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ABSTRACT. We generalise the properties OP, IP, k-TP, TPy, k-TP,, SOPq,
SOP; and SOP3 to positive logic, and prove various implications and equival-
ences between them. We also provide a characterisation of stability in positive
logic in analogy with the one in full first-order logic, both on the level of for-
mulas and on the level of theories. For simple theories there are the classically
equivalent definitions of not having TP and dividing having local character,
which we prove to be equivalent in positive logic as well. Finally, we show
that a thick theory 7" has OP iff it has IP or SOP; and that 7" has TP iff it
has SOP; or TP», analogous to the well-known results in full first-order logic
where SOP; is replaced by SOP in the former and by TP; in the latter. Our
proofs of these final two theorems are new and make use of Kim-independence.
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1. INTRODUCTION

Model-theoretic dividing lines are used to measure how “tame” logical theories
are. The most important such dividing lines can be formulated in terms of com-
binatorial properties. For example, a theory is stable if it does not have the order
property. These various properties form an intricate diagram of implications and
equivalences.

Positive logic is a generalisation of full first-order logic, and allows for the treat-
ment of e.c. models of a non-companiable inductive theory [HK21], hyperimagin-
aries (e.g. the (—)"®9 construction, see [DK22, Subsection 10C]), continuous logic
[BYBHUO08] and more [Kam23a]. Some of these dividing lines have recently been
studied in positive logic [She75, Pil00, BY03b, HK21, DK22, DM23], and for some of
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them there is a positive version of the corresponding combinatorial property. How-
ever, these definitions and the implications between them that we know from full
first-order logic are currently developed ad hoc, leaving gaps in the overall picture.
For example, simplicity theory has been developed in positive logic [Pil00, BY03b],
but simplicity in positive logic has so far only been defined in terms of local char-
acter for dividing and is nowhere equated to the usual definition of not having the
tree property. The main goal of this paper is to provide the definitions of and
implications between the most important dividing lines in terms of combinatorial
properties, while also proving equivalences with other characterisations of these
dividing lines.

Main results. In full first-order logic stable formulas are characterised in vari-
ous ways, for example as those that do not have have OP (the order property) or by
counting types. We recover this characterisation in positive logic in Theorem 3.11,
tying together previous work on stability in positive logic from [She75, BYO03b].
Subsequently, we obtain the usual equivalence of definitions for a stable theory in
Theorem 3.15: either through type counting or by the lack of OP.

Our first main result in the unstable setting is the implication diagram between
the various combinatorial properties we consider. See the start of Section 5 for a
discussion about the strictness of implications, and implications that are missing
compared to full first-order logic.

Theorem 1.1. The following implications between properties hold for a positive
theory T'.

2-TPy ——— IP

l

k-TP,

|

P, k-TP

! [

SOP3 ES SOP2 ES SOP1 = 2-TP =—— OP

Like stable theories, simple theories can be defined in different ways, which are
equivalent in full first-order logic. This includes defining simplicity in terms of local
character for dividing, as is done in previous studies of simplicity in positive logic
[BY03Db], or as those theories not having TP. We prove that these are equivalent in
positive logic as well in Theorem 6.14.

Finally, we recall the following two famous theorems from full first-order logic.
Here SOP stands for the strict order property, a property that we do not consider
in this paper but implies SOP3 (see also Remark 7.4).

Theorem 1.2 ([She90, Theorem 11.4.7]). A full first-order theory T has OP iff it
has IP or SOP.

Theorem 1.3 ([She90, Theorem II1.7.11]Y). A full first-order theory T has TP iff
it has TPy or TP».

We will prove the following versions of these theorems for positive logic.

Theorem 1.4. A thick theory T has OP iff it has IP or SOPy. Equivalently: T is
stable iff it is NIP and NSOP;.

1Gaps in this proof have been filled in in [KKS14, Theorem 5.9].
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Theorem 1.5. A thick theory T has TP iff it has SOPy or TP,. Equivalently: T
is simple iff it is NSOPy and NTP;.

For an in-depth discussion about why we use NSOP; we refer to Remark 6.13. It
is worth mentioning however that our proofs are completely different from the proofs
of the original two theorems. Using recent developments on Kim-independence in
NSOP; theories we give proofs based on independence relations. Thickness is a
mild assumption that is automatically satisfied in full first-order logic, see also
Definition 6.4 and the discussion before it.

Overview. We start with the basics for positive logic in Section 2. We deal
with the different characterisations of stable formulas and stable theories in Section
3. We then collect all the definitions of the various combinatorial properties we
consider in Section 4. In Section 5 we prove the implications between the vari-
ous properties, i.e. we prove Theorem 1.1. In Section 6 we consider interactions
between independence relations and some of the combinatorial properties, obtain-
ing the equivalence of definitions for a simple theory and proving Theorem 1.4 and
Theorem 1.5. Finally, Section 7 discusses and asks some natural questions.

Acknowledgements. We would like to thank Jonathan Kirby for many useful
discussions. We would also like to thank the anonymous referee for their comments
that helped improve this paper.

2. PRELIMINARIES OF POSITIVE LOGIC

We only recall the definitions and facts about positive logic that we need, for a
more extensive treatment and discussion see [BY03a, PY18] and for a more survey-
like overview see [DK22, Section 2.

Definition 2.1. Fix a signature £. A positive formula in L is one that is obtained
from combining atomic formulas using A, V, T, L and 3. An h-inductive sentence
is a sentence of the form Vz(p(x) — ¥(z)), where ¢(x) and ¥(z) are positive
existential formulas. A positive theory is a set of h-inductive sentences.

Whenever we say “formula” or “theory” we will mean “positive formula” and
“positive theory” respectively, unless explicitly stated otherwise. This also means
that every formula and theory we consider will be implicitly assumed to be positive.

Remark 2.2. We can study full first-order logic as a special case of positive logic.
This is done through a process called Morleyisation. For this we add a relation
symbol R, (z) to our language for every full first-order formula ¢(z). Then we have
our theory (inductively) express that R,(x) and ¢(x) are equivalent. This way
every first-order formula is (equivalent to) a relation symbol, and thus in particular
to a positive existential formula.

We are generally only interested in ezistentially closed models. These can be
characterised in various ways, but the one that matters for us is the following.

Definition 2.3. A negation of a formula p(z) is a formula ¢ (z) such that T |
=3z (p(x) AY(z)). Equivalently, ¢(z) implies = (z) modulo T

Definition 2.4. We call a model M of a theory T' ezistentially closed or e.c. if
whenever M (£ ¢(a) then there is a negation ¥ (x) of ¢(x) with M = ¢(a)

Following our earlier convention about dropping the “positive” everywhere, a
(positive) type will be a set of (positive) formulas, over some parameter set B,
satisfied by some tuple a in some e.c. model M:

tp(a/B) = {p(z,b) : M = ¢(a,b) and b € B}.
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Throughout we will assume that our theories have the joint continuation property
or JCP (that is, for any two models M; and My there is a model N with homo-
morphisms M; — N <« My). This is the positive version of working in a complete
theory, and we can always extend a theory T to a theory with JCP by taking the
set of all h-inductive sentences that are true in some e.c. model of 7. Under the
JCP assumption we can work in a monster model, and these can be constructed for
positive theories using the usual techniques. We let the reader fix their favourite
notion of smallness (e.g., fix a big enough cardinal x, and let “small” mean < k).
We recall the properties of a monster model It:

o cristentially closed, 9 is an e.c. model;

e very homogeneous, for any small a, b, C' we have tp(a/C) = tp(b/C) iff there
is f € Aut(9/C) with f(a) =b (we will also write a =¢ b);

e very saturated, any finitely satisfiable small set of formulas ¥ over 91 is
satisfiable in 9.

As usual, we will omit the monster model from notation. For example, we write
E ©(a) instead of M = p(a).

We finish this section with the definition of indiscernible sequences and a lemma
to find such sequences. The construction of indiscernible sequences using Ramsey’s
theorem fails in positive logic, but the construction using the Erdés-Rado theorem
goes through and gives in fact a stronger result.

Definition 2.5. A sequence (a;);er (for some linear order I) is C-indiscernible if
for any 7; < ... <14, and j1 < ... < j, in I we have a;, ...a;, =c aj, ...a;

n

Lemma 2.6 ([BY03b, Lemma 1.2]). Let C be any parameter set, k any cardinal,
and let A = :(2|T\+\C|+m)+. Then for any sequence (a;)i<x of k-tuples there is a
C-indiscernible sequence (b;);<,, such that for alln < w there are iy < ... < i, <A
with blbn =C Ay -4

Definition 2.7. For a theory T we write Ap = :l(zm)Jr.

Remark 2.8. Since inequality may not be positively definable, there may be infin-
ite bounded positively definable sets in our monster. In fact, the cardinality of the
e.c. models of a positive theory might be bounded (such a theory is called bounded),
which results in a monster model that is itself “small”. An extreme example is the
empty theory in the empty language, whose e.c. models are singletons, and so the
monster is a singleton. However, there is no need for special treatment for these
cases. It just means that if we speak about a sequence (or otherwise indexed set)
of parameters (a;);<) where X is larger than the cardinality of the monster, we will
have duplicates in this sequence. Particularly, the only indiscernible sequences in
bounded theories (or, more generally, in bounded positively definable sets) are the
constant ones.

3. POSITIVE STABILITY

In this section we begin our treatment of dividing lines in positive theories from
stability. We introduce the order property (Definition 3.5), the first example of the
combinatorial properties which will be discussed in the next sections. Theorem 3.11
provides a characterisation of stable formulas in the positive context, analogous to
the various characterising properties that are well known from full first-order logic.
The techniques used in this section are adapted from [She70, She75, GL02, BY03b],
as well as from the standard techniques used for full first-order theories. There is
also work on stability in the positive setting in [Bell12, Chapter 4], see Remark 3.19
for more details.
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Definition 3.1. Let ¢(z,y) be a formula. For a and a parameter set B, we write

tp,(a/B) = {p(z,b) : = ¢(a,b) where b € B}.

A p-type over B is a set of formulas of the form tp,,(a/B) for some a. So it is the
restriction of a maximal type over B to just the ¢-formulas. We write S,(B) for
the set of p-types over B.

Example 3.2. A ¢-type is not necessarily maximal. For example, consider the
theory T" with inequality and two disjoint unary predicates P and Q). The e.c.
models of T are then simply two disjoint infinite sets. Let M be such an e.c.
model and let a € P(M) and b € Q(M). Let ¢(z) be the formula P(z): then

tp,(a) = {¢(z)}, while tp, (b) = 0.

Definition 3.3. Let A be an infinite cardinal. A formula ¢(z,y) is A-stable if
|B] < X implies |S,(B)] < A. We call ¢(z,y) stable if it is A-stable for some .

The following is taken from [BY03b, Definition 2.1].

Definition 3.4. Let p(z) be a type over B and let p(z,y) be a formula. A ¢-
definition of p(x) over C is a partial type d,, ¢(y) over C with | d, ¢(y)| < |T| such
that

p(a,b) e p(z) <= | dpe(d).
We say that p(x) is ¢-definable (over C') if it has a p-definition over C. If p(x) is
p-definable over B we just say it is p-definable.

Definition 3.5. A formula ¢(z,y) has the order property (OP) if there are se-
quences (a;)i<w and (b;);<w and a negation ¥(z,y) of ¢(z,y) such that for all
1,7 < w we have:

I:go(ai,bj) if ¢ <j7

|: ’lb(ai, bj) lfl Z _]
Note that by compactness the exact shape of the linear order in the order prop-
erty (Definition 3.5) does not matter. That is, we can replace w with any infinite

linear order. In fact, we can use this trick to state the order property in terms of
indiscernible sequences, getting rid of the negation ¥ (z,y).

Proposition 3.6. A formula ¢(x,y) has the order property iff there is an indis-
cernible sequence (a;b;)i<. such that

Proof. For the left to right direction let (a})i<w, (b})i<w and ¥ (x,y) witness the
order property. By compactness we may elongate the sequences to (a});<x and
(b})i<x. Making sure that A is big enough, we can then by Lemma 2.6 base an
indiscernible sequence (a;b;)i<, on (a;b})i<x. Now if i < j < w then there are
io < jo < A such that a;b; = a V) , and so |= ¢(a;, b;) follows from = p(a;,, b))
For the converse we prove the contrapositive, so let 7 < ¢. Then there are j, <
io < A (with jo =i iff j = i) such that a;b; = a; b} . Hence = ¢(a;,, b)) and so
7 p(ai, by).

For the right to left direction we only need to find the negation ¢ (z,y). As we
have F= p(ag, by) there must be some negation 1 (z,y) of ¢(x,y) with = 11 (ao, bo).
By indiscernibility we have = 11 (a;,b;) for all i < w. Similarly, using [~ ¢(aq, bo)
we find a negation o (z,y) with = v¥a(a;,b;) for all j < i. Take ¢(z,y) to be
Y1(x,y) V a(z,y). As both of ¥1(x,y) and ¥q(z,y) are negations of p(z,y) we
have that ¥(z,y) is also a negation of ¢(z,y). Furthermore, by construction j < i

implies = v (a;, bj). O
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Definition 3.7. A formula ¢(z,y) is said to have the binary tree property if there
is a negation ¢ (z,y) of ¢(x,y) together with (by,)s<« such that for every o € 2¢
the set

{Xa'(n)('r7 ba\n) n < LU}
is consistent, where xo := ¢ and x1 := ¥.

Definition 3.8 ([BY03b, Definition 2.1], simplified). For contradictory formulas
o(z,y) and ¢ (z,y) we define the (¢,1)-rank R, ,(—) as follows. The input is a
set of formulas (possibly with parameters) in free variables x. Then R, ,(—) is the
least function into the ordinals (together with —1 and oo) such that:

o R, (X) > 0if ¥(x) is consistent;
R, 4(X) > a+ 1 if there is some b such that R, (X U {¢(z,b)}) > « and
Ry (B U{Y(2,0)}) > a5
R, () > Lif R, (X)) > a for all v < £, where ¢ is a limit ordinal.

Lemma 3.9. Let ¢(z,y) and ¥ (x,y) be contradictory formulas.
(i) If ¥(z) implies ¥'(x) then Ry (X) < Ry, (X).
(i) The property R, (X)) > n is type-definable by

I(Yy)ne2<n ( N 3= (E(w) A xg(k)(x,ym))) ;

oEe2m™ k<n

where xo and x1 are ¢ and ¥ respectively. In particular, if ¥ is finite (i.e.
a formula), then this is just a formula.

Proof. Both are straightforward induction arguments. The key intuition being
that R, . (3) > n expresses that we can build a binary tree like Definition 3.7 of
height n and where every path is also consistent with . U

Lemma 3.10. A formula o(z,y) has the binary tree property iff there is a negation
P(x,y) of ¢(x,y) such that R, y(x = x) > w.

Proof. By Lemma 3.9 and compactness. O

Theorem 3.11. The following are equivalent for a formula p(z,y):
(i) ¢ is stable,
(i3) [So(B)| < (1Bl + [T for every B,
(11i) @ does not have the order property,
(iv) ¢ does not have the binary tree property,
(v) Ry y(x=x) <w for every negation ¢ (x,y) of ¢(x,y),
(vi) for any B every type over B is p-definable.

Proof. The equivalence (iv) < (v) is Lemma 3.10. The equivalence between (i),
(ii), (v) and (vi) is exactly [BY03b, Proposition 2.2].

(i) = (iil) We prove the contraposition. So let A be an arbitrary infinite cardinal.
By a standard result there is a linear order I with a dense subset Iy C I such that
[Io] = A and |I| > A (see e.g. [TZ12, Exercise 8.2.8]). Let ¢ (z,y) be the negation
of p(z,y) witnessing the order property. So by compactness there are (a;);e; and
(b;)ier such that for all i, € I:

E ¢(a;,b;) if i < g,
): ’Qb(ai, b]) if ¢ > j
Set B = (bi)ie1,, then as I is dense in I we have that tp,(a;/B) # tp,(a;/B) for

any ¢ # j. So we find |S,(B)| > |I| > X while |B] < X and we conclude that ¢ is
not A-stable.
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(iii) = (i) This implication requires some more preparation, so we postpone it
to Lemma 3.18. O

Example 3.12. In full first-order logic, for a formula ¢(z,y) the following are
equivalent (see e.g. [TZ12, Theorem 8.2.3]):

(i) ¢ is stable,
(ii) there is no sequence (a;b;)i<. such that = ¢(a;,b;) iff ¢ < 7,
(iii) |Sex(B)| < |B| for any infinite B.

Of course, (ii) is the classical formulation of the order property. In a full first-order
theory this is easily seen to be equivalent to Definition 3.5: just take ¢ (z,y) to be
—(x,y). Point (iii) is a stronger version of Theorem 3.11(ii).

We will show that this equivalence generally fails in positive logic. That is, we
will construct a theory together with a stable formula ¢(x,y) (in fact, the entire
theory will be stable) such that (ii) and (iii) fail for ¢.

Write Q1) = {¢ € Q: 0 < ¢ < 1}. Consider the language £ with a constant for
each element of Qg 1), and an order symbol <. Considering the obvious L-structure
on Qg,1), we let T be the set of all h-inductive sentences true in Qg,1). One quickly
verifies that the real unit interval [0,1] is a maximal e.c. model for this theory. So
the number of (-types is bounded by 2%, for any ¢. Hence every formula is stable.

1

Consider the formula ¢(z,y) given by < y. For n < w set a,, = 1 — 15 and

b, = 1— %_H Then clearly = ¢(a;,b;) iff ¢ < j, so (ii) fails for ¢(x,y). The
important difference with Definition 3.5 is of course that for ¢ > j there is not just
one uniform reason (in the form of a negation of ¢) for = p(a;, b;).

Using the same formula ¢(z,y), we let B = Q(o,1). The ¢-types over B then cor-
respond exactly to real numbers in [0, 1], via Dedekind cuts. So we have | S, (B)| =
2% > Ry = |B|, and hence (iii) fails As B only contains constants we may even
take B = (), but then B is no longer infinite, which is technically required for (iii).

Generally, this example shows that in positive logic we may find some infinite
linear order in a stable theory, but as long as they are bounded this should not cause
unstability. Intuitively this is because growth (e.g. of the type spaces) beyond that
bound is then again well-behaved.

Note that in particular this sort of behaviour can also appear in unbounded
theories, if they have bounded sorts or bounded positively definable sets. For
example, we could add a separate sort with a symbol for inequality to the theory in
this example, and have our theory state that the additional sort is an infinite set.
The theory is now unbounded, but the example still goes through.

With the adjusted definitions for stability of a formula, we get the usual equi-
valent definitions of a stable theory. The arguments are standard, but we include
them for completeness’ sake.

Definition 3.13. Let A be an infinite cardinal. A theory T is A-stable if |B| < A
implies | S,,(B)| < Afor all n < w, where S,,(B) is the set of n-types with parameters
in B. We call T stable if it is A-stable for some .

Example 3.14. Any bounded theory is stable: since every type must be realised
in the monster, we have for all n < w that |S,(91)| = |9M|. Considering |9 is fine
here, because in bounded theories the monster is small, see Remark 2.8.

Theorem 3.15. The following are equivalent for a theory T:

(i) T is stable,
(i) all formulas in T are stable,

(iii) T is A-stable for all X such that ATl = X.
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Proof. (i) = (ii) Let A be such that T is A-stable. Then whenever |B| < A we
have for any ¢(z,y) that |S,(B)| < |S,(B)| < A, where n = |z|. So every formula
is A-stable.

(ii) = (iii) Let A be such that A7l = X, and let |[B] < A. As ATl = X we have
that A > |T'|. So for any ¢ we have by Theorem 3.11 that | S, (B)| < (|B|+|T|)IT! <
MNTI = \. Every type is fully determined by its restrictions to ¢-types, as ¢ ranges
over all formulas in the theory. So there are at most |T'| x A = A many types over
B, as required.

(iii) = (i) Note that (2ITHITI = 271 so T is 2/7-stable and hence stable. O

In the remainder of this section we finish the proof of Theorem 3.11.

Definition 3.16. Let ¢(z,y) and 9 (y, z) be formulas without parameters and let
A C B be sets of parameters. We say that a type p(z) € S, (B) (¥, ¢)-splits over
A if there are b,b" € B such that tp,,(b/A) = tp,(b'/A) while ¢(z,b) € p(x) and
oz, V) & p(x).

Lemma 3.17. Let o(z,y) and ¢¥(y,z) be formulas without parameters, and let
A C C be parameter sets.

(i) Suppose B is such that A C B C C and it realises every -type over A that
is realised in C. Then if p1,p2 € Su(C) do not (v, ¢)-split over A we have
that p1|p = p2|B implies py = ps.

(ii) There are at most 2S¢ (AIHAFITE many types in S, (C) that do not (1, p)-
split over A.

(iii) If A > |A| + |T| then there are at most 22" many types in S, (C) that do
not (1, p)-split over A.

Proof. To prove (i) we show that p; C po, from which the result follows by sym-
metry. Let ¢(x,c) € p1. By the assumption on B, tp,(c/A) is realised by some
b € B. As p; does not (1, )-split over A we must then have p(z,b) € p;. We thus
have p(z,b) € pa, because p1|p = p2|p, and ¢(z,c) € ps follows from the fact that
p2 does not (v, p)-split over A.

For (ii) we can let B be such that A C B C C and realising every t-type over
A that is realised in C, while also |B| < |Sy(A)| + |A|. By (i) then the number of
types in S, (C) that do not (v, ¢)-split over A is bounded by |S,(B)| < 2IBIHITI <
21 Sy (A)|+]AI+[T]

Finally, for (iii) we apply (ii) using that | S, (A)| + |A| + |T| < 2. O

We can now fill in the final missing piece of Theorem 3.11. The proof strategy
used here is based on [GLO02].

Lemma 3.18. If a formula ¢(xz,y) does not have the order property then it is
stable.

Proof. We prove the contrapositive, so we assume that ¢(z,y) is not stable. For
convenience, set yu = 22’7 As  is not p-stable, we find some set A such that |A| <
p and Sy(A) > p. We can thus find (a;);<,+ such that tp,(a;/A) # tp,(a;/A)
for all i # j < pt. We inductively build a continuous chain of sets (4;);<, with
Ay = A such that for all i < pu:

(A1) [4i] < p,

(A2) for every B C A; with |B| < Ar every type in S(B) (in finitely many

variables) is realised in A;4q.

We can indeed do this because there are at most u*” = y many subsets of A; that
have cardinality at most Ay, and there are at most 2/81H71 < 2 7 </, many types
over such a parameter set B.
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Set x(y,z) := p(x,y). We now claim that there are cofinally many ¢ < u* such
that for all j < Az the type tp,(ai/A;) (X, ¢)-splits over each B C A; of cardinality
at most Ap.

Proof of claim. Suppose for a contradiction that the claim is false. Then there
is some a < pT such that for all @ < i < pT there is j; < Ap and B; C Aj,
of cardinality at most Az such that tp,(a;/A;;) does not (x,¢)-split over B;. As
ut > Ar, by the pigeonhole principle, we can find some I C ut with |I| = p* such
that j; = ji for all 4,3’ € I. Write j for j;, where i € I. As pt > p = p?7 > |A;|M
we can apply the pigeonhole principle again to find I’ C I with |I'| = p™ and
B; = By for all 4,¢/ € I'. Write B for B;, where i € I'. We have that A C A;,
so for any distinct 4,7 € I we have that tp,(a;/A;) # tp,(ai/A;). We thus find
ut > 22T many types that do not (x, ¢)-split over a set of cardinality at most Ap.
This contradicts Lemma 3.17(iii) and completes the proof of the claim.
i<ar A;, because ‘Uj<)\T Aj‘ <
p. So for all j < Az tp,(ai/A;) (X, ¢)-splits over every B C A; of cardinality at
most Ar. By induction on j < Ap we define b;, b;-, cj € Agjyo, such that:

(B1) writing B; = {bg, b}, cr : k < j}, we have B; C Ay;;

(B2) tp, (bj/B;) = tp, (b;/B;),

(B3) = ¢(ai,bj) and [~ p(a;, bY),

(B4) cj € A2j+1 is such that tp(Cj/ijjb;-) = tp(ai/ijjb;-).

Let j < Ar and assume we have constructed by, b, ¢ for all k < j. As B; C Ay;
has cardinality at most Ar, we have that tp,(ai/A2;) (x,y)-splits over B;. We
can thus find b;,b; € As; such that tp, (b;/B;) = tp, (b;/B;) while p(z,b;) €
tp(ai/Az;) and ¢(x,b}) & tp(ai/Az;). By construction of Agjy, in particular by
(A2), we can find ¢; € Agj realising tp(a;/B;b;b).

Let (djde;j);j<. be an indiscernible sequence based on (b;b)c;)j<r,. We note
the following two properties.

(C1) By (B2) we have for all k < j < Ap that = x(b;,c,) if and only if =

X(b}, cx), that is = ¢(ck, b;) if and only if = ¢(cx,b;). So we must have
= ¢(ex, d;) if and only if = p(eg, d}) for all k < j < w.
(C2) By (B3) and (B4) we have for all £ < j < Ay that = ¢(c;,b,) and j=
©(cj,b,). So we must have = ¢(e;, dr) and = ¢(e;,d),) for all k < j < w.
Based on (C1) we distinguish two cases, and show that in each case ¢(z,y) has the
order property.

(1) The case where for all k < j < w we have = ¢(eg, d}). By (C2) we have
¥ o(ej,dp,) for all k < j < w. And we conclude by applying Proposition 3.6
to (en,d)) ) n<w-

(2) The case where for all k < j < w we have (= ¢(ex,d;). By (C2) we have
that = p(ej, dg) for all k < j < w. Write w°P for w with the opposite order,
then (e, dn+1)newer is an indiscernible sequence such that = (e, d;) <
k <°P j. Applying compactness and an analogue of Proposition 3.6 we
conclude that ¢(z,y) has the order property.

Using the claim we find some ¢ < p+ such that a; ¢ |

O

Remark 3.19. We compare the work in this section to [Bell2, Chapter 4]. Their
Definition 4.10 is a definition for the order property for formulas ¢(z,y) where x
and y are tuples of variables of the same length (and sorts). One quickly verifies
that their order property implies our Definition 3.5. Conversely, given ¢(z,y) sat-
isfying our Definition 3.5, as witnessed by (a;)i<w, (bi)i<w and ¥(z,y), the formula
0(x1y1, T2y2) := p(21,y2) has the order property in the sense of [Bel12] as witnessed
by (a;b;)i<w and negation ¢'(z1y1, z2y2) := ¥(x1,y2). Another difference is that
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[Bel12] treats bounded theories separately, proving in [Bell2, Lemme 4.8] that they
are stable. However, as we noted in Remark 2.8, there is no need for such special
treatment: we have seen how stability of bounded theories fits in our approach in
Example 3.14. Given the translation of the notion of stability for formulas, we get
the same results as [Bel12] on the level of theories. However, our version allows for
local stability and comparison to further combinatorial properties on the level of
formulas (e.g. Corollary 5.9).

4. DEFINITIONS OF THE COMBINATORIAL PROPERTIES

In this section we gather the definitions of the combinatorial properties we will
consider. The definitions are very similar to those we know from full first-order
logic, and they do indeed coincide when considering a full first-order theory as
a positive theory (Remark 2.2). The main ingredient, which we already used in
Definition 3.5 for OP, is the idea of [HK21, Section 6] to introduce “inconsistency
witnesses”. Whenever a traditional definition would say that a set of formulas is
inconsistent, we now require the satisfaction of a positive formula that implies the
inconsistency of that set of formulas. For example, if we would normally say that
{¢(x,a1), p(x,a2)} is inconsistent, we now want = (a1, as) where ¥(y1,y2) is a
negation of Jz(p(z,y1) A ¢(z,y2)). The importance of this is that we can then
use compactness to change the size or shape of the set of parameters involved. For
example, instead of only considering sequences of shape w for OP we can consider
any infinite sequence.

Definition 4.1. A formula (2, y) has the independence property (IP) if there are
(ai)icw; (€s)oecaw and a negation (z,y) of ¢(x,y) such that for all i < w and
o € 2 we have:

= p(ai,co) ifo(i) =1,
= Y(ai,cr) if o(i) = 0.

The study of IP in positive logic has been initiated in the recent preprint [DM23]
by Dobrowolski and Mennuni.

Definition 4.2. Let x and A be (potentially finite) cardinals. As usual, we will
consider the set K<* of functions 7 : @ — x where a < A, as a tree. The partial
order on the tree is given by n < u if u extends n as a function. We call n and
w incomparable if 1 A p and p £ 1. For any n,u € £<* we write n”u for their
concatenation (viewing the functions as strings of ordinals < k).

Definition 4.3. For a natural number k& > 2, a formula ¢(z,y) has the k-tree
property (k-TP) if there are (ay)yecw<w and a negation ¥(yi,...,yx) of the formula
Fz(p(x,y1) A ... A p(x,yx)) such that:
(1) for all 0 € w* the set {¢(z,a,,) : n < w} is consistent,
(2) for all n € w<¥ and 41 < ... < i < w we have = Y(ap~i,,...,an~i,).
A formula (z,y) has the tree property (TP) if there exists a natural number
k > 2 such that ¢(x,y) has k-TP.

Definition 4.4. A formula o(z,y) has the tree property of the first kind (TPq) if
there are (a,),cw<v and a negation ¢ (y1,y2) of Iz(p(x,y1) A ¢(x,y2)) such that:
(1) for all 0 € w* the set {¢(x,a,|,) : n < w} is consistent,
(2) for all incomparable p1,n € w<“ we have = ¥(a,,ay).

Definition 4.5. A formula ¢(x,y) has the k-tree property of the second kind (k-
TP») if there are (a; ;); j<w and a negation ¥(y1, . . ., yi) of the formula 3z (p(z, y1)A
... ANp(z,yx)) such that:



DIVIDING LINES BETWEEN POSITIVE THEORIES 11

(1) for all 0 € w* the set {¢(x,a;,(;)) : @ < w} is consistent,

(2) for all i <w and j; < ... < ji <w we have = ¥(a;j,,...,aj,)
A formula ¢(z,y) has the tree property of the second kind (TP3) if there exists a
natural number k& > 2 such that ¢(x,y) has k-TP,.

The definition of TP, in positive logic first appeared in [HK21], as did the fol-
lowing definition of SOP;.

Definition 4.6. A formula ¢(z,y) has the 1-strong order property (SOP1) if there
are (an)npe2<~ and a negation 1 (y1,y2) of Ix(p(x,y1) A ¢(x,y2)) such that:

(1) for all o € 2 the set {p(x,a,),) : n < w} is consistent,
(2) for all p,n € 2<%, if p™0 = n then = Y(a,—~1,an).

Definition 4.7. A formula ¢(z,y) has the 2-strong order property (SOP») if there
are (an)npe2<~ and a negation 1 (y1,y2) of Ix(p(x,y1) A ¢(x,y2)) such that:

(1) for all o € 2 the set {p(x,a,),) : n < w} is consistent,
(2) for all incomparable p,n € 2<% we have = ¢(a,, a,).

Definition 4.8. A theory T has one of the properties above (OP, IP, k-TP, k-TP»,
SOPy, SOP,) if there exists a formula witnessing it.

Definition 4.9. A theory T has the 3-strong order property (SOP3) if there are
formulas po(x,y) and ¢1(z,y), a sequence (a;)i<w, and a negation ¥ (yi,y2) of
Fz(po(x, y2) A p1(x,y1)) such that:

(1) for all k < w the {wo(z,a;) : 7 < k}U{pi(z,a;):j > k} is consistent,

(2) for all i < j < w we have = ¥(a;, ;).

In the full first-order setting, SOP3 is usually defined on the level of formulas
with a definition which easily generalizes to any natural number larger than 3,
giving rise to the notion of an SOP, formula (or theory). This definition heavily
relies on the use of negation, which forms an obstruction to translating it to the
positive setting, see Remark 7.4. The definition given here, on the level of theories,
is based on [She96, Claim 2.19).

Definition 4.10. If a theory T does not have one of the properties OP, IP, TP,
TPy, TPy, SOPy, SOP,, SOP3, we say that T is NOP, NIP, NTP, NTPy, NTP,,
NSOP;, NSOP,, NSOPj3 respectively.

5. IMPLICATIONS BETWEEN THE COMBINATORIAL PROPERTIES

In this section we prove Theorem 1.1 by proving the implications between the
various properties of positive theories defined in Section 4. We break up the proof
in its individual components, stating each arrow separately. We start from the left-
most implication and make our way inside the diagram. Some of the implications
will be proved on a formula level (e.g. Proposition 5.3) and for some implications
this will only happen on a theory level (e.g. Corollary 5.7).

Remark 5.1. We make some remarks about the strictness of the implications in
Theorem 1.1.

e The strictness of the implication SOP3 = SOP; is an open question even
in full first-order logic. See also Question 7.2.

e Mutchnik’s recent preprint [Mut22] proves the implication SOP; = SOP,
in full first-order logic. As the machinery used there is considerably more
involved than what we apply here, we do not deal with this problem and
leave it to future work, see Question 7.1.
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e In full first-order logic we have k-TP, = 2-TP,. A recent preprint by
the third author proves this for thick theories [Kam23b, Theorem 1.4]. See
also Remark 7.3.

e The remaining implications are known to be strict, already in full first-order
logic.

Proposition 5.2. If a theory T has SOP3 then it has SOP,.

This proof is based on the similar argument in Proposition 1.8 of [Con], adapted
to the definition of SOP3 at the level of theories that we use here.

Proof. Assume T has SOP3, witnessed by formulas @o(z,y), ¢1(z,y) and a neg-
ation 9 (y1,y2) of Fz(wo(z,y2) A 1(z,91)). By compactness we find a sequence
(bg)qeq such that:
(1) for all t € Q the set {@o(x,by) : ¢ <t} U{pi(x,b,) : r >t} is consistent,
(2) for all ¢ < 7 in Q we have = ¢(bg, by).
Consider x(z,y1,y2) := @o(x,y1) A p1(x,y2). We inductively define a tree, indexed
by 2<%, which will witness that x, and hence T, has SOP>.

cg = (bo, b1),

n~0 = (bg;b24y1,) for ey = (bg, br),

cyp~1 = (bigypz,,br) for cy = (bg, br).

Let moreover 0(y1, Y2, ys, ya) denote the formula 1 (yq, y1) V ¥ (y2,y3).

We claim that 0(y1,y2,ys,y4) is a negation of Iz (x(z,y1,y2) A x(x,ys,y4)). In-
deed, assume that 6(a,b, c,d) holds. Then either ¥ (d,a) holds or (b, c) holds.
By definition of 9 we have that in the first case Jz(po(x,a) A p1(x,d)) does not
hold, and in the second case Jz(wo(z,c) A p1(x,b)). Either way, we have that
Fz(po(z,a) A 1(z,d) A polx,c) A pi(x,b)) does not hold. The claim now follows
from the definition of x.

We will now verify that (¢;)),ec2<« and 6 witness that y has SOP,. For consistency
along the branches, let ¢ € 2 and n < w. Then there are 0 = ¢p < -+ < g, <
rn < --- < 1rg = 1 such that for 0 <i < n, ¢,, = (by;,br,). Taking t = r, in (1)
above, we see that

{po(,by) 11 < m} Ufer(w,by,) 4 < )
is consistent. Thus {x(=,¢c,|,) : @ < w} is finitely consistent, and hence consistent.

Now let u,n be incomparable. Then there are ¢ < r < s < t such that either
ey = (bg,by) and ¢, = (bs,by), or ¢, = (bs,b,) and ¢, = (by,b,). In both cases,
since r < s, we have |= ¢(b,bs). That means both = 6(by,b,,bs,b;) and |=
0(bs, be, by, by), giving |= 6(c,, ¢y) in any case. This concludes the proof. O

Proposition 5.3. A formula o(x,y) has SOP; if and only if it has TPy.

Proof. One direction is obvious: if (ay),ew<e and ¥(y1, y2) witness TPy of ¢, then
(an)ne2<w and ¥ (y1,y2) witness SOP, of ¢.

For the converse, let us then assume that ¢(x,y) has SOP,, witnessed by (ay,),e2<«
and ¥(y1,y2). We inductively define a function h : w<% — 2<% as

h(2) =@,
h(n™i) = h(n)"(0)""1 fori < w.
Note that 7 < u implies h(n) = h(u) and so for any o € w* there is ¢’ € 2¢ such
that {h(o],) :n <w} C{0o'|p:n <w}.
Define a tree (b,)pew<e by by = ap(y). We verify that this tree witnesses TPy for
o(x,y), with the same negation ¥ (y1, ya).
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For any o € w* there is ¢’ € 2¢ such that

{@(2,by1,) i 1< @} = {(@,an(o),) 0 < wh C {p(@a00,) 0 < w}.

The rightmost set is consistent because (a,)pc2<~ witnesses SOP, for ¢(z,y), so
the leftmost set is consistent.

Let i, € w<“ be incomparable. Then there are v, jg, 1m0 € w<* and i # j < w
such that g = v 1" g and n = v~ j " ng. By definition of h, there are py,n; € 2<%
such that h(n) = h(y) ™ (0)*"17"ny and h(u) = h(y) " (0) "1 py. Ifi < j then h(n)
has a 1 in a place where h(u) has a 0, and thus they are incomparable. Similarly,
if j < ¢ then h(n) and h(u) are again incomparable. Hence, by definition of SOP,,
= Y(an(y), any), and so (by)pew<e and ¢ witness TPy of . O

Proposition 5.4. If a formula ¢(x,y) has SOP, then it has SOP;.

Proof. Suppose p(x,y) has SOP,, witnessed by (a,),c2<« and 9 (y1,y2). Let p,n €
2<% and 40 <X 7. Then p~1 and 7 are incomparable, so by SOP, we have
= ¢ (ap~1,a,). Hence the second clause in the definition of SOP; is satisfied. The
first clause is the same as the first clause of the definition of SOP;, and therefore
@(z,y) has SOPy, witnessed again by (a,)pecw<e and ¥(y1,y2). O

Proposition 5.5. If a formula ¢(x,y) has SOPy then it has 2-TP.

Proof. Suppose that ¢(z,y) has SOP1, witnessed by (ay)ye2<~ and 9 (y1,y2). We

define h : w<* — 2<% as in the proof of Proposition 5.3. Again, we define (by),cw <«

by b, = an(y), so that for any o € w®, we get that {¢(z,by, : » < w} is consistent.
Now let n € w<* and let i < j < w. Then

()~ (0)™ = h(n) ™ (071 = h(n™j).

We have that h(n™4) = h(n)™(0)*"(1) and hence, by the second clause in the
definition of SOP; we have = v(ap(;~4), anm—;)). Hence (by)yew<e and ¢ witness
2-TP for . O

The following argument is based on [She90, Theorem IIL.7.7].

Theorem 5.6. If o(x,y) has TP then for some k' the conjunction p(z,y1) A...A
o(x, yr) has 2-TP.

Proof. Let x = |T|". We will find a set of parameters A and a set B C A" such
that:

(1) |B| > [A]<F + 2%

(if) if B’ € B and |B’| > 2 then {¢(z,b(c)) : b € B’,a < k} is inconsistent;

(iii) for any b € B we have that {¢(x,b(a)) : @ < k} is consistent.
Let A = 3,(|T| +2"). By compactness we find a tree (a,),er<~ such that for every
o € A" the set {¢(x,a,|,) : @ < Kk} is consistent, but there exists 2 < k < w such
that for any n € A<" the set {¢(z, a,~;) : i < A} is k-inconsistent. Because of this
last property we may assume that for any n € A<* all the terms of (a,—;)i<x are
distinct.

Write A = {a, : 7 € A"} and for o € \* we define b, : K = A by by(a) = ag,.
We claim that this A together with B = {b, : 0 € A"} satisfies (i)—(iii).

(i) As cf(X) = k we have |B] = A" > X\ = A<" = |A|<", and the required
inequality follows. Here we use that for distinct o, 0’ € A\* we have b, # by,
which follows from our earlier assumption that the terms of (a,~;)i<x are
distinct for any n € A<".



14 ANNA DMITRIEVA, FRANCESCO GALLINARO AND MARK KAMSMA

(ii) Let B’ C B be such that {¢(z,b(a)) : b € B',a < k} is consistent, we
will show that |B’| < 2". Define X = {0 € A" : b, € B'}, so {p(z,a,,) :
o € X,a < K} is consistent. By construction of (a;)yex<~ we then must
have for all n € A<" that the branches in X pass through at most & — 1
immediate successors of 7, that is:

[{i < X :there is 0 € X such that n7i < o}| < k.

After re-indexing we then have that X C k* and hence |B’| = | X| < 2.
(iii) This is just consistency of {¢(z,a,,) : @ < K} for every o € A".

With A and B be as above, let p = |A|<* 422", We will find a cardinal k < x < 2%
and a set S C AX such that:
(1) [S]=p;
(2) for any distinct s,s’ € S we have that {¢(z, s(a)) : o < x} U {p(z, s ()) :
a < x} is inconsistent;
(3) for any s € S the set {p(z, s(a)) : & < x} is consistent;
(4) for any s, s’ € S, viewing them as infinite tuples, we have s = s’.

First we may assume |B| = pu*. We inductively construct U; C B as follows: U; is a
maximal subset such that U;NU; = @ for all j < i and {¢(z,b(e)) : b € Uj, < Kk} is
consistent. Note that the latter implies that |U;| < 2" by (ii), which together with
(iii) allows us to continue the construction until we have constructed {U;};<,+. By
the pigeonhole principle we may assume that all the U; have the same cardinality.
For all i < u™, let A; = {b(a) : b € Uj,a < k}, x = |A;| = k- |U;], and s; € AX an
enumeration of A;. If we let S = {s; : i < u™} then it satisfies (1)-(3), and by the
pigeonhole principle we can replace S by a subset to also ensure (4).

For s € S we now define pairs (v, 1?) inductively on a < &5, where 05 is the
first v for which (v2,42) cannot be defined. We require:

(A

) v8 C x is finite;
B) there is {sn}n<w C S with s,(j) = s(j) for alln < w and all j € Uﬁ<a vg;
) ¥

(
(©) B2((0 v (e ) is o negation of Fr (A ey (w,2) A ol
(D) for any distinct n,m < w we have = Y5 ((5n(7))yevs » (Sm(7))yevs )-

We will show that there is s € S such that d; > k. Suppose for a contradiction
that §5 < k for all s € S. There are (x<“ - |T])<" = x<" < 2% < y many possible
sequences (V5,12 )q<s,. So by the pigeonhole principle there is S; C S with |S;| =
ut and for all s,s" € S we have 0, = 0y and (v5, V% )a<s, = (vg,wj)ads,. Write
(Va, Ya)a<s = (U5, V3 )a<s, for some s € S1. As § < k we have that | g5 vg| < k.
So as |A|<" < u we can again apply the pigeonhole principle to find Sy C S; with
|So| = p* and for any s, s” € Sy we have that s(j) = s'(j) for all j € U505

By (2) we have that any two distinct s,s’ € Sy the set {o(z,s(a)) @ a <
X} U{p(z,s'(a)) : @ < x} is inconsistent. So we can assign a finite us o C x and
05,5/ ((Yy)veu, s (Y5 )veu, ., ) to each such a pair, such that Os s (Y )veu, . s (Y5 )veu, .,)

is a negation of Jx (/\WGus‘sf oz, yy) A p(z, yif)) and = 05 5 ((s(7))veu, /s (8'(V))veu, . )-
This defines a colouring function on [S5]? with (x<¢ - |T'|) = x many colours. As

ut > (2X)T we can apply the Erdés-Rado theorem to find S5 C Sp with |S3]| = x*

such that u = us ¢ and 6 = 65 o do not depend on the pair s,s’ € S3. However,

for any s € S3 we could now have taken (v ,%j ) to be (u,0), contradicting the
definition of d5. Indeed (A) and (C) follow immediately from the construction of u

and 0. For (B) and (D) any {sy, }n<w C S3 suffices, which exists because |S3| = x*

is infinite, then (B) follows because this is also a subset of Sy and (D) follows from

the construction of 6.
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There is thus some s € S such that §s > k. As k = |T|T there is some &’
and ¥(9,7') ==Y (Y1, Yk, Y1, - - -, Yp) such that there are infinitely many o <
with |v3| = k' and ¥ = ¢ (after renaming variables). For convenience we may as
well assume that this happens for all @ < w. We will show that ¢(z,y1) A ... A
o(z,yg) has 2-TP. The relevant negation will be v, so we need to construct the
tree (c)new<w of parameters. For a < w we write 5(«) for the tuple (s(83))scuvs -
We now construct (¢,)pew<e by induction on the length of € w<*, such that for
n € w" we have that (¢, )a<n = (5(@))a<n-

We can simply take ¢y = 5(0). Now assume we have constructed ¢, for n €
w", we will construct c,~; for all i+ < w. By an automorphism we may assume
(Cyla)a<n = (5())a<n. Let (5i)i<w be as in (B) for vy, ;. We set ¢,~; = 5;(n +1)
for all ¢ < w. Then we get

yi(Clo)asn = 5i(n +1)(5(@))a<n = 5i(n 4+ 1)(5i(@))a<n = (0 + 1)(5(a))asn-

Here the second equality follows from (B) and the third equivalence follows from
(4).

We are left to verify that the tree (c¢;)pecw<w is indeed an instance of 2-TP.
Indeed, for any n € w<“ and i < j < w we have = ¢(¢;~4,c,~;) by (D). Finally,
for any o € w® we have by the induction hypothesis that (c,|,)a<w = (5(®))a<w,
so the required consistency follows from (3). d

n

Corollary 5.7. A theory T has TP if and only if it has 2-TP.

Proposition 5.8. Suppose p(x,y) has 2-TP. Then there exists an infinite set B
such that |S,(B)| > (|B| + |T|)\T1.

Proof. Let x = Jjp+, then w<" = &k and kTl = k. To see the latter we note that
for any f : |T| — k, there is a < |T'|* such that the image of f is contained in 3.
Hence &7 = Ua<m+ :l‘aT‘, and 27! < Jat1, from which the equality follows.

We assume ¢(x, y) has 2-TP, so by compactness we find (b;)) e, <~ and a negation
U(y1,y2) of the formula x(p(x,y1) A @(x,y2)) witnessing 2-TP.

Let B = {b, : n € w<"}. For 0 € w" let a, be a realisation of {¢(z,b,,) : @ <
k}. Given distinct 01,09 € wW", we have tp,(as,/B) # tp,(as,/B). Indeed, let
17 € w<" be such that n < 01,02 but there are ¢ # j < w such that ¢ < o1 and
N~ j = o2. Without loss of generality, assume ¢ < j. Then |= ¢(b,~;, b,~;) and so
because we have = ¢(a,,,by—~;) and = ¢(aq,, by~ ;) we cannot have = ¢(aq,, by~;).

We thus find w" > k many types in S, (B), while at the same time (| B|+|T|)7! =
(w<* 4+ [T = £ITI = k by our choice of . O

Corollary 5.9. If a formula ¢(x,y) has 2-TP then it has OP.
Proof. By Proposition 5.8 and Theorem 3.11. (]

Proposition 5.10. If a formula ¢(x,y) has k-TP, then it has k-TP.

Proof. Suppose that ¢(z,y) has k-TP,, witnessed by (a; ;)i j<w and ¥(y1,- .., Yx).
We construct (by),c,<~ such that together with ¥ (yi,...,yx) they witness k-TP.
For n € w<¥, let £(n) be the length (domain) of n and let ¢(n) be the last element
of n and t(0) = 0. Define b, = ay () ¢(y)-

For any o € w* we have that {¢(x,b,|,) : n < w} = {@(x, ap t(o],)) 1 7 < w}is
consistent. Let now € w<*, and write n = £(n)+1. Then for any i1 < ... < i < w
we have |= ¥(an,i,,...,an,;,). This is the same as = 1(b;~;,,...,by~;,). Hence,
(by)new<w and Y(y1,...,yx) witness ¢(x,y) having k-TP. O

Proposition 5.11. If a theory T has 2-TP, then it has IP.
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Proof. Assume T has 2-TP, witnessed by the formula ¢(x,y), (@i ;)i j<o and a
negation 1 (y1,y2) of the formula Jz(p(x,y1) A @(z,y2)). Then for every o € 2% C
w®, there exists ¢, such that for all i < w we have = ¢(cq, a;,4(;))-

Consider the formulas x(z122,t) := ¢(t, 22) and £(z129,t) := @(t, 21) AY(21, 22).
Also for i < w let b; be the tuple a;o a;1. We are going to show that x has IP
witnessed by (;)i<w, (¢5)oecaw and &.

First of all note that £ is indeed a negation of x, since

T = —3z129t (p(t,22) A @(t,z1) A(z1, 22)).
Now take any ¢ < w and o € 2¢. If o(i) = 1, then we have |= ¢(c,,a;1) and there-
fore = x(bi, o). If o(i) = 0, then we have = ¢(cy,a:,0) as well as = ¥(a;0,a:,1)
and therefore = £(b;, ¢r). Hence, (b;)i<w, (Co)oec2w and € witness IP of x and T has
IP. O

Proposition 5.12. If a formula ¢(x,y) has IP then it has OP.

Proof. Suppose ¢(z,y) has IP, witnessed by (a;)i<w, (Co)oeaw and ¥(x,y). We use
the same ¢ (z,y) and (a;);<. to show that ¢(z,y) has OP. Let o; € 2¥ be defined

by
i ={y 13
Then we get
= plaico;) if i <,
E ql)(ai,ca;) if i > j.
Therefore, p(z,y) has OP, witnessed by (a;)i<w, (¢o,)j<w and (z,y). O

6. INTERACTIONS WITH INDEPENDENCE RELATIONS

In this section we study the interaction between independence relations and some
of the combinatorial properties studied above. We first recall the notion of dividing
and the corresponding definition of simplicity, and the way different notions of
independence interact with a theory being NSOP;, simple or stable. We do not
define Kim-dividing or use it directly; we rely on the axiomatic characterization of
the notion of independence given in [DK22, Theorem 9.1].

Definition 6.1. Let p(x,b) = tp(a/Cb) be a type. We say that p(z,b) divides
over C' if there is a C-indiscernible sequence (b;);<w, with by =¢ b, such that
Ui<o P(,b;) is