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Abstract

The widely acknowledged detrimental impact of early adversity on child development

has driven efforts to understand the underlying mechanisms that may mediate these

effects within the developing brain. Recent efforts have begun to move beyond asso-

ciating adversity with themorphology of individual brain regions towards determining

if and how adversity might shape their interconnectivity. However, whether adversity

effects a global shift in the organisation of whole-brain networks remains unclear. In

this study,we assessed this possibility using parental questionnaire and diffusion imag-

ing data fromTheAvon Longitudinal Study of Parents andChildren (ALSPAC,N= 913),

a prospective longitudinal study spanning more than 20 years. We tested whether a

wide range of adversities—including experiences of abuse, domestic violence, phys-

ical and emotional cruelty, poverty, neglect, and parental separation—measured by

questionnaire within the first seven years of life were significantly associated with the

tractography-derived connectome in young adulthood. We tested this across multiple

measures of organisation and using a computational model that simulated the wiring

economy of the brain. We found no significant relationships between early exposure

to any form of adversity and the global organisation of the structural connectome in

young adulthood. We did detect local differences in the medial prefrontal cortex, as

well as an association between weaker brain wiring constraints and greater external-

ising behaviour in adolescence. Our results indicate that further efforts are necessary

to delimit the magnitude and functional implications of adversity-related differences

in connectomic organization.
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Research Highlights

∙ Diverse prospective measures of the early-life environment do not predict the

organisation of the DTI tractography-derived connectome in young adulthood

∙ Wiring economy of the connectome is weakly associated with externalising in

adolescence, but not internalising or cognitive ability

∙ Further work is needed to establish the scope and significance of global adversity-

related differences in the structural connectome

1 INTRODUCTION

Early adversity is a robust predictor of later cognitive and socioemo-

tional difficulties (McGinnis et al., 2022; Mooney et al., 2022; Reiss

et al., 2019). Some of these developmental outcomes appear to be par-

tiallymediated by changes in neural structure (Hanson et al., 2015; Kim

et al., 2022;McLaughlin et al., 2014; Tottenhamet al., 2010), whichmay

come about through mechanisms of experience-dependent plasticity

(Kolb & Gibb, 2014; Reha et al., 2020) or accelerated maturation of

the brain (Callaghan&Tottenham, 2016; Tooley, et al., 2021). Enhanced

insight into the mechanistic pathway connecting early experiences to

later difficulties could inform efforts tomitigate the harms of adversity

(Shonkoff, 2016).

Most neuroscience studies of early adversity have used magnetic

resonance imaging (MRI) to identify focal associations with the mor-

phology of individual brain regions, especially the surface area and

volume of the prefrontal cortex, amygdala, and hippocampus, with

mixed results (for a systematic review, see McLaughlin et al., 2019).

However, patterns of connectivity between regions are increasingly

recognized as a crucial determinant of the initial emergence of brain

structure, as well as for its support of adaptive functioning across the

lifespan (Collin &VanDenHeuvel, 2013;Medaglia et al., 2015). Indeed,

analyses at the level of circuits andof thewhole connectomehave iden-

tified features of neurodevelopmental and mental health conditions

in network topology (Bassett et al., 2018; Fornito & Bullmore, 2015;

Taylor et al., 2023). Thus, while preliminary diffusion imaging studies

of adversity have focussed on the ‘integrity’ of specific tracts (Bick

et al., 2017; Choi et al., 2009, 2012; Corbo et al., 2016; Dennison et al.,

2019; Hanson et al., 2013, 2015; McCarthy-Jones et al., 2018; Poletti

et al., 2015; Tendolkar et al., 2018;Ursache andNoble, 2016), analysing

the organization of whole-brain networks offers a complementary and

valuable window into the impact of adversity (Ho et al., 2018).

The network neuroscience approach to early adversity is still in

its infancy, with few studies scattered across multiple modalities.

Individuals with a history of early adversity tend to have sparser and

more heterogeneous connectomes when assessed with functional

MRI (Goetschius et al., 2020); however see also, Korgaonkar et al.

(2023), and diffusion tensor imaging (DTI) (Ohashi et al., 2017, 2019;

Puetz et al., 2017), altered centrality of key regions in MRI-derived

morphometric similarity networks (Teicher et al., 2014), and decreased

global efficiency of the DTI-derived connectome (Kim et al., 2019).

Recently, a rodent study using a computational model that compresses

whole-brain networks into two parameters—which approximate

the ‘cost’ and ‘value’ of connections—detected a difference in the

DTI-derived connectomes of mice exposed to unpredictable postnatal

stress versus unexposed mice: the former appear to have been subject

to weaker constraints on the formation of structural connections

(Carozza et al., 2023).

A current challenge in the network neuroscience approach to

adversity is that most studies are cross-sectional case-control com-

parisons of participants who do and do not self-report a history of

adversity. This approach bears a few critical limitations, including

(1) the use of retrospective self-report, which is less reliable than

prospective measures of adversity (Newbury et al., 2018), (2) a sim-

plistic binarization of adversity that collapses variability in scope and

severity (McLaughlin et al., 2021), (3) a narrow conceptualisation of

what qualifies as adversity, often considering abuse or poverty alone,

and (4) reliance on small samples recruited for elevated exposure

or symptoms of psychopathology. In other areas, such as the study

of the cognitive and grey-matter correlates of adversity, the field is

moving beyond these limitations using multivariate approaches and

cohort studies (Barch et al., 2022; Bignardi et al., 2022a; Carozza et al.,

2022a; Rakesh et al., 2022). These methods have not yet been applied

to the adversity-exposed structural connectome. As such, it is not

clear which elements of the early environment reliably predict which

global brain network differences across individuals, nor how widely

these differences are observed. A pivotal question thus emerges: Are

adversity-related differences in the structural connectome present

in the wider population, beyond the potentially inflated effects we

would see in extreme-group designs? If so, are some forms of adversity

stronger predictors of whole-brain organisation than others?

In this project, we aim to answer these questions directly by leverag-

ing a longitudinal cohort study with prospective measures of early-life

experience across childhood, the Avon Longitudinal Study of Parents

and Children (ALSPAC) (Boyd et al., 2013; Fraser et al., 2013). We

reconstructed the structural connectome of each participant in young

adulthood through diffusion imaging and probabilistic tractography.

We first used a data-driven Partial Least Squares (PLS) regression to

identify aspects of the childhood environment that predictwhole-brain

organisation. We then simulated the growth of these brain networks
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using generative network modelling, a computational strategy that

constructs complex networks based on the interplay between two

wiring constraints: a cost on long-distance connections and a prefer-

ence for topologically favourable ones (Akarca et al., 2021; Betzel et al.,

2016; Vértes et al., 2012). As this method compresses significant topo-

logical complexity into a single trade-off, it may uncover differences

unobservable in singular measures of global topology. For this reason,

we then ran a second PLS regression predicting model parameters in

young adulthood, before finally assessing the relationship between

brain wiring parameters and cognitive and socioemotional functioning

in adolescence.

We made three specific hypotheses. First, based on previous data-

driven analyses of the developmental impact the early environment

(Bignardi et al., 2022b; Carozza et al., 2022b), we expected forms of

early-life deprivation to load most strongly on the PLS components

predicting global topology and brain wiring parameters. Secondly, in

line with results from a rodent model of postnatal stress (Carozza

et al., 2023), we expected significant component(s) in the second PLS

to predict aweaker penalty on long-distance connections and aweaker

preference for connections between regions with shared neighbours.

Finally, we predicted that weaker constraints on brain wiring would be

correlated with lower IQ and higher internalising and externalising in

adolescence.

2 METHODS

2.1 Participants

ALSPAC is a longitudinal population-based cohort study based in Avon,

United Kingdom (Boyd et al., 2013; Fraser et al., 2013; Northstone

et al., 2019). ALSPAC initially recruited 14,541 pregnant women with

expected delivery dates between April 1, 1991 and December 31,

1992. From this initial sample, 14,062 infants were alive at birth and

13,988 a year later. When the oldest children were approximately 7

years of age, an attempt was made to bolster the initial sample with

eligible cases who had failed to join the study originally. As a result,

for variables collected after age seven, the total sample is 14,901 chil-

dren and 14,833 unique mothers. ALSPAC continues to follow these

children, their mothers, and their mothers’ partners.

ALSPAC collected rich data on the early environment through

maternal questionnaire across the first seven years of the child’s life;

these variables were used to estimate exposure to early-life adversity

(see Section 2.2). Measures of IQ and internalizing and externalizing

behaviour were collected during childhood and again in adolescence;

the latter of the two timepoints was used to estimate cognitive and

behavioural difficulties (see Section 2.3). Finally, a subset of ALSPAC

subjects participated in three neuroimaging sub-studies when they

reached young adulthood; these data were used to reconstruct the

structural connectomes (see Section 2.5). For a timeline of data col-

lection, please see Table S1. Study data were collected and managed

using REDCap electronic data capture tools hosted at the University

of Bristol (Harris et al., 2009). REDCap (Research Electronic Data Cap-

ture) is a secure, web-based software platform designed to support

data capture for research studies. Further details are available in a fully

searchable data dictionary on the studywebsite (http://www.bristol.ac.

uk/alspac/researchers/our-data/).

2.2 Early adversity measures

Maternal self-report questionnaires were used to measure the child’s

exposure to early adversity. To assess this comprehensively, we chose a

range of experiences falling under the theoretical dimensions of depri-

vation (i.e., the absence of a normative helpful experience) and threat

(i.e., the presence of a harmful experience) (McLaughlin et al., 2014).

ALSPAC administered the questionnaires five times across childhood,

and relevant study questions are listed in Table S2. Eight exposures are

coded as binary variables, including emotional domestic violence, phys-

ical domestic violence, parental physical cruelty, parental emotional

cruelty, sexual abuse, physical abuse, a change in primary caregiver, and

parental separation. Questionnaires also assessed three exposures as

composite scores of multiple questions: financial difficulties, maternal

caregiver neglect, and paternal caregiver neglect. The financial difficul-

ties score is the sum of how difficult themother found it to afford food,

clothing, heating, rent or mortgage, and items for the child. The mater-

nal andpaternal caregiver neglect scores are the additive inverse of the

sum of how frequently the mother and her partner engaged in a range

of activities with the child, such as feeding or playing. The three com-

posite scores demonstrated adequate internal consistency across time

points, with Cronbach’s alphas falling between 0.88–0.92 (financial dif-

ficulties), 0.55–0.76 (maternal caregiver neglect), 0.79–0.88 (paternal

caregiver neglect). The Z-scores of the composite scores were used in

all analyses.

2.3 Cognitive and behavioural measures

Participants completed theWechsler Abbreviated Scale of Intelligence

(WASI) at age 15.5 (Wechsler, 1999). The age-adjusted standardized

subscale scores were used to estimate a total IQ score as a measure

of general intelligence. When participants were 16 years old, their

mothers completed the short form of the parent Strengths and Diffi-

culties Questionnaire (SDQ) (Muris et al., 2003), which consists of 25

items about the behaviour of the child over the preceding 6 months

(Goodman, 1997). In line with previous work (Goodman et al., 2010),

two of the five subscales (conduct and hyperactivity/inattention) were

summed as a measure of externalising behaviour, while two other sub-

scales (emotional and peer relationships problems) were summed as a

measure of internalising behaviour.

2.4 Imputation of missing data

Participants lacked an average of 11.9% of questionnaire, cognitive,

and socioemotional data, while individual variables were missing in an
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average of 13.5% of participants (Figure S1). To establish the plausibil-

ity that our data were missing at random, we checked for demographic

predictors of missingness using Kolmogorov–Smirnoff and two-sided

chi-square tests as implemented in the finalfit package in R (Harri-

son et al., 2020). After Bonferroni correction formultiple comparisons,

participants who lacked cognitive and socioemotional data were more

likely to be female and non-White and to come from families of a lower

social class andweekly income.

Missing data for all retained participants was imputed using a

random forest algorithm as implemented in the missForest pack-

age (Stekhoven & Bühlmann, 2011). The algorithm consists of an

iterative process of training and prediction, which continues until

the difference between the new imputation and the previous impu-

tation begins to rise for both categorical and continuous variables.

The algorithm demonstrates greater accuracy than other imputa-

tion methods, accommodates mixed data types, and does not require

tuning (Tang & Ishwaran, 2017; Waljee et al., 2013). The method

also produces unbiased estimates of the accuracy of the imputa-

tion (Breiman, 2001). Our estimates indicated good performance

for both continuous (normalized root-mean-square error = 0.1545)

and categorical variables (proportion of falsely classified entries =

0.0377). Before and after imputation, similar descriptive statistics

were observedonbothdemographic (Table S3) and adversity (Table S4)

variables.

2.5 Acquisition of neuroimaging data

In young adulthood (ages 18–24), eligible participants were invited

to complete a multimodal neuroimaging protocol as part of one of

three Sub-Studies: (1) the ALSPAC Testosterone study of norma-

tively developing males (N = 513, 18–19.5 years, 100% male), (2) the

ALSPACPsychotic Experiences study of subclinical psychosis (N=252,

19–21.5 years, 35% male), and (3) the ALSPAC Schizophrenia Recall-

by-Genotype study of genetic variants contributing to schizophrenia

(N= 196, 21–24.5 years, 36%male) (Sharp et al., 2020). No brain imag-

ing data were collected before this point. All MRI data were acquired

at Cardiff University Brain Research Imaging Centre (CUBRIC) on the

same 3T Tesla General Electric HDx (GE Medical Systems) using an

8-channel head coil.

T1-weighted (T1w) structural scans were obtained at 1 mm

isotropic resolution using the following parameters: 3D fast spoiled

gradient echo (FSPGR) with repetition time (TR) = 7.8–7.9 ms; echo

time (TE) = 3.0 ms; inverse time (TI) = 450 ms; flip angle = 20◦.

High angular resolution diffusion weighted images (HARDI) were

obtained using a spin-echo echo-planar imaging sequence. A total

of 30 (Study 1) or 60 (Studies 2 and 3) gradient orientations and

three (Studies 1 and 3) or six (Study 2) non-diffusion weighted (b =

0 s/mm2) images were acquired using the following parameters: TR

= cardiac gated, TE = 87 ms, b = 1200 s/mm2; flip angle = 90◦.

Additional acquisition details are available elsewhere (Sharp et al.,

2020).

2.6 Pre-processing and connectome
reconstruction

Pre-processing was performed using QSIPrep 0.14.2, which is based

on Nipype 1.6.1. A description of steps can be found in Methods

S1, and additional details at https://qsiprep.readthedocs.io/en/latest/

workflows.html.

After excluding N = 37 participants with diffusion data missing and

N = 11 scans with technical errors, N = 913 diffusion imaging scans

were available for processing. In-scanner head motion was low across

these scans (M = 0.429 mm, SD = 0.282 mm; Figure S2) and cor-

rected in preprocessing, but as previouswork indicates that participant

movement can bias tractography-derived estimates of structural con-

nectivity (Baum et al., 2019), we excluded N = 2 subjects with mean

framewise displacement above 3 mm following previous work (Akarca

et al., 2021). In the case of participants who participated in more than

one study (N = 43), imaging data from the first scan was analysed,

yielding a final N = 868 participants. Across the three sub-studies, the

final sample had a mean age of 20.36 years (SD = 1.42) and 29% were

female.

Fibre orientation distributions (FODs) were estimated via con-

strained spherical deconvolution (Tournier et al., 2004, 2008) using

an unsupervised multi-tissue method (Dhollander et al., 2016, 2019).

FODs were intensity-normalized using mtnormalize (Raffelt et al.,

2017). The white matter FODs were then used for tractography,

whichwas carried out using probabilistic streamline fibre trackingwith

second-order integration (Tournier et al., 2010)withwhole-brain seed-

ing. Ten million streamlines were generated with a maximum length

of 250 mm, minimum length of 30 mm, and FOD power of 0.33. To

improve the biological accuracy of the weight estimates, streamlines

were filtered using SIFT2 (Smith et al., 2015).

A structural connectomewas then built from each tractogram using

the 100-parcellation 17-network Schaefer atlas (Schaefer et al., 2018).

This cortical parcellation is derived from resting-state fMRI data using

a gradient-weighted Markov Random Field model. The number of

streamlines connecting each pair of regions were counted and turned

into connectivity matrices, which were symmetrized. Self-connections

were removed.

In addition to the 100-node Schaefer atlas connectomes, which

were used for the primary analysis, we also built connectomes from

the 246-node Brainnetome parcellation (Fan et al., 2016) for the sake

of a sensitivity analysis. This higher-resolution parcellation includes

36 sub-cortical regions; as such, it permitted the consideration of

local differences in the hippocampus, amygdala, and basal ganglia (see

Section 2.14, and Table S5 for a list of subregions).

2.7 Connectome harmonization

The raw connectomes showed differences in density and topology

(Figure S6) across sub-studies. As data were collected on a single scan-

ner, these systematic differences were likely due to the difference
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in the number of gradient directions and sample differences across

sub-studies (see Section 2.5). To eliminate these differences while

preserving relationships with adverse experiences, we batch harmo-

nized the raw connectomes using ComBat (Johnson et al., 2007). This

method, originally developed for use with genomics data, estimates

parameters using an empirical Bayes regression with terms for study

site and for relevant covariates. As such, it standardizes data across

sites by eliminating variability due to unwanted factors without losing

the variability due to meaningful differences in variables of interest.

Previous work has shown it successfully controls for scanner variabil-

ity in diffusion imaging data (Fortin et al., 2017), and that it preserves

network topology when applied to tractography-derived connectivity

matrices (Onicas et al., 2022). We applied batch harmonization to the

connectomes, adjusting the edge weights of the connectivity matrices

to eliminate the bias introduced by systematic scanner and site effects

across studies. We preserved the covariates of age at scan, ethnicity,

birthweight, month of birth, social class, family income, and exposure

to each form of adversity. We did not preserve the covariate of sex, as

the all-male design of Study 1 resulted in strong associations between

sex and study ID.

After harmonization, following previous studies (Akarca et al.,

2021; Betzel et al., 2016), we enforced an average connectome density

of ρ = 10% across the sample to eliminate spurious connections and

highlight topological variation across subjects (Zalesky et al., 2016). A

mean of 499.86 and SD of 36.41 edges was achieved by retaining only

connections of at least 1899 streamlines. Connectomes were then

binarized.

2.8 Global and local network topology

To assess the global topology of the empirical connectomes, we com-

puted four measures: global efficiency, calculated as the average

inverse shortest path length of the network (Bullmore&Sporns, 2009);

mean clustering coefficient, defined as the fraction of triangles around

a node (Watts & Strogatz, 1998); mean node betweenness centrality,

corresponding to the fraction of all shortest paths in the network that

contain a given node (Kintali, 2008); and small-worldness, defined as

the ratio of clustering to shortest path length compared to its ran-

dom network equivalent (Humphries et al., 2006). The measure of

small-worldness was normalized using randomly rewired networks

that preserved the same density and degree sequence as the empirical

networks.

To evaluate the connectivity of the left and right medial prefrontal

cortex (PFC) in the Schaefer connectomes, as well as the bilateral

amygdala, hippocampus, and basal ganglia in the Brainnetome con-

nectomes, we computed three local measures of topology as well:

the degree or number of connections of both regions, their clustering

coefficient (defined above), and their nodal efficiency, or the average

inverse shortest path length in the neighbourhood of the node.

All measures were computed using the Brain Connectivity Toolbox

(https://sites.google.com/site/bctnet/Home) inMATLAB.

2.9 Partial least-squares prediction of global
topology

To characterise the relationship between exposures to adversity and

brain organisation, we ran PLS regression using plsregress in MATLAB.

This method decomposes a predictor matrix X and outcome matrix Y

to obtain the set of latent components that best explains the covari-

ance between X and Y, then predicts Y from the decomposition of

X using a linear regression. Thus a PLS regression is an effective

methodwhen the predictormatrix includesmany variables that exhibit

multicollinearity (Höskuldsson, 1988).

To determine the number of predictor components that best

explained the variation in our response variables (the measures of

global topology outlined above) we used a permutation testing pro-

cedure. This consisted of randomizing rows of the response matrix,

rerunning the PLS regression, and calculating the correlation between

each predictor components and the first response component. A total

of 10,000 permutations were run, generating a null distribution of

correlations for each component. Only componentswith observed cor-

relations greater than 95% of permuted correlations were retained as

significant.

To test which predictor and outcome variables loaded significantly

onto each component, we used a bootstrapping procedure. First, we

generated 10,000 bootstrap samples by sampling with replacement

from all participants. Then, we computed 95% confidence intervals

for the variable loadings using bootci in MATLAB, which implements

the bias corrected and accelerated percentile method (DiCiccio &

Efron, 1996). Due to sign flipping, we implemented Procrustes variable

rotation to ensure accurate estimates.

2.10 Generative network modelling

We then simulated the connectomes using generative network mod-

elling (Betzel et al., 2016; Vértes et al., 2012), which forms complex

networks by adding a single connection at a time in a probabilistic

manner.

First, a seed network was constructed by identifying the 50 edges

with the highest average value across the sample, so that—following

previous work (Akarca et al., 2021; Betzel et al., 2016; Carozza et al.,

2023)—the seed would comprise of 10% of the final number of con-

nections (see Figure S2). A single connection at a time was then added

to this initial network by trading off the ‘cost’ it would incur against

the topological ‘value’ it would bring to the network. This probability

is computed using the following wiring equation (Vértes et al., 2012):

Pi,j ∝ (Di,j)
𝜂(Ki,j)𝛾 (1)

The first term of the equation, Di,j, represents the biological cost of

a connection between brain regions i and j. As this metabolic andmate-

rial expense is proportional to the length of a tract,Di,j is approximated

using the Euclidean distance between i and j. The magnitude of the
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parameter η determines the strength of the penalty imposed on long-

distance connections. The second term, Ki,j, represents the value of a

connection. This is estimated using one of various measures of topo-

logical similarity between the two regions (known as ‘generative rules’;

see below). Themagnitude of the parameter γ determines the strength

of its contribution to wiring probability.

At each step of the simulation, the model multiples the cost and

value terms to obtain the relative probabilities of all possible new

structural connections. Then, a single connection is added to the

network. As this connection changes the topology of the network,

the model re-computes the Ki,j term for all remaining potential

connections, thereby updating Pi,j as well. Thus, over time, the net-

work gradually organizes through continually re-negotiating the

relative probabilities of new structural connections. The simulation

is finalised when the number of edges matches that of the target

network.

Depending on the respective values of η and γ, themodel negotiates

the trade-off between cost and value differently, resulting in a unique

network topology at the end of the simulation. Therefore, it is possible

to systematically manipulate the terms of the probability equation to

match the observed brain organisation of an individual. Identifying

the parameters that best simulate the connectomes of individuals

may shed light on the constraints and goals that account for the

organisation of their brain structure (Akarca et al., 2021; Bassett &

Betzel, 2017).

2.11 Identification of optimal model

Due to the high computational demands incurred by generative net-

work modelling and our large sample size, we first constructed a

consensus network that summarised connectivity across all partici-

pants (Figure 2a, Figure S3). This was achieved by identifying the edges

shared by 50% of participants (N = 982 edges, 9.82% network den-

sity).We then tested the ability of thirteen different generativemodels

to simulate this consensus network, so as to efficiently identify the

optimal generative rule.

In addition to a purely spatial model, which did not implement a

topological preference term, the 13 models included: two homophily

models (number of common neighbours and matching index); five

clustering-based models (the average, minimum, maximum, difference

in, and product of clustering coefficients); and five degree-based mod-

els (the average, minimum, maximum, difference in, and product of

node degrees) (Betzel et al., 2016). Models were computed using

the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/

Home) inMATLAB.

For each model, we tested 100,000 parameter combinations in the

space defined by − 15 ≤ η ≤ 0 and 0 ≤ γ ≤ 2 using a grid search

procedure. The fit of each simulation to the consensus network was

assessed according to the following energy equation (Betzel et al.,

2016):

E = max (KSk, KSc, KSb, KSd) (2)

The equation is composed of the Kolmogorov-Smirnov (KS) statis-

tics comparing the simulations to the consensus network on the

distributions of four key nodal features—node degree (k), clustering

coefficient (c), betweenness centrality (b), and edge length (d)—that

have previously been used for this purpose (Akarca et al., 2021; Betzel

et al., 2016; Zhang et al., 2021). A lower energy indicates less discrep-

ancy between the distributions, reflecting a better simulation of the

consensus network.

The energies of the N= 100 top-performing simulations were com-

pared across models to identify the optimal generative rule. This rule

was used to simulate the connectomes of individuals.

2.12 Identification of optimal parameters

To obtain precise estimates of the parameters that best replicated

the connectomes of each participant, a second grid search of 160,000

parameter combinations was run in the parameter space defined by

− 13 ≤ η ≤ − 3.5 and 0.25 ≤ γ ≤ 1. To account for the probabilis-

tic nature of the simulations, results of all subsequent analyses were

averaged across the topN= 10 lowest-energy simulations.

The realism of the final simulations was assessed by exploring the

spatial layout of six features of the networks (Akarca et al., 2021): node

degree, betweenness centrality, clustering coefficient, edge length,

local efficiency, and matching index. The value of each nodal statis-

tic was averaged across the top N = 10 simulations of all participants,

resulting in a 3-by-100-by-6 matrix. The same procedure was per-

formed on the empirical connectomes. Linear correlations between

the nodal statistics of the simulations and the nodal statistics of the

connectomes were then calculated.

At each node, the spatial error (or discrepancy) of eachmeasurewas

calculated by subtracting its average value in the top N = 10 simula-

tions from its average value in the empirical connectomes (Akarca et al.,

2021). Thus, a lower spatial error indicates more similarity between a

brain region’s local topology in the simulations and in the empirical con-

nectomes. To summarize the success of spatial layout across the brain,

ameasure of absolute errorwas calculated by summing the Z-scores of

each spatial error.

2.13 Partial least-squares prediction of brain
wiring

To characterise the relationship between exposures to adversity and

brain organisation, we repeated the PLS protocol outlined above,

retaining the same predictor matrix X but substituting the brain wiring

parameters η and γ for measures of global topology in the outcome

matrix Y.

2.14 Sensitivity analyses

Finally, we conducted exploratory analyses to test whether our results

varied at more extreme values of early adversity. First, we constructed
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a composite measure of SES by subtracting the Z-score of total finan-

cial difficulties across childhood from the Z-score of average monthly

family income across childhood. Next, we constructed a composite

measure of explore to violence by taking the sum of instances of abuse,

domestic violence, emotional cruelty, and physical cruelty across child-

hood. We used these measures to construct three subgroups: a group

of the 50 participants with lowest SES scores (‘deprivation’), a group of

the 50 participants with highest violence scores (‘threat’), and a group

of the 50 participants with highest SES scores (‘control’).We then com-

pared these three groups on global measures of topology, brain wiring

parameters, and the local topology of the medial PFC, hippocampus,

amygdala, and basal ganglia.

3 RESULTS

3.1 Demographic and adversity measures

After quality control and eliminating repeated scans (see Section 2), N

= 868 young adults were included in the study (M = 244.27 months,

SD = 17.06 months). The sample had a moderate history of adversity:

21% of participants were exposed to domestic violence and 13% had

suffered physical or sexual abuse before age 8, while 12% were raised

in households with annual incomes below £10,400 (which, accounting

for inflation from 2000 to 2023, is currently equivalent to £22,400).

For comparison, the estimated incidence of physical and sexual abuse

in the UK is 14.8% and 6.3%, respectively (Bellis et al., 2014), while the

current threshold for poverty for a couplewith two children is £26,400

per year (Department forWork and Pensions, 2023). Additional demo-

graphic data can be found in Table S3, and descriptive statistics of

internalising and externalising behaviours, IQ, and adversity measures

in Table S4.

Generally, forms of early deprivation were negatively correlated

with IQ and positively correlated with externalising and internalis-

ing behaviours, and forms of early threat exposure were positively

correlated with externalising and internalising behaviours (Figure 1;

see Figure S4 for confidence intervals). Correlations between vari-

ableswere comparable before and after the imputation ofmissing data

(Figure S5).

3.2 Connectome reconstruction

We utilised diffusion imaging and probabilistic fibre tracking to recon-

struct the structural connectomes of each participant. To control

for sample and acquisition differences, we harmonized the raw con-

nectomes across studies using ComBat, a Bayesian approach that

eliminates site effects whilst preserving other important covariates

(Johnson et al., 2007), which in this case included demographic and

early life experience measures (see Section 2). Harmonization largely

eliminated differences in global topological measures across studies

(see Figure S6 and accompanying statistics).

3.3 Prediction of later global topology

We first sought to identify forms of early-life adversity that predict

measures of global topology in young adulthood. Because measures of

the early environment and experiences are highly correlated amongst

themselves, including in our sample (Figure 1), we chose to implement

a PLS regression – a procedure that deals well with multicollinear-

ity (Höskuldsson, 1988). This method decomposes both the matrix of

predictors and the matrix of outcomes, then finds a linear regression

model that maximally explains covariance between the twomatrices.

Upon performing a permutation testing procedure, no predictor

component of the PLS attained significance. We therefore did not

assess the optimal number of components or the loadings of early-life

environmentmeasures. The first predictor component exhibited a cor-

relation with the first response component of only r = 0.015 (ppermuted
=0.677) after controlling for participant age at scan and explained only

0.034% of variance in global topology. Thus, in our sample, early-life

experience does not appear to co-varywith singularmeasures of global

brain organisation in young adulthood.

3.4 Identification of optimal generative network
model

Because commonly employed metrics of global topology offer a lim-

ited view into the complex topology of the human brain (Fornito et al.,

2016), we then compressed the overall organisation of the connec-

tomes using generative network modelling (Vértes et al., 2012). This

affords the opportunity of distilling differences across individuals and

between groups that may otherwise be unobservable using singular

features of network organisation (Carozza et al., 2023).

Due to the computational demands of generative network mod-

elling, we first constructed a consensus network that summarizes

connectivity across the sample (Figure S3). We used this consensus

network to identify the model that best replicates the organisation

of the biological connectomes (see Section 2, Figure 2b). Following

previous work (Akarca et al., 2021; Betzel et al., 2016; Vértes et al.,

2012), we tested thirteen generative models from three categories:

(i) homophily models, which favour connections between regions

with similar connectivity neighbourhoods; (ii) clustering-basedmodels,

which compute the value of a potential connection based on the clus-

tering coefficients of the two regions; and (ii) degree-based models,

which consider the nodal degrees of the regions.

Model energy was evaluated using Equation (2). We compared the

100 lowest-energy simulations of the consensus network from each

rule (Figure 2c). An ANOVA and post-hoc Tukey test confirmed that

the homophily category of models achieved lower energy than both

clustering- (diff = −0.0932, p < 1.0 × 10−14) and degree-based models

(diff = 0.0373, p < 1.0 × 10−14), in addition to the purely spatial model

(diff = −0.0878, p < 1.0 × 10−14). Within the homophily category, the

matching model outperformed the neighbour model (diff = −0.0114,

p = 2.2 × 10−14). In other words, a generative model that trades off

 14677687, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/desc.13490 by T

est, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 17 CAROZZA ET AL.

F IGURE 1 Spearman correlations between demographic variables, exposures to early adversity, and cognitive and socioemotional measures.
White indicates no correlation across the sample (N= 868); red indicates positive associations and blue negative. SDQ, Strengths and Difficulties
Questionnaire;WASI,Wechsler Abbreviated Scale of Intelligence.

the cost of a structural connection with the value of similar neighbour-

hoods producednetworks thatmost closely resembled the distribution

of topological features of the consensus network.

The homophily-based rules also achieved low energy within a nar-

row range of parameter combinations (parameter distributions for all

rules can be found in Figure S7), and overall model energy for these

rules tended to be limited by the degree term of the energy equa-

tion (Figure S8). Comparable differences in energy across rules were

observed when models were re-run using a more stringent thresh-

old for the consensus network and/or a more moderate seed network

(Table S6), indicating that the homophily model was robustly superior

to the others.

3.5 Assessment of individual model fit

We then used the homophily model to simulate the connectomes of

each individual. To obtain precise parameter estimates, we performed

a second grid search of 160,000 parameter combinations in the space

defined by − 13 ≤ η ≤ − 3.5 and 0.25 ≤ γ ≤ 1.0. To account for

the stochastic nature of the generative network model, we averaged

results across the top ten lowest-energy networks for each individual

for all subsequent analyses.

The parameters producing the lowest-energy networks for each

participant are shown in Figure 2d. As η and γ showed a strong negative
correlation (r = −0.86, p < 2.2 × 10−16), a stronger penalty on con-

nections between distant regions generally accompanied a stronger

preference for connections between regions with similar neighbours.

Each of the terms comprising the energy equation follows a similar

pattern across the parameter landscape (Figure S9), indicating that co-

varying η and γ replicated differences across individuals in all four of

the nodal statistics.

The low energy that the matching model achieved across the sam-

ple (M = 0.0846, SD = 0.0070) indicates that it successfully replicated

distributions of key nodal features of the connectomes. However, the

energy equation does not test whether the simulations mimic the

spatial layout of connectomes derived from tractography. Following

previous work (Akarca et al., 2021; Arnatkeviciute et al., 2021; Betzel

et al., 2016), we therefore calculated the correlation between simu-

lated andempirical connectomeson six nodal characteristics. As shown
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CAROZZA ET AL. 9 of 17

F IGURE 2 Identification of optimal generativemodel and parameters. (a) The average strength of connections across the sample (N= 868)
was used to construct a seed network of the 50 strongest edges. The consensus network was composed of connections shared by at least 50% of
subjects. (b) Using a grid search of the parameter space, 100,000 simulations were generated for each of the 13 generative rules: a purely spatial
model, which considers only the distance between two regions; two homophily models, which also consider ameasure of the similarity of the
neighbourhoods of the respective regions; five clustering-basedmodels, which compare the clustering coefficients of the regions; and five
degree-basedmodels, which compare their node degree. Model fit was evaluated using the energy equation shown. (c) The energy of the top 100
best-performing synthetic networks for each subject across all generative rules. (d) The optimal values of η and γ, averaged across the top 10
lowest-energy simulations using thematching rule. Values were obtained by testing an additional 160,000 parameter combinations in a narrow
low-energy window of the initial grid search. Each point in the scatterplot represents a single participant.

in Figure S10, two out of the six measures used in the energy equation

exhibited similar anatomical localisation (edge length: r= 0.63, p < 1 ×

10−4;meanmatching index: r=0.23, p=0.02). This indicates thatwhile

the simulations successfully replicated the distributions of key nodal

features, the layout of some of these features was arranged differently

in space.

3.6 Prediction of later brain wiring

Having established the parameters that best simulate the connec-

tomes of each individual in young adulthood, we then sought to

identify forms of early-life adversity that predict these brain wiring

parameters using a second PLS regression (Figure 3a). Upon per-

forming a permutation testing procedure, we found that the first

predictor component of the PLS attained significance (r = 0.0815,

ppermuted = 0.0155) whilst controlling for participant age at scan. In

other words, one latent factor was sufficient to explain the covariance

between early-life experience and brain wiring in young adulthood. As

shown in Figure S11, this component explains 0.71% of variance in η
and γ.

To determine which measures of early-life environment loaded sig-

nificantly onto this first predictor component, we ran a bootstrap and

resampling procedure. As shown in Figure 3b, only a lower birthweight

(loading = −15823, CI = [−14794, −17025]) loaded onto the compo-

nent (all other loadings can be found in Table S7). In terms of outcomes,

η loaded positively onto the response component while γ loaded nega-
tively (η loading=2.13,CI= [0.58, 3.77], γ loading=−0.13,CI= [−0.26,

−0.02]). Thus, while a lower weight at birth predicts a more moderate

penalty on long-range connections and a weaker preference for con-

nections between brain regions with shared neighbours, this explained

little variability in brain organisation, and no predictive contribution of

early adversity was detected.

Given differences in variable scoring and scales, a comparison of the

predictor variable loadings themselves is not meaningful. As such, to

assess their relative relationship with brain wiring parameters, we also

computed correlations between each predictor variable and the first

response component of the PLS. As Figure 3c shows, the small correla-

tion between birthweight and the first response component was much

larger than that exhibited by any form of early adversity. A bootstrap-

ping procedure showed that 95% confidence intervals for all other

variables included zero.
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10 of 17 CAROZZA ET AL.

F IGURE 3 Birthweight alone predicts brain wiring in young adulthood. (a) The relationship between early-life environment variables and brain
wiring parameters was assessed using a Partial Least Squares regression, a method robust tomulticollinearity. (b) Permutation testing determined
one significant component, and bootstrapping was used to generate 95% confidence intervals for variable loadings. Birthweight significantly
loaded onto the predictor component, such that lower birthweight entailed a higher PLS score. Both brain wiring parameters (η and γ) significantly
loaded onto the response component, such that a higher PLS score predicted amoremoderate penalty on long-distance connections and aweaker
preference for connections between regions with shared neighbours. (c) Correlations between each early-life environment variable and the first
PLS response component, ranked by absolute value. Blue shading indicates that the bootstrapped 95% confidence interval for the correlation did
not include zero, whilst grey shading indicates that it did.

3.7 Sensitivity analyses

One possible confound is that participant head motion in the scanner

may have influenced parameter estimates and thus confounded the

relationship with early adversity. However, mean frame-wise head dis-

placement was not correlated with η (r = 0.027, p = 0.413) or γ (r =
−0.008, p= 0.806).

A second possibility is that the incidence of psychotic experiences

in half of participants in Sub-Study 2 and/or the high genetic risk

of schizophrenia in half of participants in Sub-Study 3 obscured the

impact of early-life experiences. To test this possibility, we re-ran the

brain wiring PLS on the normatively developing participants of Sub-

Study 1 alone. However, this once again produced a single significant

predictor component (p = 0.042) on which only birthweight loaded

significantly (−13091 [−11607, −10667]). Similarly, a PLS predicting

global topology from early-life adversity within this study uncovered

no significant components.

Third, it could be that a 10% threshold is too stringent and elim-

inates meaningful variation across participants. To investigate this,

we re-thresholded the connectomes at 15% and 20% density and

once again used PLS to predict global topology from measures of

early-life adversity. However, as with the 10% threshold, no predictor

component attained significance.

Another possible explanation for the lack of an observed relation-

ship between early adversity and brain wiring is that the ALSPAC

sample exhibits lower rates of poverty and exposure to violence than

are reported in more diverse cohorts (Giano et al., 2020). This may

be exacerbated by attrition, as participants with neuroimaging data

showed higher income than baseline ALSPAC participants (X2 = 95.90,

p < 2.2 × 10−16) – albeit comparable rates of domestic violence expo-

sure (X2 = 12.00, p = 0.68). Given that PLS regressions estimate linear

relationships between predictors and outcomes, the analysis could be

failing to detect a non-linear relationship due to lack of variability in

adversity scores.

We assessed this possibility by extracting comparison groups from

extreme ends of the adversity spectrum. First, we created ameasure of

SES from family income and financial difficulties, and a measure of vio-

lence exposure by summing experiences of abuse, domestic violence,

and cruelty (see Section 2). We then selected the 50 participants with

lowest SES as a deprivation group, the 50 participants with highest vio-

lence exposure as a threat group, and the 50 participants with highest

SES as an unexposed group.
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Participants in the three subsamples necessarily came from highly

different early-life environments. For instance, an ANOVA and post-

hoc Tukey test showed that the deprivation group had greater sub-

jective financial difficulties (M = 40.56, SD = 10.20) than the threat

(M = 19.64, SD = 15.03; p < 1.0 × 10−14) or unexposed groups (M =

0.00, SD = 0.00; p < 1.0 × 10−14). Similarly, while all participants in

the unexposed group had weekly family incomes above 400 GBP, 6%

and 36% of the threat and deprivation groups respectively had weekly

family incomes below 100 GBP. The threat group showed elevated

rates of violence-based adversities: the sumof reports of domestic vio-

lence, for instance, was substantially higher in the threat group (M =

4.54, SD = 1.98) than in deprivation (M = 1.30, SD = 1.82; p = 3.0 ×

10−14) and unexposed groups (M = 0.16, SD = 0.55, p = 3.0 × 10−15).

Additional demographic information for each group can be found in

Table S8.

We then ran ANCOVAs comparing the groups on brain wiring

parameters and measures of global topology (see Section 2) while

covaryingbirthweight.Notwithstanding the careful subsampling, there

was no impact of groupmembership on η (F2,144 = 0.52, p= 0.5928) or

γ (F2,144 = 0.26, p= 0.7721). Nor did group membership predict global

efficiency (F2,144 = 0.46, p = 0.630), mean clustering (F2,144 = 0.16, p

= 0.849), mean betweenness centrality (F2,144 = 1.05, p = 0.354), or

small-worldness (F2,144 = 0.38, p= 0.686) (see Table S9 for descriptive

statistics). Thus, in this sample, features of the early-life environment

predicted neither brainwiring parameters nor global topology in young

adulthood. Higher birthweight, on the other hand, predicted greater

global efficiency (F1,144 = 6.65, p = 0.011), lower mean betweenness

centrality (F1,144 = 8.28, p = 0.005), and lower small-worldness (F1,144
= 7.7, p= 0.006).

It is important to note that a lack of adversity-related variation in

global topology does not entail the absence of adversity-related differ-

ences in local connectivity. To verify this possibility, we compared the

degree, clustering coefficient, and nodal efficiency of the left and right

medial prefrontal cortices (PFC) of the three subgroups – as numerous

studies implementing different metrics have uncovered adversity-

related differences in the structure of this region (McLaughlin et al.,

2019).

In the right hemisphere, the medial PFC showed a lower clustering

coefficient in unexposed group (M = 3542.5, SD = 705.0) compared to

the deprivation group (M= 3837.2, SD= 633.2) and threat group (M=

3850.3 SD = 699.3), as demonstrated by an ANCOVA (F2,144 = 3.49, p

= 0.033). Similarly, the unexposed group showed lower efficiency (M=

6024.3, SD = 1016.5) compared to the deprivation (M = 6424.4, SD =

706.4) and threat groups (M = 6335.9, SD = 730.5) in the right medial

PFC (F2,144 = 3.28, p = 0.041). No difference was observed in degree

(F2,144 = 0.28, p = 0.755). For the left hemisphere, an ANCOVA found

that the medial PFC showed lower clustering coefficient in the unex-

posed group (M = 3633.3, SD = 648.0) compared to the deprivation

(M = 3891.5, SD = 706.3) and threat (M = 4019.5 SD = 670.5) groups

(F2,144 = 4.19, p= 0.016). No difference was observed in degree (F2,144
= 1.121, p= 0.302) or efficiency (F2,144 = 2.72, p= 0.069).

A further possibility is that differences in network topology are

manifest subcortically, rather cortically. As the Schaefer parcellation

does not include subcortical regions, we reconstructed the connec-

tomes using the Brainnetome atlas (Fan et al., 2016). We assessed

the local connectivity of 20 limbic regions, including subregions of the

amygdala, hippocampus, and basal ganglia, and compared the three

groups on their degree, clustering coefficient, and nodal efficiency.

After correction for multiple comparisons, no significant differences

were found.

3.8 Relationship between brain wiring and
cognitive and socioemotional functioning

Finally, we tested our last hypothesis, that weaker constraints on

brain wiring would be related to lower IQ and higher internalising and

externalising behaviours in adolescence. As these measures were col-

lected before neuroimaging data, inference of a causal contribution

of brain organisation is not possible, and we therefore chose to cal-

culate a simple correlation. Given the strong association between η
and γ, and following previous work (Carozza et al., 2023), we consid-

ered the wiring parameters together by multiplying their values. After

controlling for sex, study ID, and birthweight, stronger wiring parame-

ters showed a small negative correlation with externalising behaviour

(r = −0.079, p = 0.021) which did not survive Bonferroni correction

for multiple comparisons, and no relationship with either internalising

behaviour (r = −0.053, p = 0.117) or IQ (r = −0.021, p = 0.530). As

such, we find no evidence for a robust relationship between the wiring

economy of the brain and cognitive and socioemotional functioning.

4 DISCUSSION

We explored the relationship between the early-life environment and

whole-brain networks in young adulthood. Using data from a large lon-

gitudinal sample, we first evaluated whether early adversity predicts

later differences in global network topology. We then used genera-

tive network modelling to test whether adversity alters the economic

trade-off that best replicates the organisation of the structural con-

nectome. Contrary to our hypotheses, neither measures of global

topology nor model parameters varied by exposure to violence, expe-

riences of deprivation, or basic demographic characteristics apart from

birthweight. This invariance held across subsamples taken from the

extremes of the spectrumof adversity exposure. Thus,we foundnoevi-

dence that adverse environments in childhood alter the organisation of

whole-brain networks in young adulthood.

4.1 Early adversity does not predict later brain
organisation

Our first hypothesis was that forms of early-life deprivation would

most strongly predict the later organisation of the DTI-derived struc-

tural connectome. Our analysis was well positioned to detect such

a relationship, should it exist, given our use of the large ALSPAC
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cohort—which prospectively collected richmeasures of early-life expe-

rience (Boyd et al., 2013; Fraser et al., 2013)—and our choice of a

data-driven PLS regression. However, across thresholds, there was no

significant covariance between the early environment and the global

efficiency, clustering, betweenness centrality, or small-worldness of

the connectome in young adulthood. Upon predicting brain wiring

parameters, one significant component did emerge, in line with pre-

vious work demonstrating that this compression strategy captures

more variability than singular measures of topology (Carozza et al.,

2023). However, following a bootstrapping procedure, only birth-

weight loaded significantly onto this component.

The lack of a contribution from experiences of adversity does not

seem attributable to low variance in the project sample, as subsamples

of participants who grew up in poverty or with elevated exposure

to violence exhibited comparable values on all metrics of brain

organisation to a subsample of unexposed individuals. Notably, these

groups did differ in the connectivity of the medial prefrontal cortex

(PFC), a region that has shown adversity-related differences across

numerous studies andmodalities (McLaughlin et al., 2019; Noble et al.,

2015). Specifically, we found that the unexposed group has lower

clustering and efficiency in the right medial PFC, as well as lower

clustering in the left medial PFC, when compared to the deprivation

and threat groups. These differences appear to indicate that adversity

increases the density of connections in the PFC; without following the

participants over time, it is unclear if this reflects a shift in the timing

of maturation of the PFC or a diverging developmental trajectory

(DiMartino et al., 2014).

Our observation of a lack of global differences contrasts previous

studies that have shown a drop in the global efficiency of brain net-

works of female (but not male) children in poverty (Kim et al., 2019)

and maltreatment-related increases in the sparsity and heterogene-

ity of the structural connectome (Ohashi et al., 2017, 2019; Puetz

et al., 2017). This discrepancy may reflect our choice to use (1) a lon-

gitudinal sample, which avoids the spurious correlations induced by

cross-sectional analyses (Spector & Brannick, 2011); (2) prospective

measures of adversity, as retrospective measures can underestimate

genuine exposure and inflate relationships with current well-being

(Pinto & Maia, 2013; Susser & Widom, 2012); and (3) a large sample,

which improves the robustness and generalisability of findings (Button

et al., 2013; Falk et al., 2013). Thus, our analysis draws attention to the

importance of rigorous analytical designs and broad sampling in accu-

rately characterising the relationship betweenearly adversity and later

neural phenotypes.

Another plausible reason for differing results may be unmeasured

confounds in previouswork. In this study, higher birthweight predicted

both generative modelling parameters and global measures of topol-

ogy. Given that higher birthweight is associated with greater volume

of grey and white matter into late adulthood (Wheater et al., 2021),

brain size may have influenced the results of probabilistic fibre track-

ing. While studies typically deploy diffusion tensor measures in their

native form (i.e. without normalizing for brain size), previous work has

observed a relationship between intracortical volume and FA andMD,

and suggested that it may be due to partial volume effects or intrin-

sic white matter differences (Takao et al., 2011; Eikenes et al., 2023).

However, to our knowledge, only one study of adversity-related differ-

ences in whole-brain organisation reports controlling for head size or

birthweight (Puetz et al., 2017). This critique extends to each diffusion

imaging study of the FA or MD of particular tracts cited above (with

the exception of Bick et al. (2015)). Given that birthweight and later

head size can show negative correlations with low SES and maltreat-

ment (Finch, 2003; Oliván, 2003; Weinberg et al., 1974), inadequate

controls may be inflating observations of a relationship between

early adversity and the strength or organisation of white matter

connectivity.

Notably, our findings also contrast a previous generative modelling

study which found that early postnatal stress attenuates wiring con-

straints in mice—although, as with the present study, groups did not

differ on measures of global topology (Carozza et al., 2023). The ran-

domization to an experimental paradigm, and thus the intensity and

homogeneity of within-group experiences, may have resulted in a

stronger effect on brain wiring in the rodents. It is also possible that

fundamental differences at theneural and social levels (Feldman, 2017)

account for the discrepancy.

Finally, it is possible that adversity-related differences in connec-

tomic organisation were present in our participants earlier in life. In

the ALSPAC cohort, neuroimaging data were collected up to around

20 years after data about experiences of adversity. Given that Puetz

et al. (2017) and Kim et al. (2019) both analysed children, the dif-

ferences they observed may fade over time through compensatory

mechanisms or later experiences. Indeed, the human brain is char-

acterised by distinctive experience-dependent plasticity and a long

trajectory of maturation (Semple et al., 2013), which has been theo-

rized to allow later experiences and relationships to exert top-down

reparation of early neurobiological harm (Feldman, 2017). As dis-

cussed further below, this calls attention to the possibility that positive

resiliency factors attenuate ormoderate the impact of early-life adver-

sity on whole-brain networks. Relatedly, it is possible that differences

in birthweight across this sample are reflective of in-utero effects that,

compared to postnatal experiences, could have had a more enduring

and global impact on the connectome. In fact, premature birth has

been shown to predict global topology of the brain in adolescence

(Fischi-Gomez et al., 2016).

4.2 Successful simulations co-vary brain wiring
constraints

We found that, across thirteen generative rules, the matching index

best replicated the organisation of the empirical connectomes. This

adds to a growing bodyof studies showing that homophily outperforms

other categories of generativemodels (Akarca et al., 2021; Betzel et al.,

2016; Vértes et al., 2012; Zhang et al., 2021). It has been suggested

that favouring connections between regions with similar connectivity

patterns replicates the effects of macroscopic dynamics of Hebbian

learning (Vértes et al., 2014). Relatedly, homophily may be the most

biologically plausible strategy for network generation because it relies
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on self-similarity, which is a form of information available locally rather

than globally (Akarca et al., 2022).

In our second hypothesis, we expected the environmental PLS

component to predict a weaker penalty on long-distance connections

and aweaker preference for connections between regions with shared

neighbours. While the predictor was constituted only by birthweight,

η and γ did load onto the response component in opposite directions,

likely due to their strong negative relationship—which echoes most

previous findings (Akarca et al., 2021; Carozza et al., 2023; Zhang et al.,

2021).

4.3 Brain wiring is weakly related to externalizing
behaviour

Finally, in our third hypothesis we predicted that weaker wiring

constraints would be negatively correlated with IQ and positively

correlated with internalising and externalising behaviours in adoles-

cence. We found limited evidence in support of this hypothesis in the

formof aweak negative correlation between the product of η and γ and
externalising behaviour. This is consistent with previous findings that

global network topology is associated with externalising symptoms

in adversity-exposed individuals (Gilchrist et al., 2022; Puetz et al.,

2017), but not with cognition across the socioeconomic gradient (Kim

et al., 2019). However, other work has found a moderate correlation

between η and γ and cognitive performance in children (Akarca et al.,

2021). Our finding may therefore be due to the temporal ordering

of the data collection in ALSPAC, in which cognition was assessed

in adolescence and neuroimaging in adulthood; this same ordering

proscribes a causal interpretation of the relationship between brain

wiring and externalising behaviour.

4.4 Limitations and future directions

Several limitations of our analysis point to promising follow-up inves-

tigations. First, replication in a more diverse cohort such as the

Adolescent Brain Cognitive Development (ABCD) Study (Volkow et al.,

2018) would confirm the generalisability of these results. Secondly,

we used a broad range of experiences of deprivation and threat dur-

ing childhood as our predictors, as previous theoretical and empirical

work demonstrates their impact on brain development (McLaughlin

et al., 2021; Lawson et al., 2017). However, future work should explore

whether negative and positive experiences outside this time-frame –

such as in adolescence or young adulthood, which were not available

in this dataset – explain more variation in global network topology.

Relatedly, analysing the connectomes of children at repeated intervals

across development could test whether there are earlier differences in

network organisation or brain wiring parameters that disappear over

time, and if so, whether these earlier differences explain later vari-

ance in cognition or mental health. Finally, given conflicting reports

of adversity-related differences in the strength or organisation of

white matter tracts, the field would benefit from a systematic explo-

ration of the sensitivity of previous findings to pre-processing and

reconstruction decisions.

In summary, we found no evidence of a relationship between varia-

tions in the early-life environment and the organisation of the struc-

tural connectome in young adulthood. Future investigations should

work to demarcate the extent and magnitude of the impact of early

adversity on structural connectivity.
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