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Abstract 
There is mounting evidence that intestinal microbiota communities and their genes (the gut microbiome) influence how animals 
behave and interact with their environment, driving individual variation. Individual covariation in behavioural, physiological, and 
cognitive traits among individuals along a fast–slow continuum is thought to arise because these traits are linked as part of an 
adaptive pace-of-life strategy. Yet paradoxically, trait intercorrelation is absent or disrupted in some populations but not others. Here, 
we provide experimental evidence from aquatic pond snails (Lymnaea stagnalis) that environmental stressors and the gut microbiota 
explain host phenotypic plasticity and disrupted covariation among traits. Antibiotic exposure at varying levels of ecologically relevant 
concentrations had multiple effects starting with gut microbiota diversity, differential abundance, and inferred function. Memory 
declined in line with antibiotic concentrations that caused the most profound gut microbiota disruption, and although pace-of-
life traits remained rigid, their covariation did not. Moreover, inferred microbial metabolic pathways with biologically relevant host 
functions explained individual and treatment variation in phenotypes. Together, our results point to the gut microbiome as a proximate 
mechanism influencing the emergence and maintenance of phenotypic variation within populations and highlights the need to 
decipher whether the gut microbiome’s sensitivity to environmental pollution facilitates adaptive or maladaptive phenotypic plasticity. 

Keywords: gut microbiota, Lymnaea stagnalis, cognition, memory, behavioural plasticity, pace-of-life, syndromes, personality, antibiotic 
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Introduction 
It is clear from experiments with lab rodents that alterations to 
their gut microbiota generate changes in behaviour and cogni-
tion [1]—the mental processes that allow animals to store and 
act on information from their environment. Although the gut 
microbiome has the potential to transform our understanding of 
behavioural variation and plasticity in natural populations [2], 
progress in this field is lacking [3]. Behaviour facilitates rapid 
flexible responses to changing environments. Yet even under 
shared, fluctuating environmental conditions, populations are 
polymorphic where individuals vary consistently in behaviours 
such as boldness, with risk-taking individuals on one extreme 
of a continuous behavioural axis and risk-averse individuals on 
the other (personality, [4]). Different behavioural traits, including 
boldness and exploration, commonly correlate positively among 
individuals (behavioural syndromes, [5]) and, in some cases, are 
positively correlated with metabolic rate [6], and linked either 
positively or negatively to individual cognition, such as learning 
speed and memory accuracy [7, 8]. 

A leading hypothesis states that behavioural, physiological, 
and life history traits may covary because of pleiotropic genetic 

effects or common physiological pathways sensitive to current 
environmental states [5, 9–11]. Therefore, consistent, covarying 
individual differences in behaviours and cognition arise because 
they represent different pace-of-life strategies (pace-of-life syn-
dromes, [5, 7, 11]). However, phenotypic covariation is not ubiqui-
tous across organisms, and why covariation is detected in some 
populations or species but not others remains an unresolved 
question in animal ecology and evolution [8, 12]. Disparities in 
the patterns of covariation across systems may reflect differen-
tial trait sensitivities to environmental stressors [13], requiring 
phenotypic plasticity. The gut microbiome is theorized to be the 
missing link, driving host cognition, behaviour [2], metabolic rate 
[14], and pace-of-life syndromes [15]. The consequences of gut 
microbiome perturbation in natural populations are necessary 
to test these hypotheses, but are rare [16–18], in part due to 
limitations in microbiome interventions that are in keeping with 
an animal’s natural ecology [3, 19]. Pond snails (Lymnaea stagnalis) 
are an established model system for population and individual 
variation in cognition, and pace-of-life traits [20–22] where  covari-
ation and plasticity are habitat- and context-specific, and likely 
associated with environmental stressors [22, 23]. We predicted

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ej/article/18/1/w
rae078/7683888 by 93000 user on 31 M

ay 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 -265 21210 a -265 21210
a
 
mailto:gabrielle.davidson@uea.ac.uk
mailto:gabrielle.davidson@uea.ac.uk
mailto:gabrielle.davidson@uea.ac.uk
mailto:gabrielle.davidson@uea.ac.uk


2 | Davidson et al.

that individual variation and plasticity could be mediated by the 
enteric microbial community and their collective genes, given the 
compelling evidence from clinical rodent research demonstrating 
causal and mechanistic evidence that the gut microbiome regu-
lates host biological processes and phenotypes [1, 24–26]. 

Environmental contamination from widespread antibiotic use 
can alter the gut microbiome of aquatic and soil organisms [27], 
which we predicted could have additional downstream effects to 
host phenotypes and their covariation. We exposed wild-sourced, 
F2 generation aquatic pond snails (L. stagnalis) to a mixture of two 
broad-spectrum antibiotics—sulfamethoxazole (SMX) and oxyte-
tracycline (OTC)—dissolved in their aquarium at representative 
levels reported in freshwater ecosystems across the globe [28– 
30]. We evaluated the impact of increasing concentrations of 
antibiotics on the microbial community by exposing snails to four 
different treatments (low, medium, high, and a sham control) in 
a between-subject design. We reported whether these different 
treatments altered the relative abundance, diversity, and inferred 
function of the gut microbiota [31]. The antibiotic exposures 
additionally served as a tool to manipulate the gut microbiota at 
differing intensities to test the gut microbiota’s role in shaping 
cognition and pace-of-life traits including exploration behaviours, 
metabolic rate, and their covariation. 

Materials and methods 
Antibiotic exposure 
Snails were placed in groups of three individuals into closed 1.8-
L-capacity aquaria to remove effects of social isolation [23] for  
72 h prior to phenotypic assays (see below). A 72-h incubation 
time was selected following previous pharmaceutical exposures 
that were sufficient to cause nonlethal physiological effects in L. 
stagnalis [32, 33]. Aquaria were sterilized and filled with 0.4L of UV-
sterilized oxygenated artificial pond water per snail (1.2 L in total). 
SMX and OTC were solubilized in dimethylsufoxide (DMSO) at a 
final maximum solvent concentration of 0.0033% (concentration 
in the 4 μg/L antibiotic exposure group and DMSO control group). 
SMX was chosen because it is of particular concern in the UK 
and elsewhere due to its high consumption and discharge rate, 
and OTC is highly persistent and nonbiodegradable [34, 35]. We 
did not sample the Sowy river where the lab stock of snails was 
sourced and therefore did not test for SMX or OTC contamina-
tion, although these antibiotics have been reported in UK rivers 
generally [35–38]. Final sample sizes phenotyped across treatment 
groups included: a control group (standard pond water, n =  22, in 
13 aquaria), and three antibiotic exposures where SMX and OTC 
were each at the following concentrations and in the same solu-
tion: low: 1 μg/L (26 individuals, in 12 aquaria), medium: 2 μg/L (27 
individuals, in 12 aquaria), and high: 4 μg/L (32 individuals, in 15 
aquaria). To ensure DMSO had no effect on phenotypes, we tested 
29 individuals exposed to DMSO at 0.0033% only representing the 
highest DMSO exposure in the 4-μg/L antibiotic exposure group 
and compared phenotypes to the pond water control group using 
linear mixed models (LMMs). As described below, there was no 
significant difference in: memory: t = 0.51, P =  .61, thigmotaxis: 
t = −0.98, P =  .33, speed: t = −1.26, P =  .22, metabolic rate: t = 1.68, 
P =  .11. 

Phenotypic assays 
To test the effects of antibiotics and the gut microbiome on snails, 
we measured a suite of traits that are commonly considered part 
of pace-of-life phenotypes [5, 11]. We performed well-established 
assays described in this system for each snail in the following 

order: memory [22], thigmotaxis [23], speed [23], and metabolic 
rate [39]. 

Long-term memory 
We tested long-term memory formation in snails following a 
classical conditioning assay. The expectation is that snails should 
form a negative association between food (the unconditioned 
stimulus) and an aversive stimulus (potassium chloride, KCl), and 
therefore when presented with carrot juice after a delay (memory 
retention interval), they should find the carrot juice aversive 
and decrease their bite rate relative to their bite rate prior to 
conditioning. This assay included a series of phases: acclimation 
(i.e. habituation to the experimental arena), baseline bite rate, 
contingent training (the aversive stimulus was paired with carrot 
juice), and a memory test (Supplementary Fig. 4). Snails were 
deprived of food for 24 h prior to these phases. 

• Acclimation: Snails were first habituated to the testing area; 
they were placed individually in 60-mm-diameter petri dishes 
with 18 ml of UV-sterilized oxygenated artificial pond water 
and allowed to acclimate for 10 min. 

• Baseline bite rate: 1 ml of UV-sterilized pond water was added 
to the petri dish and snails were left for 2 min, followed by 
another 1 ml of UV-sterilized pond water for another 2 min. 
The bite rate in pond water alone was used to account for 
the baseline biting behaviour of snails in the absence of a 
food stimulus as snails perform occasional biting behaviour 
that can vary by individual. The snails were returned to their 
aquaria for 1 h. 

• Contingent training: Snails were placed on the petri dish and 
acclimated for 10 min. One millilitre of a 70% carrot juice 
solution was added (James White Organic Carrot Juice, James 
White Drinks, UK diluted with sterilized pond water), and the 
bite rate was recorded for 2 min (pretraining baseline bite rate 
in response to carrot juice), followed immediately by adding 
1 ml of an aversive, unconditioned stimulus: KCl at 14.9 g/L. 
All snails stopped their bite response in response to the KCl 
stimulus. Snails were returned to their aquaria after a 2-min 
exposure to KCl. 

• Memory test: Following a 24-h retention interval, snails were 
placed individually on a petri dish in 18 ml UV-sterilized pond 
water, with a 10-min acclimation, followed by 1 ml of pond 
water (where bite rate was recorded for 2 min), followed by 1 
ml of 70% carrot juice solution, and the bite rate was recorded 
for a further 2 min. 

To determine the response to training, the test bite rate was 
calculated as the difference between the bite rate in carrot com-
pared to the bite rate in pond water to adjust for an increase in 
sporadic feeding behaviour in the absence of a food stimulus due 
to longer food deprivation. Memory was quantified as the change 
in bite rate: (bite rate in carrot juice during test adjusted for bite 
rate in pond water) − (bite rate in carrot juice during pretraining). 
These values were multiplied by −1 for analyses and graphical 
purposes, meaning higher values represent better memory. 

We confirmed a change in bite response to carrot juice fol-
lowing contingent training is due to associative memory forma-
tion between carrot and the aversive stimulus KCl, rather than 
a change in bite response due to repeated exposure to carrot 
or handling during the experimental procedure, by carrying out 
noncontingent controls (in which the aversive stimulus [KCl] was 
not congruent with exposure to the carrot juice). These tests were 
performed with an additional 20 individual snails that were not
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included in the antibiotic treatments (described in Supplementary 
methods, Supplementary Fig. 4). 

Thigmotaxis and speed 
Snails were returned to their aquarium for 1 day with access to 
food ad libitum before the thigmotaxis and speed assays. Snails 
were placed individually in the centre of 140-mm-diameter glass 
petri dishes with 90 ml of UV-sterilized oxygenated artificial pond 
water. Once snails had fully emerged (eyes and tentacles visible), 
their path was tracked for 15 min. Thigmotaxis was calculated 
as the proportion of time spent in contact with the edge of the 
experimental arena and speed as total distance travelled over 15 
min. The assay for speed does not account for time spent not 
moving and could alternatively be described as distance covered. 
For consistency in terminology across studies, we use “speed” to 
describe this behaviour. 

Metabolic rate 
We measured the metabolic rate on the same day as measure-
ments of thigmotaxis and speed following an established protocol 
for L. stagnalis [39, 40]. Snails were placed individually in 125-
ml sealed flasks with UV-sterilized oxygenated artificial pond 
water. A small magnetic bar was constantly mixing the water 
inside the flask and a grid prevented contact between the snail 
and the bar. Respirometry measurements were taken using a 
fibre-optic oxygen meter (FireStingO2, Pyroscience) to quantify 
the amount of oxygen (μmol/L/min) where an increased rate of 
decline in oxygen indicated higher metabolic rate [39, 40]. Snails 
were allowed to acclimate to the respirometry chambers for 20 
min, and the rate of oxygen consumption was then calculated 
over a 20-min period to determine the metabolic rate. 

Gut microbiota analyses 
Immediately following measurements of activity and metabolic 
rate, individuals were anesthetized in a 5% ethanol solution and 
immersed in a euthanizing 70% ethanol solution. Entire snail 
guts were dissected under sterile conditions, and the guts were 
preserved at −80◦C. Microbial DNA was extracted using the Qiagen 
PowerSoil Pro kit following manufacturer’s instructions. For each 
snail sample, the entire dissected gut (<0.1 g) was added to the kit, 
alongside two negative controls. Ninety-five snail samples were 
randomly chosen across treatment groups (control n =  21, low n =  
21, medium n =  24, and high n =  29). 

The V3–V4 variable region of the 16S rRNA gene was amplified 
from the DNA extracts using the 16S amplicon sequencing library 
protocol (Illumina) as described in [16]. In the current study, each 
PCR amplification contained 5 μl of DNA,  10  μl for each forward 
and reverse primers (1 μM), and 25-μl Kapa HiFi Hotstart ready 
mix (Roche, Ireland) to a final volume of 50 μl. Three negative 
controls were run in parallel to sequencing: two from the DNA 
extraction stage and one containing PCR water instead of DNA 
template at the amplification stage. Successful PCR products were 
confirmed visually (gel agarose and a UV light box) and quantita-
tively using the Qubit high sensitivity kit. DNA bands were not 
observed in the negative controls and Qubit readings were “too 
low.” All experimental samples were successful (n =  95). All PCR 
products, including negative controls, were cleaned using AMPure 
XP magnetic bead–based purification (Labplan, Dublin, Ireland). 
Samples were sequenced at the Teagasc Sequencing Centre on the 
MiSeq sequencing platform, using a 2 × 300 cycle kit, following 
standard Illumina sequencing protocols. 

Bioinformatics 
Adapters and low-quality bases from sequence data were 
trimmed using trimmomatic v 0.38 [41] with the parameters: 
HEADCROP:6 LEADING:20 SLIDINGWINDOW:4:30 MINLEN:200. 
Vsearch v2.10.4 [42] was used to merge paired reads and collapse 
of identical sequences using default parameters. Operational 
taxonomic unit (OTU) clustering was at 97% identity, with 
pairwise % identity calculated as (matching columns)/(alignment 
length). Chimeras were removed using uchime. Taxonomy was 
assigned using the Ribosomal Database Project Classifier (RDP) 
[43] with 16S rRNA reference (RDP) training set version 19, with 
a confidence threshold of 80%. The negative controls had very 
low reads (DNA: 58 and 300 reads, PCR: 339 reads) and were 
not included in downstream analyses. No decontamination 
steps were performed, as this methodology comes with the 
risk of removing host-relevant microbes. Our approach should 
not systematically bias samples or our aim to compare host 
phenotypes with gut microbiota. 

We used the well-established clustering pipeline of assign-
ing sequence data to 97% OTU similarity. We were primarily 
interested in general compositional associations between the gut 
microbiome and host traits, rather than splitting OTUs into higher 
taxonomic resolution to detect extremely rare and low abundant 
community members provided by 100% amplicon sequence vari-
ants. Moreover, 97% OTUs, rather than ASVs, may reduce variation 
across sequences for improved reference sequence matching and 
Nearest Sequenced Taxon Index (NSTI) scores and therefore reli-
ability of PICRUSt2 output [44]. 

The outputs from above (OTU table, taxonomic table) and the 
metadata (treatments, behaviours) were analysed using phyloseq 
[45] in R statistical Software [46]. Sequences identified as chloro-
plast were removed (no OTUs were classified as mitochondrial), 
as were samples with less than 1000 reads (n =  1), in accordance 
with visual inspection of a rarefaction curve, using the function 
rarecurve() in the package vegan [47]. Following these filtering 
steps, one sample from the high antibiotic treatment was dropped 
(sample S30_L001). A total of 1 159 694 reads (mean per sample = 
12 337.17, min = 1961, max = 187 835) clustered into 5127 OTUs 
across 94 samples. Reads were not rarefied prior to alpha diversity 
calculation or relative abundance analyses [48, 49]. 

Statistical analyses 
We ran LMMs using lme4 [50], and P values were obtained using 
lmerTest [51] in R version 3.5.2 [46]. Unless otherwise stated, 
models were run with a Gaussian distribution and residuals were 
checked for normality and homogeneity of dispersion. For models 
that contained multiple fixed terms, we used the dredge func-
tion from the MuMIn package [52] and an information-theoretic 
approach in combination with model averaging [53]. We generated 
models from a global model from our GLMMs and retained models 
with an Akaike’s information criterion corrected for small sample 
sizes (AICc) within seven units of the top model [54]. We report the 
conditional averaged weighted parameter estimates across the 
retained models. All continuous variables were scaled. Aquarium 
was included as a random effect. Plots were generated using 
ggplot2 [55]. 

Behaviours 
Speed and thigmotaxis have been described as discrete measures 
of exploration in a novel arena [23]. Yet because the two variables 
were highly correlated in the control group, conceivably they 
could be measuring the same behavioural phenotype. Therefore,
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we performed a Principal Component Analyses using prcomp(), 
but Eigen values were low (PC1 = 0.08 and PC2 = 0.03), meaning 
we could not ascribe a common factor explaining thigmotaxis and 
speed. Using the vif() function, we also did not detect collinearity 
between all phenotypic variables that could otherwise influence 
statistical models, and all variance inflation factor values were 
low and close to 1. 

Covariation between phenotypes 
Pairwise covariation between phenotypes was tested using 
Pearson’s correlation, alongside 2000 bootstrap iterations to 
calculate upper 95% and lower 5% confidence intervals. We report 
P values; however, we consider covariation between traits to be a 
genuine effect if confidence intervals do not overlap zero. Each 
comparison was split between treatment groups. 

Statistical analysis: antibiotic treatments on behaviour 
We performed four separate LMMs as described above to 
test whether antibiotic treatment affected (i) memory (bite 
rate change), (ii) thigmotaxis, (iii) speed, and (iv) metabolic 
rate. Antibiotic treatment was a four-level factor (control, low 
concentration, medium concentration, high concentration). 

Statistical analysis: alpha diversity 
Three alpha diversity metrics were calculated using the function 
estimate_richness() from the package phyloseq [45]: Shannon 
index (abundance/richness and evenness), observed (richness), 
and Chao1 (richness accounting for rare taxa missed from under 
sampling). We tested whether alpha diversity was affected by 
antibiotic treatment and predicted by the three behavioural mea-
sures by performing three separate LMMs as described above. 
Our global models included the following fixed effects: treatment 
(four-level factor), bite range change, thigmotaxis, speed, and 
metabolic rate, and all their interactions. All interactions were 
nonsignificant, yet retained in the observed and Chao1 model, but 
not the Shannon index model. In case of model overfitting due 
to multiple interactions, we reran and report the observed and 
Chao1 models without interaction terms. 

Statistical analysis: beta diversity 
For beta diversity analyses, taxa present at <0.005% were 
removed following [56], and we applied cumulative sum scaling 
normalization to standardize library size across samples using the 
package metagenomeSeq [57]. We present data from two different 
distance metrics for beta diversity calculated in two ways: (i) 
Aitchinson’s distance matrix, which calculates the Euclidean 
distances between clr-transformed compositions according to 
shared OTUs and their abundances, and (ii) Jaccard distance 
matrix which does not account for differences in abundance. 
Each matrix was analysed using permutational multivariate 
analysis of variance (ADONIS) with 100 permutations. We tested 
for homogeneity of dispersion and found there were significant 
differences in dispersion between antibiotic treatment groups, (F 
= 5.4, P =  .002) therefore significant PERMANOVA results for this 
variable could reflect differences in group variance rather than 
differences in group means, or could reflect differences in both 
group variance and group means [58]. 

Beta diversity was included as the response variable and treat-
ment, bite rate change (X−1), thigmotaxis, speed, and metabolic 
rate were included as fixed terms. Models were fit with the argu-
ment “terms,” which analyses the effect of each term sequentially. 
We could not specify “strata” as aquarium due to function errors 
from the unbalanced blocking of these random terms. 

Statistical analysis: functional analysis 
We used PICRUSt2 [31, 59] to predict gut microbiota metagenome 
functions using default settings. This methodology generates a 
phylogenetic tree from 16S rRNA sequence data aligned to ref-
erence genomes to predict gene-family copy numbers for each 
OTU and produces an abundance table of KEGG Orthologue path-
ways which we used for downstream analyses. The output also 
provides MetaCyc pathways, but we opted to restrict our analyses 
to KEGG Orthologue pathways to limit multiple statistical tests, 
and because this allowed us to compare our inferred pathway 
results to a recent study identifying whole metagenome KEGG 
orthologues associated with memory in an invertebrate system 
[60]. 260 input sequences aligned poorly to reference sequences (– 
min_align option =  0.8) and were excluded. These input sequences 
were excluded from downstream steps. Otherwise, the weighted 
NSTI scores were very low (mean 0.04, +/− SE = 0.0046), indicating 
that microbes from our 16S rRNA sequence data were very closely 
related phylogenetically to fully described microbial genomes 
[31, 59]. 

Statistical analysis: differential abundance 
We tested whether antibiotic treatment and the four pheno-
types predicted the abundance of OTUs and inferred pathways 
using MaAsLin2 (Microbiome Multivariable Associations with Lin-
ear Models) with default settings. This differential abundance 
method best suited our data as it applies generalized LMMs, 
thus accommodating discrete variables (antibiotic treatment), 
multiple continuous variables (phenotypes), and random effects 
(aquarium) and ranked highly in a recent comparison of statistical 
differential abundance methods for 16S rRNA sequence data 
[61]. We report false discovery rate–corrected P values using the 
Benjamini–Hochberg method and discuss P < 0.1 as trends. We 
consider this approach to be conservative as false discovery rates 
are not necessarily applied in microbiome datasets [60, 62]. We 
performed two models (one for OTU abundance and one for KEGG 
ortholog [KO] pathway abundance) with antibiotic treatment, bite 
rate change (X −1), thigmotaxis, speed, and metabolic rate as 
fixed terms, and aquarium as a random term. MaASLin2 does not 
accommodate interaction terms. 

Results 
Antibiotic-induced gut microbiota perturbation is 
dose dependent 
Pond snails were subjected to an acute antibiotic exposure at 
four different concentrations for 72 h: low (1 μg/L, phenotyped; 
sequenced sample size: n =  26; 21), medium (2 μg/L, n =  27; 
24), high (4 μg/L, n =  32; 29), and a control pond water (n =  22; 
21). Following treatments and phenotypic assays, we extracted 
microbial DNA from dissected whole guts. Here, we describe 
16S rRNA sequence data of L. stagnalis gut microbiota (see also 
[63]). We characterized 5127 OTUs at 97% similarity across 12 
classified phyla and 78 classified families (Supplementary Fig. 1; 
Supplementary Table 1). 

In line with our predictions, the gut microbiota was increas-
ingly perturbed as antibiotic exposure increased across multiple 
metrics. Ten OTUs were differentially abundant at low con-
centration, 76 OTUs at medium concentration, and 117 OTUs 
at high concentration (Supplementary Table 1). Several OTUs 
decreased, but many also increased (Fig. 1A) due to the relative 
depletion of some highly abundant microbes and the coloniza-
tion of novel microbes sourced from the environment. This
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Figure 1. Gut microbiota metrics according to antibiotic treatment for (A) differentially abundant OTUs described at the family level or to the nearest 
classified level; (B) beta diversity calculated as Aitchinson’s distance; (C) Shannon index; and (D) observed species and (E) Chao1 diversity. Coloured 
dots represent individual samples; black dots represent mean and lines standard error. Statistics are detailed in Supplementary Table 1 (OTUs), 
Supplementary Table 2 (beta diversity), and Supplementary Table 4 (Shannon index, observed, and Chao1 diversity). 

interpretation reflects significant beta diversity ( Supplementary 
Table 2) and clustering of community structure at medium and 
high concentrations away from low concentration and the control 
condition (Fig. 1B) for both Aitchinson distance, which considers 
relative abundance (R2 = 0.13, P =  .001), and Jaccard distance, 
which is independent of abundance (Jaccard distances, R2 = 
0.18, P =  .001). The number of inferred KO functional pathways 
that were significantly differentially abundant increased with 
antibiotic concentration (14 KOs at low concentration, 659 
at medium concentration, and 884 at high concentration, 
Supplementary Table 3). 

The evenness (Shannon index) of the gut microbiota diversity 
increased at a threshold of 2 μg/L antibiotics and above (low: z = 
1.23, P =  .22; medium: z = 3.27; P =  .001; high: z = 2.20, P =  .03, 
Fig. 1C, Supplementary Table 4), which likely occurred because 
relatively highly abundant microbes were depleted. Antibiotic 
exposure increased observed richness and Chao1 diversity, an 
index of richness, at medium concentrations only (observed: low: 
z = 0.95, P =  .34, medium: z = 2.43, P =  .01, high: z = 0.89, P 
= .38, Fig 1D; Chao1: low: z = 0.10, P =  .92; medium: z = 1.82, 
P =  .07; high z = 0.13, P =  .90, Fig. 1E, Supplementary Table 4), 
perhaps because depleted microbes opened niches to antibiotic 
resistant microbes. We also excluded the possibility that variation 
in the amount of carrot juice consumed by individual snails (as 
a potential dietary source of microbes) during the memory test 
explained the observed differences in alpha diversity (GLMM of 
total carrot juice consumed during training and test phases for 
Shannon index: t: 0.73, P =  .20; observed: t: – 0.20, P =  .83). 

Covariation between memory, behaviours, and 
metabolic rate 
Snails were tested individually across four phenotypic assays 
following all treatments to test for covariation between traits and 
phenotypic plasticity. We performed a single-trial food condition-
ing paradigm [22, 64] to test memory formation of an aversive, 

unconditioned stimuli (potassium chloride, KCl) paired with an 
appetitive conditioned stimuli (carrot juice). Two assays for explo-
ration measured the distance travelled over 15 min—speed— 
and the proportion of time spent in contact with the edge of a 
novel experimental arena—thigmotaxis. Routine metabolic rate 
was measured as the rate of oxygen consumption (μmol/L/min) 
following a 20-min acclimation period. Consistent with the pace-
of-life theory, we found covariation (Supplementary Table 5), in 
the untreated control group, between speed and thigmotaxis 
(Pearson’s correlation test P =  .004, r = .58, bootstrap confidence 
intervals (CI) from 2000 iterations = 0.14, 0.81, Fig. 2B), between 
thigmotaxis and metabolic rate (P =  .01, r = .54, bootstrap CI = 
0.12, 0.81, Fig. 2E), and between memory and thigmotaxis (P =  .03, 
r = −.47, bootstrap CI = −0.71, −0.03, Fig. 2A). By contrast, the 
metabolic rate did not covary with speed (P =  .39, r = .19, bootstrap 
CI = −0.16, 0.49, Fig. 2F) or memory (P =  .16, r = −.31, bootstrap CI 
= −0.61, 0.05, Fig. 2D), and memory was not correlated with speed 
(P =  .44, r = −.31, bootstrap CI = −0.54, 0.23, Fig. 2C). 

Antibiotic exposure leads to a decrease in 
memory and alters the covariation between 
pace-of-life traits 
We then tested whether the antibiotic treatments induced pheno-
typic plasticity and/or disrupted the covariation between traits. 
Lymnaea stagnalis has shown plasticity in memory [21, 39, 65], 
exploration behaviour [20, 39], and metabolic rate [39, 66] in  
response to environmental stressors including predation risk and 
social isolation, and we predicted that these phenotypes may also 
change in response to exposure to antibiotics and gut microbiome 
disruption. Snails had poorer memory formation at medium (t = 
−2.31, P =  .03) and high (t = −3.04, P < .01) antibiotic concentra-
tions, but not at low (t = −2.31, P =  .27) (Fig. 3A), which reflect 
the antibiotic concentrations at which the gut microbiota was 
most perturbed. Lymnaea stagnalis’ propensity to consume carrot 
juice in the pretraining trials did not differ from the control group
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Figure 2. Correlations between phenotypic traits as individual-coloured dots and regression lines (left panel) and Pearson’s correlation coefficient 
across 2000 bootstrap iterations. (A) Thigmotaxis and memory, (B) thigmotaxis and speed, (C) speed and memory, (D) metabolic rate and 
memory, (E) metabolic rate and thigmotaxis, and (F) metabolic rate and speed. ∗indicates correlated phenotypes where P < .05 and 95% CI do not 
overlap zero. † indicates correlated phenotypes where P < .1 and CI do not overlap zero. � indicates correlated phenotypes where P < .1 and CI 
overlaps zero. Statistics are presented in Supplementary Table 5. 

( Supplementary Fig. 2) excluding the possibility that observed 
changes in bite rate were due to the gut microbiome’s influence 
on food palatability and preferences [67, 68]. 

Neither exploratory behaviours, nor metabolic rate differed 
across treatment groups (Fig. 3B–D, Supplementary Table 6). 
Instead, we show that antibiotic treatment disrupted the 
covariation (or lack of) between phenotypes, except for memory 
and speed (Fig. 2, Supplementary Table 6). Whether the covari-
ation between traits was masked, revealed, or maintained was 
dependent on antibiotic dosage, and trait comparison. Regardless 
of the trait comparison, changes to covariation followed a 
nonlinear pattern across aquatic environments of increasing 
antibiotic concentration (Fig. 2, Supplementary Table 6). 

In line with gut microbiota perturbation, 
taxonomic and functional features of the gut 
microbiota explain individual variation in 
memory 
If the gut microbiota regulates host biology, individual variation 
in the gut microbiota should predict individual variation in phe-
notypes, and plasticity in phenotypes should reflect the antibiotic 
effect on the gut microbiota. We showed that phenotypic plastic-
ity in memory formation was associated with five differentially 
abundant OTUs (Fig. 4A): OTU1014 (Flavobacteriaceae), OTU1010 
(Comamonadaceae), OTU367 (unclassified Alphaproteobacteria), 
OTU408 (Lacipirellulaceae), and OTU327 (Verrucomicrobiaceae). 
OTU327 was also less abundant in snails exposed to the high 
antibiotic dose. Several KOs that predicted memory formation 
were also differentially abundant following antibiotic exposure, 
which we interpret as being the primary candidate functional 
pathways involved in microbiome-disrupted memory (Fig. 4B). 
These KOs match pathways involved in taurine and hypotaurine 
metabolism, phenylalanine metabolism, nephathalene degrada-
tion, ethylbenzene degradation, and caprolactam degradation. 
Several additional KO pathways predicted memory yet were not 
affected by antibiotic treatment. Of these pathways, tryptophan 
metabolism, two-component system, propanoate metabolism, 

histidine metabolism, glyoxylate and dicarboxylate metabolism, 
fructose and mannose metabolism, cationic antimicrobial peptide 
(CAMP) resistance system, and arginine biosynthesis have been 
reported in microbiome–gut–brain axis studies in other vertebrate 
and invertebrate systems (e.g. [1, 69–72]). We found no evidence 
that alpha diversity (Supplementary Fig. 3) nor beta diversity 
predicted memory, pointing to the inferred microbiome function 
as being the most important predictor for host cognition. 

Gut microbiota predicts exploration behaviours 
and metabolic rate, irrespective of gut microbiota 
perturbation 
Several differentially abundant OTUs (Fig 4A, Supplementary 
Table 1) and hundreds of KO orthologs (Supplementary Table 3) 
predicted pace-of-life traits. There was weak, nonsignificant 
support for a positive association between thigmotaxis and 
Shannon index diversity (z = 1.87, P =  .06, Supplementary Fig. 3B, 
Supplementary Table 4) and gut microbial community (Jaccard 
distance R2 = 0.01, P =  .08, Supplementary Table 2). Alpha 
diversity did not explain individual variation for any other traits 
(Supplementary Fig. 2, Supplementary Table 4), and there was 
weak, nonsignificant evidence that community structure differed 
according to individual variation in speed (Jaccard distance: R2 = 
0.01, P =  .05, Supplementary Table 2). 

Candidate microbiota features may explain 
intercorrelation between phenotypes 
The gut microbiome has been implicated as an intrinsic 
driver underlying intercorrelation between individual vari-
ation in pace-of-life phenotypes [15], perhaps because gut 
microbiome functions mediate suites of host traits uniformly. 
Alternatively, different gut microbiome features or functions 
may act independently on phenotypes, revealing or masking 
covariation [13] through homeostatic or allostatic processes 
[3]. Although we found no evidence for antibiotic-induced 
parallel changes across suites of host phenotypes, there was 
correlative evidence of microbiome features that predicted
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Figure 3. Effects of antibiotics on four phenotypes for (A) memory, (B) thigmotaxis, (C) speed, and (D) metabolic rate. Coloured dots represent 
individual samples; black dots represent mean and lines standard error. Statistics are presented in Supplementary Table 6. 

Figure 4. Differentially abundant gut microbiota features across phenotypic traits and antibiotic exposure. (A) Differentially abundant OTUs described 
at the family level. (B) Significantly differentially abundant KO pathways for memory and whether these KOs were or were not differentially abundant 
in pace-of-life traits (thigmotaxis, speed, and metabolic rate) and antibiotic treatments. (C) KO pathways that predict at least two pace-of-life traits 
and whether these KOs were perturbed by the antibiotic treatments. Coef indicates statistical correlation coefficient from MaASLin2 output.
∗represents P < .05, ∧ P < .01. P values are Benjamini–Hochberg-corrected for multiple comparisons. Full statistical outputs are presented in 
Supplementary Tables 7, 10, 11, and 14. 
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variation across more than one phenotype. Controlling for 
antibiotic exposure, OTU17 (Enterobacteriaceae), OTU868 (Pseu-
domonadaceae), and several inferred KO pathways predicted both 
thigmotaxis and the metabolic rate (ubiquinone biosynthesis, 
tyrosine metabolism, starch and sucrose metabolism, and others, 
Fig. 4B and C, Supplementary Table 7). Inferred KO pathways 
sulphur metabolism, glycolysis, butanoate metabolism, ABC 
transporters, and others predicted thigmotaxis and speed (Fig. 4C, 
Supplementary Table 7). There were no shared gut microbiota 
features that correlated with both speed and the metabolic rate 
(Supplementary Tables 8–11); therefore, none that were correlated 
across all three pace-of-life traits. Tryptophan metabolism 
predicted both memory and thigmotaxis, and histidine and 
phenylalanine metabolism predicted both memory and speed 
(Fig. 4B). Generally, microbiota features predominantly predicted 
variation in only one phenotype (Supplementary Tables 7–14). 

Discussion 
Environmental stressors can reduce or block memory formation 
in many systems [73], including snails where cognitive sensitivity 
to stressors is population-specific [22, 65, 74, 75]. Our study is 
one of the few outside clinical studies to demonstrate the gut 
microbiota underlies observed environmental effects on cognitive 
plasticity [3]. We report no significant differences in behaviour or 
metabolic rate following antibiotic treatments, perhaps because 
these traits inherently have limited plasticity, yet individual trait 
values shifted sufficiently to cause a divergence in their covaria-
tion. Our findings also point to the gut microbiome as a promising 
framework for explaining why the pace-of-life literature is fraught 
with inconsistent reports [12]. We show that specific features of 
the gut microbiome may have pleiotropic effects on hosts due to 
their correlation with suites of traits, and we also show features 
that are uniquely associated with a single pace-of-life trait that 
are disrupted by antibiotic exposure and at levels that alter the 
intercorrelation with other phenotypes. 

The absence of correlations between pace-of-life traits and 
nonconcurrent changes in correlated behaviours has been inter-
preted as evidence against pace-of-life theory [12]. Generally, our 
results support the idea that discrepancies stem from environ-
mental stressors that mask or reveal pace-of-life syndromes by 
shifting within-population trait means and/or their variance [13]. 
Low and medium antibiotic concentrations were most likely to 
either mask or reveal covariation, and at high antibiotic concen-
trations, the presence or absence of covariation reflected results 
observed in the control condition. We speculate that this non-
linear pattern may reflect the magnitude of the stressor [13], 
where extreme stress triggers compensatory responses to main-
tain homeostasis [3, 76]. 

To what extent can we ascribe the gut microbiome as 
the mechanism mediating cognitive plasticity? We show that 
individual variation in cognition is associated with inferred 
KO pathways that match known microbiome–gut–brain axis 
mechanisms found in humans, rodents, and insects including 
tryptophan metabolism and phenylalanine metabolism (cate-
cholamine neurotransmitters precursors) [71, 77, 78]; glyoxylate 
and dicarboxylate metabolism [79]; taurine metabolism [80]; 
and alanine, aspartate, and glutamate metabolism [70]. Many 
of the KO pathways listed here matched whole metagenomic 
KO pathways associated with memory in bumblebees (Bombus 
terrestris) [60]. At least three of these pathways/molecules are 
neuro-modulatory in L. stagnalis (tryptophan metabolism in the 
kynurenine pathway, glutamate, and taurine) [81–84]. Although 

our functional pathway analysis is limited in that it was inferred 
[31, 59], performance scores (weighted NSTI) indicated good 
sequence alignment to whole genome databases [31, 59]. We 
interpret these host biologically relevant functional associations, 
alongside parallel changes in the gut microbiome and memory 
in accordance with antibiotic concentrations, as support for 
microbiome–gut–brain axis processes operating in L. stagnalis. 

Perhaps the most compelling inferred functional associations 
spanning pace-of-life traits was tyrosine metabolism, a precursor 
for catecholamines that are widely documented to be involved 
in locomotion and respiration in L. stagnalis ([85] and references 
therein). Microbial lipopolysaccharide biosynthesis activates gut 
cytokines involved in host immune responses [86], and the micro-
biome–gut–brain axis (reviewed in [87,88]). To our knowledge, 
only one other study investigated a suite of pace-of-life traits 
in the context of environmentally realistic alterations to the 
gut microbiota, suggesting temperature-adaptive developmental 
plasticity mediated by the gut microbiota [17]. We encourage 
more microbiome studies representing a wide taxonomic breadth 
to decipher whether these mechanisms are conserved or have 
evolved convergently. 

It is conceivable that antibiotic effects on host traits occur inde-
pendently from the gut microbiota by directly affecting the host 
through neuro-activity or toxicity [89]. Yet behavioural, physio-
logical, and tissue-relevant gene transcription changes following 
antibiotic exposure [90–97] are widely interpreted to be mediated 
by host gut microbiomes [95, 98, 99]. Antibiotics may have acted 
as a cue for snails to adjust their feeding behaviour, although 
the snail’s general propensity to eat carrot juice in the pre-
training trials (i.e. independent of memory) did not differ across 
antibiotic treatments. It is equally feasible that any imbalance to 
the gut microbiota ecosystem, irrespective of which gut micro-
biome features were perturbed, may explain deficits in mem-
ory [100]. The correlation between inferred functional pathways 
that have neuroactive potential in L. stagnalis potentially offers 
the strongest evidence that the gut microbiome may be medi-
ating effects on memory. Future studies could implement tar-
geted interventions of specific microbiota features identified here, 
particularly ones that have been genetically screened for rele-
vant metabolic functions, and could aim to enhance, not just 
inhibit, cognition, although experimentally engineering complex 
gut microbial ecosystems remains logistically challenging [3, 101]. 
Because snails engage in coprophagy [[102], pers. obs], microbiome 
transplants to recapitulate phenotypes from one host to another 
could be one such approach provided the gut microbiota from 
donors successfully colonize those of the recipient [19]. Isolated 
microbial strain administration has also proven to be an effective 
tool for identifying the gut microbiome’s role in memory enhance-
ment in bees [60]. 

From an ecological and conservation perspective, the disrup-
tive effects of antibiotic pollution on wildlife are well documented 
[90–93]. Despite the numerous reports that antibiotics alter 
wildlife gut microbiomes [28], alongside clinical mechanistic 
evidence of the antibiotic-perturbed gut microbiota’s role in 
shaping host biology [91, 95–97], we have surprisingly little 
understanding of how antibiotic exposure in nature affects 
aquatic and soil organisms through their microbiomes (but 
see [103,104]). We make significant advances in this regard 
by demonstrating the most pronounced effects on the gut 
microbiota and memory occur at 2 μg/L and above, and disruption 
to covarying traits occurs at as little as 1 μg/L. Hundreds of 
OTUs and inferred KO pathways were altered due to antibiotic 
exposure, and they may have additional biological effects on
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the host not measured here. We found that antibiotic exposure 
increased gut microbiota alpha diversity, specifically by increasing 
taxonomic evenness, suggesting that many taxa were not killed 
by antibiotics, perhaps indicating a high occurrence of antibiotic-
resistant genes in L. stagnalis [29]. Richness increased at medium 
antibiotic levels, presumably through exposure to environmental 
pools of microbes not measured here that were likely present 
in their aquarium, through coprophagy, or diet, although we 
show that the amount of carrot juice consumed did not explain 
between-treatment differences in alpha diversity. We can only 
speculate as to why the antibiotics had the strongest effects 
on alpha diversity at medium concentrations; it may be due 
to dose-dependent bacterial cellular responses to antibiotics 
[105]. 

Although we administered the antibiotic treatment as a com-
bined cocktail, which is ecologically realistic [28–30], SMX and OTC 
differ in their antimicrobial actions and one antibiotic may have 
had more pronounced effects than the other. In wild snails, the gut 
microbiome and antibiotic exposure history may differ from the 
captive reared, F2 generation snails tested in our study, and conse-
quently could affect microbiome and host phenotypic responses 
to antibiotic exposure. In nature, antibiotic exposure duration in 
the environment is highly variable [30], and our study investigated 
an acute antibiotic exposure of 72 h. Therefore, understanding 
differential effects and critical thresholds of a wide range of 
antibiotic pollutants, across different time scales, and organism 
life stages, will be valuable for environmental policy. 

Predicting animal responses to unprecedented rates of envi-
ronmental change are necessary if we are to mediate detrimental 
anthropogenic effects on biodiversity [106]. The gut microbiome 
may facilitate rapid phenotypic responses at a speed consider-
ably faster than alternative host genetic adaptive mechanisms to 
match current environmental conditions [107], as shown for cold 
tolerance [108] and hibernation [109]. Equally, we predict that dis-
ruption to the gut microbiome may be so extreme that it leads to 
deleterious effects away from host fitness optimums. Distinguish-
ing between these two complementary hypotheses should be a 
focus for future microbiome research to identify whether envi-
ronmental perturbation of the gut microbiome through chemical 
pollutants leads to mismatches between host biology and the 
environment. 

Experimental organism 
Lymnaea stagnalis used in these experiments were F2 generation 
adults (spire height 25 ± 1 mm) originally sourced from the Sowy 
River population on the Somerset Levels, UK. Animals were reared 
under laboratory conditions in aquaria containing oxygenated 
artificial pond water with 80 mg/L Ca2+ [22] at 20  ± 1◦C on a 14:10 
light:dark regime. Snails were fed with lettuce supplemented with 
trout pellets ad libitum. All individuals were identified throughout 
the experiments using queen bee tags (E. H. Thorne Ltd, UK) 
glued to the shell with nontoxic Loctite 454 adhesive (Henkel, UK). 
Experiments took place from June to August 2018. This research 
was in accordance with the ASAB (Association for the Study of 
Animal Behaviour) Guidelines for the Treatment of Animals in 
Behavioural Research and Teaching [110]. 
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