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Abstract
We prove that applying a projective functor to a
holonomic simple module over a semisimple finite-
dimensional complex Lie algebra produces a module
that has an essential semisimple submodule of finite
length. This implies that holonomic simple supermod-
ules over certain Lie superalgebras are quotients of
modules that are induced from simple modules over the
even part. We also provide some further insight into the
structure of Lie algebra modules that are obtained by
applying projective functors to simple modules.
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1 MOTIVATION AND DESCRIPTION OF THE RESULTS

1.1 Motivation from Lie superalgebras

Let 𝔤 be a semisimple (or reductive) finite-dimensional Lie algebra over ℂ. Let 𝔰 = 𝔰0 ⊕ 𝔰1 be a
finite-dimensional complex Lie superalgebra such that 𝔰0 ≅ 𝔤. One of the basic representation-
theoretic problems for 𝔰 is the classification of simple 𝔰-supermodules, see, for example, [9, 10,
33]. A natural way to address this problem is to look for some connection between simple 𝔰-
supermodules and simple 𝔤-modules. In [9, 10, 33], this approach was successfully applied to
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reduce the problem of classification of simple 𝔰-supermodules to that of simple 𝔤-modules. The
latter problem is very difficult, the only known case in which it is “solved” (in the sense that it
is reduced to the problem of classification of equivalence classes of irreducible elements over a
certain noncommutative principal ideal domain) is 𝔰𝔩2, see [6].
The module categories 𝔰-Mod and 𝔤-Mod are connected by the usual induction and restriction

functors. Moreover, the latter two functors are not only adjoint in the obvious way (i.e., induction
is left adjoint to restriction), but they are also biadjoint, up to parity shift (i.e., induction is right
adjoint to restriction, up to parity shift that depends on the parity of the dimension of 𝔰1). This
is equivalent to saying that induction is isomorphic to coinduction, up to parity shift. Since the
universal enveloping algebra 𝑈(𝔤) is noetherian and the universal enveloping algebra 𝑈(𝔰) is
finite over𝑈(𝔤), every simple𝑈(𝔰)-supermodule 𝑆 has a simple quotient, say 𝐿, when considered
as a 𝑈(𝔤)-module. By adjunction, it follows that 𝑆 is a submodule of a module that is coinduced
from a simple 𝑈(𝔤)-module. That is a very natural fact.
Now we recall that induction and coinduction coincide, up to a parity shift. It follows that 𝑆 is

a submodule of a module that is induced from a simple𝑈(𝔤)-module. It would be more natural to
expect 𝑆 to be a quotient of a module induced from a simple𝑈(𝔤)-module. However, it seems that
there is no easy argument for why that should be the case. This property is an essential ingredient
in [10] where the claim is proved in type𝐴 using very specific type𝐴 properties established in [37,
38].
The idea is that, in order to use the correct adjunction, we need to show that 𝑆, when restricted

to𝑈(𝔤), has a simple submodule. Note that we already know that 𝑆 is a submodule of an induced
simplemodule. Therefore, it is enough to show that any𝑈(𝔰)-supermodule that is induced from a
simple𝑈(𝔤)-module, when restricted back to𝑈(𝔤), has finite type socle, that is, it has an essential
semisimple submodule of finite length.
At the level of𝑈(𝔤)-modules, the composition of induction to𝑈(𝔰) followed by restriction back

to𝑈(𝔤) can be described as tensoring with a finite-dimensional𝑈(𝔤)-module, namely, with
⋀

𝔰1.
This naturally leads to the formulation of our main result in Theorem 22 below.

1.2 Main result

Recall that a simple module over a finitely generated associative algebra of finite Gelfand–
Kirillov dimension is called holonomic, provided that it has theminimal possible Gelfand–Kirillov
dimension among all simple modules with the same annihilator.
The main result of this paper is the following statement.

Theorem 22. Let 𝔤 be a semisimple finite-dimensional Lie algebra over ℂ. Let 𝐿 be a holonomic
simple 𝔤-module and let 𝑉 be a finite-dimensional 𝔤-module. Then, the 𝔤-module 𝑉 ⊗ℂ 𝐿 has an
essential semisimple submodule of finite length.

As an immediate corollary, it follows that any holonomic simple 𝔰-supermodule is, indeed, a
quotient of a module that is induced from a simple 𝔤-module.
In type 𝐴, the assertion of Theorem 22 is true for all simple 𝔤-modules, not necessarily holo-

nomic ones, see [10, Theorem 23]. Of course, we expect the assertion of Theorem 22 to be true
for all simple 𝔤-modules in all types. However, at the moment, we do not see how to prove
that.
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1.3 Structure of 𝑽 ⊗ℂ 𝑳

The main difficulty in proving the main result lies in the fact that the module 𝑉 ⊗ℂ 𝐿, in general,
while being noetherian, does not have to be artinian, see [43] for an example. At the same time, in
all known “natural” examples, for instance, if we assume that 𝐿 belongs to the BGG category 𝒪,
see [4, 19], or to the category of weight modules with finite-dimensional weight spaces, see [32],
or to the category of Gelfand–Zeitlin modules, see [16, 18], the module 𝑉 ⊗ℂ 𝐿 has finite length.
Therefore, in our approach, we cannot really rely on the intuition developed during the study
of these classical categories of modules. We need to understand the structure of 𝑉 ⊗ℂ 𝐿 in very
abstract terms and in a situation where we lack easy computable examples.
Possible subquotients of interest in 𝑉 ⊗ℂ 𝐿 split naturally into three categories:

∙ simple subquotients whose Gelfand–Kirillov dimension equals GKdim(𝐿);
∙ simple subquotients whose Gelfand–Kirillov dimension is strictly smaller than GKdim(𝐿);
∙ nonsimple subquotients that we call strange, see Subsection 4.5 for details, and which are
defined by the property that they have Gelfand–Kirillov dimension GKdim(𝐿) but they do not
have any simple subquotient of Gelfand–Kirillov dimension GKdim(𝐿).

Our proof of the main result essentially reduces to the statement that 𝑉 ⊗ℂ 𝐿 cannot have
strange submodules.
Amajor part of the paper is devoted to taking a closer look at the general structure of𝑉 ⊗ℂ 𝐿. As

mentioned above, this module might fail to have finite length. However, one can define a natural
Serre subquotient of the category of all 𝔤-module in which 𝑉 ⊗ℂ 𝐿 does have finite length, see
Subsection 7.3. The structure of 𝑉 ⊗ℂ 𝐿 as an object of this Serre subquotient is similar in spirit
to what was called the rough structure of generalized Verma modules in [38].
The correct setup for the study of modules of the form 𝑉 ⊗ℂ 𝐿 is to combine them all into a

certain birepresentation of the bicategory of projective functors associated to the algebra 𝔤. In the
case when 𝐿 is a simple highest weight module, these birepresentations appear frequently and
were studied extensively in many papers, see [29, 34, 38] and references therein. In the general
case, it is natural to expect that the corresponding birepresentations behave similarly to the case of
highest weightmodules. One possible direction of this expectation is formulated, in precise terms,
in Conjecture 5 in Subsection 3.2. This conjecture asserts that the birepresentation in question is
simple transitive in the terminology of [37].
In type 𝐴, the conjecture is proved in Subsection 4.4. In fact, in type 𝐴, we establish an equiva-

lence between a birepresentation in the general case and a birepresentation in the highest weight
case. We do not expect such an equivalence for other types, in general, as we know from [29] that,
outside type 𝐴, not all simple transitive birepresentations of projective functors can be modeled
naively using highest weight modules (a modeling via highest weight modules is possible, but it
requires an upgrade to the level of (co)algebra 1-morphisms and the corresponding categories of
(co)modules). It would be really interesting if, in general type, each simple transitive birepresen-
tation of projective functors turned out to be constructible directly starting from some simple (but
not necessarily highest weight) module. At the moment, we do not know whether this is true or
not and where to look for such simple modules.
Another interesting aspect of the structure of 𝑉 ⊗ℂ 𝐿 which we analyze is the following: There

is a natural preorder ⊳ on the set of isomorphism classes of simple 𝔤-modules given by 𝐿 ⊳ 𝐿′,
provided that 𝐿′ is a quotient of 𝑉 ⊗ℂ 𝐿, for some 𝑉. In Conjecture 9, we predict that ⊳ is, in fact,
an equivalence relation. Again, in type 𝐴, we can prove this conjecture, see Subsection 4.3. We
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4 of 29 MACKAAY et al.

find it very surprising that this, intuitively very natural expectation, seems to be very nontrivial
in reality and even in type 𝐴 its proof requires quite heavy machinery. At the moment we do not
know how to prove this conjecture in general.

1.4 Structure of the paper

The paper is organized as follows: in Section 2,we collect all necessary preliminaries. In Sections 3,
4, and 7, we study the general structure of modules of the form 𝑉 ⊗ℂ 𝐿 in more detail. Section 3
contains all necessary preliminaries in order to formulate Conjecture 5 (in Subsection 3.2) and
Conjecture 9 (in Subsection 3.3). The two conjectures are compared in Subsection 3.4. Section 4
contains proofs of Conjecture 5 and Conjecture 9 in type𝐴. The main result is proved in Section 5
and is extended beyond the holonomic case to some further special cases outside type 𝐴 in Sec-
tion 6. Section 7 is devoted to the study of strange subquotients of modules of the form 𝑉 ⊗ℂ 𝐿

as well as Serre subquotients of the category of 𝔤-modules in which modules of the form 𝑉 ⊗ℂ 𝐿

have finite length.

2 PRELIMINARIES

2.1 Category𝓞

Fix a triangular decomposition 𝔤 = 𝔫− ⊕ 𝔥 ⊕ 𝔫+ of 𝔤. Associated to this decomposition, we have
the corresponding BGG category 𝒪, see [4, 19]. Simple objects in 𝒪 are the simple highest weight
modules 𝐿(𝜆), where 𝜆 ∈ 𝔥∗. Themodule 𝐿(𝜆) is the unique simple quotient of the Vermamodule
Δ(𝜆).
Let 𝑍(𝔤) be the center of the universal enveloping algebra 𝑈(𝔤) of 𝔤. Then, 𝒪 decomposes into

a direct sum of 𝒪𝜒 , where 𝜒 ∶ 𝑍(𝔤) → ℂ is a central character of 𝑈(𝔤). The category 𝒪𝜒 is a full
subcategory of 𝒪 consisting of all modules on which the kernel of 𝜒 acts locally nilpotently. An
important fact about 𝒪𝜒 is that it is always nonzero. In other words, any character of 𝑍(𝔤) is real-
izable as the central character of some 𝐿(𝜆), see [14, Section 7]. For a fixed 𝜒, the set of all 𝜆 such
that 𝐿(𝜆) has central character 𝜒 is an orbit of theWeyl group𝑊 of (𝔤, 𝔥) on 𝔥∗ with respect to the
so-called dot-action, which is the shift of the natural action by half the sum of all positive roots.
If 𝐿 is some simple 𝔤-module (not necessarily in category 𝒪), then the annihilator Ann𝑈(𝔤)(𝐿)

of 𝐿 in 𝑈(𝔤) is a primitive ideal and it is realizable as the annihilator of some 𝐿(𝜆), see [15].
For 𝜆 ∈ 𝔥∗, we have the indecomposable projective cover 𝑃(𝜆) of 𝐿(𝜆) in 𝒪 and the

indecomposable injective envelope 𝐼(𝜆) of 𝐿(𝜆) in 𝒪.
We denote by 𝐑 ⊂ 𝔥∗ the root system of 𝔤 with respect to 𝔥. Our choice of triangular decom-

position above gives rise to the decomposition of 𝐑 into a disjoint union of positive roots 𝐑+ and
negative roots 𝐑−. We denote by 𝜋 the corresponding basis of 𝐑. We also denote by Ξ the root
lattice ℤ[𝐑].
By definition, a weight in 𝔥∗ is integral if it is a weight of some finite-dimensional 𝔤-module.

We denote by Λ the lattice of all integral weights. Note that Ξ ⊂ Λ is a subgroup of finite index.
This index is the determinant of the Cartan matrix for 𝔤, in particular, Ξ = Λ only in types 𝐸8, 𝐹4,
and 𝐺2.
For a weight 𝜆, we denote by 𝑊𝜆 the integral Weyl group of 𝜆, that is the subgroup of 𝑊 gen-

erated by all reflections 𝑠 for which 𝑠 ⋅ 𝜆 − 𝜆 is an integral multiple of a root. We also denote by
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 5 of 29

𝑊′
𝜆
the stabilizer of 𝜆 in𝑊𝜆. We call 𝜆 ∈ 𝔥∗regular if𝑊′

𝜆
= {𝑒}. If 𝜆 ∈ 𝔥∗ is not regular, it is called

singular. We call 𝜆 dominant if 𝑤 ⋅ 𝜆 ⩽ 𝜆, for all 𝑤 ∈ 𝑊𝜆.
We note that the categories 𝒪𝜒 are usually decomposable. For 𝜆 ∈ 𝔥∗, we denote by 𝒪𝜆 the

indecomposable direct summand (block) of𝒪 containing 𝐿(𝜆). Let𝜒 = 𝜒
𝜆
be the central character

of 𝐿(𝜆). Consider𝑊 ⋅ 𝜆 and define on this finite set the equivalence relation≡ as follows: for𝜇, 𝜈 ∈

𝑊 ⋅ 𝜆, set 𝜇 ≡ 𝜈 provided that 𝑊𝜇 ⋅ 𝜇 = 𝑊𝜈 ⋅ 𝜈. If {𝜆1, … , 𝜆𝑘} is any cross-section of equivalence
classes, then 𝒪𝜒 decomposes into the direct sum 𝒪𝜆1

⊕ ⋯ ⊕ 𝒪𝜆𝑘
.

2.2 Projective functors

In this subsection, we recall the definition and basic properties of projective functors, as
introduced in [5].
Letℳ denote the category of all 𝔤-modules on which the action of 𝑍(𝔤) is locally finite. Note

that 𝒪 ⊂ ℳ. Similarly to 𝒪, the categoryℳ decomposes into a product of the full subcategories
ℳ𝜒 , where 𝜒 is a central character, defined as follows: ℳ𝜒 consists of all objects on which the
kernel of 𝜒 acts locally nilpotently. Clearly, 𝒪𝜒 ⊂ ℳ𝜒 .
For any finite-dimensional 𝔤-module 𝑉, tensoring with 𝑉 preserves both ℳ and 𝒪. A projec-

tive functor is an endofunctor of ℳ (or 𝒪) that is isomorphic to a direct summand of tensoring
with some𝑉. The functor𝑉 ⊗ℂ − is biadjoint to𝑉∗ ⊗ℂ −, for any finite-dimensional 𝔤-module𝑉,
and hence, each projective functor has a biadjoint projective functor. Consequently, any projective
functor is exact. Furthermore, each projective functor is isomorphic to a direct sum of indecom-
posable projective functors. Indecomposable projective functors are classified by their restriction
to 𝒪.
Let 𝒪′ and 𝒪′′ be two indecomposable blocks of 𝒪. Let 𝐿(𝜆1), 𝐿(𝜆2), … , 𝐿(𝜆𝑟) and 𝐿(𝜇1),

𝐿(𝜇2), … , 𝐿(𝜇𝑠) be complete and irredundant lists of simples in 𝒪′ and 𝒪′′, respectively. Assume
that 𝜆1 and 𝜇1 are the weights in the above lists that are dominant with respect to the
corresponding integral Weyl groups (each list contains a unique such dominant weight).
Nonzero projective functors from 𝒪′ to 𝒪′′ exist if and only if 𝜆1 − 𝜇1 is an integral weight.

Indecomposable projective functors from 𝒪′ to 𝒪′′ are in bijection with those 𝜇𝑖 that are
𝑊′

𝜆1
-antidominant with respect to the dot action. In fact, for each such 𝜇𝑖 , there is a unique

indecomposable projective functor, denoted as 𝜃𝜆1,𝜇𝑖
, from 𝒪′ to 𝒪′′ that sends 𝑃(𝜆1) = Δ(𝜆1) to

𝑃(𝜇𝑖).
Let now𝜒′ and𝜒′′ be two central characters. The above can be used to classify indecomposable

projective functors fromℳ𝜒′ toℳ𝜒′′ . Let 𝜆 and 𝜈 be some weights such that 𝐿(𝜆) and 𝐿(𝜈) have
the central characters 𝜒′ and 𝜒′′, respectively. Without loss of generality, we may assume that 𝜆
is dominant with respect to its integral Weyl group.
Projective functors fromℳ𝜒′ toℳ𝜒′′ exist if and only if (𝑊 ⋅ 𝜈) ∩ (𝜆 + Λ) is not empty. If this

condition is satisfied, we may assume 𝜈 ∈ 𝜆 + Λ without loss of generality. Let

(𝑊 ⋅ 𝜈) ∩ (𝜆 + Λ) = {𝜈1, 𝜈2, … , 𝜈𝑡}.

Then, indecomposable projective functors fromℳ𝜒′ toℳ𝜒′′ are exactly the functors 𝜃𝜆,𝜈𝑖
, where

𝜈𝑖 is𝑊′
𝜆
-antidominant.We note that the Serre subcategory of𝒪 generated by 𝐿(𝜈1), 𝐿(𝜈2),. . . , 𝐿(𝜈𝑡)

does not have to be indecomposable, and hence, our indecomposable projective functors from
ℳ𝜒′ toℳ𝜒′′ are not classified, in the general case, by projective functors from an indecomposable
block of 𝒪 to an indecomposable block of 𝒪.
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6 of 29 MACKAAY et al.

2.3 Harish-Chandra bimodules

An alternative way to look at projective functors is using Harish-Chandra bimodules. A 𝔤-𝔤-
bimodule 𝐵 is called a Harish-Chandra bimodule, provided that it is finitely generated as a
bimodule and the adjoint action of 𝔤 on it is locally finite with finitemultiplicities. A typical exam-
ple of a Harish-Chandra bimodule is the quotient of 𝑈(𝔤) by the ideal generated by the kernel of
some central character. The category of all Harish-Chandra bimodules is denoted asℋ.
The category ℋ is, naturally, a monoidal category, where the monoidal structure is given by

tensoring over 𝑈(𝔤). As a monoidal category, ℋ is naturally Λ∕Ξ-graded. Namely, for a coset
𝜉 ∈ Λ∕Ξ, the corresponding homogeneous componentℋ𝜉 consists of all bimodules 𝐵 such that,
for any finite-dimensional simple 𝔤-module𝑉, the fact that the multiplicity [𝐵ad ∶ 𝑉] > 1 implies
that the support of 𝑉 belongs to 𝜉. For a Harish-Chandra bimodule 𝐵, we will denote by 𝐵𝜉 its
projection ontoℋ𝜉 .
Let us explain how this gradingworks. Given a𝑈(𝔤)-𝑈(𝔤)-bimodule𝐵, the left action of𝑈(𝔤) on

𝐵 is given by a map 𝑈(𝔤) ⊗ℂ 𝐵 → 𝐵, which is a homomorphism of both left and right 𝔤-modules
and hence also of adjoint 𝔤-modules. As𝑈(𝔤), considered as an adjoint 𝔤-module, is a direct sumof
simple finite-dimensional 𝔤-modules whose support belongs to Ξ, the above action map restricts
to 𝑈(𝔤) ⊗ℂ 𝐵𝜉 → 𝐵𝜉 , for every 𝜉. Similarly, we have a restriction of the right action map, which
implies that 𝐵𝜉 is, indeed, a 𝑈(𝔤)-𝑈(𝔤)-subbimodule of 𝐵.
The above grading is motivated by the fact that the action of projective functors on category

𝒪 behaves “slightly better” than on other natural categories of 𝔤-modules. As was mentioned in
Subsection 2.2, projective functors are uniquely determined (up to isomorphism) by the image
of dominant Verma modules in category 𝒪. Outside category 𝒪, it might happen that analogs
of dominant Verma modules do not exist and two nonisomorphic projective functors map some
modulewhichwewant to understand to isomorphicmodules (see [8, TheoremB], [21, Section 2.3]
and also the connection of this phenomenon to Kostant’s problem, as was observed by Johan
Kåhrström and explained in [27]). In such situation, one could try to consider the action of the
“smaller” category ℋΞ and, essentially, use similar arguments as in the case of category 𝒪. For
example, this was done in [23] in the context of the study of generalized Verma modules. We are
going to use this kind of trick in Section 4.
Tensoring with finite-dimensional 𝔤-modules both on the left and on the right preserves

Harish-Chandra bimodules. Therefore, indecomposable projective functors can be viewed as
summands of the Harish-Chandra bimodules 𝑉 ⊗ℂ (𝑈(𝔤)∕(ker(𝜒))), where 𝜒 is a central char-
acter. In fact, the indecomposable projective functors with domainℳ𝜒 correspond exactly to the
indecomposable summands of 𝑉 ⊗ℂ (𝑈(𝔤)∕(ker(𝜒))).
For two 𝔤-modules𝑀 and𝑁, we can consider the 𝔤-𝔤-bimoduleHomℂ(𝑀,𝑁) and its subbimod-

ule(𝑀,𝑁) that consists of all elements ofHomℂ(𝑀,𝑁) onwhich the adjoint action of 𝔤 is locally
finite. IfHom𝔤(𝑉 ⊗ℂ 𝑀,𝑁) is finite dimensional, for any simple finite-dimensional 𝔤-module 𝑉,
and both quotients 𝑍(𝔤)∕Ann𝑍(𝔤)(𝑀) and 𝑍(𝔤)∕Ann𝑍(𝔤)(𝑁) are finite dimensional, then (𝑀,𝑁)

is a Harish-Chandra bimodule, see [20, Satz 6.30]. For example, this is the case if both modules
𝑀 and 𝑁 belong to category 𝒪.
If 𝑀 = 𝑁, we have a natural embedding of 𝑈(𝔤)∕Ann𝑈(𝔤)(𝑀) into (𝑀,𝑀). A module 𝑀 is

called Kostant positive, provided that this embedding is an isomorphism. A module 𝑀 is called
weakly Kostant positive, provided that the natural embedding of𝑈(𝔤)∕Ann𝑈(𝔤)(𝑀) into(𝑀,𝑀)Ξ

is an isomorphism.
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 7 of 29

2.4 Soergel’s combinatorial description and the integral part

Denote by 𝒪int the full subcategory of 𝒪 that consists of all modules with integral support. It is
a direct summand of 𝒪. If a central character 𝜒 is such that 𝒪𝜒 ∩ 𝒪int is nonzero, then 𝒪𝜒 ⊂ 𝒪int

and 𝒪𝜒 is an indecomposable block of 𝒪. For such a 𝜒, let 𝜆 be the unique dominant weight such
that 𝐿(𝜆) ∈ 𝒪𝜒 . Note that 𝑊 = 𝑊𝜆 as 𝜆 is integral. Soergel’s combinatorial description of 𝒪, see
[40], determines 𝒪𝜒 uniquely, up to equivalence, in terms of the algebra of 𝑊′

𝜆
-invariants in the

coinvariant algebra for 𝑊. Projective endofunctors between different blocks of 𝒪int can then be
described in terms of induction and restriction functors between the coinvariant algebra for 𝑊

and its corresponding invariant subalgebras, see [41].
For a (not necessarily integral) weight 𝜆, the category 𝒪𝜆 is equivalent to an integral block

of 𝒪 for a semisimple complex Lie algebra corresponding to the Weyl group 𝑊𝜆. Due to
Soergel’s combinatorial description of projective functors mentioned above (see [41]), this equiv-
alence is compatible with the action of those projective functors that are homogeneous of
degree Ξ.

2.5 Gelfand–Kirillov dimension

In this subsection,we recall basic facts about theGelfand–Kirillov dimension (denoted asGKdim).
We refer to [26] for all details.
To each finitely generated 𝔤-module 𝑀, we can associate its Gelfand–Kirillov dimension

GKdim(𝑀) ∈ ℤ⩾0 (which is the degree of the polynomial that describes the growth of 𝑀)
and its Bernstein number BN(𝑀) ∈ ℤ>0 (which is the coefficient of the leading term of
that polynomial). Contrary to the Gelfand–Kirillov dimension, the Bernstein number might
depend on the choice of generators in 𝑈(𝔤), so we fix such a choice for the remainder of the
paper.
The algebra 𝑈(𝔤) is a noetherian algebra of finite Gelfand–Kirillov dimension, namely,

GKdim(𝑈(𝔤)) = dim(𝔤). Therefore, every simple 𝔤 module has Gelfand–Kirillov dimension at
most dim(𝔤) (in reality, at most dim(𝔤) − rank(𝔤) − 1 as 𝑍(𝔤) is a polynomial algebra in rank(𝔤)

variables). If  is a primitive ideal of𝑈(𝔤) and 𝐿 a simple module with annihilator , which min-
imizes the Gelfand–Kirillov dimension in the class of all simple 𝔤-modules with annihilator ,
then 𝐿 is called holonomic. For example, all simple modules in category 𝒪 are holonomic, see
[20, Subsection 10.9]. Nonholonomic modules do certainly exist, see [13, 43]. As a matter of fact,
almost all (in some sense) simple modules are nonholonomic.
For a finite-dimensional 𝔤-module 𝑉, we have

GKdim(𝑉) = 0, GKdim(𝑉 ⊗ℂ 𝑀) = GKdim(𝑀)

and BN(𝑉 ⊗ℂ 𝑀) = dim(𝑉) ⋅ BN(𝑀). If 0 → 𝑋 → 𝑌 → 𝑍 → 0 is a short exact sequence, then
GKdim(𝑌) = max{GKdim(𝑋), GKdim(𝑍)}. Moreover, BN(𝑌) = BN(𝑋) + BN(𝑍) provided that
GKdim(𝑋) = GKdim(𝑍). If the latter condition is not satisfied, then BN(𝑌) coincides with BN(𝑋)

if GKdim(𝑋) > GKdim(𝑍) and BN(𝑌) coincides with BN(𝑍) if GKdim(𝑋) < GKdim(𝑍).

Lemma 1. Let 𝐿 and 𝐿′ be two simple 𝔤-modules such that Hom𝔤(𝑉 ⊗ℂ 𝐿, 𝐿′) ≠ 0 or
Hom𝔤(𝐿

′, 𝑉 ⊗ℂ 𝐿) ≠ 0, for some finite-dimensional 𝔤-module 𝑉. Then, GKdim(𝐿) = GKdim(𝐿′).
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8 of 29 MACKAAY et al.

Proof. Weprove the first claim. FromHom𝔤(𝑉 ⊗ℂ 𝐿, 𝐿′) ≠ 0, we haveGKdim(𝐿′) ⩽ GKdim(𝐿). At
the same time, by adjunction, we have Hom𝔤(𝐿, 𝑉∗ ⊗ℂ 𝐿′) ≠ 0. Hence, GKdim(𝐿) ⩽ GKdim(𝐿′)

and thus GKdim(𝐿) = GKdim(𝐿′). □

Due to the additivity of the Bernstein number, 𝑉 ⊗ℂ 𝐿 has a maximal semisimple quotient
and this quotient has finite length (and is always nonzero). This maximal semisimple quo-
tient is usually called the top of 𝑉 ⊗ℂ 𝐿. It further follows that the module 𝑉 ⊗ℂ 𝐿 has a
maximal semisimple submodule and this submodule has finite length (but, potentially, may
be zero). Theorem 22, in fact, shows that this maximal semisimple submodule is essential and
hence is the socle of 𝑉 ⊗ℂ 𝐿. Note that, in general, 𝑉 ⊗ℂ 𝐿 is not of finite length, see [43].
However, we will show in Subsection 7.3 that 𝑉 ⊗ℂ 𝐿 has finite rough length in the sense
of [38].

2.6 Kazhdan–Lusztig combinatorics

To each pair (𝑊′, 𝑆′), where 𝑊′ is a Weyl group and 𝑆′ a fixed set of simple reflections in
𝑊′, we have the associated Hecke algebra ℍ = ℍ(𝑊′, 𝑆′), which is an algebra over ℤ[𝑣, 𝑣−1],
defined by substituting the relation (𝑠 − 𝑒)(𝑠 + 𝑒) = 0, for 𝑠 ∈ 𝑆′, in the Coxeter presentation
of 𝑊′, by the relation (𝐻𝑠 + 𝑣)(𝐻𝑠 − 𝑣−1) = 0 and keeping the braid relations, see, for exam-
ple, [42]. It has the standard basis {𝐻𝑤 ∶ 𝑤 ∈ 𝑊} and the Kazhdan–Lusztig basis {𝐻𝑤 ∶

𝑤 ∈ 𝑊}.
For 𝑥, 𝑦 ∈ 𝑊′, we set 𝑥 ⩾𝐿 𝑦 provided that there is 𝑧 ∈ 𝑊′ such that𝐻𝑥 appears with a nonzero

coefficient in𝐻𝑧𝐻𝑦 . This defines a preorder on𝑊′ called theKL-left preorder. Equivalence classes
with respect to it are called KL-left cells. The KL-right preorder ⩾𝑅 and the corresponding KL-
right cells are defined similarly using multiplication on the right. The KL-two-sided preorder
⩾𝐽 and the corresponding KL-two-sided cells are defined similarly using multiplication on both
sides.
If 𝜆 ∈ 𝔥∗ is regular and dominant, then the results of [2, 3] imply that sending 𝑤 ∈ 𝑊𝜆 to the

annihilator of 𝐿(𝑤 ⋅ 𝜆) gives rise to a bijection between the KL-left cells in 𝑊𝜆 and the primitive
ideals in 𝑈(𝔤) containing Ker(𝜒

𝜆
).

The function that assigns to𝑤 ∈ 𝑊𝜆 the Gelfand–Kirillov dimension of 𝐿(𝑤 ⋅ 𝜆) is constant on
KL-two-sided cell. Indeed, that this function is constant onKL-left cells follows from [20, Satz 10.9]
combined with the fact mentioned above that annihilators of simple modules are constant on KL-
left cells. That the function is constant on KL-right cells follows from Lemma 1 combined with
the fact that simple modules inside the same KL-right cell can be obtained from each other by
applying projective functors and taking subquotients.
If𝑊′′ is a parabolic subgroup of𝑊𝜆,𝑤′′

0
the longest element in𝑊′′ and𝑤𝜆

0
the longest element

in𝑊𝜆, thenGKdim(𝐿(𝑤′′
0
𝑤𝜆

0
⋅ 𝜆)) can be computed by a very easy formula in [20, Lemma 9.15(a)].

Namely, GKdim(𝐿(𝑤′′
0
𝑤𝜆

0
⋅ 𝜆)) equals the number of positive roots for 𝑊 (note that it is really 𝑊

and not𝑊𝜆) minus the number of positive roots for𝑊′′. In fact, if𝑊𝜆 is of type 𝐴, then any KL-
two-sided cell of 𝑊𝜆 contains some element of the form 𝑤′′

0
𝑤𝜆

0
and hence the above applies. For

a singular weight 𝜇, the Gelfand–Kirillov dimension of the corresponding simple highest weight
module equals the Gelfand–Kirillov dimension of the simple highest weight module for a regular
correspondent of 𝜇.
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 9 of 29

3 STRUCTURE OF 𝜽𝑳

3.1 Quick recap of birepresentation theory

Let 𝒞 be a finitary bicategory with involution and adjunctions (fiab bicategory), see [28]. Recall
that a finitary birepresentation𝐌 of𝒞 is called transitive, provided that any nonzero object of𝐌
generates𝐌, as a birepresentation of𝒞. Furthermore,𝐌 is called simple transitive provided that
it does not have any proper nontrivial𝒞-invariant ideals.
Recall the cell theory for bicategories, see [28, 35]. For two indecomposable 1-morphisms 𝜃, 𝜃′

in 𝒞, we write 𝜃 ⩾𝐿 𝜃′ provided that there is 𝜃′′ in 𝒫 such that 𝜃 is isomorphic to a summand
of 𝜃′′◦𝜃′. Equivalence classes with respect to the preorder ⩾𝐿 are called left cells. Right and two-
sided cells are defined similarly. This is similar to the combinatorics of KL-cells that was recalled
in Subsection 2.6. Each transitive birepresentation has an apex, which is the maximum two-sided
cell whose 1-morphisms do not annihilate this birepresentation, see [7, Subsection 3.2]. For two
simple transitive birepresentations 𝐌 and 𝐍 of 𝒞, we denote by Dext(𝐌,𝐍) the set of discrete
extensions from 𝐌 to 𝐍, see [7, Subsection 5.2]. The set Dext(𝐌,𝐍) is defined as the set of all
nonempty subsets Θ of the set of isomorphism classes of indecomposable 1-morphisms in 𝒞, for
which there exists a short exact sequence

0 → �̃� → 𝐊 → �̃� → 0 (1)

of birepresentations of𝒞 (in the sense of [7, Subsection 5.2]) such that

∙ �̃� is transitive with simple transitive quotient𝐍;
∙ �̃� is transitive with simple transitive quotient𝐌;
∙ the set Θ consists of all 1-morphisms F ∈ 𝒞, for which there is a nonzero object 𝑋 ∈ �̃� such
that F𝑋 has a nonzero summand from �̃�.

Here, the fact that (1) is a short exact sequencemeans that �̃� is a full subcategory of𝐊 closed with
respect to isomorphisms and, additionally, with respect to taking direct sums and direct sum-
mands. Furthermore, �̃� is isomorphic to the quotient of 𝐊 by the ideal generated by �̃�. More
generally, discrete extensions between transitive representations are defined as discrete extensions
between the corresponding simple transitive quotients.
Note that, in the above definition, the birepresentation𝐊 has exactly two weak Jordan–Hölder

constituents. The fact thatDext(𝐌,𝐍) = ∅means that, in any𝐊 as above, the additive closure of
all indecomposable objects that are not killed by projecting onto �̃� is invariant under the action of
𝒞. In particular, for any 1-morphism F ∈ 𝒞, the action of the Grothendieck class [𝐹] on the split
Grothendieck group of𝐊 is given by a block diagonal matrix with two blocks, one corresponding
to the action on the split Grothendieck group of �̃� and the other one corresponding to the action
on the split Grothendieck group of �̃�.

Lemma 2. Let 𝒞 be a fiab bicategory and𝐌 and 𝐍 two transitive birepresentations of 𝒞 with the
same apex  . Then, Dext(𝐌,𝐍) = ∅.

Proof. We use the idea in the proofs of [24, Corollary 20] and [7, Corollary 14]. Let 𝑒 be the
idempotent in the real algebra 𝐴 from [24, Subsection 9.3], whose existence was proved in
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10 of 29 MACKAAY et al.

[24, Proposition 18]. Let

0 → 𝐍 → 𝐊 → 𝐌 → 0

be a short exact sequence of birepresentations, see [7, Subsection 5.2].
The algebra𝐴 acts on the split Grothendieck group of𝐊 with coefficients in ℝ. The matrix of

𝑒, written in the basis of indecomposable objects in𝐍 and𝐌, has the form(
𝐴 𝐵

0 𝐶

)
, (2)

where 𝐴 and 𝐶 are real idempotent matrices with positive entries and 𝐵 has nonnegative
real entries.
Recall that [17, Formula (2)] provides the following normal form for idempotent matrices with

nonnegative coefficients:

⎛⎜⎜⎜⎜⎜⎝

𝐽 𝐽𝑋 0 0

0 0 0 0

𝑌𝐽 𝑌𝐽𝑋 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
,

where 𝐽 is a block diagonalmatrixwith diagonal blocks 𝐽1, 𝐽2, … , 𝐽𝑘, with each 𝐽𝑖 being an idempo-
tent matrix of rank 1 with nonnegative coefficients. In this normal form, any nonzero off-diagonal
entry for which both diagonal correspondents are nonzero belongs to one of the blocks 𝐽𝑖 . If we
assume that 𝐵 has a nonzero entry, we thus obtain that the whole matrix (2) must be one block
𝐽𝑖 , which contradicts the fact that 𝐽𝑖 has rank 1. Therefore, 𝐵 = 0.

Alternatively, one can note that
(
𝐴 𝐵

0 𝐶

)2

=

(
𝐴 𝐵

0 𝐶

)
is equivalent to 𝐴2 = 𝐴, 𝐶2 = 𝐶 and

𝐴𝐵 + 𝐵𝐶 = 𝐵. Multiplying the last equation by 𝐴 on the left, gives 𝐴𝐴𝐵 + 𝐴𝐵𝐶 = 𝐴𝐵, which
implies that 𝐴𝐵𝐶 = 0, since 𝐴2 = 𝐴. As all entries in both 𝐴 and 𝐶 are positive and in 𝐵 are
nonnegative, the equality 𝐴𝐵𝐶 = 0 is equivalent to 𝐵 = 0. □

Corollary 3. Let𝒞 be a fiab bicategory and𝐌a finitary birepresentation of𝒞 such that all transitive
subquotients of 𝐌 have the same apex. Then, the objects of each transitive subquotient of 𝐌 form
a subbirepresentation.

Proof. By the weak Jordan–Hölder theorem, see [37, Theorem 8], there is a short exact sequence
of birepresentations

0 → 𝐊 → 𝐌 → 𝐍 → 0,

such that 𝐍 is transitive and the number of transitive subquotients of 𝐊 is one less than the
number of transitive subquotients of 𝐌. By induction, the transitive subquotients of 𝐊 are all
subbirepresentations. We need to prove that the additive closure𝐍′ in𝐌 of all indecomposables
whose image in𝐍 is nonzero is a subbirepresentation.
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 11 of 29

Assume that this is not the case. Consider the additive closure𝐌′ of𝒞𝐍′ in𝐌. By our assump-
tion,𝐌′ ≠ 𝐍′. Let𝐊′ be the additive closure in𝐌′ of all indecomposable objects outside𝐍′. Let
𝐊′′ be some transitive quotient of 𝐊′ and let 𝐈 be the corresponding kernel. This gives rise to a
short exact sequence of birepresentations

0 → 𝐊′′ → 𝐌′∕(𝐈) → 𝐍′∕(𝐈) → 0.

By construction, this gives a nontrivial discrete extension between the simple transitive quotients
of𝐍′∕(𝐈) and𝐊′′, which contradicts Lemma 2. The claim follows. □

3.2 The bicategory of projective functors

Denote by𝒫 the locally finitary (in the sense of [30, 31]) bicategory defined as follows:

∙ the objects of𝒫 are 𝚒𝜒 , where 𝜒 is a central character of 𝑈(𝔤);
∙ 1-morphisms in𝒫(𝚒𝜒, 𝚒𝜒′) are all projective functors from 𝒪𝜒 to 𝒪𝜒′ ;
∙ 2-morphisms in𝒫(𝚒𝜒, 𝚒𝜒′) are natural transformations of functors,

where all identities and compositions are defined in the obvious way.
Since projective functors can be viewed as Harish-Chandra bimodules, the bicategory𝒫 inher-

its from ℋ a Λ∕Ξ-grading. For 𝜉 ∈ Λ∕Ξ, we denote by 𝒫𝜉 the corresponding homogeneous
component. In particular,𝒫Ξ is a subbicategory of𝒫.
Now let 𝐿 be a simple 𝔤-module with central character 𝜒. For a central character 𝜒′, denote by

𝐗𝐿
𝜒′ the additive closure in 𝔤-mod of all objects of the form 𝜃𝐿, where 𝜃 ∈ 𝒫(𝚒𝜒, 𝚒𝜒′). Then, the

collection of all these 𝐗𝐿
𝜒′ carries a natural action of𝒫. In other words, we get a birepresentation

of 𝒫, which we denote by 𝐗𝐿. This birepresentation is locally finitary (cf. [30, 31]) in the sense
that it has the properties described by the following proposition.

Proposition 4. Each𝐗𝐿
𝜒′ is an idempotent split additive categorywith finite-dimensionalmorphism

spaces and finitely many isomorphism classes of indecomposable objects.

Proof. Let 𝜃, 𝜃′ ∈ 𝒫(𝚒𝜒, 𝚒𝜒′). Then, by adjunction,

Hom𝔤(𝜃𝐿, 𝜃′𝐿) ≅ Hom𝔤((𝜃
′)∗𝜃𝐿, 𝐿),

where (𝜃′)∗ is the biadjoint of 𝜃′. As explained in Subsection 2.2, the right-hand side is finite
dimensional. The rest now follows from the definitions. □

For a fixed𝜒′, we have the bicategory𝒫𝜒′ ∶= 𝒫(𝚒𝜒′ , 𝚒𝜒′). This bicategory is finitary in the sense
of [28] and 𝐗𝐿

𝜒′ is a finitary birepresentation of this bicategory. For 𝜒′ = 𝜒
0
, the central character

of the trivial 𝔤-module, the bicategory𝒫𝜒
0
is biequivalent to the bicategory of Soergel bimodules

over the coinvariant algebra of𝑊, cf. [29].
Combinatorics of the action of projective functors on category 𝒪 is governed by the Kazhdan–

Lusztig basis of the Hecke algebra. Therefore, the cell structure of the latter, which was recalled
in Subsection 2.6, is just a special case of the cell structure of𝒫𝜒

0
. We also note that the action of

projective functors on category 𝒪 is a right action. With this in mind, the properties recalled in
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12 of 29 MACKAAY et al.

Subsection 2.6 can now be reformulated in the setup of projective functors as follows: The anni-
hilator Ann𝑈(𝔤)(𝐿) corresponds to a right cell in𝒫, say. Let  be the two-sided cell containing
. Then, for any indecomposable 𝜃, the inequality 𝜃𝐿 ≠ 0 implies 𝜃 ⩽𝐽  .
For any central character 𝜒′, we denote by 𝐘𝐿

𝜒′ the additive closure of all 𝜃𝐿, where we take
𝜃 ∈ 𝒫(𝚒𝜒, 𝚒𝜒′) ∩  . Then, 𝐘𝐿

𝜒′ is a full subcategory of 𝐗𝐿
𝜒′ , and the collection of all these 𝐘𝐿

𝜒′ is
closed under the action of𝒫. We denote the corresponding birepresentation of𝒫 by 𝐘𝐿.

Conjecture 5. The birepresentation 𝐘𝐿 is simple transitive.

3.3 A partial preorder

Consider the set Irr(𝔤) of isomorphism classes of simple 𝔤-modules. For 𝑋,𝑌 ∈ Irr(𝔤), write 𝑋 ⊳

𝑌 provided that there is a finite-dimensional 𝔤-module 𝑉 such that 𝑉 ⊗ℂ 𝑋 ↠ 𝑌. Note that the
relation 𝑋 ⊳ 𝑌 implies the equality GKdim(𝑋) = GKdim(𝑌), see Lemma 1.

Lemma 6. The relation ⊳ is reflexive and transitive (and hence is a partial preorder).

Proof. To prove reflexivity, we can take 𝑉 to be the trivial module. To prove transitivity, assume
that 𝑉 ⊗ℂ 𝑋 ↠ 𝑌 and 𝑉′ ⊗ℂ 𝑌 ↠ 𝑍. Then, by exactness of projective functors,

(𝑉′ ⊗ℂ 𝑉) ⊗ℂ 𝑋 ≅ 𝑉′ ⊗ℂ (𝑉 ⊗ℂ 𝑋) ↠ 𝑉′ ⊗ℂ 𝑌 ↠ 𝑍.

This completes the proof. □

By adjunction, it follows that the relation opposite to ⊳ is given by the requirement that 𝑋 ↪

𝑉∗ ⊗ℂ 𝑌.
For a central character 𝜒, let Irr(𝔤)𝜒 denote the set of all simple 𝔤-modules with central

character 𝜒. Then, we have

Irr(𝔤) =
∐
𝜒

Irr(𝔤)𝜒.

For a fixed 𝐿 ∈ Irr(𝔤), denote by𝐿 the set of all 𝐿′ ∈ Irr(𝔤) for which there exists a finite set of
elements 𝐿 = 𝐿1, 𝐿2, … , 𝐿𝑘 = 𝐿′ ∈ Irr(𝔤) such that, for each 𝑖, we either have 𝐿𝑖 ⊳ 𝐿𝑖+1 or 𝐿𝑖+1 ⊳ 𝐿𝑖 .
In other words, 𝐿 is the equivalence class of 𝐿 in the minimal equivalence relation generated
by ⊳.

Proposition 7. Let 𝐿 ∈ Irr(𝔤) and 𝜒 be a central character. Then 𝐿 ∩ Irr(𝔤)𝜒 is finite.

Proof. Without loss of generality, we may assume 𝐿 ∈ Irr(𝔤)𝜒 . Let 𝑉 be a finite-dimensional 𝔤-
module such that all indecomposable projective endofunctors of ℳ𝜒 are direct summands of
𝑉 ⊗ℂ −. In order to prove our proposition, it is enough to show that any element of 𝐿 ∩ Irr(𝔤)𝜒
is a subquotient of 𝑉 ⊗ℂ 𝐿, since all elements of 𝐿 ∩ Irr(𝔤)𝜒 have the same Gelfand–Kirillov
dimension as 𝐿 and there can only be finitely many of them by the additivity of the Bernstein
number, see Subsection 2.5. In fact, since 𝑉 ⊗ℂ − already contains all projective endofunctors of
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 13 of 29

ℳ𝜒 , it is enough to show that any element of 𝐿 ∩ Irr(𝔤)𝜒 is a subquotient of 𝑉′ ⊗ℂ 𝐿, for some
finite-dimensional 𝔤-module 𝑉′.
Let 𝐿′ ∈ 𝐿 ∩ Irr(𝔤)𝜒 . Then, by definition, there exists a finite set of elements 𝐿 =

𝐿1, 𝐿2, … , 𝐿𝑘 = 𝐿′ ∈ Irr(𝔤) such that, for each 𝑖, we either have 𝐿𝑖 ⊳ 𝐿𝑖+1 or 𝐿𝑖+1 ⊳ 𝐿𝑖 . We prove
the above claim by induction on 𝑘, with the case 𝑘 = 1 being obvious.
For the induction step, we assume that 𝐿𝑘−1 is a subquotient of 𝑉′ ⊗ℂ 𝐿, for some

finite-dimensional 𝔤-module 𝑉′.
Suppose 𝐿𝑘−1 ⊳ 𝐿𝑘 = 𝐿′, that is, 𝑉′′ ⊗ℂ 𝐿𝑘−1 ↠ 𝐿𝑘, for some finite-dimensional 𝔤-module 𝑉′′.

Then, by exactness, 𝐿𝑘 is a subquotient of𝑉′′ ⊗ℂ (𝑉′ ⊗ℂ 𝐿) and the latter is isomorphic to (𝑉′′ ⊗ℂ

𝑉′) ⊗ℂ 𝐿.
Suppose now 𝐿′ = 𝐿𝑘 ⊳ 𝐿𝑘−1, that is,𝑉′′ ⊗ℂ 𝐿𝑘 ↠ 𝐿𝑘−1, for some finite-dimensional 𝔤-module

𝑉′′. Then, by adjunction, 𝐿𝑘 ↪ (𝑉′′)∗ ⊗ℂ 𝐿𝑘−1 and again, by exactness, 𝐿𝑘 is a subquotient of
(𝑉′′)∗ ⊗ℂ (𝑉′ ⊗ℂ 𝐿), and hence of ((𝑉′′)∗ ⊗ℂ 𝑉′) ⊗ℂ 𝐿. The claim follows. □

Note that𝐿 ∩ Irr(𝔤)𝜒 is often empty. Indeed, by [25, Theorem 5.1], if 𝜒′ is the central character
of 𝐿 and 𝐿 ∩ Irr(𝔤)𝜒 is not empty, then there exist dominant weights 𝜆 and 𝜇 with the following
properties: 𝜒 = 𝜒

𝜆
and 𝜒′ = 𝜒

𝜇
such that the difference 𝜆 − 𝜇 is an integral weight.

Theorem8. Let 𝐿 ∈ Irr(𝔤) and𝜒 be a central character. Assume that𝐿 ∩ Irr(𝔤)𝜒 is nonempty and
the restriction of ⊳ to it is an equivalence relation. Then, for any central character 𝜒′, the restriction
of ⊳ to 𝐿 ∩ Irr(𝔤)𝜒′ is also an equivalence relation. In fact, ⊳ is an equivalence relation on 𝐿.

Proof. Let𝜒′ be a central character such that𝐿 ∩ Irr(𝔤)𝜒′ is not empty. Let 𝐿1, … , 𝐿𝑘 be the list of
all simples in 𝐿 ∩ Irr(𝔤)𝜒; in particular, they all are ⊳-equivalent (and hence are also equivalent
with respect to the relation that is opposite to ⊳). Let 𝐿′ ∈ 𝐿 ∩ Irr(𝔤)𝜒′ . Then, all 𝐿𝑖 (and only
they) appear both in the tops and in the socles of modules in𝒫(𝚒𝜒′ , 𝚒𝜒)𝐿′. In particular, 𝐿′ ⊳ 𝐿𝑖 ,
for all 𝑖. By adjunction, we also haveHom𝔤(𝐿𝑖, 𝜃𝐿

′) = Hom𝔤(𝜃
∗𝐿𝑖, 𝐿

′) that implies that 𝐿𝑖 ⊳ 𝐿′, for
all 𝑖. The claim follows. □

Conjecture 9. The relation ⊳ is an equivalence relation.

Remark 10. It is also natural to consider the partial preorder→ on Irr(𝔤)defined as follows:𝐿 → 𝐿′,
provided that 𝐿′ is a subquotient of 𝑉 ⊗ℂ 𝐿, for some finite-dimensional 𝑉. It would be interest-
ing to understand certain properties, in particular, the equivalence classes of this preorder. For
example, for simple highest weight modules in category𝒪, the corresponding equivalence classes
are given by the KL-right cells. Also, the restriction of ⊳ to simple highest weight modules is an
equivalence relation and the corresponding equivalence classes are given by the KL-right cells (so
they coincide with the equivalence classes for the preorder→).

3.4 Conjecture 5 versus Conjecture 9

Theorem 11. Let 𝐿 be a simple 𝔤-module such that the restriction of ⊳ to 𝐿 is an equivalence
relation. Then, the birepresentation 𝐘𝐿 is transitive. Moreover, we have 𝐘𝐿 = 𝐘𝐿′ , for any 𝐿′ such
that 𝐿 ⊳ 𝐿′.
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14 of 29 MACKAAY et al.

Proof. Let 𝜒 be the central character of 𝐿 and let 𝜒′ be some central character such that 𝐘𝐿
𝜒′ is not

zero. Denote by �̃� the 1-full and 2-full subbicategory of𝒫 on the objects 𝚒𝜒 and 𝚒𝜒′ . Also denote
by �̃�𝐿 the birepresentation of �̃� restricted from 𝐘𝐿. To prove the first part of the theorem, it is
enough to show that �̃�𝐿 is transitive.
Being a finitary birepresentation of �̃�, the birepresentation �̃�𝐿 has aweak Jordan–Hölder series

with transitive subquotients.
Let us now assume that �̃�𝐿 is not transitive and let the additive closure  of some

𝑀1,𝑀2,… ,𝑀𝑘 be a transitive subbirepresentation of �̃�𝐿. Let 𝐿′ be a simple module which
appears in the top of𝑀1. Consider the corresponding �̃�𝐿′ and let the additive closure of some
𝑁1,𝑁2, … ,𝑁𝑟 be a transitive subbirepresentation of �̃�𝐿′ . By Corollary 3, any transitive subquotient
of �̃�𝐿 gives, in fact, a subbirepresentation, and similarly for �̃�𝐿′ . Hence, to prove our theorem, it
is enough to show that =  .
Indeed, as is arbitrary, =  implies that �̃�𝐿′

=  is transitive. Since the restriction of ⊳
to 𝐿 is an equivalence relation, swapping the roles of 𝐿 and 𝐿′, we obtain that �̃�𝐿 is transitive, a
contradiction. Also, from =  , we obtain �̃�𝐿 = �̃�𝐿′ .
The remainder of the proof is dedicated to showing that =  . Applying projective functors

to𝑀1 ↠ 𝐿′, we obtain that every object in �̃�𝐿′ is a quotient of an object in. In particular, every
object in is a quotient of an object in.
Now recall that we have assumed that the restriction of⊳ to𝐿 is an equivalence relation. This

implies that 𝐿 is a quotient of some object in , say 𝑁1. Applying projective functors to 𝑁1 ↠ 𝐿,
we obtain that every object in �̃�𝐿 is a quotient of an object in . In particular, every object in

is a quotient of an object in .
This implies the existence of an infinite sequence of surjections

⋯ ↠ 𝑌2 ↠ 𝑋2 ↠ 𝑌1 ↠ 𝑋1 ↠ 𝑁1 ↠ 𝐿, (3)

where all 𝑋𝑖 ∈  and all 𝑌𝑗 ∈  . Now, in each 𝑌𝑗 , we can pick an indecomposable summand
𝑁𝑠𝑗

such that the restricted map from 𝑁𝑠𝑗
to 𝐿 is a surjection. Since the number of indices for

𝑁𝑗 ’s is finite, we can pick an infinite subsequence of the form⋯ → 𝑁𝑝 → 𝑁𝑝 → 𝑁𝑝 → 𝐿. Again,
here, at each position, the map from 𝑁𝑝 to 𝐿 is a surjection, in particular, all maps between all
components of this sequence are nonzero.
The endomorphism algebra of 𝑁𝑝 is a local finite-dimensional algebra, see Proposition 4, and

hence, its Jacobson radical is nilpotent of a fixed finite nilpotency degree. Since the above sequence
is infinite and all compositions are nonzero, at least one morphism in this sequence does not
belong to the Jacobson radical and hence is invertible. This means that in the original sequence
(3), we have a fragment of the form𝑁𝑝 → 𝑋𝑖 → 𝑁𝑝 such that the composition from the left to the
right is invertible. Hence, 𝑁𝑝 is isomorphic to a summand of 𝑋𝑖 . In other words, and have
a nonzero intersection and thus must coincide since both carry a transitive birepresentations of
�̃�. This completes the proof. □

Remark 12. If𝐘𝐿 = 𝐘𝐿′ , for any 𝐿′ ∈ 𝐿, then the restriction of⊳ to𝐿 is an equivalence relation.
Indeed, in this case, we claim that 𝐿 ⊳ 𝐿′ implies 𝐿′ ⊳ 𝐿. To see this, we first claim that𝐘𝐿 contains
a module with top 𝐿.
Consider the Duflo involution 𝜃 in the right cell that corresponds to the annihilator of 𝐿. This is

a coalgebra 1-morphism in𝒫, see [29, Section 4.4], and hence, the evaluation of the counit 𝜃 → 𝟙,
when applied to 𝐿, is nonzero.
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 15 of 29

Similarly, 𝐘𝐿′ contains a module with top 𝐿′. Therefore, 𝐘𝐿 = 𝐘𝐿′ together with 𝐿 ⊳ 𝐿′ implies
𝐿′ ⊳ 𝐿.

4 PROOF OF THE TWO CONJECTURES IN TYPE 𝑨

In this section, we show that the statements of both Conjectures 5 and 9 are true in type𝐴. So, we
assume that 𝔤 and hence also𝑊 are of type 𝐴.

4.1 Reduction to nice blocks

Let 𝜆 be a dominant weight and 𝜒
𝜆
the corresponding central character. We will call both 𝜆 and

𝜒
𝜆
nice, provided that there is 𝜇 ∈ 𝜆 + Ξ such that𝑊𝜇 = 𝑊′

𝜇. For example, in the set ℤ of all inte-
gral weights for 𝔰𝔩2, we have Ξ = 2ℤ and all odd weights are nice (since −1 is the only integral
singular weight), while all even weights are not nice. Note that𝑊𝜆 = {𝑒} implies that 𝜆 is nice as
we can take 𝜇 = 𝜆.

Lemma 13. For any dominant weight 𝜆, there is a nice dominant weight �̃� ∈ 𝜆 + Λ such that

(𝑎) 𝑊𝜆 = 𝑊�̃�,
(𝑏) 𝑊′

𝜆
= 𝑊′

�̃�
,

(𝑐) �̃� − 𝜆 is integral and dominant with respect to𝑊𝜆.

Note that 𝑊𝜆 = 𝑊�̃� is satisfied for any �̃� ∈ 𝜆 + Λ, so Condition (a) above is automatic. How-
ever, the equality 𝑊𝜆 = 𝑊�̃� is necessary for Condition (b) to make sense. This is the reason why
Condition (a) appears in the formulation.

Proof. We first prove the claim under the assumption that 𝜆 is integral. The weight−𝜌 is the only
integral fully singular weight, so we need to look for �̃� inside −𝜌 + Ξ. Let 𝐷 be the absolute value
of the determinant of the Cartan matrix of 𝔤. Set �̃� = 𝐷(𝜆 + 𝜌) − 𝜌. Since the 𝐷-multiples of the
fundamental weights belong to Ξ, it follows that �̃� ∈ −𝜌 + Ξ.
Then, �̃� − 𝜆 = (𝐷 − 1)(𝜆 + 𝜌) that is dominant. Both 𝜆 and �̃� are integral and hence, for both

of them, the integral Weyl group is just the wholeWeyl group. Finally, the stabilizers of �̃� and 𝜆 in
𝑊 with respect to the dot action coincide because, after the shift by 𝜌, the dot-action becomes
the usual action and this commutes with multiplication by scalars. This proves the claim for
integral weights.
Take now any 𝜆 and assume 𝑊𝜆 ≠ {𝑒}, for otherwise the claim is clear. Let 𝐑𝜆 be the root sub-

system of 𝐑 corresponding to𝑊𝜆. Let 𝔤(𝜆) be the corresponding Lie subalgebra of 𝔤. Let Λ(𝜆) be
the set of all integral weights for 𝔤(𝜆) and Ξ(𝜆) the set of all integral linear combinations of roots
for 𝔤(𝜆). Choose some representatives 𝜇1 = 0, 𝜇2, … , 𝜇𝑘 of the cosets inΛ(𝜆)∕Ξ(𝜆). Also, denote by
𝔥𝜆 the intersection of 𝔥with 𝔤(𝜆). Define 𝔥⟂

𝜆
as the set of all ℎ ∈ 𝔥 such that 𝛼(ℎ) = 0, for any root

𝛼 of 𝔤(𝜆). Then, 𝔥 = 𝔥𝜆 ⊕ 𝔥⟂
𝜆
. The inclusion 𝔥𝜆 ↪ 𝔥 induces the restriction map Res𝜆 ∶ 𝔥∗ → 𝔥∗

𝜆
.

The restriction of the natural 𝔤-module (i.e., the module ℂ𝑛 for 𝔰𝔩𝑛) to any simple summand 𝔞

of 𝔤(𝜆) gives the direct sum of the natural module for 𝔞with a summand on which 𝔞 acts trivially.
Recall that the natural module generates the category of all finite-dimensional modules as an
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16 of 29 MACKAAY et al.

idempotent split monoidal category. This implies that

Res𝜆(𝜆 + 𝜌 + Λ) = Res𝜆(𝜆) + Λ(𝜆) + 𝜌𝜆, (4)

where 𝜌𝜆 is the half of the sum of all positive roots for 𝔤(𝜆). We note that both 𝜌 and 𝜌𝜆 are integral
weights, so they can be removed from (4). In particular, we can pick some representatives 𝜈1 =

𝜆, 𝜈2, … , 𝜈𝑘 in 𝜆 + Λ such that Res𝜆(𝜈𝑖 + 𝜌 − 𝜆) = 𝜇𝑖 + 𝜌𝜆.
We can now apply the already proved assertion of the lemma in the integral case to Res𝜆(𝜆)

to obtain the corresponding nice dominant integral weight R̃es𝜆(𝜆) for 𝔤(𝜆) that satisfies (a)–(c)
(with respect toRes𝜆(𝜆 + 𝜌) − 𝜌𝜆 for 𝔤(𝜆)). By (4), there is �̃� ∈ 𝜆 + Λ such thatRes𝜆(�̃� + 𝜌) − 𝜌𝜆 =

R̃es𝜆(𝜆). The fact that �̃� is nice dominant and satisfies (a)–(c) follows from the fact that R̃es𝜆(𝜆) is
nice dominant and satisfies (a)–(c). □

Example 14. Consider 𝔤 = 𝔰𝔩3 with 𝐑 = {±𝛼,±𝛽, ±(𝛼 + 𝛽)}. With respect to the standard basis,
we then have

𝛼 =

(
2

−1

)
, 𝛽 =

(
−1

2

)
, 𝛼 + 𝛽 = 𝜌 =

(
1

1

)
.

Consider the weight 𝜆 = ( 𝑥 − 1∕2
−𝑥 − 1∕2), for some irrational 𝑥. Then, we have𝐑𝜆 = {±(𝛼 + 𝛽)} and 𝜌𝜆 =

(1). This yields Res𝜆(𝜆 + 𝜌) − 𝜌𝜆 = 0, which is not a nice 𝔰𝔩2-weight. Therefore, 𝜆 is not nice.
To get a niceweight, we add to 𝜆 the integral weight 𝜆 = (10) resulting in theweight �̃� = ( 𝑥 + 1∕2

−𝑥 − 1∕2).
We have Res𝜆(�̃� + 𝜌) − 𝜌𝜆 = 1, which is a nice 𝔰𝔩2-weight. Clearly, the conditions (a)–(c) of
Lemma 13 are satisfied for this �̃�.
One can also easily find a singular weight in �̃� + Ξ. For example, the weight �̃� − (𝛼 + 𝛽) =

( 𝑥 − 1∕2
−𝑥 − 3∕2) is singular. One checks that Res𝜆(− + 𝜌) − 𝜌𝜆 maps this weight to −1, namely, to the
unique singular 𝔰𝔩2-weight.

Remark 15. It is easy to see that, if 𝜆 is nice, then 𝜆 + Ξ contains dominant weights of arbitrary
singularity in𝑊𝜆.

If 𝜆 and �̃� are as above, then 𝜃𝜆,�̃� and 𝜃�̃�,𝜆 aremutually inverse equivalences of categories, both at
the level of category𝒪 and at the level of categoryℳ. In particular, these equivalences send simple
objects to simple objects. Consequently, for any simple 𝔤-module 𝐿 in𝜒 , the categories add(𝒫𝐿)

and add(𝒫𝜃𝜆,�̃�(𝐿)) coincide (in the sense that they have the same objects and morphisms).
Since both Conjectures 5 and 9 are formulated in terms of add(𝒫𝐿), it follows that it is enough

to prove them for simple modules with nice central characters.

4.2 Reduction to singular blocks

Let 𝐿 be a simple 𝔤-module, 𝜒 be the central character of 𝐿, which we assume to be nice, and
𝜆 ∈ 𝔥∗ be some weight such that Ann𝑈(𝔤)(𝐿) = Ann𝑈(𝔤)(𝐿(𝜆)). We have the bicategory𝒫𝜒 of all
projective endofunctors ofℳ𝜒 .
Consider the integral Weyl group 𝑊𝜆 of 𝜆. Then, 𝑊𝜆 is a product of symmetric groups. Let

us start by recalling special features of Kazhdan–Lusztig combinatorics in type 𝐴. Thanks to [22,
Theorem 1.4], in type𝐴, left and right cells of𝒫Ξ can be described using the Robinson–Schensted
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 17 of 29

correspondence that associates to a permutation 𝑤 ∈ 𝑆𝑛 a pair of standard Young tableaux of the
same shape (which is a partition of 𝑛). The latter shape determines the two-sided cell. One special
type 𝐴 feature is that each two-sided cell  of 𝒫Ξ in type 𝐴 contains the longest element 𝜃

𝑤𝑊′

0

in some parabolic subgroup𝑊′ of𝑊𝜆. Another special feature is that the intersection of any left
and any right cell in  is a singleton. This means that  contains the identity functor 𝜃𝜒′

𝑒 on some
ℳ𝜒′ (a singular block for which 𝑊′ is the dot-stabilizer of the dominant weight for that block)
and this functor is the only projective endofunctor ofℳ𝜒′ belonging to the intersection of the cell
 with the homogeneous component𝒫Ξ

𝜒 . From Lemma 16 below, it follows that inclusion gives
rise to a bijection between the left (right, two-sided) cells of𝒫Ξ and the corresponding cells of𝒫.
The elements in that do not annihilate 𝐿 are exactly the elements of the left cell that is adjoint

to the right cell that corresponds to the annihilator of 𝐿, see [35, Lemma 12]. Each of these left cells
contains an element with targetℳ𝜒′ . We choose one of those, call it 𝜃. Then 𝜃𝐿 ≠ 0 and we can
let 𝐿′ ∈ ℳ𝜒′ be any simple quotient of 𝜃𝐿. Since 𝜒 is assumed to be nice, 𝜃 is homogeneous of
degree Ξ.
We note that, by construction, the identity projective functor 𝜃

𝜒′

𝑒 on ℳ𝜒′ is the only
indecomposable projective endofunctor ofℳ𝜒′ that belongs to𝒫Ξ

𝜒 and does not annihilate 𝐿′.
Consider the annihilator 𝐈 ∶= Ann𝑈(𝔤)(𝐿

′) of 𝐿′ in 𝑈(𝔤). Letℳ𝐈
𝜒′ denote the full subcategory

ofℳ𝜒′ that consists of all objects on which 𝐈 acts locally nilpotently. Then 𝜃
𝜒′

𝑒 is still the identity
endofunctor ofℳ𝐈

𝜒′ and it does not annihilate 𝐿′.
We want to answer the following question: What are the other projective endofunctors ofℳ𝐈

𝜒′

that do not annihilate 𝐿′?
Choose some 𝜆′ such that Ann𝑈(𝔤)(𝐿

′) = Ann𝑈(𝔤)(𝐿(𝜆′)), which is possible due to Duflo’s the-
orem, see [15]. Consider 𝑊 ⋅ 𝜆′ and its intersections with all Ξ-cosets in 𝜆′ + Λ. Those cosets in
Λ∕Ξ for which the intersection is nontrivial form a subgroup of the cyclic group Λ∕Ξ. Let 𝜇1,
𝜇2,. . . , 𝜇𝑘 be the dominant weights in all the corresponding nonempty intersections (of 𝑊 ⋅ 𝜆′

with the Ξ-cosets in 𝜆′ + Λ). Without loss of generality, we may assume 𝜆′ ∈ 𝑊𝜇1
⋅ 𝜇1. We have,

𝜃
𝜒′

𝑒 = 𝜃𝜇1,𝜇1
.

The integral Weyl groups 𝑊𝜇𝑖
are all conjugate and so are the stabilizers of the correspond-

ing dominant weights in these 𝑊𝜇𝑖
, see also [19, Remark 3.5]. In particular, from Soergel’s

combinatorial description, it follows that all the corresponding indecomposable blocks 𝒪𝜇𝑖
(see

Subsection 2.1) of category𝒪 are equivalent, see also [32, LemmaA.3] for an alternative argument.
In particular, all 𝐿(𝜇𝑖) have the same Gelfand–Kirillov dimension, see Subsection 2.6.
Since our𝜇𝑖 might be singular, the category𝒪𝜇𝑖

might contain some other simple highestweight
modules 𝐿(𝜈) with the same Gelfand–Kirillov dimension as 𝐿(𝜇𝑖). In this case, we will write
𝜈 ∼ 𝜇𝑖 .

Lemma 16. Each indecomposable projective functor that does not annihilate 𝐿′ is of the form 𝜃𝜇1,𝜈
,

where 𝜈 ∼ 𝜇𝑖 , for some 𝑖, and 𝜈 is antidominant with respect to the dot-stabilizer of 𝜇1. Moreover,
each such 𝜃𝜇1,𝜈

is a self-equivalence ofℳ𝐈
𝜒′ (but not necessarily ofℳ𝜒′).

Proof. We have 𝜃𝜇1,𝜈
𝐿′ ≠ 0 if and only if 𝜃𝜇1,𝜈

𝐿(𝜆′) ≠ 0, by our choice of 𝜆′. Since projective func-
tors cannot increase the Gelfand–Kirillov dimension and all 𝐿(𝜇𝑖) have the same Gelfand-Kirillov
dimension, 𝜃𝜇1,𝜈

𝐿′ ≠ 0 implies 𝜈 ∼ 𝜇𝑖 , for some 𝑖, by our definition of∼. From the classification of
projective functors, we may also assume that 𝜈 is antidominant with respect to the dot-stabilizer
of 𝜇1. It remains to argue that any such 𝜃𝜇1,𝜈

is an equivalence.
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18 of 29 MACKAAY et al.

Let 𝜃∗
𝜇1,𝜈

denote the biadjoint of 𝜃𝜇1,𝜈
. We have 𝜃𝜇1,𝜈

𝑃(𝜇1) = 𝜃𝜇1,𝜈
Δ(𝜇1) = 𝑃(𝜈), by the

classification of projective functors. In particular,

dimHom𝔤(𝜃𝜇1,𝜈
Δ(𝜇1), 𝐿(𝜈)) = 1.

By adjunction, we thus have

dimHom𝔤(Δ(𝜇1), 𝜃
∗
𝜇1,𝜈

𝐿(𝜈)) = 1.

Note that 𝐿(𝜇1) is the simple top of Δ(𝜇1) and it appears in Δ(𝜇1) with multiplicity one.
Assume that the image of a unique (up to scalar) nonzero map from Δ(𝜇1) to 𝜃∗

𝜇1,𝜈
𝐿(𝜈) is not

isomorphic to 𝐿(𝜇1). Then, the socle of this image contains some 𝐿(𝜈′), where 𝜈′ ∼ 𝜇1 and 𝜈′ ≠ 𝜇1.
As 𝜃∗

𝜇1,𝜈
𝐿(𝜈) is self-dual (since projective functors commute with the duality on 𝒪), 𝐿(𝜈′) also

appears in its top. This means that the composition 𝜃∗
𝜇1,𝜈

◦𝜃𝜇1,𝜈
applied to Δ(𝜇1) has 𝑃(𝜈′) as a

summand. However, this is not possible as 𝜈′ ∼ 𝜇1 and 𝜃𝜇1,𝜇1
is the only projective endofunctor

of 𝒪𝜇1
that does not kill 𝐿(𝜇1).

From the previous paragraph, we have that the image of a unique (up to scalar) nonzero map
fromΔ(𝜇1) to 𝜃∗

𝜇1,𝜈
𝐿(𝜈) is isomorphic to 𝐿(𝜇1), in particular, 𝐿(𝜇1) appears in the socle of 𝜃∗

𝜇1,𝜈
𝐿(𝜈).

As 𝜃∗
𝜇1,𝜈

𝐿(𝜈) is self-dual, 𝐿(𝜇1) appears in the top of 𝜃∗
𝜇1,𝜈

𝐿(𝜈) as well. SinceΔ(𝜇1) is projective and
the map from it to 𝜃∗

𝜇1,𝜈
𝐿(𝜈) is unique, the multiplicity of 𝐿(𝜇1) in 𝜃∗

𝜇1,𝜈
𝐿(𝜈) is one. Consequently,

𝐿(𝜇1) is a direct summand of 𝜃∗
𝜇1,𝜈

𝐿(𝜈). As, by the previous paragraph, no other 𝐿(𝜈′)with 𝜈′ ∼ 𝜇1

are allowed to appear in the top or socle of 𝜃∗
𝜇1,𝜈

𝐿(𝜈), we have 𝜃∗
𝜇1,𝜈

𝐿(𝜈) = 𝐿(𝜇1). By adjunction,
𝜃𝜇1,𝜈

𝐿(𝜇1) = 𝐿(𝜈).
This implies that

𝜃∗
𝜇1,𝜈

𝜃𝜇1,𝜈
= 𝜃𝜇1,𝜈

𝜃∗
𝜇1,𝜈

= 𝜃𝜇1,𝜇1

as endofunctors ofℳ𝐈
𝜒′ and completes the proof. □

Example 17. For 𝔤 = 𝔰𝔩2, consider 𝜆 = (−1∕2). Then𝑊 ⋅ 𝜆 = {−1∕2, −3∕2}. Both latter weights
are dominant with respect to their integral Weyl group, which is trivial. However, the difference
between these two weights is an integral weight. Therefore, we have two indecomposable pro-
jective functors that do not annihilate 𝐿(−1∕2), namely, the identity functor 𝜃−1∕2,−1∕2 and the
equivalence 𝜃−1∕2,−3∕2 between 𝒪−1∕2 and 𝒪−3∕2.

4.3 Proof of Conjecture 9 in type 𝑨

From the construction in the previous subsection, it follows that𝐿 ∩ Irr(𝔤)𝜒′ consists of modules
of the form 𝜃𝜇,𝜇′ (𝐿′), where 𝜃𝜇,𝜇′ are equivalences. This set is, clearly, one equivalence class with
respect to ⊳. Therefore, the claim of Conjecture 9 follows from Theorem 8.

4.4 Proof of Conjecture 5 in type 𝑨

We now establish a crucial property of the module 𝐿′ constructed in Subsection 4.2, namely, its
weak Kostant positivity (see Subsection 2.3):

Lemma 18. The module 𝐿′ is weakly Kostant positive.
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 19 of 29

Proof. Since we are discussing only the weak Kostant positivity of 𝐿′ in this lemma, in the proof
below, we restrict our attention to indecomposable projective functors that are homogeneous
of degree Ξ. Recall that 𝜃

𝜒′

𝑒 is the only indecomposable projective endofunctor of ℳ𝜒′ that is
homogeneous of degree Ξ and does not annihilate 𝐿′, see Section 2.
We start with the claim that 𝜆′ may be assumed to be dominant (i.e., we may assume 𝜆′ = 𝜇1).

In other words, we claim that Ann𝑈(𝔤)(𝐿
′) = Ann𝑈(𝔤)(𝐿(𝜇1)). To prove this, we need to show that

𝐿(𝜆′) is annihilated by all indecomposable projective endofunctors of 𝒪𝜒′ that are not isomorphic
to the identity functor.
Let 𝜃 be an indecomposable projective endofunctor ofℳ𝜒′ , homogeneous of degreeΞ, which is

not isomorphic to the identity functor. Then, 𝜃𝑃(𝜇1) ≅ 𝑃(𝜈), for some 𝜈 ≠ 𝜇1. Since 𝜃 is strictly big-
ger than  in the two-sided order, the Gelfand–Kirillov dimension of 𝐿(𝜈) is strictly greater than
that of 𝐿(𝜇1), see [20, Subsection 10.11]. From [20, Subsection 10.9], it then follows that 𝜃𝐿(𝜇1) = 0.
Therefore, the annihilator of 𝐿(𝜇1) corresponds to a right cell inside  and since the right cell of
𝜃
𝜒′

𝑒 is the only right cell that contains a representative from projective endofunctors of 𝒪𝜒′ in  ,
we obtain that the annihilator of 𝐿(𝜇1) corresponds to the right cell of 𝜃

𝜒′

𝑒 . This is the same right
cell that describes the annihilator of 𝐿′, and we obtain our claim.
Now, assuming 𝜆′ is dominant,𝐿(𝜆′) is the quotient of a projectiveVermamodule in𝒪𝜒′ . Hence,

it is Kostant positive, see [20, Subsection 6.9]. For a simple finite-dimensional 𝑉, the multiplicity
of 𝑉 in (𝐿(𝜆′), 𝐿(𝜆′)) equals the dimension of Hom𝔤(𝑉 ⊗ℂ 𝐿(𝜆′), 𝐿(𝜆′)). We can write 𝑉 ⊗ℂ −

as a direct sum of indecomposable projective functors. The summands which go from 𝒪𝜒′ to 𝒪𝜒′

are either 𝜃
𝜒′

𝑒 or kill 𝐿(𝜆′). Therefore, the above multiplicity equals the multiplicity of 𝜃𝜒′

𝑒 as a
summand of 𝑉 ⊗ℂ −.
The same computation works for 𝐿′, under the assumption that 0 is a weight of 𝑉 (which is

equivalent to saying that all indecomposable projective functors that appear as summands of𝑉 ⊗ℂ

− are homogeneous of degree Ξ), which is equivalent to saying that all indecomposable projective
functors that are summands of − ⊗ℂ 𝑉 are homogeneous of degree Ξ. Therefore, combining

𝑈(𝔤)∕
(
Ann𝑈(𝔤)(𝐿

′)
)
≅ 𝑈(𝔤)∕

(
Ann𝑈(𝔤)(𝐿(𝜆′))

)
with

𝑈(𝔤)∕
(
Ann𝑈(𝔤)(𝐿(𝜆′))

)
≅ (𝐿(𝜆′), 𝐿(𝜆′)),

then with

𝑈(𝔤)∕
(
Ann𝑈(𝔤)(𝐿

′)
)
↪ (𝐿′, 𝐿′)Ξ,

and, finally, with

[(𝐿(𝜆′), 𝐿(𝜆′)) ∶ 𝑉] = [(𝐿′, 𝐿′)Ξ ∶ 𝑉],

we obtain

𝑈(𝔤)∕
(
Ann𝑈(𝔤)(𝐿

′)
)
≅ (𝐿′, 𝐿′)Ξ.

This completes the proof. □
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20 of 29 MACKAAY et al.

Denote by Ξ𝐗𝐿′ and Ξ𝐘𝐿′ the𝒫Ξ-analogs of 𝐗𝐿′ and 𝐘𝐿′ , respectively.
Since 𝐿′ is weakly Kostant positive and the identity projective functor 𝜃

𝜒′

𝑒 onℳ𝜒′ is the only
indecomposable projective endofunctor ofℳ𝜒′ that belongs to𝒫Ξ

𝜒 and does not annihilate 𝐿′, we
can apply the adaptation [23, Theorem 5] of [39, Theorem 5.1] and conclude that Ξ𝐗𝐿′ is equivalent
to a certain category of Harish-Chandra bimodules. This equivalence is, in fact, a homomorphism
of birepresentations of𝒫Ξ.
We can also apply [23, Theorem 5] to 𝐿(𝜆) and conclude that Ξ𝐗𝐿(𝜆) is equivalent to the same

category of Harish-Chandra bimodules, as birepresentations of 𝒫Ξ. In other words, Ξ𝐗𝐿′ and
Ξ𝐗𝐿(𝜆) are equivalent as birepresentations of 𝒫Ξ. This means that such an equivalence induces
an equivalence between Ξ𝐘𝐿′ and Ξ𝐘𝐿(𝜆).
Since we already established in Subsection 4.3 that the statement of Conjecture 9 holds for𝐿,

Theorem 11 implies that 𝐘𝐿 = 𝐘𝐿′ . This means that Ξ𝐘𝐿 and Ξ𝐘𝐿(𝜆) are equivalent as birepresen-
tations of𝒫Ξ. It is easy to see that both 𝐘𝐿(𝜆) and Ξ𝐘𝐿(𝜆) are simple transitive by combining [35,
Theorem 22], [36, Proposition 22], and [37, Theorem 18]. Hence, Ξ𝐘𝐿 is simple transitive.
The elements of 𝒫 inside  are obtained from the elements of 𝒫Ξ inside  by composing

with the autoequivalences given by Lemma 16. Hence,𝐘𝐿 is obtained from Ξ𝐘𝐿 by applying some
equivalences. Since 𝐘𝐿 is transitive by construction, the fact that it is simple transitive follows
from the simple transitivity of Ξ𝐘𝐿. This completes the proof.
We remark that some of the arguments in this subsection, in particular, the idea of reduction

to a singular block, are similar in spirit to the arguments given in the proof of [38, Theorem 67].

4.5 Some corollaries

The equivalence between Ξ𝐘𝐿 and Ξ𝐘𝐿(𝜆) established in the previous subsection has the following
consequence.

Corollary 19. Let 𝜃 be an indecomposable projective functor from and𝑀 a subquotient of𝑉 ⊗ℂ 𝐿

such that 𝜃𝑀 ≠ 0. Then, GKdim(𝑀) = GKdim(𝐿).

Proof. The point is that in 𝐘𝐿(𝜆) any simple subquotient 𝑀 of any 𝑉 ⊗ℂ 𝐿(𝜆) satisfying 𝜃𝑀 ≠ 0

appears in the top of some𝑉′ ⊗ℂ 𝐿(𝜆). We know this because we understand the action of projec-
tive functors on category𝒪 quite well. Applying to 𝐿(𝜆) projective functors from  produces a cell
birepresentation of the bicategory of projective functors. In the abelianization of this birepresenta-
tion, the action of projective functors from  is given by tensoring with projective bimodules that
are explicitly described in [28, Proposition 4.15]. Applying such a projective module does exactly
what is claimed above: applied to a summand of 𝑉 ⊗ℂ 𝐿(𝜆) in which𝑀 appears as a subquotient,
it produces a module with a direct summand in which𝑀 appears in the top.
Due to the equivalence between Ξ𝐘𝐿 and Ξ𝐘𝐿(𝜆) and the fact that𝐘𝐿 is obtained from Ξ𝐘𝐿 (resp.

𝐘𝐿(𝜆) from Ξ𝐘𝐿(𝜆)) using some equivalences of categories given by projective functors, it follows
that 𝑀 has a subquotient that appears in the top of some 𝑉′′ ⊗ℂ 𝐿. This implies GKdim(𝑀) =

GKdim(𝐿). □

Let 𝐿 be a simple 𝔤-module and 𝑉 a finite-dimensional 𝔤-module. A subquotient𝑀 of 𝑉 ⊗ℂ 𝐿

will be called strange, provided that the following conditions are satisfied:

∙ for any submodule𝑁 ⊂ 𝑀, exactly one of themodules𝑁 or𝑀∕𝑁 hasGK-dimensionGKdim(𝐿),
∙ 𝑀 does not have any simple subquotient of GK-dimension GKdim(𝐿).
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 21 of 29

This definition is inspired by the properties of the regular ℂ[𝑥]-module. This module and all
its nonzero submodules have GK-dimension 1, while any quotient of this module by a nonzero
submodule has GK-dimension 0. The module itself does not have any simple submodules.

Corollary 20. Let 𝜃 be an indecomposable projective functor from  and𝑀 a strange subquotient
of 𝑉 ⊗ℂ 𝐿. Then, 𝜃𝑀 = 0.

Proof. As explained in the proof of Corollary 19, the assumption 𝜃𝑀 ≠ 0 implies that 𝑀 has a
subquotient that appears in the top of some𝑉′′ ⊗ℂ 𝐿. In other words,𝑀 has a simple subquotient
𝑀′ such that GKdim(𝑀′) = GKdim(𝐿). This contradicts our assumption that𝑀 is strange. □

4.6 The two conjectures in other type 𝑨 situations

Let now 𝔤 be of any type. Let 𝐿 be a simple 𝔤-module and 𝜆 ∈ 𝔥∗ be such that the annihilators
of 𝐿 and 𝐿(𝜆) coincide. Combining the above results with Soergel’s combinatorial description, it
follows that both Conjecture 5 and Conjecture 9 are true for 𝐿 under the assumption that𝑊𝜆 is of
type 𝐴. More precisely, we have:

Corollary 21. Assume that 𝑊𝜆 is of type 𝐴. Then the birepresentation 𝐘𝐿 is simple transitive and
the restriction of the relation ⊳ to 𝐿 is the full relation (i.e., any two elements are related).

5 SOCLES

5.1 The main result

Let us start with repeating the formulation of the main result.

Theorem 22. Let 𝔤 be a semisimple finite-dimensional Lie algebra over ℂ. Let 𝐿 be a holonomic
simple 𝔤-module and let 𝑉 be a finite-dimensional 𝔤-module. Then, the 𝔤-module 𝑉 ⊗ℂ 𝐿 has an
essential semisimple submodule of finite length.

5.2 Reduction to a finite piece

Let 𝐿 be a simple 𝔤-module and 𝜆 ∈ 𝔥∗ be such that Ann𝑈(𝔤)(𝐿) = Ann𝑈(𝔤)(𝐿(𝜆)). Consider the
set 𝜆 + Λ and the set(𝜆) of all central characters of the form 𝜒

𝜇
, where 𝜇 ∈ 𝜆 + Λ.

Aswe have seen in Subsection 2.4, the combinatorial datum that controls equivalences between
blocks of 𝒪 is given by triples of the form𝑊′

𝜇 ⊂ 𝑊𝜇 ⊂ 𝑊, for 𝜇 ∈ 𝔥∗ (see [11] for an explicit clas-
sification). Therefore, it is natural to consider the finite set of all triples of the form ̃̃𝑊 ⊂ �̃� ⊂ 𝑊,
where �̃� is the subgroup of 𝑊 generated by some reflections (and hence is the Weyl group of
the root subsystem of 𝐑 generated by the roots corresponding to those reflections) and ̃̃𝑊 is a
parabolic subgroup of �̃� (with respect to the choice of positive roots inherited from 𝐑+).
Given two dominant weights 𝜇 and 𝜈 in 𝜆 + Λ, we have their respective integral Weyl groups

𝑊𝜇 and𝑊𝜈 and their respective dot-stabilizers𝑊′
𝜇 and𝑊′

𝜈. If𝑊𝜇 = 𝑊𝜈 and𝑊′
𝜇 = 𝑊′

𝜈, then the
projective functors 𝜃𝜇,𝜈 and 𝜃𝜈,𝜇 are mutually inverse equivalences of categories.
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22 of 29 MACKAAY et al.

Now we can fix a finite set 𝜇1, 𝜇2,. . . , 𝜇𝑘 of dominant weights in 𝜆 + Λ such that 𝜇1 ∈ 𝑊𝜆 ⋅
𝜆 and, for any other dominant weight 𝜈 in 𝜆 + Λ, there is some 𝜇𝑖 such that we have both the
equality 𝑊𝜇𝑖

= 𝑊𝜈 of the corresponding integral Weyl groups and the equality 𝑊′
𝜇𝑖

= 𝑊′
𝜈 of the

corresponding dot-stabilizers. Let𝒩 be the direct sum of all the correspondingℳ𝜒
𝜇𝑖

.

Proposition 23. In order to prove Theorem 22, it is enough to prove that, for any indecomposable
projective endofunctor 𝜃 of𝒩, themodule 𝜃𝐿 has an essential semisimple submodule of finite length.

Proof. Due to our construction of𝒩, any nonzero projective functor 𝜃′ fromℳ𝜒
𝜆
to someℳ𝜒

𝜈
fac-

tors through someℳ𝜒
𝜇𝑖

via equivalences of categories given by projective functors. Equivalences
of categories, clearly, preserve the module-theoretic property of having an essential semisimple
submodule of finite length. □

5.3 Reduction to the maximal two-sided cell

Let 𝐿 ∈ 𝒩 be a simple module and 𝜃 a projective endofunctor of 𝒩. Let  be the two-sided
KL-cell that contains the left KL-cell corresponding to the annihilator of 𝐿 in 𝑈(𝔤). Let 𝜃 be
a multiplicity-free direct sum of all projective endofunctors of 𝒩 that belong to  . Let �̃� be the
Duflo element in the left KL-cell corresponding to the annihilator of 𝐿 in 𝑈(𝔤). Then, we have a
natural transformation from the identity to �̃�, whose evaluation at 𝐿 is nonzero, see [35, Subsec-
tion 4.5]. Consequently, 𝐿 appears as a submodule of �̃�𝐿, and hence as a submodule of 𝜃 𝐿, since
�̃� is a summand of 𝜃 .
Applying 𝜃 to the inclusion𝐿 ↪ 𝜃 𝐿, we get an inclusion of 𝜃𝐿 into 𝜃𝜃 𝐿. The composition 𝜃𝜃

belongs to the additive closure of 𝜃 , modulo projective functors from strictly higher two-sided
cells. The latter projective functors annihilate 𝐿 because of our assumption on the annihilator of
𝐿. This means that 𝜃𝐿 is a submodule of 𝜃′𝐿, for some 𝜃′ in the additive closure of 𝜃 . Therefore,
if we can prove Theorem 22 for 𝜃 = 𝜃 , it follows that Theorem 22 is true for all 𝜃.

5.4 Proof of Theorem 22

Unfortunately,ℳ does not have arbitrary products, which is a technical obstacle for our coming
arguments that we need to deal with.
For 𝑘 ∈ ℤ>0 and a central character 𝜒, denote byℳ𝑘

𝜒 the full subcategory ofℳ𝜒 that consists
of all modules annihilated by the 𝑘th power of the kernel of 𝜒. Letℳ𝑘 be the product of allℳ𝑘

𝜒 .
Then, by [25, Theorem 5.1], for a projective functor 𝜃 and 𝑘 ∈ ℤ>0, there is 𝑚 ∈ ℤ>0 such that 𝜃
mapsℳ𝑘 toℳ𝑚. Note thatℳ𝑘 has arbitrary limits, for all 𝑘.
Now let𝐿 ∈ 𝒩 be a simplemodule and 𝜃 a projective endofunctor of𝒩 that belongs to . Aswe

only have finitely many indecomposable projective endofunctors of𝒩, we can fix 𝑉 such that all
indecomposable projective endofunctors of𝒩 are direct summands of the projective functor𝑉 ⊗ℂ

−. In particular, by the additivity of the Bernstein number with respect to short exact sequences,
see Subsection 2.5, for any filtration

0 = 𝑀0 ⊂ 𝑀1 ⊂ ⋯ ⊂ 𝑀𝑘 = 𝜃𝐿,
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 23 of 29

the number of 𝑖 such thatGKdim(𝑀𝑖∕𝑀𝑖−1) = GKdim(𝐿) cannot be greater than dim(𝑉) ⋅ BN(𝐿).
Let𝑁 be amaximal semisimple submodule of 𝜃𝐿. We know, see Subsection 2.5, that it has finite

length.Assume that it is not essential and let𝐾 be anonzero submodule of 𝜃𝐿 such that𝐾 ∩ 𝑁 = 0.
Then, 𝐾 has no simple submodule. From the previous paragraph, we may further assume that
any quotient of 𝐾 by a nonzero submodule has Gelfand–Kirillov dimension strictly smaller than
GKdim(𝐿). Indeed, if 𝐾 has a nonzero submodule 𝐾′ such that GKdim(𝐾∕𝐾′) = GKdim(𝐿), we
can simply replace 𝐾 by 𝐾′. After at most dim(𝑉) ⋅ BN(𝐿) replacements, we obtain a 𝐾 with the
desired property. In particular, 𝐾 is a strange submodule of 𝜃𝐿.
First of all, we note that, by adjunction,

0 ≠ Hom𝔤(𝐾, 𝜃𝐿) ≅ Hom𝔤(𝜃
∗𝐾, 𝐿),

in particular, 𝜃∗𝐾 ≠ 0.
On the other hand, wewant to show that 𝜃∗𝐾 = 0 and in this way get a contradiction. For exam-

ple, in type 𝐴, 𝜃∗𝐾 = 0 follows from Corollary 20. To prove 𝜃∗𝐾 = 0 in general (but, under the
additional, compared to Corollary 20, assumption that 𝐿 is holonomic), consider the filtered dia-
gram  of quotients of 𝐾 by nonzero submodules with respect to natural projections. The kernel
of the natural map from 𝐾 to the limit lim←  equals the intersection of all nonzero submod-
ules of 𝐾. That is zero, as 𝐾 does not have simple submodules, in particular, it does not have a
simple socle.
As 𝜃∗ has a biadjoint, we have 𝜃∗ lim←  ≅ lim← 𝜃∗ . At the same time, the Gelfand–Kirillov

dimension of any𝑋 ∈  is strictly smaller thanGKdim(𝐿), by our assumption on𝐾. Since 𝜃 ∈  ,
we have 𝜃∗ ∈  and hence 𝜃∗𝑋 = 0 by our assumption that 𝐿 is holonomic. This means that
lim← 𝜃∗ = 0, which implies that 𝜃∗𝐾 = 0, a contradiction. This proves that such 𝐾 cannot exist
and completes the proof of Theorem 22.

6 BEYONDHOLONOMICMODULES OUTSIDE TYPE 𝑨

6.1 Results

As already mentioned in the introduction, in type 𝐴, the assertion of Theorem 22 is true for all
simple modules 𝐿, not necessarily holonomic ones, see [10, Theorem 23]. The main reason why
this works is the combinatorial property of type𝐴 that each two-sidedKL-cell contains the longest
element𝑤𝔭

0
of theWeyl group of some parabolic subalgebra 𝔭. We can generalize [10, Theorem 23]

as follows.

Theorem 24. Let 𝔤 be a semisimple classical finite-dimensional Lie algebra overℂ. Let 𝐿 be a simple
𝔤-module such that the two-sided KL-cell  that contains the left KL-cell corresponding to the anni-
hilator of 𝐿 in𝑈(𝔤) contains some 𝑤

𝔭
0
. Let 𝑉 be a finite-dimensional 𝔤-module. Then, the 𝔤-module

𝑉 ⊗ℂ 𝐿 has an essential semisimple submodule of finite length.

In the same setup, we also prove both Conjectures 5 and 9.

Theorem 25. Let 𝔤 be a semisimple classical finite-dimensional Lie algebra over ℂ. Let 𝐿 be a sim-
ple 𝔤-module such that the two-sided KL-cell  that contains the left KL-cell corresponding to the
annihilator of 𝐿 in 𝑈(𝔤) contains some 𝑤

𝔭
0
. For such 𝐿, the assertions of both Conjectures 5 and 9

are true.
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24 of 29 MACKAAY et al.

6.2 Proof of Theorem 24

We follow the idea of the proof of [10, Theorem 23], which is also utilized, in a slightly disguised
way, in Section 4. Here is a sketch of this idea.

∙ Due to our assumption on  , we can translate 𝐿 to a singular block whose singularity
corresponds to our longest element.

∙ The indecomposable projective endofunctors of that singular block that do not kill 𝐿 form a
group (modulo projective functors that kill 𝐿), in particular, they are invertible. So, for all such
projective functors, the claim of Theorem 24 is straightforward.

∙ The assertion of Theorem 24 is equivalent to saying that 𝑉 ⊗ℂ 𝐿 has no strange submodules.
If we assume that this is wrong, then we can translate a strange submodule of 𝑉 ⊗ℂ 𝐿 to the
singular block from above, which leads to a contradiction with the previous item.

The first item on the above list goes mutatis mutandis as in Subsection 4.2. We note that, out-
side type 𝐴, two-sided KL-cells do not have to contain any longest element for some parabolic
subgroup. However, we explicitly assume this for our  , which allows us to use the approach of
Subsection 4.2. This approach leads to the following output: starting from 𝐿 with some central
character 𝜒 corresponding to a dominant weight 𝜆, we find a singular weight 𝜆′ with the corre-
sponding central character 𝜒′ such that the singularity 𝑊′ of 𝜆′ in 𝑊𝜆′ is a parabolic subgroup
and is isomorphic to the Weyl group of our longest element in the formulation. We also find a
simple module 𝐿′ with the same annihilator as 𝐿(𝜆′) and such that the additive closure of all 𝜃𝐿,
where 𝜃 ∈  , coincides with the additive closure of all 𝜃𝐿′, where 𝜃 ∈  . Therefore, we can forget
about 𝐿 and concentrate on 𝐿′.
For the second item on the above list, let us assume that 𝜆′ is a singular weight with singularity

𝑊′ (which is a parabolic subgroup of𝑊𝜆′). Let 𝜒′ be the central character of 𝐿(𝜆′). Consider the
bicategory𝒫(𝚒𝜒′ , 𝚒𝜒′) and the bi-ideal𝒥𝜒′ in it generated by all indecomposable objects that are
not two-sided equivalent to the identity.

Lemma 26. Any indecomposable object of𝒫(𝚒𝜒′ , 𝚒𝜒′)∕𝒥𝜒′ is invertible.

Proof. Arguments similar to the ones used in the proof of Lemma 16 reduce the necessary
statement to the similar statement for𝒫Ξ(𝚒𝜒′ , 𝚒𝜒′)∕(𝒫Ξ(𝚒𝜒′ , 𝚒𝜒′) ∩ 𝒥𝜒′).
We can translate singular projective functors out of the wall all the way to the corresponding

regular blocks.We can also translate back. Translating out and then back gives |𝑊′| copies of what
we started with, with one copy in degree zero and all other copies shifted in positive degrees, see
[12, Proposition 4.1]. Since the endomorphism algebra of the multiplicity-free direct sum of all
indecomposable objects of the bicategory of projective functors with tops concentrated in degree
zero is positively graded, see [1], it follows that𝒫Ξ(𝚒𝜒′ , 𝚒𝜒′)∕(𝒫Ξ(𝚒𝜒′ , 𝚒𝜒′) ∩ 𝒥𝜒′) is biequivalent
to the asymptotic category associated with the𝐻-cell of  Ξ that contains our longest element (for
the definition of this asymptotic category, see, for example, [29, Subsection 3.2]).
As explained in [29, Section 8], since we assume 𝔤 to be classical, all the asymptotic bicategories

that appear are biequivalent to the bicategory of finite-dimensional vector spaces graded by a finite
group. In the latter, all indecomposable objects are invertible. The claim of the lemma follows. □

Finally, to justify the last item on the above list, let 𝑀 be a strange submodule of 𝑉 ⊗ℂ 𝐿.
Then, for any projective functor 𝜃, the module 𝜃𝑀 cannot have simple submodules of the same
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 25 of 29

GK-dimension as 𝐿. Indeed, if �̃� were such a submodule, then, by adjunction,

0 ≠ Hom𝔤(�̃�, 𝜃𝑀) ≅ Hom𝔤(𝜃
∗�̃�,𝑀)

and we would get a contradiction, since all quotients of 𝜃∗�̃� have the same GK-dimension as 𝐿

while all quotients of𝑀 by nonzero submodules have strictly smaller GK-dimension.
Suppose that𝑀′ is a nonzero submodule of 𝜃𝑀. By the additivity of the Bernstein number,𝑀′

can only have finitely many simple subquotients of the same GK-dimension as 𝐿, say 𝐿1, 𝐿2,. . . , 𝐿𝑘

(counted with the respective multiplicities). Let 𝐼𝑖 be the indecomposable injective hull of 𝐿𝑖 . The
embeddings 𝐿𝑖 ⊂ 𝐼𝑖 give rise to a map from𝑀′ to 𝐼1 ⊕ 𝐼2 ⊕ ⋯ ⊕ 𝐼𝑘. This map cannot be injective
since none of the 𝐿𝑖 is a submodule of 𝑀′ by the previous paragraph. The kernel of this map is
thus a strange submodule of𝑀′.
Consequently, any nonzero submodule of 𝜃𝑀 has a strange submodule. This means that we

can translate our𝑀 to our singularity 𝜒′ and obtain that 𝜃′𝐿′ must have a strange submodule for
some 𝜃′ ∈ 𝒫Ξ(𝚒𝜒′ , 𝚒𝜒′). At the same time, by Lemma 26, all indecomposable summands of 𝜃′ are
invertible, which implies that 𝜃′𝐿′ is semisimple of finite length, a contradiction. This completes
the proof of Theorem 24.

6.3 Proof of Theorem 25

In the setup of Theorem 25, the assertion of Conjecture 9 follows from Theorem 8. Indeed, if we
look at the proof of Theorem 24, the application of projective functors to 𝐿′ produces semisim-
ple modules of finite length, if we restrict to the central character 𝜒′. The simple constituents of
these semisimple modules, obviously, form an equivalence class with respect to ⊳. Hence, the
assumptions of Theorem 8 are satisfied, so this theorem applies.
To prove Conjecture 5 in the setup of Theorem 25, we note that Theorem 11 already guarantees

that 𝐘𝐿 is transitive. Since the underlying category 𝐘𝐿(𝚒𝜒′) is semisimple, 𝐘𝐿(𝚒𝜒′) is simple tran-
sitive as a birepresentation of𝒫(𝚒𝜒′ , 𝚒𝜒′). Since we also have 𝐘𝐿 = 𝐘𝐿′ by Theorem 11, any socle
constituent of any object in 𝐘𝐿 can be translated, using adjunction, back to 𝐘𝐿(𝚒𝜒′) in a nonzero
way. If 𝐘𝐿 were not simple transitive, the kernel of the projection from 𝐘𝐿 onto its unique simple
transitive quotient would kill some socle constituent of some object in𝐘𝐿. Translating to𝐘𝐿(𝚒𝜒′),
we would be forced to kill a nonzero object of this category, contradicting its simple transitivity.
This implies that already 𝐘𝐿 is simple transitive.
We note that the result proved in the previous paragraph can also be obtained using the results

of [28, Subsection 4.8].

7 STRANGE SUBQUOTIENTS, SERRE QUOTIENTS, AND ROUGH
STRUCTURE

7.1 Strange subquotients

Let 𝐿 be a simple 𝔤-module and 𝑉 a finite-dimensional 𝔤-module. The module 𝑉 ⊗ℂ 𝐿, clearly,
does not have any strange quotients. Furthermore, Theorem 22 essentially says that 𝑉 ⊗ℂ 𝐿 does
not have any strange submodules, provided that 𝐿 is holonomic. A priori, we cannot rule out
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26 of 29 MACKAAY et al.

existence of strange subquotients. However, inspired by Theorem 22, we propose the following
conjecture.

Conjecture 27. Strange subquotients of 𝑉 ⊗ℂ 𝐿 do not exist.

Let 𝑀 be a strange subquotient of 𝑉 ⊗ℂ 𝐿. Let 𝑁 denote the sum of all submodules of 𝑀

whose GK-dimension is strictly smaller than GKdim(𝐿). Since 𝑉 ⊗ℂ 𝐿 and hence also 𝑀 are
noetherian, 𝑁 is finitely generated. Since each of the finitely many generators of 𝑁 belongs
to a submodule of 𝑀 whose GK-dimension is strictly smaller than GKdim(𝐿), it follows that
GKdim(𝑁) < GKdim(𝐿). Therefore, the subquotient 𝑀∕𝑁 is also strange and has the property
that any submodule of 𝑀∕𝑁 has GK-dimension GKdim(𝐿). We will say that 𝑀∕𝑁 is a strange
subquotient in normal form. Note that strange subquotients in normal form do not have simple
submodules at all.

Proposition 28. Let 𝐿 be holonomic,𝑀 a strange subquotient of𝑉 ⊗ℂ 𝐿, and 𝜃 an indecomposable
projective functor from the  -cell corresponding to Ann𝑈(𝔤)(𝐿). Then 𝜃𝑀 = 0.

Proof. This is proved using the same argument as at the end of Subsection 5.4. □

7.2 Serre quotients

Let 𝐿 be a simple 𝔤-module. In general, the module 𝑉 ⊗ℂ 𝐿 need not have finite length in 𝔤-mod.
In this subsection, we introduce a natural subquotient of 𝔤-mod where 𝑉 ⊗ℂ 𝐿 always has finite
length and a well-defined notion of composition multiplicities.
Let 𝒜 = 𝒜(𝐿) denote the full subcategory of 𝔤-mod whose objects are all finitely generated

𝔤-modules isomorphic to subquotients of modules of the form 𝑉 ⊗ℂ 𝐿, where 𝑉 is a finite-
dimensional 𝔤-module. This is an abelian subcategory of 𝔤-mod with the abelian structure (e.g.,
ℂ-linearity, kernels, and cokernels) being inherited from 𝔤-mod. Thanks to exactness of projective
functors, the category𝒜 comes equipped with the natural action of projective functors.
Letℬ = ℬ(𝐿) denote the full subcategory of 𝒜 consisting of all modules of Gelfand–Kirillov

dimension strictly smaller than GKdim(𝐿). From Subsection 2.5, it follows thatℬ is a Serre sub-
category of𝒜 as well as thatℬ is stable under the action of projective functors. Therefore,𝒜∕ℬ
is an abelian category that has a natural action of projective functors.
Let 𝒞 = 𝒞(𝐿) denote the full subcategory of 𝒜 consisting of all objects 𝑀 of 𝒜 that have the

property that 𝜃𝑀 = 0, for any indecomposable projective functor 𝜃 from the two-sided cell 
corresponding to Ann𝑈(𝔤)(𝐿). Since projective functors are exact,𝒞 is a Serre subcategory of𝒜.

Lemma 29. The category𝒞 is stable under the action of projective functors.

Proof. Let 𝜃′ be a projective functor and 𝜃 be a projective functor from  . Then, any indecompos-
able summand in both 𝜃𝜃′ and 𝜃′𝜃 is either in  or annihilates 𝐿. This implies the claim of the
lemma. □

Due to Lemma 29, the category 𝒜∕𝒞 is an abelian category that has a natural action of
projective functors.
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PROJECTIVE FUNCTORS ON HOLONOMIC SIMPLE MODULES 27 of 29

Conjecture 30. ℬ = 𝒞.

Note that, if 𝐿 is holonomic, we haveℬ ⊂ 𝒞.

7.3 Rough structure of modules in𝓐

Theorem 31. Assume that 𝐿 is holonomic.

(𝑎) The category𝒜∕𝒞 is an abelian length category.
(𝑏) Simple objects in 𝒜∕𝒞 are in bijection with isomorphism classes of simple subquotients with

GK-dimension GKdim(𝐿) in modules of the form 𝑉 ⊗ℂ 𝐿, where 𝑉 is a finite-dimensional 𝔤-
module.

(𝑐) Every object in𝒜∕𝒞 has well-defined composition multiplicities.

As suggested in [38], for 𝑋 ∈ 𝒜, the part of the structure of𝑋 that can be seen in𝒜∕𝒞 (includ-
ing themultiplicities in𝑋 of simple 𝔤-modules with GK-dimensionGKdim(𝐿)) is called the rough
structure of 𝑋.

Proof of Theorem 31. A subquotient 𝑋 of some 𝑉 ⊗ℂ 𝐿 will be called primitive provided that, for
any submodule 𝑌 ⊂ 𝑋, at most one of the modules 𝑌 or 𝑋∕𝑌 has GK-dimension GKdim(𝐿).
Given a primitive subquotient𝑋 of some𝑉 ⊗ℂ 𝐿, the definitions of𝒜,𝒞 and the Serre quotient

give us three options.

∙ The GK-dimension of 𝑋 is strictly smaller than GKdim(𝐿). In this case, 𝑋 = 0 in𝒜∕𝒞.
∙ The module 𝑋 is strange. In this case, 𝑋 = 0 in𝒜∕𝒞.
∙ The module 𝑋 has a unique simple subquotient 𝑋′ of GK-dimension GKdim(𝐿). In this case,

𝑋 = 𝑋′ in𝒜∕𝒞.

This implies Claim (b).
The category 𝒜∕𝒞 is abelian by construction. That every object in 𝒜∕𝒞 has finite length fol-

lows from the additivity of the Bernstein number, since it is a positive integer and the Bernstein
number of 𝑉 ⊗ℂ 𝐿 is finite. This implies Claim (a).
Let 𝑋 and 𝑌 be in𝒜 such that 𝑌 is a simple 𝔤-module of GK-dimension GKdim(𝐿). Let 𝐼𝑌 be

the injective envelope of 𝑌 in 𝔤-Mod. Let

0 = 𝑋0 ⊂ 𝑋1 ⊂ 𝑋2 ⊂ ⋯ ⊂ 𝑋𝑘 = 𝑋

be a filtration of 𝑋 such that all subquotients are primitive (since the number of possible subquo-
tient of GK-dimension GKdim(𝐿) is bounded, such a filtration exists). Then 𝑋𝑖∕𝑋𝑖−1 has 𝑌 as a
subquotient if and only if there is homomorphism from 𝑋𝑖∕𝑋𝑖−1 to 𝐼𝑌 . As 𝑋𝑖∕𝑋𝑖−1 is assumed to
be primitive, the dimension of Hom𝔤(𝑋𝑖∕𝑋𝑖−1, 𝐼𝑌) equals one (since the endomorphism algebra
of 𝑌 has dimension one by Dixmier–Schur’s lemma). Therefore, the composition multiplicity of
𝑌 in 𝑋 is finite and equals the dimension of Hom𝔤(𝑋, 𝐼𝑌). □
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