a submerged cylinder. Dashed line is for initial position of the body
before the impact.

Initially (¢t = 0) the water free surface is flat, y = 0. A body touches the free
surface at a single point taken as the origin of the Cartesian coordinate system

xy, see figure 2.1.1. Then, the body starts to penetrate water speed v(t).

The surface of the body can be deformed during the impact. The position of the

body surface at time ¢ is described by the equation

y = f(z,t) — h(t), (2.1.1)
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where v(t) = h'(t) and h(t) is the vertical displacement of the body downwards.
The shape function f(z,t) is assumed given. The shape function is such that
£(0,0) =0 and |f,(x,t)| < 1 in the wetted part of the body surface. The body
is not symmetric in general, f(—z,t) # f(z,t). The body displacement h(t) is

either given or should be determined using the equation of the body motion.

If the body penetrates water of a constant speed v, then h(t) = vt. The impact
stage of the entry process is only considered, when the contact region increases
at a speed much higher than the speed of the body entry. The wetted part of the
body surface, which is the region of contact between the body surface and the
fluid, is denoted by I',(t). The contact region grows in time. It is bounded on
the left and on the right by the jet-root regions, positions of which are described
by x-coordinates, v (t) and 2B (t), of the points of the water free surface with
vertical tangents at the points, see figures 2.1.1 and 3.3.1. The superscripts (R)
and (L) correspond to the right and left parts of the flow region. The subscript
w stands for Wagner model, who distinguished the main flow region, jet-root
regions and jet regions in the water entry problems [33]. The points of the free
surface with z-coordinates z.” (t) and 2 (t) will be called the Wagner contact
points, see section 2.4. The Wagner contact points play an important role in
the modelling of impact problems. The positions of the points are unknown in
advance and should be determined as part of the solution. The positions of these
points depend on the motion of the free surface, the body shape and the body
motion. The horizontal length of the contact region I'y,(t) is approximately equal

to

2 t) + 2 (1), (2.1.2)

The shape of the free surface, which is denoted by I'¢(t), is described by the
equation

y =n(z,1), (2.1.3)

where n(—z,t) # n(x,t) if the flow is non symmetric, due to the presence of a
submerged body. The flow is assumed potential, where the velocity potential of

the flow ¢(x,y,t) satisfies Laplace equation

V2p =0, (2.1.4)
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the Laplacian V?2 is given by

o* 9

2—7 -
v 73x2+8y2’

(2.1.5)
for two-dimensional flows. The Laplace equation (2.1.4) should be solved in the
time-dependent flow region €(t), where the boundary 9€2(¢) of the flow region is
given by

00(t) =T (t) UTp(t) UT (1), (2.1.6)

where I',(t) is the wetted part of the body surface, I't(t) is the free surface
including free boundaries of the spray jet, and I'.(f) is the boundary of the

submerged body.

The hydrodynamic pressure in the flow region €(t) is described by the Bernoulli’s
equation, where the hydrostatic pressure is neglected from the problem because

of the penetration depth is small, where

0 1
p(:ﬂ,y,t) = - <0f + 2|V(P|2> . (217)

Initially, t = 0, there is no flow, which gives
o(z,y,0) =0, (2.1.8)

and

Q) ={z,y| —oo <z <00,y < 0}\Qe, (2.1.9)

where €.(0) is the initial area of the submerged cylinder. Equations (2.1.7) and
(2.1.8) implying that p(x,y,t) = 0 in Q(¢) when t < 0, which means the equation
(2.1.7) gives the dynamic components of the pressure but not the total pressure.

The total pressure is given by

Dtotal = P T Patm, (2110)

where pgim is the atmospheric pressure, which is constant in our model. We

assume the atmospheric pressure does not vary in time and in space.
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2.2 Boundary conditions

The problem involved mixed boundary conditions to deal with because there are
different shapes for this action and different potentials. Therefore, this research
will apply the Laplace equation together with different boundary conditions which

are known as the mixed boundary value problem of potential.

Two boundary conditions are imposed on the free surface I'y(t), which are the
dynemic and kinematic conditions for the potential ¢ and for finding the current
shape of the free surface. Also, body boundary condition (BBC) and submerged
body conditions imposed in the contact region I'y,(t). Boundary conditions on

the free surface I'y(t) are dynamic boundary condition (DBC)
p=0, (2.2.1)

which means that the total pressure on the water surface, p(x,n(z,t),t) + Patm,
is equal to the atmospheric pressure puim, and kinematic boundary condition
(KBC):

dp _Ondy 0On

87y = %6% + E, on Ff(t), (222)

where

Ty(t) = {y =z, t), z<zP), 2P@)< :c} , (2.2.3)

which means that the liquid particles of the free surface cannot leave this surface.
The boundary condition on the wetted part I',,(t) of the entering body surface is
given by

Op _0f0p  On _

9 = 900e T MO on Tu(), (2.2.4)

where

T (t) = {y = f(z,t) = h(t), 2P(t) <z < m{jj(t)} , (2.2.5)

which states that the liquid particles can move along the body surface but cannot
penetrate or separate from the surface of the body. For the submerged body we
imposed the following condition,

o _

5, — Ve ™ on Le(t), (2.2.6)
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where

ro) = { Ve =P + [y — w(OP =7 = R}, (2.2.7)

R is the radius of the cylinder, n = (cos «, sin ) is the outward unit normal vector
to the cylinder, v.(t) = (Z.(t), ¥(t)) is velocity of the cylinder and (z.(t), y.(t)) is
the position of the center of the cylinder, and x = x.(t)+r cos o, y = y(t)+7 sin a.

The Cartesian coordinate z,y and polar coordinate r, o are given by

Op _Op . o B
o = By = Lelt)cosatic(t)sine,  (r=R), 0<a<2m (2.2.8)
n
r
a
vt
>
X

c

Figure 2.2.1: The polar coordinate r, « with the origin at the moving center of
the cylinder.

2.3 Summary of formulation

Vie=0 in Q(), (2.3.1)
o<z <D, y < n(x,t),
Q) ={z.yl{ 2 <w <l y< fa,t) - n),
2 < 2 < oo, y < n(z,t),

©(0) = {z,y| — o0 <z < o0,y <0}\Q2(0),
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p=—p(pt+ 5\% in Q(t), (2.3.2)

p=0, oy =npz+m on Iy(?), (2.3.3)

0y = fops+ fr —h'(t) on Tyl(t), (2.3.4)

Pn = VN, Ol Fc(t), (2.3.5)

=0 (as 22 +y* = o0), (2.3.6)

=0 @o=0 (t=0). (2.3.7)

(L) (R)

To formulate equations for functions z,”(t) and z, ' (t), we need to describe
explicit elements of the boundaries I'y(¢) and I',(¢) by considering the turn-over
region in more details. These equations are required to formulate the so-called

Wagner conditions for the size of the wetted area of the entering body surface.

Body Surface

Figure 2.3.1: Scheme of the flow in the turn-over region.

The turn-over regions on the right side and on the left side of the entering body
(R)

are considered in a similar way. Let zy, ' () be the z-coordinate of the turn-over

point A and x%) (t) be the z-coordinate of the separation point C, respectively,

see figure 2.3.1. Then the vertical y-coordinate denotes of points B and A are

v = £ [P 0] - ne), (2.3.5)
yy?) = [qu(f) (1), t} : (2.3.9)

and from geometrical considerations, we find Wagner conditions:

y$0 = [ 1] +|AB|(t) = f [«B] — h(t), (2.3.10)

w



Chapter 2: Formulation of the problem of water impact in the presence of a
submerged body 14

g = [z, 1] + |AB|(t) = f [+P] — h(t). (2.3.11)

Blunt body: Compressibility is important for the impact of a blunt body
on the water surface at the very beginning of water entry. At small
penetration depths, a blunt body contour approximates a parabola shape
with the expansion velocity of the Wagner wetted area, see figure 2.1.1.
The blunt body has a small non-dimensional parameter ¢ = H/L, (¢ < 1),
where 2L is the horizontal size of the body and H is the height of the
body. The turn-over region is small and the separation point is outside of
this region for both blunt body and impact stage, where the size of the
turn-over region is of order O(|AB|) and |AB| < yp(t) ase — 0 (e € 1).

2.4 Non-dimensional variables for blunt body impact

Equation (2.1.1) is the equation of the penetrating body in the dimensional
variables, where h(0) = 0, h'(0) = v, f(z) is not necessary even, f(—x) #
f(z) in general and f(0) =0, f(z) > 0 for  # 0. The width of the body is
equal to 2L and H is the body height. The shape function f(x) is convenient
to be presented by

f(z) = Hi(x/L), (2.4.1)

where tilde denotes dimensionless variables and
f=x/L, —1<z<1, 0<f(2)<1, |df/di| <1, (2.4.2)

for the body surface. By taking L to be the length scale, H the displacement
scale, H/v the time scale and the product vL as the scale of the velocity

potential, we introduce the dimensionless variables as

flx) =Hf(Z), n=Hijt), p=—pp (2.4.3)
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Derivatives in the dimensionless variables are given by

Op _OLg]l wLdp _ 09

o ~ oIn) L or lor (24.4)
of _,of1 _ of - _
e _Hai:L =c5 (e=H/L), (2.4.5)

Op vL 0p 1 ,0¢

e T L 2.4.6

ot~ Hjvor = o (2.4.6)
The body position in the dimensionless variables is described by the

equation

Lj= Hf(&) — Hh(D), (2.4.7)

thus
j=¢ [ f(@) - f}({)} . (2.4.8)

The free-surface shape, y = n(z,t), takes the form in the dimensionless

variables,

Lj = Hi(#,1), (2.4.9)

= &ii(%,1). (2.4.10)

<

The entry speed of the entering body is equal to

dh ~r U ~
& HY ()= = 2.4.11
o h (t) vh (t), ( )

where, A'(0) = 1, in the dimensionless variables.

The Wagner conditions (2.3.10) and (2.3.11), where |AB|(t) is negligibly
small, imply that the vertical coordinates of the body at the contact points,
where 2 = 2 (t) and y = 2 (t), and the elevations of the free surfaces at
these points are equal to each other. These conditions do not account for

the jets at the contact points, because the dimensions of the jet-root regions

are of order O(£?) in the dimensionless variables.

In the leading order as ¢ — 0, the equations (2.3.1 - 2.3.7) and (2.3.10 -
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2.3.11) read in the dimensionless variables,
Vi =0 Q(i), (2.4.12)

p=——2 (§<0), (2.4.13)

9 _ On

5 = P=0 (@=0 2<a)0) #>870), 2419

i ~h (&) (5=499), i) <z<zP@), (2.4.15)

% =[v.-n], on [.(t)= {R = \/[:7; — (D)2 + [ — gc(f)]ﬂ} . (2.4.16)
¢—0 (as Z*+ 7§ — 00), (2.4.17)

=0, ¢;=0 (at ¢=0), (2.4.18)

i [25(),8] = f [#P(0)] - n(i), (2.4.19)

7 [E0@),1] = F [P @] - h(). (2.4.20)

2.5 Wagner model of water impact

By assuming that the unknown functions @(Z, ¢, t; ), p(%,7,t¢€), 7(Z,t;¢€)
and 740 (t;¢), P (t; ), where their derivatives as shown in (2.4.12 - 2.4.20)
with certain limits e — 0 and |AB|(t;¢)/v — 0 as — 0. Thereafter the
equations for limiting values of the unknown functions for the equations

(2.4.12 - 2.4.20), where ¢ is set zero become as

Vi =0 Q(i), (2.5.1)
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_ op .
=—— <0 2.5.2
p=-2; @=0), (2.5.2)
=0, 2= o D0 =(5=0. lil>30B)  (253)
op . . - . (R /7
(9_@ =—h(t) on I'y(t)={g=0, |Z|<z,”(t)}, (2.5.4)

% =[v.-n], on I'.(t) = {1:2 = \/[:I: - i"c(f)]? + [+ Z]C(t)P} . (2.5.5)

¢—0 (as %+ — o0), (2.5.6)

p=0 ¢;=0 (at t=0), (2.5.7)

91 _ 9z 0.1:0) (|7 > 20 (0)) (2.5.8)
of oy 7 w A -

i [28(2,0),7,0] = f[200(8)] - h(?). (2.5.9)

i [#8(2,0),4,0] = f[#8(D)] - h(i). (2.5.10)

where the original problem (2.4.12 - 2.4.20) are represented by the
boundary value problem (2.5.1 - 2.5.10) with respect to the leading-order

approximation of the original solution as ¢ — 0.

The submerged body is a circular cylinder for simplicity.



Formulation of the Wagner problem
in the presence of a submerged
circular cylinder using conformal

mapping of the flow region
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In this chapter, we illustrated the formulation of the Wagner problem for
a submerged circular cylinder. Firstly, formulating the problem physically.
Secondly, determining the Wagner model of water impact from the physical
plane to Wagner plane. Thirdly, transform the complex potential region ¢

into a ring in (—plane by using conformal mapping method.

3.1 Physical formulation

3.1.1 The submerged body

The circular cylinder is initially centred at (xq,yo) with radius R in the
dimensional variables. The cylinder can be displaced from its original
position by z.(t) and y.(t) in = and y directions respectively. The

corresponding dimensionless variables and parameters are

Ty = L‘%OJ Yo = Lg(]? R= LR7

xe=Hz(t), vy.= Hy.(t), (3.1.1)

where the distances and the radius are scaled with the characteristic
horizontal dimension of the impacting body, L, but the displacements with
the characteristic vertical dimensions of the entering body, H. Within the
Wagner model, we neglect the displacements of the cylinder and impose
the body boundary condition for the normal velocity of the flow at the
original surface of the cylinder. To formulate the boundary condition on

the cylinder, we introduce the local polar coordinates
x=x(t)+rcosa and y=vy.(t)+rsina, (3.1.2)

where r = R is the equation of the cylinder surface, 0 < a < 27w. On the

cylinder, 5
L

o = Te(t) cos a + y.(t) sin av, (3.1.3)
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and in the dimensionless variables,

Loy - ;o .
Uf%:H-ic(t)%cosa+H-gc(t)%sina, (7 = R), (3.1.4)

and
% = d;;f cos a + %sina, (7 = R). (3.1.5)

If the cylinder is stationary, then z.(t) = const, 9.(t) = const and

05 -
5= =0. (F=R) (3.1.6)

<!

Figure 3.1.1: The sketch shows the boundaries of the flow region.
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3.1.2 Summary of the formulation

Vg =0 (5 <0),
pP= =% (y <0),
F=0.¢5 =i ¢=0 (5=0, 7 <&lD), 3>a(@),
5, = 1/ (D) (y =0, 3P@) <z <3P@),
®—0 (as 2% 4% — 00), (3.17)
=0, ¢;=0 (at t=0),
Pr = dd"’%c cos o + dgtf sin «, (7 = R),
s = ¢3(#,0,£,0) (17 > 2" (®).
i [#0@.1] = 7 [#7@)] - n.
\ p |70, 1] = 7 300 - n(@)
3.2 Wagner model of water impact
Wagner problem in the dimensional (original) variables
' V3 =0 (v <0),
p=—% (v <0),
p=0, o, =m, =0 (y:O, [L’<£L‘£UL)(15), x<:c1(UR)(t)>,
e <y —0, 2P << ng%’(t)) :
o —0 (as 2% + y* — 00), (3.2.1)
=0, ;=0 (at t=0),
@T:%cosa—l—déf sin o (r =R),
M = py(,0,40) (2] > 2" (8)).
n[#P0).1] = 1 [+ )] - ),
\ 0 [xﬁum(t),t] —f [;cSP(t)} ~h().

Figure 2.1.1 shows the Wagner problem and the relation between the flow
boundaries in the physical plane and Wagner plane is illustrated in figure

3.2.1.
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physical plane

Wagner plane
Ly Rliy
X, ] XN

Figure 3.2.1: Graph shows the physical plane and the Wagner plane of the flow.

3.3 Conformal mapping of the flow region

It is convenient to map the flow region onto a ring in the image of the
conformal mapping ¢ = ((z,t). The boundary value problem for equation
(2.4.12) is transformed to a (—plane, where the cylinder surface, r = R,
corresponds to a circle |(| = Ry, and the upper boundary of the flow region,
y = 0, to the unit circle || = 1. The conformal mapping of the ring,
Ry < |¢] < 1, in the (—plane onto the Wagner flow region in the physical

plane is given by

2 — z.(t) , 2 : .
—:l+—.7 Z:(L‘—i—l, = +1 y 331
ity mer (=Erin, (33
where the outer circle, |(| = 1, corresponds to the upper boundary of the

flow region, y = 0, and (z.,y.) are the coordinates of the circular center
of the cylinder in the original z—plane. In the polar coordinates (p, 8), see
figure 3.3.1, ¢ = pe'(™/2=9 = jpe=¥ the surface y = 0 corresponds to p = 1

and —7m < 6 < 7w, where

¢ =20 — /20 — j(cosf — isinf) = sinf + i cos#h, (3.3.2)
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and the right hand side of (3.3.1) reads

: 2 , 2
a1 T smey i(cosf + 1)
_ sin® — i(cos @ + 1) _; sinf — i(cosf + 1)
B sin @ + (cosf +1)2 2(1+ cos )
sin 0
=— (3.33
1+ cosf ( )
The left hand side of (3.3.1),
v we(t) tiy (3.3.4)
ye(t) — k2
and (3.3.3) provide
—x.(t in@
y=o, —L—rell) = (3.3.5)

y2(t) — R? T 1+ cosh

The point ( = —i corresponds to the infinity in the z—plane. At ( = —i,
|z| — oo for § = %, sin(f) = 0 and cos(f) = —1, see (3.3.5). The contact
points, z = z{" (t) and z = 2 (t) on the boundary y = 0, see figure 2.1.1,
correspond to points #F(t) and 6%(¢) on the circle |¢] = 1, see figure 3.3.1.

To determine A% and 6% we use the formulae

x sin
tan - = ————, 3.3.6
Mo +cosx ( )

then equation (3.3.5) at x = 2 gives

ﬁ B 2 x.(t)
tan ( 5 ) = —ycz(t) — (3.3.7)

Let 7. > 0 and 1 < 0 as in figure 2.1.1. Then right hand side of (3.3.7)

L @)
v = —arctan Zolt) — " : (3.3.8)
2 ya(t) — R?

is negative and

where the value of arctan(x) are from —7/2 to m/2. For positive z, one has
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§=§+”7 HR =0

Figure 3.3.1: The complex {—plane.

0 < arctanz < 7/2. Finally

0 (t) = —2arctan (xc(t) — ) (t)> : (3.3.9)

ya(t) — R?

and —7 < % < 0% < 0 because the cylinder is located in the right of the
entering body as in the figure 2.1.1, where the whole contact region will be
in the left otherwise if the cylinder is located under the entering body then
—7 < 0L < 6F < 7 and if the cylinder is located in the left of entering
body then 0 < % < #% < 7. Clearly we can obtained 0% from (3.3.9) by

changing 2P to 21

(R)
0%(t) = —2arctan (mC(lZQé)ijéz)) : (3.3.10)

w/2—6

Using the mapping (3.3.1), where ¢ = pel ) and Ry < p < 1, we can

define the corresponding velocity potential in the (—plane,

p(z,y,t) =@ z(p,0,t),y(p,0,t)] = (p,0,1). (3.3.11)

In other words, a conformal mapping transfers a velocity potential in the
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original z—plane to the potential in the complex (—plane, where ®(p, 0,t)
satisfies the Laplace equation in the ring Ry < p < 1. The dynamic
boundary condition in (3.2.1) where the total pressure in the water is

equal to the the atmospheric pressure, gives

®(1,0,t) =0 (p=1, —m<O<0" 0" <h<m). (3.3.12)

The hydrodynamic dimensionless pressure on the submerged cylinder is

given by
oy .
p= _ECE?yat) ($I$C<t>+COS(X7 yzyc(t)—l-Sané).
r=cons,y=cons
(3.3.13)
Here
90(1’73/;75) = (I)[p(xvyvt)ue(x7y7t>7t] ? (3314>

and by using the chain rule we calculate

dp 0DOp 009 0D

= — —_— + = 3.3.15
ot _opot T oot o (3:3.15)
If the cylinder is stationary, then (3.1.6) gives
0P
a—p(Rl,e,t):O (p:Rl,—’TF§9<7T>. (3316)
By differentiated (3.3.11) in p and set p = 1, we get
@0(17 07 t) = P2y + PyYp- (3317)

Equation (3.3.1) defines z = z(() as analytic function in R; < p < 1. For

an analytic function

dz dz dz . 1 :

ip
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At p=1:2, =y, vy, = —x9. However, y(1,6,t) = 0, which gives
yp(1,0,t) =0 and z,(1,6,t) = 0. Also using (3.3.5) gives

d sin 0
1 — —2.(1 = W P -—R2— | — . 3.1
yp( 797t) .739( 797t) Yo R A6 (1+C089> (33 9)

Therefore,

(I)p(I, 0,t) = .- 0+ Py yp(L 0,t)

- _h’(t)\/ﬂ (COSH(l(JFiOZ()szg)J)F el )>
— —h'(t)\/y2 — R? (%)

=R ()/y2(t) — R?
n 1+ cosé

(08 <0 <0%). (3.3.20)

Thus, the water impact problem within the Wagner model formulated in

the (—plane for a stationary submerged cylinder reads

/

V2P =0 (Ry <p<1),
=0 (p = ]-7 (_W77T)\(0L70R>>7
—H (£)\/y2(t) — R (3.3.21)
b, = ¢ =1,6F R
r 1+ cosf (p 07 <9< 0%
(I)p:() (p:R1,9§9<27T>

Now we need to find R; for the submerged cylinder, z = z. + €@, 2, =
T.(t) +iy.(t), 0 < a < 27. Equation (3.3.1) with ¢ = R;e'™/279 gives
Ze+ e —x(t) 2

= —_ 3.3.22
PO iR+ i (33.22)
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where the right hand side is

2 1
' i(pe=® +1)i
B 2i (pcos(f) + 1 +ipsin(6))
pcos(0) + 1 —ipsin(f) (pcos(f) + 1 + ipsin(0))
i 2i(pcos(f) + 1 —ipsin(0))
(pcos(f) +1)2 + psin(f))?

, pcos(0) + 1+ ipsin(0)
' { P+ 2pcos(f) + 1  (3:3.23)

=1

and the left hand side is

z—x(t) wtiy—a(t)  ze+e —a(t)

N O O RNV O S
_ cos(a) + iy.(t) + z'sin(a)’ (3:3.24)
ye(t) — R?

separating real and imaginary parts using (3.3.23) and (3.3.24) gives

R cos(a) o psin(6) | (3.3.25)
VY2 (t) — R2 P>+ 2pcos(f) + 1
and
Ye(t) + Rsin(a) 1o pcos(f) +1 ’ (3.3.26)
y2(t) — R2 p? +2pcos(f) + 1
for p = Ry we have
R cos(a) Ry sin(6)
= . -2
VA (t) — R2 R? 4+ 2Ry cos() + 1’ (3.3.27)
and
Rsin(a) Ye(t) 1 Ry cos() + 1 (3.3.28)

= — ¢ — 2 .
/y2(t) — R? /y2(1) — R? R? + 2Ry cos(f) + 1
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Then we have

R? —[1— yC(t) ;
ye(t) — r? y2(t) — R?

4 Yye(t) ,
11— ——— | (1 + Rysinf) p. (3.3.29
BT om0 ( yg(t)—R2)( + Ry sin )} (3.3.29)

A

J/

and
A= _ vl Ry <1 _ ) ) sin 0
ya(t) — R? ya(t) — R?

_ (1 B y_<t>>
y2(t) — R?

2y.(t) 1

OR, sin 6 — (3.3.30)
N O T
¢ Vyi(t)—R?
Then
2y.(t)//y2(t) — R? 2
- = Ri+ 1. 3.3.31
vt/ VR — R =1 )
Using the equation (3.3.29) gives
R - 2y.(t) (1 ve(t)
ye(t) — B2 ye(t) — B2 ye(t) — B2
o(t)2 R?
_ ye(t) (3.3.32)

o VED - R0 - R

and using (3.3.31) to finding R, gives

N0 _ﬁ< 20 _Q+ vl
O R? V(D) — 12

this gives

~ (v + V2O - )
R, = I . (3.3.33)

where the minus in (3.3.33) is because of R; > 0 and y. < 0.
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A relation between « and 0 at || = R; follows from (3.3.28). By denote

R? 4+ 1+ 2R;cos(f) = D in (3.3.27), we find from (3.3.27) and (3.3.28),

2
——————cosa = —R;sin0, (3.3.34)
ye(t) — B2 D

R

e(t 2
Yel) —

ST D (1+ Rycosf), (3.3.35)

Dividing (3.3.35) by (3.3.34), we obtain

sin «
tano =

1= ye(t)/\/y2(t) — R* = 2(1 + Ry cos ) /D
2R1 SIDQ/D
<1 —y.(t)/Y2(t) — R2> —1— Rycosf
R;siné -
(1 w0/ VRO - )
R;sin@
. Ry cosd (1 —y.(t)//Y2(t) — R2> —1— Ry cosf

g . (3.3.36)

COS «v

IS

where

B (1 g0 - ) =

1 2 P2 2 _ R2 2
T (O VIED ) (20 - B~ )

— Yo
o (VRO R (1)
2¢/y2(t) — R

R? 3 2 1 y0<t>
T (welt) + VIR —FB) 45— e 7

1 o) L L Ye(t)
=T (welt) + VR0~ B2) 45— e —

T (1 v D ) -

v wl®)
ye(t) — 2 ye(t) — B2
R R

— (3.3.37
oo O
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then

Ry - R/\/y2(t) — R? — Ry cos?® (yc(t)/\/yg(t) — R2>

Rl sin 6

tana =

R — cos Oy.(t
- Cosell) 3.3.35)
y2(t) — R?sin 6

Let y. = —H, H > 0 is the distance of the center of the cylinder from the
Wagner free surface y = 0. Then

R+ Hcos0 B A+ cosf
VH?Z — RZsinf  +/1— A2siné’

where A = R/H. Here A = 1 when the cylinder touches the water surface,

(3.3.39)

tana =

which is not allowed in this analysis.

Similar to (3.3.18), where z = z, + (p — R+ iR(a — a,))e ™ at a point z,
on the cylinder surface and ¢ = ¢, + (r — Ry + iR, (0 — 0,))e" ", see figure
3.3.2.

Zx; / é“*\e* :
AN

z—plane ¢—plane

Figure 3.3.2: The original z—plane and the complex (—plane.

Then

dz dp . _Oa\ _, 1 dp ROa\ _,
> ZE el jae [ = TP It 00k 3.4
i@ <ar+"Rar)e (z’R186+R1 ae)e o (3:340)

and by comparing real and imaginary parts in (3.3.40),

dp R da da 1 0Op
o mon ™ 5 T R o0 (3:341)
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at r = Ry where p = R, therefore dp/00 = 0 and da/Or = 0. To find the
derivative 0a/00( Ry, 0) we differentiate (3.3.39) with respect to 6,

1 6@7 —sind B A+ cosf
cos2a 09 /1 — \2sind V1= \2sin%6

- 1 _1_)\cose+cos20
V1= 2 sin’ @

-1 14+ Acosé

(cos®)

= 3.3.42
VI=X2 sin?f ( )
and cos? « is also calculated by using (3.3.39)
A + cos 0)?
—1ttanZa =14 AFCsO
cos? « lana - (1 — A\2)sin? 0
B sin?§ — A2sin? 0 + A\ + 2\ cos @ + cos? 6
(1 —\2)sin?0
_ 1+2Acosf +.>\Zcos20 _ A+ )\COS.02)2  (33.43)
(I —A%)sin”6 (1 —A2)sin“¢
Substituting (3.3.43) in (3.3.42), we obtain
D —1 1+ Xcosf(1—\?)sin?@ 1
9 Ry, 0) = _ iwe b
89( 16) V1I—=)2 sin?6 (1 + Acosh)? 1+ Acosf
(3.3.44)
Equation (3.3.43) also gives
V1 —Asiné
=" " 3.4
cose (14 Acosf)’ (3:3.45)
and
A+ cosf sin ¢
1 = . - - . 1 — 2
sina = tan o - cos « Nyl V A T Neosd
A 0
TCSY " (3.3.46)

- 1+ Acos@’
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Similarly to (3.3.20) we calculate 0®/Jp(Ry,0,t) as

0P _Opdp  Odpda Iy R da dp
o 0 = o T aaar ~arm oo 0 T g, 0
R 1 dx. dy. .
= —— — 2~ R — _
R 1—A [T Noos? < pn cos o + o sma) . (3.3.47)

Substituting (3.3.45) and (3.3.46) into (3.3.47) gives

. e
00 1, 0,1) = — gyt VLA SO DA 000) g 4)
1

op (1 4+ Acos®)?
For a stationary cylinder, when &, = 0 and y. = 0 , then (3.3.48) provides

06

3, =" (3.3.49)

as in (3.3.21).

3.3.1 Summary of the water impact problem within the Wagner

model formulated in the (—plane

Our formulated impact problem within the Wagner model is written as

;

V29 = () (Ri<p<l),
®=0 (p=1, (—m,m)\(6",0%)),
—R'(t)\/y2(t) — R?
{ — c =1, 0 <9 < 6®
# 1+ cosé (p ’ <6<9,
\ q)p - _1% v L= /\2%\/1_7)2211132;%)(2)\4_6089) (/O = Rla —T<f< 7T)‘

(3.3.50)

The first equation in (3.3.50) implies that the velocity potential of the flow
O (p, 0,1) satisfies the Laplace equation in the ring R; < p < 1. The second
line is the dynamic boundary condition of the free-surface image in the
¢—plane which is given by (3.3.12). The third line is the boundary condition

on the image of the contact region in (—plane. The fourth line is the far-field
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condition corresponding to infinity in the z—plane, where the fluid is at rest
at any time. The fifth line is the boundary condition on the surface of the
stationary circular cylinder. For a stationary cylinder where (&, = . = 0)

the boundary condition on p = R reads ®, = 0.



Analytical solution of the water
impact problem in the presence of a
submerged circular cylinder within

the Wagner model
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In this chapter, the solution of the water impact problem (3.3.50) formulated

within the Wagner model in the (—plane is derived.
From (3.3.50) and (3.3.20) let the function f(f) as

—I(t)\/y2(t) — R?

0) = 4.0.1
1) 1+ cosd ( )
The boundary condition at (p = R;) can be written as
R 2 . R .
¢, = —E(l — X)) Fi(0) + E\/l — N9 5(0), (p=Ry,—m<0<m),
1 1
(4.0.2)
where
in 6 A 0
F0) = — 20 and  Fy(0) = (4.0.3)

(1+ Acosf)? (14 Acosh)?

Note that Fj(#) is an odd function and F5(6) is an even function. Their

Fourier series are

Fi(0) =) Fin()\)sin(n), (4.0.4)
Fy(0) = Fyo(\) + i Fyn(X) cos(nf), (4.0.5)

Fin()) = % / " F(0) sin(nd)do — - / T sinbsin(nd) o)

. ) (14 Xcos)?
[ 1 [T A+cost

Fon(\) = % / " Fy(0) cos(n)df — % / ' (Aafiegocsog)?@)de. (4.0.8)

—r -7
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Thus
Q,(Ry1,0,t) = 1 — A% xcz Fi, () sin(nd)

+ Emyc (FQO + ZF2n COS ne )

(Ry,—m <0 <m). (40.9)

By using the separation of variable method for Laplace’s equation in polar

coordinates, we find a general solution for the velocity potential,

[e.o]

O(p,0,t) = (ap + by log p) + Z (p" + dnp™") (ay cos(nb) + b, sin(nb)),

n=1

(Ri<p<l), (—m<BO<m), (4.0.10)

where the coefficients ag(t), bo(t), d,,(t), a,(t) and b,(t) are to be determined

using the boundary conditions and the far-field condition,
®(1,+m) = 0. (4.0.11)
and

1 oo
P,(p,0,t) = bo; + Z (np" " + dn(—n)p™" ") (a, cos(nb) + b, sin(nb))

(Ri<p<l), (—m<0<m). (4.0.12)

4.1 The coefficients Fi,()\), Fy(\) and Fy,(\)

To evaluate Fi,()\), we use the following equality,

d sin 0
1 —(1 —2(_\gi S S
+ Acos )~ (14 Acos®@)=(—Asind) )\(1 Ncos )

dH(
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Then integrating by parts,

!

[ . 1
Fln()\) = E/ Sln(nQ) (m) do
1 [ 1
= —E/Wncos(nﬁ) (—1 —{—)\COSQ) de

n [T cos(nd)

= —— _— 4.1.1
P _Wl—l—)\cos@de’ ( )

where Tables of Integrals [13] provide

T )2 _ "
/ cos(nd) 4o_ __T (”1 A 1) L 0<A<1. (412
0

1+ Mcosl /1 — 2 A
Therefore,
™ _\2 _ "
Fin(\) = n cos(nb) g = 2n V1I=X -1 |
A J_ 14+ Acosf A1 — \2 A

0<A<1). (413)

Using the definitions,

R
1= R ) A= ﬁ) yc(t) = _H7 (414)
we find
H R? 1—v1—=\2
__(_ 2 _ 2y =~ [1_ ) =
By =~ (-H+ VI~ ) R<1 1 H2> =
(4.1.5)
And finally

2R (—1)"H!

Fin(\) = Wi (0<X<1). (4.1.6)

Then by using Matlab for checking and confirming the formulae (4.1.6) we
find that the formulae has good evaluation for the Fy,, (4.0.6) as shown in

Table 4.1.
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submerged circular cylinder within the Wagner model
Fin(\)

A Integral (4.0.6) Formulae (4.1.6) | Differences
0.01 0.0049507 0.0049507 1.1227FE—14
0.15 0.0043976 0.0043976 2.2898E—16
0.29 0.0040551 0.0040552 —4.1633E—-17
0.43 0.0038728 0.0038728 6.9389FE—18
0.57 0.0038761 0.0038763 —2. 7756 E—17
0.71 0.0041522 0.0041522 —2. 7756 E—17
0.85 0.0051292 0.0051292 —2. 7756 E—17
0.99 0.0022088 0.0022088 —2.3037E—-15

Table 4.1: Table to show the differences between (4.0.6) and (4.1.6) with different
A where n = 20.

To evaluate Fy,(\) we use Tables of Integrals [13],
/ cos(nf) 40 —
o (1 —=2acosf+ a?)?

maitn—2 n+1 2 N 1+n 1 (1—@2)
(1—a?) 0 1 1 1 ’

/” cos(nh)
5 do
o (1+a?)?(1— =25 cosh)?

14-a?

a?

(a®* <1). (4.1.7)

This table integral is related to the integral (4.0.8) if A and a are related by

—2a
= — 4.1.
1+ a?’ (4.18)
which gives
IR
I 2 i (4.1.9)
A
Then
™ cos(nh) (14 R})?(—Ry)"+? 1— R?
—————df =2 2 1
/_7T (1+ Acosf)? : (1—R2)3 +{nt+1) R?

_ %(_Rl)n <\/1;_7A2 + n) . (4.1.10)
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The integral (4.0.8) can be decomposed as

do

1 [T (A+cosB)cos(nd)
Fon(A) = _/ (14 Acosf)?

™

—T

1 /7r A cos(nd) —|—cos€cosn0d8 1 /’T A cos(nd)
T . (14 Acos#)? ) (1+ Acosh)?
1 cos((n + 1)0) 1 cos((n — l)g)d& (4.1.11)

2 | . (1+ Acosh)? 2r J . (1+ Acos)?
Applying (4.1.10) to these three integrals, we obtain

do

P@@%=1/W“+“BQWﬂW>

7). (14 Xcosh)?
:208?2;?ﬂxp+(r+m(1;¥)]
i enen ()

+Qi£§ﬁiik+n(l_&)} (4.1.12)

(1—a2)?

+

By algebra,

(1+a?)? ., 20> +1 —a?+n(l —a?
FZn()\) = ma + 2Xa 2

+a22a2 +2—2a®+n(l —a? N 2a% + n(l — a2)}

a? 2

:a+wgwﬂmuw%
(1 _ CL2>3 a?

a
a’+1

(2)\a +a®+ 1) + 2Xa 3

+2+4,

(4.1.13)

where a® + 1 = —2a/\, see (4.1.8). Then

(1+a?)?a™ 'n 2a 2n
F. = 2Ma — — | = (=1)"TtRM . 4.1.14
277,()\) (1 _ a2)2 )\a“ )\ ( ) Rl )\ ( )

The differences of (4.0.8) and (4.1.14) has been illustrated in Table 4.2.
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Fon ()
A Integral | Formulae | Formulae | (4.0.8) and | (4.0.8) and
(4.0.8) (4.1.12) | (4.1.14) | (4.1.12) (4.1.14)
Differences Differences

0.01 0.049505 | 0.049505 | 0.049505 | —1.1102E—-16 | 1.1227TE—14
0.15 0.043478 | 0.043478 | 0.043478 | —2.7756 E—17 | 2.2204E—16
0.29 0.038763 | 0.038763 | 0.038763 | —2.7756E—17 | —6.9389E—17
0.43 0.034965 | 0.034965 | 0.034965 | —1.3878E—17 | O

0.57 0.031847 | 0.031847 | 0.031847 | 6.9389F—18 —1.3878E—17
0.71 0.029241 | 0.029241 | 0.029241 | —2.0817TE—17 | 1.0408E—17
0.85 0.027022 | 0.027022 | 0.027022 | —4.1633E—17 | O

0.99 0.031158 | 0.031158 | 0.031158 | 8.9512FE—15 —3.747TE—16

Table 4.2: Table to show the differences between (4.0.8) and (4.1.12) with different
A where n = 20.

Finally, to evaluate Fy(\) (4.0.7), we use (4.1.7)

Fao(A) = %/W

—T

+

because,

R1:

A+ cosf
(14 Acos#)?
cos

1
o

1

/;W (1 +>\C089)2d9 N (1— A2

1—VI— X

—T

)2

LA
(14 Acosb)

(A—R1(1+m>>:0,

A

A

Y vy

do

(4.1.15)

(4.1.16)

4.2 Convergence of the series for Fi,(\) and Fj,(\)

The series

Fi(0) =Y Fia(M)sin(nd),

(4.2.1)
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calculated with only three terms in shown in figure 4.2.1 for A = 1/2 as

function of 6. We introduce the difference as

sin 6
D F 4.2.2
w(6) = (1 + Acos6)? Z in(A) sin(nf). ( )

The difference Dy (0) where N terms are retained in the series is shown in

figure 4.2.2 for A = 0.5. We obtain
|D1o(6)] < 4 x 107°,
| Dy ()] < 1.5 x 1071,
|Dyo(0)| < 1.5 x 10715,

It is seen that the series for F(f) converges quickly with the number of the

retained terms, see (4.1.6).

%107

F,0)
o

Figure 4.2.1: The series for F;(0) with  Figure 4.2.2: The differences D()
three retained terms (blue line) and the  where the series for F} () with 20 terms
function Fi(0) (red line) for A = 0.5. and the function Fi(0) for A = 0.5.

Convergence of the series for shown in the same way as Fy(6). Fz(0) is

Z F5,(X) cos(n@). (4.2.3)
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We introduce the difference

A+ cos @ N
DRy = """ Fyn(A 0 4.2.4
N (0) (11 Acos0)? (; () cos(n )>, ( )
and calculate
‘Dﬁ?(@)‘ <38x 10710, (4.2.5)
‘Dgﬁ)(e)‘ <3x10°" (4.2.6)
‘ijﬁ(&)‘ <24x 10717, (4.2.7)
; wa'”
05! 251
2
ol
= 15
05 8z
l
-1
0.5
i ! J\/\WNWW\NVV\/V
2, 4 s 2 4 o 1 2 3 4

Figure 4.2.3: The series for F5(0) with  Figure 4.2.4: The differences Dﬁ)(e)
three retained terms (blue line) and the  where the series for F»(#) with 20 terms
function FQ(@) (red line) for A = 0.5. and the function FQ(Q) for A = 0.5.

4.3 Potential of flow caused by the cylinder moving

under the free surface

It is convenient to present the potential in (3.3.50) as
D(p,0,t) = D.(p,0,t) + Pi(p,0,1), (4.3.1)

where ®.(p, 0, 1) is the solution of the flow caused by motion of the cylinder

without the impact on the water surface. The boundary value problem for
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d.(p,0,t) reads

V2(I>c:O (Rl <p< 1),
. =0 (p=1 —mw<b<m),
. / ZevV/1=A2 sin 041 (A+cos 0 _
%%_R% 1_)‘2( (1+/\c:sy9)(2+ )> (p=Ry, —m<0<m).

(4.3.2)
The potential ®;(p,0,t) a accounts for the flow caused by the impact.

In this section, the potential ®. is determined. Substituting (4.0.10) in the

boundary condition ®, =0 at p = 1, we find

d.(1,0,t) = Z (1+d;) (a5, cosnf + by sinnf) =0, (—7m <6 <m).
n=0

(4.3.3)

which gives df = —1 and af = 0. Substituting (4.3.3) in the boundary

condition at p = Ry and using the series for F3,(0) and Fy, (), we obtain

00,
dp

1 o0
(Ry1,0,t) = bSR——l—Z (nRY™ + di (—n)Ry ™) (af, cosnf + b, sinnd)
1 n=1
R . :
= _E(l - A )xcz F1,(0) sinnd
1 —

+ E\/ 1— Ny [+ Z Fy,(0)cosnd | . (4.3.4)
Rl n=1

Comparing the Fourier coefficients in (4.3.4) and using d = —1, we find
bg
— =0 4.3.5
Rl ? ( )
n—1 —n—1 c R / g
n (Rl + Rl ) a, = ﬁ 1— )\2ycF2n()\)7 (436)
1
n—1 —n—1Y\ jc R 2\
1
Thus

be =0, af = Ryein(\) and b2 = —Rib,()\), (4.3.8)
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where
/ . 2 R2n
as = (—1)""12 > (4.3.9)
A R+ 1’

and

- /1 — \2 RQn

be = —2 L (4.3.10)

A R"+1
Therefore
1— VI=X XN (p"—p ) R
D.(p,0,t) = Z (" R25+ : ((=1)"*""g. cos nf + @.sinnb)

=1

(Ri<p<l), (—m<6O<m). (4.3.11)

where R; given by the equation (4.1.5). After, we found ®.(p, 0,t) in (4.3.1),
in following section the ®;(p,0,t) will be evaluated.
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4.3.1 Velocity potential ®;(p,0,t)

The potential ®;(p,0,t) in (4.3.1) describes the flow caused by impact on
water surface in the presence of a stationary circular cylinder. The motion of
the cylinder is taken into account through the modified boundary condition
in the contact region, which corresponds to the interval 7(t) < 6 < 6%(t) of
the circle p = 1 in the (-plane, see figure 3.3.1. The functions of time 0%(t)
and X(t) are assumed given. The boundary condition for 0®;/9p(1,0,t) in
the image of the contact region on the (-plane is obtained by using (4.3.1)

gives

%(1,9,@ = f(0.) - %(1,9,0 (p=1, 0" <8<0%).  (4312)

Therefore, the boundary value problem for ®; reads

p

VZQDZ:O (R1<,0<1),
®; =0 (p=1, (=m,m\(O",0%)),
D, )
0P _ oy 0% g gm, (4.3.13)
% 0P op
L - —r < .
\ o 0 (p=Ry, —m<f<m)

To solve this mixed boundary value problem, we assume that ®; is given in

the interval 0 < § < 6%, Let
®;(1,0,t) = F(0,t) (0% <0 < 6", (4.3.14)

where the function F(6,t) is zero at the ends of the interval because the
potential should be continuous up to the boundary to avoid high singularity
of the velocity potential there. This function should be determined to satisfy

the condition in the contact region,

0P,
a_p<1797t)<p> = f<97t) -

0P,
op’

(0F <6 < 07, (4.3.15)

where 0®;/0p(1,0,t)(F) is a linear operator acting on the unknown function
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F(0,t). It is convenient to introduce the Fourier series of ®;(1,6,t)

F(0,t) (0F <0 < 6" >
®,(1,0,t) = (6,8) ) = CL(H‘Z {a,, cos(nf) + b, sin(nd)} ,
0  otherwise —
(4.3.16)
where
I
ao(t) = —/ F(6,t)do,
2w oL
QR
an(t) = l/ F(0,t) cos(nd)db, (4.3.17)
™ L
1
bu(t) = —/ F(6,t)sin(nd)db,
T JoL

are unknown coefficients. The solution of problem (4.3.13) with the

condition (4.3.16) at p = 1 is

o

Di(p.0,t) = ao()®io(p,0) + 3 {an(®)0(p,0) + b ()2 (0,0) }
n=1
(4.3.18)
where )
V20 =0 (Ry < p<1),
o© (4.3.19)
29(1,0) = cos(nf), 22 (R, 0) =0,
( dp
and
V20! =0 (R, <p<1),
o (4.3.20)
®'*)(1,6) = sin(nd), 0Ly, (Ry,6) = 0.
\ 8p
The solutions of (4.3.19) and (4.3.20) are
¢ P+ R?"p~") cos(nb .
o(p.0) = IO 90—t (s
n 2n —n\ o
5 (p,0) = " + Ry’ ") sin(nf) (4.3.22)

1+ R3" ’

where n > 1, which can be confirmed by substitution. By using the
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obtained solutions, we find,

%q;f(l’ 0,6)(F) = nzln—i - g%: (an(t) cos(nd) + b,(t) sin(nd)), (—m <6 < ).

(4.3.23)

The Fourier coefficients (4.3.17) cannot be used in (4.3.23) to reduce the

problem to an integral equation for the function F'(6,t) as

0, 1ot > 11— R
‘(1,0) = = F(0,.t L
ap(7 ) W\/QL (0’ );nl—i—R%n

- {cos(nby) cos(nf) + sin(nby) sin(nd) } db,

:/ F(0o,1)K(0 — 00)dby, (4.3.24)
0

L

because the series for IC(a) does not converge. This implies that the
operator (0®;/0p)(1,8)(F) is not a standard integral operator. Note that,
to  satisfy  the functional equation  (4.3.15), we  required
F(6L,t) = F(0%,t) = 0, because the velocity potential should be at least
continuous everywhere including the boundary of the flow region, to
describe a flow with finite kinetic energy. The theory of mixed boundary
value problems [l1] provides that in this case the derivative dF/df is

square-root singular at the ends of the contact region, § = 6% and § = 6%.

The equation (4.3.15) will be understood as the limit

lim {%‘I; (p,@,t)(F}} = f(0,0), (0"(t) <0 <06R(t)),  (4.3.25)

p—1-0

where

F(0.1) = £(0,1) — 0. /0p(1,6, 1), (4.3.26)

is a known smooth function of #. The time ¢ is a parameter in the problem
(4.3.13), which does not contain time derivatives. This parameter is dragged

below. In the equation (4.3.25), we have

oD,
dp

eR
(p,0) = /9L F (6o, t)KC(p,0 — 6y)dby, (4.3.27)
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where

L& (R
K(p,0) = - ; Wﬂp cos(nf), (4.3.28)

and Ry < p < 1, see equations (4.3.21)-(4.3.24). The series (4.3.28) does

not converge at p = 1. To regularise equation (4.3.25), we notice that

62
1— (Ry/p)™" cos(n@)
E T RQ” — (4.3.30)

The series (4.3.30) converges at p = 1 but it is log-singular at 6 =
Substituting (4.3.27) and (4.3.29) in (4.3.25) and integrating in (4.3.27) by
part using equalities F'(9F,t) = F(6%,t) = 0, we obtain

lim {%%(p,@)(F>}: lim 9 / F(0o,t)d{S(p,0 — o)}

p—1-0 p—1-0 08
=— 1l g GRFIQ S(p. 0 — 0,)db, = (O oL < 0 < 2 4.3.31
——pgll 06 o ( 0) (:07 - 0) O—f( ), ( << ) ( 3. )

—U(9) = F'(0), (4.3.32)

integrate both sides of (4.3.31) from ¥ to 6 and take the limit as p — 1.

This gives the following equation for the function U(0),

oR

U(0o) {S(1,0 — 05) — S(1,0% — 0p)} dby = f(0), (8" <6 < 67),
9 (4.3.33)

where f(6) is a known function given by

f(0) = 9 £ (6)dby. (4.3.34)
oL
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From (4.3.33) and (4.3.30), we have

1l N1-R21
1.0 —0,) — S(1.6% — :_E - -
S(1,6 = bo) — 51,6 bo) ™ 1+ R n

- {cos[n(0 — 0p)] — cos[n(6" — 6p]} . (4.3.35)

The interval (#%,0%) in (4.3.33) is mapped onto (—m, ), in order to apply
the classical theory of Fourier series, by introducing new variable £ such
that —m < ¢ < 7 and

0=A+ B, (4.3.36)

maps (—, ) onto (6%, 6%). The coefficients A and B are obtained from the

equations:
0¥ = A(—7) + B and 6% = Ar+ B, (4.3.37)
which gives
o — p- oL + o
A= o and B = 5 (4.3.38)

Introducing U(6) = U(AE + B) = U(€) and 6, = A&y + B, we transform
(4.3.33) to the following equation

| 016 1501, 4(¢ ~ &) - S(1 A= - €0)} s = 36(6)

—Tr

(—m<&<m), (43.39)

where G (&) = f(A€ 4+ B). The function U(€) is sought as the Fourier series

- 1

U = 560 + Z (@, cos(ng) + b, sin(ng)) , (4.3.40)

n=1

where the coefficients @, and b, are to be determined. Equation (4.3.32)

and the conditions F(0%) = F(0%) = 0 gives

- /_7r U(&)d¢ = — /6 U(6)do = /6 F'(0)d0 = F(0") — F(67) (z 3,41)
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this provides ay = 0 in (4.3.40). We substitute the series (4.3.40) in (4.3.39)
multiply both sides of (4.3.39) by sin(m¢&) and cos(mé&), m > 1, and integrate

the result in £ from —7 to

> {an [ ([ costmtnrric codsa) costmei

n=1 - -

b, / ( / sin(no)T(€, §o>d§o) cos(mf)df}

= —/ ) cos(m&)dE, (4.3.42)

i {an /7T (/” COS(nﬁo)T(faﬁo)d&) sin(mg)d¢

[ ( | sin(n@)T(&@)d&) sin(mf)dé}

= —/ )sin(m&)dg, (4.3.43)

where

T(&, &) = S(L A€ — &)) — S(L, —A(m + &)). (4.3.44)

The system (4.3.42) and (4.3.43) can be written in the form

b
- (4.3.45)
b

where @ = (ay, ay, as,...)", b — (b1, ba, bs,..)T and A Al Als) and
A®*) are matrices with the elements defined by the integrals in (4.3.42) and
(4.3.43). By substituting (4.3.30) into (4.6.38), we find that

T(E &) = = D Wi feos(kA(E — &) — cos(kA(r + &)}, (4:3.46)

where o
1-R;
W, = ——"—. 4.3.47
T 14 R¥ (4.347)
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We calculate

—T —T

A~ [ ( | cos<n£o>T<£,£o>d§o) cos(me) e
. —Zwk 5 ( | eostha(e - ) - costiat -+ )

cos(nﬁo)dg()) cos(m&)dg

™

11 T
== —W { cos(kA&y) cos(nép)dé cos(kAE) cos(m&)dE
T kz:; Eor /_7r 0 0 O/

—T

s ™

— COS(]CAT(‘)/ cos(kA&])COS(nfo)dfO/

—Tr —T

cos(m{)d{} , (4.3.48)

where its was used that

cos|kA(E — &)| = cos(kAE) cos(kAEy) + sin(kAE) sin(kAE).  (4.3.49)

Let us denote the integrals in (4.3.48), by
/ cos(kAE) cos(m&)de = Qrm(A), (4.3.50)

which makes it possible to present (4.3.48) in a compact form,

A = 5 LW Qen(A)Qen(A). (43.51)
k=1

:]

The integrals Qxmn(A) are evaluated as

2kA

Qrm(A) = (RAY? —m?

sin(kAm) cos(mm). (4.3.52)

Substituting (4.3.52) into (4.3.51), we find

2

B 1 1 1 ,
Aled) — Z T (A —m? (hAY — 12 sin?(kAm) Wy,
k=1
(4.3.53)

where 0 < Ry <land 0 < A < 1.
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Let A be not rational number. Then A # m/k for any integer m and k. By

introducing m/A = a, n/A = b, and 7A = z, we can write

A(cc) - n+m Z k Sln Wk (4354)

If A is a rational number and k = a, then kz = (m/A)mrA = 7mm and
sin(kz) = 0. Therefore, we can apply L’Hopital’s rule to the corresponding

term,

lim sin(kx) — tim sin(kmA) _ cos(km(m/k))km
A—m/k k2 —a®>  A—m/k k2 — (m/A)2 —2(m/A)(—m/A?)

_ % (%)3 — g(—mm)%. (4.3.55)

If @ and b are not integer, then we just calculate the series (4.3.54). Second
case, If a is integer, a = M, but b is not, then the series (4.3.54) is evaluated

as

[e.9]

4 k sin?(kx) W,
A(cc) —
nm = 12 cos(m) cos(n) klE,k;é:M { (k2 — a2) (k2 — b?)

T m M sin(Maz)W)y,
+5 cos(mm)— B ) } , (4.3.56)

If a is not integer, but b is integer, b = N, then

) _ 4 {yntm > k sin?(ka) W,
A = { Y i

T A2 k2 — a?) (k2 — b?)
k=1k#N

T m 1 Nsin(Nz)Wx
T } (4.3.57)

If a and b are integer but not equal to each other, a = M, b= N, M # N,
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then

e A2 (k% — a?)(k? — b?)
k=1,k#M,N
T m Msin(Mz)Wy —w n Nsin(Nx)Wy
+§ COS(ﬂ'm)W M2 N2 + 5 COS( n)m N? A2 s

(4.3.58)

Last case if @ and b are integer and equal to each other, a = b = N, which

is possible only for n = m, then

2 2

(cc) 4 i ksin®(kz)Wy w2 n

nn m (kj2 — a2)2 ZWWN . (4359)

k=1,k£N

0.018

0.016

0.014 |-

0.012 |

R e .

L L L L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) A% (b) A5%

(c) AT (d) ALy

Figure 4.3.1: Elements of the matrix Af, as a function of A.

For illustrating the elements of the matrix A% | we selected vary values for
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n and m as shown in Figure 4.3.1. For more investigation we have
k2 2 b2
- ¢ - . (4.3.60)
e Rl s Py R e Py
and introduce a new S(x,a) by
—1s
k: = S(z,a), (4.3.61)
k=1
and for z = 1A and a = m/A we got
o0 1 .
P mA) L Y (m, T) : (4.3.62)
= /4y A
Then equation (4.3.61) takes the form,
cc 4 (_1)n+m 2 m 2 n
for n # m and
4 =1 k2 sin®(rkA)
(co) — = -
k=1 A2
In (4.3.64),
k> k* —b? + b2 1 b
= LA + : (4.3.65)
(k2 — b?)2 (k2 — b?)2 K22 (k2= b2)?
4 n n? o= 1 sin?(rkA)
Alee) — = e - il St 4.3
" mA? {S<x’A>+ QZk(kQ_n_Z)zwk ’ (4.3.66)
k=1 A2
We introduce a new function Sy(z,a) by
=1 sin®(kz)
SHEROEDY R QQ)QWk (4.3.67)
k=1
Then
4 n n?
(cc) — -
0= e {50 h) + s (0 )} (4.3.68)



Chapter 4: Analytical solution of the water impact problem in the presence of a
submerged circular cylinder within the Wagner model 55

The terms in Sy(x,a) decay as k= for k — oo. Calculations of S(z,a)
and Sy(x, a) require the same are as calculations of the matrix elements for

the special case, where a is integer.

Next we calculate

ag=[ ( I sin(nfo>T<s,fo>d£o) cos(me)de

—T —T

—Tr

1 00 1 - T
= — W, { cos(kA&y) sin(n&y)dé cos(kAE) cos(m&)de
T kz:; ok /7r 0 0 0/

™ ™

— COS(]{ZAT)/ cos(kAE) sin(nﬁo)d&]/

—T —T

cos(mg)dg} ., (4.3.69)

where n > 1, m > 1 and

/7r cos(kAE) sin(né)dé = 0, (4.3.70)

—T

Because the product cos(kAE) sin(n€) is odd and continuous function of &

in the symmetric interval —7m < & < w. This gives

Al — . (4.3.71)

nm

Similar,

Ales) — / ’ ( / ' cos(ngo)T(g,go)dgo) sin(mé&)dé

—Tr —T

™

11 "
==y W, { cos(kA&y) cos(n&y)dé, cos(kAE) sin(mg&)dg
& ; k ; /7r ’ " " /7"

™ ™

— COS(kAT(’)/ cos(kA&) Cos(nfo)d&)/

—T —T

sin(mﬁ)dﬁ} , (4.3.72)

giving

Ales) — . (4.3.73)

nm
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Finally,

ag=[ ( I sin<n£o>T<s,£o>d50) sin(me)de

™

11 "
—— E W { sin(kA&p) sin(néy)d& sin(kAE) sin(mé)d¢
™ e k" /7r ‘ ‘ O/

—T

s ™

— cos(k:Aw)/ cos(kA&) sin(n&])d&)/

—T —T

sin(m{)d{} ., (4.3.74)

Introducing

/7r sin(kAE) sin(mé&)dé = Jim(A), (4.3.75)

—T

we can write (4.3.74) as

1.1
AR == Wi Jin(A) T (A). (4.3.76)
=1

The integrals Jy,,(A) are evaluated analytically

Jem(A) = /7r sin(kA¢) sin(mé&)d§ = (/@4)22—m—mQ sin(kAm) cos(mm),
(4.3.77)

correspondingly for Ji,(A), we have

2n

Jin(A) = A — 2

sin(kAm) cos(nm), (4.3.78)

Substituting (4.3.77) and (4.3.78) into (4.3.76) gives

ss 4mn n m - 1 1 s 2
Alss) — + Z % A — 2 (RA? 2 sin®(kAm)Wy.
k=1

(4.3.79)

Introducing m/A = a, n/A = b, and TA = x, see equation (4.3.54), we find

Al — _m” n+mz e sin” ’m Wk (4.3.80)

— %)’
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Using the similar analysis for Ale) ( 4.3.56-4.3.59), we obtain

dmn > sin? (k)W
A(ss) _ 1 n+m
o = A U {k(k2 (R — 12 }

k=1,k#M
s m sin(Maz)W)y,
+ 5 COS(Wm) M2 W’ (4381)
for a = M and b is not integer,
ss 4dmn > sin? (ka )Wy
Alss) — i cos(mm) cos(nm) Z {k — a2 (k2 = 62)}
s n sin(Nz)Wy
+ E OS(7TTL) N2 m, (4382)
for a = M and b = N both integer and N # M,
dmn = sin?(kz )Wy
A(ss) -1 n+m
A (=1) kZl%é:MN { k(k? — a?)(k? — b?) }
0 m sin(Maz)Wyy,
+ E COS(TFm) 2 W
T n sin(Nz)Wy
+ 5 COS(7T7’L) N2 W, (4383)

o 4An? i — sin? (kx) Wy 7% n?
AR = —g(=nmm Y {—k(kQ o } oWy (4384)
k=1,k£N

fora=5b= N.

Figure 4.3.2 shows the elements of the matrix A% = were we selected different

nm?

values for n and m.

If we restrict ourselves to only five terms in the Fourier series (4.3.40) and

calculate matrix A for A = 0.5 with 6000 terms in the series, then we
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(a) AT%

(c) A% (d) A%

Figure 4.3.2: Elements of the matrix A37, as a function of A.

find

1.02797 —0.71251 0.66074 —0.63837 0.62701
—0.71251 0.68809 —0.38117 0.3418 —0.32165
Aécxc% = 0.66074 —0.38117  0.4858  —0.22933 0.20541 ;
—0.63837  0.3418  —0.22933 0.37218 —0.15373

0.62701 —0.32165 0.20541 —0.15373 0.30119

(4.3.85)
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and the inverse matrix of Aécxc% as

—1.2407  1.04716  0.72512 —1.67065  2.3539
1.04716  3.84168  0.78353 —0.85627 0.95129
[Agc;g}‘lz 0.72512  0.78353  3.40193  1.75392 —2.09765 |,
—1.67065 —0.85627 1.75392  2.85514  2.82455
2.3539  0.95120 —2.09765 2.82455  2.30805

(4.3.86)
where
1 0 0 0O
01000
A5 % [Aécfé]_lz 00100 |=1 (4.3.87)
00010
00001

with accuracy better than 1071,

( 3.33E— 16 2.22F — 16 4.44F —16 4.44E —16 2.22E — 16 ) .
(4.3.88)

which is the accuracy of Matlab calculation. Similarly, we have also

0.40817 —0.21557 0.16804 —0.13458 0.11143
_0.21557 0.24236  —0.1497  0.12088 —0.10072
AZ =1 016804 —0.1497  0.1606 —0.09697 0.08134 |,
~0.13458  0.12088 —0.09697 0.11806 —0.06711
0.11143  —0.10072 0.08134 —0.06711 0.09276

(4.3.89)

and the inverse matrix of Aésf% as

5.2099 231774 —1.91562 1.3933  —1.05422
231774 13.24663  5.41033 —4.38305 3.68424
[Aésxs%] B = | —1.915629 5.41033 18.54151 4.94485 —4.50546 |,
1.3933  —4.38305 4.94485 21.20780  4.57357

—1.05422 3.68424 —4.50546 4.57357  23.30695
(4.3.90)
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where
100 00
01 000
agix[agl = oo 100 | =1 (43.91)
00010
00001

with accuracy better than 10715,

4.3.2 Asymptotic behaviour of the matrices A% and A$S) as

A—0Oand A —1

The matrices A% and A%y are computed by the series (4.3.56 - 4.3.59) and
(4.3.59 - 4.3.84) corresponding. The terms of the series decay as O(k™?) as
k — oo. Accurate calculations of the matrix requires many terms. In
addition, the number of terms retained in the series should be bigger than
a and b. However, for example a = m/A is large for small A and large
m. Therefore, calculations of elements A% and A% by series (4.3.56 -
4.3.59) and (4.3.59 - 4.3.84) are not practical for small A, which is for small
dimensions of the impact region. To find asymptotic behavior of A% and
ALY for small A and A —» 1, it is suggested to use another formulae for
the matrix elements. We derived another formulae for A% and AL which
are suitable for calculations when A — 0 or A — 1, see Appendix A.1,

for more details.

Figure 4.3.3 shows S (7TA, %) for some small values of A, where m = 10 and
figure 4.3.4 shows the differences between S and asymptotic S for small A,
where m = 10. In figure 4.3.5 (a) we illustrated S and asymptotic S where
we added five terms in the series and figure 4.3.5 (b) when added ten terms.
In figure 4.3.6 we plotted A% directly and comparing by using asymptotic
S, where k = 55000 for selected n and m and similarly for AJ° in figure

4.3.7.

Now we shall be dealing with the vectors on right hand side in (4.3.45).
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“

9 L L L L L R L L
0 002 004 006 008 0.1 012 014 016  0.18 0.2 0 002 004 006 008 0.1 012 014 016  0.18 0.2
A A

Figure 4.3.3: Illustration of S (7TA, %) Figure 4.3.4: The differences between
for some small values of A, where m = S and asymptotic S for small A, where
10. m = 10.

S(x A, m/A) Str A, m/A)

-0.005 -0.002

-0.01 -0.004

® 0015 H ® -0.006 [~

-0.02 9 -0.008 [

-003 . . . - . - . v -0012
0

Figure 4.3.5: Plot of S and asymptotic S where m = 5, 10.

Then we can find @ and g, which are given by

— [A]T' G, and b= [A®]T G, (4.3.92)

=11}

where the éc and (_js of the system (4.3.45) are calculated using their
definitions in (4.3.42) and (4.3.43). Equation (4.3.42) provides

G — % /_ Z G(€) cos(me)de, (4.3.93)

where

G(&) = f(AE + B), (4.3.94)
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A ; Ac

'nm x10°° 'nm

E E
16 5
< <
18 3
0 x10° 0 10
—— 6
Al
2
-0.5
22 4
7
24 -1 -6
0.94 0.96 0.98 1 0.94 0.96 0.98 1
26 ‘ ‘ ‘ ‘ ‘ ‘ ‘ R ‘ ‘ ‘ ‘ ‘ ‘
) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A A
cc cc
(C) AT6 100 (d) ASG 100

Figure 4.3.6: Plot of AS¢ where k = 55000 comparing by using asymptotic S.

m

and f(0) is defined by (4.3.34)

0
fO) = [ f(6o)dby, (4.3.95)
oL
Here 0 = A + B,
gR _ oL oL 1 pR
A= — and B = — (4.3.96)

The function f() in (4.3.95) is given by (4.3.26) as
F(6) = f(6,t) — 0%./0p(1,0), (4.3.97)

where /
—h (t)\/y2(t) — R?

1+ cos(6) ’ (4.3.98)

f(97t) =
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ss
Anm

x10%

I
|

0

0.

94 096 098 1

x
05

[}
094 096 098 1

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05 0.6 07 0.8 0.9 1
A A

(¢) A5 100 (d) A58 100

Figure 4.3.7: Plot of A% where k = 200000 comparing by using asymptotic S.

m

h(t) is the vertical displacement of the body at speed h'(t), R is the ratio
of the cylinder radius to the horizontal dimension of the entering body, and
ye(t) = —H(t), H(t) > 0 is the distance of the center of the cylinder at time
t. Equation (4.3.11) yields

oo RV -2 R2k
P 1,0.4) =2 Y- TN 9 (Z1)RHy cos(kO) + i, sin(k0)) .
8p( ) Y ’; R¥* 41 (( )"y cos(kf) + @ sin( ))

(4.3.99)
Then

f0) = 0 f(80)dbo = /99 (f(bo,t) — 0:/Op(1,6p)) db. (4.3.100)

oL L
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Integrating (4.3.93) by parts, we find

Gem = Aism(mf } 3 / G(¢ —sm m&)d§

_ __/ ( F(AE+ B, 1) — ap 1, A§+B)> sin(mé)d¢, (4.3.101)

where we used,

/

G'(€) = f (At + B)A. (4.3.102)

Changing the variable of integration in (4.3.101) from £ to 6 = A¢ + B,

gives

1 dP, . ( 0-B
Gc,m = —% " (f((g,t) — a—p(l,@)) S1n (mT) db

oR

1 . 0— B
T Am f(0.1)sin <mT) o
1 o 8<I>C 9 _ B
Am L,0)si 2 ) ds. (431
Am J,. op (1,0) sin <m Y )d@ (4.3.103)
Thus
R ) 0 — B 9R VI =N & R%k
Gem f(9,t) sin ( v ) do+ X ; sz%k =
k+1yc COS(]CQ) S]]’l mQ_—B + a'j.c Sln(k@) me — B da ’
A A
(4.3.104)
where

oR

/9 * cos(k)sin (me_TB> d
_ %/:R {sin {(m%)e—%ﬂ + sin {(%—k)e—%ﬂ}de

— “RAR —m2 sin(kB)sin(mkA). (4.3.105)
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similar

GR

/9L sin(k0) sin (me_TB> df = %—(:% sin(kB)sin(mkA). (4.3.106)

Then
o B
0—B sin m—)
0,t)sin | m—— (t)V/'y2 4 do,
oL f(,)sm(m A > ve(t / 1+ co S(Q
(4.3.107)
or ( 9—3)
sin (m%&==2
2 = — A4 J4p. 4.3.1
" /9L 1+ cos(0) (4.3.108)

Substitution (4.3.107), (4.3.106) and (4.3.105) into (4.3.104) gives

Gl = _ﬁ (' (/20— 12 zs)

2R\/1—)\ Z op P R
R +1

: ((—1)’““9 %__gﬂsin(kB) sin(mkA)

“(kA)?
_AmA(-1)™ .
_mc(k‘A)?——mz sin(kB) sm(wk:A).) ., (4.3.109)

were [, in (4.3.108) evaluated numerically.

Similarly for G we have

oR

1 60— B 2R V1 — \2 R3*
G = —— 0, =2 o okt
: am J,. 1O )Cos(m A ) T a ; R+ 1

-(/{:R [( 1)1y, cos(k#) cos (mG_TB> + & sin(k) cos (mH—TB)] d9) 5

(4.3.110)

where

oR

, 60— B _ AmA(-1)™ ,
/QL sm(k@) COS (mT) dc9 = —m sm(kB) SlIl(T('kA).
(4.3.111)



Chapter 4: Analytical solution of the water impact problem in the presence of a
submerged circular cylinder within the Wagner model 66

and

R o 2(_1\m
/ cos (k@) cos (me—B) df = AmA(—1)" sin(kB) sin(mkA).
0

L A (kA)2 —m?
(4.3.112)
Then
oF oF 6—B
0B\ o o [0 cos (mfE)
. f(&,t)cos(m ) )dG— h ()\/ys — R /eL T+ cos(0) do,
(4.3.113)
oF ( 0— )
cos (m

It = — 4 4.3.114
" /QL 1+ cos(6) b, (43.114)

where (4.3.114) calculated numerically.

Substitution (4.3.111) (4.3.112) and (4.3.113) into (4.3.110) gives

1 /
Com = == (=H V2O — R 1)
J2RVIRS

Am A = R +1

(kA2 —m?
AmA(~1)™

4mA?(—1)™
: <yc(—1)k+1m—() sin(kB) sin(rkA)
sin(kB) sin(ka)) , (4.3.115)
were ¢, is given by (4.3.114).

By substituting (4.3.109) and (4.3.115) into the formulae (4.3.92) then we

find unknown vector @ and b and evaluate the function (4.3.40) as

U(¢) = Z (@m cos(mé) + by, sin(mg)) (4.3.116)

m=1

then we find the F'(0) using the function

~U(6) = F(0), (4.3.117)
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integrating (4.3.117) gives

—~ / 9 U(0)dby = / 9 F'(0y)dby = F(A) — F(#Y) = F(0),  (4.3.118)

L oL

since F(6%) = 0. Here

U(0) = U(AE + B) = U(¢). (4.3.119)

Changing the variable of integration in (4.3.118) to &, 6y = A&y + B, where
A and B are given by (4.3.38), we obtain

0—B

o A
FlO) = — /9 U (0y)dfy = — A /B U (A& + B)dé,

L
A

6—B 6—B

= —A/A U(A& + B)déy = —A/ T (g0 deo. (4.3.120)

—T

The integral in (4.3.120) is evaluated using the series (4.3.116), From
(4.3.116) we have

6—B

A

F)=-A U(€)de = —A /_A Z (@m cos(m&) + by, sin(mé)) dé

- m=1
AN [ b w
=— m221 [E sin(mé&) — g cos(mg)} -
— [a 0—B, b 0 — B
= —A _m 1 —— —_— _m —
mz:l - sin(m T ) - cos(m T )
_m sin(—mm) + B—m cos(—m) (4.3.121)
- - , (4.3
then
G ., 6—B, by 0 — B
F(@) =-A Z |:E Sll’l(mT) — E COS(mT)
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Substituting the results into (4.3.14) to get

L R
O,(1,0) = F(0,t) (0F <0 < "), (4.3.123)
0.35 0.15
03 * 0.1
0.25 0.05
0.2 0-® o ® o o o -.' '....-"'... ..'"._._.o-o.“,.m.m.m.,,..u-...
¢ 015 & -0.05
01F 0.1
0.05 0.15
0 o 0%%0000%%%00000*9%0 od 02
.
0.05 . 0.25
10 20 30 40 50 60 70 80 920 10 20 30 40 50 60 70 80 920
Figure 4.3.8: G, Figure 4.3.9: G,
5 16000
14000 -
4
12000 -
3r 1 10000 -
8000 ~
s e
6000 -
1 « ° B 4000 ~
> o
. oo F
of T R A e e e e o o e
PR M R e i
L anammsanansa IR RNLRI X LA KA LA *
4 L L -2000 . -
o 10 20 30 40 50 60 70 80 920 100 o 10 20 30 40 50 60 70 80 920 100
Figure 4.3.10: a,, Figure 4.3.11: by,

The total velocity potential,
D(p,0,t) = Du(p,0,t) + Pi(p,0,1), (4.3.124)

in the contact region, (0% < 6 < 67) and p = 1, is equal to F(6) because
O.(p,0,t) = 0. We obtained
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F(e)

-0.005 |

PPPPT YLl
LLLT T Y YYyosy

-0.015 - N

F(@)

-0.025 - N

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 4.3.12: Plot of F(6) in (4.3.122) for m = 40, where b’ = 1, R = 1/4 and
(e, ye) = (0, —650).

The G. (4.3.109) and G, (4.3.115) plotted and shown in figure 4.3.8 and
4.3.9 respectively. Figure 4.3.11 shows @,, and b,, where they are defined
in (4.3.92). Finally, after a,, and b,, founded we substituted in the series
(4.3.122), plotted the F'(0), see figure 4.3.12. The velocity potential ®(0)
(4.3.125) is plotted for m = 40, where b’ = 1, R = 1/4, z. = 0 with different

interacted values of y,., see 4.3.13.

4.4 Hydrodynamic loads acting on the cylinder

In this section, we shall derive equations of motion of the cylinder
including the hydrodynamic pressure and the force acting on the cylinder

in dimensionless variables

The hydrodynamic pressure along the cylinder within the Wagner model is
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—_— = 160

— gy = —170

— iy = — 180 \\‘
o = —190

e gy = — 2000

6 1 I I I I I I
-2 -15 -1 -0.5 0 0.5 1 1.5 2

Figure 4.3.13: Plot of ®(0) in (4.3.125) for m = 40, where b’ = 1, R = 1/4,
z. = 0 with different interacted values of y,.

given by

p= —%(p(a:, y,t), where (v —z.(t))?+ (y—v.(t))*=R>. (4.4.1)

In the previous section, the velocity potential was determined in the (—plane

where

90(1‘7 Y, t) =¥ [:L‘(p, 0, t)a y(p7 0, t)] = CI)(p, 0, t)v (442)

or

o(x,y,t) =@ [p(z,y,t),0(x,y,t),t]. (4.4.3)

By using the chain rule, we calculate

dp 00 0900 0D

% =5 T T o (4.4.4)

To determine the derivatives p, and 6;, we differentiate the conformal
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mapping (3.3.1), where ¢ = p(z,y,t)ie”?@¥t, We obtain

—,(t)

1
20— R 2(20) — (449)

z — () fon 2 0C
R2)3/2 2y0(t>yc(t) - _(C + Z)2 Ea

2 2 0¢

1
* <+z‘) FO-® Cropa 0

Ye()yet) o :
ot 020 — ) (i(C+ i) +2(C +1)), (4.4.7)

ya(t) —

N | —
<
o N
~
N~—
|
=
[\
—

where

i(C+i)?+2(¢+i) =i(CP+2i¢ —1)+2(¢+1i) =iC* —2C —i + 2 + 2
=i +i=i(1+¢%), (44.8)

and

% ap 719 —i0 [ @
3% = ot + pie i Y (4.4.9)

Multiplying (4.4.7) by —ie® we find

op 00 1 Zl() e e Ye(B)ye(t) 2 i
a e s mn o Y e -y C(i :10)
where

—ie"((+i)* = —ie” (—p*e " + 2ipie™™ — 1) = ip*e P +ip+ie”, (4.4.11)

then
op .00 1 . (t) 9. . . . :
5 P T e NGO {p*(icos(f) + sin(f)) + ip + i cos(#) — sin(6) }

(cos(0)(1 — p*) + isin(0)(1 + p*)). (4.4.12)
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Separating the real and imaginary parts, we obtain

ye(t)y.(t)

)2 in() - sin(6)} + 20,2() - B?)

(1= p?) cos(8),
(4.4.13)

00 _ __—(R2 {pcos(e) F1 %cos(e)}

B M %) sin
2(y2(t) — R?) ((1+p")sin(0)) . (4.4.14)

At the image of the liquid surface, y = 0, where p = 1, we obtain

dp
-_— = 4.4.1
v 0, ( 5)

and
90 w(t)(1+2cos(0))  ye(t)y.(t)sin(6)
ot 2/ y2(t) — R? (y2(t) — R?) ~

(4.4.16)

and on the surface of the cylinder, p = R;, we have

el S(Ry” = Dsin(0) + 50 0o (Zy/g((?)yi(%) (1 - R})cos(9),
(4.4.17)

— = ——¢ {R1 cos(6) + Ri cos(0) + 1}

1

B M 2) sin
2(y2(t) — R?) (1 + RY)sin(9)) . (4.4.18)

Stationary cylinder

If the cylinder is fixed, . = const and y, = const, then 2, = 0 and g, = 0

and equations (4.4.17) and (4.4.18) gives

Jdp 00
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Therefore, on the surface of the cylinder,

Ggo 0P

o= (Ri6,0), (4.4.20)

where the potential ®(p,0,t) consists of two parts ®. and ®;, see (4.3.1).
The component ®.(p,0,t) = 0 for a stationary cylinder. The component
O.(p,0,t) was determined in section 4.3.1. The dependence of this
component on time is complicated because 6% (¢) and 6% (t) in (4.3.13) are
function of time, as well as f(0,t). ®;(p,0,t) on the image of the liquid
surface and ®.(p,0,t) on the image of the surface of the cylinder are
obtained by (4.3.18), where Ry, ®(p,6) and &) (p, #) are independent of

time.

Therefore, the pressure on the cylinder is given by

Oy 0P .
p = —E = _E<Rl’6 t) —ao(t)
-+§: (10) + b, (1)~ () b (1.4.21)
an(t RQ” cos(n AUy sin(n , 4.

where the coefficients a,(t) and b,(t) are calculated using (4.3.17) with a,
and b,, being solution of (4.3.92).

Free to move cylinder

In this case, the cylinder moves due to the pressure generated in the liquid by
the entering body. The pressure on the surface of the cylinder is calculated
using (4.4.4), where the derivative dp/0t and 060/0t the potential ®(p,0,t)
is given by (4.3.1).

We calculate

00, R\/ 1 — A2 o, R¥" — R
E:

_ n+1 -
50 —2(Ry,0,t) = Rt 1 (=(=1)"""gsinnb + &.cosnb)

(—m<f<m), (4.4.22)
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and

0P RVI =N N R4 RiY

O (Ru,0.1) =2 p

op A — R™+1

((=1)""ge cosnb + @csinnd), (-7 < <) (4.4.23)

The derivatives of ®;(p,0,t) with respect to p and 6 at (p = R;) are
calculated using (4.3.18). The derivatives of ®, and ®; in time are more
complicated to determine because R; is also a function of time for this

case.

4.4.1 Motion of the cylinder during water impact process

The 2" Newton’s law provides equations of the cylinder motion

mei. = Fp(t) and m.h. = F,(t), (4.4.24)

where m, = M./(pRH), M. is the mass of the cylinder per unit width,
F}, and F, are the dimensionless horizontal and vertical components of the

dynamic force acting on the cylinder,

EF(t) = (Fp, F,) = — / pitds, (4.4.25)

where 7 = (cos a, sin @) is the outer unit normal and ds is the dimensionless

element of the surface ds = da

F, = %/ ©(R, a,t) cos(a)da, (4.4.26)
g [T :
F, = a/ ©(R, a,t)sin(a)da, (4.4.27)

The motion equation (4.4.24) can be integrated using (4.4.26 - 4.4.27) and
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the initial conditions z.(0) = z, (0) = 0, y.(0) = yeo, ¥,(0) = 0,

mede(t) = /Tf ©(R, a,t) cos(a)da, (4.4.28)

—Tr

meye(t) = /7T ©(R, a, t) sin(a)da, (4.4.29)

where the potential on the surface of the cylinder (R, «, t) depends on .,
Ye, Tc and y.. Equation (4.4.28 - 4.4.29) leads to two first order differential

equations of the form
e = Kp(ze,y.) and 9. = Ky(ze, ye), (4.4.30)

because the potential ¢(R, «,t) depends on . and g, linearly. The system
(4.4.30) is integrated numerically. Note that the time derivative ¢; is not

required in calculations of the cylinder motion.

4.5 Verification of the numerical solution

To validate the numerical solution described above, a parabolic contour

entering water with a given speed h(t) in the dimensionless variables.

R

2

flx)=Hf(z/L), f(z)= (4.5.1)

Y

g

(N

where 2L is the horizontal size of the entering body and H is the height of
the body [17]. From (2.4.12-2.4.20) we have

V=0 (7<0), (4.5.2)
. o0
=7 <0 4.5.3
p=—2r H=0), (4.5.3)
=0 5 =% =Y (5 =n(z,9), 2 <3P, ©>z01)
454
a—@——h'(f) (7 =mn(z79), )0 <z <zP(1), (4.5.5)
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b = tvenl on T = { = fla - a0 7+ R OF} . (@450)
=0 (as T+ 7 — 00), (4.5.7)

=0, ¢;=0 (at t=0), (4.5.8)

i [25(0),1] = f [#70)] — h(D), (4.5.9)

i [#80(),1]) = F[#P@)] — nD). (4.5.10)

without a submerged cylinder, the solution of the problem (2.4.12 - 2.4.20)

for the parabolic contour within the Wagner model ® reads
¢(7,0,1) = —h (t)y/a2(t) — 32 (—a(t) < 7 < a(t)), (4.5.11)

where a(t) = 2v/11, &(UL)(%V) = —a(t) and i (t) = a(t). The numerical
solution of this problem with a submerged circular cylinder is expected to
approach the velocity potential (4.5.11), where the cylinder is placed far

from the impact region.

The numerical solution to be compared with (4.5.11) is

= . 0—-B_ by 0—B. bn, ...
®(1,0,t) —AZ[Esmm—)—ECOS(mT)—I—E(—l) ,

(0 <0 < 06%), (4.5.12)

where

o(z,0,t) = B(1,0,1), (4.5.13)

and
T—Tgotiy = cost

V2 — R? " 1+sin@’

(4.5.14)

which gives

(L) (R)
c0 7 Lw t c0 — Lw
6 — _arctan [ T2 =2 ) 4 6% — _9arctan [ o T )
yfo—RQ yco_R2
(4.5.15)
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We take that —#\) = 2 = a(f) = 150 and h'(f) = 1.

-20

-40

-60

-80

-100

-120

-140

-160 | | | I I
-150 -100 -50 0 50 100 150

Figure 4.5.1: Plot of the analytical solution ¢(z,0,t) in (4.5.11) and the numerical
solution given by ®(1,6,t) in (4.5.12), were A’ = 1 and (20, yeo) = (0, —650).

The numerical solutions (4.5.12) and analytical approximate solution
(4.5.11) are compared in figure 4.5.1. We can get a good approximation
when we add 40 retained terms in the series (4.5.12). Figure 4.5.2 shows
the improvement of the numerical solution when increasing the add
retained terms n. In Figure 4.5.3 we can see the effect of the submerged
cylinder vanishes when the distances of the body from the impact place

exceed two diameters of the impacting surface.
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0
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Exact
————=d0) TN T e
140 1| e =30 B
e n=2()
e w N=1()
-160 I I I I I
-1 100 150
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Figure 4.5.2: Plot of the analytical solution ¢(z,0,t) in (4.5.11) and the numerical
solution given by ®(1,6,t) in (4.5.12), were h' =1 and (c0, Ye0) = (0, —650) with
different number of terms n.

4.6 Verification of the numerical algorithm on the

exact solution

Consider the following problem

Let

(

¢i(17 Q) =

VQQZSz:O (Rl <p< 1),
¢; =0 (p=1,0F <0 <0ob),
00i _ g(0) (p=1,0F <6 <68,
53
8pZ:0 (p=Ry,0 <6 <2m).

JOE=0)0—05) (- <0 < o7),
0 (0% <0 <o),

(4.6.1)

(4.6.2)
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Figure 4.5.3: Velocity potential ®(1,6,t) in (4.5.12), were B =1 and yg = 2.5
with different values of z.

where

¢i(1,0) = G(0,t) (0% <0 < 6™, (4.6.3)

introduce the Fourier series of ¢;(1,60) as

G(6,t) (0F <6 <o) ~ g+ i {a, cos(nf) + b, sin(nd)}, (4.6.4)

0 (0% <6 <0F) p—
where
1"
aw=— [ G(O,1)db,
27T oL
1 [
ap = —/ G(0,1) cos(nb)db, (4.6.5)
T L
1 or
b, = — G(0,t)sin(nb)db,

™ JoL



Chapter 4: Analytical solution of the water impact problem in the presence of a
submerged circular cylinder within the Wagner model 80

are unknown coefficients. Thus

ap = % " V(0F —0)(0 — 6L)db. (4.6.6)

It is convenient to map the interval (—m,7) onto the integration (4.6.6),
0 = A¢ + B, where 0% = —Am + B and 0% = Ar 4 B, which gives,
of — oL or + 0%

and B =
27 2

A:

, (4.6.7)

then F —0 = 9F — B— A¢ = A(n—¢€) and 0— 0L = B— 0L + AE = A(n+£),

this gives /(0% — 0)(6 — 0F) = A\/(72 — €2), Thus

ag = i A\/ — £2)Ad¢ = A / (cos(2u) + 1)du = A1W2.

0

(4.6.8)
For the coefficients a,, we have
1
an = — \/ )(0 — 65) cos(nd)do, (4.6.9)
7

a, = " cos(nB) / V2 — &2 cos(nAf)dE = — cos(nB)J1 (nAm),

(4.6.10)
where Ji(x) is Bessel function [13]. The coefficients b, in (4.6.5) are
calculated similarly as

A
by, = = sin(nB)J, (nAr), (4.6.11)

n

The Fourier series of the function ¢;(1,#) from (4.6.2) has the form

A?r?

5.0 = X ar %Jl(nAw) cos[n(0 — B)]. (4.6.12)

Correspondingly the solution of problem (4.6.1) with the condition (4.6.12)
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at p = 1 reads
A?n? > 1 "
oi(p,0) = + Am E —p"J1(nAm) cos[n(6 — B)], (4.6.13)
n
n=1

where figures 4.6.2 and 4.6.1 show the Fourier series (4.6.12) we obtain
can give a approximation of G(0,t), and figure 4.6.5 shows the differences

between the exact solution and the the solution obtain by the series.

Now we have

%(1, 0) = AT('Z J1(nAm) cos[n(0 — B)] = g(8). (4.6.14)

n=1

which is taken as the function g(f) in (4.6.1). For illustrating we assumed

that =& = —150 and z = 150.

Figure 4.6.1: a, Figure 4.6.2: b,

Figure 4.6.3: Plot of a,, and b, where ¥ = —7/2 and 6f = 7 /2.

Solving (4.6.1) with g(0) given by (4.6.14) we should obtain (4.6.2) on p = 1.
Using similar steps as we did for solving the problem in (4.3.13). From

(4.3.26) let
f(0) =9(0), (4.6.15)
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Figure 4.6.4: Plot of ¢;(1,0) in (4.6.12) for n = 10.
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Figure 4.6.5: Plot of the differences between ¢ and ¢;(1,0) when n = 300, n = 600
and n = 900.
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and using (4.3.31) gives

lim {8¢i(p,9)<G>}: lim 2

/QR G (6o, t)d{S(p,0 — b0)}

p—1-0 | Op p—1-0 00
= — i 0 9RG’9 S(p. 0 —0,)d0, = g(0) (0% <0 < 6%). (4.6.16
__pin1% (60)S(p,0 — bp)dby = g(0) (6~ <6 <6%). (4.6.16)

where S(p, 0) as from (4.3.30) as

= cos
- Z (4.6.17)
=1
let

—~Uh) =G'(0), (4.6.18)

where

-9 L R

dG 0+6~+0 (4.6.19)

d9 2 /(07— 0)(0— 0%)
integrate both sides of (4.6.18) from 6% to 0 as did in (4.3.33) gives

oR

/ —20, + 0L + 6F
o 24/ (0% — 00)(0p — 0F)

{S(1,6 — 6,) — S(1,0" — 0o) } dbo = 5(0),
(0% <6 < 0%), (4.6.20)

where g(#) is given by

9(9):/9 9(0o)dby. (4.6.21)

L

From (4.6.17) and (4.6.20), we have

WE
S | e

S(1,0—0) — S(1,0% —06y) = % {cos[n(0 — ;)] — cos[n(6" — 6]},

n=1

(4.6.22)
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apply the mapped interval (—m, 7) as in (4.6.7), gives

| 016 1501, 4(¢ — &) - (1, A= - €0)} Adey = DI€),

—T

(—m<&<m), (4.6.23)

and

U(éO) = %7

™ — Qo

(4.6.24)

where U(0) = U(AE+ B) = U(€), 6y = A& + B and D(¢) = §(A¢ + B). By
substituting (4.6.17) into (4.6.23), then the right hand side gives

234 [ g ol — ) st + )

_é Sln(kAﬁ) T Sosin(kALy)  sin(kAm) [T osin(kA) e

k
— Ar i {%]{Ag)@(mw) _ wﬁ(km)} (4.6.25)

where we used Tables of Integrals [13] to find the integrals and the following
identity

cos|kA(E — &)| = cos(kAE) cos(kAEy) + sin(kAE) sin(kAE).  (4.6.26)

Then we have

/ &o sin kAfO dfo _ o Y usin(kAru)

; ﬁdu = 7T2J1(k?A7T)7 (4627)

from (4.6.23) and (4.6.21) we have

0
g9(0) = /(,L 9(0o)db, (4.6.28)
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then from (4.6.14) we have

§ o &
D(¢) = / 9(A% + B)d&y = A > Jy(kAn) / cos(kA&)AdE,
o k=1 T

~ Ar ; {w{h(lﬁlﬂ) + wﬁ(mw)} (46.29)

substituting § = A + B gives

D(6) = Awi {Mjl(mw) + MJl(kAw)} , (0F <0< 0M),

k k
k=1
(4.6.30)
Substituting the results into (4.6.3) to get
o:(1,0) = G(0,t), (6% <6 <o"). (4.6.31)

This means that the integral equation for U(#) in (4.6.23) is correct, there is
no mistake in this equation. It seems the potential G(0) is a linear function,

but we can not prove this, see figure 4.6.6.

G(6)

G(o)
o
o

0.6 |-

0.4 -

0.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.6.6: Plot of G(f) in (4.6.30).
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From (4.3.40) we have the function U(¢) is sought as the Fourier series

U() = %ao + Z (@, cos(né) + by sin(nf)) , (4.6.32)

where U(¢) shown in (4.6.24). From (4.6.5) we can calculate @, and b, as

1 T 1 4
and
ap = %/—1 U(€) cos(né)d / \/7 cos(né)d¢ =0, (4.6.34)
and

= / U(€) sin(né)dé = \/7 sin(né)dé = nJy(nm),

(4.6.35)
where we used the formulae in (4.6.27). The figure 4.6.7 shows the Fourier

series (4.6.32) we obtain can give a good approximation for U in (4.6.24).

Substituting the series (4.6.32) in (4.6.23) gives

j {an | ( | costnsaree §O)d§0> cos(mé) e
b, / ( / sin(no)T'(€, €o)d§0) cos(m@ds}
_ % /_ :D(f) cos(meE)de, (4.6.36)

S {an [ ([ costntoyric codea) simmeya

v [ ([ sintnga (6 o) sinimeae |

1 [7 .
= Z/_w D(&) sin(m&)dg, (4.6.37)
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4 T

Directly
By series

Figure 4.6.7: Plot of U in (4.6.24) and (4.6.32) where n = 20.

where

T(€,&) = S(1, A€ — &) — S(1, —A(m + &))- (4.6.38)

Recall the system in (4.3.45) where G substituting by D in (4.6.29) as

Alco)

=D,
B (4.6.39)
A6y = D,

@Il @Il

where A?) and A®*) are evaluated by (4.3.54) and (4.3.80) respectively.

D, ., is given by
Dy, = %/ D(&) cos(mé&)de, (4.6.40)

where D(§) = g(A¢ + B). Substituting (4.6.29) into (4.6.40) gives

sin(kA¢) sin(kAm)
Dem —WZ / { Jl(k:A )+ Jl(k:Aﬁ)}cos(mf)df,
(4.6.41)
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then
= kA
=y SkAT) ;e Am)o, (4.6.42)
k=1
where
i 2n for m =0,
Om :/ cos(mé)dé = (4.6.43)
— 0 for m#0

Similarly for D,

Dgp = Z /7r {Mﬁ(/ﬁlw) + WL(/{:A@} sin(m&)dg,

- k
k=1
(4.6.44)
gives
= Ji(kAm) 2m ,
Dy, = sz:; K A —m? sin(kAm) cos(mm), (4.6.45)
From (4.3.92) and (4.6.39) we have
i=[A]" D, and b=[A®)]"" D, (4.6.46)
From (4.3.122) we have
- . 0—=B by 0—B. by
=—A Z [E sin mT) i cos(mT) + po cos(—mm) |,
(0F <0 < 0%). (4.6.47)
where
o:(1,0) = G(0,t) (0% <6 < 0"), (4.6.48)

where figure 4.6.8 shows G(0,t) in (4.6.47) where m = 20.

Finally, figure 4.6.9 shows the the exact solution of (4.6.1) compared with
the solution that obtained by Fourier series G(6), where figure 4.6.9(a) shows
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G(A)

Figure 4.6.8: Plot of G(0) in (4.6.47) for m = 20.
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Figure 4.6.9: Plot of ¢;(1,0) in (4.6.48) for m = 40.

the solutions in terms of conformal mapping (—plane and figure 4.6.9(b)

shows the solutions after returning back to the original z—plane. This

confirmed that the approach used are correct and the transformation of

the problem from original z—plane to (—plane and returning back is also

correct.
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In this chapter, we study the water entry problem in the presence of another
floating body. The floating body is a rigid flat plate of small draft in our
study. This problem is asymmetric , even for symmetric entering body, and

with mixed boundary conditions.

5.1 Motivations

The water impact of a rigid body in the presence of a floating flat plate will
be studied. The presence of a floating flat plate nearby the impacted place
can significantly change the water impact process or cause a crash. When
the hull of a lifeboat impacts the water surface in the presence of floating
flat plate, the hydrodynamic pressures acting on the hull is expected to
be higher than in the case without other bodies nearby. As a result, the
deceleration of the lifeboat can exceed a critical value leading to injuries to

the people inside the lifeboat.

5.2 Formulation of the problem

5.2.1 Governing equations

The fluid is assumed in a two-dimensional coordinate system. We neglected
the gravity and surface tension effects because the body is large where the
shape of the body is larger than the capillary length of water which is
around 2.7mm and the acceleration of the fluid particles are much greater
than the gravitational acceleration. Figure 5.2.3 illustrates the geometry of

the problem and the coordinate system.

Initially (¢ = 0) the water free surface is flat, y = 0. A body touches the
free surface at a single point taken as the origin of the Cartesian coordinate
system xy, see figure 5.2.3. Then, the body suddenly starts to penetrate
water at speed h(t).
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Figure 5.2.1: Sketch of a rigid body entering water in the presence of a floating
plate nearby.

The resulting flow is assumed irrotational. The flow is described by the

velocity potential ¢(z,y,t) which satisfies Laplace’s equation
Vi =0, (5.2.1)

in the flow region. The boundary conditions for the equation (5.2.1) include
the condition on the wetted surface of the entering body, the condition on
the lower surface of the free floating plate, and the dynamic and kinematic
conditions on the intervals of the free surface of the fluid. The condition on

the floating plate reads

Y = @y, yp(2,1),t) = YZD@) + Qp(t)[x — X,(1)]
+ Q) [on (2, yp(, 1), 1) — Xp(1)], (5.2.2)

where

y(a, 1) = Yp(t) + Qp(0)[z = X, (1)), (5.2.3)

X,(t) and Y, (t) are the horizontal and vertical velocity components of the
flat plate and (X, (t),Y,(t)) is the position vector of the center of the flat
plate. The floating flat plate can move vertically and rotate only in the

present study X,(¢) = X,(0).
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5.2.2 Formulation of the problem and flow in the main region

Vip=0 in Q(t), where (5.2.4)
( —oo <z < (), y < n(w,t),
(R) (L) (R)
) = {z.4] () <z <z (1), x> ap (1),
=Y
2 D(t) < x < zB(¢), y < f(z) = h(D),
\ m) <w <@y V(0 + Q) (@ - X(1),

Q(0) = {z,y| - 00 <z < 00,y < 0},

1 .
p=—p (sot + §!Vsol2) in Q(t), (5.2.5)
p=0, Py = NPz + N ON Ff<t), (526)
Py = fz%px - h/ (t) on Fw(t), (527)

py = Yo(t) + () — X,(0)] + Q) e,y = Yy(t) + Qp(t)[x — X,(0)],

5.2.8
0 —=0 (as 2+ y* — 00), (5.2.9)
=0, ¢ =0, (t=0), (5.2.10)

where X, (0) is the center of rigid floating plate. f(z) and h(t) will be
given where the motion of the rigid plate, pressure and force change due to
impact plate. The velocity displacement of the plate Y,(¢) and the angle of

its rotation a(t), where Q,(t) = tan[a(t)], are governed by the equations

&Y, [

m, T / L P+ e = X, (0)), ) cosla(®))dz,  (5.2.11)
&EX, [

m, dt2p — » p(x, [Y, + Q,(x — X,(0)], ) sinfa(t)]dz, (5.2.12)

and

(R)

d? zp (1)

Jp—dtff - /(L)( | p(x, (X, + Qp(x — X,(0)], 1) (x — X,(0))dz,  (5.2.13)
xp (T

where J, is the moment of inertia.
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Figure 5.2.2: Sketch of the angle of inclination.

The impact of short duration, the angle of inclination of the floating plate
the vertical displacement are small, because of that the horizontal force of
the plate is negligible only if the plate is inclined. The force on the sidewall
of the plate is small because the draft of the plate is negligible. This means
that the force on the sidewall is neglected due to the thickness of the plate

being small.

5.2.3 Non-dimensional variables for blunt body impact

Horizontal motion is neglected which leads to the plate can move vertically
only. Dimensions of the blunt body are given by 2L for the z-axis and H
for the y-axis. Now represent the shape function f(t) by

f(x) = Hf(z/L), (5.2.14)
where tilde denotes the non-dimensional variables and

f=xz/L, —1<z<1, 0<f(z)<1, |df/di]|<1. (5.2.15)

Now by taking L to be the length scale, H the displacement scale, H/v the

time scale and the product vL the scale of the velocity potential:

-~ . H . -
r=Li, y=Lj h(t)=HhE), t==—t ¢=vLp(,7,1),
v

f@) = Hf@), n=Hi@1), p=_p’p( 5, (5.2.16)
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where ¢ = H/L is small parameter of the problem. Derivatives in the

dimensionaless variables are given by

dp Ol wLdp g

or _ o(Lz) L ox 07 (5:2.17)
of _ pof1 _ of

= Hoo T =< (5.2.18)

9p vl 09 1,00 (5.2.19)

= _— = v =
ot Hvot e ot
where the body position in the non-dimensional variables is described by

the equation

j=e [f(:z) . 13({)} . (5.2.20)

The free-surface shape, y = n(z,t), takes the form in the dimensionless
variables,

g = en(z,1). (5.2.21)

The speed of the entering body is

dh ~) U ~

where, 2'(0) = 1, in the dimensionless variables. By taking that

- - H . H-
X,(t) = HXE, Yo(t) = HYD, a(t) = -af, t=—i,  (52.23)
p

and using (5.2.12) gives

H &X, & (1)

m, ————L —
P(H/v)? de? 59 (¢)

1 ~ ~ ~ H
gpv2ﬁ(f, e[ X, + Q(z — X,(0)]) sin [L_&] Ldz,
P

(5.2.24)

where m,, denotes the mass of the plate. Then

_ /x v (7, e[ X, + Q& — X,(0)]) sin {Lga} %da}, (5.2.25)

p
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where
2 2 2
5 L/H)p*(H/L,) L pL*/L, _pL* H (5.2.26)
m,H (v?/H?) m,/H my, Ly

We assume that

> H H L?
P B« (p—) (5.2.27)
my Ly Ly myp
which gives
L2
my, > pH—, (5.2.28)
Lp
where
my = Lyhpp, and  p, < puy, (5.2.29)
Then (5.2.28 - 5.2.29) provide
h”>>p(L>2 (5.2.30)
H pp \Lp) -

and, therefore, the assumption X, (t) ~ X,(0) is justified for long floating
plates with L, > L.

Correspondingly, in the leading order as ¢ — 0,

dt2 -0y /<L(>R) elYy + (& — X,(0)], 1) cos {f&} di

(R> ()

] t .2.31
B [y 70T, (5:23D)

where 23 = (X,(0) + L,/2)/L, 2" = (X,(0) - L,/2)/L.

Similar, we find the equation for &(f) in the dimensionless variables,

=

SR
d*a H - -
d—o‘ = 485~ /(L) #,0,1) (& — X,(0))di. (5.2.32)
Here we assumed § < 1, see (5.2.26). Therefore, the plate rotation can be

neglected together with the horizontal displacement of the plate. However,

we will assume below that 480 H/L = O(1).
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By set € = 0 in the equations (5.2.4 - 5.2.10), which gives us the Wagner

model of water impact in the presence of a floating plate,

V=0, p=—¢; (5 <0),

©—0 (as 22+ 9% — 00),
=0, ¢;=0 (at £ =0)
(5.2.33)
The equations of the free floating plate motions are
~ (R) (R)
d*Y, T da [ _ -
dt2p — B/x(” p(z,0,t)dT = _6d_f " o(7,0,t)dz, (5.2.34)
and
%G Hd (" ]
— = 48— — o(x,0,t)(x — X,(0))dx 5.2.35
3 =0 g [ ) P 0D = X0 (5.2.35)

where Y,(0) = 0, &(0) = 0 and Y, (0) = 0, a'(0) = 0.

Tilde is dropped below. All variables are dimensionless in the following

sections.
yl\ .
—(”:—h'm
y4
» dY £ P
/ 49 _ P+ 2% () (x =X (0))
/ dy  dt : '
— | { - |/—| =
Gf O 1 |......{’f....9 ..... | —— Gf 0 »-
Xf t x®ly X}-:-I XPRI X

Figure 5.2.3: The water impact problem within the Wagner model.
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5.2.4 Transformation of the boundary problem to the (—plane

The flow region xy—plane is conformally mapped onto a circle in the
(—plane. The boundary value problem for equation (5.2.33) is transformed
to a (—plane, where the boundary of the flow region, y = 0, corresponds to
the unit circle || = 1. The appropriate conformal mapping from the
circle, |(] < 1, in the (—plane to the flow region, y < 0, in the physical

plane is given by

2
z=1-+ -, (z=x4+1wy, (=E&+1in), 5.2.36
1 ( y, (=¢&+1in) ( )
where |(| = 1 corresponds to y = 0 in the original z—plane, see figure
5.2.4. In the polar coordinates ¢ = pe'(™2=9) = jpe= where p < 1 and

—m < 6 <, we have for p =1,
¢ =270 — /270 — j(cos§ — isinf) = sinf +icosh,  (5.2.37)

then (5.2.36) reads

4 . _ 2
TR =Y e i T s +i(cosf + 1)
,+2sin0—i(0039+1) . .sinf —i(cosf + 1)
=1 =1
sin®@ + (cos 6§ + 1)2 2(1 4 cosb)
sin 6

=———. (5238

1+ cosé ( )

Thus
sin 0

(L

on the boundary y = 0, we have z = 2 and 2 = ™ for the entering

body, x = xz(,L) and r = x](gR) for the rigid floating plate, correspond to

: L gR gL R : _ _
points 67, 0, 6 and 6,7 on the circle [(| = 1, see figure 5.2.4, where ( = —i
corresponds to the infinity in the z—plane. At ( = —i, we have § = =+,

cosf = —1 and |z| = co. To determine 6%, 6%, 6 and 6] we have the
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formulae
T sin @
tan - = ———— 5.2.40
MY T Tt cosa ( )
from equation (5.2.39) at x = 2P we have
eL
tan (?) = D), (5.2.41)
then
6 = —2arctan (—x(L)) : (5.2.42)
and
0" = —2arctan (—2?) (5.2.43)

where the value of arctan(z) are from —7/2 to w/2. For positive x, 0 <

arctanz < m/2. Clearly we can obtained 6% and 6 from (5.2.42) as

(95 = —2arctan (—xff)) : (5.2.44)

95 = —2arctan (—x](aR)) : (5.2.45)

where 0 < 8} < 6f < 7 and 6%(t) < 3 because the floating plate is located

on the right of the entering body.
From (5.2.36), where ¢ = pe'™/2=% and 0 < p < 1, we can define the

corresponding velocity potential ®(p, 6,t) in the (—plane,

p(z,y,t) =@ z(p,0,t),y(p,0,t)] = (p,0,1). (5.2.46)

The ®(p, 0,t) satisfies the Laplace equation in the ring 0 < p < 1. By using

the chain rule, the derivative ¢, is obtained as

dp 00p  9DO0 0D

_0%0p 0200 0% 24
ot opot o0 or o (5:2.47)

By differentiating (5.2.46) in p and setting p = 1, we find

(I)p(L 0, t) = PaZp + PyYp. (5248)
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. n
{=¢+in 9 =0
12 _\HR

-----
------------
‘‘‘‘‘‘‘‘‘

Figure 5.2.4: The complex {—plane.

Equation (5.2.36) defines z = z({) as an analytic function in p < 1. For an

analytic function

dz dz dz 1

o7 iy = — g . 5.2.49

i dp  ipdd Tp+ 1Y, i (g + iyp) ( )
At p=1:2, =y and y, = —xyg. However, y(1,0,t) = 0, which gives
yp(1,0,t) =0and z,(1,6,t) = 0in (5.2.47) and (5.2.48). Also using (5.2.39),

we obtain
d sin 6 —1
1 - _ 1 _ = . .2.
Up(1,0,1) zo(1,0,1) dé (1+cos€) 1+ cos@ (5.2.50)
Therefore,
~Y(t)

D,(1,0,t) = .- 0+ ¢, - y,(1,0,t) = (0 <0 < 0%). (5.2.51)

14 cosf’
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on the impact of the wetted surface of the entering body, and

Tylt) = 40) (s = %,(0))

1 + cos(0) ’
(0F <6 <0, (5.2.52)

P, (1,0,t) = - 04+p,y,(1,0,t) =

on the image of the floating plate.

Thus, the water impact problem within the Wagner model formulated in

the (—plane with respect to ®(p, 0,t) for a floating plate reads

;

V20 =0 (0<p<1),
®=0 (p =1, ((=m,m\(0", 07)&(6;, 0;7)).
| @p:% (p=1,0L <0 <o),
Tylt) = 40) (s = %(0))
\ ®, = T (p=1,0) <6 <06

(5.2.53)



Analytical solution of the water
impact problem in the presence of a
floating plate within the Wagner

model
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In this chapter, we will find the solution of Wagner’s model of water impact

in the (—plane (5.2.53) which can be written in a more general form as

(V20 =0 0<p<1),
=0 (P =1, ((_77-7 ﬂ-)\(eL’ QR)&(9£7 0;?))7 (601)
2, = /(6) ()=1,6" <0 < 6%,

L 2,—90) (0= 1.6% < 0 < 0%)

where f(0) and g(0 follow from (5.2.53).

For solving this mixed boundary value problem, we assume that ®(1,0,1t)

is given in the intervals 0 < § < 6F and 915 <0< 91}}. Let

F(0,t) (0F <0 < 0%),
®(1,0,t) = 4 G(6,1) (8L <6 <65, (6.0.2)

0 otherwise,

where the functions F(6,t) and G(0,t) are zero at the ends of the
corresponding intervals because the potential should be continuous for
flows with finite kinetic energy. These functions should be determined to

satisfy the conditions in the contact regions,

g—i(w)(F, G) = f(0) (6" <0< 0m), (6.0.3)
and
g_i’(l,@)w, G)=g(0) (0 <6 <0l (6.04)

It is convenient to introduce the Fourier series of ®(1,6,1),

F(9) (0F <6 < 0f) .
(1,60,t) =4 G(O) (B <0 <0f) o= a0+2 {ay, cos(nB) + by, sin(nh)},

. n=1
0 otherwise

(6.0.5)
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where
1 " 1%
= — F(0)do + — G(0)do
w=g [, FOM o [ G,
1" 1%
a, = —/ F(0) cos(nd)df + —/ G(60) cos(nd)db, (6.0.6)
T JoL ™ JoL
1" o
by = L / F(0)sin(mf)dd + ~ [ G(6) sin(nb)do,
T JoL m 95

are unknown coefficients. It follows from (6.0.2) that

D(p.0,) = @(p,0)| +(p,0)| — D(p,0) +Des(p. ), (6.0.7)

F#£0,G=0 F=0,G#£0

substituting (6.0.7) into (6.0.3) and (6.0.4) gives

8@ 3(1)}7 8(13(; L R
L0 = TE L TE=0), (p=1.6"<6<6".  (605)
and

00 0% 0%

-~ _ZFF  YFG _ L R
ap(’) 5 o 9(8), (p=1, 62 <6 <0l (6.0.9)

The potentials ¢ and ®¢ were calculated in chapter 4 (4.3.1). The solution
of problem (6.0.1) with the condition (6.0.5) at p =1 is

®(p,0) = ag®o(p,0) + > _ {2 (p,0) + 0,25 (p,0)} , (6.0.10)
n=1
where
V20! = 0 (0<p<1), 60.11)
®(1,0) = cos(nb), a
and

V20 = 0 0<p<1),

o (1,6) = sin(nd). (6.0.12)



Chapter 6: Analytical solution of the water impact problem in the presence of a
floating plate within the Wagner model 105

The solutions of (6.0.11) and (6.0.12) are

O (p,0) = p" cos(nd), B (p,0) = p"sin(nh) and @ (p,0) = 1.
(6.0.13)

The formula (6.0.10) gives

g—j{;(l, O (F,G) = in (an cos(nb) + b, sin(nd)) (-7 <6 <m). (6.0.14)

n=1

The Fourier coefficients (6.0.6) cannot be used in (6.0.14) to reduce the
problem to an integral equation for the functions F'(6,t) and G(6,t) as

o %
g—i(l, 0) = 1 / F(6y) Z n{cos(nby) cos(nd) + sin(nby) sin(nd) } dby
™ JoL 1
1 (% >
+ = G(6o) Z n{cos(nby) cos(nd) + sin(nby) sin(nd)} db,
T Jof n=
oF 1 o
- / F(00)K(0 — 60)dbo + / G(80)K (0 — B5)dbo, (6.0.15)
oL oL

because the series for IC(a) does not converge. This implies that the
operator (0®/dp)(1,0)(F) is not a standard integral operator. Note that,
to satisfy the functional equation (6.0.8), we required F (%) = F(6%) = 0
and G(0)) = G(0]}) = 0, because the velocity potential should be at least
continuous everywhere including the boundary of the flow region, to

describe a flow with finite kinetic energy.

The equation (6.0.8) will be understood as the limit, see section 4.3.1 for

more details,

i) 0 0F <0 < 67),
lir{lo{g—(p, 0)(F, G)} = A 5 R> (6.0.16)
P p g(0)  (0y <0<0)),

where f(6) and ¢(#) are known smooth functions of §. The time ¢ is a

parameter in the present analysis, which does not contain time derivatives.
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In the equation (6.0.16), we have

o o

0P b
B 0.0 = [ P00~ tu)ato [ GOOK(p. 0~ b0, (6.0.17)
oL oL
where -
K(p,0) = ip Zn,o" cos(nf), (6.0.18)
7r
n=1

and 0 < p < 1. The series (6.0.18) does not converge at p = 1. To regularise

equation (6.0.16), we notice that

a2
K(p,0 —6p) = 86—8905<p’ 0 — o), (6.0.19)
1 & ,cos(nb)
S(p,0) = - ;p . (6.0.20)

The series (6.0.20) converges at p = 1 but it is log-singular at § = 0.
Substituting (6.0.17) and (6.0.19) in (6.0.16) and integrating in (6.0.17) by
part using equalities F/(6") = F(6%) = 0 and G(6}) = G(6}) = 0, we obtain

QR

i (oo} = i ( [ Featse.o- o)

o [ Gonats (.o - %)})

o5

s, or o
=~ 5 ( /9 F@0)S(p.0 =)o+ | G (60)S(p,0 - 90)d60>
o " o
~ o0 ( U(00)S(1,0 — 60)ddy + |~ V(6o)S(1,60 — 90)d60> (0 < 0 < ),
oL 95
(6.0.21)
where

—U(6y) = F'(6y) and —V(6) =G (6,), (6.0.22)
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Then equation (6.0.16) and (6.0.21) provides after integration in 6 from 6~

9R

/ U(60) {S(1,0 — 0p) — S(1,0" — 6)} dd
6

L

+/ﬁw%HﬂLwﬁd—ﬁL¢—%ﬂﬂ%=ﬂﬁ

L
P

(0 < 6 < 6%), (6.0.23)

where f(6) is a known function given by
- 0
f(0)=[ f(6o)db, (6.0.24)
oL

and after integration in 6 from 6}

/Muw@{aLe—&o—Saﬁé—%ﬁd%
i /9’5 V(00) {S(1,0 — 00) — S(1,60% — 60)} dby = 5(9),

(02 <6 <6, (6.0.25)

where g(0) is a known function given by

g9(0) —/9 9(0o)dbo. (6.0.26)

L
P

From (6.0.23), (6.0.25) and (6.0.20), we have

S(1,0 —6y) — S(1,6% — %i % {cos[n(6 — 6y)] — cos[n(6" — 6,]},
"~ (6.0.27)
and
S(1,6 — ) — S(1,65 — 6y) = %Z % Lcos[n(6 — 6y)] — cosn(8” — 6]} |
"~ (6.0.28)

The intervals (6%, 0%) and (6%, 6%) in (6.0.23) and (6.0.25) correspondingly

p’7p



Chapter 6: Analytical solution of the water impact problem in the presence of a
floating plate within the Wagner model 108

are mapped onto (—m, ), in order to apply the classical theory of Fourier

series, by introducing new variable ¢ and n such that —7 < ({,n) < T,

where
0 = A¢ + B For the interval (0%, 0%), (6.0.29)
0 = Ayn+ B, For the interval (6, 6%), (6.0.30)

the coeflicients A, B, A, and B, are obtained from the equations:

0F = A(—m)+ B and 0% = An+ B, (6.0.31)
0r = A,(—7)+ B, and 6 = A7+ B, (6.0.32)
then
of — - oF + 0%
At) = o and B(t) = S (6.0.33)
QR - QL QL + QR
A,=-2L o P and B, = %. (6.0.34)

where A, and B, are constants and (0 < A(t) < 1) which means that the
whole water surface is covered by the entering body when A close to 1. For
A small, the contact region is small. Introducing U(#) = U(AE+B) = U(€),
V(n) = V(Am+ B,) = V(n) with 6y = A& + B, and 0, = A, + B, in the
corresponding intervals, we transform (6.0.23) and (6.0.25) to the following

equations

/ " U(60) {S(1, A(E — &) — S(1 A~ — &))} Adé,

—T

+/ ‘7(770) {S(]_, Af + B — Ap’f]() — Bp) — S(]., —A’ﬂ' + B — APT]Q — Bp)} Ad’l’]o

—T

=G, (—m<&<m), (6.0.35)

[ &) 1801, Ay + B, — A& — B) = S(1—Aym + B, - Aty — B)} Adgy

+f "V (o) {S(L Ay — m0)) — S(L, A= — 10))} Adio

=Gy(n), (—m<n<m), (6.0.36)
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where G (&) = f(A¢ + B) and Gs(n) = §(Ayn + B,). The functions U(€)

and V(1) are sought as the Fourier series

U€) = %ao + Z (@, cos(né) + by sin(nf)) , (6.0.37)
and .
. 1. ) .
Vin) = 500 + Z (an cos(nn) + b, s1n(nn)> , (6.0.38)

where the coefficients a,,, b,, @, and l;n are to be determined. Equations
(6.0.22) and the conditions F(0%) = F(6") = G(0]) = G(0)) = 0 gives
n o7 o7
- / 0(¢)dé = — / voydo [ F(6)ds = F(6%) — F(0R) =0,

- ” ” (6.0.39)
this provides ag = 0 in (6.0.37) and similarly ao = 0 in (6.0.38). Substituting
the series (6.0.37) and (6.0.38) into (6.0.35) and (6.0.36) and multiplying
both sides of (6.0.35) by sin(m&) and cos(mf), m > 1, and integrating the
result in £ from —7 to 7, then multiplying both sides of (6.0.36) by sin(mn)

and cos(mn), m > 1, and integrating the result in 7 from —7 to 7, we obtain

Z{ ([ costn) e o) ) costome)a

b [ ( sin(néy)T 5§o>d50) COS(mé)di}

i{d / ( / cos(nmo) T’ (é,no)dno) cos(m&)dE

([ sintom e man ) costme) e}

1 vy
-1 /_ Ga(e)cos(me)d. (6.0.40)
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S {an [ ([ costntoyric coa) smmeya

n=1 -

i [ ( I sin(nsoﬁ(s,fo)dso) sin(mf)dé}

—T

s {on [ costum) €. mham ) sinmeye

b ([ sttt mydm ) sin(meae |

L[ :
= Z/w G1(&) sin(m&)dg, (6.0.41)

i {dn /: (/” COS(”fOﬁ(%foMfo) cos(mn)dn

[ ( | sin(n@)ﬂm@)d&) cos(mmdn}

s {on [ (] costom T, m)dm) costmnyi

b [ ([ s 70 i ) costmnan

= %/_: Glo(n) cos(mn)dn, (6.0.42)

i {an /_: (/” COS(”fO)ﬂ%fOMfO) sin(mn)dn

L [ ([ sintneorngo)dso) sintnan
N nil {dn / i ( / z cos(nng)T(n,Tio)dﬁ()) sin (i) i
([ i)
=5 [ Galmsintmnyan, (6043
where

T(& &) = S(1, A€ — &)) — S(1, —A(m + &)), (6.0.44)
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T(n,m0) = S(1, Ap(n —m0)) — S(1, Ap(—7 — o)), (6.0.45)

T(&m0) = S(1, A+ B— Ayno— B,) — S(1, —An+ B — Ao — B,), (6.0.46)

T(n,&) = S(1, Ayn+ B, — A&y — B) — S(1, = A, + B, — A& — B). (6.0.47)

The system (6.0.40) and (6.0.42) can be written in the matrix form:

ﬁ\

ACOG + A+ AFG + AS
AT + A+ ATV + AP
B+ B“)b+ BY7a + BS
| B@d+ B®h+ BiYa + By

1

l
l

(6.0.48)

1
l

1
l

Sl T TS T
I
»
pu

I
w0
¥

where
=2 = _ _ T :’_ — - _ T
a = (al,ag,ag, ) and b = (bl,bg,bgn ) s
= (a1, ds,a3,...)" and b= (by,by,bs,...)7,

and A to BS™) are matrices with the elements, where A A9 Ales)
A6 BY9 B9 B and BS™ can be evaluated using similar calculation

in Chapter 4, see (4.3.1).

By substituting (6.0.20) into (6.0.44 - 6.0.47), we find that

8

T(6,&) = = 3 7 {cos(bAE — &) — cos(kA(r +&))}, (6.0.49)

k=1
T(n.m) = = 3 7 {eos(kAy(y —m)) — cos(kAy(m+m))}, (6050
k=1
and
11
T(¢m) = ;ZE cos(k(A + B — Ao — By))
k=1

—cos(k(—Am+ B — Ayno — By))}, (6.0.51)
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T(n,&) = Z%{COS Apn + By — A& — B))

k=1

>1|}—*

—cos(k(—A,m + B, — Ay — B))}, (6.0.52)

Similar as in Chapter 4, it can be shown that

A(sc) — A(CS) — B(SC) — B(C‘S) =0. (6053)

nm nm p,nm p,nm

Then the system (6.0.48) takes the form,

ACG 4+ ASVG + AT = Z,,
ACOL 1+ ACG + A = Z,y,
vt T (6.0.54)
BG4+ B6Ob+ BYG = 7,
Be)F + BE)h+ B — 7,

The elements of the matrices in (6.0.54) are calculated as shown below.

We have

Az = [ ( | cos(n@)T(&,&o)d&o) cos(mé)d, (6.0.55)

—Tr —Tr

and from (4.3.54) we find

cc 4 ’I’L m C kSIH )
Aled) — W + Z iy (6.0.56)
k=1

where m/A =a, n/A =b, and 7A = x. Similar,

1 = [ ([ smoere @i ) smmepte, 0057
and from (4.3.80) we have
A69) 4mn Jotm) Z sin? ) (6.0.58)
n 7rA4 — a2 —b?) o
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These series are similar to the series in chapter 4, see (4.3.53) and (4.3.79).

However, there is no W) in the present series, because of another

configuration of the flow region.

Similarly, we find

B _ (n+m i k sin?( lmp)
k=1

p,nm TA p _ c2 d2)’

and

4mn sin?(kx,)
B(ss) n+m) p
Z G

p,nm 7TA4

where m/A, = ¢, n/A, = d and T7A, = z,.

Next, we calculate

A= [ ( / " cos(im) (€. ) ) os(rné)
:—Z / </ {cos(k(AE + B — Ay —

—cos(k(—Am + B — Apyno — By))}

cos(nno)dn0> cos(mé&)dé

s

— 02 d2)’

(6.0.59)

(6.0.60)

By))

- _Z {/ cos(kAyno) COS(”UO)dUO/ cos(kAE+kB—kB),) cos(m&)dé

—T
™

— cos(kAm + kB, — kB) /

—T

evaluate the integrals in (6.0.61) analytically as

cos(kAE+kB—kB,) cos(m&)d¢ = cos[k(B—B,))

cos(kA,no) cos(nmno)dny /

™

COS(mé)dé},

(6.0.61)

—T

—Tr

The integral (6.0.62) is equal to 7 cos[k(B — B,)] for kA =

/7r 2kA(—1)™ sm(kAw)

(kA)2 —m?
(6.0.62)

m.
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Similarly
2kA, sin(kA
" pSIEAT) e o kA, .
/ cos(kA,no) cos(nng)dny = (kAp)? —n
o m for kA,=n,
(6.0.63)

then from (6.0.61) and (6.0.62 - 6.0.63) we have

[e. 9]

1 1 2kA
Alee)  — — 22 Gin(kA
p,nM T Zl k’{ (k’Ap)2 — 2 SlIl( pTl') COS(TL?T)

- coslk(B — By)] 2kAE;j;;niiI;§/§A7T) }, (6.0.64)

Let A, and A be not rational numbers. Then A, # n/k for any integer n
and k, A # m/k for any integer m and k. By introduce m/A = a, n/A = b,
m/A, =¢c, n/A, =d, tA=x and 1A, = x,. Then we have

A = e 1(; S f: {kz : — sin(ka,) COS[k(B—Bp)]%ki?}.
k=
(6.0.65)
using the flowing trigonometric identity
sin[kx + mr| = sin(kx) cos(mm) £ cos(kz) sin(mm), (6.0.66)
gives
Al — ;‘7 (ntm) i{ sin kg“;lp? len Y“Z; s[k:(B—Bp)]}, (6.0.67)

=1

Similar we find B,(frﬁ) as

. 4A e o= [ sin(kx) sin(kx,) Az
Br(Lm) = ( * Z{ — a2 k2 — dpg COS[]{?(BP—B)]} = AZApnm
k=1

(6.0.68)
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Next, we calculate

A= [ ( / " in(nm) 7, no>dno) cos(me) e

—T

_ —Z /W (/W{cos kAo — (KAE + kB — kB,))

— coslkApyno — (—kAm + kB — kB,)]} sin(nno)dn0> cos(mg&)dg

™

:_Z {/ sin k:Apno)sm(nno)dno/ cos[k A +k(B—B,)] cos(mg)d§

—Tr

™ s

cos(m&)d&},
(6.0.69)

— cos|—kAr + k(B - B,)] - / sin(k A, o) sin(nrgo)dno - /

—T —Tr

where

/7r cos(mf)d§{ =0 for m > 1.

-7

Substituting (6.0.62), (4.6.43) and (6.0.74) into (6.0.69) gives then

s 4nA (ntm sin(kx,) sin(kz)
Al — WT + )Z{ ;’2 5 C cos[k(B — Bp)]}, (6.0.70)

and similarly

2

) 4AnA p(_q)ntm =~ [ sin(kx,) sin(kx) As
B = Ay Z{ ) coslk(By—B)] | = LA,
k=1

(6.0.71)
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Also, we have

A= [ ( / " sin(u) (€, ) sin(rn)
:—Z / (/ {cos(k(AE + B — Ay — By))

—cos(k(—Am + B — Apyno — By))}

sin(nno)dno> sin(mg&)dg

= —Z { / sin (kAo ) sin (o )dno / sin(kA¢ + kB — kB,) sin(m&)d¢

—T

™ ™

— cos(kAm + kB, — kB) / cos(kA,no) sin(nno)dng/

—T —T

sin(mf)df},
(6.0.72)

The integrals in (6.0.72) are evaluated analytically as

/7T sin(kAE + kB — kB,) sin(mé&)d§ = /7r {sin(kA¢) cos(kB — kB,)

—T

+ cos(kAE) sin(kB — kB,)} sin(m&)d¢

= cos(kB — kB,) /7T sin(kAE) sin(mé&)d¢, (6.0.73)

—T

similarly
2 A
m M cos(nm) for kA, #n,
/ sin(kA,no) sin(nng)dny = (kAp)? —
o m for kA, =n.
(6.0.74)
substituting and (6.0.73-6.0.74) into (6.0.72) gives
4nm .1 (sin(kz Sln(k’x)
A(ss) 7 n+m - p LB — kB
p,nm WAPA Z /{Z{ d2 kg S( p)}a

k=1
(6.0.75)
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and from (6.0.75), we can find BS) as

o5 dnm ey = 1 [(sin(ka,) Sln(k;x) a5
BE) = A 1)+ ZE{ oy cos(kB — k;Bp)} = AL
k=1
(6.0.76)
Finally,

Ales) = / ' ( / " cos(nmo) 7€, no>dno) sin(mé)de

—T —T

= %g % /_7; </_:{008(k(z4£ + B — Apio — By))

— cos(k(—Am + B — Apyno — By))}

cos(nno)dno) sin(mg&)dg

™

= _Z {/ cos(kApo) COS(nno)dUo/ cos(kAE+kB—kB,) sin(m&)dé

—Tr

— cos(kAm + kB, — kB) / cos(kA,no) cos(m]o)dno/ sin(mﬁ)d&},
(6.0.77)
then
os dm e o= [ sin(kx,) sin(kz)
Al = -] A 1)+ Z{ ;2 Eaw n(k:B—kBp)}, (6.0.78)
k=1

From (6.0.78): If k = d, then kx, = (n/A,)mA, = mn and sin(kzx,) = 0.
Applying L’Hopital’s rule gives

sin(kzx,) , sin(krA,)  cos(kw(n/k))km

I - -
gk B2 = Ay K2 — (A7 T —2(nfA,)(—n/A2)

_cos(mn)km (n\3 m n
=5 <E> =3 cos(ﬂn)kQ. (6.0.79)

Similar, if k£ = b, then kz = (n/A)7TA = mn, sin(kz) = 0 and

sin(kr)  w (rn)
a2 —p - 2 VT

(6.0.80)
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If at least one of A and A, is a rational number, then one or two terms in the
series are calculated by L'Hopital’s rule. From (6.0.78) there are different
cases. In the first case, If d and a are not integers, then we calculate the
series in (6.0.78). Second case, If d is integer, d = N, but a is not, then the

series in (6.0.78) is evaluated as

A= o costmm)costom) | > { LD

prm = T ALA K2 —d? k? — a2
k=1k#N

T n sin(Nzx)
+ 5 Cos(7rn)mN2 —

mww_@ﬂ.mmn

If d is not integer, but a is integer, a = M, then

4dm
Ales)
prmo o r AA

p

costmm)cosom)| S {4

k2 _ a2 k2 _ g2
k=1k£M

+ %g cos(ﬂn)% sin[M (B — BP)]} - (6.0.82)

If d and a are integer but not equal to each other, d = N, a= M, N # M,
then

os 4m > sin(kx,) sin(kz) .
Aé,n)m = A A cos(mm) cos(nm) L:U%;MN{ [ 52 Ry sin[k(B—DB,)]

sin(Mx,) © n .
W]\?Za COS(WH)W SIH[M(B — Bp)]
T n sin(Nz) .
+ 5 COS(WH)WW SID[N(B — Bp)]:| . (6083)

Last case, if d and a are integer and equal to each other, d = a = N, then

Al Am cos(mW)COS<n7T)[ i {sin(kmp)sin(k:x) sin[k(B—Bp)]}

p,NmM ﬂ_ApA k‘2 — d2 k2 — (12
k=1k4AN
2n?
+ T sin[N(B — Bp)]] . (6.0.84)

For the rest elements we used similar evaluation, see Appendix A.2 for more
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detalils.

6.1 Elements of the matrices

To illustrate the matrices as function of A and A, for different parameters of

the problem, we select the following parameters in dimensionless variables:
e =—-05, 2® =05 2M=12 2®=3, (6.1.1)

where —1 <2l <0< 2t <1< xlf < xf. Therefore, in the dimensionless
variables, the contact region length is L = 1, the floating plate length is
L, = 1.8 and the center of the floating plate is at X, = 2.1,

LB (W)
X, =2l — % (6.1.2)

The selected values provide in the (—plane,

6L = —2arctan (—x(L)) ~ —0.9272,

6% = —2arctan (—:c(R)) ~ 0.9272,

(6.1.3)
0. = —2arctan (—ZL‘;L)> ~ 1.7521,
0% = —2arctan (—2\™) ~ 2.4980,

where —7/2 < 0% < 0% < m/2 and 7/2 < 0 < 0 < 7 because the floating

plate is located in the right of the of entering body. Also we have

o — oL oF + o8
A= =0.2951, B = =0 6.1.4
2 ’ 2 ’ ( )
o — gL oL + 98
Ay, = % =0.1187, B, = % = 2.1250, (6.1.5)
T

where 0 < A < 1/2 and A, < 1/4, B, < 31 /4.

In the figures 6.1.1—6.1.2, we illustrated the matrices elements as a function

of A for A$j 5, and A35P 5, where A, = 1/4. Also, figures 6.1.3 —6.1.4 shows
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the elements as a function of A, for B¢ 20 and Bj®10 20, where A, = 1/4.

-3
Ry 14
15 1
16
¥
*
¥ 161 ]
*
18r,
17
*
tH 8 <
8s 2 o 18 ) 1
*
191 1
22
2 ]
24
21) ]
*
26 . . . . . . . . 22 I
0 005 01 015 02 025 03 035 04 045 O 0 02 025
A
1 . cc
Figure 6.1.1: Aff 5
0.0144 0.0143
0.0142 0.01425 |-
0014 0.0142
0.0138 0.01415 |
E E
8= 00136 S 0.0141
0.0134 | 0.01405 -
0.0132 0014
0013 001395
0.0128 L ' . - - - - - 0.0139 L
0 005 01 015 02 025 08 035 04 045 O 0 02 025
A
H SS F 3 . 88
6.1.3: igure 6.1.4: B
Figure 6.1 10 20 gure 6 5710 20
Ace
0.144 -0.56
-058
0.1435
06|
0.143 |
-062
3 L, E
B(: 0.1425 - 8. -064
-0.66
0.142
-068
0.1415
07 1
— 7 Using S — 7S Using S
m— 5\ ysing asym S, A->0 w— 5\ sing asym S, A->0
N T n 072 N N

0.141 . s 5 s
0 0.05 0.1 015 0.2 025 0.3 0.35 0.4 045 0.

Figure 6.1.5: A{%

I
0.35 0.4 045 05

Figure 6.1.6: A7,

Figure 6.1.7: The elements of AS and A5, (Blue lines) calculated with 2500
terms retained in series (6.0.55 - 6.0.58) as function of A and A, = 1/4 compared

with its asymptotic using S (Red lines).
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6.1.1 Calculating Zﬂdqs1 and 212752

The right hand side 201,31 and 202752 in the system (6.0.54) are given by

D = % / G (€) cos(mé)de, (6.1.6)
Dot = % / G (€) sin(mé)de, (6.1.7)
Zeym = %/ Go(n) cos(mn)dn, (6.1.8)
Zsom = %/ Go(n) sin(mn)dn, (6.1.9)

where form (6.0.35) (6.0.36),
G1(§) = fF(AS + B), (6.1.10)

and

Ga(n) = JF(APU + By), (6.1.11)

and f(0) is defined in (4.3.34) as

f(0) = [ Jf(6o)dbo, (6.1.12)

and g(#) is defined in (6.0.26) as

g9(0) = /6 9(6o)dbo, (6.1.13)

L
P

where

§=A¢+B and 0=An+ B, (6.1.14)

the coefficients A, B, A, and B, are obtained from the equations:

0F = A(—m)+ B and 0% = An+ B, (6.1.15)
95 =A,(—7m)+ B, and 0;? =A,m+ B,, (6.1.16)
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which is gives
QR - QL QL HR
4=""" ad B= ;L , (6.1.17)
or — oL oL + oF
A,=-2L o P and B,=-t 5 L (6.1.18)
Integrating (6.1.6) by parts gives
1 . T r /M . 1 .
Zetm = Am sin(mé)G1(§) 2 Gy (f)% sin(mg)d¢§
1 (™A .
= _Z/ Ef(ASvL B, t)sin(m&)d¢, (6.1.19)
where
G'(&) = (f(A¢ + B)) A, (6.1.20)
and
G (n) = (f(An+ By)) A, (6.1.21)
integrating (6.1.19) by substituting § = A + B gives
9R
0— B
ch,m = —% - f(@, t) sin (mT) do (6122)
where _
—Y ()
0,t) = ———— 1.2
10,%) 1+ cos(f)’ (6.1.23)
this gives
V() [0 sin (m&E .
Zetm = — A(m) /BL 1—{—((30s?9)) do = Y (t) Ze1m (07, 07), (6.1.24)
where o ( , B)
~ 1 sin (m*~=—=
Zeam(08,05) = — AL do 1.2
etm (07, 07) Am Jor 1+ cos(0) (6.1.25)
and for Z; ,, we have
Y(t) (% cos (m%E -
i /g 1+( cos?m) d0 = Y (1) Za(07.6),  (6.1.26)

Am
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where o ( , B)
~ 1 cos (m=—=
Zom(07,05) = — A2 dp 1.2
1m(87,67) Am Jor 14 cos(6) (6.1.27)
Similarly for Zs,,, and Z.,, we have
1% 0 — B
Logm = ———— 0,t)si 2) do 1.2
o= [, 0.0 (m )t (6.1.28)
where
F() - 00 (29 x0)
0,) = 1 + cos(0) (6.1.29)
I = 1+ cos(6) ’ o
this gives
) ) . 0—B,
fr = O = 00) %2 (m5)
am = Am or 1+ cos(0)
0, (1) 0% sin(#) sin <m9;B”>
+ -2 / "2 df
Am Jor (1 + cos(0))?
= - (Yp<t> - Qp<t>Xp<0>) Zeam(03,65) = () Zeam (6, 0),  (6.1.30)
where ( )
~ 1 0 sin | m——*
Zeom(0F,05) = — " 2.df. 1.31
2m (0, 6y) Am Jor 1+ cos(0) (6.1.31)
and

. . 0—B
- 1 [oF sin(0) sin ( m=—*
Zeom(0F,08) = —— / ( - >d9 (6.1.32)
0

PRI Am L (1 + cos(6))? ’
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For Z,, we have

- (),
0

7 =
smm Am ¢ 1+ cos(0)
(1) 0F sin(0) cos <m9;‘B”>
+— / - df
Am Jor (1 + cos(6))?
= — (Vo(6) = () X,(0)) Zoam 08, 02) — 0y (6) Zio (0, 61), (61.33)
where < >
6—B
1 0 cos (m=—7-"*
Zarm (07, 0% > ~df 134
20, 0) = ~Am or  L+cos(d) (6.1.34)
and
6% sin(0) cos (m?=Le
52 m(efu 95) L < A ) d9 (6135)

Am o1 (14 cos(0))?

The integrals in (6.1.25), (6.1.27), (6.1.31), (6.1.34), (6.1.32) and (6.1.35)

are evaluated numerically.

Then the system (6.0.54) can be written as

( .
ACC CL+ACC)G+A(SC = Y(t) cl,m;
A+ AE + AP = V(1) Zorm,

I
/NN
<<
S —
~

ZcQ,m + Qp(t) c2,m»

)
)= 00 X(0)) Zoam + (6) Zoam,
(6.1.36)

B(CC)5+ B sc b+ B(CC)

Sl QL ®>l ®>l
I
~.

=
—~
~
SN—
e
—~
(e
SN—
~—
1
Il

il
I

B(cs) + B ss b—|— B(SS)

Truncating each matrix in (6.0.54) to m terms, the system (6.0.54) can be

written as

Ma=Z, (6.1.37)

where the matrix M is made of the matrices in (6.0.54),

o _ A N T
a = alaa%"'7am7b17b27"'7bm7a17a27“'7amab17b27"'7bma:| s
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Figure 6.1.14: Plot of (6.1.25), (6.1.27), (6.1.31), (6.1.34), (6.1.32) and (6.1.35).

and

o 1 2 m 1 2
Z= (70 z® .. zm Z0 HO

cl »“cl »

m 1 2 m
’ Z( ) Z<E2)7Z<E2)7"' 7Zc(2)7

sl v ¥s1H" "7y sl

T
Z§;)7Z§§)7"' ’Zs(;n) > (6139)

where ZC(P is evaluated by (6.1.24) at m = 1, Zﬁ) is evaluated by (6.1.26) at
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m =1, ZC(%) is evaluated by (6.1.30) at m = 1, ZS(;) is evaluated by (6.1.33)
at m =1, Zc(f) is evaluated by (6.1.24) at m = 2, etc.
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Figure 6.1.15: Plot of 7

in (6.1.39).
We have, see (6.0.54),
Z =Y, (t)Zy 4+ Q,()X,(0)Zy + Y (t) Z3, (6.1.40)
and
a=Y,(t)ai + Q, (1) X, (0)d + Y (t)ds, (6.1.41)

where @ is the solution of (6.0.54), where Y =1, Y, = 0 and Q, = 0. @, is
the solution of (6.0.54), where Q, =1, Y, =0 and Y = 0. @ is the solution
of (6.0.54), where Y, = 1, Q, = 0 and Y = 0. Using (6.1.38) gives
@j = |1, G2, 5 Qjm, i1, bj2s o Djm, @51, Qg -+, A, i)j,la Z;j,Za
. T

by |, 5 =1,2,3. (6.1.42)
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Then the three systems can be written as
MCTl - Zl?
My = Zo, (6.1.43)
MC—I:3 = 237
where
ZZ = _07 Zﬁi)v Zi%)7 R Zs(;n)v Zc(;)v Zc(g)v ) Zc(;n)7 O_ (6145>
Then
@5 = [M]" Zs, (6.1.47)
@y = [M]™" Z,, (6.1.48)
i = [M]'Z, (6.1.49)
where
_ A(CC) 0 Az(?cc) A;}sc) -
0 A(SS) A;E)cs) A}(}ss)
M = (6.1.50)
B (cc) B (se) B](DCC) 0
B(cs) B(ss) 0 BZ(;SS) |

In the following figures 6.1.16, 6.1.17 and 6.1.18, we can see the values of

Z3, Zy and Z; correspondingly, where m = 40 for each.
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Figure 6.1.16: Plot of Z3

in (6.1.44).
0.02 T T T
[ ]
0.01 ° .
L]
L] ....
(]
0 Y *esssnseess
(] .....mtoo”
..
L ]
[ ]
ny -0.01 | .
L ]
0.02 - .
0.03 [- .
[ ]
004 1 | | 1 1 | |
0 20 40 60 80 100 120 140 160
m

Figure 6.1.17: Plot of Zo
in (6.1.45).
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Figure 6.1.18: Plot of Z;
in (6.1.46).

From (6.0.5) and (4.3.1) we have for 61 < 0 < 6,

D(1,0,t) = G(0) = Y,()Q1 + (1) X, (0)Q2 + Y (1) Qs. (6.1.51)

From (4.3.123) and (4.3.125) and using (6.1.51) gives
Dp(1,0,1) =Y, ()Q1 + (1) X, (0)Q2 + Y (1)Qs,  (0F < 6 < 6F), (6.1.52)

where Y;,(t), Qp(t) to be determined and Y (t) is given. The Q1, Q, and Qs

are given by
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Figure 6.1.19: Plot of as.

m m m

Qs = —A; {a?’—’m Sin(mg_TB) _ bm cos(mQ_TB) + bg—’m(—l)m :

where
of — gL or + gF
A= 5 and B = — (6.1.56)

Similarly for the floating plate &4 we have
D(1,0,1) = Y, () Q1 + (1) X,(0)Q2 + Y (1)Qs, (88 < 0 < 05), (6.1.57)

The Ql, Qg and Qg are given by

. = arm 9—B, b 0—B,  bin
1 =—4, al—’sin(m .
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o T R ) .
A ag, 60— Bp bg,m 0 — Bp b27m m
Q2= —A4, —— sin(m ) — cos(m )+ (=)™,
m A, m A, m
m=1 |
(6.1.59)
o F. R ) :
3ym 9 - Bp b ,1M 9 Bp 3,7’)’1/ m
Qs =—4, —= sin(m ) — cos(m )+ (=)™,
m A, m A, m
m=1 _
(6.1.60)
where
O — gL oL + 98
A,=L—% and B,=-"2—*%. (6.1.61)
2T 2

The Q1(6.1.53), Q2 (6.1.54) and Q3 (6.1.55) are illustrated in figures 6.1.22,
6.1.23 and 6.1.24. Also, the Q1(6.1.58),Qy (6.1.59) and Q3 (6.1.60) are
illustrated in figures 6.1.25, 6.1.26 and 6.1.27.
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Figure 6.1.21: Plot of a;.

6.2 Motion of the floating plate

By recalling (5.2.11) and using (6.1.51) we have

)
V — P — - _
m,Y, = F! /x;” pcos(a) o /( 5 (6.2.1)
and
(E;E,R) el(yR) ez()R) _d@
/I;L) (I)Gdll:/g;()L) G(Q)xad@z\/e;(f) G(e)m (622)
We have
d{ 0" —d
— Y, ) —— | = 2.
almire [, corag) <o (623)

substituting (6.1.51) into (6.2.3) and using the initial conditions Y, (0) = 0,
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Figure 6.1.23: Plot of Q2.
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Figure 6.1.24: Plot of Q3.
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Figure 6.1.25: Plot of Ql.
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Figure 6.1.27: Plot of Q3.



Chapter 6: Analytical solution of the water impact problem in the presence of a
floating plate within the Wagner model 136

G = 0, we can integrate (6.2.3) with the result,

6

o(R)
~ - P —df —df
Y, Y, 0)— —
MYy + P p/g;L) ol )1+0089 Py o) @2(0 )1~|—cos0
9<R>
—df
—=0. (6.24
+pY Q3()1—|—0050 0. (6.2.4)
now denote (6.2.4) as
El,l}.fp + ELQQP + E1,3Y = 0 (625)
where
Fe)
P —df
Eva=my+p o) Al )1+0059
o510 sin(m—eﬁB”)
al m A
A, —r—df
K Z [ /9#) 1+ cosf
. bl_m 6, cos(mezlf”)
m Jo 1+ cost
- (R)
bim O 1
— —— (=)™ ——df
m (=1) /Q;L) 1+ cost }
=m, — pA, > [al,mAZ&,m(ef, o)
m=1
- l;l,mAZSQ,m(efa 95)
— by (—1)™ (tan(6%/2) — tan(6%/2)) ] , (6.2.6)
o(P) 0
R pL
Eio=p Q (0 )m —pA, Z {C@mAZczm(@p,@p)

- b2,mAZs2,m(957 9pL>

By (an(87/2) — tan(62/2)) |, (6.2.7)

m



Chapter 6: Analytical solution of the water impact problem in the presence of a

floating plate within the Wagner model 137
and
" —do
Ei3= 0)——— A, mAZ 5 m(0F 0L
1,3 p/av;L) Q()1+C086 —p Z|:a3 2 ( 9 p)

- b3,mAZ52,m(957 95)

= B ) (a0 /2) — tan(0}/2) | (6.2

Similarly, recalling (5.2.13) gives

e (R)

Jp$2, = /x;“ (x — X,)pdr = —P /(L) X,)®qdx, (6.2.9)
where
5 g
— X)) Budr = v x
/m;“ (x — X,)Pedr /9,(,“ (1 pewy; p) G(0)xedd
" sin 0 X
= — — d 0)do 2.1
/aﬁ) ((1 +cosf)? 1+ cos (9) G(6)d6, (6:2.10)
and

o

d —sinf X,
7 (J Q + p/}(}L) <(1 T cos0)? + 1 +cos€) G(@)d9> =0, (6.2.11)

substituting (6.1.51) into (6.2.11) gives

0" —siné X,
(14+cosf)? 1+ cosb

T, + pY,, / ) Q. (0)dd

65"
0" sin ¢ X,
Q — L 0)do
e p/@(}m ((1+cos€)2+1+cos6) Q:(0)
o5

. —sinf X,
Y . 212
tp /9}0“ ((1—i—cos9)2 * 1+cos«9) @s(6)df (6 )

now denote (6.2.12) as

By, Y, (t) + Fa2Q,(t) + Ea3Y (t) = 0, (6.2.13)
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where

o ,
P —sind X
FEy1 = - 6)do
21 p/G;L) ((1+cos€)21L 1+cos€> Qu:(0)
65" sin(0) sin(m=22)

- CAllm A
= — A - p
P pmzl { m /Gz(aL) (14 cosf)? b

bim 65" sin(6) cos(mezlf’”)
m /gz(?L) (14 cosB)?

do

_ by / O
m o) (14 cosh)?

D
oy X, sin(m—ejj”)

. CAllm
A v
P pmzzl[m /9(L> 1+ cosf

P

~ (R) 0—Bp
by [ X, cos(m A,,)

m Jow 1+ cosf
. (R)
bl m o X
(1™ —P 40
+ m (=1) /gz(p 1+ cosf 1
= —pAp Z l - dl,mAZCQ,m(efa 9;[;/)
m=1

+ Bl,mAZSZ,m (GR GL)

prUp

_ l;1_=m(_1)m <%tan2(9f/2) - %tanz(é’ﬁ/?)) ]

m
— A { — Q1 AXp Zeo (08, 0F)
m=1

by AX, Zy (07, 6F)

pr7p

By, Gan0f/2) - taniof/2) ], @214
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and

S @
E2,2:Jp—|—p/ (( sin 6 N X, >Q2( \db

oY) 1+cosf)? 1+ cosf

i ; 05" sin(0) sin(m=22)
az,m P A
=J —pA - =7 Y —do
PP pmz1 [ m /0;@ (1+ cos )2
bo 65" sin(6) cos(mezlf’”)
m Jo® (14 cosB)?

b 0" sin(0)
- ﬂ(—1)’“/ —Qdﬁ]
o

m ) (14 cos®)
D

o X sin(m—a_B” )

= a2,m p A
— I, —pA, S |2 ,
b p”z{m/(m 1+ cosf

e m0=B
/ X, cos(m I )dH
m JeL) 1+ cost
o)

Dam X,
Z5me_1)ym — P 40
- m( ) /91(}) 1+ cosf 1

=Jp—pAy Y [— (o, AZu m (05, 0F)
m=1

do

+ BZ,MAZSZ,M (GR GL)

prUp

_ 62_=m(_1)m <%tan2(9f/2) - %tanz(é’ﬁ/?)) ]

m
=Jp,—pAp Y [— o, AXpZeo,m (08, 0F)
m=1

+ by AX, Zy m (07, 0F)

pr7p

-y, Gan0f2) - oo /2) ], 219
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and

o ,
P —sind X
FEy3 = - 6)do
23 p/G;L) ((1 + cos 6)? T 1+ 0039> Qs(0)
65" sin(0) sin(m=22)

- d3m A
= — A - p
P pmzl { m /Gz(aL) (14 cosf)? b

bsm 65" sin(6) cos(mezlf’”)
m /gz(?L) (14 cosB)?

do

_ By / O
m o) (14 cosh)?

D
o510 X, sin(m—ezfp )

. CALSm
= —pA =
P pmzzl[m /9<L) 1+ cosd

P

~ (R) 0—Bp
by [ X, cos(m A,,)

m Joo 1+ cost
P
65"

(;3 m Xp
()™ —df
+ m (=1) /gz(p 1+ cosf 1
= —pAp Z [ - d3,mAZt22,m(efa 9;[;)
m=1

+ B3,mAZSZ,m (GR GL)

prUp

_ B3_=m(_1)m <%tan2(9f/2) - %tanz(é’ﬁ/?)) ]

m
=—pAy Y { — Q3 AX ) Z e, (08, 0F)
m=1

+ b3 AX, Zy m (07, 0F)

pr7p

By, Ganof2) - oo /2) ], 210

where (6.2.4) and (6.2.12) are equal to zero at (t = 0).

From (6.2.13) and (6.2.5) we have the following system

E1,1Yp + E1,2Qp + E1,3Y =0,

. . . (6.2.17)
EQJ}/;; + EQ,QQP + E273Y = 0.
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where Y = v which is given. Solving the system gives

(1) = ;j 1132}2_;?155251@2 (6.2.18)
and
i =S t g S G
where
Y,(0)=0 and €,(0)=0. (6.2.20)

The systems (6.2.18) and (6.2.19) provides Y, (t) and ,(t) for a given speed
v(t) of the entering body

6.3 Verification of the numerical solution

By choosing parabolic body as a particular case for entering a body without

floating plate as

2

fle)=Hf(z/L) — fla)= ;—R — (6.3.1)

where 2L is the horizontal size of the entering body, H is the height of the
body and Y (¢) = vt. From (5.2.33) we have
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.
Vi =0 (y <0),
P=—¢ (y <0),

p=0,0, =1, =0 (y:0—00<x<x()<x§;L)<x1(,R)>
(y—() SB(R)<$(L) 7(3)<:v<oo>,

w0, = —h'(t) (y=0, 2P <z < z1)
00 = ¥y(t) + 0, (D) = X, 0), (87 <z <af),
mpY = —pf (’;) o(x,0,t)dx, <x1(DL) <z < xéR)) ,
o [[h (& = X, (0))gds. (o8 <o <af),
©—0 (as 2% +y* — 0),
\ =0, ¢ =0 (at t=0),
(6.3.2)

2B =a(t), B =b(t) and x:f)L) = a,(t), 2® =b,(1), (6.3.3)

where the problem is non-symmetric , due to the presence of floating plate
nearby. Therefore, the analytical solution for the velocity potential in the

contact region, a(t) < x < b(t) can be approximated by

0(2,0,t) = —h' (t)/[a(t) — 2]l — b(t)]  (a(t) <z <b(t). (6.3.4)

where the floating plate is far enough from the impact region [17]. We
have the numerical solution for the problem (5.2.33) by using our numerical
solution of the potential @ in (6.1.52) and ®¢ in (6.1.57) which is describes
the flow caused by impact on water surface with a floating plate nearby.
For comparing the analytical solution in (6.3.4) with numerical solution in
(6.1.52) and (6.1.57) we need to return (6.1.52) to the original variables

z—plane, where

o(z,y,t) = o x(p,0,1),y(p, 0,t),t] = ©(p,0,1). (6.3.5)
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For returning to the original variables z—plane we recall ( 5.2.39)

sin 6

- 6.3.6
v 14 cosf’ ( )

y =0,

and from (5.2.41)
L
) = tan (%) : (6.3.7)

which gives

0" = —2arctan (—z") , (6.3.8)

and

9 = —2arctan (—x(R)) : (6.3.9)

For comparing we assume that a(t) = —0.5, b(t) = 0.5 and from (6.3.8) we

have
0% = —2arctan (0.5), (6.3.10)
0% = —2arctan (—0.5), (6.3.11)

and
0 = —2arctan (—zx), (6.3.12)

letting Y, (t) = 0, Q,(t) = 0 and Y (t) = 1/2 in (6.1.52), gives
1=
Op(x,0,t) = 3@, (0% < 6 < 0%, (6.3.13)

where 6L, 6% and 6 calculated by (6.3.10), (6.3.11) and (6.3.12).

The numerical solutions (6.3.13) and analytical approximate solution (6.3.4)
are compared in figure 6.3.1. We can get a good approximation when we add
40 retained terms in the series (6.3.13). Figure 6.3.2 shows the improvement

of the numerical solution when increasing the added retained terms n.
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Figure 6.3.1: Plot of ¢ in (6.3.4) and ® in (6.3.13), were b =1 and Y () = 1.
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Figure 6.3.2: Plot of ¢ in (6.3.4

) and ®p with different numbers of terms in
(6.3.13), were h' =1 and Y (t) = 1.
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7.1 Summary and conclusion

When a body starts penetrating into the water’s surface, it can be affected
by another body inside the water or floating on the water’s surface. We
expect a change in the water impact process whether in the pressure or
motion of these bodies. This thesis investigated such problems for several
physical scenarios. There is a various variety of motivations for the work,
securing the use of lifeboats, escape crew capsule and aircraft emergency

landing, see section 1.2.

By modelling the impact of a rigid body as a blunt body penetrating the
free surface, where the free surface is at rest in the initial stage and the
body starts to penetrate water surface with time. The fluid is supposed to
be in two-dimensional coordinate system. We neglected gravity and surface
tension effects, where the entering body is large and the acceleration of
the fluid particles are much greater than the gravitational acceleration. In
the former case, we studied the formulation of the Wagner problem for a
submerged circular cylinder. In the latter case, we studied the water entry

problem in the presence of another floating body.

The general problem of water entry problem has been formulated in
chapter 2. The fluid is assumed to be in a two-dimensional coordinate
system where the effects of gravity and surface tension are neglected and
the velocity potential of the flow satisfies the Laplace’s equation. There
were two main boundary conditions for the problem: the wetted part of
the body surface and the elevated free surface. The Wagner model of

water impact is presented.

In chapter 3, the formulation of the Wagner problem for a submerged
circular cylinder is discussed. We formulated the problem physically and
determined the Wagner model of water impact from the physical plane to
the Wagner plane. The transformation for the complex flow region ¢ into

a ring in (—plane by using the conformal mapping method is provided at
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the end of this chapter. The numerical solution of this problem is
presented in chapter 4. We found the potential on the cylinder moving
under the free surface and the flow caused by impact on the water surface
in the presence of a stationary circular cylinder. The pressure acting on
the cylinder is calculated for both the fixed cylinder and free to move. The
chapter ended with a testing problem to test our work by choosing a
parabolic body as a particular case for entering a body without a

submerged cylinder.

Chapter 5 covers the water entry problem in the presence of floating body,
including the formulation of the problem and the transformation from the
physical plane to the Wagner plane. The numerical solution of this problem
is presented in chapter 6. The velocity potential is founded, where there is
a floating body nearby. The motion of the floating plate is calculated. We
ended the chapter with a testing problem to test the work by choosing a
parabolic body as a particular case for entering a body without a floating

body.

In conclusion, the effects of other floating or submerged bodies on impacts
on water were investigated. It was shown that the presence of other bodies
can be well neglected if the distances of the bodies from the impact place
exceed two diameters of the impacting surface. Motions of other bodies
caused by the impact were calculated. It was discovered that floating
and/or submerged bodies may move towards the impacting body and
come in contact potentially. These results justify that presence of other

bodies near impact region may be damaging for the impacting body.

7.2 Future work

There are several cases that can be studied by using the same technique
used in the two cases in this thesis. For example, we may investigate a

water entry problem in the presence of several submerged bodies. The
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submerged bodies can be circular cylinders or other different shapes. Also,
these submerged bodies can be a mixture of different shapes, which can be
more challenging. Regarding floating bodies on the water’s surface, we can
investigate a water entry problem in the presence of several floating bodies,
where these bodies can be floating plates or other different shapes. For more

challenges, we can study a mixture of different shapes as floating objects.

Other cases, investigating a water entry problem in the presence of
submerged and floating bodies at the same time. We studied in this thesis,
the water entry problem in the presence of a submerged circular cylinder
as one case in chapter 3 and a floating flat plate as another case in chapter
5. Now we can combine these two problems and study the solution deeply.
For more effortful, we may investigate a water entry problem in the
presence of submerged and floating bodies at the same time, where these

bodies are a mixture of different shapes
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Appendix

Al

To derive another formulae for A,(ffn) and Ag;? which are suitable for
calculations when A — 0 or A — 1. By using (4.3.61), (4.3.63) and
(4.3.67), we got

A _ Anm (ZDT {S <:c T) —S(x, ﬁ)} (A.11)

nm TAY m2 —n?

and

AR = j—jz {52 (= %)} . (A.1.2)

To find S(z,a) and Sy(z,a) defined by (4.3.61) and (4.3.67), where z = mA
and a = m/A, for small value of A, we will present these functions in another

form.
Asymptotic behavior of S(z,a) as A — 0 and A — 1.

In (4.3.61), where the function S(x,a) is defined, we use the series

[e.9]

Wy, = L-RP > e P (A.1.3)
L4+ R =

where ¢g = 1 and ¢, = 2(—1)" for n > 1. Then

S(z,a) = Z En Z m[{f}m. (A.1.4)

. sin?(kx)
n=0 k=1
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By using

d2
[ﬁ + 4a2] sin®(kx) = 2k*cos(2kx) + 4a® sin®(kx)
x

(1 — cos(2kx))
2

= 2k? cos(2kz) + 4a* = 2(k* — a®) cos(2kz) + 2a%, (A.1.5)

and (A.1.4), we find

[d_Q + 4&2] S(z,a) =2 i En f: W(R?”)’“

dx?

Let present the right hand side of (A.1.6) as
23 e, F(22,p) + C, (A.1.7)
n=0

where C'is the constant term in (A.1.6) and F'(2z,p) is obtained by using
table of integrals [13],

F(z,p) = Z cos(kz)p” = —% log[1 — 2pcos(z) + p?], (A.1.8)

where 0 < 2z < 27 and. p* < 1.
Thus the function S(z,a) satisfies the equation,

d*S -
) +4a*S = — Z e log[l + R{™ — 2R?" cos(2x)] + C, (A.1.9)
n=0

where (A.1.4) at o = 0 gives

S(0,a) = S.(0,a) = 0. (A.1.10)

The solution of differential equation (A.1.9) which satisfies the initial
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conditions (A.1.10) reads

1 [ -
S(x,a) = % /0 (— Z e, log[l + R{™ — 2R7" cos(27)] + C)
n=0

-sin[2a(x — 7)]dr, (A.1.11)

which can be confirmed by direct substitution of (A.1.11) into (A.1.9). The

formulae (A.1.11) provides

m A m = 4n 2n
S <7rA, Z> = %/0 (— nzzoan log[1 + R{" — 2Ri" cos(27)] + C’)

- sin [2%71‘14 - 2%7} dr, (A.1.12)

where

sin [2%#1 . 2%7} = —sin (m%) , (A.1.13)

Introducing new variable of integration 7 = A, we find

S(WA,%) = %ni;oen

: / ’ (log[1 + R{™ — 2R;" cos(2A¢)]) sin(2mé)d¢, (A.1.14)
0

where we used that

/ C'sin(2mé)d¢ = 0, (A.1.15)
0
for any integer m.

By using the formula

1+ R{™ — 2R cos(2AE) = 1 — 2R + R{™ + 2R7"(1 — cos(2A¢))

n o 2
= (1= R + AR sin?(A€) = (1— B |1+ <M) |

1R

(A.1.16)
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and (A.1.15), we find

S ( m / Za‘n log[1 + R{™ — 2R3" cos(2A&)] sin(2mé)d¢,
= — {/ log[2 — 2 cos(2AE)] sin(2m&)dE
0
4R%" sin?(A ,

For small A, we have (4R?"sin?(A¢))/(1 — R¥)? is small for any n and

0 < ¢ < 7. The expansion of log-function gives

o 2 " 2
lOg 2R1 SlD(A§)> ] — (%) sinz(Af)

14 (ZEaSmas)
i ( 1— Ry 1— R
n 4
- 1( iijn) sin!(A€) + O(4°), (A.1.18)

and then

A [T

S <7rA, %) =5 i log [4sin®(Ag)] sin(2m&)dé
T X n 2

4 <—1>”{[ | v

_.I__
m Jo 1— R

n=1

1{ 2R} } sm4<As>+O<A6>}sin<2m€>>df

A% [T
log | sin(A&)| sin(2m&)d¢

0
{42 = ;]jjn /7r sin?(A¢) sin(2mé)dé¢

_12_6 ) ((1_3% /07r sin’ (A€) sin(2mé)d + O(Aﬁ)} . (A.1.19)

n—

Using the asymptotic formulae,

sin(A¢) = A¢ — A3§3 A555+0(A7) (A.1.20)
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and

log[sin(A¢)] = log[A] + log[¢] + log[1 — A2§2 + A4§4 + O(A%)]

3!
2 4 2 4\ 2
= log[A] + log[¢] — AQ% + A‘% — % (—AZf— + A‘%) + O(A%)
_ & &1 ¢!
= log[A] + log[¢] — A2§ + A45 b (A4 I > +0(A%), (A.1.21)

where A — 0, and introducing the constants

/07r log[¢] sin(2m&)dE = Qm, (A.1.22)
/7r & sin(2mé)d = g, (A.1.23)
42 = ;]jjn = R, (A.1.24)
82 = ;Zln = Ry, (A.1.25)

we obtain

my  A? 1, .1 1
s(m A) m{Qm—gAqmﬁLA [5 2(3|)]qm+0(A)

+R, /ﬂ sin?(A€) sin(2mé)de — R, /W sin®(A¢) sin(me)df} . (A.1.26)
0 0

Here

[sin(AE))* = (A€)% — %A‘*f“ +0(A%), (A.1.27)

sin(AE)]" = (A8 — %Aﬁgﬁ b= (A + O(A9), (A.1.28)
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which provide the following asymptotic expansion as A — 0,

m A2 9 1

1 1 ~ ~
+A4 [(5 - 2(3!) ) q?%l - gqufn - qu,%l} + O(AG)}

~ 1 1 1 1~ ~ 2
S AP\ Y E R AT

The coefficients in (A.1.29) are evaluated as it is shown below. The

coefficients @, gives by (A.1.22) are calculated by

Qm:/;log[g]d (M) :_/OWM%

2m 2m &
1 [T1—cos(2mg) 1 [*"7 1~ cos(v)
- PV e = - ————2dv. (AL
om |, c d om |, ” dv. (A.1.30)

For small m we integrate (A.1.30) numerically. For large m we have, see

2],

Qm = —% {C;(2mm) — v — log(2mm)}, (A.1.31)

where C;(2mm) is given in [2] as

Ci(b) = — / h Coi(t>dt. (A.1.32)

Integrating (A.1.32) by parts for large b gives

/b costh) gy — /b " 41 fsin(t)] :—Sm—b(b)+ / Oosin( Bt dt

t
(b o in(b) .
_ _sin(b) +/ 20— cos(t)] = _sin(b) COS 2/ cos(t)t-3dt
b b b b

- —Sinb(b) + co;(b) — Z/b t3d[—sin(t)] = ... (A.1.33)

we obtain

1 1
Qm = . (v + log[2mm]) — %C’i@ﬂm), (A.1.34)
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where v = 0.5772156649 is Euler’s constant and from [2] we have

C;(2mm) = f(2rm) sin(2mm) — g(27m) cos(2mm) = —g(2mm)

—1 3! 5! 7!
=— 11— — 2 >1, (A.1.35
(2mm)? < (27mm)? * (2rm)*  (27m)8 * > 2z 1 )

where f(2mm) and g(27m) are auxiliary functions.

_ 1 1 2k —1)!
Qm =5~ (v + log[2mm]) + amypn (;(-Uk (@rm)2 + €N> :
(A.1.36)

where (A.1.36) can be used for large m only. The coefficients ¢* are
calculated by (A.1.23) for k = 1,2 and m > 1 by introducing new variable
integration 2mé& = A. Then

k 2mr /oA \ 2 d\ 1 e
— : B e
T —/o (%> sm(A)% = W/o A sin(A)dA. (A.1.37)

= s [0 = ) s = 4 2]
_ (2;)3 (2 (2mm)? - 2) = —;—m. (A.1.38)
2 = ﬁ /0 ™ X sin(3)dx
L o 1aameyt (ot 4 24) = G112~ G
- (2m>5( 24+ 12(2mm)* — (2mm)* 4 24) am)?
__om e T 3T 139)

om ' (2m)®  2m  2m?
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Substitution (A.1.29) into (4.3.63) gives for n # m

4 (_1)n+m ~ 1 7T2
Alee) — 28 77 A? ) (==
"t m? —n? {QO * <R1 6) ( 2

1 1 1~ ~ 7t 3n?
AV — - — _ R, — 4=
* <120 61 30 R2> ( > " 2m2) *

and similarly for A% wwe have

A Qo (1) (L7
(ss) _ - 1 B
Qn 2 ~ 1 7T2
-———-A - _
n i 6 on2
1 1 1~ ~ 4 372
DTN S N - ot 3t
A (120 — -3k R2>( 2n2+2n4)+...}. (A.1.41)

To determine the asymptotic behavior of S(mA, m/A) as A — 1, we notice
that at A =1

= 0. (A.1.42)

Calculating the derivative dS/dA and taking the limit as A — 1, we find

d m ) 2
Alinl ﬂs (WA’ Z) N Alinl 4

sin?(r Ak) D (—m2)(—2) A3
e (D)) (DA }

 ~= Wi [ 27k cos(rk) . sin(rkA)
T Tk m A Ak —m

2m? sin(rkA) ) ?
—m/}ﬁa{m} - (A143)

i Wi f 2sin(mAk) cos(mAk)mk
k (Ak)2 — m?

k=1
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where
sin(mkA) 0 k#m,
Al Ak —m . cos(mkA)rk
- m lim = 7 cos(mk) k=m,
A—1 k
(A.1.44)
then
2 2m2
Z—i(ﬁ, m) = M;m ( m ;jz(ﬂm>7rcos(7rkm) — (2—2)271'2 cos2(7rk))

Wo [ 2 W,
= — —— | = . (A14
m (W 2 ) 2m ( 5)

Therefore, we have asymptotic behavior for S when A — 1 as Taylor series

given by

S (WA, _> ~ S (m,m) + diAs (r,m) (A - 1). (A.1.46)

Substitution (A.1.46) into (4.3.63) gives

4
ACO) _A_Qcos(mw) cos(nm) [ maW,, (A—1)— ntW, (A1)}
T m? —n? 2
(A.1.47)
and similarly for A7% we have
4nm cos(mm) cos(nm) [ T2W,, W,
A wA? m2 — n? 2m (4-1) n (A=1)y,
(A.1.48)
as A — 1.
A.2
os dm sin(kz,) sin(kz) .
Bl — m cos(mm) cos(nm) Z { T ;2 ERp sin[k(B, — B)] ¢,

: (A2.1)
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ples) — _Am cos(mﬂ)cos(mr){ i {Sm(kx”)sm(kx) sin[k;(Bp—B)]}

nm 2 2 L2 _ 42
TA,A e = —a

T n sin(Nzx)

+ 5 cos(mn)— NENT

sin[N (B, — B)]} . (A.2.2)

B = o] 5 (S )

T A A K2 —d k2 —
k=1k£M

sin(Mx,) ©
M—;?_ cos(mn)—

o sin[M (B, — B)]] . (A.2.3)

ples) — _Am cos(mﬂ)cos(mr)[ i {sin(k’xp)sin(kzz sin[k(Bp—B)]}

nm 2 _ J2 .2 _
TA,A i L=k

sin(Maz,) m n
W§ COS(W”)W SIH[M(BP — B)]
T n sin(Nzx)
+ = COS(T(”)WW

> sin[N (B, — B)]} . (A.2.4)

os 4m = sin(kx,) sin(kz) .
B — A4 cos(mm) cos(n) L%N{ e ;2 7 2 sin[k(B,—B)]
2,2
+ %% sin[N(B, — B)]} . (A.2.5)
From (6.0.67) we have
. 4A = sin(kx,) sin(kz)
Az(,’n)m = 7r_ApCOS 7n) cos(mm) 2 { ;; 2 C coslk(B — Bp)]},
(A.2.6)
using the similar calculations for A5, ( 6.0.78- 6.0.84) gives
» 4A = sin(kx,) sin(kz)
A;,,n)m = 7r_Ap cos(mn) cos(mm) {k:%;]\, {k [ c; ER cos[k(B—B,)]
N
+ gcos(wn)]z;2 j\(i( 7) 5 cos[N (B — Bp)]} , (A.2.7)
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Al :ﬂcos(ﬂn)cos(ﬂm){ i {ksm(k’%) Sm(kzi cos[k(B—Bp)]}

p,nm 2 _ 42 L2 _
A, e U=k

sin(Mx n

M(—a;)_ cos(wn)m cos|M (B — Bp)]} , (A.2.8)

4A - sin(kxz,) sin(kz)
(co) _ 7 p _
Ay, A cos(mn) cos(mm) Ll ,ééMN {k: RIS R cos|k(B—B,)]
sin(Mz,) © n
+ MWE COS(’TFH)W COS[M(B Bp)]

n sin(Nz)

NE COS(’ﬂ'n) N2 w COS[N(B - Bp>]:| s (A29)

» 4A = sin(kx,) sin(kz)
A](D,n)m = 7T_APCOS(7m) cos(mm Llek# {k [ c; [ cos[k:(B—Bp)]}

n %%N cos|N(B — B )]}. (A.2.10)
As to B we have )
A
B = (Ip) Ald . (A.2.11)

From (6.0.70) we have

AnA . [ sin(kx,) sin(kz)
(s) _ v _
Apom 7rAp cos(mn) cos(mm) k§:1 { T R o2 coslk(B — B,)] ¢,

(A.2.12)

using the similar caculations for Al ( 6.0.78- 6.0.84) gives

s dnA = sin(kx,) sin(kz)
Aém)m = A, cos(mn) cos(mm) L:;,#N{ [ dpQ R cos[k(B—B,)]
T n cos(Nz
+ §Cos(ﬂn)mN2(_ 2) os[N(B — Bp)]}, (A.2.13)
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s dnA > sin(kx,) sin(kz)
A](D,n)m = A, cos(mn) cos(mm) L #M{ [ c; ER cos[k(B—B,)]

sin(Mz,) ™
T e 2

—cos(mn) ]\7;2 cos|M(B — Bp)]l , (A.2.14)

e _4nA COS(M)COSwm){ i {sin(kxp) Sin(kzz cos[k(B—Bp)]}

p,nm 7TAp k:2 _ d2 kQ _
k=1,k£M,N

sin(Mwz,) m
WE COS(’]Tn) W COS[M(B Bp)]
+Z cos(mn) n_sin(Ne)

2 Ne Nz gz CoslV(B - Bp)]}, (A.2.15)

4nA S (k
Ao = cos(mn) cos( Wm[ Z {sm p) sin(k )COS[k(B_Bp)]}

prme A, N d? k? —
w2
—_— N(B—-B A21
V(B - By (A216
and for B we have
sc Ap ’ (sc)
B9 — (7> Al (A.2.17)
From (6.0.75) we have
o5 dnm . 1 (sin(kx,) sin(kz)
Az(,’nzﬂ = m cos(nm) cos(mm) kz:; E{ e 52 R cos(kB—kB,) ¢,
(A.2.18)

using the similar caculations for Al (6.0.78 - 6.0.84) gives

dnm = 1 sin(kz,) sin(kz)
469 R Q B-B
Iy cos(nm) cos(mm) [ {k R E R cos[k( )]
k=1,k#N
T n 1 cos(Nx)
+ 5 cos(mn)— NN cos|N(B — Bp)]}, (A.2.19)
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dnm = 1 sin(kz,) sin(kx)
A6 RE p B-B
pom = 4 cos(nm) cos(mm) [ {k R E R cos|k( )]

p k=1,k£M
1 sin(Mz,)

n
+ MM2——d2§ COS(W”)W COS[M(B o Bp)]‘| ) (A'2'20)

o5 dnm > 1sin(kz,) sin(kz)
Aé’nzn = cos(nm) cos(mm) [ Z {E T 52 g cos[k(B—B,)]
p k=1,k£M,N
1 sin(Mx,) n
Mmi COS(’TFTL)W COS[M(B — Bp)]
1 n sin(Nzx)
+ N§ COS(W”)WW COS[N(B — Bp)]:| s <A221)

A= 2 | 35 (PO )

pnm = A A K k2 — & k2 — a2
k=1kAN
mn? 1
t Vi cos[N (B Bp)]}, (A.2.22)

and same for B (6.0.76).
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