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Abstract 

Deploying novel genetic variation, such as wild relative introgressions, into wheat 

breeding programmes could help to satisfy the global demands of wheat despite a rising 

population and a changing climate. Sequencing data, which has become much cheaper 

and more accessible over time, can play an important role by being used to identify and 

characterise introgressions in wheat that confer beneficial traits and can be deployed into 

breeding programmes. This thesis offers insights into wheat introgressions in the context 

of sequencing data, exploring how sequencing data can be used to detect and 

characterise introgressions and also how introgressions can interfere with the accurate 

processing of sequencing data in common genomic analyses. 

First, I used whole-genome sequencing data to characterise a set of hexaploid 

wheat/Ambylopyrum muticum introgression lines to a high resolution, identifying 

introgressions and other structural changes in the lines. I then combined the sequencing 

data with rust resistance phenotype data to demonstrate how the region of introgressed 

genes underlying the phenotype can be identified and candidate genes proposed. 

I then present findings on an important heat tolerance phenotype identified in wheat that 

is driven by three marker trait associations that together increase yield by over 50% 

under heat stress conditions. Using sequencing data, I discovered that one of these is 

driven by an Aegilops tauschii introgression. I then searched for candidate genes in 

multiple Ae. tauschii genomes, exposing the limits of relying on a single reference 

genome. 

Finally, I found that the abundant introgressions across wheat accessions cause 

inaccurate RNA-seq read alignment that compromises research findings by leading to the 

underestimation of gene expression and the expression balance categories of triads being 

incorrectly assigned. To address this, I proposed a solution in which transcripts from 

multiple wheat cultivars are integrated into a pantranscriptome reference to use for RNA-

seq read alignment. 
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1 Introduction 

1.1 Why crop yields need to be increased 

A rising human population and rising per capita income is increasing agricultural 

consumption over time. UN population projections according to the medium fertility 

model suggest that world population will increase to 9.7 billion by 2050 and to 10.9 billion 

by 2100, at which point the population will stop growing (United Nations, Department of 

Economic and Social Affairs, Population Division, 2019). Global average per capita 

consumption is also estimated to increase from 2831 to 3129 kcal per day between 2009 

and 2050 (Pardey et al., 2014) as more countries move out of poverty towards 

industrialisation (Brisson et al., 2010). The structure of consumption will also change 

(Shiferaw et al., 2013); for example, rising incomes in Asia are associated with a 

convergence towards a Western diet, with increased consumption of wheat and animal 

products (Pingali, 2007). The rapidly changing climate will place additional pressure on 

farmers and breeders and will necessitate the development of crop varieties that are 

more resilient to abiotic stressors such as drought and heat (Kahiluoto et al., 2019), and 

to pests and pathogens whose range and lifestyle may change due to climate change 

(Garrett et al., 2006; Classen et al., 2015; Surówka, Rapacz and Janowiak, 2020). 

Furthermore, climate change, along with the overuse of agricultural land, is expected to 

reduce the amount of arable land over time (Zhang and Cai, 2011), making improvements 

to yield and environmental stability of crops even more important. 

1.2 Wheat as an important component of global food production 

Triticum aestivum (bread wheat) is among the three most grown and consumed crops in 

the world, alongside Zea mays (maize) and Oryza sativa (rice). It is the most widely 

grown, cultivated on 217 million hectares and is the third most highly produced crop at 

752 million tons per year (Erenstein et al., 2022). Around 20% of the calories and protein 

consumed globally each year are derived from wheat either through direct consumption 

or via animal feed (Reynolds et al., 2012). Wheat is a staple crop for around 35% of the 

global population (Grote et al., 2021). The global demand for wheat increased by fourfold 

between the 1960s and 2009 and doubled between 1980 and 2009 (Shiferaw et al., 

2013). This equates to an average increase in demand of 2.24% per year since the 1960s. 

Wheat is the largest agricultural commodity on the global market; 194.4 million tons of 
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wheat are projected to be traded in 2023/24 (FAO, 2023). Therefore, wheat production 

has a vital role to play in supporting a rising and developing population. 

1.3 Strategies to safeguard future global wheat production 

To meet the global demand for wheat production, a multifaceted strategy is essential. 

This will involve genetic improvements to traits such as yield, biotic and abiotic stress 

resistance/resilience, and reduced need for inputs such as water and fertiliser. It will also 

involve optimising agronomic management practices (Shiferaw et al., 2013) and 

minimising food wastage (Kummu et al., 2012). Additionally, wider availability of new 

agricultural technology (Ruzzante, Labarta and Bilton, 2021) and increased varietal 

turnover, particularly in the developing world where farmers often face slow replacement 

cycles (Atlin, Cairns and Das, 2017), will be of great importance. 

As genomic scientists, our contribution to this will naturally come from genetic 

improvement, and more specifically, through leveraging large genomic datasets to 

facilitate increased understanding and better utilisation of wheat germplasm resources. 

Genetic gains to wheat yield are currently in the region of 0.5-1.0% per year (Reynolds et 

al., 2017). Maintaining, or ideally improving this, despite growing environmental and 

demographic pressures, will be an important contribution to future food security. 

1.4 Genomic origin of bread wheat 

Bread wheat, Triticum aestivum, is an allohexaploid species (BBAADD genomes); this 

means its genome consists of three subgenomes derived from independent diploid 

species. Around 0.7-0.8mya, a hybridisation event between the male donor of the A 

subgenome, Triticum urartu (AA) and the female donor of the B subgenome, a species 

likely extinct but thought to be closely related to, but distinct from, Aegilops speltoides 

(SS), formed tetraploid wild emmer wheat, Triticum turgidum, ssp. diccocoides (BBAA) 

(Fig. 1-1) (Levy and Feldman, 2022). Between 8500 and 9000 years ago, hybridisation 

between the female donor of the A and B subgenomes, T. turgidum ssp. durum, (BBAA), a 

domesticated form of emmer wheat, and the male donor of the D subgenome, Aegilops 

tauschii (DD), a diploid wild goatgrass, gave rise to hexaploid T. aestivum (Fig. 1-1) (Levy 

and Feldman, 2022). T. aestivum was soon domesticated, beginning the thousands of 

years of intense cultivation and artificial selection for agronomic and end-use traits 

(Venske et al., 2019) resulting in the bread wheat we grow and eat today. 
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Figure 1-1. Simplified diagram of the polyploidisation events that led to the creation of 
Triticum aestivum (bread wheat). 
Based on figure by Jauhar (2007) with updated information from Levy and Feldman 
(2022). 

1.5 Limited genetic variation in modern wheat breeding material 

Breeding new wheat varieties with higher yield, better end-use traits, resistance to pests 

and pathogens, and tolerance to abiotic stressors relies upon the presence of sufficient 

and appropriate genetic variation in the genepool that is accessible to breeders to 

incorporate into breeding programmes. All bread wheat grown today is thought to derive 

from just one or two rare hybridisation events between emmer wheat and Ae. tauschii 

(Charmet, 2011). This genetic bottleneck combined with intensive artificial selection has 

resulted in modern wheat material possessing less than a third of the nucleotide diversity 

seen in its wild progenitor species (Haudry et al., 2007). The initial genetic diversity 

established in wheat upon its formation has been supplemented by mutation and 

sporadic hybridization events, primarily with wild populations of tetraploid wheat. In such 



 17 

cases of hybridisation, almost all recombination takes place in the A and B subgenomes as 

the D genome has no homologous counterpart in tetraploid wheat. This has left the D 

subgenome with particularly low levels of genetic variation, around 16% of that of the A 

and B subgenomes (Yao Zhou et al., 2020; Gaurav et al., 2021). 

The problem created by bottlenecking is compounded by pressure on breeders to 

prioritise advanced breeding material (Valkoun, 2001) for more rapid development of 

elite varieties that perform competitively and adhere to regulations about uniformity and 

quality (Cooper, Spillane and Hodgkin, 2001), limiting the introduction of genetic variation 

from external sources. Semi-dwarf, lodging-resistant varieties produced in the green 

revolution, although very high yielding, further limited genetic variation by creating a 

bottleneck in the Elite material that has been used by breeders since the 1960s (Sehgal et 

al., 2015). 

1.6 Novel sources of genetic variation for wheat breeding  

The average yearly increase to wheat yield typically occurs through conventional breeding 

approaches. Minor effect genes are recombined through crossing Elite lines and selecting 

the best progeny based on important phenotypic traits, most important of which is 

usually grain yield (Sukumaran et al., 2018; Reynolds et al., 2020). Genetic markers can 

also be used to identify progressively beneficial allele combinations through genomic 

selection (Reynolds et al., 2017). Additionally, major effect genes, encoding traits such as 

disease resistance, are identified and subsequently incorporated into varieties through 

controlled crosses between lines carrying the gene(s) of interest and breeding lines 

showing favourable agronomic trait profiles. Repeated backcrossing, using traditional 

phenotypic selection or modern marker-assisted selection then allows the gene of 

interest to be retained in a genetic background predominantly deriving from the line with 

more favourable agronomic characteristics (Tyagi et al., 2014). 

However, relying solely on Elite material as the source for these genes/alleles limits 

potential improvements to those that can be derived from the existing genetic variation 

present in the Elite breeding pool. This is particularly relevant in wheat due to its limited 

genetic diversity. To overcome this constraint, it is important to incorporate novel genetic 

variation into breeding programmes. 
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Such novel sources of genetic variation include landraces and wild and domesticated 

relatives of wheat. Landraces are locally adapted varieties of wheat, existing in genetically 

heterogeneous populations (Villa et al., 2005) that have evolved under selection by 

farmers in local farming systems (Vikram et al., 2016) and have not been through 

intensive selection by breeders for particular agronomic characteristics (Lopes et al., 

2015). Landraces typically possess high tolerance to abiotic and biotic stresses and 

intermediate yield in a low input agricultural system (Zeven, 1998) and, due to being 

locally adapted and maintained rather than developed and distributed globally from a 

narrow collection of Elite lines, as a collection they contain far more genetic variation 

than modern Elite varieties (Reif et al., 2005; Wingen et al., 2014; Winfield et al., 2016), 

much of which was left behind following the Green Revolution (Cseh et al., 2019). 

Wheat’s wild relatives have not undergone the same genetic constraints as domesticated 

wheat. They haven’t faced the intense selection in breeding programmes, and most have 

not faced the genetic bottlenecks of polyploidisation. Furthermore, they have undergone 

selection in a variety of environments in the presence of different abiotic and biotic 

selection pressures. Introducing genetic variation from wild relatives thus has the 

potential to bolster slowing gains and introduce novel resistance/tolerance phenotypes to 

pests and pathogens and abiotic stress (Valkoun, 2001; Nevo and Chen, 2010; Placido et 

al., 2013; Zhang et al., 2017; Cruppe et al., 2019; He et al., 2019; Fellers et al., 2020; 

Narang et al., 2020; Li et al., 2022). Domesticated relatives of wheat, such as Rye, also 

offer valuable sources of genetic variation that is novel to wheat (Nkongolo et al., 1992; 

Ren et al., 2009; Yang et al., 2009; Bertholdsson, Andersson and Merker, 2012; Crespo-

Herrera et al., 2013; Moskal et al., 2021). Despite also having undergone selection 

pressure, they have mostly had experienced less severe genetic bottlenecks than bread 

wheat. 

The relatives of wheat can be categorised by whether they belong to the primary, 

secondary, or tertiary genepool of wheat. Definitions of these genepools have changed 

over time and still vary between researchers (Ortiz et al., 2008) but in this thesis they will 

be defined as follows. Species belonging to the primary genepool have a homologous 

subgenome in wheat for each of their own subgenomes. Those from the secondary 

genepool have a homologous subgenome in wheat for at least one, but not all, of its own 

subgenomes. Those from the tertiary genepool share no homologous genomes with 

wheat (Fig. 1-2). Despite the genetic distance, even members of the tertiary genepool can 
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be introgressed into wheat, although introgressing more distant relatives is more 

challenging and requires more sophisticated techniques. 

 

Figure 1-2. Definition of wheat’s primary, secondary and tertiary genepools. 
Listed species are examples of members of each genepool. Subgenomes possessed by 
each species are in brackets. 

1.7 History of incorporating wild relative variation in wheat 

In the 1920s through to the 1940s Nikolai Vavilov, a Russian botanist and 

phytogeographer, collected seeds from wild wheat species from around the world to be 

preserved in the Leningrad Seedbank, whose name has since been changed to the NI 

Vavilov Institute of Plant Industry (Vavilov, 1940; Tanksley and McCouch, 1997; 

Mitrofanova, 2012). Vavilov developed the concept of the centre of origin of crop plants 

(Vavilov, 1926; Hummer and Hancock, 2015) and suggested that the diversity of crop wild 

relatives would be greatest near to these centres of origin. He was among the first to 

emphasise the potential future value of collections of plant genetic resources 

(Dzyubenko, 2018) and his work led to the creation of international genebanks. 

Genebanks are repositories of plant genetic resources maintained ex situ through seed 

storage (Mascher et al., 2019). They contain seeds from plants from around the world 

with a focus on diverse crop varieties such as landraces and crop wild relatives which are 

likely to possess genes and alleles that will be useful for crop improvement (Hoisington et 

al., 1999). CIMMYT (International Maize and Wheat Improvement Center) and ICARDA 
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(International Center for Agricultural Research in the Dry Areas) are examples of such 

genebanks that aim to characterise underutilised genetic variation in crops and mobilise 

this variation into global breeding programmes (Sehgal et al., 2015). CIMMYT focuses on 

maize and wheat, whereas ICARDA has a broader focus, including dryland cereals, 

legumes and forage and rangeland species. 

Wheat wild relative introgression lines, which are wheat varieties containing a 

chromosomal segment from the genome of a wild relative, date back to 1939 at the 

University of Saskatchewan, Canada, where the Sr26 resistance gene from Thinopyrum 

ponticum (then Agropyron elongatum) was introduced into wheat (Shebeski and Wu, 

1952; Knott, 1961). The resultant introgression lines were worked on by (Shebeski and 

Wu, 1952) and by (Knott, 1961), which led to the release of the cultivar Eagle in Australia, 

the first commercial cultivar containing Sr26 (Dundas et al., 2015). Many commercial lines 

containing Sr26 have since been developed and grown in Australia, although its use has 

declined over time, possibly due to the associated yield reduction conferred by the Th. 

ponticum chromosome segment (Dundas et al., 2015). 

In the 1950s, Ernest Sears pioneered techniques for more easily incorporating distant wild 

relatives into the wheat genome. In 1956, he introgressed Aegilops umbellulata into 

wheat, conferring leaf-rust resistance (Sears, 1956). This was achieved by crossing emmer 

wheat with Ae. umbellulata and crossing the amphidiploid progeny with T. aestivum. 

Since Sears, there have been numerous examples of introducing beneficial traits by 

transferring chromosome segments from wheat’s relatives into wheat. These include 

introducing an Eyespot disease resistance gene from Aegilops ventricosa into wheat 

(Doussinault et al., 1983); wheat streak mosaic virus resistance from Agropyron 

intermedium into wheat (Friebe et al., 1996); the leaf rust resistance gene Lr19 from 

Agropyron elongautum into wheat (Reynolds et al., 2001); powdery mildew and stripe 

rust resistance from the wheat-rye 1RS-1BL translocation (Han et al., 2020); and the Ug99 

stem rust resistance gene from Ae. speltoides into tetraploid wheat (Klindworth et al., 

2012). 

Due to the increasing appreciation for the potential value of wild relative genetic 

variation, organisations around the world have set up programmes to incorporate such 

variation more systematically rather than relying on previously incorporated material or 

small-scale efforts to introgress specific genes. For example, over the last few decades, 
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CIMMYT has incorporated exotic material into their vast germplasm through strategic 

crosses with landraces, wild relative introgression lines and, most notably, synthetic-

derived lines (Dreccer et al., 2007; Ortiz et al., 2008). Synthetic hexaploid wheat is 

produced by crossing tetraploid durum wheat with diploid Ae. tauschii (Fig. 1-3), 

replicating the natural polyploidisation event that led to the creation of T. aestivum 

(Dreisigacker et al., 2008). This process acts as a bridge to incorporate diversity present in 

durum wheat and populations of wild Ae. tauschii into Elite lines. Primary synthetic lines 

are typically crossed into an Elite background to produce advanced synthetic derivatives 

(ASDs) that are subjected to phenotypic screening. Over 1000 synthetic-derived lines 

were generated by CIMMYT as of 2016 (Das et al., 2016). In 2018, over 62 synthetic-

derived lines had been registered as cultivars worldwide (Li et al., 2018). CIMMYT 

synthetic-derived lines possess significantly greater genetic diversity than original green 

revolution wheat lines (Warburton et al., 2006). ASDs are commonly found in the 

pedigree history of varieties that, in international CIMMYT nurseries, outperform local 

varieties under diverse conditions (Manès et al., 2012), including under and extreme heat 

stress (Cossani and Reynolds, 2015). This approach has also been successful in introducing 

disease resistance traits (Zhu et al., 2014, 2016; Shamanin et al., 2019). Landrace and 

synthetic-derived lines have been developed in recent years for drought, heat and yield 

potential conditions (Reynolds et al., 2017; Molero et al., 2019; Rosyara et al., 2019) and 

many have been identified to have superior biomass compared to Elite lines under 

drought and heat conditions (Lopes and Reynolds, 2011; Cossani and Reynolds, 2015).  
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Figure 1-3. The process by which CIMMYT generate synthetic hexaploid wheat lines. 
Figure taken from Rosyara et al. (2019) with permissions granted by the Creative 
Commons Attribution 4.0 International License. 

Another strategy is to systematically introgress entire wild relative genomes into wheat, 

including distant relatives belonging to the secondary and tertiary genepools. Researchers 

at the Wheat Research Centre at the University of Nottingham are pioneers of this 

approach. Through utilising recombination mutants and high-throughput genotyping 

methods, they create sets of introgression lines that possess most of a wild relative 

genome in variable, overlapping chromosomal and sub-chromosomal segments (King et 

al., 2017, 2019). There are introgression lines currently available for Ambylopyrum 

muticum, T. urartu, Ae. speltoides, Aegilops caudata, Aegilops comosa, Aegilops 

umbellulata, Thinopyrum bessarabicum, Secale anatolicum, Secale iranicum, Thinopyrum 

turcicum, T. turgidum, and Triticum timopheevii. These introgression lines can be sent to 

researchers who phenotype them for different traits of interest. Segments conferring 

beneficial phenotypes can be further characterised and crossed into Elite varieties for 

deployment in breeding programmes. 
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1.8 Role of introgressions in wheat evolution and breeding 

In addition to synthetically introduced introgressions, natural introgressions throughout 

wheat’s history have played an important role in shaping the genetic diversity and 

adaptive potential of wheat, through the provision of novel genes and alleles. The extent 

of natural introgressions among wheat varieties has been the subject of several pieces of 

research. 

For instance, He et al. (2019) conducted exome sequencing of 890 diverse wheat 

accessions, including landraces and cultivars, and identified abundant historic 

introgressions from wild emmer. They estimated that approximately 11.4% and 11.8% of 

the genome of each accession was composed of introgressions from wild emmer for 

cultivars and landraces, respectively. Introgressed regions exhibited elevated levels of 

genetic diversity and increased differentiation between accessions. Furthermore, the 

authors found that many of the introgressed regions displayed signatures of selection and 

have likely contributed to phenotypic variation and adaptation. 

Cheng et al. (2019) analysed whole-genome sequencing (WGS) data from 93 accessions, 

including wheat landraces, wheat cultivars, and wheat relatives including wild emmer, Ae. 

tauschii, and durum wheat. They identified shared haplotypes between hexaploid wheat 

and various populations of wild emmer, which have heavily contributed to the genetic 

diversity in the A and B subgenomes of wheat and have likely introduced beneficial traits. 

In addition to introgressed haplotypes from wild emmer, they also detected 

introgressions from other wild relatives in all 63 bread wheat accessions studied. They 

highlighted specific introgressions that overlap with quantitative trait loci (QTLs) 

associated with important traits such as disease resistance and grain yield, indicating that 

these introgressions may have been under positive selection pressure as they confer 

important agronomic characteristics. 

Zhou et al. (2020) analysed WGS data from all 25 subspecies of AA, BBAA and BBAADD 

genomes in the Triticum genus and two subspecies of Ae. tauschii (DD) to evaluate the 

proportion of bread wheat accession genomes that are composed of introgressions from 

diploid and tetraploid relatives from the primary genepool. They estimated that 4-32% of 

the bread wheat genome is composed of introgressions from populations of wild relatives 

from the primary genepool. Free threshing tetraploids and wild and domesticated emmer 

have significant representation in bread wheat accessions, compensating for the severe 
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genetic bottlenecks of hexaploidization and domestication. The majority of the gene flow 

from tetraploid relatives was found to be from free-threshing tetraploids in Europe and 

West Asia. 57% and 66% of the nucleotide diversity of wild emmer has been captured in 

wheat cultivars and landraces, respectively. This is in stark contrast with the 14% of 

nucleotide diversity of the D subgenome donor, Ae. tauschii, that is represented in bread 

wheat accessions.  

Przewieslik-Allen et al. (2021) used genotyping data to construct and compare haplotype 

blocks of 358 wheat accessions and 113 wheat relatives from 44 species, covering the 

primary, secondary, and tertiary genepools. They classified near identical haplotype 

blocks between a wheat accession and a wheat relative as being an introgression. Using 

this methodology, they identified that 14.5-55.1% of the wheat accessions studied have 

evidence of introgression from tetraploid species. While not quite as extensive as 

tetraploid introgressions, introgressions from Ae. tauschii and species from the secondary 

and tertiary gene pools have made a sizeable contribution to wheat genomes and were 

associated with elevated levels of genetic diversity. 

By comparing the total introgression size of each relative donor species between different 

collections of wheat accessions, grouped by release date, Przewieslik-Allen et al. (2021) 

found some interesting patterns. Gene flow from tetraploid species was more prominent 

in wheat accessions bred before 1960, whereas those bred after 1960 contained more 

exotic introgressions, including those from Ae. tauschii and species from the secondary 

and tertiary genepool. This reflects the change in breeding strategies following the green 

revolution, with a greater emphasis in introducing more diverse genetic variation into 

wheat. Notably, initiatives such as CIMMYT’s synthetic wheat programme have 

accelerated the incorporation of Ae. tauschii genetic material into wheat accessions. 

Several introgressions found in the chromosome-level genome assemblies generated as 

part of the 10+ wheat genomes project (Walkowiak et al., 2020) have been well 

characterised. For example, there is a 33 Mbp telomeric Ae. ventricosa introgression on 

the distal end of the short arm of chr2A (Walkowiak et al., 2020; Gao et al., 2021; 

Keilwagen et al., 2022). This particular introgression has been detected across several 

cultivars, including Jagger and Stanley. It confers wheat blast resistance (Cruz et al., 2016) 

and contains other important resistance genes, including the Lr37-Yr17-Sr38 gene cluster 

(Helguera et al., 2003) that confers resistance against certain races of stripe, leaf, and 
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stem rust (Gao et al., 2021); Rkn3 that confers resistant against root-knot nematodes 

(Williamson et al., 2013); and Cre5 that confers resistance against pathotype Ha12 of the 

cereal cyst nematode (Jahier et al., 2001). The frequency of this introgression in the 

CIMMYT spring wheat breeding programme, central USA regional winter wheat 

programs, and Kansas winter wheat germplasm has increased sizeably from the early 

1990s to present day (Gao et al., 2021), suggesting that the introgression confers traits 

under selection by breeders. The exception to this was in 2008-2010, where the 

introgression dropped in frequency, probably due to changes in virulence of the yellow 

rust pathogen leading to loss of Yr17 resistance previously conferred by the introgression. 

Gao et al. (2021) also found that the presence of the introgression was associated with a 

small yield advantage. A very large introgression from T. timopheevii is found in the 

cultivar Lancer from the 10+ wheat genomes project. It spans most of chr2B (Watson-

Haigh et al., 2018; Walkowiak et al., 2020; Keilwagen et al., 2022) and contains the stem 

rust resistance gene Sr36 (Bariana et al., 2001; Chemayek et al., 2017). There is also a Th. 

ponticum introgression at the distal end of the long arm of chr3D in Lancer (Walkowiak et 

al., 2020; Keilwagen et al., 2022). It contains the leaf rust resistance gene Lr24 and the 

stem rust resistance gene Sr24 (Walkowiak et al., 2020). 

1.9 Challenges associated with using wild relative introgressions for wheat 

improvement 

Novel genetic variation from wheat’s relatives that may be critical for future food security 

is often overlooked by commercial breeding companies due to the significant investment 

of time and resources required to incorporate unimproved genebank accessions into 

breeding programmes as parents (Atlin, Cairns and Das, 2017). Despite possessing genes 

conferring traits of interest for breeders, wild relative introgressions typically also possess 

genes that are deleterious in an agricultural setting and thus confer unfavourable 

phenotypes, a phenomenon known as linkage drag (Hao et al., 2020). 

This concern of linkage drag is compounded by the low recombination rates common 

within introgressions from distant relatives (McCouch et al., 2020) caused by distant 

introgressed segments lacking a homologous chromosome in the gene pool with which it 

can recombine. To reduce the impact of linkage drag, introgressed segments can be 

broken up to retain the gene(s) of interest while removing deleterious introgressed 

genes, the feasibility of which has been demonstrated in several studies. Yasumuro et al. 
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(1981) induced homoeologous recombination to break up the Th. Ponticum chromosome 

segment in the Australian cultivar Eagle to separate Sr26 from linked, deleterious genes. 

Similarly, (Khazan et al., 2020), reduced the size of Ae. sharonensis introgressions while 

retaining leaf and stripe rust resistance genes. 

1.10 The wheat genome and wheat genomic resources 

As an allohexaploid (7n*3), the wheat genome is comprised of three independent 

subgenomes, A, B and D, which are genetically distinct but have a combinatorial effect on 

phenotype. Around 51.1% of the genes in wheat exist in triads (Ramírez-González et al., 

2018) which consist of three homoeologous genes, one belonging to each subgenome. 

Many other genes exist in more complex combinations of homoeologues, including 

dyads, where one homoeologue has been deleted, and tetrads, where one homoeologue 

has been duplicated (Juery et al., 2021). The complexity of having three independent 

subgenomes is complicated further by the large genome size of around 16 Gbp and the 

high proportion of repetitive content with around 85% of the genome comprised of 

transposable elements, a mobile form of genetic sequence that can multiply and migrate 

within the genome over generations in a largely selfish manner (Wicker et al., 2018). 

After several genome assemblies of the Chinese wheat landrace Chinese Spring of 

increasing contiguity, completeness, and accuracy (Brenchley et al., 2012; IWGSC et al., 

2014; Clavijo et al., 2017; Zimin et al., 2017), the International Wheat Genome 

Sequencing Consortium (IWGSC) released RefSeq v1.0 in 2018 (Appels et al., 2018). This 

assembly was produced using the NRgene DeNovoMAGIC assembly algorithm, using 

Illumina sequencing reads from a variety of library prep methods to generate the contigs, 

and POPSEQ and Hi-C to order the contigs into 21 pseudomolecules, each representing a 

chromosome of wheat from chr1A to chr7D. Contigs that couldn’t be placed on a 

pseudomolecule were placed in chrUn. The RefSeq v1.0 reference genome was 

accompanied by a high-quality gene annotation v1.0 which was followed by an improved 

annotation v1.1 which fixed several errors in the first annotation. This annotation 

contains 107891 high-confidence genes and 161537 low-confidence genes, classified as 

such based on their completeness, repeat content and similarity to genes found in DNA 

and protein databases. A refined version of RefSeq v1.0, RefSeq v2.1 was released in 2021 

with increased contiguity due to the integration of additional optical mapping data and 

contigs generated from PACBIO long reads (Zhu et al., 2021) and was accompanied by a 
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refined gene annotation. Due to this new reference not being available until part way 

through my PhD, the work in this thesis uses the genome assembly RefSeq v1.0 and the 

gene annotation RefSeq v1.1. 

During my PhD, nine chromosome and four scaffold-level assemblies of wheat cultivars 

were generated as part of the 10+ wheat genomes project (Walkowiak et al., 2020). 

These assemblies extend the genetic variation captured in the Chinese Spring reference 

genome, encompassing genetic variation from Elite wheat cultivars from around the 

world that differ due to past breeding selection (Walkowiak et al., 2020). Using these 

assemblies, researchers can explore genes that are absent in the Chinese Spring reference 

genome, as well as genes varying in copy number between cultivars, and genes whose 

sequence varies between cultivars. They can also use the assemblies to replace Chinese 

Spring as the reference for mapping sequencing reads if the samples are more genetically 

similar to a cultivar with a chromosome-level genome assembly that is not Chinese 

Spring. 

1.11 Genome sequencing for variant calling and gene expression analysis 

A high-quality reference genome serves as a reference for mapping sequencing reads. 

This facilitates a variety of genomic analyses, including variant calling and gene expression 

analyses. Illumina paired-end short read sequencing is likely the most widely utilised 

sequencing technology. It is a second-generation sequencing, or next-generation 

sequencing (NGS), technology. NGS revolutionised genomics by offering cost-effective 

and extensive interrogation of genetic variation in target populations and high-

throughput RNA sequencing (RNA-seq) for quantifying gene expression (Giani et al., 

2020). On the other hand, third-generation sequencing technologies such as PACBIO and 

Oxford Nanopore are both technologies that generate long reads and have seen extensive 

use in genome assembly and assessing structural variation (Gordon et al., 2016; Jain et 

al., 2018). 

During Illumina paired-end sequencing, DNA is fragmented into short segments. These 

fragments are sequenced from both ends, providing a pair of reads that facilitates 

accurate mapping to the reference genome. Nowadays, these reads are typically 150 bp 

each, with an insert size of around 300-500bp. While alternative library designs are 

possible for specific experiments, this is a standard approach for variant calling. To 

determine where in the genome each read pair derived from, the reads are mapped to 
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the reference genome using alignment algorithms, implemented in bioinformatic tools 

such as BWA (Li, 2013) and Bowtie2 (Langmead and Salzberg, 2012). Read mapping 

involves finding the optimal position in the genome to align each read/read pair. Once 

reads are mapped, downstream analyses such as variant calling can be performed. 

Variant calling is a fundamental application of genome sequencing, enabling the 

identification of genetic variants, such as single nucleotide polymorphisms (SNPs) and 

INDELs. This genotyping data is crucial for many genomic analyses, including associating 

genetic variants with phenotypes in genome-wide association studies and QTL mapping, 

marker-assisted selection, evolutionary and genetic diversity analyses, and genomic 

prediction (N. Wang et al., 2020). While WGS provides comprehensive coverage of the 

entire genome, the large size of the wheat genome can make it cost-prohibitive, 

particularly when sequencing many lines at a sufficient depth of coverage. To overcome 

this limitation, reduced-representation methods are often used, reducing sequencing 

costs and/or enabling higher depth of coverage by only sequencing a subset of the 

genome, typically focusing on areas of higher interest (Borrill, Adamski and Uauy, 2015). 

Examples of such methods include genotyping-by-sequencing (GBS), exon capture or DNA 

capture designs that extend beyond the exome, such as the gene and putative promoter 

capture developed by Gardiner et al. (2019a). 

Prior to the widespread adoption of cost-effective high-throughput sequencing, SNP 

genotyping arrays were the dominant method for genotyping a population. These arrays 

allowed simultaneous genotyping of a set of pre-selected SNPs obtained during a SNP 

discovery process. However, next-generation sequencing approaches offers greater 

resolution, as they discover more SNPs than are included in a genotyping array and can 

discover rare or novel variants rather than being limited to the variants in the array 

design. 

1.12 The impact of unmapped and mismapped reads on genomic analyses in wheat 

Sequencing reads are mapped to a reference genome based on their similarity to the 

reference sequence. Within-species mapping usually performs well for accurate 

genotyping or gene expression quantification, especially when samples are closely 

related. However, if the sample genome contains regions of high divergence compared to 

the reference genome, reads from these regions will map poorly, resulting in unmapped 

reads or reads mapping to the wrong locus. Mapping to the wrong locus may be 
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exacerbated in polyploids like wheat due to the presence of homoeologous sequences to 

which reads can falsely map. 

The presence of introgressions is a common scenario that disrupts mapping accuracy, 

effectively making parts of the genome an inter-species sequencing mapping problem. 

These regions exhibit elevated SNP and INDEL densities and reduced synteny, causing 

reads to fall below the mapping threshold or leaving no proper reference locus for 

mapping. Adjusting mapping algorithm parameters allows mapping to be stricter or more 

lenient, but overly lenient mapping, in an attempt to force divergent reads to map, may 

compromise overall mapping accuracy. When working with diploid genomes, there is 

likely more tolerance for more increasing mapping leniency; however, when working with 

polyploids such as wheat, increasing mapping leniency will make it more difficult for 

reads to be assigned to the correct homoeologous region. 

This issue of poor mapping is a problem for researchers when mapping samples that 

contain multiple introgressions as it could lead to inaccurate downstream results. This 

concern is particularly pertinent for a species like wheat, which contains an abundance of 

introgressions and homoeologous sequences which may provide an alternative incorrect 

mapping locus if one homoeologue is introgressed from a distant relative.  

However, the phenomenon of reduced or elevated mapping coverage can also be 

exploited as a tool to detect divergent genome regions and identifying copy number 

variation within sequenced samples. Blocks of reduced mapping coverage are indicative 

of a deletion or an introgression in the sequenced sample while blocks of elevated 

mapping coverage are indicative of a duplication in the sequenced sample. This concept 

has been utilised in several publications. 

For instance, Lemay et al. (2019) utilised mapping coverage information from mapped 

GBS reads to cost-effectively screen populations of soybean mutants for copy number 

variation. Following this, Keilwagen et al. (2019) detected large chromosomal 

modifications in sets of barley and wheat lines using GBS data sequenced at a very low 

sequencing depth. By identifying genomic windows with outlying mapping coverage – 

genomic windows with coverage significantly deviating from the median across the panel 

– they were able to identify large chromosomal modifications such as introgressions and 

deletions without requiring parental sequencing information. Reduced-representation 

sequencing methods like GBS are evidently effective at detecting large chromosomal 
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changes, even at low sequencing depths. However, some small structural changes may be 

difficult to identify as the whole genome is not sequenced. 

1.13 Thesis aims and objectives 

This thesis aims to leverage next-generation sequencing data to explore introgressions in 

wheat. This includes how sequencing data can be used to identify and characterise 

introgressions underlying important agronomic traits, and how the presence of 

introgressions presents challenges to the accurate processing of sequencing data. 

These two broad aims are connected through the observation that sequencing reads 

derived from introgressions map poorly to a reference genome in which that 

introgression is not represented, which leads to signatures in the mapped sequencing 

data that can be used positively for introgression identification but causes problematic 

reference bias in ordinary genomic analyses. 

The more specific aims of the thesis can be broken down by chapter: 

• Chapter two: 

§ Explore how WGS data generated from a set of synthetically-derived 

introgression lines can be used to characterise introgressed segments to a 

high resolution and test whether introgression junctions are enriched in 

specific genomic regions. 

§ Assess structural changes that took place in the generation of the 

introgression lines. 

§ Identify candidate introgressed regions and genes underlying rust 

resistance phenotypes. 

• Chapter three: 

§ Use sequencing data from a diverse mapping association panel to identify 

introgressions underlying heat tolerance MTAs, using a method based on 

the one developed in chapter two. 

§ Explore the limitations of relying on a single reference genome to look for 

candidate genes following a GWAS. 

• Chapter four: 
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§ Following observations in the previous two chapters, determine the extent 

to which introgressions lead to reference bias in RNA-seq analyses in 

wheat. 

§ Develop a method to reduce reference bias caused by introgressions. 
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2 Pinpointing wild relative introgressions and chromosomal aberrations in 

hexaploid wheat/Ambylopyrum muticum introgression lines using whole-

genome sequencing data 

This chapter is an adaptation of work that has been published in Plant Biotechnology 

(Coombes et al., 2022) (Appendix D1) and appears with permission granted by the 

Creative Commons Attribution 4.0 International License. 

This work was a collaboration between the Anthony Hall group at the Earlham Institute 

and Julie and Ian King’s group at the BBSRC Wheat Research Centre at the University of 

Nottingham. The introgression lines used in this chapter were generated by the Wheat 

Research Centre (King et al., 2017, 2019). DNA and RNA for Illumina sequencing were 

extracted from the introgression lines by Cai-yun Yang and Stella Hubbart-Edwards, 

respectively, from the Wheat Research Centre. This DNA and RNA was sequenced by 

Genomics Pipelines at the Earlham Institute. John Fellers conducted high-molecular 

weight DNA extraction and Oxford Nanopore sequencing of Am. muticum and 

introgression line DH65 and. KASP™ genotyping was carried out by Surbhi Grewal. I 

carried out all the data analysis using the data generated by my collaborators. As I begun 

this project at the start of my PhD, I received guidance from Ryan Joynson regarding DNA 

read mapping and variant calling. 

2.1 Abstract 

To provide a source of novel genetic variation for the breeding community, the King 

group at the University of Nottingham BBSRC Wheat Research Centre generated a set of 

hexaploid wheat/Ambylopyrum muticum introgression lines. In this chapter, I have 

outlined an approach to identify these introgressions to a high resolution using WGS data 

from the introgression lines and the parent lines. Using this method, I characterised the 

macro-level structural landscape of seventeen introgression lines. This revealed 

previously characterised introgressions to a much higher resolution and revealed small, 

previously missed introgressions that were then validated using KASPTM markers. I 

discovered that introgression junctions are more likely to occur in and around gene 

bodies and that the development of the introgression lines resulted in many 

chromosomal aberrations, such as deletions, duplications, and homoeologous 

translocations. I then produced a draft genome assembly of Am. muticum using Oxford 
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Nanopore long reads and Illumina short paired-end reads. Using a combination of de 

novo, transcriptomic, and proteomic data, I produced a gene annotation of the assembly, 

followed by functional annotation and assignment of orthologue pairs between Am. 

muticum and wheat. I used this genome assembly and annotation, along with previously 

published rust resistance phenotype data, to identify candidate rust resistance genes 

introgressed exclusively into resistant lines. 

2.2 Introduction 

2.2.1 Ambylopyrum muticum 

Ambylopyrum muticum [(Boiss.) Eig.; Aegilops mutica Boiss; 2n=2X=14; genome TT] is a 

diploid wild relative of wheat, belonging to wheat’s tertiary genepool. It is one of the 

many wild relatives being used in the introgression breeding programme at the University 

of Nottingham’s Wheat Research Centre. Am. muticum is of interest primarily for the 

transfer of abiotic and biotic stress tolerance traits to wheat (King et al., 2017; Fellers et 

al., 2020), which will likely be conferred by single large effect loci. 

2.2.2 Introgression line production 

The introgression lines studied here (Table 2-1) were developed at the Wheat Research 

Centre by the process described by King et al. (2017, 2019) (Fig. 2-1). Am. muticum 

accessions 2130004/2130012 were crossed with wheat varieties Pavon76 or Chinese 

Spring to produce F1 interspecific hybrids. To recover the introgressed Am. muticum 

segments in a predominantly wheat background, the F1 interspecific hybrids were 

backcrossed three times (resulting in BC3 lines) with combinations of the wheat varieties 

Paragon, Pavon76 and Chinese Spring. Genomic in-situ hybridisation (GISH) and KASP™ 

genotyping were used to ensure the presence of at least one introgressed segment in the 

final line. Ensuring the lines are homozygous is important to guarantee the stable 

inheritance of the introgressed segments. To do this, the BC3 lines were either made into 

double haploids, by pollinating them with maize followed by colchicine treatment, or 

were selfed. In this chapter, I used sequencing data generated from thirteen DH lines, 

three selfed lines, and one BC3 line (Table 2-1). Eight of the lines belong to a pair of lines 

(referred to here as DH pairs) that derive from seed from the same BC3 line. 
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Figure 2-1. Process by which the Am. muticum introgression lines were generated. 
Adapted from King et al. (2017, 2019).
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Table 2-1. Introgression lines analysed in this chapter. Lines with the same colour are in a DH pair, having been derived from the same BC3 line. 
Line name Line sequencing 

name (used 

hereafter) 

Am. muticum accession Cross history 

DHF1-8 DH8 2130012 (Pavon x Am. muticum) x Paragon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-15 DH15 2130012 (Chinese Spring x Am. muticum) x Paragon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-65 DH65 2130012 (Pavon x Am. muticum) x Paragon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-86 DH86 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-92 DH92 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-96 DH96 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-121 DH121 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-123 DH123 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-124 DH124 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-161 DH161 2130012 (Pavon x Am. muticum) x Paragon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-355 DH355 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Maize (+ colchicine) 

BC3-702-6 BC2F420 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon 

BC3F2-137-2 BC3F326 2130012 (Pavon x Am. muticum) x Pavon x Paragon x Paragon x Self x Self 
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Table 2-1 
DHF1-195 DH195 2130004 (Chinese Spring x Am. muticum) x Paragon x Paragon x Paragon x Maize (+ colchicine) 

DHF1-202 DH202 2130004 (Chinese Spring x Am. muticum) x Paragon x Paragon x Paragon x Maize (+ colchicine) 

BC3F3-9-1 BC3F45 2130004 (Chinese Spring x Am. muticum) x Paragon x Paragon x Paragon x Self x Self x Self 

BC3F3-10-1 BC3F46 2130004 (Chinese Spring x Am. muticum) x Paragon x Chinese Spring x Paragon x Self x Self x Self 
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2.2.3 Methods for identifying wild relative introgressions 

Cytogenetic techniques, such as GISH, facilitate the visualisation of stained chromosomes 

under a microscope. In wheat, GISH enables differentiation between the three 

subgenomes of wheat and between wheat and wild relative chromosomes. This 

technique aids in verifying the presence of introgressed segments in a line, as well as 

detecting large translocations, duplications, and deletions. However, GISH suffers from 

limited resolution, struggling to discern chromosome changes below approximately 20 

Mbp. Additionally, it is difficult to use GISH to distinguish between chromosome groups 1-

7. 

When genotyping data from the wild relative is available, introgression lines can be 

genotyped to identify wild relative segments that possess SNPs unique to the wild relative 

species. While simple sequence repeats were once used, they were expensive and time-

consuming and have been largely replaced by SNP markers (Akhunov, Nicolet and Dvorak, 

2009; Bevan and Uauy, 2013). 

Genotyping to identify which SNPs are present in a set of samples has previously been 

achieved using SNP genotyping arrays. For example, Winfield et al. (2016) developed the 

Axiom® 820K HD array, which contains 819,571 SNPs derived from exome-captured 

sequencing data from hexaploid wheat Elite lines and landraces, as well as tetraploid and 

diploid progenitors and relatives of wheat. A subset of the 820K HD array, the Axiom® 

Wheat-Relative Genotyping Array, was formulated from the 36,711 most informative 

SNPs for detecting wheat relative introgressions (King et al., 2017; Przewieslik-Allen et al., 

2019). These SNPs were chosen to be co-dominant. This means that both alleles at a locus 

can be detected and distinguished from one another, making heterozygous calls possible 

and allowing homoeologous genomes to be distinguished, a notoriously challenging task 

when working with polyploids like wheat that possess homoeologous gene copies (Kaur, 

Francki and Forster, 2012). 

Numerous studies have utilised the Wheat-Relative Genotyping Array to identify 

introgressions from a variety of wild relative species in wheat (Grewal et al., 2018a; 

Grewal et al., 2018b; Cseh et al., 2019; Devi et al., 2019; Baker et al., 2020). For example, 

Przewieslik-Allen et al. (2019) used the Wheat-Relative Genotyping array to screen 

hexaploid wheat lines for introgressions from Aegilops species. To achieve this, they 

compared genotype calls of Aegilops accessions to hexaploid wheat lines and calculated a 
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percentage match across each window of 10 SNPs. They used control lines containing 

known introgressions to determine that a match rate of 40% or higher across a 10 SNP 

window is indicative of an introgression. 

Genotyping arrays are fairly inflexible due to their predetermined marker set and 

difficulties adapting them to varying sample sizes or specific marker subsets (Rasheed et 

al., 2017). Consequently, some researchers have opted to use Kompetitive allele-specific 

PCR (KASP™) genotyping instead (Grewal et al., 2020a). KASP™ genotyping is cheaper per 

sample and offers increased flexibility in terms of the number of samples sequenced per 

assay and the markers selected. Hundreds to thousands of samples can be genotyped 

with relatively few markers if needed. Instead of a fixed set of markers, newly discovered 

markers can be integrated easily, and a subset of markers chosen to target specific 

genomic regions.  

SNPs from fixed chip platforms such as the Axiom arrays can be converted into KASP™ 

genotyping markers. Several publications have done this using SNPs from the Wild-

Relative Genotyping Array to detect introgressed segments from a variety of wheat 

relatives (Grewal et al., 2018a, 2020; Grewal et al., 2018b; Grewal et al., 2020a; Grewal et 

al., 2021). Grewal et al. (2022) and King et al. (2022) improved on this by using WGS data 

of wild relatives, alongside a bespoke bioinformatics pipeline, to discover new SNPs and 

select those that are within sequences unique to a single wheat chromosome. This helps 

create co-dominant SNPs that can accurately detect interspecific introgressions without 

interference from homoeologous and paralogous sequences that are abundant in wheat. 

This approach led to sets of KASP™ markers that can confidently detect introgressions 

and evenly covers the wheat genome, with less than 60 Mbp between each marker. 

KASP™ genotyping to identify segments has been conducted on many of the Am. 

muticum introgression lines studied here (King et al., 2019; Grewal et al., 2022). The work 

in Grewal et al. (2022) was conducted in parallel with the work presented in this chapter 

and segment identification through my work led to increased marker deployment using 

KASP™ genotyping in Grewal et al. (2022). The instances where this occurred will be 

outlined in the results section. 

The resolution and reliability with which introgressions can be identified using genotyping 

is dependent on the density of markers available. While more expensive, WGS of 

introgression lines dramatically elevates the potential resolution for detecting 
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introgressions and could reveal small segments previously missed and allow the precise 

locations of segment junctions to be pinpointed. In the case of lines possessing 

overlapping segments but different phenotypes, this would be valuable in identifying the 

source of the introgressed gene(s) underlying the phenotype of interest. It would also 

allow the locations of junctions to be characterised to determine if they are enriched near 

certain genomic features such as genes. 

As described in section 1.12, mapping coverage information from low coverage 

sequencing data can be used to identify chromosomal changes including introgressions, 

deletions and duplications (Keilwagen et al., 2019). However, it can be challenging to 

differentiate between deletions and introgressions using coverage information alone. It 

should be possible to identify the introgressions by also using SNPs derived from WGS 

data that are specific to the introgressed species; introgressed regions should have both 

low mapping coverage and SNPs specific to the introgressed species. Additionally, SNP 

information will enable the origin of the donor species to be validated. This is the 

technique I employ in this chapter. 

2.2.4 Chromosomal aberrations in introgression lines 

The three subgenomes of wheat behave as diploids during meiosis due to the action of 

the Pairing Homoeologous 1 (Ph1) locus, which ensures that only homologous 

chromosomes participate in synapsis and crossovers (Griffiths et al., 2006; Rey et al., 

2017). Suppressing or deleting the Ph1 locus has been used by scientists for decades as a 

tool to enable wheat chromosomes to recombine with non-homologous chromosomes 

from distant relatives and transfer genes from wild relatives into wheat (Martín et al., 

2017). This can be achieved by using a wheat parent with a mutated or deleted Ph1 locus 

or a wheat relative that naturally confers Ph1 suppression, such as Am. muticum and Ae. 

speltoides (Dover and Riley, 1972a; Dover and Riley, 1972b; Dvorak, Deal and Luo, 2006; 

Li et al., 2017). 

However, the freedom of chromosomal pairing that enables wild relative recombination 

also enables pairing and recombination between homoeologous chromosomes, leading 

to the exchange of chromatin between wheat subgenomes (Koo et al., 2017; Koo, Friebe 

and Gill, 2020). In addition to reciprocal translocations, this process can also lead to 

deletions and duplications where the synteny between homoeologous chromosomes is 
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poor. Finally, forced chromosome pairings between wheat and relative chromosomes in 

the F1 crosses are also likely to induce chromosomal aberrations. 

2.2.5 Rust pathogens in wheat 

Ten of the introgression lines studied in this chapter have been screened for resistance to 

Kansas isolates of stem, stripe, and leaf rust (Fellers et al., 2020), revealing resistances to 

all three. These resistance phenotypes were not observed in the wheat parent lines 

Paragon or Pavon76; therefore, the resistance present in these introgression lines is most 

likely derived from introgressed Am. muticum resistance genes. Identifying the regions 

within which the resistance genes lie and eventually identifying the gene underlying the 

resistance will be of high value to breeders aiming to utilise these introgression lines as 

sources of rust resistance. 

Rust fungal pathogens from the Puccinia genus are devastating to global wheat 

production, with losses estimated between US$ 4.3 to 5.0 billion each year (Figueroa, 

Hammond-Kosack and Solomon, 2018). Members of this genus cause three wheat rust 

diseases: stripe (yellow) rust, stem (black) rust and leaf rust (brown rust), caused by 

Puccinia striiformis f. sp. tritici, Puccinia graminis f. sp. tritici, and Puccinia triticina, 

respectively. Stripe rust is the most economically significant of the three diseases. 88% of 

wheat produced globally is susceptible, 38.2% of which is produced in areas where the 

fungus can persist (Beddow et al., 2015), and yield losses of infected fields can reach 

100% (Chen, 2005). Stripe rust is of greatest concern in temperate regions (Figueroa, 

Hammond-Kosack and Solomon, 2018) and is among the pathogens most detrimental to 

winter wheat production (Chen et al., 2014). Leaf rust has the widest distribution of the 

three pathogens and displays a high level of diversity with new virulence profiles and 

adaptability to climatic change posing a problem to establishing lasting, durable 

resistance. Stem rust is less common than the other two and tends to be well controlled 

throughout much of the world, but epidemics can be the most devastating (Dean et al., 

2012) and new virulence to many commercialised resistance genes, as seen for example 

in the Ug99 race, has revealed the vulnerability of popular wheat cultivars and the 

imminent threat posed by this and other newly evolving strains (Singh et al., 2015). 

Identifying novel sources of rust resistance is a crucial component of continual wheat 

breeding and development. 
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Resistance to rust is conferred by plant resistance genes. There are many classes of these 

genes that act through different mechanisms. The most common genes implicated in 

plant pathogen resistance are nucleotide-binding site leucine-rich repeat (NLR) genes. 

However, a variety of genes can act in resistance. For example, LRR protein kinases and 

ABC transporters, in addition to NLRs, have been implicated in resistance against leaf, 

stripe, and stem rust (Krattinger et al., 2009; Chen et al., 2020; H. Wang et al., 2020; 

Zhang et al., 2021). 

2.2.6 Chapter aims 

• Develop method to identify introgressions using whole-genome sequencing data 

from the introgression lines and the parent lines. 

• Use this method to characterise the introgression lines, identifying introgressions 

and other large chromosomal aberrations such as deletions and duplications. 

• Pinpoint introgression junctions and validate the junction of one line using Oxford 

Nanopore long reads. Test whether introgression junctions are enriched near 

genes. 

• Determine the minimum sequencing depth required to detect introgressions to a 

reasonable resolution using mapping coverage alone. 

• Generate a draft genome assembly of Am. muticum using Oxford Nanopore long 

reads and Illumina paired-end short reads. 

• Generate a gene annotation of the assembly, followed by functional annotation 

and assignment of orthologue pairs between Am. muticum and wheat. 

• Identify introgressed regions underlying rust resistance and candidate rust 

resistance genes introgressed exclusively into rust resistant lines. 
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2.3 Results 

2.3.1 Development of a pipeline to identify introgressions and large structural variants 

using whole genome sequencing data 

2.3.1.1 Using mapping coverage deviation to identify introgressions, deletions, and 

duplications in introgression lines 

First, I quantified and normalised read counts in each genomic window for the possible 

wheat parents (Chinese Spring, Paragon, and Pavon76) and for the introgression lines. I 

then compared normalised read counts for each introgression line and the two wheat 

parents in its crossing history (Paragon + Pavon76 or Paragon + Chinese Spring), resulting 

in mapping coverage deviation values. The value closest to 1 was chosen for each 

genomic window, assuming that the parent with mapping coverage closest to the 

introgression line is the donor parent of that window. The coverage deviation value 

reflects the relative copy number of wheat DNA within a given window compared to that 

of the wheat parent in that window. A value of 1 indicates similarity in DNA content, 

while values approaching 0 suggest possible deletions or introgressions, and values of 

around 2 suggest duplications. Intermediate values suggest heterozygous copy number 

changes. 

In Fig. 2-2, coverage deviation values for introgression line DH65 are plotted in 1 Mbp 

windows across the genome. Low mapping coverage deviation values are seen at the 

start of chr4D, where an introgression has been previously identified. In addition, there 

are other windows with coverage deviation values outside of the normal range, such as a 

block of reduced coverage at the start of chr5D. However, reduced mapping coverage 

alone cannot guarantee the nature of the structural event that has taken place, be it an 

introgression or a deletion. For this, SNPs in the introgression line uniquely shared with 

the introgressed species are useful. 
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Figure 2-2. Mapping coverage deviation for introgression line DH65. 
Each dot shows the mapping coverage deviation value of a 1 Mbp genomic window in 
Chinese Spring RefSeq v1.0 compared to the wheat parent lines. 

Fig. 2-3 shows IGV images of mapped reads within the introgressed region, highlighting 

how disruptions to synteny lead to the observed reduction in mapping coverage relative 

to the wheat parents that is characteristic of introgressions. Across most of an 

introgression, read mapping exhibits a distinctive pattern: islands of mapped reads 

surrounded by regions with fewer or no reads, where synteny is lower between the 

introgressed Am. muticum chromosome and the wheat chromosome that was replaced in 

the introgression process. 
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Figure 2-3. Figure 2 3. IGV image within the chr4D introgression in DH65, showing the 

Illumina paired-end short reads mapped to RefSeq v1.0 for DH65, Am. muticum and the 

wheat parent Paragon. 

2.3.1.2 Generating Am. muticum-specific SNPs 

To complement mapping coverage information, I identified SNPs unique to Am. muticum. 

These allow us to determine whether regions of reduced mapping coverage are 

introgressions or deletions. To generate SNPs that are unique to Am. muticum, I first 

conducted mapping and variant calling to identify SNPs using Illumina paired-end 

sequencing reads from Pavon76, Paragon and Am. muticum. Am. muticum SNPs not 

shared with Paragon or Pavon76 were classified as Am. muticum-specific SNPs. If at the 

same position and having the same allele as an Am. muticum-specific SNP, SNPs in each 

introgression line were classified as being Am. muticum specific. These were then divided 

into those that are homozygous and those that are heterozygous. As an example to show 

how homozygous and heterozygous Am. muticum-specific SNPs are found in different 

locations in the genome, in the introgression line DH65, the homozygous Am. muticum-

specific SNPs were almost all located at the start of chr4D, within the region of the 

previously characterised introgression (Fig. 2-4). However, the heterozygous Am. 

muticum-specific SNPs were found in several locations in the genome, with the most 

densely packed region being on chr4B, which is homoeologous to the introgressed region 

on chr4D (Fig. 2-5). 

DH65 

Am. 
muticum 

Paragon 
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Figure 2-4. Homozygous Am. muticum-specific SNPs in introgression line DH65 which 
has a known introgression at the start of chr4D. 
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Figure 2-5. Heterozygous Am. muticum-specific SNPs in introgression line DH65 which 
has a known introgression at the start of chr4D. 
 
I investigated the source of the heterozygous SNPs to ensure that they are artefacts of 

the mapping process and not genuine heterozygous SNPs. Due to the genetic distance 

between the wheat reference genome and Am. muticum, not all reads deriving from an 

introgression share the highest similarity to the introgressed site. These reads instead 

map to different regions of the genome, most notably to homoeologous regions on the 

other two subgenomes. However, since the homoeologous regions are typically not 

deleted in the introgression line, those Am. muticum-derived reads usually map at the 

same location as wheat-derived reads, leading to heterozygous SNPs being called, even if 

the SNP is homozygous in the wheat cultivar and in Am. muticum. This can be seen in IGV 

(Fig. 2-6) where heterozygous SNPs are called in the introgression line at sites that are 

homozygous in Am. muticum and in Paragon. Furthermore, where more than one SNP is 

present within a single read, the read either has the allele profile of Am. muticum or of 

Paragon across the variable sites and doesn’t contain both an Am. muticum and a 
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Paragon SNP within the same read. This indicates that the reads mapped at this location 

are from different origins in the genome of the introgression line. This is in contrast to 

true introgressions, where the wheat DNA at the introgression site has effectively been 

deleted, so only Am. muticum reads, and not wheat reads, map to the introgression site. 

This results in true introgression sites containing homozygous Am. muticum-specific SNPs 

(Fig. 2-7).
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Figure 2-6. DH65 heterozygous Am. muticum-specific SNPs caused by reads from Am. muticum reads erroneously mapping to the same location as 
wheat reads have been mapped. 
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Figure 2-7. DH65 homozygous Am. muticum-specific SNPs at true introgression site.
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2.3.1.3 Integrating Am. muticum-specific SNPs and mapping coverage information into 

pipeline 

For the final identification of introgressions, I integrated the mapping coverage and SNP 

information by looking for blocks of genomic windows with low mapping coverage 

deviation values, a sufficient number of homozygous Am. muticum-specific SNPs, and few 

heterozygous Am. muticum-specific SNPs. Different parameters were tested until all 

previously detected introgressions were identified while no deletions previously verified 

were incorrectly classified as an introgression. 

2.3.2 Whole genome sequencing allows introgressions to be detected with higher 

resolution 

Using the pipeline, I identified introgressions in the 17 sequenced introgression lines to 1 

Mbp resolution. I then defined the borders to a higher resolution, using 100 Kbp genomic 

windows, and pinpointed the introgression borders by hand, if possible, using IGV. 

Using this approach, I confirmed the existence of 100% of the segments previously 

identified with KASP™ genotyping (Grewal et al., 2022). However, I was able to resolve 

the locations of segment junctions to a much higher resolution than previous methods, 

due to the limited marker density available for KASP™ genotyping and the low resolution 

of GISH. In addition, I uncovered two previously unreported segments that were 

subsequently validated by KASP™ genotyping and included in Grewal et al. (2022); a 17.39 

Mbp on the telomere of chr7D of DH195 and a 22.68 Mbp segment on the telomere of 

chr5D in DH121. I also identified a new 3.99 Mbp segment on chr6D of DH15. Surbhi 

Grewal validated this segment as real for this study using 2 KASP™ markers, WRC1873 

and WRC1890. All precise segment positions are listed in Appendix A1. 

Macro-level genome plots showing the introgressions detected by the pipeline in all of 

the introgression lines can be found in Appendix A2. Here I will show several examples for 

illustrative purposes. Fig. 2-8 shows DH65, which has a 51.29 Mbp segment on the 

telomere of the short arm of chr4D, and a 139.6 Mbp monosomic deletion on the short 

arm of chr5B. This is an example of a very simple line with a single clearly defined 

introgression. 
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Figure 2-8. Macro-level chromosome plot for DH65. 
Each dot shows the mapping coverage deviation value of a 1 Mbp genomic window 
compared to the wheat parent lines. Red dots are windows within a block identified as an 
Am. muticum introgression. The vertical black bars represent the position of the 
centromeres, predicted by Appels et al. (2018). 
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Fig. 2-9 shows line DH15. This line has two large introgressions: one on chr2A between 

11.93 Mbp and 780.80 Mbp, and one on chr4B between around 3.00 Mbp and 635.87 

Mbp. They both nearly span the whole chromosome, with a small section of wheat 

remaining at the start of the chr2A introgression and at the end of the chr4B 

introgression, showing that these have occurred through recombination rather than 

whole chromosome substitutions. The end of the chr2A introgression and the start of the 

chr4B introgression, while appearing to extend to the end of the chromosomes when 

using 1 Mbp windows, may have instead recombined very close to the end, based on a 

mapping coverage profile similar to Paragon at the very ends of the chromosome in IGV. 

However, there is no clear signal of coverage change from wheat to Am. muticum 

introgression as with most of the other junctions, so it is difficult to say definitively 

whether or not the introgression extends to the end of the telomeres, or to precisely 

pinpoint the position of these ends of the segments. DH15 also contains a very small 

introgression on chr6D between 470.63 Mbp to the end of the chromosome at 473.59 

Mbp. This was the introgression that was previously missed due to lack of markers in this 

region but was confirmed by Surbhi Grewal using KASP™ assays. 

 

Figure 2-9. Macro-level chromosome plot for DH15. 
Each dot shows the mapping coverage deviation value of a 1 Mbp genomic window 
compared to the wheat parent lines. Red dots are windows within a block identified as an 
Am. muticum introgression. The vertical black bars represent the position of the 
centromeres, predicted by Appels et al. (2018). 
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Fig. 2-10 shows line DH161. This line has a whole chromosome introgression on chr1A. 

Chr7D in this line is deleted, evidenced by the nearly absent mapping without 

homozygous Am. muticum-specific SNPs. 

 

Figure 2-10. Macro-level chromosome plot for DH161. 
Each dot shows the mapping coverage deviation value of a 1 Mbp genomic window 
compared to the wheat parent lines. Red dots are windows within a block identified as an 
Am. muticum introgression. The vertical black bars represent the position of the 
centromeres, predicted by Appels et al. (2018). 

DH86 (Fig. 2-11A) is a good example of a line whose complex structure presents a 

challenge to this method of identifying introgressions. Based on mapping coverage 

deviation, most of chr2A appears to be deleted, while most of chr2D appears to be 

duplicated. However, there appears to be an introgression at the start of chr2A and a 

corresponding homoeologous region at the start of chr2D that, instead of being 

duplicated, has a coverage deviation of around 1. As the introgression can’t exist in 

isolation without the rest of a chromosome, this introgression is actually at the start of 

chr2D. However, the duplication of chr2D and the deletion of chr2A led to the 

appearance of the introgression on chr2A. 

Looking at DH92 (Fig. 2-11B) alongside DH86 (Fig. 2-11A), which are a DH pair, I can infer 

what the BC3 line likely looked like and the two possible DH line states (Fig. 2-11C). Unlike 

DH86, DH92 has a normal set of group 2 chromosomes. This suggests that the BC3 line 
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had one copy of chr2D which possessed the introgression and was paired with chr2A, in 

addition to the having a normal pair of 2D chromosomes. When the chromosomes were 

segregated and doubled during the DH process, the resulting DH line could either have a 

normal pair of 2A, 2B and 2D chromosomes (as in DH92), or a pair of 2D chromosomes 

possessing the introgression at the start, alongside a pair of normal 2B and 2D 

chromosomes (as in DH86). 
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Figure 2-11. Macro-level chromosome plot for the DH pair A) DH86 and B) DH92. 
Each dot shows the mapping coverage deviation value of a 1 Mbp genomic window 
compared to the wheat parent lines. Red dots are windows within a block identified as an 
Am. muticum introgression. The vertical black bars represent the position of the 
centromeres, predicted by Appels et al. (2018). C) Inferred state of the BC3 line used to 
generate DH86 and DH92, and the possible DH line chromosome combinations. 

Four lines; DH121, DH123, DH195 and DH202, contain overlapping introgressions on 

chr7D. (Fig. 2-12). DH121 and DH123 have identical segments on chr7D between 59.71 

Mbp and the end of the chromosome at 638.69 Mbp. These lines are a DH pair, so this 

introgression is derived from the same initial cross and recombination event. 

DH195 has a large introgression between the start of the chromosome and 500.82 Mbp 

and a small introgression between 621.30 Mbp and the end of the chromosome at 638.69 

Mbp. Although DH202 is in a DH pair with DH195, the segments appear differently. 

DH202 is lacking the small introgression at the end of chr7D seen in DH195. This is of 

interest as DH195 exhibits complete adult resistance to leaf rust not seen in DH202 

(Fellers et al., 2020), suggesting the causal resistance gene(s) is in this segment. 

Furthermore, the beginning of the large chr7D segment was classified as being at the 

start of chr7A instead of chr7D. While this is possible, it seems more likely that the large 

chr7D segment remains intact and is also 500.82 Mbp in length as in DH195. The 

following scenario would make this true. In the BC3 line that was used to make DH195 

and DH202, there is a translocation from the start of chr7D to the start of one copy of 

chr7A. Half of the resulting DH lines would then have two copies of chr7A with the chr7D 

translocation (as in DH202) and half would have two normal copies of chr7A (as in 

DH195). As there is Am. muticum at the start of chr7D, in the DH lines which have the 

chr7D-chr7A translocation, this would lead to homozygous Am. muticum SNPs called at 

the start of chr7A, which is homoeologous to the insertion site on chr7D. These 

homozygous Am. muticum SNPs, combined with the reduced mapping coverage caused 

by the absence of the start of chr7A, would lead to the start of chr7A being incorrectly 

classified as an introgression. 
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Figure 2-12. Macro-level chromosome plot of chromosome group 7 for the DH pair 
DH121 and DH123, and the DH pair DH195 and DH202. 
Each dot shows the mapping coverage deviation value of a 1 Mbp genomic window 
compared to the wheat parent lines. Red dots are windows within a block identified as an 
Am. muticum introgression. The vertical black bars represent the position of the 
centromeres, predicted by Appels et al. (2018). 

2.3.3 Pinpointing introgression borders 

By manually searching the boundary regions using IGV, I was able to identify the positions 

of 33/42 segment ends (78.6%). Next, I tested whether the introgression junctions are 

more likely to be found near genes. For this, I focused on segment borders created 

through crossovers, and not those created by telomere substitutions. Also, for 

introgression borders derived from the same initial cross and thus at the same position in 

the genome, I only counted these once. Looking solely at crossovers and excluding 

junctions from non-independently derived segments, the precise crossover point of 12/17 

(70.6%) junctions could be determined. Of the remaining five junctions, two were located 

to within 100 Kbp, while three, due to duplication events overlapping the introgressions, 

had structures too complex to precisely pinpoint. 11/12 of the junctions precisely located 

are within 670bp of a gene with 8 falling within the gene itself. The final junction was 6.75 

Kbp from the nearest gene. 

For line DH65, I validated the pinpointed junction using Oxford Nanopore long reads 

mapped to the RefSeq v1.0 along with the Illumina paired-end short reads (Fig. 2-13). 

Oxford Nanopore reads spanned the breakpoint between Am. muticum and wheat at the 

right-hand side of the 51.6 Mbp chr4D segment, adding confidence to the identification 

from Illumina reads alone. I assembled these mapped Oxford nanopore reads using 

wtdbg2 (Ruan and Li, 2020) with relaxed parameters to include reads that were clipped 
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due to high divergence between wheat and Am. muticum. The resulting contig spans the 

entire junction, including regions to which neither the Illumina reads from Am. muticum 

nor DH65 map. These regions appear to have elevated SNP density, explaining the gaps in 

mapping. This is also a good example of a junction falling within a gene. 

 

Figure 2-13. IGV image of the introgression junction on chr4D of line DH65. 
Illumina paired-end reads are mapped to RefSeq v1.0. The DH65 nanopore track shows 
assembled contigs aligned back to RefSeq v1.0. 

2.3.4 Minimum sequencing depth required 

WGS data offers an affordable means for breeders to locate the precise location and size 

of introgressed segments in wheat. This is particularly true when other genotyping data, 

such as KASP™, is also available as the minimum required sequencing depth is 

determined by that needed for the coverage deviation analysis rather than for SNP 

calling. I performed an analysis to determine the minimum sequencing depth required to 

locate the position and size of known introgressed segments using coverage deviation 

alone. To achieve this, I downsampled the Illumina paired-end sequencing data from 

DH65 and DH92, two lines for which the introgression borders are resolved to a high 

resolution, to 1x, 0.1x, 0.01x and 0.001x. I found that 0.01x was the lowest sequencing 

depth that still enabled the introgressions in DH65 and DH92 to be clearly identified (Fig. 

2-14). At 0.001x, although the segments and the deletion can be seen, the noise becomes 

quite high. Therefore, if the segments were any more complex than those in DH65 and 

DH92, identification may become unreliable. 
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Figure 2-14. Minimum required sequencing depth to discover introgressed segments in 
Am. muticum introgression lines. 
Each point represents the deviation in mapping coverage compared to the wheat parent 
lines in 1 Mbp windows across Chinese Spring RefSeq v1.0 for: A) DH65 and B) DH92. The 
Illumina paired-end reads were downsampled to i. 1x, ii. 0.1x, iii. 0.01x and iv. 0.001x. 

2.3.5 Introgression crossing induces large chromosomal aberrations and homoeologous 

pairing/recombination 

In addition to introgression sites, I used the mapping coverage information to identify 

large chromosomal aberrations such as deletions, duplications, and translocations, based 

on coverage deviation values that are outside of the normal range yet not attributable to 

introgressions. 12 of the 17 (70.6%) sequenced introgression lines were found to have 

one or more chromosomal aberrations exceeding 140 Mbp. For instance, the DH pair 

DH124 and DH355 possess a duplication of the majority of chr1A with a corresponding 

deletion of the homoeologous region of chr1B (Fig. 2-15A). In DH86, the short arm of 

chr4A is deleted and in DH92, which belongs to the same DH pair, the long arm of chr4B is 

deleted (Fig. 2-15B). DH65 and DH121, which are not in a DH pair, share an identical 

A

B
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monosomic deletion of the majority of the short arm of chr5D (Fig. 2-15C). DH195 has a 

monosomic deletion of chr1A (Fig.  2-15E). 
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Figure 2-15. Large chromosomal aberrations in Am. muticum introgression lines. 
Each point shows mapping coverage deviation compared with the wheat parents in 500 
Kbp windows across the genome. Estimated centromere positions from Appels., et al. 
(2018) are markers by vertical black bars. A) Corresponding duplication and deletion seen 
in both lines of the DH pair, caused by pairing of a duplicated chr1A and chr1B. Mapping 
coverage deviation of 1 at the end of chr1A and chr1B indicates a large translocation 
between chr1A and chr1B has taken place in duplicated chr1A + chr1B pair and 
discontiguous mapping coverage deviation change towards beginning of chr1A and chr1B 
suggests lots of smaller translocation events. B) Chromosome arm deletions on 
homoeologous chromosomes of DH pair. C) Monosomic deletions at the same position in 
two independently derived lines. D) Homoeologous exchange within homoeologous 
group 6, at similar positions in two independently derived lines. E) Monosomic deletion of 
chr1A in DH195. F) Homoeologous recombination event between chr5A and chr5D and a 
deleted chr5B. 

Mapping coverage deviation can also be used to detect homoeologous translocations 

resulting in the non-reciprocal transfer of DNA, indicated by corresponding deletion and 

duplication at homoeologous regions. However, reciprocal translocations can’t be 

detected in this way as while the DNA will be in a different position in the sample 

genome, the sequencing reads will map to the same place as normal, resulting in normal 

levels of mapping coverage. 

For example, in DH124 and DH355, most of chr1A has been duplicated and most of chr1B 

has been deleted with a region at the end of each chromosome having normal coverage 

(Fig. 2-15A). This piece of chr1B left can’t exist on its own. Therefore, the likely 

explanation for this is a translocation of chr1B onto a duplicated copy of chr1A, replacing 

the homoeologous region at normal coverage on chr1A. In BC2F420, recombination 

appears to have taken place between chr5A and chr5B, seen by the corresponding rise 

and fall of coverage deviation values in homoeologous regions (Fig. 2-15F). 

In DH202, copy number variation affects homoeologous regions on chr6A, chr6B and 

chr6D (Fig. 2-15D). Chr6B and chr6D both have duplications, which together match the 

homoeologous region of chr6A that has been deleted. While this could have a number of 

biological causes, this could be caused by the two duplicated regions replacing the 

deleted region on chr6A side by side. If true, this suggests that homoeologous pairing 

between all three chromosomes took place. Similarly, BC2F420 also appears to have 

undergone homoeologous exchange at similar locations as DH202 (Fig. 2-15F); however, 

only chr6A and chr6D were involved. 
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2.3.6 Genome assembly and annotation of Am. muticum 

To facilitate the identification of introgressed genes, I generated a draft genome assembly 

for Am. muticum accession 2130012. The initial set of contigs was generated using Flye 

(Kolmogorov et al., 2019), which uses a graph-based approach to assemble Oxford 

Nanopore long reads. Due to the high error rate of Oxford Nanopore reads, the resulting 

contigs were polished using the same Oxford Nanopore reads with the built-in polisher in 

Flye, and then with two rounds of polishing with Pilon using the 102 Gbp of Am. muticum 

Illumina paired-end short reads that were also used for generating Am. muticum-specific 

SNPs in section 2.3.1.2. The final genome assembly was 2.53 Gbp in length, had an N50 of 

75.5 Kbp, and was comprised of 96,256 scaffolds (Table 2-2). Although the genome 

assembly spans just 41.0% of the estimated genome size (based on a flow cytometry 

estimate of 6.174 Gbp (Pellicer and Leitch, 2020)), BUSCO analysis (Waterhouse et al., 

2018) revealed that 93.9% of the expected gene space was assembled unfragmented (Fig. 

2-16). 

Following the generation of the genome assembly, I conducted repeat annotation and 

masking followed by gene annotation. The annotation was produced by integrating 

evidence from root and shoot transcriptomic data, proteomic data, and ab initio 

predictions, and resulted in 86,841 predicted gene models, 32,385 of which were 

designated as high confidence (Table 2-3). 28,995 (89.5%) of the high-confidence genes 

were assigned functional annotation using eggnog (Huerta-Cepas et al., 2017). 
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Table 2-2. Metrics of Am. muticum genome assembly. 
Assembly length 

(Gbp) 

No. scaffolds Contig N50 (bp) Scaffold N50 (bp) % BUSCO 

complete genes 

(% single copy) 

No. high-

confidence genes 

No. low-

confidence genes 

No. high-

confidence genes 

with functional 

annotation 

assigned 

2.53 96256 64199 75508 93.9% (88.7%) 32385 54456 28995 
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Figure 2-16. BUSCO results after each stage of the assembly. 
Raw is the output of flye without any polishing. Flye is the output after long read 
polishing using flye’s built-in polishing tool. Pilon_1 and pilon_2 are the output after the 
first and second round, respectively, of short-read polishing with Pilon. Purge_haplotigs is 
the output following collapsing of haplotigs in the polished assembly. 
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Table 2-3. Gene annotation metrics for high-confidence and low-confidence genes. 
 High-confidence 

genes  

Low-confidence 

genes 

Total genes (no.) 32385 54456 

Single exon (no.) 6695 27364 

Multi exon genes (no.) 25690 27092 

Mean gene length (bp) 3355 1642 

Median gene length (bp) 2178 713 

Mean CDS length (bp) 1198 716 

Median CDS length (bp) 1000 502 

Mean exons per transcript (no.) 4.81 2.39 

Median exons per transcript (no.) 3 1 

Mean exon length (bp) 249 307 

Median exon length (bp) 131 196 

 

2.3.7 Identifying candidate introgressed genes underlying novel resistances to stripe, 

leaf, and stem rust 

Combining high resolution identification of segment positions with phenotypic data 

allows us to compare lines and predict the location of genes underlying the phenotype of 

interest. Combining this with a genome assembly of the introgressed species allows us to 

identify introgressed candidate genes for the phenotype of interest. I explored this 

approach using previously reported rust resistance phenotypes as a case study. 

Two of the introgression lines that were sequenced, DH92 and DH121 (Fig. 2-17), show 

complete resistance to Kansas isolates of stripe/yellow rust at the seedling stage (Fellers 

et al., 2020). In addition, DH92 exhibits partial resistance to stem rust and chlorotic adult 

resistance to leaf rust, neither of which were observed in DH121 (Fellers et al., 2020). 

DH92 and DH121 share overlapping chr5D segments, the positions of which I refined to 

533.2-566.1 Mbp (32.9 Mbp) in DH92, and 543.4-566.1 Mbp (22.7 Mbp) in DH121. It is 
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probable that the overlapping 22.7 Mbp region is the source of the stripe rust resistance, 

while the 10.2 Mbp region unique to DH92 is the source of the leaf/stem rust resistance. 

 

Figure 2-17. Am muticum introgressions detected in the D subgenome of DH92 and 
DH121. 
Each dot shows the mapping coverage deviation value of a 1 Mbp genomic window 
compared to the wheat parent lines. Red dots are windows within Am. muticum 
introgressions. The vertical black bars represent the position of the centromeres, 
predicted in Appels et al. (2018). The introgressions common to DH92 and DH121 and 
thus likely containing the causal resistance genes are labelled with a black arrow. Neither 
line has introgressions in the A or B subgenomes. 

To identify genes from the Am. muticum genome assembly that are introgressed in both 

DH92 and DH121, I first concatenated the Am. muticum genome with the RefSeq v1.0 

genome to generate a pseudo ABDT genome. To this genome I then mapped the DH92 

and DH121 Illumina paired-end reads (Fig. 2-18). The principle of this method is that 

reads derived from genes present in the introgressions will map to the Am. muticum copy 

of that gene in the pseudo ABDT genome. If the wheat subgenomes contain orthologues 

of the introgressed Am. muticum gene, the reads will map preferentially to the Am. 
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muticum copy due to the divergence between the Am. muticum genome and the three 

wheat subgenomes. This is the same way in which read mapping correctly differentiates 

between homoeologues from the different wheat subgenomes in typical mapping of 

wheat reads to the wheat reference genome. Genes with sufficient mapping coverage in 

both DH92 and DH121 and not in any other lines phenotyped for stripe rust resistance 

were manually scrutinised using IGV and those confirmed to have even coverage across 

the gene in both lines were deemed to be introgressed in both. 

Genes introgressed in both lines that also belonged to a family of genes previously 

implicated in rust resistance were classified as candidate genes for the stripe rust 

resistance common to both lines (Table 2-4). I identified thirteen complete NLRs that are 

exclusively introgressed in DH92 and DH121. Among these NLRs, twelve possess a 

syntenic wheat orthologue within the part of the chr5D segments that is common in both 

lines. Two of the NLRs have unique NB-ARC domains (<80.0% amino acid sequence 

identity) compared to wheat progenitor genomes Ae. tauschii (Luo et al., 2017), Triticum 

urartu (Ling et al., 2018) and T. turgidum ssp. dicoccoides (Avni et al., 2017), and to 

Chinese Spring and fifteen other T. aestivum cultivars (Walkowiak et al., 2020). 

Additionally, I found that ten of the NLRs are located within a 597.3 Kbp cluster, including 

the two NLRs with novel NB-ARC domains which are 19.06 Kbp from one another in the 

Am. muticum genome assembly. 

Two ABC transporter genes uniquely introgressed in DH92 and DH121 were also 

identified, both of which have wheat orthologues on chr5D with greater than 97.5% 

protein sequence identity. Seven protein kinase genes were found uniquely introgressed 

in DH92 and DH121, six of which are LRR protein kinases, one with a malectin-like domain 

and a protein kinase domain. Three of the six LRR protein kinases have low protein 

sequence identity (52.2%, 74.2%, 77.0%) to the most similarly protein in wheat, indicating 

that these could be novel Am. muticum genes. 
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Figure 2-18. Method for identifying putative stripe rust resistance genes introgressed 
uniquely in DH92 and DH121. 
A) Illumina paired-end short reads from the introgression lines are mapped to the pseudo 
ABDT genome, which was constructed by concatenating the RefSeq v1.0 wheat reference 
genome with the Am. muticum genome assembly. B) IGV image showing mapping 
coverage of Illumina paired-end short reads from eleven introgression lines mapped to 
the ABDT pseudo genome, here visualising mapping to a contig from the Am. muticum 
genome assembly. The bottom track shows the annotated Am. muticum genes. These 
images show coverage across the gene in DH92 and DH121 but little coverage in the 
other introgression lines. This suggests that the Am. muticum gene here is introgressed 
uniquely in DH92 and DH121. C) Number of putative Am. muticum resistance genes of 
each type identified as being uniquely introgressed in DH92 and DH121, along with the 
number that produce proteins novel to Am. muticum when compared to the proteins in 
wheat genomes.

A 

B 

C 
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Table 2-4. Candidate resistance genes uniquely introgressed in DH92 and DH121, which both exhibit stripe rust resistance due to a shared introgression on 
chr5D. 

Gene name Gene type Highest NB-ARC domain 

protein identity or 

overall protein identity 

for non-NLRs when 

aligned to fifteen wheat 

genomes and to T. 

urartu, Ae. tauschii, and 

T. turgidum 

ssp. dicoccoides. 

Novel NB-ARC 

domain or novel 

protein for non-

NLRs 

contig_104068_pilon_pilon.6 NLR 93.886 no 

contig_104068_pilon_pilon.7 NLR 93.361 no 

contig_105710_pilon_pilon.1 NLR 95.833 no 

contig_122086_pilon_pilon.2 NLR 92.213 no 

contig_122086_pilon_pilon.3 NLR 90.204 no 

contig_127133_pilon_pilon.1 NLR 81.893 yes 

contig_129493_pilon_pilon.7 NLR 98.75 no 

contig_129493_pilon_pilon.9 NLR 94.068 no 

contig_137938_pilon_pilon.3 NLR 88.571 no 

contig_16723_pilon_pilon.4 NLR 87.446 no 

contig_4003_pilon_pilon.2 NLR 73.214 yes 

contig_40592_pilon_pilon.2 NLR 88.571 no 

contig_51888_pilon_pilon:51710-63637 NLR 86.301 no 

contig_120634_pilon_pilon.1 ABC transporter 97.5 no 

contig_55354_pilon_pilon.1 ABC transporter 98.347 no 

contig_132047_pilon_pilon.3 LRR + protein tyrosine and serine/threonine kinase 91.146 no 

contig_132047_pilon_pilon.4 LRR + protein tyrosine and serine/threonine kinase 53.36 yes 
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Table 2-4 
contig_132047_pilon_pilon.8 LRR + protein tyrosine and serine/threonine kinase 69.559 yes 

contig_137761_pilon_pilon.4 LRR + protein tyrosine and serine/threonine kinase 97.272 no 

contig_4003_pilon_pilon.11 LRR + protein tyrosine and serine/threonine kinase 95.66 no 

contig_85897_pilon_pilon.5 LRR protein kinase 95.487 no 

contig_85897_pilon_pilon.12 malectin-like and protein tyrosine kinase domains 77.861 yes 

 



 71 

To identify candidate genes for the leaf and stem rust resistance observed in DH92 but 

not in DH121 (Table 2-5), I used the same approach but looked for genes with sufficient 

mapping coverage only in DH92. I detected three protein kinases and three wall-

associated protein kinases (WAKs) that are uniquely introgressed in DH92 and likely 

within the 10.2 Mbp region of the chr5D segment not shared with DH121. Five of these 

six genes are located on the same 104.7 Kbp contig in the Am. muticum assembly. Two of 

the WAKs are orthologous to the wheat genes TaWAK388 and TaWAK390 on chr5D, while 

one is orthologous to TaWAK255 on chr4A. 

In contrast to the other uniquely introgressed putative resistance genes, the WAKs have 

reads mapping to them in most of the introgression lines; however, only in DH92 is the 

coverage uniform across their lengths. This implies that the mapping in the other lines is 

caused by false mapping from similar genes. Therefore, the WAKs are still likely uniquely 

introgressed in DH92 and can remain as candidates for resistance. This is confirmed by 

the absence of mapping across the rest of the contig, on which the WAKs reside, in the 

other introgression lines.
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Table 2-5. Candidate resistance genes uniquely introgressed in DH92, which exhibits leaf and stem rust resistance. 
Gene name Gene type Highest percentage identity when 

aligned to the proteins from fifteen 

wheat genomes and to T. urartu, Ae. 

tauschii, and T. turgidum 

ssp. dicoccoides. 

Novel NB-ARC domain or 

novel protein for non-NLRs 

contig_147444_pilon_pilon.1 Protein kinase domain only 92.07 no 

contig_147444_pilon_pilon.8 WAK 98.274 no 

contig_147444_pilon_pilon.9 WAK 97.948 no 

contig_147444_pilon_pilon.10  WAK 98.111 no 

contig_147444_pilon_pilon.13 Protein kinase domain only 92.07 no 

contig_51565_pilon_pilon.1 Protein kinase domain only 100 no 
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2.4 Discussion 

2.4.1 Using whole genome sequencing to pinpoint wild relative introgressions in wheat 

– an affordable new tool to aid introgression breeding programmes 

The current approach for studying synthetic introgression lines prior to deployment in 

breeding programmes relies on cytogenetic and genotyping techniques, such as GISH and 

KASP™ genotyping, respectively (King et al., 2019; Grewal et al., 2022). De novo discovery 

of SNPs to produce higher density KASP™ markers has improved the resolution and as 

demonstrated here, recent KASP™ genotyping (Grewal et al., 2022) was able to detect 

most of the introgressed segments identified with my approach. However, these 

approaches lack the resolution needed to unpick the precise size and location of 

segments and will likely miss small segments without the guidance of WGS data to 

identify areas in which additional markers should be deployed. I found this with the new 

chr6D segment, the small chr7D segment in DH195 and the chr5D segment in DH121, the 

latter two of which are novel sources of disease resistance. 

I demonstrated how whole genome sequencing data can be used to define introgressions 

to a very high resolution as well as resolve large-scale structural changes in these lines. 

Downsampling showed that if SNP information is not required, only 0.01x sequencing 

coverage is required to pinpoint the junctions of known introgressed segments to a 

comparable resolution. This agrees with Adhikari et al. (2022), who also found that 0.01x 

sequencing coverage was sufficient to identify the introgressions when only relying on 

coverage information. Overlaying this information with KASP™ genotyping will 

undoubtedly provide an affordable method to characterise sets of synthetic introgression 

lines more accurately and comprehensively. 

Introgressed segments nested within complex genomic structures, such as in DH202 and 

DH86, can only be inferred in conjunction with cytogenetic data and/or segregation 

patterns of DH pairs. Some introgression segment boundaries, such as the left-hand 

border of chr2A in DH15, can be identified but structural complexities around the 

junction make them difficult to pinpoint precisely. Therefore, caution is advised when 

relying on the introgression assignments provided by WGS data alone, particularly for 

complex lines with several large introgressions/deletions/duplications. However, for most 

lines, where genomic structure is simpler, this approach appears to be robust. Besides, it 

is these simple lines that are likely to be of greater interest to breeders due to being 
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easier to introduce into breeding programmes, making the challenges of characterising 

the other lines less imperative. 

Other approaches for identifying introgressions were published while I was undertaking 

this research. Adhikari et al. (2022) adopted a similar approach to mine. They used low-

coverage sequencing data, with a mean of 0.025x, from 384 wheat-barley introgression 

lines to identify the position and copy number of barley introgressions. As in my pipeline, 

mapped read counts were normalised so that regions of the introgression line genome 

with no introgression or deletion/duplication have a value close to one. As a 

chromosome-level genome assembly is available for barley, they also mapped the 

introgression line reads to the barley genome and looked for a rise in mapping coverage 

to barley corresponding to the low mapping coverage against the wheat genome. This 

enabled the source of the introgression from the barley to be identified and is a useful 

addition to the pipeline for cases where a high-quality genome assembly is available for 

the donor species. The availability of the barley genome assembly means that SNP 

information derived from the introgression line sequencing reads are not required for 

confirming the donor species or for discriminating between introgressions and deletions. 

This allows for very low-coverage sequencing without an accompanying genotyping 

method such as KASP™. 

Previous work has shown that crossovers between wheat and wild relatives are enriched 

in gene rich regions (Nyine et al., 2020), which mirrors recombination rates along the 

genome (Gardiner et al., 2019b). My analysis confirms this, with sufficient resolution to 

locate crossover sites within specific gene bodies. Outside of genic regions, synteny 

between wheat and Am. muticum is very low so genes may be the only place where 

synteny is sufficiently high for recombination to take place. 

2.4.2 Genomic instability following alien introgression crossing 

In this chapter, I showed that structural disruption is common in introgression pre-

breeding material, including homoeologous pairing and recombination, and duplications 

and deletions up to chromosome size. This is likely caused by the Am. muticum-induced 

suppression of the Ph1 locus which was utilised to induce recombination between wheat 

and Am. muticum chromosomes. This Ph1 suppression enables pairing of chromosomes 

from different subgenomes, which can cause translocations between subgenomes and 

unstable chromosome pairings that can cause large deletions and duplications. Forced 
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pairings between wheat and wild relative chromosomes in the F1 cross are likely also 

responsible for structural changes. The DH process could be inducing structural change, 

but the fact we see these structural events in the selfed lines that weren’t subjected to 

the DH process excludes this from being the primary explanation. We can be confident 

that the lack of a functional Ph1 locus is contributing to the structural change due to the 

evidence of pairing and recombination between subgenomes. The backcrossing 

implemented in the development of these lines will have removed a lot of structural 

changes, so what we see here is a subset of the initially generated structural change. An 

awareness of chromosomal aberrations is important for breeders using these lines in 

their breeding programmes. It will be important to identify the location of the Ph1 

suppressor in Am. muticum and other wild relatives that have an innate Ph1 suppression 

system, such as Ae. speltoides (Dvorak, Deal and Luo, 2006; Li et al., 2017) to prevent 

segments being carried forward into breeding programmes that contain a Ph1 suppressor 

that could generate further genomic disruption. 

Smaller scale variation in mapping coverage suggests that structural disruption is not 

restricted to the large chromosomal aberrations. However, it is challenging to accurately 

assess smaller-scale structural variation, such as transposable element mobilisation and 

smaller INDELs with the data available. It may prove useful to assess the nature and 

extent of such variation in the future. To understand this type of variation, we will need a 

genome assembly of an introgression line and the wheat parents used in the cross, or a 

genome assembly of the wheat parent and long read sequencing data from the 

introgression line like produced here for DH65. As of the time of writing, these genome 

assemblies are not available and unfortunately, structural variation at this small scale 

between available chromosome-level genome assemblies and Paragon and Pavon76 is 

too great for structural variants arising from the creation of the introgression lines to be 

distinguished from existing structural variation between the cultivars.  

2.4.3 A case study for uncovering candidate introgressed genes underlying phenotypes 

of interest 

Combining high resolution detection of introgressed segment borders with phenotype 

information and a genic assembly of Am. muticum enabled me to identify likely 

introgressed regions for novel resistance phenotypes and produce a list of candidate 

resistance genes. This will help breeders develop markers to incorporate the phenotype 
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of interest into Elite varieties and will also facilitate further analysis to identify the causal 

resistance genes. It also acts as a template that can be built upon to unpick traits of 

interest in sets of introgression lines. 

I identified the probable region of stripe rust resistance in DH92 and DH121 as being 

within the 22.68 Mbp overlapping region of the chr5D segment. The small size and 

telomeric position of this segment makes it conducive for use in breeding. Within this 

region, I identified candidate resistance genes, including 3 novel NLRs and 3 novel LRR 

Pkinase proteins. I searched for other classes of genes that have been cloned for stripe 

rust resistance (Zheng et al., 2020), such as hexose transporter genes, wheat Kinase-

START (WKS) genes, and tandem kinase-pseudokinase (TKP) genes, but found no 

examples of these genes uniquely introgressed in these lines. 

The DH92 resistance to leaf rust that is not shared with DH121 is likely conferred by the 

portion of the 10.2 Mbp chr5D introgressed segment in DH92 that is not shared with 

DH121. The resistance is only seen in adult plants and to a composite of isolates (Fellers 

et al., 2020); this race non-specific adult-plant resistance (APR) tends to be more durable 

and, in combination with the small segment size, makes this resistance another good 

target for further characterisation. I identified 3 WAKs and 3 protein kinases uniquely 

introgressed in DH92. Wall-associated kinases have previously been shown to confer 

resistance to leaf rust that looks similar to APR (Dmochowska-Boguta et al., 2020) and 

protein kinase proteins, such as Yr36, have been implicated in APR (Ellis et al., 2014).  

It should be noted that the resistance could be conferred by genes that are absent from 

the assembly or the annotation or were missed in the detection pipeline. The main 

purpose of this analysis was to use the high-resolution introgression detection to identify 

where the resistance genes will be found and then to demonstrate the possibility of using 

sequencing data to probe phenotypes of interest in introgression lines. The analysis 

described here will work better with improved assemblies in which contiguous 

introgressed segments can be reconstructed and introgressed content fully assessed. 

2.4.4 Future work 

Several methods, including the one I have presented here, have arisen for characterising 

introgressions in sets of introgression lines. These work well; however, better or cheaper 

methods may be developed. The currently published methods have different advantages 
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and disadvantages, and the best approach to implement will depend on a number of 

factors, such as required resolution, prior existence of KASP™ genotyping, and cost 

limitations. For example, if KASP™ assays with sufficient marker density to identify most 

introgressed segments are available, but more precise estimates of size and position are 

required, low-cost, low coverage whole-genome skim sequencing may be sufficient and 

allow a larger number of lines to be assessed. Conversely, the skim sequencing could be 

used first, to locate regions of reduced mapping coverage. To confirm whether these 

regions are introgressions, these they could then be targeted with KASP™ markers, 

developing additional markers if current markers don’t adequately cover the putative 

introgressed region. This combined approach is similar to what happened in practice 

between my work presented here and the work by Grewal et al. (2022). Alternatively, if a 

chromosome-level genome assembly is available for the donor species, skim sequencing 

can in most cases be used to identify introgressions without needing other genotyping. 

To identify which introgressed Am. muticum genes underlie the rust resistance 

phenotypes, forward genetic screening should be conducted. For example, EMS 

mutagenesis can be used to generate a set of mutants for either DH92 or DH121, which 

can be phenotyped for rust resistance, followed by sequencing of the susceptible 

mutants. Loss-of-function mutations should be consistently found in the causal resistance 

gene in these susceptible mutants. Using the sequences of the candidate genes I 

identified to develop primers for amplicon sequencing could assist this process to reduce 

sequencing costs. 

A chromosome-level genome assembly for Am. muticum is currently being generated at 

the Wheat Research Centre. This will allow the analyses presented here to be repeated 

with a higher quality. In particular, the identification of resistance genes introgressed in 

resistant introgression lines will be much more accurate using a higher quality assembly. 

This new assembly will be a good reference for forward genetic screening in the future to 

identify introgressed genes underlying phenotypes of interest. 

2.5 Methods 

2.5.1 DNA extraction and whole-genome sequencing 

Am. muticum introgression lines and wheat parents were grown in a growth room (16h, 

21°C day/8h, 18°C night). Genomic DNA from young leaves was isolated using extraction 
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buffer (0.1 m Tris–HCl pH 7.5, 0.05 m EDTA pH 8.0, 1.25% SDS). Samples were incubated 

at 65 °C for 1 h before being placed on ice and mixed with ice-cold 6 m NH4C2H3O for 15 

minutes. The samples were then spun down, the supernatant was mixed with isopropanol 

to pellet the DNA and the isolated DNA was treated with RNase A and then purified with 

phenol/chloroform. DNAs were dissolved in TE (10mM Tris-HCl pH8.0, 0.1mM EDTA). 

PCR-free libraries were produced from this DNA with >600bp insert sizes (gel size-

selection). These were sequenced by Genomics Pipelines on Illumina NovaSeq 6000 S4 

flowcells to produce 150 bp paired-end reads for the introgression lines and Pavon76 and 

250bp paired-end reads for Am. muticum. 150 bp paired-end reads for Chinese Spring 

(study PRJNA393343; runs SRR5893651 and SRR5893652) and Paragon (study 

PRJEB35709; runs ERR3728451, ERR3760033, ERR3760405 and ERR3728448) were 

produced in previous studies (Appels et al., 2018; Walkowiak et al., 2020) and were 

downloaded for use in this chapter. 

2.5.2 Read processing, mapping and SNP calling 

Adaptors from Illumina paired-end reads were removed and reads trimmed for quality 

using Trimmomatic v0.30 (Bolger, Lohse and Usadel, 2014) with the following 

parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 SLIDINGWINDOW:4:15 MINLEN:40 

CROP:150. Contaminants were screened and removed using Kontaminant v2.1.5 (Daly et 

al., 2015) with E. coli, phage, and vector libraries. The cleaned reads were mapped to the 

Chinese Spring reference genome RefSeq v1.0 (Appels et al., 2018) using BWA-MEM 

v0.7.13 (Li, 2013) with the -M parameter to enable duplicates to be marked. The 

alignment was filtered using samtools v1.4 (Li et al., 2009): supplementary alignments, 

improperly paired reads, and non-uniquely mapped reads (mapping quality <= 10) were 

removed. PCR duplicates were detected and removed using Picard’s MarkDuplicates 

v2.1.1 (Depristo et al., 2011). Variants were called using mpileup from samtools v1.4 (Li et 

al., 2009) and call from bcftools v1.3.1 (Li and Barrett, 2011) using the multiallelic calling 

model -m. 

Initial variant filtering was performed using GATK v3.5.0 (Depristo et al., 2011) to remove 

INDELs and to retain SNPs with a quality score >= 30 and a read depth >= 10 for the 

parental lines and >= 5 for the introgression lines. Read depth filtering differed between 

parental and introgression lines because introgression lines were sequenced to a lower 

depth than the parent lines. Introgression line SNPs were further filtered as follows: 
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homozygous SNPs were retained if 5 or more reads supported the alternative allele and 

the allele frequency was 1; heterozygous SNPs were retained if 3 or more reads were 

supporting each allele. Sites with 3 or more alleles were removed. 

2.5.3 In silico karyotyping - calculating mapping coverage deviation compared to wheat 

parents 

The number of mapped reads after filtering and duplicate removal was counted across 

genomic windows (1 Mbp and 100 Kbp) in RefSeq v1.0 using bedtools makewindows v 

2.28.0 (Quinlan and Hall, 2010) and hts-nim-tools v0.0.1 (Pedersen and Quinlan, 2018) for 

the wheat parents (Chinese Spring, Paragon and Pavon76) and each introgression line. 

Mapped read counts were normalised by dividing by the total number of reads following 

duplicate removal. In each genomic window, normalised read counts for each 

introgression line were divided by the normalised count of each wheat parent in its 

crossing history (Paragon & Pavon76 or Paragon & Chinese Spring. The number closest to 

1 was kept as the coverage deviation for that window, under the assumption that the 

parent with mapping coverage closest to the introgression line is the parental donor in 

that window. The resulting coverage deviation value reflects the copy number of wheat 

DNA in that window relative to the wheat parent. A value of 1 indicates that the DNA in 

that window is present in the same amount as in the parent line. A value approaching 0 

suggests either a deletion or an introgression has occurred at that region, and a value of 2 

suggests a duplication event has taken place. Intermediate values indicate heterozygous 

copy number changes. 

2.5.4 Identifying Am. muticum-specific SNPs and matching them to introgression line 

SNPs 

First, I generated 18,496,474 SNPs between Am. muticum and Chinese Spring that 

weren’t shared with either Paragon or Pavon76. At heterozygous sites where one allele 

was unique to Am. muticum, the unique allele was retained. If two alternative alleles 

were present, both were kept provided both were specific to Am. muticum. Introgression 

line SNPs were then assigned as Am. muticum if matching an Am. muticum-specific SNP in 

position and allele. Sites exceeding 3x mean coverage level were removed as this is a 

signature of collapsed repeat expansion. These SNPs were then split into homozygous 

and heterozygous and binned into 1 Mbp windows using bedtools coverage v2.28.0 

(Quinlan and Hall, 2010).  
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2.5.5 Assigning introgressed regions using coverage and SNP information 

Coverage deviation blocks were defined based on contiguous blocks of 1 Mbp windows 

with coverage deviation < 0.7, with windows within 5 Mbp from the previous coverage 

deviation block being merged. The block was discarded if < 80.0% of constituent windows 

had a coverage deviation < 0.7. 1 Mbp windows within a coverage deviation block and 

containing >= 55 homozygous Am. muticum specific SNPs and a ratio of homozygous to 

heterozygous Am. muticum specific SNPs >= 4 were classified as candidate Am. muticum 

windows. Coverage deviation blocks with >= 14% windows assigned as Am. muticum 

using the parameters above were classed as an introgressed segment. These parameters 

are adjustable and were chosen because they revealed all previously known introgression 

segments and didn’t falsely class any known deletions as introgressions. To locate the 

borders of the introgressions more precisely, the coverage deviation values in the 100 

Kbp windows up and downstream of either end of the introgression blocks were 

examined to determine where the coverage deviation starts to decrease. To do this, and 

locate the precise position of the introgression junction if possible, the BAM alignment 

files for Am. muticum, Paragon, Pavon76, and the introgression line were loaded into IGV 

(Robinson et al., 2011). I then searched to find the position where the coverage and SNP 

profile switch from those resembling the wheat parents to those resembling Am. 

muticum. In cases where the junction could not be precisely located, a range was given 

within which the junction position most likely falls. 

2.5.6 KASP™ validation 

Genomic DNA was isolated from leaf tissue of 10-day old seedlings in a 96-well plate as 

described by Thomson and Henry (Thomson and Henry, 1995). Introgression line DH15 

was genotyped alongside the three parental wheat genotypes (Chinese Spring, Paragon 

and Pavon76) and the two Am. muticum accessions as controls. For each KASP™ assay, 

two allele-specific primers and one common primer were used (Appendix A3). The 

genotyping procedure was as described in (Grewal et al., 2020b). In summary, the 

genotyping reactions were set up using the automated PIPETMAX® 268 (Gilson, UK) and 

performed in a ProFlex PCR system (Applied Biosystems by Life Technology) in a final 

volume of 5 μl with 1 ng genomic DNA, 2.5 μl KASP™ reaction mix (ROX), 0.068 μl primer 

mix and 2.43 μl nuclease free water. PCR conditions were set as 15 min at 94°C; 10 

touchdown cycles of 10 s at 94°C, 1 min at 65–57°C (dropping 0.8°C per cycle); and 35 
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cycles of 15 s at 94°C, 1 min at 57°C. Fluorescence detection of the reactions was 

performed using a QuantStudio 5 (Applied Biosystems) and the data was analysed using 

the QuantStudioTM Design and Analysis Software v1.5.0 (Applied Biosystems). 

2.5.7 Validation of introgression junction with Oxford nanopore long reads 

DNA from introgression line DH65 was prepared using ligation sequencing kit SQK-LSK109 

and sequenced to a depth of 7x on a MinION using a R9.4.1_RevD flow cell. Reads were 

filtered using NanoFilt (De Coster et al., 2018) to remove reads shorter than 1 Kbp or with 

a quality score less than 7. Filtered reads were mapped to RefSeq v1.0 using minimap2 

v2.7 (Li, 2018) with parameters -ax map-ont and --secondary=no. Mapped reads around 

the breakpoint (chr4D:51283000-51595000) of the chr4D introgression were extracted 

using samtools v1.4 (Li et al., 2009), including clipped portions of mapped reads, and 

assembled using wtdbg2 (Ruan and Li, 2020). The resulting contigs were mapped to 

RefSeq v1.0 using minimap2 v2.7 (Li, 2018) with parameters -ax map-ont and –

secondary=no and examined in IGV (Robinson et al., 2011) along with the mapped 

Illumina paired-end reads from DH65 and the parent lines. 

2.5.8 Genome assembly of Am. muticum 

DNA from Aegilops mutica (now Am. muticum) line 2130012 (JIC) was prepared using 

ligation sequencing kit SQK-LSK109 and sequenced on a MinION using a R9.4.1_RevD flow 

cell. 178 Gbp of raw nanopore reads were filtered using NanoFilt v2.7.1 (De Coster et al., 

2018), removing reads shorter than 1 Kbp or with a quality score less than 7. Filtered 

reads were assembled using Flye v2.8.1-b1676 (Kolmogorov et al., 2019). Following 

Oxford nanopore read polishing integrated into Flye, I conducted 2 rounds of Pilon v1.23 

(Walker et al., 2014) polishing using the 102 Gbp of Am. muticum Illumina paired-end 

short reads described earlier to correct systematic errors in the Oxford nanopore reads. 

Finally, haplotigs that were not collapsed in the assembly were detected and resolved 

using purge_haplotigs (Roach, Schmidt and Borneman, 2018). Gene completeness was 

assessed using BUSCO v3.0.2 (Waterhouse et al., 2018) with parameters -l 

viridiplantae_odb10 –species wheat and -m geno. 

2.5.9 Repeat annotation 

A de novo library of transposable elements for Am. muticum was produced using EDTA 

v1.9.5 (Ou et al., 2019), using CDS sequences from T. aestivum RefSeq v1.1 to exclude 
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protein-coding regions from the library. The resulting library was aligned to the assembly 

using BLASTn from blast+ v2.7.1 (Camacho et al., 2009) and sequences with fewer than 3 

full-length hits (defined as over 80.0% similarity across more than 80.0% of the length of 

the element) were removed. The remaining sequences were clustered using cd-hit-est 

v4.6.7 (Li and Godzik, 2006) with parameters aL 0.8 aS 0.8 -c 0.8 to remove redundant 

sequences. The resulting library was used to mask the genome assembly using 

RepeatMasker v4.07 (Chen, 2004) with parameters -s -no_is -norna -nolow -div 40 -cutoff 

225. 

2.5.10 Gene annotation 

Ab initio, protein homology and transcriptome evidence were combined to predict 

protein-coding genes in the Am. muticum assembly. First, the Am. muticum RNA reads (4 

root replicates and 4 shoot replicates) were trimmed using Trimmomatic v0.30 (Bolger, 

Lohse and Usadel, 2014) with the parameters ILLUMINACLIP:BBDUK_adaptor.fa:2:30:12 

SLIDINGWINDOW:4:20 MINLEN:20 AVGQUAL:20. The trimmed RNA reads were mapped 

to the masked genome using STAR v2.7.6a (Dobin et al., 2013). Transcripts were 

assembled using four independent reference-guided approaches; Trinity v2.1.1 (Grabherr 

et al., 2011); StringTie v2.1.4 (Pertea et al., 2015), Cufflinks v2.2.1 (Trapnell et al., 2012) 

and CLASS2 v2.1.7 (Song, Sabunciyan and Florea, 2016). Transdecoder v5.5.0 (Haas et al., 

2013) was used on each set of transcripts to produce coding ORFs. PORTCULLIS v1.2.0 

(Mapleson et al., 2018) was used to produce splice information. Uniprot (The UniProt 

Consortium, 2019) reference proteomes for T. aestivum, Ae. tauschii, T. turgidum, Oryza 

sativa, Brachypodium distachyon, and Arabidopsis thaliana were aligned to the genome 

using BLASTx from blast+ v2.7.1 (Camacho et al., 2009). Mikado (Venturini et al., 2018) 

was used to merge and refine the transcripts produced by each tool, aided by the splice 

site information and the protein homology evidence. The same uniprot reference 

proteomes as above were aligned to the masked genome using TBLASTN (Camacho et al., 

2009). Hits within 20 Kbp that had an e-value below 1e-5 and sequence identity greater 

than 75% were merged using bedtools merge v2.28.0 (Quinlan and Hall, 2010). These 

regions were searched using exonerate v2.4.0 (Slater and Birney, 2005) to refine protein 

alignments. To produce a set of transcript annotations to train the ab initio gene 

predictor Augustus v3.1.0 (Hoff and Stanke, 2019), Mikado protein coding genes were 

filtered to retain multi-exon genes that have < 80.0% amino acid identity with any other 

protein, have no stop codon in the ORF, and are at least 500bp away from another gene. 
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Of the remaining transcripts, the 2000 with the highest mikado score were retained and 

randomly split into 1800 training genes and 200 testing genes. The AUGUSTUS hidden 

Markov model (HMM) was trained using these transcripts using etraining followed by 10-

fold cross validation using optimize_augustus.pl. To produce initial ab initio gene 

predictions, Augustus was run using this HMM, along with intron hints produced from the 

STAR bam file using bam2hints from Augustus. EvidenceModeler (Haas et al., 2008) was 

used to integrate the ab initio, transcriptome, and protein evidence and produce a set of 

high-confidence gene models for model training. This set of genes was used to retrain 

Augustus as before, as well as GlimmerHMM v3.0.4 (Majoros, Pertea and Salzberg, 2004). 

Augustus, SNAP v2013_11_29 (Korf, 2004) (using the rice HMM) and GlimmerHMM were 

run to produce final ab initio gene predictions. These predictions were incorporated with 

the transcript and protein homology evidence using EvidenceModeler to produce final 

gene models with the following weightings: mikado transcriptome - weight 14; Augustus 

gene models - weight 4; exonerate protein evidence - weight 7; SNAP gene models - 

weight 1; GlimmerHMM gene models - weight 2. Predicted proteins were aligned to the 

TREP database of transposable elements and to TREMBL proteins using BLASTp from 

blast+ v2.7.1. Genes were classed as high-confidence if they had a complete protein-

coding gene model, transcript evidence from one or more of the transcriptome assembly 

methods, and their encoded protein had one or more significant hits to TREMBL (Bairoch 

and Apweiler, 1997) and no significant hit to TREP (Wicker et al., 2002). The remaining 

predicted genes were classed as low-confidence. Gene functions were assigned using 

eggnog v5.0 (Huerta-Cepas et al., 2019). 

2.5.11 Assigning orthologue pairs 

Am. muticum/wheat orthologue pairs were assigned using best reciprocal BLAST hits 

combined with OrthoFinder orthogroup assignments. OrthoFinder v2.5.2 (Emms and 

Kelly, 2019) was used with default settings to cluster the longest protein encoded by each 

high-confidence gene from Am. muticum, Ae. tauschii, T. urartu, T. aestivum, O. sativa 

and B. distachyon into orthogroups. Am. muticum proteins (extracted and translated from 

the GFF annotation file) and wheat proteins (taken from IWGSC 1.1 pep.fa file for wheat 

proteins) were aligned reciprocally using BLASTp from blast+ v2.7.1 (Camacho et al., 

2009) with parameters -outfmt 6 -max_hsps 3 -max_target_seqs 3 -evalue 1e-6. This was 

done for each wheat subgenome independently. Hits were retained if percentage identity 

>= 90.0% and alignment length was >= 80.0% query length. An Am. muticum gene was 
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placed in an orthologue pair with a wheat gene if it was in an orthogroup with that gene 

and the pair were each other's best reciprocal BLAST hit. 

2.5.12 Identifying which Am. muticum genes are introgressed in each introgression line 

The wheat reference genome RefSeq v1.0 and the draft Am. muticum assembly were 

concatenated to form a pseudo ABDT genome. Illumina paired-end short reads from the 

introgression lines were mapped to this genome and filtered using the same process as 

mapping to RefSeq v1.0 alone. Am. muticum genes in each introgression line were 

defined as introgressed if the introgression line reads, when mapped to the ABDT pseudo 

genome, had a mean coverage >= ~0.6 * mean sequencing depth (≥ 13.2x for DH202 

and ≥3x for the remaining lines) across the gene. The gene also had to be found on a 

contig/scaffold in the Am. muticum genome assembly which has a gene (which could be 

the same gene) that passes the above coverage threshold and is in an orthologue pair 

with a wheat gene whose start position is within a region labelled as a Am. muticum 

introgression. This is a conservative classification to prevent inclusion of non-introgressed 

genes. 

2.5.13 Identifying introgressed resistance genes 

Am. muticum NLR genes were identified using two parallel methods. In the first, the gene 

models were scanned for typical NLR domains using hmmscan from the HMMER package 

(Finn, Clements and Eddy, 2011) in the filtered protein-coding gene models produced by 

EVM. In the second, the entire genome was scanned de novo for complete, functional 

NLR protein-coding regions using NLRAnnotator (Steuernagel et al., 2020). This allowed 

several additional NLR genes whose gene model had been filtered out or was never 

constructed to be recovered. Other types of genes that have been previously implicated 

in rust resistance (Zheng et al., 2020), such as ABC transporters, Pkinases, hexose 

transporters, wheat Kinase-START genes and tandem kinase-pseudokinase proteins, were 

identified from the eggnog functional annotation and validated by searching for pfam 

domains characteristic of each class of gene using hmmscan from hmmer v3.3. 

Genes identified as potential resistance genes and identified as being introgressed above 

were manually checked using IGV to identify candidates with even sequencing coverage 

across the genes in DH92 and DH121 only, in the case of the shared stripe rust resistance, 

and across the genes in DH92 only, in the case of the DH92-specific leaf and stem rust 
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resistance. To reduce the number of genes to manually check, I removed any genes with 

less than 2x mean mapping coverage across their length in either DH92 or DH121. The 

gene models were manually curated using the available evidence. For NLR predictions 

with no gene model but transcriptomic and ab initio evidence, gene models were 

manually constructed. The novelty of the uniquely introgressed NLRs was tested by 

extracting the NB-ARC domains using hmmscan from hmmer v3.3 and aligning them using 

BLASTp from blast+ v 2.7.1 to the proteins of high-confidence genes from Chinese Spring 

and 15 other wheat cultivars (Walkowiak et al., 2020; White et al., 2024) and to the 

proteins of the wheat progenitor species: Ae. tauschii (Luo et al., 2017); T. urartu (Ling et 

al., 2018); and T. turgidum ssp. dicoccoides (Avni et al., 2017). Hits below 85% identity 

were considered novel. The novelty of the other protein types was tested by aligning the 

whole amino acid sequence to the same protein set; proteins below <80.0% were 

considered novel. 
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3 Heat stress tolerance in field conditions derived from exotic alleles and 

Ae. tauschii introgression 

This chapter is an adaptation of work that has been published in Communications Biology 

(Molero et al., 2023) (Appendix D2) and appears with permission granted by the Creative 

Commons Attribution 4.0 International License. 

This work was a collaboration between the Anthony Hall group at the Earlham Institute 

and the Wheat Physiology Group at CIMMYT, led by Matthew Reynolds. Gemma Molero 

and the other authors from CIMMYT (Francisco Pinto, Francisco J Piñera-Chávez and 

Carolina Rivera-Amado) grew and phenotyped the plants. Ryan Joynson conducted the 

GWAS analysis and discovered the effect of the three favourable alleles on yield and 

canopy temperature. I identified introgressed material, narrowed down the interval and 

conducted candidate gene work. I also conducted the statistical analyses presented here, 

under the advice of Gemma Molero. I made all of the figures, except for Fig. 3-6, which 

was made by Ryan Joynson. Figs. 3-1, 3-2, 3-3 and 3-5 were based on mock-ups made by 

Gemma Molero, and Fig. 3-7 was based on a mock-up made by Ryan Joynson. 

3.1 Abstract 

Increased heat stress driven by global warming is a major threat to wheat productivity. 

This necessitates the identification of heat tolerant alleles and the subsequent 

development of new wheat varieties that are more resilient to future climatic change. 

CIMMYT have developed an association mapping panel, HIBAP I, to represent the 

diversity found in their spring wheat collection, which includes exotic material such as 

synthetic-derived lines and landraces. HIBAP I was evaluated in the field under heat stress 

and yield potential conditions, demonstrating that exotic-derived lines performed better 

under heat stress than Elite lines. This phenotype data from the field was then combined 

with SNPs identified using enrichment capture sequencing data to conduct a genome-

wide association study to reveal three exotic-derived pleiotropic loci underlying this heat 

tolerance which together boost yield by over 50% and reduce canopy temperature by 

around 2 °C. I then identified an Ae. tauschii introgression underlying the locus of largest 

effect size, which confers around 32.2% increased yield under heat stress. Finally, I 

extracted candidate genes and demonstrate the limitations of relying on the wheat 
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reference genome, particularly when divergent introgressed material is underlying the 

trait under investigation. 

3.2 Introduction 

3.2.1 Heat stress as a major challenge for future global wheat production 

Heat is one of the major abiotic stresses that threatens wheat production. Even in the 

absence of future global warming, unusually hot seasons can be disastrous for wheat 

yield. For example, in 2010, during Russia’s hottest summer in 130 years, wheat yield was 

reduced by 30% (Wegren, 2011). As global temperatures rise in coming years, heat stress 

will become an increasingly significant problem, with a predicted yield reduction of 6% for 

every 1°C rise in temperature and 9.1% ± 5.4% per 1°C rise in the most affected regions 

(Asseng et al., 2014). Rising temperatures will also likely increase the occurrence of other 

abiotic stressors such as drought, salinity, and waterlogging (Wang, Vinocur and Altman, 

2003; Chapman et al., 2012; Lamaoui et al., 2018; Lawas et al., 2018; Nasser et al., 2020; 

Surówka, Rapacz and Janowiak, 2020) as well as pathogens and pests whose range, 

lifestyle, and interactions with crops may change with the climate (Garrett et al., 2006; 

Classen et al., 2015; Surówka, Rapacz and Janowiak, 2020). 

Both continual heat stress throughout the growing season and heat stress restricted to 

the reproductive phases (known as terminal heat stress) (Nesar et al., 2022) negatively 

impact yield; both of which are predicted to increase in frequency and intensity in the 

future (Reynolds et al., 2016). Heat stress negatively impacts yield by targeting a variety 

of physiological processes in plants (Akter and Rafiqul Islam, 2017). Heat stress impacts 

the vegetative, reproductive and grain filling phases of the crop cycle, although the 

reproductive and grain filling phases are especially susceptible to heat stress which is why 

terminal heat stress can be so devastating. In particular, pre-flowering and anthesis are 

the stages most affected by heat stress (Cossani and Reynolds, 2012; Bheemanahalli et 

al., 2019). 

Heat stress reduces the efficiency of photosynthesis and respiration, reduces leaf area 

and crop duration and accelerates leaf senescence (Reynolds et al., 2016; Balla et al., 

2019; Degen, Orr and Carmo-Silva, 2021). Temperatures greater than 30°C during pollen 

development causes pollen abortion (Begcy et al., 2018; Ullah et al., 2022) and heat stress 

during grain development shortens the duration of grain filling (Dias, Bagulho and Lidon, 
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2008; Dias, Lidon and Ramalho, 2009; Ullah et al., 2022) and lowers the accumulation of 

starch and protein in the grain (Ullah et al., 2022) by lowering the rate of starch 

biosynthesis (Begcy et al., 2018). This results in reduced floret fertility and grain weight 

(Reynolds et al., 2016), critical components of yield, which have been found to be 

reduced by 40.17-41.19% under heat stress induced by delayed sowing (Shenoda et al., 

2021). High temperatures can also reduce the duration of the crop cycle. Heading dates 

are predicted to advance, on average, by 1 week between 2020-2049 and by 2-3 weeks 

by 2100 (Gouache et al., 2012). A shorter grain-filling stage, less time between heading 

and maturity (Mohammadi et al., 2012), and more generally less time between successive 

phenological events (Zahedi and Jenner, 2003) will also lead to reduced yield. 

3.2.2 HiBAP I – CIMMYT’s high biomass association panel 

Exploring available germplasm for heat tolerance traits is an important step towards 

identifying genetic variation underlying such traits. CIMMYT have developed a spring 

wheat association mapping panel, HiBAP I (High Biomass Association Panel) (Molero et 

al., 2019) that is representative of the diversity contained within CIMMYT’s 75000 wheat 

cultivar collection (Lyra et al., 2021). HiBAP I contains 149 lines which are either high-

yielding Elite varieties or lines with a pedigree history including crosses with exotic 

parents (Fig. 3-1). These exotic parents include synthetic-derived lines, which possess up 

to 43% donor DNA from Ae. tauschii and durum wheat (Joynson et al., 2021); 

introgression lines with introgressions from S. cereale (Rye) and/or Th. Ponticum (Joynson 

et al., 2021); and landraces from Mexico and India. The Elite lines in the panel include 11 

varieties released by CIMMYT between 1966 and 2007 and 42 lines identified during 

screening of CIMMYT breeding and pre-breeding material for high biomass/radiation use 

efficiency across different growth stages. Lines were chosen from a pre-panel of over 250 

lines if, under yield potential field conditions (optimal conditions for maximising yield), 

the plants presented a favourable agronomic background and had similar height and 

phenology (time of transition between phenological stages). This was done to reduce the 

confounding effects that extreme height or phenology may have on traits of interest. 
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Figure 3-1. Number of lines in HiBAP I from each group. 

This panel was developed as part of CIMMYT’s long-standing objective to incorporate 

exotic variation to develop varieties of wheat more tolerant to abiotic stress and to 

support developing nations and future proof crop production against significant 

environmental changes. The panel is a good potential source of variation underlying 

abiotic stress tolerance as synthetic lines and landraces in CIMMYT germplasm have 

previously been identified that produce higher yield under heat stress and drought when 

compared to Elite varieties (Lopes and Reynolds, 2011; Cossani and Reynolds, 2015). 

However, only a small proportion of these promising genetic resources have been 

properly evaluated for climatic tolerance and as described in section 1.9, despite the 

promise of this material, breeders tend to avoid exotic material due to reduced 

recombination and possible linkage drag of introgressed segments (McCouch et al., 

2020). 

3.2.3 Genome-wide association studies and typical downstream approaches for refining 

intervals 

Genome-wide association studies aim to understand the genetic bases of complex traits 

by looking for associations between genetic markers and phenotypic variation across a 

population of individuals (Brachi, Morris and Borevitz, 2011). The central output of a 

GWAS is a set of significant MTAs. Each MTA consists of a single SNP within an interval of 

linked SNPs that are significantly associated with phenotypic variation in a given trait. 
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When the resolution of genotyping is high enough, provided population structure and size 

permit it, it can be possible to narrow down the MTA interval to a single gene (Brachi, 

Morris and Borevitz, 2011). However, in most cases, particularly when using a genotyping 

array or enrichment capture sequencing to generate genotyping data, population size is 

small, and/or linkage disequilibrium is high around the favourable allele in the population 

studied, a larger interval will be identified. It is also often the case that the causal SNP 

falls within intergenic regulatory regions, preventing the gene under regulation being 

identified. 

In the context of pre-breeding, GWAS are useful for traits governed by a few genes of 

major effect, compared with traits like grain yield which are usually governed by many 

loci of minor effect. MTAs identified in a GWAS can be deployed in breeding programmes 

through marker-assisted selection (K. Singh et al., 2021). They can also act as a starting 

point for fine mapping to identify the most important variants and genes underlying the 

variation in the trait (Broekema, Bakker and Jonkers, 2020), and can help lead to the 

elucidation of the molecular mechanism underlying the trait. 

Following a GWAS, the identified intervals containing MTAs are typically searched to 

identify candidate genes, variation in which may be underlying the variation in phenotype 

for the trait under investigation. These then become priorities for further study. To guide 

the selection of candidate genes, previous research on the gene or orthologues of the 

gene in other species is examined to determine if they have previously been implicated in 

the trait under investigation. Additionally, genes harbouring functionally-relevant 

mutations, such as those that alter the amino sequence, are more likely to be chosen as 

candidates. Biparental mapping populations can be generated to validate MTAs and, in 

conjunction with forward genetic screening, reduce the size of the interval and identify 

the causal gene(s). 

3.2.4 Chapter aims 

• Analyse physiological data gathered in the field, comparing exotic-derived and 

Elite lines under heat stress and yield potential conditions. 

• Conduct genome-wide association study to uncover loci underlying heat stress 

tolerance. 

• Use mapping coverage and SNP information to identify introgressed material 

underlying any of the MTAs. 
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• Identify candidate genes underlying the MTAs and explore limitations of relying on 

a single reference genome. 

3.3 Results 

3.3.1 Physiological analysis of HiBAP I in heat stress and yield potential environments. 

HiBAP I was grown and evaluated for two consecutive years under both yield potential 

and heat stress conditions, which were conferred by delaying sowing for 3 months. Across 

the two years, the heat stress severely impacted almost all measured physiological traits 

(Fig. 3-2). For example, yield was 48.1% lower than in the yield potential conditions, the 

duration of the crop cycle was 30.6% shorter, and there were 26.8% more infertile 

spikelets per spike. 

 

Figure 3-2. Effect of heat stress on various physiological traits. 
Looks at yield (YLD), thousand grain weight (TGW), number of spikelets per spike (SPKLSP-

1), number of spikes per m2 (SM2), plant height (Height), number of infertile spikelets per 
spike (infertile SPKLSP-1), harvest index (HI), grain weight per spike (GWSP), number of 
grains per spike (GSP), grain number (GM2), days to physiological maturity (DTM), days to 
anthesis or days to heading (DTA/DTH for yield potential and heat stress experiments 
respectively), and biomass at physiological maturity (BM_PM), showing the percentage 
difference yield potential conditions compared to heat stress conditions. 
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To determine whether Elite and exotic-derived lines respond differently to heat stress, I 

compared trait values of Elite and exotic-derived lines under heat stress and yield 

potential conditions (Fig. 3-3, Table 3-1). This revealed that exotic-derived lines have 

significantly higher yield than Elite lines in the heat stress conditions but have the same 

yield under yield potential conditions. Exotic-derived lines had significantly higher 

thousand grain weight under both conditions, higher grain number under heat stress 

conditions but lower grain number under yield potential conditions, higher biomass 

under both conditions, and were taller under both conditions. Elite lines had higher 

harvest index under yield potential conditions but there was no difference under heat 

stress conditions.
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Figure 3-3. Comparison of physiological traits between Elite and exotic-derived lines in 
HiBAP I measured under both heat stress and yield potential conditions. 
Measured traits are yield (YLD), thousand grain weight (TGW), grain number (GM2), 
biomass at physiological maturity (BM_PM), harvest index (HI), and Height. The boxplots 
are defined as follows: centre line = median; box limits = upper and lower quartiles, 
whiskers = 1.5x interquartile range; points = outliers. The significance of the difference 
between Elite (n = 83 biologically independent lines) and exotic-derived (n = 66 
biologically independent lines) lines for each trait was assessed using two-tailed t tests 
with no assumption of equal variance. p-values below 0.01 were considered significant 
(*), below 0.001 very significant (**) and below 0.0001 highly significant (***). Means, 
standard deviations, confidence intervals and p-values can be found in Table 3-1. 
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Table 3-1. Summary statistics for physiological traits measured under heat stress or yield potential conditions over 2 years. Confidence 
intervals and p-values were calculated using two-tailed t tests with no assumption of equal variance to compare Elite lines (N=83) with 
exotic-derived lines (N=66). 

Trait Condition Elite mean ± S.D Exotic mean ± S.D 95% confidence interval p-value 

YLD (g m-2) Heat stress 265±69.6 365±88.1 -126, -73.6 9.61e-12 

TGW(g) Heat stress 32.3±3.36 35.7±3.27 -4.43, -2.28 7.66e-09 

GM2(no. grains m-2) Heat stress 8120±1913 10246±2054 -2776, -1476 1.685e-09 

BM_PM (g m-2) Heat stress 565±138 786±169 -272, -170 3.38e-14 

HI Heat stress 0.465±0.0232 0.466±0.0229 -0.0009151, 0.000588 0.668 

Height (cm) Heat stress 61.6±4.55 67.2±6.03 -7.34, -3.80 7.69e-09 

YLD (g m-2) Yield potential 560±42.0 590±35.6 -2.51, 22.6 0.116 

TGW(g) Yield potential 42.4±3.95 45.7±4.06 -4.69, -2.07 1.03e-06 

GM2(no. grains m-2) Yield potential 14228±1066 12986±1374 835, 1649 1.78e-08 

BM_PM (g m-2) Yield potential 1331±84.4 1385±97.2 -83.6, -23.7 5.54e-04 

HI Yield potential 0.478±0.0242 0.456±0.0225 0.0140 ,0.0291 9.21e-08 

Height (cm) Yield potential 97.9±3.99 102±4.98 -5.22, -2.24 2.41e-06 
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3.3.2 The relationship between yield and canopy temperature/NDVI under heat stress 

During both vegetative and grain filling stages, exotic-derived lines had significantly 

higher normalised difference vegetation index (NDVI) and significantly lower canopy 

temperature than Elite lines under heat stress but not under yield potential conditions 

(Fig. 3-4, Table 3-2). NDVI was significantly positively correlated with yield and canopy 

temperature was significantly negatively correlated with yield during both vegetative and 

grain filling stages but only under heat stress conditions (Fig. 3-5, Table 3-3). The traits 

were not correlated under yield potential conditions. The exotic-derived lines had higher 

correlation coefficients than Elite lines under heat stress, suggesting that they had a 

stronger relationship between NDVI and yield and canopy temperature and yield. 

 

Figure 3-4. Comparison of canopy temperature and NDVI at the vegetative and grain-
filling stages between Elite and exotic-derived lines in HiBAP I measured under both 
heat stress and yield potential conditions. 
The boxplots are defined as follows: centre line = median; box limits = upper and lower 
quartiles, whiskers = 1.5x interquartile range; points = outliers. The significance of the 
difference between Elite (n = 83 biologically independent lines) and exotic-derived (n = 66 
biologically independent lines) lines for each trait was assessed using two-tailed t tests 
with no assumption of equal variance. p-values below 0.01 were considered significant 
(*), below 0.001 very significant (**) and below 0.0001 highly significant (***). Means, 
standard deviations, confidence intervals and p-values can be found in Table 3-2.
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Table 3-2. Summary statistics for canopy temperature and NDVI under heat stress or yield potential conditions over 2 years, during the vegetative and the 
grain-filling phenological stages. Confidence intervals and p-values were calculated using two-tailed t tests with no assumption of equal variance to 
compare Elite lines (N=83) with exotic-derived lines (N=66). 

Trait Phenological 

Stage 

Condition Elite mean ± S.D Exotic mean ± S.D 95% confidence interval p-value 

CT (°C) Vegetative Heat stress 31.8±0.987 30.5±1.05 1.05, 1.71 1.681e-13 

CT (°C) Grain-filling Heat stress 35.3±1.09 33.7±1.27 1.23, 2.01 2.122e-13 

NDVI Vegetative Heat stress 0.535±0.0467 0.603±0.0530 -0.0838, -0.0510 3.079e-13 

NDVI Grain-filling Heat stress 0.280±0.0248 0.311±0.0290 -0.0404, -0.0227 1.133e-10 

CT (°C) Vegetative Yield potential 26.0±0.271 26.0±0.240 -0.0826, 0.0831 0.9949 

CT (°C) Grain-filling Yield potential 29.4±0.331 29.4±0.305 -0.164, 0.0428 0.2488 

NDVI Vegetative Yield potential 0.816±0.0105 0.814±0.0110 -0.00154, 0.00545 0.2712 

NDVI Grain-filling Yield potential 0.810±0.0140 0.806±0.0132 1.93e-06, 8.85e-03 0.0499 
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Figure 3-5. NDVI and canopy temperature were measured with UAVs at pre-heading 
(vegetative stage) and during grain filling. 
Regression lines were calculated using Pearson’s correlation coefficient between each 
pair of traits (n = 83 and 66 biologically independent lines for the Elite and exotic-derived 
groups, respectively) and added for classification/condition combinations with a 
significant correlation (p-value < = 0.01). The correlation coefficient, r, and the steepness 
of the line, ranges from −1 to 1, signifying very negatively correlated and very positively 
correlated, respectively. Correlation coefficients, confidence intervals and p-values can be 
found in Table 3-3.
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Table 3-3. Pearson’s correlation tests between NDVI and Yield and between Canopy temperature (CT) and yield under either heat stress or yield potential 
conditions and at either the vegetative or grain filling phenological stage. 

Trait Condition Phenological stage Line classification Pearson’s 

correlation 

coefficient (r) 

95% confidence 

interval 

p-value 

NDVI Heat stress Vegetative Elite 0.753 0.641, 0.833 2.29e-16 

NDVI Heat stress Vegetative Exotic-derived 0.814 0.712, 0.882 <2.2e-16 

NDVI Yield potential Vegetative Elite -0.197 -0.396, 0.0197 0.0745 

NDVI Yield potential Vegetative Exotic-derived -0.187 -0.410, 0.0579 0.133 

NDVI Heat stress Grain Filling Elite 0.444 0.252, 0.602 2.64e-05 

NDVI Heat stress Grain Filling Exotic-derived 0.712 0.568, 0.814 2.00e-11 

NDVI Yield potential Grain Filling Elite -0.256 -0.447, -0.0425 0.0196 

NDVI Yield potential Grain Filling Exotic-derived 0.0943 -0.151 ,0.329 0.451 

CT (°C) Heat stress Vegetative Elite -0.758 -0.837, -0.648 <2.2e-16 

CT (°C) Heat stress Vegetative Exotic-derived -0.875 -0.922, -0.804 <2.2e-16 
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Table 3-3 

CT (°C) Yield potential Vegetative Elite -0.260 -0.450, -0.0467 0.0177 

CT (°C) Yield potential Vegetative Exotic-derived 0.00350 -0.239, 0.245 0.978 

CT (°C) Heat stress Grain Filling Elite -0.702 -0.797, -0.573 1.44e-13 

CT  (°C) Heat stress Grain Filling Exotic-derived -0.859 -0.912, -0.779 <2.2e-16 

CT (°C) Yield potential Grain Filling Elite -0.206 -0.403, 0.0105 0.0621 

CT (°C) Yield potential Grain Filling Exotic-derived -0.265 -0.476, -0.0243 0.0317 
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3.3.3 Genome-wide association study to identify genetic loci associated with heat 

tolerance 

To identify genomic loci associated with the physiological traits under heat stress 

conditions, my colleague Ryan Joynson conducted a GWAS using genotyping data 

generated in (Joynson et al., 2021) using enrichment capture Illumina paired-end reads, 

and the physiological data collected in the field. This GWAS revealed three marker trait 

associations (MTAs) at chr1B-63398861 (favourable allele = C; interval = 0.6-10 Mbp), 

chr2B-820002 (favourable allele = C; interval = chr2B:0-1 Mbp) and chr6D-6276646 

(favourable allele = T; interval = chr6D:3-7.5 Mbp) (Molero et al., 2021) (Fig. 3-6). These 

MTAs were associated with many traits under heat stress (Table 3-4), including 5 yield 

traits, 3 stress tolerance indices, and NDVI and canopy temperature at both vegetative 

and grain-filling stages. The MTAs were not associated with phenological traits, 

suggesting that the observed heat tolerance was not driven by alterations to the timing of 

phenological stages. 
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Figure 3-6. GWAS results for stress susceptibility index (SSI) under heat stress, one of 
the traits studied as an example. 
A) Manhattan plot showing the -log10 of p-values for each SNP, sorted by genomic 
location. The horizontal blue line indicates an arbitrary cutoff of −log10(p) of 5. The 
horizontal red line indicates the conservative Benjamini–Hochberg cutoff implemented by 
GAPIT. B) Quantile-quantile (Q-Q) plot for the GWAS. This Q-Q plot illustrates the 
distribution of p-values obtained from the GWAS for this trait. The x-axis represents the -
log10 of expected p-values under the null hypothesis, assuming no true genetic 
associations. The y-axis represents the -log10 of observed p-values resulting from the 
GWAS analysis. The black dots represent the observed p-values of each SNP, sorted in 
ascending order by -log10 p-value. Dots deviating from the red line indicate significant 
associations between genetic markers and the trait values. 

 

 

 

 

 

 

 

A 
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Table 3-4. Summary of Marker-Trait Associations (MTAs) for different physiological traits. 
Trait Chromosome MTA ID Position p-value Interval 

Yield Traits      

YLD chr1B chr1B-63398861 63398861 8.32e-08 0.6-10 Mbp 

 chr6D chr6D-6276646 6276646 4.16e-07 3-7.5 Mbp 

BM chr1B chr1B-63398861 63398861 3.4e-08 0.6-10 Mbp 

 chr2B chr2B-820002 820002 0.00000434 1 Mbp 

 chr6D chr6D-6276646 6276646 1.94e-07 3-7.5 Mbp 

GFR chr1B chr1B-63398861 63398861 6.55e-07 0.6-10 Mbp 

 chr6D chr6D-6276646 6276646 0.00000439 3-7.5 Mbp 

GM2 chr1B chr1B-63398861 63398861 6.4806e-06 0.6-10 Mbp 

 chr6D chr6D-6276646 6276646 2.8069e-07 3-7.5 Mbp 

SM2 chr1B chr1B-63398861 63398861 4.1647e-07 0.6-10 Mbp 

      

Stress Tolerance Index      

Stress_intYLD chr1B chr1B-63398861 63398861 5.9082e-08 0.6-10 Mbp 

 chr2B chr2B-820002 820002 5.4266e-06 1 Mbp 

 chr6D chr6D-6276646 6276646 5.9158e-08 3-7.5 Mbp 

Stress_intBM chr1B chr1B-63398861 63398861 3.1404e-08 0.6-10 Mbp 

 chr2B chr2B-820002 820002 7.1692e-06 1 Mbp 

 chr6D chr6D-6276646 6276646 3.1404e-08 3-7.5 Mbp 

Stress_intGM2 chr1B chr1B-63398861 63398861 2.6569e-08 0.6-10 Mbp 

 chr2B chr2B-820002 820002 7.1074e-07 1 Mbp 

 chr6D chr6D-6276646 6276646 6.6123e-08 3-7.5 Mbp 

      

UAV measurements      

UAV_CTvg_AV chr1B chr1B-63398861 63398861 1.8924e-07 0.6-10 Mbp 
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Table 3-4 
 chr2B chr2B-820002 820002 9.0008e-06 1 Mbp 

 chr6D chr6D-6276646 6276646 6.1095e-06 3-7.5 Mbp 

UAV_CTgf_AV chr1B chr1B-63398861 63398861 1.7673e-07 0.6-10 Mbp 

 chr2B chr2B-820002 820002 2.2766e-06 1 Mbp 

 chr6D chr6D-6276646 6276646 1.8452e-07 3-7.5 Mbp 

UAV_NDVIvg_AV chr1B chr1B-63398861 63398861 4.0814e-07 0.6-10 Mbp 

 chr2B chr2B-820002 820002 6.4281e-06 1 Mbp 

UAV_NDVIgf_AV chr6D chr6D-6276646 6276646 5.7295e-06 3-7.5 Mbp 

 

3.3.4 Effect of allele combinations on yield and canopy temperature 

The favourable C allele at the chr1B and chr2B MTAs always co-occur. Lines with both of 

these alleles and the unfavourable A allele at the chr6D MTA have 24.3% higher yield 

under heat stress compared to lines with unfavourable allele at each of the three MTAs. 

Lines which also have the favourable T allele at the chr6D MTA have 56.5% higher yield 

under heat stress compared to lines with the unfavourable allele at each of the three 

MTAs (Fig. 3-7, Table 3-5). Assuming the three alleles do not interact epistatically and the 

T allele on chr6D can function independently of the other alleles, the T allele on chr6D 

can be assumed to increase yield under heat stress by 32.4%. Lines with the favourable 

allele at all three MTAs show a reduction in canopy temperature of 1.97 °C and 2.37 °C, at 

vegetative and grain filling stages, respectively, when compared to lines with the 

unfavourable allele at all three positions (Fig. 3-7, Table 3-5). Under yield potential 

conditions, no difference was observed between favourable and unfavourable allele 

combinations for yield or for canopy temperature (Fig. 3-7, Table 3-5). 
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Figure 3-7. Effect of allele combinations from the three MTAs (chr6D-6276646, chr1B-
63398861, and chr2B-820002) on yield and on canopy temperature under heat stress 
and yield potential conditions. 
The combination of favourable alleles is T+C+C and the combination of unfavourable 
alleles is A+A+G. The boxplots are defined as follows: centre line = median; box limits = 
upper and lower quartiles, whiskers = 1.5x interquartile range; points=outliers. The 
percentage change and °C change is calculated compared to lines with the unfavourable 
alleles at all each of the three MTAs. The significance of the different between allele 
combinations was computed using a one-way ANOVA test (n = 87, 14, and 31 biologically 
independently lines for A+A+G, A+C+C and T+C+C, respectively). Means, standard 
deviations and p-values from Tukey’s honest significance test can be found in Table 3-5. 
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Table 3-5. Yield and canopy temperature of the different allele combinations at the MTAs at chr6D-6276646, 1B chr1B-63398861, and 2B chr2B-820002. 
The combination of favourable alleles is T+C+C and the combination of unfavourable alleles is A+A+G. The significance of allele combinations was 
computed using a one-way ANOVA test and post-hoc test using Tukey's honest significance test. 

   Mean ± S.D Tukey’s HSD p-values 

Trait Condition Anova p-

value 

A+A+G A+C+C T+C+C A+C+C-

A+A+G 

T+C+C-

A+A+G 

T+C+C- 

A+C+C 

Yield Heat stress <2e-16 263±67.3 g m-2 327±79.5 g m-2 411±59.8 g m-2 2.58e-3 0.00 3.18e-4 

Yield Yield Potential 0.238 600±44.8 g m-2 591±28.5 g m-2 587±27.7 g m-2 0.681 0.242 0.937 

CT Heat stress <2e-16 31.8±0.987 °C 31.0±0.963 °C 29.9±0.556 °C 5.97e-3 0.00 2.21e-4 

CT Yield Potential 0.210 26.0±0.255 °C 26.0±0.318 °C 25.9±0.243 °C 0.676 0.211 0.921 
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The favourable allele at each of these MTA sites is almost exclusively found in exotic-

derived lines. 50/55 (chr1B), 44/45 (chr2B) and 33/33 (chr6D) lines that possess the 

homozygous favourable allele at the chr1B, chr2B and chr6D MTAs, respectively, are 

classified as exotic-derived. 7 lines have a heterozygous SNP call (A/T) at 6D-6276646, 3 of 

which are classified as exotic-derived. The HiBAP lines are inbred to the F9 or F10 

generation, so most sites are expected to be homozygous. As the sequencing data was 

derived from pooled samples of plants from each line, the heterozygous calls could be 

caused by homozygous and heterozygous alleles segregating at this locus. If this were 

true, we would expect to see a phenotype that is intermediate between that possessed 

by lines with the favourable allele and that possessed by lines with the unfavourable 

allele. However, there is no significant difference in yield or canopy temperature between 

lines with the A/T genotype and lines with the T/T genotype (Fig. 3-8). Without a larger 

number of heterozygous lines, it is difficult to draw definitive conclusions, but it seems 

likely that the 7 lines with the A/T genotype called at 6D-6276646 truly have that 

genotype. 
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Figure 3-8. Yield and vegetative canopy temperature under heat stress conditions for 
lines with homozygous unfavourable allele (A/A), heterozygous for the favourable allele 
(A/T) and homozygous for the favourable allele (T/T). 
Black points indicate individual data points; these were included due to the small sample 
size of lines with the A/T genotype. Significance was computed using a one-way ANOVA 
test (n=109, 7, and 32 biologically independently lines for A/A, A/T and T/T, respectively). 
Tukey’s honest significance test was used to calculate adjusted p-values for each pairwise 
comparison. 
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3.3.5 Uncovering an Ae. tauschii introgression underlying the chr6D marker-trait 

association 

The exotic material in the pedigree history of most of the lines possessing the favourable 

alleles suggests that the source of the alleles, and thus of the heat tolerance phenotype, 

may have been a wild or domesticated relative, either through historic introgressions or 

through CIMMYT’s synthetic wheat programme. 

As demonstrated in chapter two, deviation in mapping coverage of sequencing reads can 

be used to identify divergent regions of the genome in a sequenced line. However, in this 

case, due to the increased number of lines and lack of parental sequencing information, it 

is more appropriate to compare mapping coverage of each line to the median mapping 

coverage value for each window across the panel of 149 lines, instead of comparing 

mapping coverage to the parent lines as in chapter two. This number of lines also allows 

us to statistically determine outliers in mapping coverage using the outliers package in R. 

To illustrate this, Fig. 3-9 shows the coverage deviation values across each chromosome 

for three HiBAP lines with large previously characterised introgressions (Ren et al., 2009; 

Niu et al., 2014; Joynson et al., 2021). HiBAP_58 has a Rye introgression on chr1B 

between 0 and around 239 Mbp. HiBAP_39 has a Th. ponticum introgression on chr7D 

from around 340 Mbp to the end of the chromosome at 638.7 Mbp. HiBAP_2 contains 

both the Rye and Th. ponticum introgression. However, each of these shows intermediate 

levels of coverage deviation which suggests these introgressions are in a heterozygous 

state.
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Figure 3-9. Using mapping coverage deviation to identify divergent regions of the 
genome in sequenced lines from HiBAP I, using 5 Mbp genomic windows. 
For each line, in each genomic window, mapping coverage deviation is calculated against 
the median of the panel for that genomic window. Red points are statistically significant 
outliers (n = 149 biologically independent lines). The lines displayed here, possess 
previously characterised introgressions: a Rye introgression on chr1B in HiBAP_58 and 
HiBAP_2 and a Th. Ponticum introgression on chr7D in HiBAP_39 and HiBAP_2. In 
HiBAP_2, the two introgressions appear to be heterozygous due to the intermediate level 
of mapping coverage deviation compared to the same introgressions in the other two 
lines. 

Using this method, I searched for regions of reduced mapping coverage overlapping the 

three MTAs. This revealed a probable introgression at the start of chr6D, overlapping the 

chr6D MTA interval in multiple lines from HIBAP I, including all 33 lines with the T/T 

genotype and all 7 lines with the A/T genotype at MTA 6D-6276646. I found no evidence 

of introgressions overlapping the chr1B or the chr2B MTA intervals. To support the 

mapping coverage deviation and to identify the origin of the chr6D introgression, I used 

SNPs specific to wild/domesticated wheat relatives. I found that homozygous Ae. tauschii 

SNPs overlapped the region of reduced mapping coverage. 

To illustrate this, I’ve used Sokoll (HiBAP_57), a synthetic-derived cultivar that has been 

released in Pakistan (Reynolds et al., 2017). Blocks of mapping coverage deviation below 

1 and homozygous Ae. tauschii-specific SNPs reveal several Ae. tauschii introgressions in 

the D subgenome which is expected due to its synthetic origin (Fig. 3-10). This includes 

Ae. tauschii at the start of chr6D, overlapping with the MTA. Due to Ae. tauschii belonging 

to wheat’s primary genepool and being very genetically similar to the D subgenome, the 

reduction in mapping coverage seen within Ae. tauschii introgressions is much lower than 

seen in introgression from more distant species, such as the Am. muticum introgressions 

studied in chapter two.
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Figure 3-10. Ae. tauschii introgressions in Sokoll (HiBAP_57). 
A) Mapping coverage between Sokoll and the median of the panel in 5 Mbp genomic 
windows. Red points are statistically significant outliers (n = 149 biologically independent 
lines). The red box indicates the Ae. tauschii introgression overlapping the chr6D MTA B) 
The number of homozygous Ae. tauschii-specific SNPs in each 5 Mbp genomic window. 
The red box indicates the Ae. tauschii introgression overlapping the chr6D MTA. 

To examine the Ae. tauschii introgression in more detail, I used 1 Mbp genomic windows 

and looked specifically at the first 50 Mbp of chr6D (Fig. 3-11). In Sokoll (HiBAP_57), the 

segment is 31.6 Mbp in length. As Ae. tauschii is from wheat’s primary genome and is 

thus more similar to the D subgenome than more distant wheat relatives are, not every 1 

Mbp window is sufficiently lacking in synteny for reads to map poorly and produce 

significant coverage deviation below 1. This explains why some windows within the 

introgression have a coverage deviation of around 1. However, these windows still have 

Ae. tauschii-specific SNPs and are within a block of 1 Mbp windows in which most have 

significant coverage deviation below 1. Therefore, we can be confident that the 

introgression includes these windows. The fact that this is one contiguous introgression 

can also be seen in Fig. 3-10. 
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Figure 3-11. Ae. tauschii introgressions at the start of chr6D in Sokoll (HiBAP_57). 
The top panel shows deviation in mapping coverage between Sokoll and the median of 
the panel in 1 Mbp genomic windows. Red points are statistically significant outliers (n = 
149 biologically independent lines). The bottom panel shows the number of homozygous 
Ae. tauschii-specific SNPs in each 1 Mbp genomic window. 

Looking at the Ae. tauschii introgression in other HiBAP lines revealed that the segment is 

variable in length, indicating it has recombined since its introduction. The longest 

segment is 31.6 Mbp in length, as seen in Sokoll (HiBAP_57). Various reduced sizes of the 

segment are also found in some of the lines without the favourable allele. To determine 

which specific region of the segment was responsible for the phenotype, I compared the 

segment size and position across the lines. I found that all 40 lines with the favourable T 

allele in a homozygous or heterozygous state have Ae. tauschii between 5.05 Mbp and 

6.85 Mbp on chr6D (based on Chinese Spring coordinates). Furthermore, this region is not 

introgressed in the lines homozygous for the unfavourable A allele. This can be seen in 

Fig. 3-12, in which all six HiBAP lines plotted possess Ae. tauschii at the start of chr6D but 

only the four with the T allele (HiBAP 57, 29, 48, and 65) have Ae. tauschii between 5.05 

Mbp and 6.85 Mbp and have high yield under heat stress (369.67g m-2, 438.18g m-2, 

451.43g m-2, 459.15g m-2), while the 2 lines with the A allele (HiBAP 92 and 103) lack this 

region and have low yield under heat stress (185.72g m-2, 213.34g m-2). 
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Figure 3-12. Visualising Ae. tauschii introgressions across the first 50 Mbp of chr6D in six 
HiBAP I lines. 
Four of the HiBAP lines contain the favourable T allele at chr6D-6276646 (HiBAP 57, 29, 
48, and 65) and two contain the unfavourable A allele at chr6D-6276646 (HiBAP 92 and 
103). Mapping coverage deviation was computed between the HiBAP line and the median 
of the panel in 1 Mbp windows. Red points are statistically significant outliers (n = 149 
biologically independent lines). Ae. tauschii-specific SNP ratio in each 1 Mbp window was 
calculated by dividing the number of homozygous Ae. tauschii-specific SNPs in that 
window by mean number of homozygous Ae. tauschii-specific SNPs in that window across 
the panel. Green lines mark the borders of the region common to all lines with the 
favourable T allele. The purple line indicates the MTA position. 

To further explore the propensity for the introgressed segment to recombine, I looked at 

the segment in five lines whose parents were Sokoll and Weebil1 (Fig. 3-13). As Sokoll has 

the full-length, 31.6 Mbp segment and Weebil1 lacks the segment, variation in the 

segment size in the offspring indicates recombination has taken place within the 

segment. Recombination within the segment took place in all four lines whose parents 

were Sokoll and Weebil1, suggesting that the Ae. tauschii introgression readily 

recombines in a wheat background. The segment in all four lines looks different so there 

doesn’t appear to be clear common recombination sites, although the number of samples 

is too low to properly assess this. 
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Figure 3-13. Ae. tauschii introgressions within 6D:0-50 Mbp in A) Sokoll (HiBAP_57) and 
Weebil1 (HiBAP_110) and B) four lines whose parents were Sokoll and Weebil1. 
Mapping coverage deviation was computed between the HiBAP line and the median of 
the panel in 1 Mbp windows. Red points are statistically significant outliers. Ae. tauschii-
specific SNP ratio in each 1 Mbp window was calculated by dividing the number of 
homozygous Am. muticum-specific SNPs in that window by mean number of homozygous 
SNPs in that window across the panel. Green lines mark the borders of the region 
common to all lines with the favourable T allele in a homozygous or heterozygous state. 
The purple line indicates the 6D MTA position. 

3.3.6 Anchoring the core introgressed region to the Ae. tauschii reference genome 

So far, we have identified the core introgressed region relative to the Chinese Spring 

wheat reference genome. However, due to differences in synteny and variation in gene 

content between Chinese Spring and Ae. tauschii, identifying the corresponding region in 

Ae. tauschii will be more appropriate for candidate gene searches. To extract the 

corresponding region in Ae. tauschii, I aligned the proteins and chromosome sequence of 

chr6D in Chinese Spring with the Ae. tauschii reference genome. I then located where the 

borders and flanking sequence and proteins from the 1.80 Mbp region corresponded on 

the Ae. tauschii reference genome. The corresponding region is a 1.49 Mbp region on 

chr6 of the Ae. tauschii reference genome between 4.63 Mbp and 6.12 Mbp (Fig. 3-14B). 

This represents the probable introgressed chromosome segment, within which the 

gene(s) underlying the MTA is likely found. 

As it is unknown which Ae. tauschii accession is introgressed into these lines, when 

looking for candidate genes, I used multiple Ae. tauschii genomes in case there were 

genes unique to some of the accessions. I extracted the corresponding region from 

chromosome-level genome assemblies of four other accessions (Zhou et al., 2021) using 

alignments between the introgressed region from the Ae. tauschii reference genome and 

the other Ae. tauschii genomes. 

Using the chromosome alignments, I also explored the synteny of the core introgressed 

region between Chinese Spring and Ae. tauschii (Fig. 3-14A). The first half of the core 

introgressed region lacks synteny between Chinese Spring and Ae. tauschii, with most of 

the DNA absent in Ae. tauschii. This corresponds with the poor mapping coverage (low 

coverage deviation value) at the start of the core introgressed region in Fig. 3-12. Synteny 

resumes in the second half of the core introgressed region, in line with better mapping 

coverage (higher coverage deviation value – close to 1) in Fig. 3-12. There is an inversion 
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of around 1 Mbp immediately outside of the core introgressed region. As recombination 

is suppressed within inversions (Li et al., 2023), this may act as a natural boundary to the 

core region. 

 

Figure 3-14. Alignments between Ae. tauschii and the wheat reference genome at the 
start of chr6/chr6D. 
A) Synteny between 6D:1-10,000,000 in Chinese Spring RefSeq v1.0 (Appels et al., 2018) 
and Ae. tauschii Aet v4.0 (Luo et al., 2017). The green box indicates the 1.80 Mbp region 
(1.49 Mbp relative to Ae. tauschii) common to all lines with the favourable T allele, 
corresponding to the green region in Fig. 3-12. The purple line indicates the MTA position. 
B) Alignment of 6D:1-10,000,000 in Chinese Spring RefSeq v1.0 (Appels et al., 2018) and 
6D:1-10,000,000 in Ae. tauschii Aet v4.0 (Luo et al., 2017), illustrating how the syntenic 
region in Ae. tauschii was identified and extracted. 

3.3.7 Identifying candidate genes 

The core introgressed region varied slightly between the five Ae. tauschii accessions; its 

length ranged from 1.49 Mbp to 1.82 Mbp and it contained between 26 and 33 genes 

(Appendix B1). Three genes were identified as potential candidates based on 

comprehensive literature searches of the functionality of related genes. One of these is a 

MIKC-type MADS-box transcription factor gene, AET6Gv20025600, related to 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which, when overexpressed in 

Arabidopsis, leads to chloroplast biogenesis, elevated photosynthesis, and heat tolerance 

(Ning et al., 2021). Although the Ae. tauschii and wheat orthologues have identical 

protein sequences, regulatory differences in this gene could cause a phenotype similar to 

the overexpression phenotype seen in Arabidopsis. 
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I also found a novel mitogen-activated protein kinase (MAPK), 

AetT093_6Dv1G029500/AetAY17_6Dv1G019800, found in two of the Ae. tauschii 

accessions, AY17 and T093, and not found in wheat. MAPKs have been connected to the 

heat stress response in Arabidopsis, rice and maize (Mo et al., 2021) and more specifically 

to oxidative stress tolerance in wheat exposed to prolonged heat stress treatment (Kumar 

et al., 2021). This gene isn’t found in the wheat cultivars from Walkowiak et al. (2020) and 

is only present in some of the Ae. tauschii accessions. This position in the accessory 

genome of Ae. tauschii suggests that this gene evolved fairly recently and is possibly 

involved in environmental adaptation. 

Finally, I identified two type-B two-component response regulator receivers, 

AET6Gv20025700 and AET6Gv20025800, which are related to Arabidopsis response 

regulators (ARRs). Type-B ARRs are transcription factors that regulate cytokinin signalling 

pathways and influence response to abiotic stress (Argyros et al., 2008; Nguyen et al., 

2016; Frank et al., 2020). Loss of function mutants exhibit altered root structure, 

increased light sensitivity, and altered concentrations of chlorophyll and anthocyanins 

(Argyros et al., 2008). Heat stress negatively impacts photosynthetic capacity through the 

reduction of chlorophyll content and photochemical efficiency (Liu et al., 2020). It is 

thought that increased cytokinin, particularly in the leaves, plays a protective role against 

heat stress by clearing reactive oxygen species (ROS) and upregulating heat shock 

response proteins, allowing the plant to maintain normal growth under heat stress. 

The interval surrounding the MTA on chr2B, contains the gene DEHYDRATION-

RESPONSIVE ELEMENT-BINDING PROTEIN 1A (DREB1A). DREB1A is in a family of 

transcription factors that bind DRE/CRT elements during the abiotic stress response. In 

wheat, overexpression of DREB1 has been linked to increased photosynthetic efficiency 

and drought tolerance (Y. Zhou et al., 2020) and lines overexpressing DREB2 were more 

tolerant to heat and cold stress (Lee et al., 2010). Finally, STEROL GLUCOSYLTRANSFERASE 

(SGT) is present within the interval surrounding the MTA on chr1B. Knockout and 

overexpression studies in Arabidopsis suggest that SGT is involved in stability in response 

to heat (Mishra et al., 2013; Misra et al., 2016). 

After identifying candidate genes, I looked whether there were any obvious differences 

between the Ae. tauschii and wheat orthologues that might underlie a functional 

difference. Both ARRs identified have syntenic wheat orthologues, but one of them, 
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AET6Gv20025700, has a myb-binding domain in the annotated gene model which is 

absent from its wheat orthologue TraesCS6D02G014900. If real, this difference could 

underlie a large functional difference in lines with AET6Gv20025700 introgressed. 

However, through manual reannotation to validate this, I found that the difference in 

domain was due to misannotation as in both Ae. tauschii and Chinese Spring. The myb-

binding domain is present and expressed at the mRNA level. To check whether this leads 

to an intact translated protein or if it contains a premature stop codon, I assembled 

transcripts from the mapped mRNA reads and translated the coding regions. The Chinese 

Spring gene has an uninterrupted open reading frame, suggesting that this gene should 

be functional. A difference in this myb domain between lines is therefore unlikely to be 

involved in the heat tolerance trait. 

3.4 Discussion 

3.4.1 Physiological analysis reveals insights into heat tolerance 

As expected, the heat stress imposed on the plants had a major negative effect on most 

of the measured traits, a finding supported by previous studies (Thapa et al., 2020; 

Shenoda et al., 2021). However, exotic-derived lines had significantly higher grain yield 

than Elite lines under heat stress with no penalty under yield potential conditions. Grain 

yield is considered a reliable criterion for assessing heat stress in wheat (Shenoda et al., 

2021) so its use here for that purpose is valid. Exotic-derived lines also had a significantly 

lower stress susceptibility index than Elite lines, adding additional support to the 

resilience of exotic-derived lines under heat stress. The better performance of exotic-

derived lines is unsurprising as exotic parents have been routinely used to enhance 

genetic diversity in wheat pre-breeding programmes and previous research has 

demonstrated that their inclusion leads to enhanced performance under heat stress 

(Cossani and Reynolds, 2015; Pinto, Molero and Reynolds, 2017), drought (Reynolds, 

Dreccer and Trethowan, 2007; Lopes and Reynolds, 2011), and salinity (Colmer, Flowers 

and Munns, 2006). 

The GWAS revealed three markers, predominantly found in exotic-derived lines that are 

associated with a range of traits under heat stress, including higher grain number, higher 

biomass throughout the crop cycle, reduced stress susceptibility index and cooler canopy 

temperature during both the vegetative and the grain-filling phenological stages. These 

alleles are likely responsible for the better performance of exotic-derived lines reported 
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in section 3.3.1. This is further supported by the more distinct difference in yield between 

the different allele combinations than between the exotic-derived lines and Elite lines, 

seen by the tighter distribution in the boxplot and the reduced overlap between groups. 

This is probably caused by not all the exotic-derived lines containing the favourable alleles 

at the MTAs. For example, only 40/66 (60.6%) of exotic-derived lines possess the 

favourable T allele in a homozygous or heterozygous state at the chr6D MTA; however, 

the remaining 26 exotic-derived lines contributed to the comparison between exotic-

derived and Elite lines. 

In this study, there was a negative correlation between canopy temperature and yield 

under heat stress conditions, which was stronger in exotic-derived lines than in Elite lines. 

Furthermore, the three MTAs were associated with canopy temperature, with the canopy 

of lines possessing the favourable alleles at the three MTAs being around 2°C cooler than 

that of lines lacking these alleles. Reduced canopy temperature has been previously 

connected to a higher tolerance to heat stress and drought (Pinto et al., 2010), and 

variation in canopy temperature under heat stress has been previously identified at 

CIMMYT (Pinto et al., 2010). Canopy temperature has also been found to be correlated 

with yield in warm environments under different levels of water availability (Mohammadi 

et al., 2012). Cooler canopies have also been associated with better optimised root 

distribution in wheat (Pinto and Reynolds, 2015). This may be because roots capable of 

supplying sufficient water to cool aerial structures enable increased transpiration and a 

maintenance of a cooler canopy (Amani, Fischer and Reynolds, 1996; Trethowan and 

Mahmood, 2011). Higher transpiration rates have also been associated with increased 

stomatal conductance which could drive increased photosynthesis and the higher 

biomass seen in the exotic-derived lines. 

NDVI is another trait, like canopy temperature, that is easily phenotyped and can act as a 

proxy for heat/drought tolerance (Pinto et al., 2010). It encompasses ground cover and 

canopy nitrogen content and can thus be used as an indirect estimate of the health of 

leaves involved in photosynthesis as healthy green leaves are indicative of stress 

tolerance for drought and heat conditions (Tao et al., 2000). Plants with a staygreen 

phenotype have delayed senescence so can maintain green leaves and undergo 

photosynthesis for longer post anthesis, which improves grain filling (Kamal et al., 2019) 

and yield stability (Kumar et al., 2022), even in heat stress or drought conditions. 
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In this study, NDVI was positively correlated with yield under heat stress conditions with 

this correlation being stronger in exotic-derived lines than in Elite lines. Furthermore, the 

three MTAs were associated with NDVI, providing support for the idea that, in addition to 

keeping a cool canopy, the maintenance of a healthy canopy and green leaves is involved 

in the heat tolerance observed here. 

3.4.2 Validity of using delayed sowing to induce heat stress 

In this study, heat stress was imposed on the plants by delaying sowing by three months, 

with emergence registered in March rather than December. Delaying sowing influences 

not only temperature but also photoperiod and could therefore introduce confounding 

effects into the study. However, for several reasons, this is unlikely to have had a major 

effect on the results. Firstly, the lines used in this study are relatively insensitive to 

photoperiod, having been selected as such using CIMMYT’s shuttle breeding technique. 

Using marker analysis, this insensitivity to photoperiod was confirmed, as the spring allele 

at Vrn-B1 (Vrn-B1A) and Vrn-D1 (Vrn-D1a) was present in around 90% of the HIBAP I 

panel (Dreisigacker et al., 2021). Secondly, several other studies have used delayed 

sowing to effectively evaluate heat tolerance, both at CIMMYT’s Obregon station 

(Reynolds et al., 1994, 2016; Lillemo et al., 2005; Mondal et al., 2013; Cossani and 

Reynolds, 2015) and outside of CIMMYT (Shenoda et al., 2021; Sinha and Kumar, 2022). 

3.4.3 Marker-trait associations uncovered through genome-wide association study 

Combining genotyping data generated through de novo SNP discovery and phenotyping 

data from the field in a genome-wide association study revealed three pleiotropic MTAs. 

When the favourable alleles at each MTA exist in the same line, they confer a 56.5% 

increase to yield and a 1.97 °C/2.37 °C reduction in canopy temperature under heat stress 

conditions compared to lines without the three favourable alleles. These markers are 

associated with multiple traits of agronomic importance, all indicating tolerance to heat 

stress, including yield, biomass, grain per square metre and grain filling rate. 

Interestingly, although these markers are seemingly found in different genomic locations, 

the favourable alleles at the chr1B and chr2B MTAs always co-occur in the same line, and 

these lines also typically possess the favourable allele at the chr6D MTA, although not in 

every case. To explain the co-occurrence of the chr1B and chr2B favourable alleles, it is 

possible that the chr1B and chr2B favourable alleles are in close physical proximity on the 
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same chromosome if there is structural variation between Chinese Spring and the HiBAP 

lines that has caused reads to mismap and these alleles to be incorrectly assigned to 

different chromosomes. Alternatively, these alleles could be interacting epistatically and 

have been selected for a combined function. The latter could also explain the chr6D 

favourable allele typically co-occurring with the chr1B and chr2B favourable alleles. 

Lines containing the favourable alleles are almost all exotic-derived lines. However, they 

are not found in any specific subcategory; they are found in synthetic-derived lines, 

introgressions lines, and landrace-derived lines. This brings the origin of the alleles into 

question and challenges the assumption that the chr6D allele originates solely from 

CIMMYT’s synthetic breeding programme. However, it is possible that a synthetic-derived 

line is in the pedigree history of lines not explicitly labelled as synthetic-derived. Due to 

the challenges of accurately recording pedigree histories in complex pre-breeding 

programmes such as those conducted at CIMMYT, this seems very possible. For the chr6D 

allele, one contender for donor is Sokoll, which is commonly used as a synthetic-derived 

parent line and contains the chr6D Ae. tauschii segment in its longest observed length.  

The MTAs identified here do not overlap with MTAs identified in previous association 

studies that used HIBAP I to identify associations with biomass (Molero et al., 2019) or 

photosynthetic efficiency traits (Joynson et al., 2021). When writing up this research, we 

became aware that the chr6D MTA is supported by a heat tolerance MTA nearby on 

chr6D in (Singh et al., 2018; S. Singh et al., 2021). Our work adds value to this by offering 

independent evidence in a different experiment, in addition to phenotyping more traits 

related to heat tolerance, showing the lack of downside of the allele under yield potential 

conditions, and uncovering the connection between canopy temperature and yield and 

between NDVI and yield. Furthermore, this work also revealed the other two MTAs, on 

chr1B and chr2B, which to our knowledge had not been previously reported. 

3.4.4 Ae. tauschii introgression underlying the marker-trait association on chr6D 

Using coverage deviation and SNP information from the HiBAP I lines, I identified that the 

chr6D MTA overlaps with an Ae. tauschii introgression that readily recombines within 

CIMMYT germplasm. This is promising for the successful deployment of introgressions 

from wheat’s primary genepool into breeding programmes and may reduce concerns 

regarding linkage drag and poor recombination of such introgressions. The recombination 

allowed me to identify a small core region of Ae. tauschii only present in lines with the 
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favourable allele and the heat tolerant phenotype. The smallest segment in the panel that 

contains the favourable allele at the ch6D MTA is around 5 Mbp in length and due to the 

ease with which this region can recombine its size can likely be broken down further. Its 

small size, recombination potential, and telomeric location make it amenable for use in 

breeding programmes. 

Singh et al. (2018) also independently suspected that Ae. tauschii was underlying this 

MTA. However, this relied upon pedigree-based inference and markers that look 

speculative. Here, I confirmed this speculation, providing additional experimental 

evidence to support the hypothesis. Together, the two independent studies provide 

strong evidence that Ae. tauschii is underlying this MTA. 

3.4.5 The limitations of relying on the reference genome for candidate gene discovery 

When searching for candidate genes within the chr6D MTA interval, instead of searching 

within the Chinese Spring wheat reference genome, I instead searched for genes within 

five Ae. tauschii genomes in the regions corresponding to the core introgressed region 

identified relative to Chinese Spring. While the search for candidate genes within the 

reference genome of the species being studied is generally deemed appropriate, in this 

case, as an Ae. tauschii introgression is underlying the MTA, it is not unlikely that novel 

genes or changes to gene order could result in the causal gene(s) not being present in the 

interval being searched in the reference genome. 

The search resulted in finding a novel Ae. tauschii gene and the absence of the isoflavone 

reductase gene proposed by Singh et al. (2018) as the primary candidate gene which, due 

to gene order differences between Chinese Spring and Ae. tauschii, is not present within 

the core introgressed region, instead being around 3 Mbp upstream. Without discovering 

that an introgression was underlying this MTA and using the corresponding region within 

Ae. tauschii reference genomes as the source for candidate genes, the novel gene would 

have been missed and the isoflavone reductase gene may have been chosen as a 

candidate. This highlights the benefit of considering non-reference genomes, especially 

when introgressions from other species are involved. 

Candidate genes are inherently speculative and the genes underlying the heat tolerance 

phenotype might not be any of those suggested here as candidates for several possible 

reasons. Firstly, the causal genes may not be present in the genomes surveyed. Secondly, 
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the causal genes could be missed during the literature search due to the phenotype being 

driven by an unknown or unexpected pathway, or there being a lack of functional 

information available about the genes. Finally, the MTA could be within a regulatory 

element that acts on a gene that is driving the phenotype but is outside the MTA interval, 

making it much more challenging to pinpoint the causal gene. Therefore, while candidate 

genes provide a starting point for follow-up work, they should be treated with caution 

and alternative genes should not be overlooked. 

3.4.6 Future work 

The identification of the three alleles presents an immediate opportunity for breeding by 

incorporating the heat resilience phenotype into Elite wheat cultivars. Currently, CIMMYT 

is designing KASP™ assays for these markers, and European breeding companies have 

expressed interest in using them. Initially, these KASP™ assays can be used to survey 

existing breeding germplasm and nursery collections to assess the presence of the 

favourable alleles. If these alleles are already present in Elite breeding material, their 

identification will accelerate the breeding process. Alternatively, if these alleles are not 

yet part of Elite breeding material, they can be incorporated through marker-assisted 

breeding programmes. If using marker-assisted breeding to incorporate these alleles, the 

selection of donor lines is important. They could be selected using the introgression 

mapping approach shown here to select lines that possess the least amount of divergent 

content while still containing the favourable alleles. This approach aims to minimise the 

introduction of linkage drag and streamline the crossing process.  

Once the favourable alleles have been incorporated into Elite cultivars, their performance 

across diverse environments should be evaluated. This is a crucial step to ensure the heat 

tolerance phenotype is not exclusive to the Mexican climate or the specific field 

conditions of the study. For example, as this experiment was conducted in fully irrigated 

conditions, the effect of drought on the heat resilient phenotype is unknown. 

Beyond immediate practical applications, further characterising the three MTAs will be of 

academic interest. An important part of this will be generating a chromosome-level 

genome assembly from a HiBAP line containing the favourable allele at all 3 MTAs, a task 

that is no longer prohibitively costly, using, for example, PACBIO HIFI sequencing. This 

new reference genome will provide us with the exact gene content of the heat tolerance 

lines and serve as a foundational resource for forward genetic screens to determine the 
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genes underlying the phenotype and for differential expression analyses comparing plants 

under heat stress and yield potential conditions to understand the transcriptional 

response to heat stress. It may also allow us to determine the cause of the common co-

occurrence of favourable alleles. Due to the existence of introgressed material underlying 

the MTA of largest effect size, producing a genome assembly is particularly important, as 

gene content variation can obscure the causal genes and inaccurate read mapping, 

caused by reads mapping poorly to divergent introgressed gene models, can compromise 

the gene expression analysis. 

3.5 Methods 

3.5.1 Plant material and growth conditions 

The High Biomass Association Mapping Panel HiBAP I consists of 149 spring wheat lines 

and is composed of elite high yielding lines and lines with exotic material in their pedigree 

history derived from CIMMYT breeding and pre-breeding programs (Molero et al., 2019). 

These exotic lines include primary synthetic derivative lines, containing between 0.5% 

and 43% donor material (Joynson et al., 2021); Mexican and other origin landrace 

derivative lines; and Elite lines containing an introgressed segment of Th. ponticum on 

chr7D and/or S. cereale on chr1B (Joynson et al., 2021). The set of Elite lines contains 11 

CIMMYT varieties released from 1966 until 2007 and additional lines selected during 

systematic screening of CIMMYT breeding and pre-breeding material under yield 

potential and heat stress field conditions. This allowed the identification of Elite 

genotypes with favourable expression of traits of interest such as high biomass/radiation 

use efficiency at different growth stages including final above ground biomass under both 

yield potential and heat stress conditions. 

To construct the final panel, a pre-panel consisting of more than 250 lines from different 

sources were evaluated in the field under favourable conditions; lines with a favourable 

agronomic background and without extreme height or phenology under yield potential 

conditions were selected to reduce the confounding effect of extreme phenology or 

height on the expression of biomass and other traits. HiBAP I was evaluated during 

2015/16 and 2016/17 under yield potential (YP16 and YP17) and heat stress conditions 

(Ht16 and Ht17). Heat stressed conditions were created with delayed sowing where 

emergence was registered in March instead of November or December as in a normal 

growing cycle. 
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The field experiments were carried out at IWYP-Hub (International Wheat Yield 

Partnership Phenotyping Platform) situated at CIMMYT’s Experimental Station in Campo 

experimental Norman E. Borlaug (CENEB) in the Yaqui Valley, near Ciudad Obregon, 

Sonora, Mexico (27°24’ N, 109°56’ W, 38 masl) under fully irrigated conditions for both 

yield potential and heat stress experiments. The soil type at the experimental station is a 

coarse sandy clay, mixed montmorillonitic typic caliciorthid. It is low in organic matter 

and is slightly alkaline (pH 7.7) (Sayre, Rajaram and Fischer, 1997). Experimental design 

for all environments was an alpha-lattice. Yield potential experiments consisted of four 

replicates in raised beds (2 beds per plot, each 0.8 m wide and 4m long) with four (YP16) 

and two (YP17) rows per bed (0.1 m and 0.24 m between rows respectively) and 4 m long. 

For heat stress experiments, two replicates were evaluated for HiBAP I in 2 m × 0.8 m 

plots with three rows per bed. Seeding rates were 102 Kg ha−1 and 94 Kg ha−1 for YP and 

Ht experiments, respectively. Appropriate weed disease and pest control were 

implemented to avoid yield limitations. Plots were fertilised with 50 kg N ha−1 (urea) and 

50 kg P ha−1 at soil preparation, 50 kg N ha−1 with the first irrigation and another 150 kg N 

ha−1 with the second irrigation. 

3.5.2 Agronomic measurements 

Phenology of the plots was recorded during the cycle using the Zadoks growth scale (GS) 

(Zadoks, Chang and Konzak, 1974), following the average phenology of the plot (when 

50% of the shoots reached a certain developmental stage). The phenological stages 

recorded were heading for heat experiments (GS55, DTH), anthesis for yield potential 

experiments (GS65, DTA) and physiological maturity (GS87, DTM) for both experiments. 

Percentage of grain filling was calculated as the number of days between anthesis and 

physiological maturity divided by DTM. 

Plant height was measured as the length of five individual shoots per plot from the soil 

surface to the tip of the spike excluding the awns. Spike, awn, and peduncle length were 

measured in five shoots per plot before physiological maturity (PM). Fertile (SPKLSP-1) and 

infertile spikelets per spike (InfSPKLSP-1) were also counted in five spikes per plot at PM. 

At physiological maturity, grain yield and yield components were determined using 

standard protocols (Pask et al., 2012). The samples of fertile shoots were oven-dried, 

weighed and threshed to allow calculation of harvest index, biomass at physiological 

maturity, spikes per square meter, grains per square meter, number of grains per spike 
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and grain weight per spike. Grain yield was determined on a minimum of 3.2 m2 to a 

maximum of 4.8 m2 under yield potential experiments and 1.6 m2 under heat 

experiments. In yield potential experiments only, to avoid edge effects arising from 

border plants receiving more solar radiation, 50 cm of the plot edges were discarded 

before harvesting. From the harvest of each plot, a subsample of grains was weighed 

before and after drying (oven-dried to constant weight at 70 °C for 48 h) and the ratio of 

dry to fresh weight was used to determine dry grain yield and thousand grain weight. 

Grain number was calculated as (Yield/TGW) × 1000. Biomass at physiological maturity 

was calculated as yield/HI. Number of spikes per m2 was calculated as biomass at 

physiological maturity / (shoot dry weight/shoot number). 

3.5.3 Unmanned Aerial Vehicle (UAV) for canopy temperature and NDVI estimation 

Aerial measurements for canopy temperature and NDVI were collected using different 

aerial platforms. Each year, logistics and availability determined which platform could be 

used. The multispectral and thermal cameras were calibrated onsite by measuring 

calibration panels placed on the ground before and after each mission. An exception to 

this was the aircraft missions, where a calibration performed at the airfield would not 

have been representative of the trial conditions. The flights were designed as a regular 

grid of north-south flightpaths covering the whole trial with images that overlapped 75% 

in all directions to ensure a good reconstruction of the orthomosaic. The flights were 

performed under clear sky conditions at solar noon ±2 h. 

NDVI and canopy temperature orthomosaics were obtained from the aerial images using 

the software Pix4D. The orthomosaics were then exported to ArcGIS where a grid of 

polygons was adjusted on top of the image. To avoid the border effect, the polygons were 

buffered 0.5 m from the north and south border of the plot. Finally, the pixel values were 

extracted using the ‘raster’ package in R. The value of all the pixels enclosed within each 

polygon was extracted, possible outliers were removed and the average per plot was 

calculated. 

3.5.4 Calculating stress tolerance indices 

To determine the effect of heat stress evaluated across years and panels, the stress 

susceptibility index (SSI) was calculated for each HiBAP I line using data from yield 

potential (Yyp) and heat stress (Yht) experiments as follows: 
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𝑆𝑆𝐼 =
1 − 𝑌ℎ𝑡

𝑌𝑦𝑝

1 −	 Ȳℎ𝑡Ȳ𝑦𝑝

 

where Yht and Yyp are the yield of the HiBAP I line evaluated under heat stress and yield 

potential conditions, respectively, while Ȳht and Ȳyp are the mean yield of lines from 

HiBAP I evaluated under heat stress and yield potential conditions, respectively (Fischer 

and Maurer, 1978). 

3.5.5 DNA extraction, capture enrichment, and genotyping 

All genotyping data was taken from Joynson et al. (2021). Flag leaf material from 10 

plants per line was collected from field grown plots post anthesis and pooled prior to 

extraction with a CTAB-based protocol. DNA was extracted using a standard Qiagen 

DNEasy extraction preparation and quality and quantity assessed using a NanoDrop 2000 

(Thermofisher Scientific) and the Quant-iTTM assay kit (Life Technologies). From this DNA, 

dual indexed Trueseq libraries with an average insert size of 450 bp were produced for 

each line and enriched using a custom MyBaits 12 Mbp (100,000 120 bp RNA probes) 

enrichment capture synthesised by Arbour Bioscience and using 8x pre-capture 

multiplexing. 90,000 of these probes were designed using an island strategy to target 

regions across the whole genome. A subgenome-collapsed reference was used to design 

these probe sequences to enable homoeologous regions to be targeted with a single 

probe. 10,000 of the probes were designed for selected genes, targeting both the gene 

body and 2 Kbp upstream. Post enrichment libraries were sequenced by Genomics 

Pipelines at the Earlham Institute using an S4 flowcell on an Illumina NovaSeq6000 

producing 150 bp paired end reads. 

To process the sequencing reads, first they were trimmed and low-quality reads were 

removed. These reads were mapped to the Chinese Spring RefSeq v1.0 wheat reference 

genome (Appels et al., 2018) using BWA mem v0.7.13 (Li, 2013). Samtools v1.4 (Li and 

Durbin, 2009) was used to remove unmapped reads, supplementary alignments, 

improperly paired reads, and reads that didn’t map uniquely (mapping quality < 10). PCR 

duplicates were removed using Picard’s MarkDuplicates (Depristo et al., 2011). SNPs were 

called using samtools mpileup and bcftools call (Li, 2011) with parameter -m. SNPs were 

filtered using GATK (Depristo et al., 2011) to remove SNPs that were heterozygous, had a 

quality score <30 or a depth <5. A locus was designated as homozygous reference if no 



 131 

alternative allele was found but 5 or more reads were mapped at that position. To create 

a set of shared SNPs for use in GWAS, SNPs for all lines were combined and loci with more 

than 10% missing data and a minor allele frequency (MAF) below 5% were removed. The 

remaining SNP loci were subjected to imputation using Beagle 5.0 (Browning, Zhou and 

Browning, 2018) to impute missing SNPs. 

3.5.6 Genome-wide association study (GWAS) 

STRUCTURE v2.3.4 (Pritchard, Stephens and Donnelly, 2000) was used to genetically infer 

the population structure of the panel and produce a population structure matrix. An 

admixture model was selected and run using 30,000 burn-in iterations and 50,000 

Markov Chain Monte Carlo (MCMC) model repetitions for assumed subpopulations of 2–

10 with 10 randomly selected, seeded iterations for each assumed subpopulation. The 

delta k method from (Evanno, Regnaut and Goudet, 2005) was applied to all 10 replicates 

to identify the most likely number of definable subpopulations. This was implemented 

using the STRUCTURE HARVESTER Python script (Earl and vonHoldt, 2012). Finally, 

CLUMPP v1.1.2 (Jakobsson and Rosenberg, 2007) was used with 10 independent 

STRUCTURE replicates to produce a consensus Q matrix for each assumed subpopulation 

number. GWAS analysis was conducted using the MLM model implemented in GAPITv3.0 

(Lipka et al., 2012). Principal component analysis eigenvectors 1–10 or membership 

coefficient matrices for 3-8 assumed subpopulations deduced above by STRUCTURE were 

used as covariates in the model to mitigate the effects of hidden familial relatedness. The 

EMMA method (Hyun et al., 2008) was implemented in GAPIT to create a positive 

semidefinite kinship matrix required by the MLM model. Each MTA flanking interval was 

deduced by identifying the SNP position furthest upstream and downstream from the 

highest associated SNP that was above the -log P threshold of 5. 

3.5.7 Identifying regions of divergence 

The RefSeq v1.0 genome was split into n genomic windows based on window size (1 Mbp 

and 100 Kbp) using bedtools makewindows (Quinlan and Hall, 2010). Using the filtered 

alignments from above, the number of reads mapping to each window was computed 

using hts-nim-tools v0.0.1 (Pedersen and Quinlan, 2018). To normalise by the sequencing 

depth of each line, read counts were divided by the number of mapped reads that passed 

the filters, producing normalised read counts c. Different windows of the genome have 

variable mapping coverage rates, so to compute coverage deviation we must compare 
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each window to the same window in the other lines in the collection. 

Median normalised read counts, m, were produced, containing the median for each 

genomic window. Mapping coverage deviation was then defined for each line as: 

 

for window i ∈ {1, 2, …, n}, where ε is the median d value across the genome for the line. 

Statistically significant d values were calculated using the scores function from the R 

package ‘outliers’ with median absolute deviation (MAD) and a probability of 0.99. This 

method was based on Keilwagen et al. (2022). 

3.5.8 Producing species-specific SNPs 

WGS data for 6 Ae. tauschii accessions (Luo et al., 2017; Zhou et al., 2021) , 4 S. 

cereale accessions (Bauer et al., 2017), Secale. vavilovii (Bauer et al., 2017) 

and Thinopyrum ponticum (Walkowiak et al., 2020), and T. aestivum cultivars Weebil 

(Walkowiak et al., 2020), Norin61 (Walkowiak et al., 2020) and Pavon76 (Coombes et al., 

2022) were mapped to RefSeq v1.0 and were filtered and SNP called as described before 

for the genotyping. Homozygous SNPs were retained if they had between 10 and 60 reads 

supporting the alternative allele and had an allele frequency >= 0.8. Heterozygous SNPs 

were retained if they were biallelic with each allele having >= 5 reads in support and an 

allele frequency >= 0.3. SNPs belonging to a wheat relative and not shared with any of the 

other wheat relatives or Elite cultivars were retained as species-specific SNPs. SNP 

deviation scores were calculated by dividing the number of SNPs in each window 

matched to a species-specific SNP by the mean number of SNPs matched to that species 

in that window across all the HiBAP I lines. 

3.5.9 Synteny between Ae. tauschii and T. aestivum 

The first 10 Mb of chr6D from Chinese Spring and chr6 from Ae. tauschii Aet v4.0 (Luo et 

al., 2017) were aligned using minimap2 (Li, 2018) with parameters -x asm10. Alignments 

<2.5 Kbp in length or with mapping quality <40 were discarded. The synteny plots were 

produced using pafr R package (Winter, 2021). 
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3.5.10 Extracting corresponding region and genes from Ae. tauschii genomes 

Proteins encoded by genes in the first 10 Mbp of chr6D in Chinese Spring and chr6 in Ae. 

tauschii were aligned using BLASTp from blast+ v2.7.1 (Camacho et al., 2009). The protein 

alignments and the minimap2 alignments were used to anchor the borders of the region 

commonly introgressed in all lines with the 6D T allele from Chinese Spring to the Ae. 

tauschii genome. The commonly introgressed sequence was extracted from the Ae. 

tauschii reference genome and aligned to the other 4 chromosome-level Ae. tauschii 

genome assemblies using minimap2 (Li, 2018) with parameters -x asm5. Alignments 

shorter than 5 Kbp or with mapping quality <40 were removed. The coordinates of each 

orthologous regions were determined manually and the genes within these coordinates 

extracted by hand. The Ae. tauschii genes and their proteins within these segments are 

considered as candidate genes. BLASTp from blast+ v2.7.1 (Camacho et al., 2009) was 

used to compare these proteins to wheat proteins. Protein domains were 

identified analysed using HMMER hmmscan (Potter et al., 2018) via ebi using Pfam, 

TIGRFAM, Gene3D, Superfamily, PIRSF, and TreeFam databases. The novelty of genes was 

determined by aligning the extracted protein sequence to the five Ae. tauschii genomes 

(Luo et al., 2017; Zhou et al., 2021) and the genomes from the 10+ wheat genomes 

project (Walkowiak et al., 2020) using tBLASTn from blast+ v2.7.1 (Camacho et al., 2009). 

3.5.11 Reannotation of type-B two component response regulator gene 

To test whether the missing myb-binding domain in the TraesCS6D02G014900 annotation 

was real or an artefact, I manually reannotated the gene. I identified the exon containing 

the myb-binding domain in the wheat orthologue by aligning the coding sequence from 

the Ae. tauschii orthologue to Chinese Spring RefSeq v1.0 (Appels et al., 2018) using 

tBLASTn from blast+ v2.7.1 (Camacho et al., 2009). I mapped Chinese Spring RNA-seq data 

from leaf, root and shoot to RefSeq v1.0 (Appels et al., 2018) using HISAT2 (Kim et al., 

2019) and assembled transcripts using cufflinks (Trapnell et al., 2012). I visually inspected 

the coding sequence and RNA-seq alignments using IGV (Robinson et al., 2011), which 

showed that the myb-binding domain exon is present and expressed in wheat. To check 

whether the protein has a premature stop codon, I extracted the coding sequence from 

the assembled transcript and checked for the presence of a complete open reading frame 

with no stop codons using EMBOSS getorf (Rice, Longden and Bleasby, 2000). Finally, I 
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checked the presence of intact domains with HMMER hmmscan (Potter et al., 2018) via 

ebi using the Pfam, TIGRFAM, Gene3D, Superfamily, PIRSF, and TreeFam databases. 
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4 Reference bias caused by introgressions is a major confounding effect in 

RNA-seq analyses in wheat 

This chapter is an adaptation of work that has been published in BMC Biology (Coombes 

et al., 2024) (Appendix D3) and appears with permission granted by the Creative 

Commons Attribution 4.0 International License. 

This work was conceived and carried out by me, with the exception of using OrthoFinder 

to identify orthologues between the wheat cultivars, which was carried out by my 

collaborator Thomas Lux from the PGSB plant genomics group at Helmholtz Zentrum 

München, and Fig. 4-14 was made by my colleague Hannah Rees, using data I generated, 

while working on a publication that is published in PLoS Biology (Rees et al., 2022). 

Eduard Akhunov provided critical feedback on the accompanying manuscript. 

4.1 Abstract 

RNA-seq is a fundamental technique in genomics yet reference bias, where transcripts 

derived from non-reference alleles are quantified less accurately, can undermine the 

accuracy of RNA-seq quantification and thus the conclusions made downstream. 

Reference bias in RNA-seq analysis has yet to be explored in complex polyploid genomes 

such as wheat despite the ubiquity of introgressions in many of these genomes, which 

introduce blocks of highly divergent genes. Using both simulated and experimental data, I 

found that RNA-seq alignment in wheat suffers from widespread reference bias which is 

largely driven by divergent introgressed genes. This leads to the expression of many 

genes being underestimated, incorrect assessment of homoeologue expression balance, 

and false associations of expression levels with traits and genetic variants. By 

incorporating divergent gene models from ten wheat genome assemblies into a 

pantranscriptome reference, I present a novel method to reduce reference bias, which 

can be readily scaled to capture more variation as new genome and transcriptome data 

becomes available. 

4.2 Introduction 

4.2.1 Quantifying gene expression using RNA-seq 

Quantifying gene expression using RNA-seq has become a fundamental technique in 

genomics research, facilitating insights into the functional landscape of genomes. It has 
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been employed in numerous publications across a range of biological systems to identify 

candidate genes underlying traits of interest, uncover transcriptional pathways and 

networks, and investigate hypotheses relating to gene and transcriptional evolution and 

adaptation. 

The core of RNA-seq data processing is quantifying the level of expression for each 

transcript and/or gene in each sample. RNA is extracted from the biological sample, 

converted to cDNA, and sequenced. This is usually done using Illumina sequencing, where 

each read is 100-250bp in length and often paired. This pool of sequenced reads 

represents a snapshot of the expression of each gene at the time of sampling, with the 

number of reads derived from a gene proportional to the level of expression of that gene. 

Various algorithms have been devised to process RNA-seq reads and produce expression 

counts for each transcript/gene. Two main approaches are currently in popular usage: 

alignment and pseudoalignment. Alignment algorithms such as HISAT2 (Kim et al., 2019) 

and STAR (Dobin et al., 2013) rely on traditional sequence alignment algorithms to map 

the RNA-seq reads to a reference genome. For eukaroytes, these tools perform spliced 

mapping, which takes splicing across exon and intron boundaries into account. This is 

necessary because the reads are derived from post-splicing mature mRNA but the 

reference to which they are mapped includes the intron sequences. Alignment-based 

algorithms are typically very precise but are computationally expensive, consuming a lot 

of memory and taking a long time. They are also highly sensitive to reference quality. 

A faster and less computationally intensive approach is pseudoalignment, used by tools 

such as kallisto (Bray et al., 2016) and Salmon (Patro et al., 2017). Instead of mapping to a 

reference genome using alignment algorithms, they use k-mer based pseudoalignment to 

identify the best matches between each read and a transcript from a defined set of 

transcript sequences, modelling the probability of each read having arisen from each 

transcript. When speed and efficiency is important and neither the precise location of 

each read in the genome nor alternative splicing events are needed, pseudoalignment 

offers a useful alternative. 

4.2.2 Relative homoeologue expression in wheat triads 

As detailed in section 1.10, many of the genes in wheat, around 51.1% high-confidence 

genes in the RefSeq v1.1 annotation (Ramírez-González et al., 2018), exist in triads which 
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consist of three homoeologous genes, one belonging to each subgenome. The relative 

mRNA expression of homoeologues within a triad is biologically important as variation in 

the relative expression of homoeologues between tissues or environmental conditions 

may confer phenotypic plasticity (Ramírez-González et al., 2018). Additionally, 

understanding the interaction between homoeologue expression is important for crop 

development, where genes present in triads may be targeted to alter agronomic traits. 

The relative homoeologue expression of a triad can be described as belonging to one of 

seven categories: balanced, where all 3 homoeologues are expressed similarly; A, B or D 

supressed, where the supressed homoeologue is expressed much less than the other two 

homoeologues copies; and A, B or D dominant, where the dominant homoeologue is 

expressed much higher than the other two dominant homoeologues. While varying in 

different tissues and conditions, around 70% of triads show balanced expression. Of the 

remaining triads, more than twice the number of triads possess a suppressed 

homoeologue than a dominant homoeologue (Ramírez-González et al., 2018). 

4.2.3 Reference bias 

Making meaningful inferences from RNA-seq data relies upon the accuracy of alignment 

and quantification. Downstream analyses and their subsequent interpretation assume 

that the estimated gene expression levels reflect actual gene expression in the biological 

samples. However, nucleotide variation between the sequenced sample and the 

reference genome/transcriptome in the coding region of genes can cause errors in read 

assignment during the alignment/pseudoalignment step. Some reads may be unassigned, 

while others may be assigned to the wrong locus. This source of error is widely known as 

reference bias as transcripts derived from alleles present in the reference sequence will 

be quantified more accurately (Günther and Nettelblad, 2019). 

The reduction in accuracy caused by reference bias has the potential to impact 

downstream analyses and lead to incorrect or incomplete findings. For example, 

Thorburn et al. (2023) found that mapping sequencing data to a single reference genome 

causes reference bias that results in inaccurate findings in population genomic studies. 

While this study focused on mapping DNA reads, it can be assumed to apply to RNA-seq 

reads. Zhan, Griswold and Lukens (2021) found that in maize, reference bias strongly 

affects the accuracy of transcript abundance estimates from RNA-seq reads. They 

reanalysed RNA-seq data generated from 105 lines from a B73xMo17 recombinant inbred 
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line population (Li et al., 2013) and found that for about 50% of eQTL alleles detected by 

Li et al. (2013) their detection depended on the reference genome used to align the RNA-

seq reads. This suggests that, as Li et al. (2013) only used the B73 reference genome, 

around 50% of the eQTLs they discovered are likely to be false positives. Munger et al. 

(2014) found that using a single reference genome to align RNA-seq reads from a multi-

parent mouse population resulted in only 88.2% accuracy in eQTL assignment, compared 

to 98.3% when using individualised genomes. 

4.2.4 Impact of reference bias in complex polyploid genomes like wheat 

The impact of reference bias in RNA-seq analysis hasn’t been assessed in complex 

polyploid genomes such as wheat despite these genomes having characteristics that may 

increase the extent and degree of reference bias relative to species with simpler 

genomes. As many genes in wheat have homoeologues in the other subgenomes, yet 

RNA-seq reads are derived from all subgenomes at once, read assignment must be able to 

distinguish reads deriving from the different subgenomes. Accurate discrimination of 

wheat homoeologue RNA-seq reads has been demonstrated with both pseudoalignment 

(Ramírez-González et al., 2018; He et al., 2022) (99.9% accuracy) and alignment-based 

(98% accuracy) (He et al., 2022) methods when mapping reads back to the genome from 

which they derived. However, when mapping reads from a different genotype, unequal 

divergence between homoeologues relative to the reference genome may compromise 

the accuracy of the expression balance estimation between homoeologues. 

As discussed in section 1.8, introgressions are very common in wheat. As introgressions 

introduce divergent gene models from different species, it is likely that they are a source 

of reference bias in RNA-seq analysis due to RNA-seq reads derived from these 

introgressed genes being unable to be assigned to the reference genome. Relaxing read 

mapping/alignment parameters to allow more reads from introgressions to map would 

reduce the number of unassigned reads; however this would increase the number of 

reads assigned to the wrong location in the genome. This would be much more 

pronounced in polyploid genomes because read mapping must be stringent enough for 

reads deriving from the different subgenomes to be correctly distinguished. Therefore, 

working with a species such as wheat which is both polyploid and has many 

introgressions creates a unique problem. 
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4.2.5 Chapter aims 

• Assess the extent of reference bias in RNA-seq quantification in wheat using 

simulated datasets from ten chromosome-level genome assemblies. 

• Construct pantranscriptome reference to reduce reference bias. 

• Assess how well the pantranscriptome reference reduces reference bias in the 

simulated datasets. 

• Quantify expression using experimentally-generated RNA-seq data using the 

Chinese Spring and pantranscriptome references. 

• Explore the impact of reference bias in the experimentally-generated dataset, 

focusing on the findings relating to homoeologue expression bias. 

4.3 Results 

4.3.1 Using simulated RNA-seq data to estimate the extent of reference bias in wheat 

To explore the impact of reference bias on the quantification of gene expression in 

wheat, I first simulated 1000 read pairs from the longest CDS sequence of each high-

confidence gene in Chinese Spring RefSeq v1.1 (Appels et al., 2018) and the nine 

chromosome-level genome assemblies produced from the wheat pangenome project 

(Walkowiak et al., 2020; White et al., 2024) if the transcript was at least 500bp. By 

simulating the same number of RNA-seq read pairs from each gene, all genes should be 

quantified to the same level. Genes whose estimated expression deviates from the 

expected value are assumed to have experienced errors during the alignment or 

quantification process. These reads were pseudoaligned or aligned to the Chinese Spring 

reference transcriptome or genome using kallisto or STAR, respectively. These algorithms 

were chosen as a representative of pseudoalignment and alignment-based methods as 

they are among the most common RNA-seq quantification tools used by the wheat 

research community. 

When mapping simulated Chinese Spring reads to the Chinese Spring genome (hereafter 

referred to as self-mapping) no reference bias will be present, so the accuracy of 

quantification is determined by the ability of the alignment algorithm to correctly assign 

reads to a matched reference. Mapping RNA-seq reads from the other cultivars to the 

Chinese Spring reference (hereafter called cross-mapping) allows the extent of reference 

bias caused by variation between cultivar genomes to be determined. The difference 
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between the accuracy of self-mapping and the accuracy of cross-mapping can be 

assumed to be caused by reference bias. 

For self-mapping, only the genes from which reads were simulated (due to having a 

transcript over 500bp in length) were examined to avoid lots of genes having an artificial 

gene count of zero and making quantification accuracy look lower than it actually is. 

Similarly, for cross-mapping, only the genes from which reads were simulated in that 

cultivar and are in a 1-to-1 orthologous relationship with a Chinese Spring gene from 

which reads were simulated were examined. The way these genes were chosen for 

analysis explains why fewer genes were examined for cross-mapping than for self-

mapping. 

4.3.1.1 Impact of reference bias on gene-level expression counts 

As 1000 read pairs were simulated per gene, genes correctly quantified should have 1000 

read pairs assigned during the alignment and have an estimated read count of 1000. In 

order to count the number of genes correctly and incorrectly quantified, a threshold had 

to be used. Genes with fewer than 500 read pairs assigned were classified as 

underestimated, genes with more than 1500 read pairs assigned were classified as 

overestimated, and genes with between 500 and 1500 read pairs assigned were classified 

as correctly quantified. 

Self-mapping predictably yields very accurate estimates of gene expression, with kallisto 

slightly outperforming STAR (Figs. 4-1a, 4-1b, Table 4-1). Using kallisto, 88401/88443 

(99.95%) genes were correctly quantified. 32 genes were underestimated, and 10 genes 

were overestimated. Using STAR, 87689/88443 (99.15%) were correctly quantified. 504 

genes were underestimated, and 250 genes were overestimated. 

Cross-mapping yielded much less accurate estimation of gene expression with a skew 

towards underestimation (Figs. 4-1a, 4-1b, Table 4-1). The percentage of genes correctly 

quantified ranged from 55773/63001 (88.53%) for Lancer, with 5700 (9.05%) and 1528 

(2.43%) genes under and overestimated, respectively, to 58468/64077 (91.2%) for 

Norin61, with 2527 (3.94%) and 3082 (4.81%) genes under and overestimated, 

respectively. For cross-mapping, unlike self-mapping, STAR appears to perform better 

than kallisto; the proportion of correctly quantified genes ranged from 58390/63001 

(92.68%) for Lancer, with 3916 and 695 genes under and overestimated, respectively, to 
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59648 (93.1%) for Norin61, with 2450 and 1979 genes under and overestimated, 

respectively. 

 

Figure 4-1. Estimating the extent of reference bias on gene-level read counts in wheat 
using simulated RNA-seq reads. 
A) Distribution of read counts when self-mapping Chinese Spring simulated reads or 
cross-mapping Landmark simulated reads, aligned to Chinese Spring using either kallisto 
or STAR. If quantification is perfectly accurate, we expect to see a single bar at 1000 read 
pairs on the x axis. B) Percentage of genes with expression estimated correctly, 
expression underestimated (< 500 read pairs) and expression overestimated (> 1500 read 
pairs) for simulated reads from 10 cultivars aligned to Chinese Spring using either kallisto 
or STAR. 
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Table 4-1. Number of genes correctly quantified (500 - 1500 read pairs), underestimated (< 500 read pairs), and overestimated (> 1500 read pairs) from 
simulated RNA-seq data, using kallisto or STAR with the Chinese Spring reference. 

Cultivar 
 

Kaliisto with Chinese Spring reference STAR with Chinese Spring reference 

   No.  genes Correctly 

estimated 

Underestimated Overestimated Correctly 

estimated 

Underestimated Overestimated 

ARI 59515 54154 3877 1484 56007 2895 613 

CS 88443 88399 32 12 87681 506 256 

JAG 62646 56955 4215 1476 58744 3328 574 

JUL 63384 57505 4400 1479 59556 3324 504 

LAC 63001 55756 5716 1529 58383 3923 695 

LDM 63517 58073 3967 1477 60114 2969 434 

MAC 63203 57655 4033 1515 59598 3075 530 

NOR 64077 58455 2536 3086 59643 2455 1979 

STA 63001 56107 5254 1640 59362 3237 502 

SYM 59370 53095 4745 1530 53095 4745 1530 
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4.3.1.2 Impact of reference bias on assignment of triad expression balance 

To explore the effect of reference bias on the quantification of homoeologue expression 

balance, I calculated the proportion of triads belonging to each category that defines a 

different state of relative homoeologue expression. As reads were simulated evenly 

across genes, all triads should be classified as balanced; therefore, triads classified as 

imbalanced (one or two homoeologues with expression greater than the other(s)) are 

considered incorrectly classified. The definition of each homoeologue balance state is the 

same as in (Ramírez-González et al., 2018) and is described in section 4.5.2. 

When self-mapping, 99.9% of triads were correctly classified using kallisto and 99.8% 

were correctly classified using STAR (Figs. 4-2a, 4-2b, Table 4-2). When cross-mapping, 

the percentage of correctly classified triads were much lower, ranging from 80.97% 

(Lancer) to 93.84% (Norin61) using kallisto and from 90.23% (Lancer) to 96.12% (Norin61) 

using STAR (Figs. 4-2a, 4-2b, Table 4-2). Across the cultivars, triads incorrectly classified as 

suppressed, where one homoeologue is estimated to be expressed less than the others, 

were far more common than triads incorrectly classified as dominant, where one 

homoeologue is estimated to be expressed more highly than the others (Fig. 4-2B). This 

reflects how the reference bias leads to more underestimated than overestimated genes. 

The B subgenome has the most, and the D subgenome the fewest, number of triads 

incorrectly classified as suppressed. This still holds if we disregard cultivars with very large 

introgressions from wild relatives in the B subgenome, such as Lancer. This pattern is in 

line with observations of greater diversity in the A and B subgenomes, with the B 

subgenome having the highest level of diversity (Cheng et al., 2019). This is largely caused 

by gene flow from wild tetraploid T. dicoccoides throughout the cultivation history of 

bread wheat without comparable gene flow to the D subgenome (Dvorak et al., 2006; He 

et al., 2019). 
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Figure 4-2. Estimating the extent of reference bias on the classification of triad 
expression balance in wheat using simulated RNA-seq reads. 
A) Balance of homoeologue expression across triads when self-mapping Chinese Spring 
simulated reads or cross-mapping Landmark simulated reads, aligned to Chinese Spring 
using either kallisto or STAR. Each point on the ternary plot represents one triad. Points 
towards a corner indicate dominant expression of that homoeologue, while points 
opposite a corner indicate suppression of that homoeologue. If all triads were perfectly 
classified, we expect to see all dots at the centre of the plot. B) Percentage of triads in 
each expression category, using simulated reads from 10 cultivars aligned to Chinese 
Spring using either kallisto or STAR. 
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Table 4-2. Percentage of triads classified in each expression category from simulated RNA-seq data, using kallisto or STAR with the Chinese Spring 
reference. Values are rounded to three significant figures. 

Cultivar Kaliisto with Chinese Spring reference STAR with Chinese Spring reference 

 
Balanced A 

dominant 

B 

dominant 

D 

dominant 

A 

suppressed 

B 

suppressed 

D 

suppressed 

Balanced A 

dominant 

B 

dominant 

D 

dominant 

A 

suppressed 

B 

suppressed 

D 

suppressed 

ARI 89.3 0.38 0.0441 0.433 2.75 5.15 1.99 94.4 0.124 0.0177 0.141 1.27 2.37 1.68 

CS 100 0.00 0.00 0.00 0.0062 0.00 0.00 99.8 0.00 0.00 0.00 0.0432 0.0987 0.0308 

JAG 89.2 0.227 0.0805 0.344 2.68 5.21 2.30 93.5 0.0659 0.0146 0.132 1.51 2.78 1.98 

JUL 89.2 0.932 0.0783 0.356 2.60 0.0783 1.21 94.0 0.192 0.0071 0.171 1.28 3.06 1.29 

LAC 81.0 0.300 0.0572 0.321 2.39 15.0 0.922 90.2 0.15 0.0214 0.0857 1.25 7.27 1.00 

LDM 90.5 0.0637 0.0283 0.361 2.75 5.32 0.956 94.9 0.0283 0.0071 0.092 1.27 2.80 0.864 

MAC 90.2 0.0783 0.0712 0.477 2.84 5.79 0.577 94.3 0.0498 0.0427 0.178 1.71 3.07 0.634 

NOR 93.8 0.0632 0.0562 0.176 1.62 3.58 0.667 96.1 0.0632 0.0211 0.0492 1.09 1.99 0.667 

STA 89.3 0.0932 0.0932 0.308 3.23 6.26 0.695 94.2 0.043 0.0645 0.172 1.71 3.18 0.652 

SYM 88.0 0.449 0.0793 0.599 3.22 4.92 2.78 93.1 0.141 0.0264 0.212 1.77 2.56 2.23 
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4.3.1.3 Impact of reference bias on cultivar comparison and introgressions as source of 

reference bias 

To explore where in the genome the incorrectly quantified genes are and if they overlap 

with introgressions, I compared the estimated expression of Lancer and Jagger 1-to-1 

orthologues, whose simulated reads were aligned to Chinese Spring using STAR as it 

performed the best for cross-mapping in section 4.3.1.1. A cultivar comparison was used 

here instead of one cultivar compared to expected read counts for two reasons. Firstly, 

this provides insights into how many genes are incorrectly quantified when comparing 

the expression of genes between two cultivars. Secondly, as these cultivars possess 

different introgressions, it allows the impact of introgressions on expression 

quantification to be explored in more detail. Genes with read counts > 1.5x or < 1/1.5x 

compared to the other cultivar were classified as incorrectly quantified. Using STAR, 

4791/60338 (7.94%) genes were incorrectly quantified (Fig. 4-3A, 4-3B). 

I identified introgressed regions by looking for blocks of reduced CDS nucleotide identity 

between pairs of 1-to-1 Lancer-Jagger orthologues (Fig. 4-3C). Very high gene-level 

divergence is strongly indicative of introgressed material; indeed several of these blocks 

correspond to previously characterised introgressions and likely additional introgressions 

that are yet to be characterised. These introgressions include (coordinates based on 

Chinese Spring RefSeq v1.0): Ae. ventricosa introgression in Jagger (chr2A:1-24643290) 

(Walkowiak et al., 2020; Gao et al., 2021; Keilwagen et al., 2022); T. timopheevii 

introgression in Lancer (chr2B:89506326-756157100) (Walkowiak et al., 2020; Keilwagen 

et al., 2022); Aegilops markgrafii introgression in Jagger (chr2D:570141481-613325841) 

(Keilwagen et al., 2022); and a Th. ponticum introgression in Lancer (chr3D:591971000-

615552423) (Walkowiak et al., 2020; Keilwagen et al., 2022). 

There is a clear overlap between blocks of incorrectly quantified genes and regions of 

high gene-level nucleotide divergence between the cultivars (Figs. 4-3a, 4-3c), suggesting 

the introgressions are a major source of the reference bias observed here. Genes with an 

introgressed copy in Lancer tend to be underestimated in Lancer and genes with an 

introgressed copy in Jagger tend to be underestimated in Jagger. To support the 

involvement of introgressions in reference bias, 1881/3054 (61.59%) genes known to be 

introgressed (belonging to one of the four previously characterised introgressions listed 

above) were incorrectly quantified between the two cultivars, compared to 2910/57284 
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(5.08%) genes outside of the known introgressions that were incorrectly quantified (chi-

squared p-value < 2.2e-16) (Fig. 4-3D). In further support of CDS divergence being a 

predominant contributing factor to miscalled genes, I found genes that were miscalled to 

have a mean CDS identity between orthologue pairs of 97.3% compared to a mean of 

99.9% for genes not miscalled (p-value < 2.2e-16, 95 CI = [2.45, 2.63]) (Fig. 4-3E). The 

percentage of genes miscalled ranges from 83.2% for genes with <96% CDS identity to 

just 2.9% for genes with >=99% identity (Fig. 4-3F). 
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Figure 4-3. Exploring the impact of reference bias on expression differences between 
cultivars and enrichment of incorrectly quantified genes within introgressions. 
A) The chromosome plot shows the distribution of incorrectly quantified genes in 5 Mbp 
windows, coloured by the cultivar in which the estimated expression is lower; orange 
blocks are underestimated in Lancer compared to Jagger, while green blocks are 
underestimated in Jagger compared to Lancer. The reads are aligned using STAR as this 
outperformed kallisto for cross-mapping. B) Scatter plot shows expression counts for 
Lancer-Jagger orthologue pairs. Genes are considered incorrectly quantified if their 
estimated read count is 1.5x or 1/1.5x the other cultivar. C) CDS nucleotide identity 
between Lancer and Jagger 1-to-1 orthologue pairs, binned into 5 Mbp genomic windows 
based on Chinese Spring RefSeq v1.0 coordinates. D) Percentage of genes correctly and 
incorrectly quantified in characterised introgressed regions and regions not characterised 
as introgressed. E) CDS nucleotide identity between Lancer and Jagger 1-to-1 orthologue 
pairs for those that are incorrectly quantified and for those that are correctly quantified. 
F) Percentage of genes correctly and incorrectly quantified, split into bins of different 
levels of CDS nucleotide identity. 

4.3.2 Constructing a pantranscriptome reference to reduce reference bias 

The 10+ wheat genomes project generated chromosome-level de novo assembled 

genomes for nine wheat cultivars to supplement the Chinese Spring reference genome 

(Walkowiak et al., 2020). These genomes include numerous introgressions that contribute 

significantly to the observed reference bias. High-quality gene annotations for these 

genome assemblies have since been generated, using a comparable method to that used 

to annotate Chinese Spring (White et al., 2024). 

To reduce reference bias caused by divergent gene models, I constructed a new kallisto 

transcriptome reference that I’ve called the pantranscriptome reference. Transcripts from 

all 107891 Chinese Spring RefSeq v1.1 high-confidence genes were included as the base. 

To this, I added transcripts from the nine chromosome-level genome assemblies from 

Walkowiak et al. (2020) if the transcript is derived from a gene that is present in a 1-to-1 

relationship with one of the 107891 Chinese Spring genes (Table 4-3). This resulted in a 

set of transcripts from 762877 genes from the 10 cultivars; 107891 genes from Chinese 

Spring and a mean of 72887 genes from each of the nine other cultivars (Fig. 4-4). 80211 

Chinese Spring genes had at least one 1-to-1 orthologue in another cultivar, while 59639 

Chinese Spring genes had a 1-to-1 orthologue in all nine other cultivars (Fig. 4-5, Table 4-

3) based on OrthoFinder (Emms and Kelly, 2019) orthogroup assignments. 
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Table 4-3. Number of genes from each cultivar in the pantranscriptome reference. 
Cultivar Number of genes in 

pantranscriptome 

reference 

CS 107891 

ARI 69519 

JAG 73193 

JUL 73892 

LAC 73522 

LDM 74225 

MAC 73732 

NOR 74920 

STA 73638 

SYM 69345 

 



 150 

 

Figure 4-4. Creation of the pantranscriptome reference and how RNA-seq reads are 
aligned to it. 
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Figure 4-5. Upset plot of 1-to-1 orthologues used for the construction of the 
pantranscriptome reference. 
Only genes in a 1-to-1 relationship with a Chinese Spring gene are included. Plot was 
generated using the UpSetR package in R. 
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Kallisto pseudoalignment was then conducted as usual but using this pantranscriptome 

reference instead of the Chinese Spring reference. After pseudoalignment, read counts 

and TPMs were summed across all transcripts corresponding to a given Chinese Spring 

gene, resulting in an expression matrix with the same number of genes and gene IDs as 

when using the Chinese Spring reference. 

Kallisto splits read counts evenly across transcripts with an identical match so including 

identical redundant transcripts in the reference does not cause errors in read count 

quantification provided the reads counts are summed across the transcripts after kallisto 

pseudoalignment. All transcripts corresponding to a gene can thus be added without 

issue. To ensure this is the case and that the pantranscriptome reference doesn’t 

introduce any additional errors from adding redundant transcripts, I compared quantified 

expression counts between four difference references: Chinese Spring; the 

pantranscriptome reference; Chinese Spring plus the Landmark transcripts from genes in 

a 1-to-1 relationship with a Chinese Spring gene; and the pantranscriptome reference 

without the Landmark transcripts. Simulated RNA-seq reads from Landmark were used 

for pseudoalignment.  

Of these four references, the pantranscriptome reference resulted in the highest 

accuracy, correctly quantifying 97.5% of genes. Chinese Spring plus Landmark transcripts 

performed similarly, with 97.5% of genes correctly quantified. This result demonstrates 

that the inclusion of redundant transcripts introduces minimal errors in the kallisto 

pseudoalignment. Using the pantranscriptome reference without the Landmark 

transcripts resulted in slightly less accurate quantification, with 96.8% of genes correctly 

quantified. The difference is likely attributable to uniquely introgressed genes in 

Landmark that are absent from the other cultivars. Nevertheless, due to many 

introgressed genes being common between cultivars, it still significantly outperformed 

the use of Chinese Spring alone, which resulted in just 91.4% genes being correctly 

quantified. 

4.3.3 Impact of the pantranscriptome reference on reference bias using simulated data 

Using the pantranscriptome reference instead of Chinese Spring to quantify expression 

from the simulated RNA-seq reads resulted in much more accurate quantification for 

genes that were previously underestimated when cross-mapping, removing nearly all 

gene counts below 1000. There was little change in the number of genes overestimated 
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and minimal change in the distribution of read counts when self-mapping (Fig. 4-6, Table 

4-4). For Lancer, the cultivar with the largest reference bias, using the pantranscriptome 

reference increased the number of genes correctly quantified from 58390/63001 

(92.68%) using STAR to 61352/63001 (97.38%). Using the pantranscriptome reference, 

only 2 genes remained quantified below 500 read pairs compared to the 3916 genes 

quantified below 500 read pairs when using the Chinese Spring reference. 

 

Figure 4-6. Estimating the remaining impact of reference bias on gene-level read counts 
in wheat using simulated RNA-seq reads when using the pantranscriptome reference. 
A) Distribution of read counts when using kallisto to align Chinese Spring simulated reads 
or Landmark simulated reads to the pantranscriptome reference. If quantification is 
perfectly accurate, we expect to see a single bar at 1000 read pairs on the x axis. B) 
Percentage of genes with expression estimated correctly, expression underestimated (< 
500 read pairs) and expression overestimated (> 1500 read pairs) for simulated reads 
from 10 cultivars aligned to the pantranscriptome reference using kallisto. 
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Table 4-4. Number of genes correctly quantified (500-1500 read pairs), underestimated (< 
500 read pairs), and overestimated (> 1500 read pairs) from simulated RNA-seq data, 
using kallisto with the pantranscriptome reference. 

Cultivar No. of genes Correctly 

quantified 

Underestimated Overestimated 

ARI 59515 57894 10 1611 

CS 88443 88288 92 63 

JAG 62646 61040 9 1597 

JUL 63384 61796 9 1579 

LAC 63001 61344 5 1652 

LDM 63517 61948 6 1563 

MAC 63203 61581 6 1616 

NOR 64077 60789 7 3281 

STA 63001 61490 15 1596 

SYM 59370 57863 15 1492 

 

The number of triads with correctly assigned homoeologue expression balance also 

greatly increased when using the pantranscriptome reference (Fig. 4-7, Table 4-5). All 

cross-mapped cultivars had at least 99.89% triads correctly assigned as balanced; this 

compares to between 80.97% and 93.84% of triads correctly assigned using kallisto with 

the Chinese Spring reference, and between 90.23% to 96.12% of triads correctly assigned 

using STAR to align to Chinese Spring. 
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Figure 4-7. Estimating the extent of reference bias on the classification of triad 
expression balance in wheat using simulated RNA-seq reads. 
A) Balance of homoeologue expression across triads when using kallisto to align Chinese 
Spring simulated reads or Landmark simulated reads to the pantranscriptome reference. 
Each point on the ternary plot represents one triad. Points towards a corner indicate 
dominant expression of that homoeologue, while points opposite a corner indicate 
suppression of that homoeologue. If all triads were perfectly classified, we would expect 
to see all dots at the centre of the plot. B) Percentage of triads in each expression 
category, using simulated reads from 10 cultivars aligned to the pantranscriptome 
reference using kallisto.
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Table 4-5. Percentage of triads classified in each expression category from simulated RNA-seq data, using kallisto with the pantranscriptome reference. 
Values rounded to three significant figures. 

Cultivar Balanced A dominant B dominant D dominant A suppressed B suppressed D suppressed 

ARI 99.9 0.0265 0.0088 0.00 0.0265 0.0265 0.0088 

CS 100 0.00 0.00 0.00 0.0123 0.0062 0.00 

JAG 99.9 0.0146 0.0219 0.0146 0.0146 0.0073 0.0073 

JUL 99.9 0.0213 0.0142 0.0071 0.0071 0.0071 0.0142 

LAC 99.9 0.0143 0.0214 0.0071 0.0071 0.0071 0.0071 

LDM 99.9 0.0142 0.0212 0.0071 0.0212 0.0071 0.0071 

MAC 99.9 0.0285 0.0214 0.0142 0.0214 0.00 0.00 

NOR 99.9 0.00 0.007 0.007 0.014 0.007 0.0211 

STA 99.9 0.0215 0.0072 0.0072 0.0215 0.00 0.0072 

SYM 99.9 0.0264 0.0176 0.0088 0.0176 0.0441 0.00 
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Finally, I tested how the number of genes incorrectly quantified between Jagger and 

Lancer changed when using the pantranscriptome reference (Fig. 4-8). Using the 

pantranscriptome reference reduced the number of genes incorrectly quantified in one 

cultivar from 4971/60338 (7.94%) to 617 (1.02%) (Fig. 4-8). Only 23 genes (0.0381%) 

remain incorrectly quantified due to underestimation in one cultivar. 

 

Figure 4-8. Remaining incorrectly quantified genes after correction using the 
pantranscriptome reference. 
Scatter plot shows expression counts for simulated reads of Lancer-Jagger orthologue 
pairs when using kallisto with the pantranscriptome reference. Genes are considered 
incorrectly quantified if their estimated read count is 1.5x or 1/1.5x the other cultivar. 
The chromosome plot shows the distribution of incorrectly quantified genes in 5 Mbp 
windows, coloured by the cultivar in which the estimated expression is lower; orange 
blocks are underestimated in Lancer compared to Jagger, while green blocks are 
underestimated in Jagger compared to Lancer. 

The error in quantification that remains when using the pantranscriptome reference is 

almost all due to the overestimation of gene expression. This is likely caused by copy 

number variation or presence/absence variation between cultivars, as opposed to 

divergence between orthologous gene models. 

4.3.4 Exploring reference bias caused by introgressions in experimentally-generated 

RNA-seq data 

Simulated RNA-seq data is unlikely to capture the complete picture of a real experiment 

(Srivastava et al., 2020). While the simulations highlight theoretical errors, it is important 

to assess how reference bias impacts published findings and how using the 

pantranscriptome reference corrects errors in experimentally-generated data. 
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4.3.4.1 Reanalysing data from He et al. (2022) 

The experimentally-generated dataset I used to further explore the impact of reference 

bias in wheat was generated by He et al. (2022). In this study, RNA-seq data from 198 

diverse wheat accessions, alongside enrichment capture paired-end DNA reads was used 

to uncover expression quantitative trait loci (eQTLs) and link them to productivity traits 

and the relative expression of homoeologues. eQTLs are like QTLs/MTAs identified 

through genome-wide association studies, except the phenotype data is gene expression 

values instead of physiological traits. eQTLs can uncover genetic variation underlying the 

regulatory control of gene expression variation between accessions. 

Of particular relevance for the work in this chapter, He et al. (2022) identified a set of 

genes whose expression was negatively correlated with one of their homoeologues due 

to one homoeologue having a low level of expression in a subset of accessions. The 

presence of the lowly expressed alleles in accessions was associated with various 

important productivity traits. The authors hypothesised that this expression dosage is 

likely driving the observed phenotypic variation and has itself been driven and maintained 

by selection. 

This set contains 59 genes to which I have added ELF3-D1 for two reasons. Firstly, 

although ELF3-D1 didn’t fall into the set of very negatively correlated 59 genes as defined 

by He et al. (2022), it was used as a case example due to its agronomic significance in 

determining heading date. Secondly, it still exhibited negative correlation with its B 

homoeologue ELF3-B1, with this expression bias associated with agronomic traits. This set 

of 60 genes is hereafter referred to as genes showing a lack of expression correlation. 

Firstly, I set out to identify potential introgressed regions within these accessions to 

ascertain whether the genes showing a lack of expression correlation tend to be found 

within these regions. If so, this could indicate an increased likelihood for their 

classification as lacking expression correlation to have been affected by reference bias. To 

do this, I mapped the enrichment capture Illumina paired-end DNA reads to Chinese 

Spring RefSeq v1.0 and for each 1 Mbp genomic window, calculated the mapping 

coverage deviation between each line and the median for that window across the 

accessions, labelling windows with a coverage deviation value significantly below 1 in an 

accession as possessing an introgression or deletion (Fig. 4-9A). There is more divergent 

material in the A and B subgenomes than the D subgenome, which is expected based on 
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the higher levels of gene flow to the A and B subgenomes over the cultivation history of 

wheat (Dvorak et al., 2006; He et al., 2019; Wang et al., 2022). I found that the 60 genes 

showing a lack of expression correlation are enriched within these windows (Fig. 4-9B), 

with 78.2% of these genes belonging to a genomic window identified as introgressed or 

deleted in 30 or more accessions. In contrast, just 12.3% of the rest of the genes in the 

genome are found within a genomic window identified as introgressed or deleted in 30 or 

more accessions.
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Figure 4-9. Enrichment of genes showing a lack of expression correlation in He et al. 
(2022) in regions of divergence. 
A) Chromosomal distribution of the number of accessions in each 1 Mbp genomic 
window which had mapping coverage deviation significantly less than 1 and are thus 
likely to contain divergent introgressed material or be deleted. B) The proportion of genes 
from the set of 60 genes showing a lack of expression correlation (‘dysregulated’ genes) 
identified by He et al. (2022) and the proportion of genes in the rest of the genome that 
are present in genomic windows identified as introgressed or deleted in 30 or more 
accessions. 

To investigate the impact using the pantranscriptome reference has on the estimated 

expression of genes within this dataset, I pseudoaligned the leaf RNA-seq data from the 

wheat accessions to both the Chinese Spring and the pantranscriptome reference. 

Despite STAR outperforming kallisto for cross-mapping RNA-seq reads, I used Kallisto for 

aligning to Chinese Spring here instead of STAR to ensure consistency with the analysis 

performed by He et al. (2022). 

Among the 60 genes showing a lack of expression correlation, 43/60 (71.7%) have, in 25 

or more accessions, an estimated expression less than half when using the Chinese Spring 

reference compared to when using the pantranscriptome reference (Fig. 4-10). These are 

likely introgressed genes whose expression is underestimated when using Chinese Spring 

as the reference. Additionally, 6/60 (10.0%) of the genes have, in 25 or more accessions, 

an estimated expression more than double when using the Chinese Spring reference 

compared to when using the pantranscriptome reference (Fig. 4-10). This could be due to 

incorrect assignment of RNA-seq reads to a gene when using the Chinese Spring 

reference, which gets corrected when using the pantranscriptome reference as those 

reads now have a more appropriate target for assignment, resulting in fewer reads 

assigned to the first gene. 
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Figure 4-10. Estimated expression of the 60 genes showing a lack of expression 
correlation in He et al. (2022), using either the Chinese Spring RefSeq v1.1 
transcriptome (y axis) or the pantranscriptome reference (x axis) as targets for kallisto 
pseudoalignment. 
The dashed black line represents x=y, which is the expected value if the reference is not 
affecting the estimation of gene expression. An accession lying on this dashed line has 
this gene’s expression estimated the same when using each reference. Red dots and 
green dots represent accessions in which a given gene has a TPM value <50% or >150%, 
respectively, when using the Chinese Spring reference than when using the 
pantranscriptome reference. A red star indicates that in 25 or more accessions, the gene 
has an estimated expression less than half when using the Chinese Spring reference 
compared to when using the pantransctipome reference. A green star indicates that in 25 
or more accessions, the gene has an estimated expression more than double when using 
the Chinese Spring reference compared to when using the pantranscriptome reference. 

While this analysis shows that using the Chinese Spring reference leads to the 

underestimation of expression of many of these genes, it is also important to explore the 

impact this underestimation has on correlation scores between homoeologues, as this is 

the metric used by He et al. (2022) to classify the genes as lacking expression correlation. 

I found that the Spearman’s correlation coefficient (SCC) score between homoeologues 

from this set was -0.0990 when using the Chinese Spring reference and 0.407 using the 

pantranscriptome reference (Fig. 4-11). This difference was significantly different (p-value 

< 2.2e-16; 95% confidence interval ranges from -0.603 to -0.410). This suggests that the 

reference bias affecting many of these genes led to artificially low estimates of 

correlation between homoeologues in He et al. (2022). 
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Figure 4-11. Spearman’s correlation coefficient (SCC) between homoeologue pairs 
where one was identified as lacking expression correlation by He et al. (2022). 
SCC scores were computed between homoeologue pairs where one homoeologue is in 
the set of genes showing a lack of expression correlation identified by He et al. (2022). 
SCC scores were computed between AB, AD and BD homoeologue pairs and the lowest 
score was used. Triads in which any of the homoeologues were not present in the RefSeq 
v1.1 high-confidence gene annotation were excluded. The significance of the difference 
between SCC scores when using the Chinese Spring reference compared to when using 
the pantranscriptome reference was calculated using a two-tailed t-test with no 
assumption of equal variance. 

4.3.4.2 Exploring estimated gene expression in the chr1D introgression 

Several regions with poor mapping coverage (mapping coverage deviation significantly 

below 1) in multiple accessions analysed by He et al. (2022) overlap precisely with 

previously identified introgressions from cultivars for which chromosome-level genome 

assemblies were generated during the 10+ wheat genomes project (Walkowiak et al., 

2020). One such introgression is found at the end of chr1D (484,302,410bp-495,453,186 

bp, based on RefSeq v1.0 coordinates), which I found to be present unbroken in 53/198 

(26.8%) accessions (Appendix C1) and also in cultivars Jagger and Cadenza from the wheat 

pangenome (Fig. 4-12A). 

I chose this introgression to study in more detail for several reasons. Firstly, its size is 

invariable between accessions; therefore, all accessions possessing the introgression have 
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the same genes introgressed. Additionally, this region featured prominently in He et al. 

(2022) as it contains 6 of the 60 genes showing a lack of expression correlation, including 

ELF3-D1, which was used as a case example due to its role in heading date (Wang et al., 

2016), an important agricultural trait. 

In their paper, He et al. (2022) suggest this introgression is a terminal deletion. However, 

Wittern et al. (2023), identified that this region, including ELF3-D1, is in fact an 

introgression present in Cadenza and Jagger. They deduced that the donor of this 

introgression was either T. timopheevii or Ae. speltoides, based on the ELF3-D1 gene 

model in Jagger sharing an intronic deletion with both of these species. 

I explored this further to narrow down the potential donor species. I compared the 

proteins in the Jagger introgression with the Ae. speltoides proteins and found that the 

median protein identity between orthologues was only 91.6%. This strongly suggests that 

Ae. speltoides is not the donor species for this introgression. At the time of writing, there 

wasn’t a genome assembly of T. timopheevii available so I could not perform the same 

analysis I performed for Ae. speltoides. However, I mapped T. timopheevii Illumina paired-

end reads to the Jagger genome assembly and found that the read mapping was dense 

with an even coverage across the chr1D introgression (Fig. 4-13), suggesting that T. 

timopheevii is still a likely donor. As we can’t be certain about the donor species, I will 

refer to this introgression as the chr1D introgression. 

To evaluate how changing the reference changes the expression quantification of the 

introgressed genes, I compared the mean expression of genes from the chr1D 

introgression across accessions possessing the introgression to their 1-to-1 wheat 

orthologue across the accessions lacking the introgression. When using the Chinese 

Spring reference, the introgressed genes appear to be less expressed than their wheat 

orthologues; however, when using the pantranscriptome reference, no significant 

difference in expression was found between the genes (Fig. 4-12B, Appendix C2). 

This reveals two important findings. Firstly, it supports the earlier work in this chapter 

showing that the expression of introgressed genes is underestimated when using the 

Chinese Spring reference. Secondly, it shows that introgressed genes, at least in this 

instance, are not expressed differently from the wheat orthologues they have replaced. 
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Figure 4-12. Introgressed genes falsely identified as less expressed due to reference 
bias. 
A) Mapping coverage deviation of DNA reads across chr1D of Jagger, Cadenza, and 5 
accessions from He et al. (2022). Each point is the coverage deviation value for a given 1 
Mbp genomic window. Windows with a normalised coverage score significantly different 
to the median normalised coverage score for that window across the set of lines being 
compared are coloured red. Coverage deviation values significantly below one indicates 
an introgression is present or a deletion has taken place relative to the median of the rest 
of the set of lines. Coverage deviation values and significance values were calculated 
separately for the accessions and for the cultivars Jagger and Cadenza, the latter two 
being compared to mapping coverage values from the other cultivars whose genome was 
assembled in Walkowiak et al. 2020). The reduced coverage at the end of chr1D, the left-
hand border of which is indicated by the vertical dashed black line, is an introgression 
common to 53 of the 198 accessions and cultivars Jagger and Cadenza. B) Expression of 
the wheat gene compared to its introgressed orthologue from the chr1D introgression, 
using either the Chinese Spring v1.1 transcriptome or the pantranscriptome reference as 
the target for kallisto pseudoalignment. Orthologue pairs with TPM < 1 in both the 
introgressed and the wheat gene when mapping to the pantranscriptome reference were 
excluded. The significance of the difference between introgressed and non-introgressed 
orthologues when using the Chinese Spring or the pantranscriptome reference was 
calculated using two-tailed t tests with no assumption of equal variance C) Estimated 
expression level of introgressed D homoeologues compared to the wheat B 
homoeologues and wheat D homoeologues compared to wheat B homoeologues, using 
either the Chinese Spring v1.1 transcriptome or the pantranscriptome reference as the 
target for kallisto pseudoalignment. Each point represents one accession. D) Expression 
level of triads in which the D homoeologue is an introgressed gene in a subset of lines, 
using either Chinese Spring or the pantranscriptome reference as the target for kallisto 
pseudoalignment. The centre line of the boxplots = the median; the box limits = the upper 
and lower quartiles; the whiskers = 1.5x interquartile range; and the points = the outliers. 
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Figure 4-13. Reads from T. timopheevii accession P95 mapped to T. aestivum cv. Jagger 
(which contains the chr1D introgression) and binned into 5 Mbp genomic windows. 
The number of mapped reads was divided by the length of window to accurately reflect 
read density at the final window of each chromosome. The chr1D introgression with a 
putative origin of T. timopheevii is at 481585620-493450010 and is indicated by the black 
arrow. T. timopheevii is a tetraploid with genomes related to the A and B subgenomes of 
wheat. This is reflected in the greater mappability of T. timopheevii reads to the A and B 
subgenomes than the D subgenome. However, the higher read count across the 1D 
introgression suggests this region is more similar between T. timopheevii and the 
introgression than between T. timopheevii and the A and B subgenomes, lending support 
to the donor of this introgression being T. timopheevii. 

Earlier in this chapter, I used simulated data to show how reference bias can lead to the 

incorrect assignment of expression balance across triads. To explore this phenomenon 

using experimental data and on a few specific triads, I explored the estimated expression 

across triads within the chr1D introgression that are also in the set of genes showing a 

lack of expression correlation from He et al. (2022). When the RNA-seq reads are 

pseudoaligned to Chinese Spring, in accessions possessing the chr1D introgression, ELF3-

D1 appears to have low expression and ELF3-B1 appears to have slightly elevated levels of 

expression compared with accessions without the chr1D introgression (Figs. 4-12c, 4-

12d). However, when using the pantranscriptome reference, in accessions possessing the 

chr1D introgression, the expression of ELF3-D1 and ELF3-B1 in accessions with the chr1D 

introgression appears very similar to the expression of ELF3-D1 and ELF3-B1 in accessions 
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without the chr1D introgression (Figs. 4-12c, 4-12d). The CDS sequence for the 

introgressed copy of ELF3-D1 shares 97% sequence identity with ELF3-D1 in Chinese 

Spring, 97.56% identity with ELF3-A1 and 97.8% identity with ELF3-B1. The high 

divergence of ELF3-D1 from the introgression and ELF3-D1 from Chinese Spring and the 

greater similarity between ELF3-D1 from the introgression with ELF3-B1 from Chinese 

Spring explains how most reads were unable to be assigned, yet some were incorrectly 

assigned to ELF3-B1. This resulted in the slight increase in estimated expression of ELF3-

B1 when using the Chinese Spring reference. The five other genes showing a lack of 

expression correlation within the chr1D introgression show reduced homoeologue 

imbalance using the pantranscriptome reference and expression levels in line with triads 

in which the D homoeologue has not been introgressed. Four of these genes also show a 

slight decrease in estimated expression in their B homoeologue when mapping to the 

pantranscriptome reference, supporting the idea that incorrect assignment of reads from 

the introgressed gene to its homoeologue, in addition to reads not being assigned to the 

introgressed homoeologue, will have contributed to the artificially low correlation scores 

observed by He et al. (2022). 

My colleague, Hannah Rees, conducted a study analysing an RNA-seq timecourse dataset 

from the wheat cultivar Cadenza in order to understand the transcriptional regulation of 

circadian clock genes in wheat. As Cadenza contains the chr1D introgression which 

included notable clock genes, TaELF3-1D and TaSIG3-1D, I used the timecourse dataset to 

examine whether the chr1D introgression was introducing reference bias that was 

altering the results of her study.  

This analysis was conducted before I developed the pantranscriptome method. 

Therefore, to correct the estimated expression in this case, I concatenated the chr1D 

introgression from Jagger to the Chinese Spring RefSeq v1.0 reference genome, as it is the 

same introgression found in Cadenza, but Cadenza only had a scaffold-level, rather than a 

chromosome-level, genome assembly available. After aligning the RNA-seq reads to this 

concatenated reference using HISAT2, expression counts and TPM values for the 1-to-1 

Chinese Spring and Jagger orthologues were summed. 

When mapping to Chinese Spring, TaELF3-1D and TaSIG3-1D appear very lowly expressed, 

and they were not classified as rhythmically expressed. However, after aligning the reads 

to the reference including the chr1D introgression, the expression of both genes was 
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much higher and the rhythmicity could be properly assessed, revealing that TaSIG3-1D 

was rhythmically expressed like its homoeologues and TaELF3-1D was not rhythmically 

expressed, also like its homoeologues (Fig. 4-14). 

 

 

Figure 4-14. The impact of reference bias on the estimation of rhythmicity within the 
ELF3 and SIG3 triads. 
Estimated expression level over time of the Elf3 and SIG3 triads in Cadenza when using 
the Chinese Spring reference or a combined reference which includes the chr1D 
introgression sequence. The chr1D introgression is found in Cadenza and includes TaElf3-
1D and TaSIG3-1D. Wheat homoeologues are coloured according to their identity to 
either the A genome (orange), B genome (yellow), or D genome (blue) and grey and white 
blocks indicate subjective dark and light time periods under constant conditions. Data 
represent the mean of 3 biological replicates and transcript expression is collapsed to the 
gene level. The dashed black line represents the expression of the Arabidopsis orthologue 
of Elf3 and SIG3 from a circadian timecourse dataset generated by Romanowski et al. 
(2020). 
 
The introgressed TaELF3-1D allele has been linked with a QTL for heading date (Wittern et 

al., 2023). No significant difference was found between the mean expression level of the 

three TaELF3 homoeologues when reads were aligned to the combined reference of 

Chinese Spring and Jagger (F(2, 51) = 2.005, p = 0.145, 1-way ANOVA). Therefore, any 

heading date phenotype conferred by this allele is likely to be due to altered protein 

function of the introgressed gene rather than expression-level differences. 
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4.4 Discussion 

In the emerging era of plant pangenomics, chromosome-level assemblies are being 

generated for an increasing number of cultivars/accessions, which will facilitate a shift 

away from reference genome-centric methods. Here, I have demonstrated the 

importance of utilising these resources effectively for RNA-seq analyses in wheat to 

reduce reference bias. 

4.4.1 RNA-seq reference bias in wheat 

The quantification of gene expression from RNA-seq data in wheat is very accurate when 

the reference is of the same accession/cultivar as the sample. However, when the sample 

accessions differ to that used to generate the reference genome, a noticeable level of 

reference bias occurs. This bias affected both the quantification of individual genes and 

the correct assignment of triads to categories of homoeologue expression balance. 

A primary culprit behind this reference bias is the presence of introgressions from 

wheat’s wild and domesticated relatives, which possess blocks of genes highly divergent 

from wheat, resulting in challenges in the correct assignment of RNA-seq reads. Due to 

the severity of the reference bias observed here, these introgressed regions are 

effectively rendered inaccessible to any meaningful form of analysis and conclusions. 

However, they have hitherto been included in analyses and downstream conclusions. 

In this work, kallisto outperformed STAR for self-mapping but when cross-mapping, STAR 

was better able to deal with divergence between genes, leading to more accurate 

quantification of gene expression. Similar limitations of alignment-free methods have 

been previously discussed; for example, Wu et al., (2018) demonstrated that kallisto 

performs poorly for lowly expressed genes and for RNA reads with biological variation 

compared to the reference. Despite dealing with reference bias better than kallisto, STAR 

was unable to resolve the issue of reference bias. 

It could be argued that relaxing alignment parameters would enable reads from divergent 

genes to be able to be assigned to the reference. However, this will likely undermine the 

accuracy of read assignment in other parts of the genome and will probably cause more 

incorrectly assigned reads despite decreasing unassigned reads. In particular, this would 

take place among homoeologues, as the introgressed gene is not always more genetically 

similar to the gene it replaced than to the replaced gene’s homoeologues. 
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It could be argued that reference bias may not significantly affect differential expression 

analyses between conditions or across tissues within a single genotype as the ratio of 

estimated expression between conditions/tissues should remain similar regardless of 

reference bias. This may be true; however, this idea should be formally tested. At the very 

least, genes affected by reference bias so severely that their expression counts are close 

to zero may be ineligible for inclusion in differential expression calls, which could lead to 

biologically important genes being excluded from the analysis. 

If interested in homoeologue expression balance, unequal divergence of homoeologues 

relative to the reference will lead to incorrect findings. Reference bias can also obscure 

complex expression patterns. For instance, in the Cadenza circadian clock timecourse 

dataset, I showed that TaELF3-1D and TaSIG3-1D, which are within an introgression in 

Cadenza, have very low estimates of expression when using the Chinese Spring reference, 

and the rhythmicity is difficult to ascertain. However, when using the combined 

reference, more reads aligned, the expression levels were raised to levels not significantly 

different to their A and B homoeologues, and the rhythmicity of the genes could be 

accurately assessed. 

As genome assemblies for more wheat accessions become available, matching a sample 

to a more suitable reference genome will become increasingly feasible. However, in 

situations involving multiple accessions where a common reference genome is needed, or 

when the appropriate genome assembly is unavailable for within-accession analyses, it is 

crucial to exercise caution and investigate whether introgressed genes could be affecting 

the results. Going forwards, in addition to exercising caution, it is important to develop 

novel methodologies to address the issue of introgression-induced reference bias. 

4.4.2 Using a pantranscriptome reference to reduce reference bias 

Prior studies have highlighted the benefits brought by using enhanced references or 

individualised references for RNA-seq alignment. For instance, Vijaya Satya, Zavaljevski 

and Reifman (2012) constructed an enhanced reference genome for humans by 

incorporating alternative allele segments at known polymorphic loci. Other researchers 

have reported using individualised genomes or transcriptome references by updating 

them with SNPs, INDELs and splice site information for each individual (Munger et al., 

2014; Liu, MacLeod and Liu, 2018). Munger et al. (2014), when working with a multi-

parent mouse population, found that mapping to individualised genomes substantially 
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increased the accuracy of eQTL assignment from 88.2% to 98.3% and corrected false-

positive linkage signals. Kaminow et al. 2022) constructed a pan-human consensus 

genome by calculating the consensus allele for each variant, which considerably improved 

the accuracy of RNA-seq mapping compared to when the reference genome was used. 

My approach follows in the vein of these pieces of research. However, individualised 

genomes or consensus genomes are not suitable for wheat as the extensive divergence 

introduced by introgressions makes the accurate genotyping that is necessary for 

constructing individualised or consensus genomes challenging. Instead, I constructed a 

pantranscriptome reference that incorporates transcripts from other wheat cultivars into 

the Chinese Spring reference transcriptome, provided they come from genes in a 1-to-1 

orthologous relationship with a Chinese Spring gene. The low computational 

requirements of kallisto regardless of reference size allows for scalability as more genome 

and transcriptome data become available, while still running in a fraction of the time 

taken by alignment-based tools to align to a single reference genome. 

The pantranscriptome reference corrects nearly all incorrectly underestimated genes that 

belong to an introgression present in the assembled pangenome cultivars and in a 1-to-1 

relationship with a Chinese Spring gene. However, this approach currently has limitations. 

The pantranscriptome reference will not have captured all the genetic variation present 

in wheat germplasm around the world. In particular, it mainly includes transcripts from 

cultivars from Western countries and, except for Chinese Spring, doesn’t include 

transcripts from Asian or African wheat accessions. There are several other publicly 

available, high-quality wheat genome assemblies whose transcripts could have been 

incorporated into the pantranscriptome (Guo et al., 2020; Athiyannan et al., 2022; Shi et 

al., 2022; Jia et al., 2023). However, I opted to only use genomes that were annotated 

using the same methodology to ensure accurate orthologue assignment. 

As additional genomes and/or transcriptomes are sequenced and other existing genomes 

are re-annotated to provide consistent gene annotations, the pantranscriptome 

reference can be expanded to encompass a broader range of genetic variation. This may 

eventually reach a saturation point where most commonly segregating variation is 

covered within the reference. Another limitation of the pantranscriptome reference is its 

inability to correct reference bias caused by copy number variation such as tandem 

duplications or presence/absence variation. Instead, it is limited to correcting reference 



 174 

bias caused by divergent genes. This is because, to ensure additional errors were not 

introduced, I elected to only add transcripts from other cultivars to the pantranscriptome 

reference if they came from genes in a 1-to-1 orthologous relationship with a Chinese 

Spring gene. This results in most of the genes whose expression is overestimated when 

using Chinese Spring as the reference remaining overestimated when using the 

pantranscriptome reference. While overcoming this limitation is important, doing so is 

challenging as it involves resolving intricate orthologue and paralogue relationships, and 

it remains unclear how novel genes and genes with varying copy numbers between 

cultivars should be represented in the pantranscriptome reference. 

Entirely different and superior solutions to the problem of RNA-seq reference bias in 

wheat may emerge in the future. For instance, the field of graph genomes is rapidly 

developing (Garrison et al., 2018), including methods to align RNA-seq reads to graph 

genomes (Sibbesen et al., 2022). Martiniano et al. (2020) used a sequence variation graph 

containing human variants from the 1000 Genome Project, reducing reference bias by 

creating a balanced representation of alleles of polymorphic sites. However, successfully 

creating graphs for genomes as large and complex as wheat remains a major challenge. It 

is also a much heavier-weight solution compared to the pantranscriptome 

pseudoalignment approach. At the very least, my approach offers a temporary way to 

improve the accuracy of RNA-seq alignment and explore the impact of reference bias, 

particularly for genes comprising the core genome. Following further development and 

the incorporation of new data, it may evolve into a long-term alternative, more 

lightweight approach to emerging graph-based methods. 

4.4.3 Examining reference bias in experimentally-generated RNA-seq data 

By utilising the valuable dataset generated by He et al. (2022), I demonstrated the 

presence of reference bias in experimentally-generated datasets as well as in simulated 

datasets. The diverse nature of wheat accessions sequenced by He et al. (2022) may have 

rendered this study particularly susceptible to the effects of reference bias. Indeed, my 

analysis indicated that regions displaying divergence were very prevalent across these 

accessions. However, the prevalence of introgressions in this dataset may be typical for 

collections of wheat accessions as introgressions are a common feature in most wheat 

germplasm, including commercially distributed Elite cultivars. Wheat accessions 

containing diverse introgressions hold significant importance in wheat research, as they 
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can serve as valuable sources of genetic variation for breeders, not to mention the 

insights they can provide into the evolutionary dynamics of wheat genomes. Therefore, 

the ability to accurately study them is important. 

Among the 60 genes showing a lack of expression correlation identified by He et al. 

(2022), 78.2% were found to be enriched in genomic regions identified as introgressed or 

deleted in 30 or more accessions. Furthermore, I demonstrated that most of these genes 

exhibited much higher levels of estimated expression when using the pantranscriptome 

reference as opposed to the Chinese Spring reference. Additionally, the use of the 

pantranscriptome reference led to increased correlation scores between homoeologue 

pairs. As the pantranscriptome reference likely doesn’t contain all the introgressions 

present in the accessions reanalysed, it is possible that the impact of reference bias has 

been underestimated here. 

These findings may necessitate the revision of the explanation as to why these genes 

were associated with variation in important productivity traits. While some of these triads 

may still demonstrate genuine dysregulation of homoeologues and dosage effects, it 

appears likely that for many of these genes, variation in the gene sequence itself 

underlies the observed trait variation as opposed to changes in expression dosage among 

homoeologues. It appears that He et al. (2022) have inadvertently observed the 

correlation of introgressed genes with agronomic productivity traits, adding evidence that 

introgressions present in wheat accessions are important drivers of trait variation. This 

finding also has implications for our understanding of the evolutionary and selection 

mechanisms implicated in the control of these traits. 

4.4.4 chr1D introgression and Elf3 

To gain a more precise understanding of how the quantification of introgressed genes is 

influenced by the choice of reference, I conducted an analysis focusing on genes located 

within the chr1D introgression. This was selected due to its presence in approximately a 

quarter of the accessions and a lack of variation in size across the accessions possessing it, 

due to an absence of recombination within the introgression. Additionally, this 

introgression contained 6 of the 60 genes showing a lack of expression correlation 

identified by He et al. (2022). I showed that when using the Chinese Spring reference, the 

introgressed genes appear to be less expressed than the wheat orthologue they replaced. 

However, when the pantranscriptome reference was used, which includes the transcripts 
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from the introgressed genes, there was no significant difference in estimated expression 

between these genes. 

Furthermore, the correction of the quantification of these genes had a notable impact on 

the estimated expression balance across triads in which the D homoeologue was 

introgressed. This correction resulted in an increase in the estimated expression of the D 

homoeologue and in most cases, a slight decrease in the estimated expression of the B 

homoeologue, due to incorrectly assigned reads from the D homoeologue when using the 

Chinese Spring reference. 

It would not have been surprising to see, even after removing reference bias, that 

introgressed genes were expressed differently than the wheat orthologue they replace, 

perhaps due to the divergence in regulatory sequences. However, this finding suggests 

that, at least for this introgression, this is not the case. These findings have implications 

for any RNA-seq studies using wheat accessions containing introgressions, and also more 

specifically for studies looking at the expression of introgressed genes and what 

mechanisms underlie the phenotype they confer. 

4.4.5 Future work 

The pantranscriptome reference as presented in this chapter offers an improvement over 

aligning RNA-seq reads from many diverse accessions to a single reference genome. 

However, as discussed in section 4.4.2, there is room for improving this method. First of 

all, it can be extended to incorporate transcripts from more accessions. To ensure 

accurate orthologue assignments are maintained, this may involve consolidating the 

annotations of other genomes, so they are comparable with the annotations of Chinese 

Spring and the cultivars from the 10+ wheat genomes project. Another important 

improvement will be to develop a way to reduce reference bias caused by copy number 

variation. It may be that this won’t be able to be solved until graph-based methodology 

improves sufficiently to handle large genomes such as wheat. 

While the work in this chapter is focused on wheat, similar issues may be encountered 

when working on other species with a polyploid genome and/or many introgressions. 

Therefore, similar analyses on other species could offer valuable insights for their 

respective research communities. 
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4.5 Methods 

4.5.1 Read simulation, alignment, and quantification 

Reads were simulated from the longest transcript from each high-confidence gene in the 

Chinese RefSeq v1.1 annotation and the nine pseudomolecule genome assemblies (White 

et al., 2024) if the transcript length >= 500bp. 1000 pairs of 150 bp reads with an insert 

size of 400bp and no errors were simulated for each transcript using wgsim from 

samtools v1.9 (Li et al., 2009). 

The kallisto index was produced from the CDS sequences from the RefSeq v1.1 high-

confidence gene annotations using kallisto v0.44.0 (Bray et al., 2016). Reads were 

pseudoaligned to this index using the default settings and 100 bootstraps. Read counts 

and TPMs were summed across transcripts to generate gene level counts. 

To construct the pantranscriptome reference, my collaborator Thomas Lux ran 

Orthofinder (Emms and Kelly, 2019) with standard parameters to define orthogroups 

based on the longest isoform protein sequences of the high-confidence genes from 

Chinese Spring and the 9 chromosome-level pangenome cultivars. If a gene was found in 

a 1-to-1 relationship with a Chinese Spring gene, I added its transcripts to the Chinese 

Spring RefSeq v1.1 high-confidence transcript FASTA file. A kallisto index was built and 

reads were pseudoaligned as above. Read counts and TPMs were each summed across all 

transcripts of a gene and its 1-to-1 orthologues to generate gene-level counts. 

The STAR index was built for RefSeq v1.0 with the RefSeq v1.1 high-confidence gene 

annotation using STAR v2.7.6a (Dobin et al., 2013) using default parameters except for --

limitGenomeGenerateRAM 200000000000 and --genomeSAindexNbases 12. The 

simulated reads from the 10 cultivars were aligned to this index using STAR and the 

predicted splice junctions from all were merged and then filtered to remove non-

canonical junctions, junctions supported by 2 or fewer uniquely mapping reads and reads 

already annotated in the original genome annotation. The index was rebuilt using these 

discovered splice sites in addition to the annotated splice sites. The simulated reads from 

the 10 cultivars were aligned to this new index with parameters --quantMode 

TranscriptomeSAM and --outSAMunmapped Within. Gene-level read counts were 

generated using RSEM v1.2.28 (Li and Dewey, 2011). 
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For comparisons between self-mapping and cross-mapping, the following criteria were 

used to determine whether a gene was present in the analysis. For self-mapping, Chinese 

Spring genes from which RNA-seq reads were simulated in Chinese Spring were included. 

For cross-mapping, for a Chinese Spring gene to be included it had to be in a 1-to-1 

orthologous relationship with a gene from the cross-mapped cultivar, and RNA-seq reads 

must have been simulated from both the Chinese Spring gene and the orthologue from 

the cross-mapped cultivar. 

4.5.2 Defining triad balance 

Triads in Chinese Spring were taken from Ramirez-Gonzalez et al. (2018). For each 

cultivar, triads were retained if RNA-seq reads were simulated from all three 

homoeologues. Triad balance was computed in the same way as in (Ramírez-González et 

al., 2018) except for the use of read counts rather than TPMs due to the way the reads 

were simulated. The relative read count of each homoeologue within a triad was 

calculated as follows: 

𝐴!"#$ =
𝐴

𝐴 + 𝐵 + 𝐷 

𝐵!"#$ =
𝐵

𝐴 + 𝐵 + 𝐷 

𝐷!"#$ =
𝐷

𝐴 + 𝐵 + 𝐷 

where A, B and D are the read counts of the A, B and D homoeologues, respectively. 

Euclidean distance was then used to calculate the distance between each set of 

normalised expression values across a triad and an ideal normalised read count bias for 

each of seven categories (Table 4-6). A triad was assigned to an expression bias category 

by selecting the category with the shortest Euclidean distance between the observed and 

the ideal bias. 
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Table 4-6. Ideal normalised read count bias for each triad expression category 

Category A B D 

Balanced 0.33 0.33 0.33 

A suppressed 0 0 0 

B suppressed 0.5 0.5 0.5 

D suppressed 0.5 0.5 0.5 

A dominant 1 0 0 

B dominant 0 1 0 

D dominant 0 0 1 

 

4.5.3 Binning incorrectly quantified genes 

For each 5 Mbp genomic window in Chinese Spring RefSeq v1.0, a score was calculated 

based on the number of underestimated (read count < 500) and overestimated (read 

count > 1500) genes within that window: 

(−1 ∗ 𝑛𝑜. 𝑜𝑓	𝑢𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑔𝑒𝑛𝑒𝑠) + (1 ∗ 𝑛𝑜. 𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑔𝑒𝑛𝑒𝑠) 

4.5.4 Calculating CDS identity 

BLASTn from blast+ v2.7.1 (Camacho et al., 2009) was used to align the nucleotide 

sequences of the longest transcript of pairs of 1-to-1 orthologues between Lancer and 

Jagger. The identity of the best hit between pairs was binned into 5 Mbp genomic 

windows. 

4.5.5 Processing sequencing data from He et al. (2022) 

198 accessions had both leaf RNA-seq data and enrichment capture short paired-end DNA 

reads. The RNA-seq data from the 198 lines was pseudoaligned to both Chinese Spring 

RefSeq v1.1 and the pantranscriptome reference as above for the simulated reads. 

Accessions GF25, GF270, GF32, GF37, GF41 and GF73 were excluded for RNA-seq analyses 

as in He et al. (2022). 
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DNA reads were mapped to RefSeq v1.0 and to the pseudo introgression genome and 

filtered as above for the simulated DNA reads. Accessions GF294, GF342, GF366, GF380, 

GF381, GF383, GF38 were excluded for DNA analyses as in He et al. (2022). 

4.5.6 Identifying chr1D introgression 

For the pangenome cultivars, I simulated paired-end 150 bp reads with a 500bp insert 

size and no errors from all fourteen genome assemblies (ArinaLrFor, Cadenza, Claire, 

Jagger, Julius, Lancer, Landmark, Mace, Norin61, Paragon, Robigus, Stanley, SY Mattis, 

and Weebil) generated by Walkowiak et al. (2020) to a depth of 10x using WGSim within 

samtools v1.9 (Li et al., 2009). These reads were mapped to Chinese Spring RefSeq v1.0 

(Appels et al., 2018). The alignments were filtered using samtools v1.4 (Li et al., 2009): 

supplementary alignments, improperly paired reads, and non-uniquely mapped reads 

(mapping quality less than 10) were removed. Mapping coverage deviation and 

significance for these cultivars and for the accessions from He et al. (2022) were 

calculated as in section 3.5.7 in two separate analyses, one for the accessions from He et 

al. (2022) and one for the cultivars from Walkowiak et al. (2020). 

4.5.7 Locating coordinates of introgression boundaries 

To detect the precise locations of the chr1D, chr2A Ae. ventricosa, and chr2D Ae. 

markgrafii introgressions in Jagger; and the chr2B T. timopheevii and chr3D Th. ponticum 

introgressions in Lancer, I used the simulated read mappings for Jagger and Lancer from 

section 4.5.6. Read depths were binned into 5 Mbp and 1 Mbp windows using bedtools 

makewindows v2.28.0 (Quinlan and Hall, 2010) and hts-nim-tools v0.0.1 (Pedersen and 

Quinlan, 2018). The window in which read depth drops, signifying the start/end of the 

introgression, was identified for each introgression and IGV (Robinson et al., 2011) was 

used to precisely identify the position where the coverage profile changed. To locate the 

location of the introgressions relative to the Jagger/Lancer genomes in order to identify 

which genes have been introgressed, I extracted the Chinese Spring sequences 1 Mbp 

either side of the precisely located border position (or until the end of the chromosome) 

for each introgression and aligned them to the Jagger or Lancer genome assembly using 

minimap2 (Li, 2018) with parameters -x asm5. These alignments were used to determine 

the borders of the introgressed region as they appear in Jagger or in Lancer. 
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4.5.8 Characterising the chr1D introgression donor species 

Blastp from blast+ v2.7.1 (Camacho et al., 2009) was used to align the Ae. speltoides 

proteins with the longest isoforms of the Jagger proteins of genes found in the chr1D 

introgression. The best hit for each Jagger protein was kept. Paired-end Illumina DNA 

short reads from T. timopheevii (King et al., 2022) were mapped to Chinese Spring RefSeq 

v1.0 using BWA mem v0.7.13 (Li and Durbin, 2009). Samtools v1.4 (Li et al., 2009) was 

used to filter the alignments to retain mapped reads, primary alignments, properly paired 

reads and uniquely mapping reads (mapping quality > 10). PCR duplicates were found and 

removed using the Picard Tools v2.1.1 MarkDuplicates function (Depristo et al., 2011). 

Read depths were binned into 5 Mbp windows using bedtools makewindows v2.28.0 

(Quinlan and Hall, 2010) and hts-nim-tools v0.0.1 (Pedersen and Quinlan, 2018) and 

divided by window length to account for windows at ends of chromosomes which are less 

than 5 Mbp in length. 

4.5.9 Calculating SCC scores between homoeologues 

SCC scores for triads including the 60 genes identified as lacking expression correlation by 

He et al. (2022) were calculated between AB, AD, and BD homoeologue pairs using the 

cor.test function in R with the ‘spearman’ method; the lowest SCC value of the three 

comparisons was used. Triads were excluded if any of the homoeologues were not found 

in the RefSeq v1.1 high-confidence annotation. 

4.5.10 Analysis of clock genes from Cadenza timecourse RNA-seq dataset 

The details of plant growth and sampling can be found in Rees et al. (2022). Briefly, 

Cadenza was grown under 12hlight:12hdark conditions for circadian entrainment, 

followed by sampling under constant light conditions of all aerial tissue every 4 hours for 

3 days, with 3 biological replicates per time point. mRNA was extracted and sequenced by 

Genomics Pipelines on a NovaSeq S2 flow cell by Genomics Pipelines at the Earlham 

Institute to generate 150 bp paired-end reads with an average sequencing depth of 85 

million reads per replicate. 

The reads were filtered and trimmed using Trimmomatic v0.30 (Bolger, Lohse and Usadel, 

2014). Filtered and trimmed reads were aligned using HISAT2 v2.0.4 (Kim et al., 2019) to 

Chinese Spring RefSeq v1.0, and to Chinese Spring RefSeq v1.0 with the chr1D 

introgression from Jagger concatenated as an additional chromosome. HISAT2 was used 
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for consistency with the rest of the analysis in Rees et al. (2022). Non-uniquely mapping 

reads were removed using samtools v1.3 and gene-level abundances were quantified 

using StringTie v2.1.4 (Pertea et al., 2015). When reads were aligned to the combined 

reference, for Chinese Spring genes in the chr1D introgression region with a 1-to-1 

orthologue in Jagger, TPM values were summed across the transcripts of the orthologue 

pairs. Gene-level TPM values were then averaged across the three biological replicates. 

Genes with 0 TPM at all time points were removed. To identify rhythmically expressed 

genes, the R package MetaCycle (Wu et al., 2016) was run using the following 

parameters; minper = 12, maxper = 35, adjustPhase = “predictedPer.” Transcripts were 

defined as rhythmic if they had q-values < 0.05 and high confidence rhythmic transcripts if 

they have q-values < 0.01. 
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5 Conclusions and outlook 

Introgressions from wheat’s wild and domesticated relatives are important sources of 

novel genetic variation and have played an important role in the evolution of wheat. They 

are now being more deliberately introduced and utilised to assist in the effort to 

continually drive improvements to wheat varieties. The rapid development of sequencing 

technologies has provided important tools for studying introgressions. It has also revealed 

how abundant introgressions are across wheat material, leading to the possibility that 

failing to account for them may be negatively impacting genomic analyses. This thesis has 

demonstrated the value of sequencing data for identifying and characterising 

introgressions in wheat and has shown how introgressions lead to reference bias that 

negatively impacts the processing of sequencing data in common genomic analyses. For 

each of these, I have provided methods and ideas that other researchers can build upon 

in the future and apply to their own research. 

Chapter two presents, to the best of my knowledge, the highest resolution identification 

of introgression junctions to date. The high-resolution allowed crossover locations to be 

visualised within gene bodies, uncovered small segments previously missed by lower 

resolution methods, and showed small differences between overlapping segments 

between lines with different rust resistance phenotypes. The characterisation of these 

introgression lines will be useful to those using those specific lines and the methodology 

adds to several other pieces of work, giving researchers more ideas to draw from when 

looking to characterise sets of introgression lines in the future. It also provides ideas for 

how one can investigate introgression lines in conjunction with phenotyping data, which 

can be improved upon as chromosome-level genome assemblies become available for 

more wild relatives. 

In chapter three, I reported the discovery of three MTAs, which together increase yield 

under heat stress by more than 50%. I uncovered an Ae. tauschii introgression underlying 

an MTA associated with heat tolerance and took advantage of recombination that has 

taken place within the introgression to narrow down which region is underlying the 

phenotype. Looking within the region in Ae. tauschii genomes assemblies showed 

differences in gene content and order in this region between wheat and Ae. tauschii. This 

finding highlights the limitations of relying on reference genomes in studies like this. This 

is particularly relevant when divergent material is present in the sampled lines, which 
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increases the likelihood of presence/absence variation or gene order differences between 

the samples and the reference genome. 

The heat tolerance trait itself is potentially of very high value, due to the large effect size 

of the three MTAs and the importance of climate tolerance traits to future food security 

in the face of climate change. It also demonstrates how loci of large effect can underlie 

traits that might typically be considered to be complex and driven only by many small-

effect loci, and thus difficult to unpick using genome-wide association study. Further work 

will be required to validate the phenotype in different environments, after which the 

alleles can be incorporated into breeding programmes. 

The dramatic impact of these introgressions on read mapping led to the idea that when 

the goal is not identifying introgressions, the presence of introgressions in the samples 

being studied should negatively impact the analysis by reducing read mapping rates and 

introducing read mapping errors. This led to the development of the work presented in 

chapter four, where I demonstrated the large impact of introgressions on the accuracy of 

RNA-seq quantification in wheat and presented a method to partially reduce the 

reference bias caused by these introgressions. By reanalysing gene expression data from 

diverse wheat accessions generated by He et al. (2022), I demonstrated that some of their 

findings may have been falsely caused by reference bias. Instead of expression bias across 

homoeologues driving trait variation, it seems that the appearance of this homoeologue 

expression bias was at least partly caused by reference bias caused by introgressions. This 

suggests that the observed trait variation is probably driven by the introgressed alleles 

themselves. 

The work presented in chapter four will likely impact future RNA-seq studies in wheat and 

may lead to the revision of previous findings. Tools to utilise new genomes will develop 

rapidly over the coming years and will reduce the issues that introgressions cause to the 

accuracy of read mapping. My work brings awareness to the issue now to prevent errors 

being proliferated in the literature, even if only by demonstrating the potential for errors 

and advising caution to be taken by researchers. While currently useful, my solution of 

using a pantranscriptome kallisto reference to reduce reference bias is partial in the type 

of errors remedied and incomplete in the variation currently captured in the available 

genome assemblies. I look forward in anticipation to how it may be improved, or 

surpassed by alternative approaches, such as the use of pangenome graphs. I expect this 
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to be a highly active area of research and discussion and I feel my work is an important 

contribution to its early stages. 
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Availability of data and materials 

Chapter two: 

Sequencing data generated for this work, along with the Am. muticum assembly is 

available at: https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2021-

10-08_wheatxmuticum. Am. muticum illumina sequencing data available at: 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Grewal_et_al_2021-09-

13_Amybylopyrum_muticum/. The Chinese Spring sequencing data used is available from 

ENA (study PRJNA393343; runs SRR5893651 and SRR5893652). The Paragon sequencing 

data used is available from ENA (study PRJEB35709; runs ERR3728451, ERR3760033, 

ERR3760405 and ERR3728448). Custom scripts used for introgression detection are 

available at: https://github.com/benedictcoombes/alien_detection 

Chapter three: 

Publicly available sequencing data used in this work is available at the European 

Nucleotide Archive (ENA): HiBAP I enrichment capture sequencing data - PRJEB38874; Th. 

ponticum—SRR13484812; S. vavilovii: ERR505040, ERR505041, ERR505042; S. cereale 

accession Lo90: ERR504990, ERR504991, ERR504992; S. cereale accession Lo176: 

ERR505005, ERR505006, ERR505007; S. cereale accession Lo282: ERR505015, ERR505016, 

ERR505017; S. cereale accession Lo351: ERR505035, ERR505036, ERR505037; Ae. Tauschii 

accession XJ65: SRR13961980; Y173: SRR13962062; SX60: SRR13962012; AY29: 

SRR13961834; KU2832: SRR13961928; Y215: SRR13962048; Weebil1: PRJEB35709; 

Norin61: PRJNA492239; Pavon76: 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2021-10-

08_wheatxmuticum/PIP-2495/200812_A00478_0126_AHN5W3DRXX/A10948_1_1/; T. 

aestivum cv. Chinese Spring RNAseq data: Root - SRP133837; SRR6799264; SRR6799265; 

Leaf - SRR6799258; SRR6799259; SRR6799260; Spike - SRR6802608; SRR6802609; 

SRR6802610; SRR6802611. 

VCF and hapmap genotype files for HiBAP I are available at: 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2022-04-

08_HiBAP_genotyping/ 

https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2021-10-08_wheatxmuticum
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2021-10-08_wheatxmuticum
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Grewal_et_al_2021-09-13_Amybylopyrum_muticum/
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Grewal_et_al_2021-09-13_Amybylopyrum_muticum/
https://github.com/benedictcoombes/alien_detection
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2021-10-08_wheatxmuticum/PIP-2495/200812_A00478_0126_AHN5W3DRXX/A10948_1_1/
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2021-10-08_wheatxmuticum/PIP-2495/200812_A00478_0126_AHN5W3DRXX/A10948_1_1/
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2022-04-08_HiBAP_genotyping/
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Hall_2022-04-08_HiBAP_genotyping/
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The phenotypic data for the HIBAP I panel evaluated under yield potential and heat stress 

conditions can be found in the Dataverse CIMMYT Research Data Repository at 

https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10548643. 

Chapter four: 

The pantranscriptome reference, along with a python script to sum expression counts 

across all transcripts of a given Chinese Spring gene and its 1-to-1 orthologues, can be 

found at https://doi.org/10.6084/m9.figshare.24242767. 

The RNA-seq data and DNA sequencing data from He et al. (2022) reanalysed here are 

stored in the NCBI SRA under project codes PRJNA670223 and PRJNA787276. 
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Appendix A 

Appendix A1. Introgressed Am. muticum segments identified in 17 introgression lines 

Line 

name 

chromoso

me 

start end lengt

h 

precise 

identification left 

junction 

precise 

identification right 

junction 

DH8 chr2D 59102341

0 

65185260

9 

60.83 

Mbp 

yes - 

TraesCS2D02G4936

00 

no 

DH15 chr2A 11934615 78079855

7 

768.8

6 

Mbp 

difficult to resolve 

due to structural 

complexity 

no - probably not 

telomere 

DH15 chr4B by 

300000 

but not 

telomere 

63586858

8 

635.0

8 

Mbp 

no but not 

telomere 

yes - 

TraesCS4B02G3424

00 

DH15 chr6D 47063471

9 

47359271

8 

3.99 

Mbp 

yes - 

TraesCS6D02G4016

00 

yes - telomere 

DH65 chr4D 1 51288177 51.29 

Mbp 

yes - telomere yes - 

TraesCS4D02G0769

00 

DH86 chr2D 1 24800000 24.8 

Mbp 

no no 

DH92 chr5D 53320492

7 

56608067

7 

32.88 

Mbp 

yes - 

TraesCS5D02G5082

00 

yes - telomere 

DH96 chr4D 1 45649275 45.65 

Mbp 

yes - telomere yes - 

TraesCS4D02G0702

00 
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DH121 chr4D 1 37826953

7 

378.2

7 

Mbp 

yes - telomere yes - 

TraesCS4D02G2211

00 

DH121 chr5D 54340562

7 

56608067

7 

22.68 

Mbp 

no yes - telomere 

DH121 chr7D 59705175 63868605

5 

578.9

8 

Mbp 

yes yes - telomere 

DH123 chr7D 59705175 63868605

5 

578.9

8 

Mbp 

yes yes - telomere 

DH161 chr1A 1 59410205

6 

594.1 

Mbp 

yes - telomere yes - telomere 

BC2F42

0 

chr2D 59102347

4 

65185260

9 

60.83 

Mbp 

yes - 

TraesCS2D02G4936

00 

yes - telomere 

BC3F32

6 

chr3D 39564251

6 

61555242

3 

219.9

0 

Mbp 

yes - 

TraesCS3D02G2866

00 

yes - telomere 

DH195 chr7D 1 50081919

9 

500.8

2 

Mbp 

yes - telomere yes - 

TraesCS7D02G3865

00 

DH195 chr7D 62129925

0 

63868605

5 

17.39 

Mbp 

yes - 

TraesCS7D02G5258

00 

yes - telomere 

DH202 chr7D 1 50081919

9 

500.8

2 

Mbp 

yes - telomere yes - 

TraesCS7D02G3865

00 

BC3F45 chr3A 70869500

0 

75084363

9 

42.14 

Mbp 

no yes - telomere 
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BC3F45 chr5D 1 39932851

0 

399.3

3 Mbp 

yes - telomere yes - 

TraesCS5D02G30420

0 

BC3F46 chr3D 1000000-

2000000 

54971313

4 

549.7

1 Mbp 

no - difficult to 

resolve due to 

possible repeat 

expansions or 

duplications 

yes - 

TraesCS3D02G43940

0 (6.75 Kbp away) 

 

Appendix A2. Macro-level plots for each introgression line studied in chapter two. Each 
dot shows the mapping coverage deviation value of a 1 Mbp genomic window compared 
to the wheat parent lines. Red dots are windows within a block identified as an Am. 
muticum introgression. The vertical black bars represent the position of the centromeres, 
predicted in Appels et al. (2018). 
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Appendix A3. Primer details for the KASP™ assays used for genotyping of DH15 

KASP_ID Allele_specific_primer_1 Allele_specific_primer_2 Common_primer 

WRC1890 gtatggtcatacgtgatagcC cggtatggtcatacgtgatagcT Gcagttcccgccgaaataaa 

WRC1873 ccaccactctctcaagtaaggC ccaccactctctcaagtaaggT Gcatgcagcagctttgagtc 
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Appendix B 

Appendix B1. Ae. tauschii genes present in five Ae. tauschii genome assemblies, within 

the core introgressed region underlying the chr6D MTA for heat tolerance traits. 

Accession name Gene Gene type 

AL8/78 AET6Gv20022000 NLR 

AL8/78 AET6Gv20022200 NLR 

AL8/78 AET6Gv20023100 Unknown 

AL8/78 AET6Gv20023900 Potential DNA-binding domain 

AL8/78 AET6Gv20024100 Pyridoxal-dependent decarboxylase 

AL8/78 AET6Gv20024800 Unknown 

AL8/78 AET6Gv20025000 Protein of unknown function 

AL8/78 AET6Gv20025100 Unknown 

AL8/78 AET6Gv20025200 Unknown 

AL8/78 AET6Gv20025300 Unknown 

AL8/78 AET6Gv20025500 Ribosome inactivating protein 

AL8/78 AET6Gv20025600 MIKC-type MADS-box transcription 

factor 

AL8/78 AET6Gv20025700 Two-component response regulator 

AL8/78 AET6Gv20025800 Two-component response regulator 

AL8/78 AET6Gv20026000 WS/DGAT C-terminal domain 

AL8/78 AET6Gv20026400 Unknown 

AL8/78 AET6Gv20026500 Pyridoxal-dependent decarboxylase 

AL8/78 AET6Gv20026600 Alginate lyase 

AL8/78 AET6Gv20027000 Cytochrome P450 

AL8/78 AET6Gv20027200 Cytochrome P450 

AL8/78 AET6Gv20027300 NmrA-like family 

AL8/78 AET6Gv20027400 LRR 

AL8/78 AET6Gv20027600 LRR 

AL8/78 AET6Gv20027700 LRR 

AL8/78 AET6Gv20027800 LRR 

AL8/78 AET6Gv20027900 FAR1 DNA-binding domain 

AL8/78 AET6Gv20028000 Unknown 
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AY17 AetAY17_6Dv1G017100 unknown 

AY17 AetAY17_6Dv1G017200 NLR 

AY17 AetAY17_6Dv1G017300 LRR 

AY17 AetAY17_6Dv1G017400 None 

AY17 AetAY17_6Dv1G017600 NLR 

AY17 AetAY17_6Dv1G017900 Potential DNA-binding domain 

AY17 AetAY17_6Dv1G018300 Pyridoxal-dependent decarboxylase 

AY17 AetAY17_6Dv1G018500 RNA recognition motif 

AY17 AetAY17_6Dv1G018600 Unknown 

AY17 AetAY17_6Dv1G018700 None 

AY17 AetAY17_6Dv1G018800 Unknown 

AY17 AetAY17_6Dv1G018900 Robisome inactivating protein 

AY17 AetAY17_6Dv1G019000 MIKC-type MADS-box transcription 

factor 

AY17 AetAY17_6Dv1G019100 Two-component response regulator 

AY17 AetAY17_6Dv1G019200 WS/DGAT C-terminal domain 

AY17 AetAY17_6Dv1G019300 Pyridoxal-dependent decarboxylase 

AY17 AetAY17_6Dv1G019600 Two-component response regulator 

AY17 AetAY17_6Dv1G019700 Cytochrome P450 

AY17 AetAY17_6Dv1G019800 Mitogen-activated Protein Kinase 

AY17 AetAY17_6Dv1G019900 LigB 

AY17 AetAY17_6Dv1G020000 Cytochrome P450 

AY17 AetAY17_6Dv1G020100 NmrA-like family 

AY17 AetAY17_6Dv1G020200 LRR 

AY17 AetAY17_6Dv1G020300 LRR 

AY17 AetAY17_6Dv1G020400 NLR 

AY17 AetAY17_6Dv1G020600 Myb/SANT-like DNA-binding domain 

AY61 AetAY61_6Dv1G0024900 Cytochrome P450 

AY61 AetAY61_6Dv1G0024300 Cytochrome P450 

AY61 AetAY61_6Dv1G0024700 Cytochrome P450 

AY61 AetAY61_6Dv1G0024100 GRF zinc finger 
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AY61 AetAY61_6Dv1G0023600 MIKC-type MADS-box transcription 

factor 

AY61 AetAY61_6Dv1G0024600 LigB 

AY61 AetAY61_6Dv1G0021600 LRR 

AY61 AetAY61_6Dv1G0025500 LRR 

AY61 AetAY61_6Dv1G0025200 LRR 

AY61 AetAY61_6Dv1G0026000 Myb/SANT-like DNA-binding domain 

AY61 AetAY61_6Dv1G0021000 NLR 

AY61 AetAY61_6Dv1G0021400 NLR 

AY61 AetAY61_6Dv1G0022700 Potential DNA-binding domain 

AY61 AetAY61_6Dv1G0022300 Potential DNA-binding domain 

AY61 AetAY61_6Dv1G0023000 Protein of unknown function 

AY61 AetAY61_6Dv1G0023900 Pyridoxal-dependent decarboxylase 

AY61 AetAY61_6Dv1G0022500 Pyridoxal-dependent decarboxylase 

AY61 AetAY61_6Dv1G0025700 Retrotransposon gag protein 

AY61 AetAY61_6Dv1G0023500 Ribosome inactivating protein 

AY61 AetAY61_6Dv1G0023200 RNA recognition motif 

AY61 AetAY61_6Dv1G0024200 Two-component response regulator 

AY61 AetAY61_6Dv1G0021700 Unknown 

AY61 AetAY61_6Dv1G0022900 Unknown 

AY61 AetAY61_6Dv1G0023400 Unknown 

AY61 AetAY61_6Dv1G0021100 Unknown 

AY61 AetAY61_6Dv1G0023300 Unknown 

AY61 AetAY61_6Dv1G0022000 Unknown 

AY61 AetAY61_6Dv1G0021200 Unknown 

AY61 AetAY61_6Dv1G0022200 Unknown 

AY61 AetAY61_6Dv1G0021500 Unknown 

AY61 AetAY61_6Dv1G0020700 Unknown 

AY61 AetAY61_6Dv1G0025600 Unknown 

AY61 AetAY61_6Dv1G0023800 WS/DGAT C-terminal domain 

XJ02 AetXJ02_6Dv1G022300 Cytochrome P450 
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XJ02 AetXJ02_6Dv1G022500 Cytochrome P450 

XJ02 AetXJ02_6Dv1G021800 MIKC-type MADS-box transcription 

factor 

XJ02 AetXJ02_6Dv1G023100 LRR 

XJ02 AetXJ02_6Dv1G019100 LRR 

XJ02 AetXJ02_6Dv1G022900 LRR 

XJ02 AetXJ02_6Dv1G023500 Myb-SANT-like DNA-binding domain 

XJ02 AetXJ02_6Dv1G019900 NLR 

XJ02 AetXJ02_6Dv1G019300 NLR 

XJ02 AetXJ02_6Dv1G020000 NLR 

XJ02 AetXJ02_6Dv1G019000 NLR 

XJ02 AetXJ02_6Dv1G019400 NLR 

XJ02 AetXJ02_6Dv1G019600 NLR 

XJ02 AetXJ02_6Dv1G022600 NmrA-like family 

XJ02 AetXJ02_6Dv1G020600 Papain family cysteine protease 

XJ02 AetXJ02_6Dv1G020400 Potential DNA-binding domain 

XJ02 AetXJ02_6Dv1G021000 Protein of unknown function 

XJ02 AetXJ02_6Dv1G023300 Proton-conducting membrane 

transporter 

XJ02 AetXJ02_6Dv1G022100 Pyridoxal-dependent decarboxylase 

conserved domain 

XJ02 AetXJ02_6Dv1G023200 Retrotransposon gag protein 

XJ02 AetXJ02_6Dv1G021100 Ribosomal L28e 

XJ02 AetXJ02_6Dv1G021700 Ribosome inactivating protein 

XJ02 AetXJ02_6Dv1G021300 RNA recognition motif 

XJ02 AetXJ02_6Dv1G019200 Unknown 

XJ02 AetXJ02_6Dv1G021200 Unknown 

XJ02 AetXJ02_6Dv1G021400 Unknown 

XJ02 AetXJ02_6Dv1G021600 Unknown 

XJ02 AetXJ02_6Dv1G021500 Unknown 

XJ02 AetXJ02_6Dv1G020700 Unknown 
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XJ02 AetXJ02_6Dv1G020900 Unknown 

XJ02 AetXJ02_6Dv1G022000 WS/DGAT C-terminal domain 

T093 AetT093_6Dv1G029300 Cytochrome P450 

T093 AetT093_6Dv1G029700 Cytochrome P450 

T093 AetT093_6Dv1G028400 MIKC-type MADS-box transcription 

factor 

T093 AetT093_6Dv1G029600 LigB 

T093 AetT093_6Dv1G030100 LRR 

T093 AetT093_6Dv1G030300 LRR 

T093 AetT093_6Dv1G030700 Myb-SANT-like DNA-binding domain 

T093 AetT093_6Dv1G029900 NmrA-like family 

T093 AetT093_6Dv1G027200 Papain family cysteine protease 

T093 AetT093_6Dv1G029500 Mitogen-activated Protein Kinase 

T093 AetT093_6Dv1G027600 Protein of unknown function 

T093 AetT093_6Dv1G028800 Pyridoxal-dependent decarboxylase 

T093 AetT093_6Dv1G030400 Retrotransposon gag protein 

T093 AetT093_6Dv1G027700 Ribosomal L28e protein family 

T093 AetT093_6Dv1G028300 Ribosome inactivating protein 

T093 AetT093_6Dv1G027900 RNA recognition motif 

T093 AetT093_6Dv1G028600 Two-component response regulator 

T093 AetT093_6Dv1G029200 Two-component response regulator 

T093 AetT093_6Dv1G025300 Unknown 

T093 AetT093_6Dv1G025800 Unknown 

T093 AetT093_6Dv1G026800 Unknown 

T093 AetT093_6Dv1G027000 Unknown 

T093 AetT093_6Dv1G027300 Unknown 

T093 AetT093_6Dv1G027500 Unknown 

T093 AetT093_6Dv1G027800 Unknown 

T093 AetT093_6Dv1G028000 Unknown 

T093 AetT093_6Dv1G028100 Unknown 

T093 AetT093_6Dv1G028200 Unknown 

T093 AetT093_6Dv1G029100 Unknown 
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T093 AetT093_6Dv1G030500 Unknown 

T093 AetT093_6Dv1G028700 WS-DGAT C-terminal domain 
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Appendix C1. Accessions from the He et al., (2022) dataset that do and do not contain the 

chr1D introgression 

Lines with chr1D 

introgression 

Lines without chr1D introgression 

GF4 GF76 

GF5 GF77 

GF25 GF78 

GF42 GF75 

GF46 GF71 

GF50 GF70 

GF51 GF7 

GF57 GF69 

GF72 GF68 

GF73 GF67 

GF74 GF64 

GF82 GF66 

GF83 GF63 

GF84 GF62 

GF85 GF125 

GF89 GF61 

GF90 GF6 
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GF92 GF60 

GF101 GF231 

GF106 GF124 

GF119 GF123 

GF120 GF387 

GF121 GF39 

GF127 GF383 

GF152 GF381 

GF168 GF380 

GF184 GF38 

GF189 GF374 

GF196 GF370 

GF197 GF37 

GF230 GF364 

GF256 GF363 

GF262 GF361 

GF263 GF362 

GF279 GF36 

GF285 GF359 

GF289 GF358 

GF294 GF348 
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GF297 GF347 

GF300 GF345 

GF301 GF344 

GF304 GF336 

GF307 GF12 

GF309 GF335 

GF311 GF332 

GF313 GF331 

GF330 GF327 

GF333 GF325 

GF342 GF323 

GF360 GF320 

GF366 GF32 

GF371 GF317 

GF391 GF319 

 
GF315 

 
GF312 

 
GF310 

 
GF31 

 
GF117 

 
GF100 
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GF8 

 
GF305 

 
GF30 

 
GF299 

 
GF298 

 
GF115 

 
GF295 

 
GF293 

 
GF29 

 
GF287 

 
GF283 

 
GF110 

 
GF282 

 
GF281 

 
GF278 

 
GF277 

 
GF276 

 
GF27 

 
GF270 

 
GF11 

 
GF267 
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GF265 

 
GF264 

 
GF249 

 
GF248 

 
GF247 

 
GF24 

 
GF238 

 
GF107 

 
GF235 

 
GF234 

 
GF228 

 
GF23 

 
GF226 

 
GF225 

 
GF224 

 
GF221 

 
GF213 

 
GF215 

 
GF208 

 
GF21 

 
GF207 
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GF204 

 
GF205 

 
GF104 

 
GF201 

 
GF202 

 
GF190 

 
GF19 

 
GF188 

 
GF186 

 
GF180 

 
GF175 

 
GF103 

 
GF170 

 
GF154 

 
GF157 

 
GF151 

 
GF15 

 
GF138 

 
GF14 

 
GF97 

 
GF93 



 237 

Appendix C1. 
 

GF13 

 
GF102 

 
GF91 

 
GF9 

 
GF88 

 
GF87 

 
GF86 

 
GF128 

 
GF81 

 
GF308 

 
GF306 
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Appendix C2. Expression values for genes within the chr1D introgression for accessions 
from the He et al. (2022) dataset, using either the Chinese Spring or the pantranscriptome 
reference. Accessions are split based on whether or not they contain the chr1D 
introgression. 

Gene Chinese Spring reference Pantranscriptome reference 

 
No introgression Introgression No introgression Introgression 

TraesCS1D02G436900 1.30 0.298 1.29 2.08 

TraesCS1D02G437000 1.96 0.360 2.09 2.28 

TraesCS1D02G437100 0.135 0.0129 0.150 0.323 

TraesCS1D02G437200 3.21 0.691 3.48 3.66 

TraesCS1D02G437300 0.291 0.145 0.282 0.436 

TraesCS1D02G437400 0.0867 0.127 0.0765 1.14 

TraesCS1D02G437600 0.889 0.422 0.569 0.443 

TraesCS1D02G437700 5.15 1.2 5.04 3.99 

TraesCS1D02G437800 0.668 0.255 0.587 0.580 

TraesCS1D02G437900 1.47 0.572 1.42 1.24 

TraesCS1D02G438000 9.52 5.78 8.88 11.2 

TraesCS1D02G438300 0.00 0.0221 0.00150 0.0115 

TraesCS1D02G438500 0.000400 0.00 0.000000200 0.00 

TraesCS1D02G438800 0.000500 0.00260 0.000400 0.00260 

TraesCS1D02G438900 0.00260 0.00 0.00150 0.0237 

TraesCS1D02G439000 22.1 7.32 18.9 15.1 

TraesCS1D02G439600 3.41 0.719 3.24 2.28 

TraesCS1D02G440200 3.56 0.618 3.52 2.45 

TraesCS1D02G440400 0.0562 0.558 0.00860 0.866 

TraesCS1D02G440500 10.3 1.66 10.4 26.0 

TraesCS1D02G440600 1.46 0.439 1.28 1.08 
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TraesCS1D02G441000 0.00190 0.00 0.00260 0.0110 

TraesCS1D02G441300 0.0252 0.0244 0.00710 0.0128 

TraesCS1D02G442400 7.58 1.87 7.26 8.58 

TraesCS1D02G442500 0.120 0.0247 0.123 0.110 

TraesCS1D02G442900 24.8 2.02 26.0 14.5 

TraesCS1D02G443100 4.32 1.11 3.96 7.45 

TraesCS1D02G444100 7.95 1.01 7.91 10.1 

TraesCS1D02G444300 0.000600 0.00470 0.000700 0.00440 

TraesCS1D02G444400 0.65 0.0513 0.651 0.598 

TraesCS1D02G444500 0.921 0.779 2.47 2.08 

TraesCS1D02G445200 4.02 0.983 3.93 5.66 

TraesCS1D02G445300 28.2 3.74 27.3 19.0 

TraesCS1D02G445500 2.67 0.137 2.62 0.139 

TraesCS1D02G445600 0.0198 0.00120 0.0201 0.0233 

TraesCS1D02G445700 4.89 1.43 4.93 6.77 

TraesCS1D02G448700 2.91 0.994 2.91 2.60 

TraesCS1D02G449200 26.1 2.93 26.0 34.1 

TraesCS1D02G449600 3.92 0.944 3.88 3.61 

TraesCS1D02G449700 0.612 0.155 0.645 0.531 

TraesCS1D02G449800 0.0246 0.0330 0.0252 0.0326 

TraesCS1D02G450100 0.524 0.0309 0.554 0.181 

TraesCS1D02G450200 4.15 1.33 4.08 4.08 

TraesCS1D02G450300 12.4 1.49 12.4 10.2 

TraesCS1D02G450400 16.7 2.74 16.7 17.0 

TraesCS1D02G450800 0.00980 0.0148 0.000100 0.00520 
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TraesCS1D02G451000 0.567 0.0642 0.560 0.577 

TraesCS1D02G451100 2.92 0.644 3.06 2.00 

TraesCS1D02G451200 5.45 1.23 5.04 5.36 

TraesCS1D02G451300 19.2 5.37 21.4 19.2 

TraesCS1D02G451600 0.00220 0.00 0.00230 0.00630 

TraesCS1D02G451700 3.99 0.939 3.96 3.13 

TraesCS1D02G451800 20.3 3.52 18.4 12.0 

TraesCS1D02G451900 110 39.7 101 98.6 

TraesCS1D02G452000 0.000300 0.00140 0.00000500 0.000500 

TraesCS1D02G452100 0.00 0.00 0.00 0.00280 

TraesCS1D02G452400 3.52 0.356 3.61 4.95 

TraesCS1D02G452700 0.00110 0.000500 0.00110 0.00310 

TraesCS1D02G452800 0.00 0.000900 0.000300 0.00180 

TraesCS1D02G453100 3.09 0.881 3.05 4.41 

TraesCS1D02G453600 3.80 0.375 3.71 2.40 

TraesCS1D02G454200 0.00320 0.00570 0.00210 0.00740 

TraesCS1D02G454900 0.000500 0.000200 0.000300 0.000200 

 

 

 

 

 

 

 



 241 

Appendix D: Publications 

Appendix D1. Coombes, B. et al. (2022). ‘Whole genome sequencing uncovers the structural and 

transcriptomic landscape of hexaploid wheat/ Ambylopyrum muticum introgression lines’, Plant 

Biotechnology Journal, 21(3), pp. 482-496. doi: 10.1111/pbi.13859. 

Appendix D2. Molero, G.*, Coombes, B.* et al. (2023). ‘Exotic alleles contribute to heat tolerance 

in wheat under field conditions’, Communications Biology, 6(21). doi: 10.1038/s42003-022-04325-

5. 

Appendix D3. Coombes, B. et al. (2024). ‘Introgressions lead to reference bias in wheat RNA-Seq 

analysis’, BMC Biology, 22(56). doi: 10.1186/s12915-024-01853-w. 

* Indicates equal contribution 



Whole-genome sequencing uncovers the structural and
transcriptomic landscape of hexaploid wheat/
Ambylopyrum muticum introgression lines
Benedict Coombes1 , John P. Fellers2 , Surbhi Grewal3 , Rachel Rusholme-Pilcher1 ,
Stella Hubbart-Edwards3 , Cai-yun Yang3, Ryan Joynson1 , Ian P. King3, Julie King3 and Anthony Hall1,*

1Earlham Institute, Norwich, Norfolk, NR4 7UZ, UK
2USDA–ARS Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas, 66506, USA
3School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK

Received 22 November 2021;

revised 28 April 2022;

accepted 15 May 2022.

*Correspondence (Tel +44(0)1603450001;

email anthony.hall@earlham.ac.uk)

Keywords: Wheat, introgression, wild

relative, resistance, breeding,

genomics.

Summary
Wheat is a globally vital crop, but its limited genetic variation creates a challenge for breeders

aiming to maintain or accelerate agricultural improvements over time. Introducing novel genes

and alleles from wheat’s wild relatives into the wheat breeding pool via introgression lines is an

important component of overcoming this low variation but is constrained by poor genomic

resolution and limited understanding of the genomic impact of introgression breeding

programmes. By sequencing 17 hexaploid wheat/Ambylopyrum muticum introgression lines and

the parent lines, we have precisely pinpointed the borders of introgressed segments, most of

which occur within genes. We report a genome assembly and annotation of Am. muticum that

has facilitated the identification of Am. muticum resistance genes commonly introgressed in lines

resistant to stripe rust. Our analysis has identified an abundance of structural disruption and

homoeologous pairing across the introgression lines, likely caused by the suppressed Ph1 locus.

mRNAseq analysis of six of these introgression lines revealed that novel introgressed genes are

rarely expressed and those that directly replace a wheat orthologue have a tendency towards

downregulation, with no discernible compensation in the expression of homoeologous copies.

This study explores the genomic impact of introgression breeding and provides a schematic that

can be followed to characterize introgression lines and identify segments and candidate genes

underlying the phenotype. This will facilitate more effective utilization of introgression pre-

breeding material in wheat breeding programmes.

Introduction

Triticum aestivum L. (bread wheat) is a vital crop, providing

around 20% of calories and 25% of protein consumed globally

(Reynolds et al., 2012). Improvements to wheat since the late

19th century have largely come from conventional breeding

strategies, but these improvements rely on ample genetic

variation in the primary gene pool (Hao et al., 2020). The

hexaploid bread wheat grown today derives from just one or

two polyploidization events ~10 000 years ago between the

tetraploid Triticum turgidum and the diploid Aegilops tauschii

(Charmet, 2011). The limited diversity stemming from this

genetic bottleneck has been compounded over time by intensive

breeding. Pressure on breeders to prioritize advanced breeding

material (J. Valkoun, 2001) for more rapid development of

uniform, high-quality varieties have limited the introduction of

genetic variation from external sources. The genetic variation

that does exist in modern wheat material is rapidly being

exhausted, evident in plateauing yield improvements that left

unchecked, will be insufficient to meet global demands (Ray

et al., 2013). Wild relative introgression breeding will be a major

component of overcoming this genetic constraint in the years to

come, enabling breeders to access the secondary and tertiary

gene pools of wheat (Hao et al., 2020; J. Valkoun, 2001) and

incorporate novel alleles or genes into modern breeding

material.

There are many examples of the successful transfer of wild

relative genes into wheat since first pioneered by E.R. Sears

(Doussinault et al., 1983; Fatih, 1983; Friebe et al., 1996; Klind-

worth et al., 2012; Sears, 1956). However, challenges associated

with the high-throughput production and verification of intro-

gression lines, in addition to the linkage drag of introgressed

segments, have limited the widespread adoption of introgression

breeding. Utilizing recombination mutants and high-throughput

marker methods, introgressing entire wild relative genomes into

wheat as stably inherited, homozygous segments is now possible

(King et al., 2017, 2019). These sets of lines provide the raw

material required for the incorporation of alien variation into

breeding programmes. Segments in these lines that confer

phenotypes of interest can be identified. Lines with overlapping

segments can then be crossed to break down large segments

(Khazan et al., 2020), resulting in genes of interest captured in

short introgressed segments with reduced linkage drag, ready to

be deployed in breeding programmes.

Identifying the introgressed content of each introgression line is

important for the effective utilization of these lines. Insufficient

marker density for genotyping approaches such as Kompetitive

allele-specific PCR (KASP) and low resolution of genomic in situ
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hybridization (GISH) limits the resolution at which segments can

be identified. Determining the precise size and positions of

segments and refining positions of overlap between introgression

lines is important when relating to phenotypic data to narrow

down regions containing genes of interest. Identifying introgres-

sion boundaries at a higher resolution will allow lines with

overlapping segments to be identified; these can be crossed to

break down segments and capture genes of interest in smaller

segments with reduced linkage drag.

Wild relative genes have undergone selection in a different

environment to the agricultural setting in which elite wheat lines

are selected and thus may be deleterious, or be, at the very least

imperfect replacements of their wheat orthologue when

deployed in field conditions. Therefore, many genes introgressed

along with a gene of interest will contribute to reduced

agronomic performance of a line. This reduced performance will

be driven by differences both in the encoded protein and in the

pattern of expression of the introgressed gene compared to the

wheat orthologue it replaced. In addition to these direct changes

to gene expression caused by introgression, disruptions to

established regulatory networks and the resulting indirect effects

on the expression of wheat genes in the genomic background will

likely contribute to altered performance.

Ordinarily, hexaploid wheat behaves as a diploid during

meiosis. The Pairing Homoeologous 1 (Ph1) locus is largely

responsible for this behaviour, restricting synapsis and crossovers

to homologous chromosomes (Rey et al., 2017). A suppressed or

deleted Ph1 locus enables recombination between wheat chro-

mosomes and non-homologous wild relative chromosomes and is

a major tool used to transfer wild relative genes into wheat

(Mart�ın et al., 2017). However, this also enables homoeologous

chromosomes to pair and recombine leading to transmission of

chromatin between the subgenomes of wheat (Koo et al., 2020)

and deletions/duplications where synteny between homoeolo-

gous chromosomes breaks.

Here, we have conducted a high-resolution genomic analysis

on 17 hexaploid wheat/Am. muticum introgression lines (King

et al., 2017, 2019), utilizing whole-genome sequencing (WGS)

data from the introgression lines and the parent lines and a draft

genome assembly of Amblyopyrum muticum [(Boiss.) Eig.;

Aegilops mutica Boiss; 2n = 2X = 14; genome TT], a wild relative

of wheat belonging to its tertiary gene pool. Phenotypic screening

of Am. muticum introgression lines (Fellers et al., 2020) has

revealed resistances to leaf, stem and stripe rust not observed in

the parental wheat lines and thus likely conferred by introgressed

genes. KASP genotyping to identify segments has been con-

ducted on many of these lines (Grewal et al., 2021). Through this

analysis, we have pinpointed introgression segment junctions to a

higher resolution than previously possible, in many cases within a

single pair of reads, demonstrating segments of variable size that

overlap between introgression lines, which explains some differ-

ences in resistance phenotype seen between lines. These overlaps

will enable these segments to be further broken down by crossing

introgression lines together. Using in silico karyotyping, we have

shown that large-scale structural disruption is ubiquitous across

the lines, including deletions and duplications up to whole-

chromosome size and homoeologous recombination likely facil-

itated by Ph1 suppression. A genome assembly and gene

annotation of Am. muticum has enabled us to identify intro-

gressed resistance genes in stripe, stem and leaf rust-resistant

lines that may represent novel resistance conferred by Am.

muticum genes. Analysis of gene expression of six introgression

lines compared with the wheat parent lines has revealed that

novel introgressed genes are less likely to be expressed than

introgressed genes replacing an orthologue. Introgressed genes

directly replacing a wheat orthologue show a tendency to be

downregulated, with no significant balancing of the homoeolo-

gous copies in the remaining subgenomes.

Results

Whole-genome sequencing facilitates high-resolution
introgression detection

To reveal Am. muticum segments within introgression lines using

WGS data, we developed a workflow that utilizes mapping

coverage and single nucleotide polymorphism (SNP) information

from the introgression line and the wheat parents. If a wheat

segment is replaced by an Am. muticum segment the mapping

coverage will drop in that region due to structural variation and

breaks in synteny between wheat and Am. muticum. Due to the

homozygous nature of the lines, homozygous muticum-specific

SNPs are indicative of the site of introgression. Reads derived from

an introgressed segment that aberrantly map to a non-

introgressed region will map at the same position as the wheat

reads coming from that region and result in heterozygous SNP

calls with muticum-specific and wheat-specific alleles found at

the same position. Therefore, to locate introgressions, we

searched for genomic blocks with reduced mapping coverage,

homozygous Am. muticum-specific SNPs and few heterozygous

Am. muticum-specific SNPs. We identified introgressions using

1Mbp genomic windows and then defined the borders to a

higher resolution using 100Kbp genomic windows. This was

performed on 17 double haploids (DH) or backcrossed (BC) Am.

muticum introgression lines from which Illumina paired-end short

reads were produced to an average depth of around 5x.

Figure 1a shows an example of this macro-level visualization of

introgression line DH65, which has a 51.29Mbp segment on the

telomere of the short arm of chr4D, and a 139.6Mbp monosomic

deletion on the short arm of chr5B. Macro-level genome plots for

all lines can be seen in Figure S1.

Using this approach, we confirm the existence of 100% of

segments previously identified with KASP genotyping (Grewal

et al., 2021). However, we were able to resolve the locations of

segment junctions to a much higher resolution than previous

methods, due to the limited marker density available for KASP

genotyping and the inability of GISH to resolve segments below

~20Mbp. In addition, we were able to uncover two previously

unreported segments that have been subsequently validated by

KASP genotyping (Grewal et al., 2021); a 17.39Mbp on the

telomere of chr7D of DH195 and a 22.68Mbp segment on the

telomere of chr5D in DH121. We also identified a new 3.99Mbp

segment on chr6D of DH15 that we validated using 2 KASP

markers, WRC1873 and WRC1890 (Table S3). All precise seg-

ment positions are listed in Table S2.

To explore junction regions of segments in fine detail, we used

the Integrative Genome Viewer (IGV) (Robinson et al., 2011), an

interactive browser that allows sequencing reads mapped to a

genome within a specified interval to be manually interrogated.

Using IGV to explore the junction regions, we were able to

precisely identify 33/42 segment ends (78.6%). As some segment

ends are telomere substitutions as opposed to crossovers and

some segments are derived from the same initial cross, we just

looked at uniquely-derived crossover junctions and found that we

could identify the precise crossover point between wheat and
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Am. muticum in 12/17 (70.6%) cases. Of the remaining junctions,

two were narrowed down to within 100kbp and three had

complex structures with duplication events that prohibited precise

localization. Out of the 12 high-resolution junctions, 11 (91.7%)

were within 670 bp upstream or downstream of a wheat gene,

with 8 falling within the gene body itself, suggesting that

crossovers may be localized to genes. The remaining junction was

6.75Kbp downstream from the nearest gene.

For line DH65, the pinpointed junction was validated with

Oxford Nanopore long reads mapped to RefSeq v1.0 along with

the Illumina paired-end short reads (Figure 1b). Oxford Nanopore

reads spanned the breakpoint between Am. muticum and wheat

at the right-hand side of the 51.6Mbp chr4D segment, adding

confidence to the identification from Illumina reads alone. We

assembled these mapped Oxford Nanopore reads using wtdbg2

(Ruan and Li, 2020) with relaxed parameters to include reads that

were clipped due to high divergence between wheat and Am.

muticum, producing a contig that spans the junction. This contig

spans the entire junction, including regions to which neither the

Illumina reads from Am. muticum nor DH65 map. These regions

appear to have elevated SNP density, explaining the gaps in

mapping.

(a)

(b)

Figure 1 Identifying introgressed Am. muticum segments using whole-genome sequencing data. (a) Introgression line DH65, which has a 51.29Mbp

introgressed segment on chr4D and a 139.6Mbp monosomic deletion on chr5D. Each point represents the deviation in mapping coverage with the wheat

parent lines in 1Mbp windows across Chinese Spring RefSeq v1.0. Windows within assigned Am. muticum introgression blocks are coloured red. (b) IGV

image showing junction at the right-hand side of chr4D segment in the introgression line DH65 (Figure 1a), spanned by both Illumina paired-end reads and

Oxford Nanopore reads from DH65. The first four tracks show mapped illumina WGS data, the fifth track shows assembled contig from aligned Oxford

Nanopore reads for DH65, and the bottom track shows high confidence genes from the RefSeq v1.1 annotation.
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For introgression lines with KASP genotyping verification, WGS

data may offer an affordable tool to aid breeders to identify

precise location and size of these segments. To assess the

sequencing depth requirements to locate the position and size of

introgressed segments using coverage deviation alone, we

downsampled the Illumina paired-end short reads from 2 lines

for which we have identified very precise positions of the junction

borders; DH65 and DH92, to 1x, 0.1x, 0.01x and 0.001x to

choose the lowest depth at which we could still resolve segment

position. 0.01x was the lowest depth that still provided compa-

rable resolution (Figure S3).

Introgression breeding process induces homoeologous
pairing and large chromosomal aberrations

In addition to introgression sites, we have identified large

deletions and duplications, many of which were whole chromo-

some arm or whole chromosome in scale, based on the deviations

in mapping coverage not attributable to introgressions. Within

the 17 lines examined, 12 lines (70.6%) have one or more very

large chromosomal aberrations exceeding 140Mbp. These include

duplication of most of chr1A with a deletion of the homoeolo-

gous region of chr1B in DH pair DH124 + DH355 (Figure 2a);

deletion of the short arm of chr4A in DH86 and deletion of the

long arm of chr4B in its DH pair, DH92 (Figure 2b); monosomic

deletion of most of the short arm of chr5D in DH121 and DH65

(Figure 2c), which are not a DH pair, indicating that this event has

occurred multiple times at the same position; and a monosomic

deletion of chr1A in DH195 (Figure 2e).

Homoeologous translocations resulting in the non-reciprocal

transfer of genetic material can be detected through mapping

coverage deviation, indicated by a duplication and deletion in

corresponding homoeologous regions. We can also use differ-

ences within a double haploid (DH) pair (Table S1) to infer what

genetic events must have taken place to give rise to the

segregation patterns we see from DH lines derived from the

same BC3 line. We see evidence of homoeologous pairing both

from duplicated/deleted pairs of chromosomes, such as in DH355

and DH124 (Figure 2a) and from corresponding deletions/dupli-

cations at homoeologous positions (Figure 2d, f). In BC2F420

(Figure 2f), recombination has taken place between chr5A and

chr5D and chr5B has been deleted.

Genome assembly and annotation of Am. muticum:

To facilitate the identification of introgressed genes both for

differential expression analysis and to find candidate introgressed

resistance genes, we produced a draft genome assembly for Am.

muticum 2130012 comprising most of the gene space. After

polishing with long and short reads and resolving haplotigs, the

assembly comprised 96 256 contigs and was 2.53Gbp in length,

with an N50 of 75.5Kbp (Table S5). We estimated the size of the

Am. muticum genome through two independent methods:

mapping the Oxford Nanopore reads back to the assembly and

computing coverage across single-copy genes; and based on k-

mer counts within the Illumina paired-end reads (Figure S4).

These resulted in estimates of 4.90Gbp and 4.57Gbp, respec-

tively, compared with flow cytometry estimate of 6.174Gbp

(Pellicer and Leitch, 2020). Although the genome spans just

53.4% of the estimated genome size (mean of our two

estimates), BUSCO analysis (Waterhouse et al., 2018) revealed

that 94.2% of the expected gene space was assembled

unfragmented (Figure S5). Gene annotation using evidence from

root and shoot transcriptomic data, proteomic data, and

ab initio predictions resulted in 86 841 gene models, 32 385

of which were designated as high confidence (HC) (Table 1).

28 995 (89.8%) of the HC genes were assigned functional

annotation.

To identify Am. muticum genes not present in wheat and gene

families that have undergone expansion in Am. muticum, both of

which could be contributing novel variation in introgression lines,

we used OrthoFinder (Emms and Kelly, 2019) to construct

31 616 orthogroups from the proteins encoded by the HC genes

from Am. muticum, Triticum aestivum, Triticum urartu, Aegilops

tauschii, Oryza sativa and Brachypodium distachyon (Figure S6).

93.8% of Am. muticum genes were placed in an orthogroup.

3873 Am. muticum genes are not present in wheat and 108

orthogroups, comprising 867 Am. muticum genes, have under-

gone expansion in Am. muticum compared to wheat. Enrichment

analysis of GO Slim terms (Figure S7) revealed that the novel Am.

muticum genes were enriched most significantly for terms

associated with metabolic processes.

Expression of introgressed genes and impact on the
background wheat transcriptome

To explore how introgressed genes are expressed and to

understand the impact of the introgression breeding programme

on the wheat transcriptome, we produced mRNAseq data for six

of the introgression lines and the wheat parent lines. Am.

muticum genes introgressed into each line were identified using

orthologue assignments and DNA read mapping evidence. RNA

reads were mapped to a pseudo genome (ABDT) constructed by

concatenating the wheat reference genome, RefSeq v1.0, with

the draft Am. muticum genome assembly; this allows us to

distinguish between RNA deriving from wheat genes and from

Am. muticum genes in the same way that we can distinguish

between wheat homoeologues.

Across all six lines, 1750/4989 (35.1%) introgressed genes

were expressed. Splitting the introgressed genes into those with

an orthologue in wheat and those that are novel revealed that

while 1627/3691 (44.1%) introgressed genes with a wheat

orthologue were expressed, only 123/1298 (9.48%) novel intro-

gressed genes were expressed (Figure 3a). For introgressed genes

that do have a wheat orthologue, those that are more diverged

from the orthologue are less likely to be expressed (Figure 3b),

ranging from 21.5% of genes with no wheat orthologue >90%
protein identity being expressed to 64.8% of genes with an

orthologue in wheat with ≥99% protein identity being expressed.

To test whether Am. muticum genes that have directly

replaced a wheat orthologue are expressed differently to that

orthologue, we called differential expression between each

introgression line and the wheat parent lines using DESeq2 (Love

et al., 2014) after summing the expression count of each

replaced wheat gene with that of its introgressed Am. muticum

orthologue. Between 13.3% and 23.1% (mean of 19.3% across

all lines) of introgressed genes were called as differentially

expressed (abs(log2FC) ≥ 1 and adj. P-value ≤ 0.05 in both

parental comparisons) when compared to the expression in the

parent lines of the wheat orthologue they replaced (Figure 3c).

Between 54.5% and 87.8% (mean of 69.8% across the lines) of

these differentially expressed introgressed genes were downreg-

ulated in the introgression line.

We hypothesized that the suppression of wheat genes in an

introgressed or deleted region would lead to a change in the

expression of homoeologous copies of that gene in the other

subgenomes to compensate for the loss of expression. The results
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of multiple approaches support a lack of overall rebalancing of

triad expression following suppression of one of the copies, both

in the 400Mbp introgressed region on chr5D of BC3F45 and in

the deletion of chr7D in DH161 (Figure 4). In triads where the D

homoeologue has been replaced by a Am. muticum gene or been

deleted, there is an overall reduction in expression on the D

homoeologue (Figure 4a iii, b iii), though to a much lesser degree

in the introgression where introgressed Am. muticum ortho-

logues are being expressed. In the introgression, there were 74

triads with the D homoeologue introgressed and called as

downregulated; none of these triads had any homoeologues

called as upregulated. This was compared with 10 953 control

triads, where no homoeologues are introgressed or deleted and

the D homoeologue is not differentially expressed, of which 17

(0.155%) triads had the A or B homoeologue upregulated. For

the deletion, out of 1294 triads with the D homoeologue deleted

and therefore not expressed, just 6 triads had one or more

homoeologues upregulated (0.464%); this compares to 37

(0.369%) out of 10 031 control triads having the A or B

homoeologue upregulated. These differences are not significant

(Fisher’s exact test two-tailed P-values of 1.00 and 0.628,

respectively).

To complement the above approach and consider homoeo-

logues whose expression may have changed but not sufficiently

to be called as significant by DESeq2, we looked at the log2 fold

change (log2FC) in DESeq2 normalized expression counts. Plotting

the log2FC of DESeq2 normalized expression counts in 10Mbp

windows (Figure 4a i, b i ) across the chromosomes illustrates the

overall stability of expression in homoeologous regions of

introgressions and deletions. For the introgression and the

deletion, we compared the log2FC of the A and B homoeologues

of triads where the D homoeologue had been introgressed or

deleted with the log2FC of the A and B homoeologues of a

control set of triads defined as above (Figure S9). We found no

statistically significant difference between the test and control

sets (two-tailed t test P-values: deletion = 0.209; introgres-

sion = 0.252). This indicates that, like the proportion of DEGs,

the change in expression counts of homoeologues in which the D

homoeologue has been downregulated/silenced does not change

beyond that expected by chance.

We also looked at genes in genomic windows not deviating in

coverage compared with the wheat parent lines (Figure 3) to

explore whether the introgressions and structural changes

induced by the introgression breeding programme had indirectly

affected the expression of remaining wheat genes. Between

0.181% and 2.40% (106–1261 genes; mean of 0.860% across

lines) of these wheat genes were differentially expressed com-

pared with the wheat parents. To assess whether any specific

gene functions were enriched in the differentially expressed

genes we looked for enriched GO Terms (Figure S8). We found

some terms to be enriched, suggesting a non-stochastic impact

on background transcription; however, differences between lines

suggest that the nature of the impact on background transcrip-

tion depends on the genes introgressed/disrupted elsewhere in

the genome. Some terms are enriched in more than 3 lines,

suggesting these are commonly affected. These are oxidoreduc-

tase activity, oxidation–reduction process, tetrapyrrole binding,

catalytic activity, carbohydrate metabolic process, cofactor bind-

ing, which are enriched in downregulated genes; and ion binding,

hydrolase activity and catalytic activity, which are enriched in

upregulated background genes.

Identifying candidate introgressed genes underlying
Am. muticum derived rust resistance

Two of the lines that we sequenced, DH92 and DH121

(Figure 5a), have complete resistance at the seedling stage to

Kansas isolates of Puccinia striiformis tritici (stripe/yellow rust)

(Fellers et al., 2020). DH92 also displays chlorotic adult resis-

tance to leaf rust and partial resistance to stem rust, that is

absent in DH121. These lines have overlapping 5D segments,

the positions of which were refined to 533.2–566.1Mbp

(32.9Mbp) in DH92 and 544.1–566.1Mbp (22Mbp) in DH121.

Therefore, the source of the stripe rust resistance is likely within

the overlapping 22.68Mbp region, and the source of leaf/stem

rust resistance is likely within the 10.9Mbp region unique to

DH92.

Using a mapping-based approach to the pseudo-ABDT

genome (Figure 5b) and combining with functional annotation,

we identified 13 complete nucleotide-binding, leucine-rich repeat

(NLR) immune receptors uniquely introgressed in these two lines.

12 of these have a syntenic wheat orthologue within the

overlapping region of the 5D segments and 2 displayed unique

Table 1 Metrics for Am. muticum high-confidence (HC) and low-

confidence (LC) gene models

HC LC

Total genes (no.) 32 385 54 456

Single exon (no.) 6695 27 364

Multi exon genes (no.) 25 690 27 092

Mean gene length (bp) 3355 1642

Median gene length (bp) 2178 713

Mean CDS length (bp) 1198 716

Median CDS length (bp) 1000 502

Mean exons per transcript (no.) 4.81 2.39

Median exons per transcript (no.) 3 1

Mean exon length (bp) 249 307

Median exon length (bp) 131 196

Figure 2 Large chromosomal aberrations in Am. muticum introgression lines. Each point shows mapping coverage deviation compared with the wheat

parents in 500Kbp windows across the genome. (a) Corresponding duplication and deletion seen in both lines of the DH pair, caused by pairing of a

duplicated chr1A and chr1B. Mapping coverage deviation of 1 at the end of chr1A and chr1B indicates a large translocation between chr1A and chr1B has

taken place in duplicated chr1A + chr1B pair and discontiguous mapping coverage deviation change towards beginning of chr1A and chr1B suggests lots

of smaller translocation events. (b) Chromosome arm deletions on homoeologous chromosomes of DH pair. (c) Monosomic deletions at the same position

in two independently derived lines. (d) Homoeologous exchange within homoeologous group 6, at similar positions in two independently derived lines. (e)

Monosomic deletion of chr1A in DH195. (f) Homoeologous recombination event between chr5A and chr5D and a deleted chr5B.

ª 2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 21, 482–496

Genomic landscape of wheat introgression lines 487

 14677652, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pbi.13859 by N

O
R

W
IC

H
 B

IO
SC

IE
N

C
E

 IN
ST

IT
U

T
E

S L
IB

R
A

R
Y

, W
iley O

nline L
ibrary on [13/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NB-ARC domain signatures. 10 of the NLRs are within a

597.34Kbp cluster, including the 2 novel NLRs. We also identified

2 ABC transporters uniquely introgressed, both of which have 5D

orthologues with over 97.5% protein identity, and 7 protein

kinase genes uniquely introgressed, 3 of which are highly

diverged at the protein level compared with the closest protein

in wheat (52.2%, 74.2% and 77.0%). NLRs, ABC transporters

and LRR protein kinases have all been previously implicated in

resistance to stripe, leaf and stem rust (Chen et al., 2020;

Krattinger et al., 2009; Wang et al., 2020). Gene candidates

are detailed in Table S6.

We identified 3 wall-associated protein kinases (WAKs), and

3 protein kinases uniquely introgressed in DH92 with orthol-

ogoues or proximal to orthologues of wheat genes in the

10.9Mbp non-overlapping region of the 5D segment. 2 of the

WAKs are orthologues of TaWAK388 and TaWAK390 on 5D

and 1 is orthologous to TaWAK255 on chr4A. Wall-associated

kinases have previously been associated with leaf rust adult

plant resistance (APR) (Dmochowska-Boguta et al., 2020). Two

of the protein kinases are identical at the protein level and are

most similar to TaWAK387 just upstream of the TaWAK388

and TaWAK390. These may be truncated tandem duplications

of this WAK. Unlike the other uniquely introgressed genes

identified, the WAKs have some reads mapping to them in

most of the introgression lines but only in DH92 is the

coverage uniform across their lengths. This likely suggests that

these are uniquely introgressed in DH92 and thus can remain

as resistance candidates, but similar Am. muticum WAKs

present in other lines are falsely mapping to these. This is

supported by a lack of mapping across the rest of the contig in

the other lines, unlike in DH92. Gene candidates are detailed in

Table S7.
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Figure 3 Expression of introgressed Am. muticum genes. (a) Expression state (Expressed or Not Expressed) of novel introgressed genes and introgressed

genes in an orthogroup with a wheat gene (b) Expression state (Expressed or Not Expressed) of introgressed genes within an orthogroup with a wheat

gene, binned by the protein identity between the Am. muticum protein and the most similar protein in the wheat reference genome annotation RefSeq

v1.1. (c) Differential expression in 6 introgression lines, looking at introgressed genes compared to the orthologue they replaced in the parent lines, and

background wheat genes compared with the expression in the wheat parent lines. The height of the bar represents the percentage of genes differentially

expressed within introgressed and background regions for each line. The number above each bar is the number of genes called as differentially expressed.
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Discussion

Using whole-genome sequencing to pinpoint wild
relative introgressions in wheat – An affordable
approach to better characterize introgression lines

The current approach for studying synthetic introgression lines

prior to deployment in breeding programmes relies on cytogenetic

and genotyping techniques, namely GISH and KASP (Grewal

et al., 2021; King et al., 2019). De novo discovery of SNPs to

produce higher density KASP markers has improved the resolution

but are insufficient for unpicking the precise size and location of

segments and will likely miss small segments without the guidance

of WGS data to identify areas in which additional markers should

be deployed. We observe this with the new chr6D segment, the

small chr7D segment in DH195 and chr5D segment in DH121, the

latter two of which are sources of novel disease resistance.

We have demonstrated how whole-genome sequencing data

can be used to define introgressions to a very high resolution as

well as resolve large-scale structural changes in these lines.

Downsampling has shown that if we do not require SNP

information, only 0.01x sequencing coverage is required to

pinpoint the junctions of known introgressed segments to a

comparable resolution. Overlaying this information with KASP

genotyping will undoubtedly provide an affordable method to

characterize sets of synthetic introgression lines more accurately

and comprehensively.

Introgressed segments nested within complex genomic struc-

tures, such as in DH202 (Figure S2), can only be inferred in

conjunction with cytogenetic data and/or segregation patterns of

DH pairs. Some introgression segment boundaries, such as the left-

hand border of chr2A in DH15, can be identified but are difficult to

pinpoint precisely due to structural complexities around the

junction. Therefore, caution is advised when relying on
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Figure 4 Expression profile across introgression and a deleted region and their homoeologous regions. (a) chr5A, chr5B and chr5D in BC3F45, with a

chr5D:1-400Mbp introgression where chr5D genes have been replaced by Am. muticum orthologues (b) chr7A, chr7B and chr7D in DH161 where chr7D

has been deleted. i DESeq2 processed log2FC (introgression line/Paragon) of expression compared with Paragon binned into 10Mbp window ii Macro level

structure in 1Mbp windows. Each point represents the deviation in mapping coverage compared to the parent lines in 1Mbp windows across Chinese

Spring RefSeq v1.0. Windows within assigned Am. muticum introgression blocks are coloured red; iii. log2FC (introgression line/Paragon) of A, B and D

homoeologues belonging to triads in which the D copy has been deleted or replaced by an Am. muticum gene.
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introgression assignments provided by WGS data alone, particu-

larly for complex lines with several large introgressions/deletions/

duplications. However, for most lines, where genomic structure is

simpler, this approach is robust and is nevertheless an improvement

on lower resolution methods, even if only to identify confounding

structural complexities that would otherwise have been missed.

We have found that crossover points between wheat and Am.

muticum mostly take place within or adjacent to genes. Previous

work has shown crossovers between wheat and wild relatives are

enriched in gene rich regions (Nyine et al., 2020), which mirrors

recombination rates along the genome (Gardiner et al., 2019).

Here we have achieved sufficient resolution to reveal these wild

relative crossovers are taking place not only in regions of open

chromatin and increased recombination rate, but within the genes

themselves. Interestingly, this follows the same pattern previously

identified for crossovers between homoeologous chromosomes

(Zhang et al., 2020), in contrast to homologous crossovers which,

while enriched in subtelomeric regions and at recombination

hotspotmotifs, are not specifically enriched in and adjacent to gene

bodies.

Genomic instability generated through introgression
breeding programme

We have illustrated that structural disruption is common in

introgression pre-breeding material, including homoeologous

pairing and recombination, and duplications and deletions up

to chromosome size. This is likely caused by the Am. muticum-

induced suppression of the Ph1 locus (Dover and Riley, 1972a,

1972b), however forced chromosome pairings in the F1 cross and

the DH process may also be involved, although we see similar

disruption in non-DH lines. An awareness of chromosomal

aberrations is important for breeders using these lines in their

breeding programmes. It will be important to identify the location

of the Ph1 suppressor in Am. muticum and other wild relatives

that have an innate Ph1 suppression system, such as Ae.

speltoides (Li et al., 2017) to prevent segments being carried

forward into breeding programmes that contain a Ph1 suppressor

that could generate further genomic disruption. For introgression

lines conferring specific phenotypes of interest, it may be

important to remove the chromosomal aberrations through

further backcrossing or to characterize which wheat genes have

been deleted or duplicated as these may have large effects on

phenotype.

Smaller scale variation in mapping coverage suggests there is

structural variation taking place that we cannot accurately assess

with our available data, such as transposable element mobiliza-

tion. It will be important to assess the nature and extent of such

variation in the future. Unfortunately, structural variation

between available chromosome-level genome assemblies and

Paragon/Pavon76 is too great for structural variants arising from

genome shock to be distinguished from existing structural

variation between the cultivars. To study this type of variation,

(a) (b)

Figure 5 Identifying candidate introgressed resistance genes. Introgression lines DH92 and DH121 possess a partially overlapping introgressed segment on

chr5D, a common resistance phenotype to stripe rust but a differential resistance phenotype to leaf and stripe rust. (a) Macro-level structure of the D

subgenome of DH92 and DH121 (no segments on A or B subgenomes). Each point represents the deviation in mapping coverage compared with the

parent lines in 1Mbp windows across Chinese Spring RefSeq v1.0. Windows within assigned Am. muticum introgression blocks are coloured red. (b)

Identifying resistance genes uniquely introgressed in DH92 and DH121 and thus candidates for the stripe rust resistance shared between the two lines.
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we will need genome assemblies of an introgression line and the

wheat parents used in the cross, or a genome assembly of the

wheat parent and long read data from the introgression line.

Identification of novel introgressed genes and gene
expression profile of introgression lines

We identified 3873 novel Am. muticum genes that could underlie

novel traits to introduce into wheat. The gene expression analysis

revealed that in the introgression lines, these novel genes are

much less likely to be expressed than introgressed genes with an

orthologue in wheat. For introgressed genes that do have an

orthologue in wheat, there is a further relationship between level

of divergence and likelihood of being expressed. This may reflect

a lack of required regulatory elements or less efficient transcrip-

tion factor binding due to divergence between the Am. muticum

and wheat genes. However, some of this relationship could be

driven by the confounding effect of more conserved genes having

more core functions and therefore being more constitutively

expressed (Luna and Chain, 2021). It will be important to explore

this further to begin to determine whether traits identified in wild

relatives may present differently when introgressed into wheat.

Many of the introgressed genes are differentially expressed

compared with the wheat orthologue replaced, far exceeding the

proportion of wheat genes in the background that are differen-

tially expressed. This makes sense biologically due to the different

genomic background the Am. muticum genes have been placed

in. Two previous studies have explored the expression of genes in

wheat introgression lines with barley (Rey et al., 2018) and

Aegilops longissima (Dong et al., 2020) introgressed. Due to the

differences in methods used for different studies, it is difficult to

compare the total proportion of DEGs. However, both previous

studies also show that many introgressed genes are differentially

expressed with most of these being downregulated or silenced.

Despite the elevated levels of differential expression among

introgressed orthologues, it is important to note that the majority

of introgressed genes replacing a direct orthologue were not

differentially expressed, suggesting a remarkable similarity in

expression compared to the replaced gene in the majority of

cases.

We did not see a significant change in homoeologue expres-

sion in response to introgression or deletion events. This is in line

with previous results showing a lack of compensation in

homoeologue expression following aneuploidy (Zhang

et al., 2017). This lack of response suggests that if large-scale

balancing of triad expression does take place, it must require

selection pressure, which these synthetic lines lack. Now that

genome assemblies are available for wheat cultivars possessing

many wild relatives introgressions (Walkowiak et al., 2020) that

have undergone extensive artificial selection in a wheat back-

ground, it will be interesting to analyse how these introgressed

regions are expressed and whether balancing of triad expression

arises after a period of selection.

We see some commonly enriched GO Terms in the genomic

background that may be linked with cellular stress or loss of

cellular homeostasis; this conclusion is supported by conclusions

drawn in the wheat/barley introgression line (Rey et al., 2018).

The lines without these enriched GO Terms have less disruption

overall, with fewer differentially expressed genes in the back-

ground and thus may either not have sufficient genomic stress to

trigger these responses or lack sufficient sample size of DEGs to

call significance.

A case study for uncovering candidate introgressed
genes underlying phenotypes of interest

Combining high-resolution detection of introgressed segment

borders with phenotypic information and a genic assembly of

Am. muticum has enabled us to identify likely regions for novel

rust resistances and produce lists of candidate genes. We

identified the probable region of stripe rust resistance in DH92

and DH121 as being within the 22.68Mbp overlapping region of

the chr5D segment. The small size and telomeric position of this

segment makes it conducive for use in breeding. Within this

region, we have identified candidate resistance genes, including 3

novel NLRs and 3 novel LRR Pkinase proteins. We did not find

evidence for other classes of resistance genes that have been

cloned for stripe rust resistance (Zheng et al., 2020) uniquely

introgressed in these lines. The DH92 resistance to leaf rust, that

is not shared with DH121, is only seen in adult plants and to a

composite of isolates; this race non-specific APR tends to be more

durable and, in combination with the small segment size, makes

this resistance another good target for further characterization.

We identified 3 WAKs and 3 protein kinases uniquely intro-

gressed in DH92. Wall-associated kinases have previously been

shown to confer resistance to leaf rust that looks similar to APR

(Dmochowska-Boguta et al., 2020) and protein kinase proteins,

such as Yr36, have been implicated in APR (Ellis et al., 2014). If

only interested in either the stripe rust or leaf/stem rust resistance,

DH92 and DH121 could be crossed to recover the desired

resistance in a smaller segment with less linkage drag.

In addition to narrowing down the source of resistance genes

and identifying introgressed resistance candidates, this method

acts as a case study that can be built on to aid the dissection of

traits in sets of introgression lines. These lines as well as many

other sets of synthetic introgression lines are being phenotyped

for a variety of agronomically important traits and genome

assemblies for additional wild relatives are likely to be produced in

the coming years. The analysis we have described here will work

better with improved assemblies in which contiguous intro-

gressed segments can be reconstructed and introgressed content

fully assessed.

Experimental procedures

Introgression line selection

Am. muticum/hexaploid wheat introgression lines were produced

as in (King et al., 2017, 2019) and summarized in Method S1. 13

DH lines, 3 selfed lines and 1 heterozygous BC line, along with

Am. muticum, Paragon, Pavon76 and Chinese Spring, were

selected for DNA whole-genome sequencing (Table S1). 12 of the

lines belong to a pair or a trio of lines (referred to in this

manuscript as DH pairs) that derive from seed from the same BC1

cross, so common segments are not independently derived. 4 DH

and 2 BC lines (Table S1), along with Am. muticum, Paragon,

Pavon76 and Chinese Spring, were selected for RNA extraction

and sequencing.

Whole-genome sequencing, mapping and SNP calling

DNA from young leaf tissue was extracted and sequenced on

Illumina NovaSeq 6000 S4 flowcells to produce 150 bp paired-end

reads for the introgression lines and Pavon76 and 250 bp paired-

end reads for Am.muticum (Method S2). 150 bp paired-end reads

from Chinese Spring and Paragon were previously produced.
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Reads were mapped to the Chinese Spring reference genome

RefSeq v1.0 (International Wheat Genome Sequencing Consor-

tium, 2018), followed by SNP calling and filtering (Method S3).

In silico karyotyping - calculating mapping coverage
deviation compared to wheat parents

The number of mapped reads post-filtering and duplicate removal

was counted across genomic windows (1Mbp and 100Kbp) in

RefSeq v1.0 using bedtools makewindows (Quinlan and

Hall, 2010) and hts-nim-tools (Pedersen and Quinlan, 2018) for

the wheat parents (Chinese Spring, Paragon and Pavon76) and

each introgression line. Mapped read counts were normalized by

dividing by the total read number post-duplicate removal. Normal-

ized counts of each introgression line were divided by the

normalized count of each wheat parent in its crossing history

(Paragon + Pavon76 or Paragon + Chinese Spring) and the number

closest to 1 was kept as the coverage deviation for that window,

under the assumption that the parent with mapping coverage

closest to the introgression line is the parental donor in that

window. The resulting number reflects the copy number of wheat

DNA in that window relative to the wheat parent. A number of 1

indicates that the DNA in that window is present in the same

amount as in the parent line. A number approaching 0 suggests

either a deletion or an introgression has occurred at that region,

and a number of 2 suggests a duplication event has taken place.

Intermediate values indicate heterozygous copy number change.

We defined windows with a coverage deviation between 0.8 and

1.2 as being ‘normal’ and not in copy number variation compared

with the wheat parents.

Identifying Am. muticum-specific SNPs and assigning
introgressed regions

A set of custom python scripts were used to analyse the coverage

deviation files and vcfs and identify the introgression segments in

each line. These scripts, alongside more detailed methods, are

available at: https://github.com/benedictcoombes/alien_detection.

First, we produced 18 496 474 SNPs between Am. muticum and

Chinese Spring that were not shared with either Paragon or

Pavon76 (Method S4). Introgression line SNPs were then assigned

as Am. muticum if matching an Am. muticum specific SNP in

position and allele. Sites exceeding 3x mean coverage level were

removed as this signifies collapsed repeat expansion. These SNPs

were then split into homozygous and heterozygous and binned

into 1Mbp windows using bedtools coverage (Quinlan and

Hall, 2010).

Coverage deviation blocks were defined based on contiguous

blocks of 1Mbp windows with coverage deviation <0.7, with

windows within 5Mbp from the previous coverage deviation

block being merged. The block was discarded if <80.0% of

constituent windows had a coverage deviation <0.7. Coverage
deviation blocks were assigned as Am. muticum based on the

presence of homozygous Am. muticum-specific SNPs and a high

ratio of homozygous to heterozygous Am. muticum-specific

SNPs, within 1Mbp windows across the block (Method S5).

Coverage deviation in 100Kbp windows either side of the larger

block was used to define the borders of the segment. To locate

the precise position of this junction, the BAM alignment files for

Am. muticum, Paragon, Pavon76 and the introgression line were

loaded into IGV (Robinson et al., 2011). The region around the

border identified above was searched manually to find the

position where the coverage and SNP profile switches from that

of the wheat parents to that of Am. muticum.

KASP validation

To validate the newly identified segment that had not been

previously validated, a KASPTM genotyping assay was conducted

as described in (Grewal et al., 2020) (Method S6) (Table S4).

Junction validation using Oxford nanopore long reads

DNA from introgression line DH65 extraction was prepared using

ligation sequencing kit SQK-LSK109 and sequenced to a depth of

7x on a MinION using the R9.4.1_RevD flow cell. Reads were

filtered using NanoFilt (De Coster et al., 2018) to remove reads

below a quality score of 7 or a length of 1Kbp. Filtered reads were

mapped to RefSeq v1.0 using minimap2 (Li, 2018) with param-

eters -axe map-ont and --secondary = no. Mapped reads around

the breakpoint (chr4D:51283000–51 595 000) were extracted

using samtools (Li et al., 2009), including clipped portions of

mapped reads, and assembled using wtdbg2 (Ruan and Li, 2020).

The resulting contigs were mapped to RefSeq v1.0 using

minimap2 (Li, 2018) with parameters -axe map-ont and visual-

ized in IGV (Robinson et al., 2011) along with the mapped

Illumina paired-end short reads from the parent lines and DH65.

Genome assembly of Am. muticum

DNA from Aegilops mutica (now Am. muticum) line 2130012

(JIC) was prepared using ligation sequencing kit SQK-LSK109 and

sequenced on a MinION using the R9.4.1_RevD flow cell. 178Gbp

of raw Oxford Nanopore long reads were filtered using NanoFilt

(De Coster et al., 2018), removing reads below a quality score of

7 or a length of 1Kbp. Filtered reads were assembled using the

Flye assembler (Kolmogorov et al., 2019). Following polishing

integrated into Flye using Oxford Nanopore reads, we conducted

2 rounds of pilon (Walker et al., 2014) polishing using 102Gbp of

Illumina paired-end short reads to correct systematic errors in the

Oxford Nanopore reads. Finally, haplotigs that were not collapsed

in the assembly were detected and resolved using purge_hap-

lotigs (Roach et al., 2018). Gene completeness was assessed

using BUSCO 3.0.2 (Waterhouse et al., 2018) with parameters -l

viridiplantae_odb10 –species wheat and -m geno. Genome size

of Am. muticum accession 2130012 was estimated by mapping

back the Oxford Nanopore reads to putative single-copy genes

and through a k-mer based approach (Method S7).

Gene annotation

Following annotation and masking of transposable elements

(Method S8), gene annotation was performed using ab initio,

protein homology and transcriptome evidence from Am. muti-

cum root and shoot mRNAseq data (Method S9). These were

sources of evidence were integrated using EvidenceModeler

(Haas et al., 2008) and partitioned into high- and low-confidence

genes.

Protein family analysis

OrthoFinder (Emms and Kelly, 2019) was used with default

settings to cluster the longest protein encoded by high-

confidence genes from Am. muticum, Ae. tauschii, T. urartu, T.

aestivum, O. sativa and B. distachyon into orthogroups. Am.

muticum genes were classified as novel if in an orthogroup

without a wheat protein or not assigned to an orthogroup. An

orthogroup was determined to have expanded in Am. muticum

compared to wheat if the orthogroup contained 4 or more Am.

muticum proteins more than twice the number of proteins than

wheat.
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Assigning orthologue pairs

First, we computed best reciprocal blast hits between Am.

muticum and each wheat subgenome independently. Am.

muticum proteins (extracted and translated from gff) and wheat

proteins (taken from IWGSC 1.1 pep.fa file) were aligned

reciprocally using blastp (Camacho et al., 2009) with parameters

-outfmt 6 -max_hsps 3 -max_target_seqs 3 -evalue 1e-6. Hits

were retained if percentage identity ≥90.0% and alignment

length was ≥ 80.0% query length. An Am. muticum gene was

placed in an orthologue pair with a wheat gene if it was in an

orthogroup with that gene and the pair were each other’s best

reciprocal blast hit.

Classifying introgressed genes

The wheat reference genome RefSeq v1.0 and the draft Am.

muticum assembly were concatenated to form a pseudo ABDT

genome. Illumina paired-end short reads from the introgression

lines were mapped to this genome and filtered using the same

process as mapping to RefSeq v1.0 alone. Introgressed Am.

muticum genes in each line were defined as those with mean

depth across their length ≥ 13.2x in DH202 and ≥3x for the

remaining lines (≥~0.6 * mean sequencing depth) from the ABDT

pseudo genome mapping above and on a contig/scaffold with a

gene assigned to an orthologue pair with a wheat gene whose

start position is within a region labelled as a Am. muticum

introgression and also passes the coverage threshold above. This

is a conservative classification to prevent inclusion of non-

introgressed genes.

mRNA extraction, sequencing, alignment and
quantification

mRNA was extracted and sequenced in triplicate from leaf tissue

of six introgression lines, Chinese Spring, Paragon and Pavon76

(Method S10). RNA reads were trimmed using Trimmomatic

(Bolger et al., 2014) with the parameters ILLUMINACLIP:

BBDUK_adaptor.fa:2:30:12 SLIDINGWINDOW:4:20 MINLEN:20

AVGQUAL:20. The gff3 for the high confidence CS genes was

concatenated with the gff3 for Am. muticum genes. Splice site

hints for HISAT2 were produced using extract splice sites.py from

HISAT-2.0.4 (Kim et al., 2019). The trimmed reads were mapped

to the pseudo ABDT genome using HISAT2 with the splice hint file

provided and parameters -k 101 --dta --rna-strandness RF. Non-

uniquely mapping reads were removed using samtools view -q

40. Stringtie (Pertea et al., 2015) was used to compute gene-

level abundances, outputting both raw counts and transcript-per-

million (TPM) values.

Expression of introgressed Am. muticum genes

The protein sequences encoded by introgressed Am. muticum

genes were aligned to the proteins encoded by RefSeq v1.1 HC

genes using blastp (Camacho et al., 2009). The identity of the

best hit for each protein was retained, with an identity of 0

assigned to proteins with no hit. TPM values for each gene were

taken as the mean of the three replicates. Genes with mean TPM

greater than 1.0 were classified as expressed.

Differential expression analysis

For each wheat gene in a region identified as introgressed, they

were either removed if not in an orthologue pair with an

introgressed Am. muticum gene or their expression count was

summed with that of its Am. muticum orthologue. Differential

expression analysis between each introgression line and its two

wheat parents was performed using DESeq2 (Love et al., 2014).

A gene was classified as differentially expressed if it had an

adjusted P-value below 0.05 and an absolute log2FC ≥ 1 in both

parental comparisons. Differentially expressed genes were parti-

tioned into those in introgressed regions, and in the unaffected

wheat background where coverage deviation is between 0.8 and

1.2.

Testing triad expression balancing

To examine whether genes belonging to triads that have

homoeologues that have been replaced by a Am. muticum gene

or have been deleted, we took test sets of triads (Ram�ırez-

Gonz�alez et al., 2018) that satisfied the following conditions: the

D copy is introgressed or deleted and called as downregulated;

the A and B homoeologues are in normal copy number regions

(coverage deviation between 0.8 and 1.2); and all homoeologues

have normalized expression count across samples ≥1. These were

compared to control sets of triads that satisfied the same

conditions except the D homoeologue was within a normal copy

number region and was not called as differentially expressed.

These sets were used for both the comparison of number of triads

with A and/or B homoeologue upregulated and for the compar-

isons of the mean log2FC of the A and B homoeologues between

the test and control sample of triads. The significance of these

comparisons was tested using two-tailed Fisher’s exact test and

two-tailed t test, respectively.

GO term analysis

We transferred functional GO Term annotation from genes in the

RefSeq v1.0 annotation to genes in the RefSeq v1.1 annotation if

they shared greater that 99% similarity across greater than

90.0% of their length. Statistically enriched GO Terms within the

differentially expressed background gene set were computed

using the R package topGO (Alexa and Rahnenfuhrer, 2021) with

the following parameters: nodeSize = 10; classicFisher test

P < 0.05 and algorithm= ‘parentchild’. Enrichment for GO Terms

involved in biological processes was tested against all background

genes that fall within windows with mapping coverage deviation

between 0.8 and 1.2. For novel Am. muticum genes, GO terms

were extracted from the eggnog functional annotation and

converted to GO Slim terms using owltools Map2Slim (https://

github.com/owlcollab/owltools). Enrichment was performed as

above but against all Am. muticum HC genes.

Identifying introgressed resistance genes

Potential resistance genes in the Am. muticum assembly, includ-

ing NLRs, Protein Kinases and ABC transporters were identified

(Method S11). Resistance genes were manually checked using

IGV to identify candidates with even sequencing coverage across

the genes in DH92 and DH121 only, in the case of the shared

stripe rust resistance, and across the genes in DH92 only, in the

case of the DH92-specific leaf and stem rust resistance. To reduce

the number of genes to manually check, we removed any genes

with less than 2x mean mapping coverage across their length in

either DH92 or DH121. The gene models were manually curated

using the available evidence. For NLRs revealed by NLRAnnotator

(Steuernagel et al., 2020) with no gene model but transcriptomic

and ab initio evidence, gene models were manually constructed.

The novelty of the uniquely introgressed NLRs was tested by

extracting the NB-ARC domains using hmmscan (Finn

et al., 2011) and aligning them using blastp (Camacho
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et al., 2009) to the proteins of HC genes from 10 wheat cultivars

(Walkowiak et al., 2020). Hits below 85% identity were consid-

ered novel. The novelty of the other protein types was tested by

aligning the whole amino acid sequence to the same protein set;

here, hits below <80.0% were considered novel.
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ARTICLE

Exotic alleles contribute to heat tolerance in wheat
under field conditions
Gemma Molero1,3,5, Benedict Coombes 2,5, Ryan Joynson2,4, Francisco Pinto1, Francisco J. Piñera-Chávez1,

Carolina Rivera-Amado1, Anthony Hall2✉ & Matthew P. Reynolds 1✉

Global warming poses a major threat to food security and necessitates the development of

crop varieties that are resilient to future climatic instability. By evaluating 149 spring wheat

lines in the field under yield potential and heat stressed conditions, we demonstrate how

strategic integration of exotic material significantly increases yield under heat stress com-

pared to elite lines, with no significant yield penalty under favourable conditions. Genetic

analyses reveal three exotic-derived genetic loci underlying this heat tolerance which toge-

ther increase yield by over 50% and reduce canopy temperature by approximately 2 °C. We

identified an Ae. tauschii introgression underlying the most significant of these associations

and extracted the introgressed Ae. tauschii genes, revealing candidates for further dissection.

Incorporating these exotic alleles into breeding programmes could serve as a pre-emptive

strategy to produce high yielding wheat cultivars that are resilient to the effects of future

climatic uncertainty.
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Wheat is among the most widely cultivated crops in the
world with more than 216 million hectares grown
annually1, most of which is produced under temperate

conditions2. Heat stress is one of the major abiotic stressors that
impacts global wheat production, reducing leaf area, crop dura-
tion and the efficiency of photosynthesis and respiration3 as well
as reducing floret fertility and individual grain weight4. Together,
these physiological consequences negatively impact productivity3

with potential devastating effects. For example, in 2010, Russia
saw a 30% reduction in wheat yield during their hottest summer
in 130 years5. Cases like this could become commonplace as
global warming causes temperatures to rise and extreme weather
events to become more frequent. Simulations predict that global
yields will fall by on average 6% for each 1 °C increase in
temperature6, with some regions reaching 9.1% ± 5.4% per 1 °C
rise7. Adaptation to future climate scenarios is vital to ensure
global food security8. Climatic instability, combined with envir-
onmental constraints, such as restricted supplies of irrigation
water and arable land loss, emphasises the need for breeding
strategies that deliver both increased yield potential during
favourable cycles and resilience to abiotic stress and environ-
mental constraints.

Such adaptation relies on genetic variation underlying the
traits of interest; however, modern elite wheat material typically
has limited genetic variation, particularly in the D genome9, due
to historic genetic bottlenecks10,11 compounded by intensive
artificial selection by breeders12. A strategy employed by the
International Maize and Wheat Improvement Center (CIM-
MYT) to increase the genetic diversity of wheat pre-breeding
material is to incorporate exotic parents in their germplasm via
strategic crosses11,13. The most common exotic parents used are
Mexican and other origin landraces14 and primary synthetics,
which are produced by hybridising tetraploid durum wheat with
Aegilops tauschii, the ancestral donor of the D genome, to
recreate hexaploid bread wheat15; these synthetic lines act as a
bridge to introduce durum and Ae. tauschii variation into
modern hexaploid wheat. This approach has been successful in
introducing disease resistance as well as drought and heat
adaptive traits16,17. Landrace and synthetic material have been
identified with superior biomass in comparison to elite lines
under drought and heat conditions18,19 and elite lines that
include landrace or synthetic material in their background have
been developed in recent years for drought, heat, and yield
potential conditions20–22.

Challenges remain for the effective deployment of landrace and
synthetic material. Only a small fraction of these vast collections
of crop genetic resources have been evaluated for climate resi-
lience traits and potential tradeoffs under favourable conditions
have not been assessed. Currently, most of these genetic resources
are unused23 as breeders tend to avoid exotic materials because of
large regions of poor recombination and a fear of linkage drag24.
Furthermore, despite evidence of the contribution of exotic
material in wheat improvement, the physiological and genetic
bases of heat tolerance in this material remain unclear.

Here, we evaluate a spring wheat panel in the field containing
contrasting material controlled for phenology and plant height
under heat stress and yield potential conditions. We explore yield
and related physiological traits and compare exotic-derived lines
with elite lines. We conduct a genome-wide association study to
reveal marker trait associations (MTA) with heat tolerance traits
and evaluate their impact under favourable conditions. Finally,
we identify introgressed Ae. tauschii underlying an MTA and
employ in silico mapping downstream of the GWAS to narrow
down the interval, explore recombination and identify candidate
genes.

Results
Physiological evaluation of HiBAP I under heat stress. To
estimate the contribution of exotic material to heat tolerance and
identify its genetic bases, we evaluated the High Biomass Asso-
ciation Panel I (HiBAP I) for two consecutive years under yield
potential and heat stressed irrigated conditions in NW-Mexico
(Supplementary Table 1). The HiBAP I panel represents an
unprecedented resource of genetic diversity25. It contains 149
lines, some of which are elite while others contain exotic material
from landraces, synthetics, and wild relatives (Fig. 1a, Supple-
mentary Data 1). All lines have agronomically acceptable back-
grounds and a restricted range of phenology and plant height
under yield potential conditions21 which allows traits of interest
to be evaluated without confounding effects.

Heat stress was imposed by delayed sowing compared to the
check environment (Supplementary Fig. 1) and, across both years
of evaluation, this reduced yield by 48.1% and shortened the crop
cycle duration by more than 30% (Fig. 1b, Supplementary
Table 3). When we analysed the response to heat stress of the
lines based on their pedigree, exotic-derived lines exhibited an
average of 37.7% higher yield compared to elite lines under heat
stressed conditions (Fig. 1c, upper). Biomass, the trait most
affected by heat stress, was 39% higher in exotic-derived lines,
and other yield components, except for harvest index (HI), were
significantly higher in exotic-derived lines than elite lines (Fig. 1c,
upper). Under yield potential conditions, exotic-derived lines did
not show a yield penalty compared to elite lines, as reported in21

(Fig. 1c, lower). Exotic lines were on average 5.6 cm and 3.8 cm
taller than elite lines under heat stressed and yield potential
conditions, respectively. No differences in phenology were
observed between the groups in either of the environments.
Plant height was not correlated with yield under yield potential
conditions (r= -0.007, p > 0.05), but positive correlations were
observed between plant height and yield under heat stressed
environments (r= 0.699, p < 0.001). The better performance of
exotic-derived lines was validated using the stress susceptibility
index (SSI). This measure is negatively correlated with yield
under heat stressed conditions; thus, lower SSI values indicate
higher tolerance to a stressful environment. Compared to elite
lines, exotic-derived lines had significantly lower SSI values for
yield, grains per m2 and biomass at physiological maturity, but
not for thousand grain weight (Table 1).

Additional physiological traits were measured in the experi-
ments to help understand the physiological basis of the superiority
of the exotic-derived lines under heat stressed conditions. Exotic-
derived lines had significantly higher normalised difference
vegetative index (NDVI), a proxy for biomass, and significantly
lower canopy temperature during both vegetative and grain filling
stages under heat stressed conditions but not under yield potential
conditions (Fig. 2). NDVI measured during vegetative and grain
filling stages was positively correlated with yield (Fig. 2) while
canopy temperature was negatively correlated with yield at both
stages (Fig. 2). These correlations were present under heat stressed
conditions but not under yield potential conditions. The correla-
tions were steeper for exotic-derived lines than elite lines for both
traits across both phenological stages, suggesting that NDVI and
canopy temperature are having a higher impact on yield in exotic-
derived lines compared with elite lines. Under heat stressed
environments, both NDVI and canopy temperature presented
similar correlations with biomass at physiological maturity, grain
number, and other yield components (Supplementary Table 5) but
no correlation was observed under yield potential. The stess
susceptibility index index calculated for yield was negatively
correlated with agronomic and physiological traits except for
canopy temperature, where positive correlations were observed
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indicating that more tolerant lines had consistently cooler canopies
(Supplementary Table 5).

Genome-wide association analysis reveals genetic associations
under heat stress. To explore the genetic bases of these exotic-
derived heat tolerance traits, marker-trait association analyses
were performed using Best Linear Unbiased Estimator (BLUE)
means from two or four replicates for each measured trait over
two growing seasons. The most relevant MTAs are shown in
Supplementary Table 6, and all Manhattan plots are shown in
Supplementary Fig. 2. We found 3 pleiotropic markers (Fig. 3a)
on chr1B (chr1B-63398861: C), chr2B (chr2B-820002: C) and
chr6D (chr6D-6276646: T). These MTAs were associated with all
three heat stress indices along with multiple yield traits, including
yield and canopy temperature, at both vegetative and grain filling

stages, and were not associated with harvest index or phenology
(Fig. 3c, Fig. S2). The favourable allele at each position was the
minor allele.

Lines with the favourable C allele on 1B and 2B and the
unfavourable A allele on 6D have 24.3% higher yield under heat
stress; lines which also have the favourable T allele on 6D have
56.5% higher yield under heat stress compared to lines with the
three unfavourable alleles (Fig. 3b). Assuming the three alleles do
not interact epistatically, the T allele on 6D can be estimated to
increase yield under heat stress by 32.4%. Lines with the favourable
allele at all three MTAs show a reduction in canopy temperature of
1.97 °C and 2.37 °C, at vegetative and grain filling stages,
respectively, when compared to lines with the unfavourable allele
at all three positions (Fig. 3b). Under yield potential conditions, no
difference was observed between favourable and unfavourable allele
combinations for yield or for canopy temperature (Fig. 3b). The
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Fig. 1 Physiological assessment of HiBAP I panel, comparing elite and exotic-derived lines under heat stressed and yield potential conditions.
a Number of lines from each group. b Effect of heat stress on yield (YLD), thousand grain weight (TGW), number of spikelets per spike (SPKLSP-1), number
of spikes per m2 (SM2), plant height (Height), number of infertile spikelets per spike (infertile SPKLSP-1), harvest index (HI), grain weight per spike
(GWSP), number of grains per spike (GSP), grain number (GM2), days to physiological maturity (DTM), days to anthesis or days to heading (DTA/DTH
for yield potential and heat stress experiments respectively), and biomass at physiological maturity (BM_PM), showing the percentage difference
compared to yield potential conditions. c Comparison of yield (YLD), thousand grain weight (TGW), grain number (GM2), biomass at physiological
maturity (BM_PM), harvest index (HI), and Height between elite and exotic-derived lines in HiBAP I measured under both heat stress and yield potential
conditions. The boxplots are defined as follows: centre line = median; box limits = upper and lower quartiles, whiskers = 1.5x interquartile range; points =
outliers. The significance of the difference between Elite (n = 83 biologically independent lines) and exotic-derived (n = 66 biologically independent lines)
lines for each trait was assessed using two-tailed t tests with no assumption of equal variance. p-values below 0.01 were considered significant (*), below
0.001 very significant (**) and below 0.0001 highly significant (***). Means, standard deviations, confidence intervals and p-values can be found in
Supplementary Table 2.
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favourable allele at each of these MTAs is predominantly found in
exotic-derived lines with 50/55 (1B), 44/45 (2B) and 33/33 (6D)
lines with the favourable allele classified as exotic-derived. 7 lines
appear to be heterozygous (A/T) at 6D-6276646. The HiBAP lines
are inbred to at least the F9 or F10 generation so, as sequencing
data was generated from pooled samples, this observation could be
the result of alleles segregating at this locus. However, we observe
no significant difference in yield or canopy temperature under heat
stress between lines that are heterozygous and lines that are
homozygous for this allele (Supplementary Fig. 3). This suggests
that these lines are indeed heterozygous for the favourable allele
and also suggests that the phenotype may be dominantly inherited.

Aegilops tauschii introgression underlies 6D MTA. Due to the
better performance of exotic-derived lines under heat stress and
exotic-derived lines possessing alleles for heat tolerance, we
searched for introgressed material overlapping the MTAs. We
detected introgressed material in HiBAP I lines by looking for
genomic blocks containing windows with SNPs specific to Ae.
tauschii, Th. ponticum or S. cereale and reduced mapping cov-
erage, seen as coverage deviation (mapping coverage compared to
the median mapping coverage across the panel) significantly
below 1, which indicates breaks in synteny between wheat and the
introgressed chromosome segment. Using this approach, we
identified introgressed Ae. tauschii material at the beginning of
6D in all 33 lines with the T/T genotype and all 7 lines with the A/
T genotype at MTA 6D-6276646, where T is the favourable allele.
As Ae. tauschii is from wheat’s primary genome and thus very
similar to the D subgenome, not every 1Mbp window is suffi-
ciently lacking in synteny for reads to map poorly and produce
significant coverage deviation below 1. This explains why some
windows within the introgression have coverage deviation of
around 1. However, these windows still have Ae. tauschii-specific
SNPs and are within a block of 1Mbp windows in which most
have significant coverage deviation below 1. Therefore, we can be
confident that the introgression includes these windows.

The full-length, unbroken segment is 31.6Mbp in length, as
seen in Sokoll (HiBAP_57) (Fig. 4a). The segment size within
independent Sokoll Weebil1 crosses show that recombination
occurs readily within the segment, breaking it up into variable
sizes (Supplementary Fig. 4). By comparing the overlapping
segments between lines, we found a 1.80Mbp core introgressed
region between 5.05Mbp and 6.85Mbp that is present in all lines
with the T/T or A/T genotype at 6D-6276646 and absent in all the
lines with the A/A genotype (Fig. 4a). In A/T lines, the
introgression itself, in addition to the favourable allele, appears

to be heterozygous, evidenced by intermediate mapping coverage
deviation compared to the homozygous lines and by heterozygous
SNPs whose alternative alleles are specific to Ae. tauschii. Using
chromosome and protein alignments, we anchored this 1.80Mbp
core region from the wheat RefSeq v1.0 genome to the Ae.
tauschii reference genome, Aet v4.026, and extracted the syntenic
1.49Mbp region between 4.63Mbp and 6.12Mbp. This represents
the probable introgressed content of the core introgressed region
and likely contains the gene(s) responsible for the MTA (Fig. 4b,
c). We found no evidence of introgressed material overlapping
the 1B or 2B MTAs.

Candidate genes for MTAs in 1B, 2B and 6D. For the 6D MTA,
we identified the syntenic region in the Ae. tauschii genome and a
list of genes that had been introgressed (Fig. 4c). As we are
unaware of the Ae. tauschii accession that has been introgressed,
we also looked at the genes within the same region in four other
available chromosome-level Ae. tauschii assemblies27. Between
accessions, this region varies between 1.49Mbp and 1.82Mbp in
length and contains between 26 and 33 genes (Supplementary
Data 2). These include a MIKC-type MADS-box gene ortholo-
gous to SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
(SOC1); a mitogen-activated protein kinase (MAPK) gene found
in two of the Ae. tauschii accessions with no orthologue in wheat;
and a pair of type-B two-component response regulator receiver
proteins, orthologous to type-B Arabidopsis response regulators
(ARRs) with closest similarity to ARR-11. One member of the
pair, AET6Gv20025700, appeared to have a myb-binding domain
that is missing from the wheat orthologue gene model. However,
after manual reannotation, we found that this difference was a
misannotation in wheat so likely not causing a functional dif-
ference. We also found that both ARR genes were expressed in
spike and grain in both Ae. tauschii and wheat but not in leaf or
root, whereas the other candidate genes were expressed across
leaf, root, spike and grain tissues. This might exclude the ARR
genes for involvement in the heat tolerant phenotype which is
established during the vegetative stage and maintained through
grain filling. For the 1B and 2B MTAs, as they were not within an
introgression, we submitted the sequence 1Mbp up and down-
stream of the MTA to Knetminer, a gene discovery tool28. Within
the 2B interval, we identified DEHYDRATION-RESPONSIVE
ELEMENT-BINDING PROTEIN 1A (DREB1A) and STEROL
GLUCOSYLTRANSFERASE (SGT) as promising candidate genes.
The functional evidence of candidacy for each candidate gene is
outlined in Supplementary Note 1.

Discussion
Exotic parents are routinely used to increase genetic diversity in
wheat pre-breeding pipelines and their enhanced performance has
been demonstrated under salinity29, drought14,19 and heat
stress18,30. In the present study, exotic-derived lines performed
better under heat stress than elite lines with no yield penalty under
yield potential conditions. This increased yield under heat stress
was associated with a range of factors, including higher biomass
throughout the crop cycle, higher grain number and cooler canopy
temperature during both vegetative and grain filling stages. Con-
trary to other studies31,32 higher pre or post anthesis biomass
(NDVI) or lower canopy temperature was not associated with
higher yields under favourable conditions. Cooler canopies have
been previously associated with higher tolerance to drought and
heat irrigated environments33 and with optimised root distribution
in bread wheat34. Plants with an optimised root system are able to
satisfy the high evaporative demand through elevated transpiration
rates under hot irrigated conditions and thus maintain cooler
canopies35. Higher transpiration rates are associated with increased

Table 1 Stress susceptibility index (SSI) calculated for yield
(YLD), thousand grain weight (TGW), grains per m2 (GM2)
and biomass at physiological maturity (BM_PM) of elite and
exotic-derived lines obtained from adjusted means for two
years of data in each environment.

Trait rp
(YLD_Heat)

Elite Exotic

n= 83 n= 66

SSI_YLD −0.976 1.16 ± 0.24 a 0.79 ± 0.32 b
SSI_TGW −0.439 1.03 ± 0.2 a 0.95 ± 0.27 a
SSI_GM2 −0.951 1.26 ± 0.42 a 0.60 ± 0.52 b
SSI_BM_PM −0.946 1.13 ± 0.20 a 0.85 ± 0.23 b

Letters indicate the statistical significance between Elite and Exotic groups. Means followed by
different letters are significantly different (p-value < 0.01) according to pairwise t tests.
rp corresponds to the phenotypic correlation with the yield obtained under heat environments.
Data represents the mean ± S.D. Sample size, n, indicates the number of biologically
independent lines in each group.
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stomatal conductance that, in turn, is associated with higher pho-
tosynthesis that can explain the higher biomass observed in exotic-
derived lines in comparison with elite lines. However, according to
temperature response models in wheat6, the observed reduction in
plant temperature of approximately 2 °C would be unlikely to
account alone for the >50% increased yield of exotic lines6.

Despite variation in plant height being restricted, exotic-
derived lines were taller than elite lines in both environments.
Plant height and phenology were restricted under yield potential
conditions, but the variation under heat stress environments was
not initially considered for the panel construction. Interestingly,
lines that performed well under heat stress had the lowest dif-
ference in plant height between yield potential and heat stress
conditions. Taller plants have better light interception and a
better light distribution in comparison with shorter plants, and
this has been associated with increased photosynthesis36. There-
fore, plant height may be influencing the better performance of
exotic-derivatives. Among all stress indices, the stress susceptibility

index (SSI) is thought to be the most useful index for evaluating
tolerant cultivars. Exotic-derived lines had significantly lower SSI
than elite lines, adding additional support to the resilience of this
exotic material under heat stress.

In the present study, heat stress was achieved by delaying
sowing by more than three months. This could have introduced
confounding effects as delayed sowing changes not only tem-
perature but also photoperiod. However, the photoperiod effect in
this study is considered minimal for several reasons. Firstly, the
lines presented in this study were selected using the shuttle
breeding technique that characterises CIMMYT’s wheat breeding
strategy and selects lines relatively insensitive to photoperiod and
vernalisation response. This is because one selection site has a
long photoperiod and negligible vernalizing cold37. Secondly,
insensitivity to the photoperiod was confirmed by marker analysis
where among the known major adaptation genes, the spring allele
at Vrn-B1 (Vrn-B1a) and Vrn-D1 (Vrn-D1a) and the Ppd-
insensitive allele at Ppd-D1 (Ppd-D1a) were present in ~90% of

Fig. 2 Relationship between normalised difference vegetation index (NDVI) and yield and between average canopy temperature and yield at both
grain-filling and vegetative stages. NDVI and canopy temperature were measured with UAVs at pre-heading (vegetative stage) and during grain filling.
Regression lines were calculated using Pearson’s correlation coefficient between each pair of traits (n = 83 and 66 biologically independent lines for the
Elite and exotic-derived groups, respectively) and added for classification/condition combinations with a significant correlation (p-value <= 0.01). The
correlation coefficient, r, and the steepness of the line, ranges from −1 to 1, signifying very negatively correlated and very positively correlated, respectively.
Pearson’s correlation coefficient, confidence intervals and p-values for all comparisons can be found in Supplementary Table 4.
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the HiBAP I panel38. Finally, delayed sowing at CIMMYT’s
Obregon station is routinely used for evaluating heat-tolerant
breeding material, and several studies confirm the value of late
sowing at this experimental site to develop germplasm adapted to
different heat stressed environments worldwide4,18,39–41.

De novo SNP discovery is the process of generating SNP
markers from high-throughput next-generation sequencing as
opposed to using lower density genotyping arrays. The value of
this approach in breeding efforts is starting to be more widely
recognised. In conjunction with high throughput phenotyping

methods42, high density, unbiased markers can be leveraged to
discover MTAs or to narrow pre-existing QTL intervals to pro-
vide more robust markers for global breeding programs43,44.
Using these methods, we have identified alleles at three pleio-
tropic MTAs on chromosomes 1B, 2B and 6D that when stacked
increase yield by 56.5% and reduce canopy temperature by
1.97 °C/2.37 °C under heat stress conditions when compared to
lines containing the three major alleles at these positions (Fig. 3b).
These markers were associated with multiple agronomically
important traits under heat stress including yield, grain per

Fig. 3 Genome-wide association study reveals genetic markers underlying heat tolerance traits. a Manhattan plot showing marker trait associations for
stress susceptibility index (SSI) for yield under heat stress. The horizontal blue line indicates an arbitrary cutoff of −log10(p) of 5. The horizontal red line
indicates the conservative Benjamini–Hochberg cutoff implemented by GAPIT. b Specific marker allelic variants effects on yield and on canopy temperature
under heat stress and yield potential conditions in chromosomes 6D (chr6D-6276646), 1B (chr1B-63398861), and 2B (chr2B-820002), where the
combination of favourable alleles is T+C+C and the combination of unfavourable alleles is A+A+G. The boxplots are defined as follows: center line =
median; box limits = upper and lower quartiles, whiskers = 1.5x interquartile range; points=outliers. The percentage change and °C change is calculated
compared to lines with the major alleles at all three MTAs. Significance of allele combinations was computed using a one-way ANOVA test (n = 87, 14,
and 31 biologically independently lines for A+A+G, A+C+C and T+C+C, respectively). Means, standard deviations and p-values from Tukey’s honest
significance test can be found in Supplementary Table 7. c Phenotype distribution under heat stress and yield potential conditions highlighting the rank of
6D minor allele carriers for each phenotype where lines in the panel are ordered from lowest to highest value for each trait.
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square metre, grain filling rate and biomass (Fig. S2). Despite
being in apparently disparate regions of the genome, the 1B and
2B favourable alleles always occur together and the 6D favourable
allele usually occurs with the 1B and 2B favourable alleles. This
suggests that there may be functional linkage between the mar-
kers. All three MTAs are predominantly found in exotic-derived
lines but are not exclusive to any of the exotic categories as we see
them in synthetic, introgression line and landrace derivatives.
This brings their origin into question as their most recent pedi-
gree suggests that the favourable alleles may have come from
different sources. These MTAs do not overlap with MTAs pre-
viously identified for HiBAP I for photosynthetic efficiency25 or
biomass traits21. We identified several individuals that appear to
be heterozygous for the introgression and for the favourable allele
on 6D. As sequencing was conducted on pooled samples of 10
individuals per line, lines that appear heterozygous might instead
be segregating for presence/absence of a homozygous introgres-
sion. As the phenotype under heat stress appears to be the same

between lines that are homozygous and lines that are hetero-
zygous at this locus, it seems likely that these lines are hetero-
zygous for the introgression and allele. In addition, this also
indicates that the heat tolerant phenotype contributed by 6D may
be dominantly inherited; however, additional work would be
needed to validate this. The zygosity of the allele in these lines can
be verified in future work by developing markers and observing
how they segregate in subsequent generations.

By utilising mapping coverage information and species-specific
SNPs, we identified that the MTA on 6D was within an Ae.
tauschii introgression. We show that this introgression readily
recombines within CIMMYT germplasm by comparing the
introgressed segment in different offspring of the same cross. Due
to concerns regarding linkage drag and lack of recombination of
wild relative introgressions44, this is promising for the deploy-
ment of introgressed segments from the primary genepool into
breeding programmes. The recombination enabled us to reduce
the size of the interval responsible for the MTA by looking for the

Fig. 4 Aegilops tauschii introgression underlies chr6D-6276646 MTA. a Visualising Ae. tauschii introgressions across the first 50Mbp of chr6D in six
HiBAP I lines, four containing the favourable T allele at chr6D-6276646 (HiBAP 57, 29, 48, and 65) and two containing the unfavourable A allele at chr6D-
6276646 (HiBAP 92 and 103). Mapping coverage deviation was computed between the HiBAP line and the median of the panel in 1Mbp windows. Red
points are statistically significant outliers (n = 149 biologically independent lines). Ae. tauschii-specific SNP ratio in each 1Mbp window was calculated by
dividing the number of homozygous Ae. tauschii-specific SNPs in that window by mean number of homozygous Ae. tauschii-specific SNPs in that window
across the panel and then removing values below 1.45. Green lines mark the borders of the region common to all lines with the favourable T allele,
corresponding to a 1.80Mbp region in wheat RefSeq v1.0 and a 1.49Mbp in Ae. Tauschii Aet v4.0. The purple line indicates the MTA position. b Synteny
between 6D:1-10,000,000 in CS RefSeq v1.052 and Ae. tauschii Aet v4.026. The green box indicates the 1.80Mbp region (1.49Mbp relative to Ae. tauschii)
common to all lines with the favourable T allele, corresponding to the green region in (a). The purple line indicates the MTA position. c Alignment of 6D:1-
10,000,000 in CS RefSeq v1.052 and 6D:1-10,000,000 in Ae. tauschii Aet v4.026, illustrating how the syntenic region in Ae. tauschii was identified and
extracted.
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region always present in lines with the favourable genotype. The
smallest segment in the panel that contains the MTA is around
5Mbp and can likely be broken down further; the small size and
it’s telomeric location make it amenable for deployment in
breeding programmes.

The longest unbroken segment is present in Sokoll, a com-
monly used advanced synthetic-derived line. Recombination
within the segment takes place in all Sokoll × Weebil1 crosses yet
appears unbroken in Sokoll. Therefore, Sokoll may be the donor
line for this marker in many of the lines in HiBAP I. This would
make sense given its presence in many of the pedigree histories of
CIMMYT’s synthetic-derived lines (Supplementary Data 1).
Some of the HiBAP I lines contain an Ae. tauschii segment that
contains both the 6D MTA and a resistance gene upstream that
underlies an MTA from a recent GWAS in Ae. tauschii45. If the
accession of Ae. tauschii in the HiBAP I lines confers the same
resistance these lines could be used as donors for both traits.

The 6D MTA uncovered is supported by an MTA for heat
tolerance reported in13,22 nearby on 6D. Singh et al., 201813 state
that the 6D MTA overlapped with an Ae. tauschii introgression,
using speculative markers and pedigree-based inference. Here, we
confirm this speculation and then demonstrate its ability to
recombine and narrow down the introgressed region conferring
the heat resilient phenotype through in silico introgression
mapping.

Following the identification of the core introgressed region, we
extracted the syntenic region from five Ae. tauschii chromosome-
level assemblies and used these, as opposed to the wheat reference
genome, as our source for putative candidate genes underlying
the 6D MTA. Extensive literature searches on the introgressed Ae.
tauschii genes or the wheat genes within the interval (for the 1B
and 2B MTAs) uncovered several candidate genes for further
dissection. Candidate genes are by their nature speculative but
may provide a starting point for follow-up studies aiming to map
the causal genes. As the 6D Ae. tauschii segment appears to be
actively recombining, it should be possible to precisely dissect this
region and map the causal gene. Our proposed candidate genes
for the 6D MTA differ from the gene proposed by Singh et al.13.
By using the Ae. tauschii genomes rather than relying solely on
the wheat reference genome, we have demonstrated that the
isoflavone reductase gene Singh et al.13 proposed is not present in
the core introgressed region. This difference and the introgressed
candidate gene not found in wheat identified highlight the
importance of considering non-reference genomes downstream
of a GWAS, particularly when divergent material has been
introduced, as the variation underlying the trait of interest might
be absent from the reference genome.

These three markers can be deployed into marker-assisted
breeding or introgression pipeline programmes to incorporate
heat resilience traits into elite cultivars. The fact that no yield
penalty was identified under more favourable conditions adds
value to their deployment, especially given the negative impact
that has been documented in terms of yield stability under
increasing temperatures using extensive international data46. The
donor lines for these markers will be selected using our intro-
gression mapping approach to introduce minimal linkage drag
alongside the traits of interest. Efforts to develop KASP markers
for the favourable MTA alleles are currently ongoing at CIM-
MYT. The germplasm is available to the community through
IWYP.org request.

Methods
Plant material and growth conditions. The High Biomass Association Mapping
Panel HiBAP I consists of 149 spring wheat lines (Supplementary Data 1) and is
composed of elite high yielding lines and lines with exotic material in their pedigree
history derived from CIMMYT breeding and pre-breeding programs21. These

exotic lines include primary synthetic derivative lines, containing between 0.5%
and 43% donor material25; Mexican and other origin landraces derivatives; and
Elite lines containing an introgressed segment of Th. ponticum on chr7D and/or S.
cereale on chr1B25. The set of Elite lines contain 11 CIMMYT varieties released
from 1966 until 2007 and additional lines derived from the systematic screening
under yield potential and heat stressed field conditions of CIMMYT breeding and
pre-breeding material. This allowed the identification of elite genotypes with
favourable expression of traits of interest such as high biomass/RUE at different
growth stages including final above ground biomass under both yield potential and
heat stressed conditions. In general, pre-breeding material is derived from crosses
where one of the parents was selected for expressing low canopy temperature and/
or high yield or biomass under heat stressed environments.

To construct the final panel, a pre-panel consisting of more than 250 lines from
different sources were evaluated in the field under favourable conditions; lines with
a favourable agronomic background and without extreme height or phenology
under yield potential conditions were selected to reduce the confounding effect of
extreme phenology or height on the expression of biomass and other traits. HiBAP
I was evaluated during 2015/16 and 2016/17 under yield potential (YP16 and
YP17) and heat stressed conditions (Ht16 and Ht17). Heat stressed conditions were
created with delayed sowing where emergence was registered in March instead of
November or December as in a normal growing cycle (Supplementary Table 1,
Supplementary Fig. 1).

The field experiments were carried out at IWYP-Hub (International Wheat
Yield Partnership Phenotyping Platform) situated at CIMMYT’s Experimental
Station in Campo experimental Norman E. Borlaug (CENEB) in the Yaqui Valley,
near Ciudad Obregon, Sonora, Mexico (27°24’ N, 109°56’ W, 38masl) under fully
irrigated conditions for both yield potential and heat stressed experiments. The soil
type at the experimental station is a coarse sandy clay, mixed montmorillonitic
typic caliciorthid. It is low in organic matter and is slightly alkaline (pH 7.7)47.
Experimental design for all environments was an alpha-lattice. Yield potential
experiments consisted of four replicates in raised beds (2 beds per plot each 0.8 m
wide) with four (YP16) and two (YP17) rows per bed (0.1 m and 0.24 m between
rows respectively) and 4 m long. For heat stressed experiments, two replicates were
evaluated for HiBAP I in 2 m × 0.8 m plots with three rows per bed
(Supplementary Table 1). Seeding rates were 102 Kg ha−1 and 94 Kg ha−1 for YP
and Ht experiments, respectively. Appropriate weed disease and pest control were
implemented to avoid yield limitations. Plots were fertilised with 50 kg N ha−1

(urea) and 50 kg P ha−1 at soil preparation, 50 kg N ha−1 with the first irrigation
and another 150 kg N ha−1 with the second irrigation. Rainfall, radiation,
maximum, minimum and mean temperature by month for all the years of
evaluation are presented in Supplementary Fig. 1.

Agronomic measurements. Phenology of the plots was recorded during the cycle
using the Zadoks growth scale (GS)48, following the average phenology of the plot
(when 50% of the shoots reached a certain developmental stage). The phenological
stages recorded were heading for heat experiments (GS55, DTH), anthesis for yield
potential experiments (GS65, DTA) and physiological maturity (GS87, DTM) for
both experiments. Percentage of grain filling (PGF) was calculated as the number of
days between anthesis and physiological maturity divided by DTM.

Plant height was measured as the length of five individual shoots per plot from
the soil surface to the tip of the spike excluding the awns. Spike, awn and peduncle
length were measured in five shoots per plot before physiological maturity (PM).
Fertile (SPKLSP-1) and infertile spikelets per spike (InfSPKLSP-1) were also
counted in five spikes per plot at PM.

At physiological maturity, grain yield and yield components were determined
using standard protocols49. Samples of 100 (YP16), 50 (YP17) or 30 (Ht16, Ht17)
fertile shoots were taken from the harvested area at physiological maturity to
estimate yield components. The sample was oven-dried, weighed and threshed to
allow calculation of harvest index, biomass at physiological maturity, spikes per
square meter, grains per square meter, number of grains per spike and grain weight
per spike. Grain yield was determined on a minimum of 3.2 m2 to a maximum of
4.8 m2 under yield potential experiments and 1.6 m2 under heat experiments. In
yield potential experiments only, to avoid edge effects arising from border plants
receiving more solar radiation, 50 cm of the plot edges were discarded before
harvesting. From the harvest of each plot, a subsample of grains was weighed
before and after drying (oven-dried to constant weight at 70 °C for 48 h) and the
ratio of dry to fresh weight was used to determine dry grain yield and thousand
grain weight. Grain number was calculated as (Yield/TGW) × 1000. Biomass at
physiological maturity was calculated from yield/HI. Number of spikes per m2 was
calculated as biomass at physiological maturity /(shoot dry weight/shoot number).

Unmanned Aerial Vehicle (UAV) for canopy temperature and NDVI estima-
tion. Aerial measurements data for canopy temperature and NDVI was collected
using different aerial platforms. Each year, the logistics and availability determined
which platform could be used for measuring the heat trials. A summary of the
platforms used, together with the cameras and the achieved resolutions, is pre-
sented in Supplementary Table 8. The multispectral and thermal cameras were
calibrated onsite by measuring over calibration panels placed on the ground before
and after each mission. An exception were the aircraft missions, where a calibration
performed at the airfield would not be representative of the trial conditions. The
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flights were designed as a regular grid of north-south flightpaths covering the whole
trial with images that overlapped 75% in all directions to ensure a good recon-
struction of the orthomosaic. The flights were performed under clear sky condi-
tions at solar noon ±2 h.

NDVI and canopy temperature orthomosaics were obtained from the aerial
images using the software Pix4D. The orthomosaics were then exported to ArcGIS
where a grid of polygons representing each polygon was adjusted on top of the
image. To avoid the border effect, the polygons were buffered 0.5 m from the north
and south border of the plot. Finally, the pixel values were extracted using the
‘raster’ package in R. We extracted the value of all the pixels enclosed within each
polygon and removed possible outliers and calculated the average per plot.

Stress tolerance Indices. To determine the effect of heat stress in the genotypes
evaluated across years and panels, Stress susceptibility index (SSI) was calculated
using data from yield potential (Yyp) and heat stressed (Yht) experiments as
follows (Eq. 1):

SSI ¼
1� Yht

Yyp

1� �Yht
�Yyp

ð1Þ

where Ȳht and Ȳyp are the mean yields of wheat lines evaluated under heat stress
and yield potential conditions, respectively50.

Statistics and reproducibility. Data from both panels was analysed by using a
mixed model for computing the least square means (LSMEANS) for each line
across both years using the program Multi Environment Trial Analysis with R for
Windows (METAR51,). When its effect was significant, DTA/DTH was used as a
covariate (fixed effect) except for phenology. Broad sense heritability (H2) was
estimated for each trait across both years as follows (Eq. 2):

H2 ¼
σ2g

σ2g þ
σ2ge
e þ σ2

re

ð2Þ

where r is the number of repetitions, e is the number of environments (years), σ2 is
the error variance, σ2g is the genotypic variance and σ2ge = G×Y variance.
Unpaired t tests for stress index (SSI) were conducted with the means across years
to determine if the elite and exotic groups presented statistical differences with
p-value < 0.001.

DNA extraction, capture enrichment and genotyping. All genotyping data was
taken from ref. 25. Flag leaf material from 10 plants per line was collected from field
grown plots post anthesis and pooled prior to extraction with a CTAB-based
protocol. DNA was extracted using a standard Qiagen DNEasy extraction pre-
paration and quality and quantity assessed using a NanoDrop 2000 (Thermofisher
Scientific) and the Quant-iTTM assay kit (Life Technologies). From this DNA, dual
indexed Trueseq libraries with an average insert size of 450 bp were produced for
each line and enriched using a custom MyBaits 12Mbp (100,000 120 bp RNA
probes) enrichment capture synthesised by Arbour Bioscience and using 8x pre-
capture multiplexing. 90,000 of these probes were designed using an island strategy
to target regions across the whole genome. A subgenome-collapsed reference was
used to design these probe sequences to enable homoeologous regions to be tar-
geted with a single probe, thus expanding the design space. The final 10,000 probes
were designed for selected genes, targeting both the gene body and 2Kbp upstream.
Post enrichment libraries were sequenced using an S4 flowcell on an Illumina
NovaSeq6000 producing 150 bp paired end reads.

Sequencing reads were trimmed and low-quality reads removed. These reads
were mapped to the Chinese Spring RefSeq v1.0 wheat reference genome52 using
BWA mem v0.7.1353. Samtools v1.454 was used to remove unmapped reads,
supplementary alignments, improperly paired reads, and reads that didn’t map
uniquely (q < 10). PCR duplicates were removed using Picard’s MarkDuplicates55.
SNPs were called using samtools mpileup and bcftools call56 with parameter -m.
SNPs were filtered using GATK55 to remove SNPs that were heterozygous, had a
quality score <30 or a depth <5. A locus was designated as homozygous reference if
no alternative allele was found but 5 or more reads were mapped at that position.
To create a set of shared SNPs for use in GWAS, SNPs for all lines were combined
and loci with more than 10% missing data and a minor allele frequency (MAF)
below 5% were removed. The remaining SNP loci were subjected to imputation
using Beagle 5.057.

Genome-wide association study (GWAS). STRUCTURE v2.3.458 was used to
genetically infer the population structure of the panel and produce a population
structure matrix. An admixture model was selected and run using 30,000 burn-in
iterations and 50,000 Markov Chain Monte Carlo (MCMC) model repetitions for
assumed subpopulations of 2–10 for 10 randomly selected, seeded iterations for
each assumed subpopulation. The delta k method from59 was applied to all 10
replicates to identify the most likely number of definable subpopulations. This was
implemented using the STRUCTURE HARVESTER Python script60. Finally,
CLUMPP v1.1.261 was used with 10 independent STRUCTURE replicates to
produce a consensus Q matrix for each assumed subpopulation number. GWAS

analysis was conducted using the MLM model implemented in GAPITv3.062.
Principal component analysis eigenvectors 1–10 or membership coefficient
matrices for 3-8 assumed subpopulations deduced above by STRUCTURE were
used as covariates in the model to mitigate the effects of hidden familial relatedness.
The EMMA method63 was implemented in GAPIT to create a positive semidefinite
kinship matrix required by the MLM model. Each MTA flanking interval was
deduced by identifying the SNP position furthest upstream and downstream from
the highest associated SNP that was above the -log P threshold of 5.

Identifying regions of divergence. RefSeq v1.052 was split into n genomic win-
dows using bedtools makewindows64. Using the alignments produced in ref. 25 and
detailed above, the number of reads mapping to each window was computed using
hts-nim-tools65. To normalise by the sequencing depth of each line, read counts
were divided by the number of mapped reads that passed the filters, producing
normalised read counts c. Different windows of the genome have variable mapping
coverage rates, so to compute coverage deviation we must compare each window to
the same window in the other lines in the collection. Median normalised read
counts, m, were produced, containing the median for each genomic window across
the 149 lines. Mapping coverage deviation, d, was then defined for each line as
follows (Eq. 3):

di ¼
ci

mi � ε ð3Þ

for window i ∈ {1, 2, …, n}, where ε is the median d value across the genome for
the line. Statistically significant d values were calculated using the scores function
from the R package ‘outliers’ with median absolute deviation (MAD) and prob-
ability of 0.99. This method was based on ref. 66.

Producing species-specific SNPs. Paired-end whole-genome sequencing data for
the Ae. tauschii reference accession AL8/7826 and 5 additional accessions that
represent 5 different clades27, 4 Secale cereale accessions67, Secale. vavilovii67,
Thinopyrum ponticum68, and T. aestivum cultivars Weebil68, Norin6168 and
Pavon7669 were mapped to RefSeq v1.052, filtered and SNP called as described for
the genotyping above and in25. Homozygous SNPs were retained if they had
between 10 and 60 reads supporting the alternative allele and an allele fre-
quency >= 0.8. Heterozygous SNPs were retained if they had between 10 and 60
reads mapped and were biallelic with each allele having >= 5 reads in support and
an allele frequency >= 0.3. SNPs from one relative species not shared with any of
the other species or wheat cultivars were retained as species-specific SNPs. These
species-specific SNPs were assigned to HiBAP SNPs if they matched in position
and allele. Species-specific SNP ratios were calculated by dividing the number of
SNPs in each window matched to a species-specific SNP by the mean number of
SNPs matched to that species in that window across HiBAP I. SNP ratio scores
below 1.45 were removed to keep enriched scores only.

Synteny between Ae. tauschii and T. aestivum. The first 10 Mb of 6D from CS
and Ae. tauschii Aet v4.026 were aligned using Minimap270 with parameters -x
asm10. Alignments <2.5 Kb in length or with mapping quality <40 were discarded.
The dot plot was produced using pafr R package71. Proteins encoded by genes in
the first 10Mbp of 6D in Ae. tauschii and CS were aligned using BLASTp72. Protein
alignments and minimap2 alignments were used to anchor either side of the region
commonly introgressed in all lines with the 6D T genotype to anchor the region
from CS to Ae. tauschii. The Ae. tauschii genes and their proteins within this
segment are considered as candidate genes. BLASTp72 was used to compare these
proteins to wheat proteins. Protein domains were identified using HMMER
hmmscan73 via ebi using Pfam, TIGRFAM, Gene3D, Superfamily, PIRSF, and
TreeFam databases.

Extracting corresponding region and genes from Ae. tauschii genomes. Pro-
teins encoded by genes in the first 10Mbp of 6D in Ae. tauschii and CS were aligned
using BLASTp72. Protein alignments and minimap2 alignments were used to
anchor either side of the region commonly introgressed in all lines with the 6D T
allele to anchor the region from CS to Ae. tauschii. The sequence extracted from
the Ae. tauschii reference genome was aligned to the other 4 chromosome-level
assemblies using minimap270 with parameters -x asm5. Alignments below length
5000 or quality of 40 were removed. The coordinates of each orthologous region
were determined manually and the genes within these coordinates extracted from
the respective gff files. The Ae. tauschii genes and their proteins within these
segments were considered as candidate genes for functional exploration. BLASTp72

was used to compare these proteins to wheat proteins. Protein domains were
identified using HMMER hmmscan73 via ebi using Pfam, TIGRFAM, Gene3D,
Superfamily, PIRSF, and TreeFam databases. Novelty of genes was determined by
aligning the extracted protein sequence to each genome using tblastn72.

Exploring functionality of candidate genes. The genes in each identified interval
(except for those in the 6D interval) were submitted to Knetminer28. The knowl-
edge networks created for each gene were then studied to identify links to the trait
from which each MTA was deduced including their biochemical function and
orthologous genes being linked in other organisms such as Rice and Arabidopsis
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thaliana. For the Ae. tauschii genes introgressed into the 6D interval, we conducted
extensive literature searches to identify genes with links to heat stress response
based on functional studies of related genes.

Reannotating candidate gene and assessing tissue-specific expression. To test
whether the missing myb-binding domain in the TraesCS6D02G014900 annota-
tion was real or an artefact, we manually reannotated the gene. We identified the
exon containing the MYB-binding domain in the wheat orthologue by aligning the
coding sequence from the tauschii orthologue to Chinese Spring RefSeq v1.052

using tblastn72. We mapped Chinese Spring RNAseq data from leaf, root and shoot
to RefSeq v1.052 using HISAT274 and assembled transcripts using cufflinks75. We
visually inspected the coding sequencing and RNA-Seq alignments using IGV76,
which showed that the MYB-binding domain exon is present and expressed in
wheat. To check whether the protein has a premature stop codon, we extracted the
coding sequence from the assembled transcript and checked for the presence of a
complete open reading frame with no stop codons using EMBOSS getorf77. Finally,
we checked the presence of intact domains with HMMER hmmscan73 via ebi using
Pfam, TIGRFAM, Gene3D, Superfamily, PIRSF, and TreeFam databases. To
explore qualitative expression of candidate genes, we mapped Ae. tauschii RNAseq
data from leaf, root, seedling and developing grain 10dd (PRJEB23317) to Aet
v4.026 as above and abundances were counted using StringTie78, taking the mean
transcripts per million (TPM) across the replicates. Qualitative expression of the
CS orthologues was explored using Wheat Expression Browser79 and the pre-
viously leaf, root and shoot RNAseq data mapped above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Publicly available sequencing data used in this study is available at the European
Nucleotide Archive (ENA): HiBAP I enrichment capture sequencing data - PRJEB38874;
Th. ponticum—SRR13484812; S. vavilovii: ERR505040, ERR505041, ERR505042; S.
cereale accession Lo90: ERR504990, ERR504991, ERR504992; S. cereale accession Lo176:
ERR505005, ERR505006, ERR505007; S. cereale accession Lo282: ERR505015,
ERR505016, ERR505017; S. cereale accession Lo351: ERR505035, ERR505036,
ERR505037; Ae. Tauschii accession XJ65: SRR13961980; Y173: SRR13962062; SX60:
SRR13962012; AY29: SRR13961834; KU2832: SRR13961928; Y215: SRR13962048;
Weebil1: PRJEB35709; Norin61: PRJNA492239; Pavon76: https://opendata.earlham.ac.
uk/wheat/under_license/toronto/Hall_2021-10-08_wheatxmuticum/PIP-2495/200812_
A00478_0126_AHN5W3DRXX/A10948_1_1/; Ae. tauschii RNAseq data: PRJEB23317;
T. aestivum cv. Chinese Spring RNAseq data: Root - SRP133837; SRR6799264;
SRR6799265; Leaf - SRR6799258; SRR6799259; SRR6799260; Spike - SRR6802608;
SRR6802609; SRR6802610; SRR6802611.
VCF and hapmap genotype files for HiBAP I are available at: https://opendata.

earlham.ac.uk/wheat/under_license/toronto/Hall_2022-04-08_HiBAP_genotyping/
Phenotypic data presented in this paper for the HIBAP I panel evaluated under yield

potential and heat stressed environments can be found in the Dataverse CIMMYT
Research Data Repository at https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:
11529/1054864380.

The source data used to generate the main figures can be found on zenodo at https://
zenodo.org/record/7333888#.Y3dmbILP1O681, the GitHub repository: https://github.
com/benedictcoombes/Exotic_alleles_contribute_to_heat_tolerance_in_wheat_under_
field_conditions and in Supplementary Data 3.

Code availability
The code needed to reproduce the main figures can be found on Zenodo at https://
zenodo.org/record/7333888#.Y3dmbILP1O681 and at the github repository: https://
github.com/benedictcoombes/Exotic_alleles_contribute_to_heat_tolerance_in_wheat_
under_field_conditions.
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Introgressions lead to reference bias 
in wheat RNA-seq analysis
Benedict Coombes1*  , Thomas Lux2, Eduard Akhunov3 and Anthony Hall1* 

Abstract 

Background RNA-seq is a fundamental technique in genomics, yet reference bias, where transcripts derived 
from non-reference alleles are quantified less accurately, can undermine the accuracy of RNA-seq quantification 
and thus the conclusions made downstream. Reference bias in RNA-seq analysis has yet to be explored in complex 
polyploid genomes despite evidence that they are often a complex mosaic of wild relative introgressions, which intro-
duce blocks of highly divergent genes.

Results Here we use hexaploid wheat as a model complex polyploid, using both simulated and experimental data 
to show that RNA-seq alignment in wheat suffers from widespread reference bias which is largely driven by divergent 
introgressed genes. This leads to underestimation of gene expression and incorrect assessment of homoeologue 
expression balance. By incorporating gene models from ten wheat genome assemblies into a pantranscriptome 
reference, we present a novel method to reduce reference bias, which can be readily scaled to capture more variation 
as new genome and transcriptome data becomes available.

Conclusions This study shows that the presence of introgressions can lead to reference bias in wheat RNA-seq 
analysis. Caution should be exercised by researchers using non-sample reference genomes for RNA-seq alignment 
and novel methods, such as the one presented here, should be considered.

Keywords Wheat, RNA-seq, Reference bias, Genomics, Introgressions, Polyploidy

Background
Quantification of gene expression using RNA-seq is a 
fundamental technique in genomics research. It has been 
employed in numerous publications across a range of 
biological systems to identify candidate genes underly-
ing traits of interest, uncover transcriptional pathways 
and networks, and investigate hypotheses relating to gene 

and transcriptional evolution and adaptation. In RNA-
seq experiments, mRNA, which represents a snapshot 
of the expression of each gene at the time of sampling, 
is extracted from the biological sample, converted to 
cDNA and sequenced. The number of resulting RNA-
seq reads deriving from each gene/transcript are quanti-
fied, with the number of reads proportional to the level 
of expression of that gene/transcript. Quantifying the 
expression level of each transcript and/or gene typically 
involves alignment of sequencing reads to the reference 
genome or transcriptome of the sequenced species using 
spliced alignment tools such as HISAT2 [1] and STAR 
[2] or pseudoalignment tools such as kallisto [3] and 
Salmon [4]. Despite these tools typically being devel-
oped and benchmarked with human data, they are widely 
used across numerous biological systems, often without 
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consideration for how they will behave with specific chal-
lenges the genomes of different species present.

Making meaningful inferences from RNA-seq data 
relies upon the accuracy of alignment and quantifica-
tion; downstream analyses and subsequent interpre-
tation assumes that the estimated gene expression 
reflects actual gene expression in the biological samples. 
However, nucleotide variation in the coding region of 
genes between the sequenced sample and the reference 
genome/transcriptome leads to errors in read assign-
ment during the alignment/pseudoalignment step. Some 
reads may be unassigned, while others may be assigned 
to the wrong locus. This source of error is widely known 
as reference bias as transcripts derived from alleles pre-
sent in the reference sequence will be quantified more 
accurately [5].

The reduction in accuracy caused by reference bias has 
the potential to negatively impact downstream analy-
ses and lead to incorrect findings. For example, Thor-
burn et al. [6] demonstrated how using a single reference 
genome to map sequencing data from genetically diverse 
individuals causes reference bias that negatively impacts 
downstream analyses in population genomic studies. 
While this study looked at mapping DNA reads, the same 
can be assumed to be true about RNA-seq data. Zhan, 
Griswold and Lukens [7] found that accurate estimates 
of transcript abundances from RNA-seq reads in maize 
are strongly affected by reference bias. By reanalysing 
RNA-seq data from a B73xMo17 recombinant inbred 
line population, they found that the detection of around 
50% of expression quantitative trait loci (eQTLs) alleles 
depended on which reference genomes was used: B73 or 
Mo17. As the previous study [8] used B73 as the refer-
ence, Zhan et al. [7] estimated that 50% of the detected 
eQTLs may be false positives. Munger et  al. [9] found 
that mapping RNA-seq reads to individualised genomes 
instead of a single reference genome substantially 
increased the accuracy of eQTL assignment in mouse 
from 88.2 to 98.3%, removing false positive results that 
appeared when using a single reference genome.

The impact of reference bias in RNA-seq analysis has 
not been assessed in complex polyploid genomes such as 
wheat despite these genomes having characteristics that 
may increase the extent and degree of reference bias rela-
tive to species with simpler genomes. Polyploidisation 
increases the number of alleles per gene, typically result-
ing in a pair of alleles, known as homoeologues, in each 
subgenome; however, subsequent gene duplications or 
deletions can change the relative copy number of homoe-
ologues between the subgenomes. As RNA-seq reads are 
derived from all subgenomes at once, read assignment 
must be able to distinguish reads deriving from homoeo-
logues. Accurate discrimination of wheat homoeologue 

RNA-seq reads has been demonstrated with both pseu-
doalignment [10, 11] (99.9% accuracy) and alignment-
based (98% accuracy) [11] methods when mapping reads 
back to the genome from which they derived. However, 
when mapping reads from a different genotype, unequal 
divergence between homoeologues relative to the ref-
erence genome may compromise the accuracy of the 
expression balance estimation between homoeologues. 
Being able to accurately estimate homoeologue expres-
sion balance is important for wheat research as variation 
in the relative mRNA expression of homoeologues within 
a triad may confer phenotypic plasticity [10] and varia-
tion in agronomic traits, the understanding of which has 
important applications for crop improvement.

Introgression events, the introduction of genetic mate-
rial from one species to another [12], are common among 
plants; in fact, its frequency is thought to be higher in 
plants than in animals, due to higher rates of interspecific 
hybridisation success [13]. Additionally, novel genetic 
variation is commonly introgressed into plants by breed-
ers and researchers for crop improvement [14]. Several 
studies have demonstrated how common introgressions 
are in wheat accessions with some accessions being com-
prised of up to 34% introgressed material [15–19]. The 
production of chromosome-level genome assemblies 
of modern elite wheat cultivars confirmed this, reveal-
ing introgressions from wild and domesticated relatives, 
including species outside of the Triticum and Aegilops 
genera, present in one or multiple cultivars [20, 21]. 
These introgressions introduce greater sequence diver-
gence between varieties than observed between varieties 
at non-introgressed regions; this increased divergence 
likely leads to an increased proportion of reads that are 
unable to be assigned correctly.

Using simulated and experimentally generated RNA-
seq data, we identify non-trivial levels of reference bias in 
RNA-seq mapping in wheat which can largely be attrib-
uted to introgressions. This leads to incorrect estimates 
of relative expression between homoeologues and incor-
rectly called differences in expression between cultivars. 
By constructing a pantranscriptome reference composed 
of Chinese Spring transcripts and transcripts from the 
assemblies generated as part of the 10+ wheat genomes 
project [20], we demonstrate how reference bias caused 
by divergent alleles can be reduced.

Results
Reference bias in wheat is driven by divergent genes 
introduced via introgressions and results in underestimation 
of gene expression
To explore the impact of reference bias on the quan-
tification of gene expression in wheat, we simulated 
1000 read pairs from each high-confidence (HC) gene 



Page 3 of 17Coombes et al. BMC Biology           (2024) 22:56  

in Chinese Spring RefSeq v1.1 and the nine chromo-
some-level genome assemblies generated as part of the 
10+ wheat genomes project [20, 22] if the longest tran-
script of the gene is at least 500  bp. These reads were 
pseudoaligned or aligned to the Chinese Spring refer-
ence transcriptome or genome using kallisto or STAR, 
respectively. These algorithms represent pseudoalign-
ment and alignment-based methods and are among the 
most commonly used tools for RNA-seq quantification 
in the wheat community.

Mapping Chinese Spring reads to Chinese Spring, 
hereafter referred to as self-mapping, yields very accurate 
estimates of gene expression, with kallisto slightly out-
performing STAR (Fig. 1a, b, Additional file 1: Table S1). 
Using kallisto, 88,401/88,443 (99.95%) of genes were 
correctly quantified (between 500 and 1500 read pairs). 
Thirty-two genes were underestimated (< 500 read pairs) 
and 10 genes were overestimated (> 1500 read pairs). 
Using STAR, 87,689/88,443 (99.15%) were correctly 
quantified with 504 and 250 genes underestimated and 
overestimated, respectively.

Mapping reads generated from the other cultivars to 
Chinese Spring, hereafter called cross-mapping, yielded 
much less accurate estimation of gene expression with 
a skew towards underestimation (Fig.  1a, b, Additional 
file 1: Table S1). The percentage of genes correctly quanti-
fied ranged from 55,773/63,001 (88.53%) for Lancer, with 
5700 (9.05%) and 1528 (2.43%) under- and overestimated, 
respectively, to 58,468/64,077 (91.2%) for Norin61, with 
2527 (3.94%) and 3082 (4.81%) genes under and overes-
timated, respectively. For cross-mapping, unlike self-
mapping, STAR appears to perform better than kallisto; 
the proportion of correctly quantified genes ranged from 
58,390/63,001 (92.68%) for Lancer, with 3916 and 695 
under and overestimated, respectively, to 59,648/64,077 
(93.1%) for Norin61, with 2450 (3.82%) and 1979 (3.09%) 
genes under and overestimated, respectively.

To explore the effect of reference bias on the quantifi-
cation of homoeologue expression balance, we calculated 
the proportion of triads belonging to each category that 
defines a different state of relative homoeologue expres-
sion. As reads were simulated evenly across genes, all 

Fig. 1 Assessing the extent of reference bias in wheat. A Distribution of read counts when self-mapping Chinese Spring simulated reads 
or cross-mapping Landmark simulated reads. Comparing STAR and kallisto using the Chinese Spring RefSeq v1.0 reference and RefSeq v1.1 
transcriptome and kallisto using the pantranscriptome reference. B Percentage of genes with expression estimated correctly, expression 
underestimated (< 500 read pairs) and expression overestimated (> 1500 read pairs) for simulated reads from 10 cultivars aligned to Chinese Spring 
with kallisto and STAR or to the pantranscriptome reference with kallisto. C Balance of homoeologue expression across triads when self-mapping 
Chinese Spring or cross-mapping Landmark simulated reads, comparing STAR and kallisto using the Chinese Spring RefSeq v1.0 reference 
and RefSeq v1.1 transcriptome and kallisto using the pantranscriptome reference. Each point on the ternary plot represents one triad. Points 
towards a corner indicate dominant expression of that homoeologue, and points opposite a corner indicate suppression of that homoeologue. D 
Percentage of triads in each expression category, using simulated reads from 10 cultivars aligned to Chinese Spring with kallisto and STAR or to the 
pantranscriptome reference with kallisto
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triads should be classified as balanced; therefore, tri-
ads classified as imbalanced (one or two homoeologues 
with expression greater than the other(s)) are considered 
incorrectly classified. The percentage of correctly classi-
fied triads varies between 80.97% (Lancer) and 93.84% 
(Norin61) using kallisto and between 90.23% (Lancer) 
and 96.12% (Norin61) using STAR (Fig. 1c, d, Additional 
file  1: Table  S2). Across the cultivars, triads incorrectly 
classified as suppressed, where one homoeologue is esti-
mated to be expressed less than the others, were far more 
common than triads incorrectly classified as dominant, 
where one homoeologue is estimated to be expressed 
more highly than the others (Fig.  1d, Additional file  1: 
Table  S2). This reflects how the reference bias leads to 
more underestimated than overestimated genes.

The B subgenome has the most, and the D subgenome 
the fewest, number of triads incorrectly classified as sup-
pressed. This is in line with observations of greater diver-
sity in the A and B subgenomes, with the B subgenome 
having the highest [16]. This difference is largely caused 
by gene flow from wild tetraploid T. dicoccoides to T. aes-
tivum during the history of its cultivation, without com-
parable gene flow to the D subgenome [17, 19, 23]. This 
finding suggests the historic gene flow from tetraploid 
wheat likely contributes to reference bias in RNA-seq 
analyses.

To explore the extent of errors when comparing two 
cultivars mapped to a common reference, we com-
pared the estimated expression of Lancer and Jagger 
genes, whose simulated reads were both aligned to Chi-
nese Spring using STAR (Fig.  2a, b). Genes with read 
counts > 1.5 × or < 1/1.5 × compared to the other cultivar 
were classified as incorrectly quantified. Using STAR, 
4791/60,338 (7.94%) genes were incorrectly quanti-
fied between the two cultivars; of these genes, 2747 and 
2044 genes had a lower read count in Lancer and Jagger, 
respectively.

We observed a clear overlap between clusters of 
incorrectly quantified genes and regions of divergence 
between the cultivars (Fig.  2a, c), identified by blocks 
of reduced CDS nucleotide identity between pairs of 
orthologues between Lancer and Jagger. Such gene-level 
divergence is indicative of introgressed material; indeed, 
several of these blocks correspond to previously char-
acterised introgressions. These introgressions include 
(coordinates based on Chinese Spring RefSeq v1.0) the 
following: Aegilops ventricosa introgression in Jagger 
(chr2A:1–24,643,290) [20, 21, 24]; Triticum timopheevii 
introgression in Lancer (chr2B:89,506,326–756157100) 
[20, 21]; Aegilops comosa introgression in Jagger 
(chr2D:570,141,481–613325841) [21]; and a Thinopyrum 
ponticum introgression in Lancer (chr3D:591,971,000–
615552423) [20, 21]. 1881/3054 (61.59%) of introgressed 

genes (those belonging to one of the four previously 
characterised introgressions listed above) were incor-
rectly quantified between the two cultivars, compared 
to 2910/57,284 (5.08%) non-introgressed genes incor-
rectly quantified (Fig. 2d; chi-squared p-value < 2.2e − 16). 
Genes with an introgressed copy in Lancer tend to be 
underestimated in Lancer and genes with an introgressed 
copy in Jagger tend to be underestimated in Jagger.

In further support of CDS divergence being a predomi-
nant contributing factor to incorrect quantification, we 
found that incorrectly quantified genes have a mean CDS 
identity between orthologue pairs of 97.3% compared to 
a mean of 99.9% for genes correctly quantified (Fig.  2e; 
p-value < 2.2e − 16; 95% confidence interval ranges from 
2.45 to 2.63). The percentage of genes incorrectly quanti-
fied ranges from 83.2% for genes with < 96% CDS identity 
between orthologues to just 2.9% for genes with ≥ 99% 
identity between orthologues (Fig. 2f ).

Reducing reference bias by constructing 
a pantranscriptome reference
The 10+ wheat genomes project generated chromosome-
level de novo assembled genomes for nine wheat culti-
vars in addition to the reference cultivar Chinese Spring 
[20]. These include numerous introgressions that are the 
predominant source of reference bias we observe. High-
quality gene annotations for these genome assemblies 
have been produced [22]. We constructed a pantran-
scriptome reference by taking the transcripts from the 
107,891 Chinese Spring HC genes and adding transcripts 
from the nine cultivars with a chromosome-level genome 
assembly generated as part of the 10+ wheat genomes 
project [20] if that transcript’s gene exists in a 1-to-1 
relationship with a gene from Chinese Spring, based on 
OrthoFinder [25] orthogroup assignments. This resulted 
in a set of transcripts from 763,877 genes from 10 culti-
vars, 107,891 from Chinese Spring and a mean of 72,887 
from each of the nine other cultivars (Fig. 3). A total of 
80,211 Chinese Spring genes had at least one 1-to-1 
orthologue in another cultivar, while 59,639 Chinese 
Spring genes had a 1-to-1 orthologue in all nine other 
cultivars (Additional file  2: Fig. S1). The pantranscrip-
tome reference was used as the transcriptome reference 
for kallisto pseudoalignment. After pseudoalignment, 
read counts and TPMs were summed across all tran-
scripts corresponding to a given Chinese Spring gene. 
Kallisto splits read counts evenly across transcripts with 
an identical match so redundancy of transcripts does not 
cause problematic multi-mapping; all transcripts corre-
sponding to a gene can thus be added.

To ensure using this pantranscriptome reference does 
not introduce any additional mapping errors from add-
ing redundant transcripts, we compared quantified 
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Fig. 2 The impact of reference bias on expression differences between cultivars and enrichment of incorrectly quantified genes 
within introgressions. A The distribution of incorrectly quantified genes in 5-Mbp windows, coloured by the cultivar in which the estimated 
expression is lower; orange blocks are underestimated in Lancer compared to Jagger, while green blocks are underestimated in Jagger compared 
to Lancer. The reads are aligned using STAR as this outperformed kallisto for cross-mapping. B Expression counts for Lancer-Jagger orthologue 
pairs. Genes are considered incorrectly quantified if their estimated read count is 1.5 × or 1/1.5 × the other cultivar. C CDS nucleotide identity 
between Lancer and Jagger 1-to-1 orthologue pairs, binned into 5-Mbp genomic windows based on Chinese Spring RefSeq v1.0. D Percentage 
of genes incorrectly quantified and correctly quantified in characterised introgressed regions and regions not characterised as introgressed. E 
CDS nucleotide identity between Lancer and Jagger 1-to-1 orthologue pairs for those that are incorrectly quantified and those that are correctly 
quantified. F Percentage of genes incorrectly quantified and correctly quantified, split into bins of different levels of CDS nucleotide identity
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expression counts between four difference references: 
Chinese Spring, the pantranscriptome reference, Chi-
nese Spring plus the Landmark transcripts from genes 
in a 1-to-1 relationship with a Chinese Spring gene, and 
the pantranscriptome reference without the Landmark 
transcripts. The simulated reads from Landmark were 
used for pseudoalignment. Of these four references, the 
pantranscriptome reference performed the best, with 
97.53% of genes correctly quantified. Chinese Spring plus 
Landmark transcripts were very similar, with 97.50% of 
genes correctly quantified. This demonstrates that add-
ing redundant transcripts and summing the read counts 
does not introduce errors in the kallisto mapping. Using 
the pantranscriptome reference without Landmark tran-
scripts resulted in a slightly lower level of correct quanti-
fication, with 96.84% correctly quantified. The difference 
is likely due to uniquely introgressed genes in Landmark 
that are not present in the other cultivars. Nevertheless, 
due to many introgressed genes being common between 
cultivars, it still performed much better than just using 
Chinese Spring, which had 91.43% genes correctly 
quantified.

Using the pantranscriptome reference instead of 
Chinese Spring to quantify expression from the simu-
lated RNA-seq reads resulted in much more accurate 
quantification for genes that were previously underes-
timated when cross-mapping, removing nearly all gene 
counts below 1000 (Fig. 1a, b). There was little change 
in the number of genes overquantified when cross-
mapping and little difference in the distribution of read 
counts when self-mapping (Fig. 1a, b). The distribution 
of read counts shows that for Lancer, the most error-
prone cultivar, the number of genes correctly quanti-
fied increased from 58,390/63,001 (92.68%) using STAR 
to 61,352/63,001 (97.38%) using the pantranscriptome 
reference. Using the pantranscriptome reference, only 2 
genes remained quantified below 500 read pairs com-
pared to 3916 genes when using the Chinese Spring 
reference. The number of triads correctly assigned to 
the balanced expression category also greatly increased 
when using the pantranscriptome reference (Fig.  1d). 
All cross-mapped cultivars had at least 99.89% tri-
ads correctly assigned as balanced; this compares to 
between 80.97 and 93.84% using kallisto, and between 

Fig. 3 Creation of the pantranscriptome reference and how RNA-seq reads are aligned to it
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90.23 and 96.12% using STAR to align to Chinese 
Spring.

Comparing Jagger and Lancer as before, this approach 
reduced the number of genes incorrectly quantified in 
one cultivar from 4971/60,338 (7.94%) to 617 (1.02%) 
(Additional file  2: Fig. S2). Only 23 genes (0.0381%) 
remain incorrectly quantified due to underestimation 
in one cultivar. Almost all the remaining error in both 
cross-mapped read counts and incorrectly quantified 
genes between cultivars is due to overestimation of gene 
expression, likely caused by copy number variation or 
presence/absence variation between cultivars, as opposed 
to divergence between orthologous gene models.

Exploring reference bias caused by introgressions 
in experimentally generated RNA‑seq data
Simulated RNA-seq data is unlikely to capture the com-
plete picture of a real experiment [26]. While our simula-
tions highlight theoretical errors, it is important to assess 
how reference bias impacts published findings and how 
using the pantranscriptome reference corrects errors in 
real data. We reanalysed the sequencing data generated 
by He et  al. [11]. He et  al. [11] analysed RNA-seq data 
from 198 diverse wheat accessions, alongside enrich-
ment capture paired-end DNA reads, to uncover eQTLs 
linked with homoeologue expression bias and variation 
in important productivity traits. Crucially for our work, 
they identified a set of genes whose expression exhibited 
negative correlation with its homoeologue across the 
panel. A subset of accessions possessed lowly expressed 
alleles in one of the homoeologues and the presence of 
the lowly expressed alleles was linked to various impor-
tant productivity traits. This set contains 59 genes to 
which we have added ELF3-D1. While ELF3-D1 did not 
fall into the set of very negatively correlated 59 genes, it 

was used as case example due to its agronomic signifi-
cance. Also, it still did show a negative correlation with its 
B homoeologue, with this expression bias associated with 
agronomic traits. This set of 60 genes is hereafter referred 
to as genes showing lack of expression correlation.

Firstly, to identify potential introgressed regions within 
these accessions, we mapped the enrichment capture 
paired-end DNA reads to Chinese Spring RefSeq v1.0 
and for each 1-Mbp genomic window, calculated the 
mapping coverage deviation between each line and the 
median for that window across the accessions (Fig.  4a). 
Blocks of windows with coverage deviation values signifi-
cantly below 1 have few reads that have mapped in this 
region relative to the other accessions. This is indicative 
of an introgression (which introduces divergent DNA 
that maps less well) or a deletion. We observed more 
divergent material in the A and B subgenomes, which is 
expected based on the higher levels of gene flow to the A 
and B subgenomes (Fig. 4a) [17, 19, 23]. The genes show-
ing lack of expression correlation identified by He et  al. 
[11] are enriched in genomic windows identified as intro-
gressed or deleted (Fig. 4b), with 78.2% of these genes in 
a genomic window identified as introgressed or deleted 
in 30 or more accessions. In the rest of the genome, only 
12.3% of genes are found in a genomic window identified 
as introgressed or deleted in 30 or more accessions.

To explore the impact of the pantranscriptome refer-
ence on estimated expression, we pseudoaligned the leaf 
RNA-seq data from the 198 wheat accessions to both 
Chinese Spring and to the pantranscriptome reference. 
Kallisto was used for aligning to Chinese Spring instead 
of STAR for consistency with the analysis by He et  al. 
[11]. 43/60 (71.7%) of genes showing lack of expression 
correlation (Fig.  5a) have, in 25 or more accessions, an 
estimated expression less than half when mapping to 

Fig. 4 Enrichment of genes showing a lack of expression correlation in He et al. [11] within regions of divergence. A Chromosomal distribution 
of the number of accessions in each 1-Mbp genomic window which had mapping coverage deviation significantly less than 1 and are thus likely 
to contain divergent introgressed material or be deleted. B The number of genes from the set of 60 genes showing lack of expression correlation 
identified by He et al. [11] that are present in genomic windows identified as introgressed or deleted in 30 or more accessions
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Chinese Spring compared to when mapping to the pan-
transcriptome reference. These are likely introgressed 
genes whose expression is underestimated when using 
Chinese Spring as the reference. 6/60 (10.0%) of the genes 
have, in 25 or more accessions, an estimated expres-
sion more than double when mapping to Chinese Spring 
compared to when mapping to the pantranscriptome 
reference (Fig. 5a). This may arise if, when using the Chi-
nese Spring reference, RNA-seq reads were incorrectly 
assigned to a gene because the correct gene is too diver-
gent and then, when using the pantranscriptome refer-
ence, those incorrectly assigned reads now have another 
more appropriate gene to be assigned to, resulting in 
fewer reads assigned to the first gene.

While this shows that using Chinese Spring as the ref-
erence leads to underestimation of many of these genes, 
it is important to look at the impact of this on the calcu-
lated correlation between homoeologues that led to them 
being classified as genes of interest by He et al. [11]. We 
found that the SCC score between homoeologues from 
this set was − 0.0990 when using the Chinese Spring 
reference and 0.407 using the pantranscriptome refer-
ence (Fig. 5b; p-value < 2.2e − 16; 95% confidence interval 
ranges from − 0.603 to − 0.410). Even though this SCC 
value remains lower than the mean SCC (~ 0.8) reported 
for the entire set of homoeologues [11], it indicates that 
the usage of pantranscriptome as reference increases 
expression correlation estimates between homoeologues 
compared to single reference estimates.

Several regions with poor mapping coverage (map-
ping coverage deviation significantly below 1) in multiple 
accessions overlap precisely with previously identified 
introgressions from cultivars assembled in the 10+ wheat 
genomes project [20]. One such introgression is at the 
end of chr1D (484,302,410–495,453,186  bp, based on 
RefSeq v1.0 coordinates), present unbroken in 53/198 
(26.8%) accessions (Additional file 1: Table S3) and shared 
with cultivars Jagger and Cadenza (Fig.  6a). The precise 

overlap of the blocks of the reduced mapping coverage in 
the accessions and in Jagger and Cadenza suggests that 
this introgression has the same origin in all these lines, 
and that no recombination has taken place within the 
introgression since its introduction. This lack of varia-
tion in its size makes it a good candidate for the follow-
ing analysis. Additionally, this region was highlighted by 
He et al. [11] as it contains 6 of the genes showing lack 
of expression correlation, including ELF3-D1, which was 
used as a case example due to its role in heading date [27]. 
He et al. [11] suggest this is a terminal deletion; however, 
Wittern et  al. [28] identified that the terminal region, 
including ELF3-D1, is an introgression in Cadenza and 
Jagger, deriving from either Triticum timopheevii or 
Aegilops speltoides, based on the ELF3-D1 gene model 
possessing an intronic deletion shared with both of these 
species. We can exclude Ae. speltoides as the donor spe-
cies as protein alignments between the Jagger introgres-
sion and Ae. speltoides proteins showed a median protein 
identity of just 91.6%. As T. timopheevii does not have a 
genome assembly available, we cannot confirm it is the 
donor; however, the mapping profile of T. timopheevii 
reads to the Jagger genome assembly suggest it is a likely 
match (Additional file 2: Fig. S3). As we cannot be certain 
about the donor species, we will hereafter refer to this 
introgression as the chr1D introgression.

We compared the mean expression of genes from the 
chr1D introgression across accessions that possess the 
introgression to their 1-to-1 wheat orthologue across 
the accessions lacking the introgression. When using 
the Chinese Spring reference, the introgressed genes 
appear to be less expressed than their wheat ortho-
logues (p-value = 0.0224, 95% confidence interval ranges 
from − 8.65 to − 0.679); however, when using the pantran-
scriptome reference, no significant difference in expres-
sion was found between the genes (Fig.  6b, Additional 
file 1: Table S4; p-value = 0.980, 95% confidence interval 
ranges from − 4.94 to 4.82).

Fig. 5 The impact of reference bias on the quantification of gene expression in the accessions sequenced by He et al. [11]. A Estimated 
expression of the 60 genes identified as showing a lack of expression correlation by He et al. [11], using either the Chinese Spring RefSeq 
v1.1 transcriptome or the pantranscriptome reference as targets for kallisto pseudoalignment. The dashed black line represents x = y, which 
is the expected value if the reference is not affecting the estimation of gene expression. An accession lying on this dashed line has this gene’s 
expression estimated the same when using each reference. Red dots and green dots represent accessions in which a given gene has a TPM 
value < 50 or > 150%, respectively, when mapping to Chinese Spring than when mapping to the pantranscriptome reference. A red star indicates 
that in 25 or more accessions, the gene has an estimated expression less than half when mapping to Chinese Spring compared to when mapping 
to the pantranscriptome reference. A green star indicates that in 25 or more accessions, the gene has an estimated expression more than double 
when mapping to Chinese Spring compared to when mapping to the pantranscriptome reference. B Spearman’s correlation coefficient (SCC) 
between homoeologue pairs where one homoeologue is in the set of genes showing a lack of expression correlation identified by He et al. [11]. 
SCC scores were computed between AB, AD and BD homoeologue pairs and the lowest score was used. Triads in which any of the homoeologues 
were not present in the RefSeq v1.0 HC gene annotation were excluded. The significance of the difference between SCC scores when using 
the Chinese Spring reference compared to when using the pantranscriptome reference was calculated using a two-tailed t-test with no assumption 
of equal variance

(See figure on next page.)
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Earlier, using simulated data, we demonstrated 
that reference bias can lead to incorrect assignment 
of expression balance across triads. To examine this 
phenomenon in real data, we examined the estimated 

expression across triads within the chr1D introgression 
that are also in the set of genes showing lack of expres-
sion correlation identified by He et  al. [11]. When the 
RNA-seq reads are pseudoaligned to Chinese Spring, 

Fig. 5 (See legend on previous page.)
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in lines with the chr1D introgression, ELF3-D1 appears 
to be lowly expressed and the expression of ELF3-B1 
appears slightly elevated compared to accessions with-
out the chr1D introgression. However, when mapped 
to the pantranscriptome reference, the expression of 
ELF3-D1 and ELF3-B1 in accessions with the chr1D 
introgression appears very similar to that in accessions 
without the chr1D introgression (Fig.  7a, b). The CDS 
sequence for ELF3-D1 from the introgression shares 
97.0% sequence identity with ELF3-D1 in Chinese 
Spring, 97.6% identity with ELF3-A1 and 97.8% identity 
with ELF3-B1. The high divergence of ELF3-D1 from 
the introgression and ELF3-D1 from Chinese Spring 
and the greater similarity between ELF3-D1 from 
the introgression with ELF3-B1 from Chinese Spring 
explains how most reads were unable to be assigned, 

yet some were incorrectly assigned to the ELF3-B1, 
hence the slight increase in estimated expression of 
ELF3-B1 when using the Chinese Spring reference. The 
five other genes showing lack of expression correlation 
within the chr1D introgression also showed reduced 
homoeologue imbalance using the pantranscriptome 
reference and expression level in line with accessions 
without the chr1D introgression, in which the triad 
does not contain an introgressed D homoeologue. Four 
of these genes also showed a slight decrease in esti-
mated expression in the B homoeologue when mapping 
to the pantranscriptome reference, supporting the idea 
that false mapping from the introgressed gene to its 
homoeologue will be driving false negative correlation 
scores in addition to artificially low expression of the 
introgressed homoeologue.

Fig. 6 Introgressed genes falsely identified as being less expressed due to reference bias. A Mapping coverage deviation of DNA reads across chr1D 
of Jagger, Cadenza, and 5 of the accessions analysed by He et al. [11]. Each point is the coverage deviation value for a given 1-Mbp genomic 
window. Windows with a normalised coverage score significantly different to the median normalised coverage score for that window across the set 
of lines being compared are coloured red. Coverage deviation values significantly below one indicates divergent material is present or a deletion 
has taken place, relative to the median of the rest of the set of lines. Coverage deviation values and significance values were calculated separately 
for the accessions and for the cultivars Jagger and Cadenza, the latter two being compared to mapping coverage values from the other cultivars 
whose genomes were assembled as part of the 10+ wheat genomes project [20]. The reduced coverage at the end of chr1D, the left-hand border 
of which is indicated by the vertical dashed black line, is the chr1D introgression, common to 53 of the 198 accessions and Jagger and Cadenza 
which were assembled as part of the 10+ wheat genomes project. B Expression of the wheat gene compared to its introgressed orthologue 
from the chr1D introgression, using either Chinese Spring or the pantranscriptome reference as targets for kallisto pseudoalignment. Orthologue 
pairs with TPM < 1 in both the introgressed and the wheat copy when mapping to the pantranscriptome reference were excluded. The significance 
of the difference between introgressed and non-introgressed orthologues when using the Chinese Spring or the pantranscriptome reference 
was calculated using two-tailed t tests with no assumption of equal variance
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Discussion
In the emerging era of plant pangenomics, chromosome-
level assemblies are being generated for an increasing 
number of cultivars/accessions, which will facilitate a 
shift away from reference genome-centric methods. Here 
we have demonstrated the importance of utilising these 
resources effectively for RNA-seq analyses in wheat to 
reduce reference bias.

RNA‑seq reference bias in wheat
Quantification of gene expression from RNA-seq reads 
in wheat is very accurate when the matching reference 
genome for the sample is available. However, cross-
mapping RNA-seq reads leads to detectable levels of 
reference bias, seen both at the individual gene level and 
also when assigning triads to categories of homoeologue 
expression balance. A major cause of this bias appears 
to be introgressions of diverged gene orthologues from 
wheat’s wild and domesticated relatives. In some cases, 
references bias within introgressions could be severe 
enough to have a strong impact on downstream analy-
ses and conclusion drawn based on these analyses. This 

analysis was conducted on wheat but other species 
with substantial introgressed content and/or polyploid 
genomes may suffer from the same problem. Similar 
analyses on other species may thus provide value for their 
respective communities.

Kallisto performed better for self-mapping but when 
cross-mapping, STAR was better able to deal with diver-
gence between genes, although was far from resolving the 
issue of reference bias. Similar limitations of alignment-
free methods have been previously discussed; for exam-
ple, Wu et  al. [29] demonstrated that kallisto performs 
poorly for lowly expressed genes and for RNA reads with 
biological variation compared to the reference.

A future exploration of the impact of reference bias on 
differential expression calls in wheat will be useful. Ref-
erence bias may have little impact on differential expres-
sion between conditions or across tissues within a single 
genotype, as, even if incorrectly quantified, the ratio of 
estimated expression between conditions/tissues should 
remain very similar regardless of reference. However, this 
needs to be assessed formally. If interested in homoeo-
logue expression balance, however, unequal divergence of 

Fig. 7 The impact of reference bias on the quantification of triads in which one homoeologue has been introgressed. A Estimated expression 
level of introgressed D homoeologues compared to the wheat B homoeologues and wheat D homoeologues compared to wheat B 
homoeologues, using either Chinese Spring or pantranscriptome reference as targets for kallisto pseudoalignment. Each point represents one 
accession. B Expression level of triads from where the D homoeologue is an introgressed gene in a subset of lines, using either Chinese Spring 
or the pantranscriptome reference as targets for kallisto pseudoalignment. The centre line of the boxplots = the median; the box limits = the upper 
and lower quartiles, the whiskers = 1.5 × interquartile range; and the points = outliers
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homoeologues relative to the reference will lead to incor-
rect findings. Reference bias also makes complex patterns 
more difficult to discern. For example, in a previous study 
[30], we demonstrated how the rhythmicity of ELF3-1D 
and SIG3-1D in a Cadenza timecourse RNA-seq data-
set was difficult to ascertain as the reads mapped so 
poorly to Chinese Spring. However, when using adding 
in the introgression to the reference, the reads mapped 
more correctly, and the rhythmicity could be accurately 
assessed.

Matching a sample to a more appropriate reference 
genome will become increasingly possible as genome 
assemblies for more wheat accessions become avail-
able. However, analyses involving two or more accessions 
require a common reference genome to which the RNA-
seq reads can be aligned. In this situation, or when the 
appropriate genome assembly is not available for within-
accession analyses, it is important to exercise caution 
and check whether introgressed genes might be impact-
ing conclusions drawn. In the long term, it is important 
to work towards overcoming this issue of introgression-
induced reference bias by implementing novel methods.

Using a pantranscriptome reference to reduce reference 
bias
Previous work has shown the benefit of using enhanced 
references or individualised references as targets for 
RNA-seq mapping. Vijaya Satya, Savaljevski and Reif-
man [31] constructed an enhanced reference genome for 
human by including alternative allele segments at known 
polymorphic loci. Other publications have reported 
mapping to individualised genomes/transcriptomes by 
updating the reference with SNPs, INDELs and/or splice 
sites for each individual [9, 32]. By using individualised 
genomes instead of a single reference genome, Munger 
et  al. [9] increased the accuracy of eQTL detection in 
a multi-parent mouse population from 88.2 to 98.3%. 
Kaminow et al. [33] constructed a pan-human consensus 
genome by calculating the consensus allele for each vari-
ant; this significantly improved the accuracy of RNA-seq 
mapping when compared to the reference genome. Simi-
lar approaches have been used for reducing reference 
bias when mapping DNA reads [34, 35].

Our approach follows in this vein. However, indi-
vidualised genomes or consensus genomes are not suit-
able for wheat as the degree of divergence introduced 
by introgressions prohibits the accurate genotyping 
necessary for creating said genomes. Instead, we built 
a pantranscriptome reference that includes transcripts 
from other wheat cultivars in the Chinese Spring refer-
ence transcriptome. The low resource requirements of 
kallisto regardless of reference size enables a highly scal-
able approach as more genome and transcriptome data 

are generated, while still running in a fraction of the time 
that alignment-based tools take to align to one reference 
genome.

The pantranscriptome reference corrects almost all 
expression values underestimated for genes belonging 
to an introgression present in the assembled pangenome 
cultivars and in a 1-to-1 relationship with a Chinese 
Spring gene. However, this approach does currently have 
limitations. The pantranscriptome reference will not cur-
rently contain all introgressions present across wheat 
accessions. The pantranscriptome reference is not rep-
resentative of wheat germplasm around the world; for 
example, it lacks, with the exception of Chinese Spring, 
transcripts from Asian and African wheat cultivars. 
There are several such genomes whose transcripts could 
be incorporated into the pantranscriptome [36–39]. 
However, we opted to include only those genomes anno-
tated using the same methodology to ensure accurate 
orthologue assignment.

As more genomes and/or transcriptomes are 
sequenced and other existing genomes are re-annotated 
to provide consistent gene annotations, transcripts can 
be added to the pantranscriptome reference to broaden 
the scope of genetic variation covered. This may lead to 
a saturation point at which most of the commonly seg-
regating variation is captured within the reference and 
it can be considered complete for most use cases. This 
approach also only addresses errors caused by diver-
gent genes and not those caused by copy number varia-
tion such as tandem duplications, and presence/absence 
variation caused by a cultivar having a gene deletion or 
a novel gene. This is because, to ensure additional errors 
were not introduced, we elected to only add transcripts 
from other cultivars to the pantranscriptome reference if 
they came from genes in a 1-to-1 orthologous relation-
ship with a Chinese Spring gene. Developing a way to 
overcome this limitation is important but also challeng-
ing because it requires resolving complex orthologue and 
paralogue relationships, and it is unclear how novel genes 
and genes with varying copy number between cultivars 
should be represented in the pantranscriptome reference.

Different solutions entirely to the problem of RNA-seq 
reference bias in wheat may emerge as being superior. For 
example, the field of graph genomes is developing rapidly 
[40, 41], including methods to align RNA-seq reads to a 
graph genome [42]. However, graphs for genomes as large 
and as complex as wheat are yet to be created success-
fully. It is also a much heavier-weight solution compared 
to the pantranscriptome pseudoalignment approach. At 
the very least, our approach provides a temporary way 
to improve the accuracy of RNA-seq alignment, par-
ticularly for those genes comprising the core genome. 
With further development and the incorporation of new 
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data, it may evolve into an alternative, more lightweight 
approach to emerging graph-based methods.

Examining reference bias in experimentally generated 
RNA‑seq data
Using the valuable dataset generated by He et al. [11], we 
were able to show that reference bias is present in experi-
mentally generated datasets as well as simulated datasets. 
The diverse nature of the wheat accessions sequenced 
may have made this work particularly prone to the effects 
of reference bias; after all, we demonstrated that diver-
gent regions are abundant across the accessions. How-
ever, the ubiquity of introgressions is not exclusive to this 
set of accessions as introgressions are common across 
most wheat germplasm, including Elite cultivars. Indeed, 
wheat accessions containing diverse introgressions are 
very important in wheat research as it may be the source 
of beneficial variation for breeders, not to mention 
sources of insight into the evolution of wheat genomes.

The homoeologous sets of genes showing lack of 
expression correlation identified by He et  al. [11] were 
enriched in genomic regions identified as introgressed 
or deleted in many of the accessions with 78.2% fall-
ing in such regions. We also showed that most of these 
genes had much higher expression when using the pan-
transcriptome reference instead of the Chinese Spring 
reference. Using the pantranscriptome reference also 
increased the SCC scores calculated between homoeo-
logue pairs. These findings may alter the interpretation 
of why these genes are associated with productivity traits. 
While some of these triads may still exhibit genuine dys-
regulation of homoeologues and homoeologue dosage 
effects, it is likely that, for at least some of these genes, 
variation in the gene sequence itself is underlying this 
trait variation, rather than alteration of expression dosage 
between homoeologues. This also has implications for 
the evolutionary and selection mechanisms implicated in 
the control of these traits.

To more precisely examine how the quantification of 
introgressed genes changes with the reference used, we 
focused on genes in the chr1D introgression due to its 
presence in around a quarter of the accessions and con-
stant size across accessions possessing it. We showed that 
when using Chinese Spring as the reference, it appears 
as though introgressed genes are less expressed than the 
wheat orthologues they replaced. However, when using 
the pantranscriptome reference, which contains the 
introgressed gene models as the cultivar Jagger also con-
tains this introgression, there is no significant difference 
between the expression of these genes. Correcting the 
quantification of these genes also altered the estimated 
expression balance across triads in which the D homoeo-
logue is introgressed by raising the estimated expression 

of the D homoeologue. It would not have been surpris-
ing to see, even after removing reference bias, that intro-
gressed genes were expressed differently than the wheat 
orthologue they replace, perhaps due to the divergence 
in regulatory sequences. However, this finding suggests 
that, at least for this introgression, that is not the case. 
This has implications for any RNA-seq studies using 
wheat accessions containing introgressions, and also 
more specifically for studies looking at the expression of 
introgressed genes and what mechanisms underlie the 
phenotype they confer.

Conclusions
Our results highlight the problem of reference bias in 
wheat RNA-seq alignment which, when relying on a sin-
gle reference genome, lead to inaccurate gene expression 
quantification and incorrect assignment of homoeologue 
expression balance. This effect was shown using both 
simulated and experimentally generated data. As diver-
gent introgressed genes play a major role in this reference 
bias, incorporating divergent gene models from different 
wheat cultivars into the transcriptome reference reduced 
the extent of reference bias and provides a novel method 
which can be further developed as high-quality genome 
assemblies become available for more cultivars.

Methods
Read simulation, alignment and quantification
Reads were simulated from the longest transcript from 
each HC gene in Chinese Spring RefSeq v1.0 [43] (with 
RefSeq v1.1 annotation) and the nine pseudomolecule 
genome assemblies [22] if the transcript ≥ 500 bp. Wgsim 
from samtools v1.9 [44] was used to simulate 1000 pairs 
of 150 bp reads per gene with an insert size of 400 bp and 
no errors.

The kallisto index was produced from the CDS 
sequences from the RefSeq v1.1 high-confidence gene 
annotations using kallisto v0.44.0 [3]. Reads were pseu-
doaligned to this index using 100 bootstraps and default 
settings. Read counts and TPM values were summed 
across transcripts to generate gene level counts and TPM 
values.

To construct the pantranscriptome reference, we 
first ran Orthofinder [25] with standard parameters to 
define orthogroups based on the longest isoform pro-
tein sequences of the HC genes from Chinese Spring and 
the nine cultivars for which chromosome-level genome 
assemblies were generated as part of the 10+ genome 
project [20]. If a gene was found in a 1-to-1 relationship 
with a Chinese Spring gene, its transcripts were added to 
the Chinese Spring RefSeq v1.1 HC transcript fasta file. 
A kallisto index was built and reads pseudoaligned as 
above. Read counts and TPMs were each summed across 
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all transcripts of a gene and its 1-to-1 orthologues using 
the custom python script sum_orthologue_transcript_
counts.py [53] to generate gene-level counts.

The STAR index was built for RefSeq v1.0 with the 
RefSeq v1.1 HC gene annotation using STAR v2.7.6a [2] 
using default parameters except for –limitGenomeGen-
erateRAM 200000000000 and –genomeSAindexN-
bases 12. The simulated reads from the 10 cultivars 
were aligned to this index using STAR and the predicted 
splice junctions from all were merged and then filtered 
to remove non-canonical junctions, junctions supported 
by 2 or fewer uniquely mapping reads and reads already 
annotated in the original genome annotation. The index 
was rebuilt using these discovered splice sites in addi-
tion to the annotated splice sites. The simulated reads 
from the 10 cultivars were aligned to this new index with 
parameters –quantMode TranscriptomeSAM and –out-
SAMunmapped Within. Gene-level read counts were 
generated using RSEM v1.2.28 [45].

For read count comparisons between self-mapping 
and cross-mapping, the following criteria were used to 
determine whether a gene was present in the analysis. For 
self-mapping, all genes from which reads were simulated 
were used. For cross-mapping, genes from which reads 
were simulated in that cultivar and that are in a 1-to-1 
relationship with a gene in Chinese Spring from which 
reads were also simulated were used.

Defining triad balance
Triads in Chinese Spring were taken from Ramírez-
González et  al. [10]. For each cultivar, triads were 
retained if all three homoeologues were used to simulate 
RNA-seq reads. Triad balance was computed in the same 
way as [10] except for the use of read counts rather than 
TPMs due to the way we simulated the reads. The rela-
tive read count of each homoeologue within a triad was 
calculated as follows:

where A, B and D are the read counts of the A, B and 
D homoeologues, respectively. Euclidean distance was 
then used to calculate the distance between each set of 
normalised expression values across a triad to an ideal 

Anorm =
A

A+ B+ D

Bnorm =
B

A+ B+ D

Dnorm =
D

A+ B+ D

normalised read count bias for each of seven categories 
(Table 1). A triad is assigned to an expression bias cate-
gory by selecting the category with the shortest Euclidean 
distance between the observed and the ideal bias.

Calculating CDS identity
Blastn from blast + v2.7.1 [46] was used to align the 
nucleotide sequence of the longest transcripts of pairs 
of orthologues between Chinese Spring RefSeq v1.1 and 
Lancer. The identity of the best hit between pairs was 
taken and binned into 5-Mbp genomic windows.

Binning incorrectly quantified genes
The RefSeq v1.0 genome [43] was split into 5-Mbp 
genomic windows using bedtools makewindows [47] and 
for each window, a score was calculated based on the 
number of under (read count < 500) and overestimated 
(read count > 1500) genes within that window:

Processing sequencing data generated by He et al. [11]
One hundred ninety-eight accessions had both leaf RNA-
seq data and enrichment capture short paired-end DNA 
reads. The RNA-seq data from the 198 lines was pseu-
doaligned to both Chinese Spring RefSeq v1.1 and the 
pantranscriptome reference as above for the simulated 
reads. TPMs were summed across transcripts to generate 
gene level counts. Accessions GF25, GF270, GF32, GF37, 
GF41 and GF73 were excluded for RNA-seq analyses as 
in [11].

DNA reads were mapped to Chinese Spring RefSeq 
v1.0 [43]. The alignment was filtered using samtools [44]: 
supplementary alignments, improperly paired reads, and 
non-uniquely mapped reads (mapping quality less than 
10) were removed. PCR duplicates were detected and 
removed using the Picard Tools v2.1.1 MarkDuplicates 

−1 ∗ no.of underestimated genes + (1 ∗ no.overestimated genes)

Table 1 Ideal normalised read count bias for each triad 
expression category

Category A B D

Balanced 0.33 0.33 0.33

A suppressed 0 0.5 0.5

B suppressed 0.5 0 0.5

D suppressed 0.5 0.5 0

A dominant 1 0 0

B dominant 0 1 0

D dominant 0 0 1
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function [48]. Accessions GF294, GF342, GF366, GF380, 
GF381, GF383 and GF38 were excluded for DNA analy-
ses as in [11].

Using mapping coverage deviation to identify divergent 
regions of the genome
To generate DNA sequencing reads for the cultivars 
assembled as part of the 10+ wheat genomes project, 
we simulated paired-end 150-bp reads with 500-bp 
insert and no errors from all fourteen Triticum aestivum 
genome assemblies (ArinaLrFor, Cadenza, Claire, Jagger, 
Julius, Lancer, Landmark, Mace, Norin61, Paragon, Robi-
gus, Stanley, SY Mattis and Weebil) [20] to a depth of 
10x using WGSim within samtools v1.9 [44]. Reads were 
mapped to RefSeq v1.0 as above.

The RefSeq v1.0 genome [43] was split into 1-Mbp 
genomic windows using bedtools makewindows [47]. 
Using the filtered read mappings for the cultivars from 
the 10+ wheat genomes [20] project and for the acces-
sions analysed by He et  al. [11], the number of reads 
mapping to each window was computed using hts-nim-
tools [49]. To normalise by the sequencing depth of each 
line, read counts were divided by the number of mapped 
reads that passed the filters, producing normalised read 
counts. Different windows of the genome have variable 
mapping coverage rates, so to compute coverage devia-
tion we must compare each window to the same window 
in the other lines in the collection. Median normalised 
read counts, m, were produced, containing the median 
for each genomic window. Mapping coverage deviation 
was then defined for each line as:

for window i ∈ {1, 2, …, n}, where ε is the median d value 
across the genome for the line. Statistically significant d 
values were calculated using the scores function from the 
R package ‘outliers’ using median absolute deviation and 
probability of 0.99. Mapping coverage deviation and sig-
nificance values were computed separately for the culti-
vars from the 10+ wheat genomes project [20] and for the 
accessions analysed by He et al. [11].

Locating coordinates of introgression boundaries
To detect the precise locations of the chr1D, chr2A Ae. 
ventricosa, and the chr2D Ae. markgrafii introgres-
sions in Jagger, and the chr2B T. timopheevii and the 
chr3D Th. ponticum introgression in Lancer, I used the 
alignments for the simulated Jagger and Lancer reads 
generated above. Read depths were binned into 5- and 
1-Mbp windows using bedtools makewindows [47] and 

di =
Ci

mi · ε

hts-nim-tools [49]. The window in which read depth 
drops, signifying the start/end of the introgression, was 
identified for each introgression and IGV was used to 
precisely identify the position where the coverage pro-
file changes. To locate the location of the introgressions 
relative to the Jagger/Lancer genomes in order to iden-
tify which genes have been introgressed, I extracted Chi-
nese Spring sequence 1Mbp either side of the precisely 
located border position (or until the end of the chromo-
some) for each introgression and aligned them to the 
Jagger or Lancer genome assembly using minimap2 [50] 
with parameters -x asm5. These alignments were used to 
determine the borders of the introgressed region as they 
appear in their donor genomes.

Characterising the chr1D introgression donor species
Blastp from blast + v2.7.1 [46] was used to align the Ae. 
speltoides proteins with the longest isoforms of the 
Jagger HC proteins. The best hit for each Jagger pro-
tein was kept. Paired-end Illumina DNA reads from T. 
timopheevii [51] were mapped to Chinese Spring RefSeq 
v1.0 [43] using BWA mem v0.7.13 [52]. Samtools v1.4 
[44] was used to filter the alignments to retain mapped 
reads, primary alignments, properly paired reads and 
uniquely mapping reads (mapping quality greater than 
10). PCR duplicates were found and removed using the 
Picard Tools v2.1.1 MarkDuplicates function [48]. Read 
depths were binned into 5-Mbp windows using bedtools 
makewindows [47] and hts-nim-tools [49] and divided by 
window length to account for windows at ends of chro-
mosomes which are less than 5Mbp in length.

Calculating SCC between homoeologues
SCC scores were calculated between AB, AD and BD 
homoeologue pairs for triads where one homoeologue 
was in the set of genes showing lack of expression cor-
relation identified by He et al. [11]. This was done using 
the cor.test function in R with the ‘Spearman’ method 
and the lowest SCC value of the three comparisons was 
taken. Triads were excluded if any of the homoeologues 
were not found in the HC RefSeq v1.1 annotation.

Statistical tests
The significance of the difference in the proportion of 
genes that were correctly quantified between intro-
gressed and non-introgressed regions was calculated 
using a chi-squared test with a sample size of 60,338. 
The significance of the difference between mean CDS 
nucleotide identity between orthologue pairs when 
correctly quantified compared to incorrectly quanti-
fied was calculated using two-tailed t tests with no 
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assumption of equal variance and a sample size of 
60,338. The significance of the difference in Spearman 
correlation scores between homoeologue pairs when 
using the Chinese Spring reference compared to the 
pantranscriptome reference was calculated using a two-
tailed t test with no assumption of equal variance and a 
sample of 55. The significance of the difference between 
introgressed and non-introgressed orthologues when 
using the Chinese Spring or the pantranscriptome ref-
erence was calculated using two-tailed t tests with no 
assumption of equal variance with a sample size of 63.
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SCC  Spearman’s correlation coefficient

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915- 024- 01853-w.

Additional file 1: Table S1. Number of genes correctly quantified, 
underestimated, and overestimated from simulated RNA-Seq data, using 
Kallisto with the Chinese Spring reference, STAR with the Chinese Spring 
reference, or kallisto with the pantranscriptome reference. Table S2. 
Percentage of triads classified in each expression category from simulated 
RNA-Seq data, using Kallisto with the Chinese Spring reference, STAR 
with the Chinese Spring reference, or kallisto with the pantranscriptome 
reference. Table S3. Accessions from the He et al. [11] dataset that do 
and do not contain the chr1D introgression. Table S4. Expression values 
for genes within the chr1D introgression for accessions from the He et 
al. [11] dataset, using either the Chinese Spring or the pantranscriptome 
reference. Accessions are split based on whether or not they contain the 
chr1D introgression.

Additional file 2: Fig. S1. Upset plot of 1-to-1 orthologue assignments 
used for the construction of the pantranscriptome reference. Fig. S2. 
Remaining incorrectly quantified genes after correction using the 
pantranscriptome reference. Fig. S3. Reads from T. timopheevii accession 
P95 mapped to T. aestivum cv. Jagger and binned into 5Mbp genomic 
windows.

Acknowledgements
We would like to thank Jose De Vega and Rachel Rusholme-Pilcher for provid-
ing feedback on an earlier version of the manuscript.

Authors’ contributions
BC conceived of the study and conducted analysis, prepared figures and 
wrote the manuscript. TL identified 1-to-1 orthologues between Chinese 
Spring and the cultivars assembled in the 10+ wheat genomes project. AH 
provided supervision and edited the manuscript. EA was involved in discus-
sions and edited the manuscript. All authors read and approved the final 
version of the manuscript.

Funding
BC was supported by the BBSRC funded Norwich Research Park Biosciences 
Doctoral Training Partnership grant BB/M011216/1. AH was supported by 
the Biotechnology and Biological Sciences Research Council (BBSRC), part of 
UK Research and Innovation; Earlham Institute Strategic Programme Grant 
BBX011089/1 and BBS/E/ER/230002B (Decode WP2 Genome Enabled Analysis of 
Diversity to Identify Gene Function, Biosynthetic Pathways And Variation In Agri/
Aquacultural Traits). EA is supported by the Agriculture and Food Research 
Initiative Competitive Grants 2022–68013-36439 (WheatCAP) and grant INV-
004430 from Bill and Melinda Gates Foundation.

Availability of data and materials
The pantranscriptome reference, along with a python script to sum expression 
counts across all transcripts of a given Chinese Spring gene and its 1-to-1 
orthologues, can be accessed via figshare at https:// doi. org/ 10. 6084/ m9. figsh 
are. 24242 767 [53].
The RNA-seq data and DNA sequencing data generated by He et al. [11] are 
stored in the European Nucleotide Archive under project codes PRJNA670223 
[54] and PRJNA787276 [55].
The wheat cultivar genomes and annotations generated as part of the 
10+ wheat genomes project [20] can be accessed on Ensembl Plants release 
58 via https:// plants. ensem bl. org/ Triti cum_ aesti vum/ Info/ Culti vars [56].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 October 2023   Accepted: 21 February 2024

References
 1. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome 

alignment and genotyping with HISAT2 and HISAT-genotype. Nat Bio-
technol. 2019;37(8):907–15.

 2. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 
Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

 3. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34:525–7.

 4. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast 
and bias-aware quantification of transcript expression. Nat Methods. 
2017;14:417–9.

 5. Günther T, Nettelblad C. The presence and impact of reference bias on 
population genomic studies of prehistoric human populations. PLoS 
Genet. 2019;15(7): e1008302.

 6. Thorburn DMJ, Sagonas K, Binzer-Panchal M, Chain FJJ, Feulner PGD, Born-
berg-Bauer E, et al. Origin matters: Using a local reference genome improves 
measures in population genomics. Mol Ecol Resour. 2023;23:1706–23.

 7. Zhan S, Griswold C, Lukens L. Zea mays RNA-seq estimated transcript 
abundances are strongly affected by read mapping bias. BMC Genomics. 
2021;22:285.

 8. Li L, Petsch K, Shimizu R, Liu S, Xu WW, Ying K, et al. Mendelian and non-
mendelian regulation of gene expression in Maize. PLoS Genet. 2013;9(1): 
e1007234.

 9. Munger SC, Raghupathy N, Choi K, Simons AK, Gatti DM, Hinerfeld DA, et al. 
RNA-Seq alignment to individualized genomes improves transcript abun-
dance estimates in multiparent populations. Genetics. 2014;198(1):59–73.

 10. Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini 
L, et al. The transcriptional landscape of polyploid wheat. Science. 2018; 
361(6403):eaar6089.

 11. He F, Wang W, Rutter WB, Jordan KW, Ren J, Taagen E, DeWitt N, Sehgal 
D, Sukumaran S, Dreisigacker S, Reynolds M, Halder J, Sehgal SK, Liu S, 
Chen J, Fritz A, Cook J, Brown-Guedira G, Pumphrey M, Carter A, Sorrells 
M, Dubcovsky J, Hayden MJ, Akhunova A, Morrell PL, Szabo L, Rouse M, 
Akhunov E. Genomic variants affecting homoeologous gene expression 
dosage contribute to agronomic trait variation in allopolyploid wheat. 
Nat Commun. 2022;13(826). https:// doi. org/ 10. 1038/ s41467- 022- 28453-y.

 12. Edelman NB, Mallet J. Prevalence and adaptive impact of introgression. 
Ann Rev Genet. 2021;55:265–83.

 13. Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 
2005;20(5):229–37.

https://doi.org/10.1186/s12915-024-01853-w
https://doi.org/10.1186/s12915-024-01853-w
https://doi.org/10.6084/m9.figshare.24242767
https://doi.org/10.6084/m9.figshare.24242767
https://plants.ensembl.org/Triticum_aestivum/Info/Cultivars
https://doi.org/10.1038/s41467-022-28453-y


Page 17 of 17Coombes et al. BMC Biology           (2024) 22:56  

 14. Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, et al. The resurgence 
of introgression breeding, as exemplified in wheat improvement. Front 
Plant Sci. 2020;11:252.

 15. Zhou Y, Zhao X, Li Y, Xu J, Bi A, Kang L, et al. Triticum population 
sequencing provides insights into wheat adaptation. Nat Genet. 
2020;52(12):1412–22.

 16. Cheng J, Liu J, Wen J, Nie X, Xu L, Chen N, Li Z, Wang Q, Zheng Z, Li M, 
Cui L, Liu Z, Bian J, Wang Z, Xu S, Yang Q, Appels R, Han D, Song W, Sun Q, 
Jiang Y. Frequency intra- and inter-species introgression shapes the land-
scape of genetic variation in bread wheat. Genome Biol. 2019;20(136). 
https:// doi. org/ 10. 1186/ s13059- 019- 1744-x.

 17. He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, et al. Exome 
sequencing highlights the role of wild-relative introgression in 
shaping the adaptive landscape of the wheat genome. Nat Genet. 
2019;51:896–904.

 18. Przewieslik-Allen AM, Burridge AJ, Wilkinson PA, Winfield MO, Shaw DS, 
McAusland L, et al. Developing a High-Throughput SNP-based marker 
system to facilitate the introgression of traits from aegilops species into 
bread wheat (Triticum aestivum). Front Plant Sci. 2019;9:1993.

 19. Wang Z, Wang W, Xie X, Wang Y, Yang Z, Peng H, et al. Dispersed emer-
gence and protracted domestication of polyploid wheat uncovered by 
mosaic ancestral haploblock inference. Nat Commun. 2022;13:3891.

 20. Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, et al. Multi-
ple wheat genomes reveal global variation in modern breeding. Nature. 
2020;588(7837):277–83.

 21. Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, 
et al. Detecting major introgressions in wheat and their putative origins 
using coverage analysis. Sci Rep. 2022;12:1908.

 22. White B, Lux T, Rusholme-Pilcher R, Kaithakottil G, Duncan S, Simmonds J, 
et al. De novo annotation of the wheat pan-genome reveals complexity 
and diversity within the hexaploid wheat pan-transcriptome. BioRxiv. 
2024. https:// doi. org/ 10. 1101/ 2024. 01. 09. 574802.

 23. Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo M-C. Molecular charac-
terization of a diagnostic DNA marker for domesticated tetraploid wheat 
provides evidence for gene flow from wild tetraploid wheat to hexaploid 
wheat. Mol Biol Evol. 2006;23(7):1386–96.

 24. Gao L, Koo D-H, Juliana P, Rife T, Singh D, Lemes da Silva C, et al. The 
Aegilops ventricosa 2NvS segment in bread wheat: cytology, genomics 
and breeding. Theor Appl Genet. 2021;134(2):529–42.

 25. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for 
comparative genomics. Genome Biol. 2019;20:238.

 26. Srivastava A, Malik L, Sarkar H, Zakeri M, Almodaresi F, Soneson C, et al. 
Alignment and mapping methodology influence transcript abundance 
estimation. Genome Biol. 2020;21:239.

 27. Wang J, Wen W, Hanif M, Xia X, Wang H, Liu S, et al. TaELF3-1DL, a 
homolog of ELF3, is associated with heading date in bread wheat. Mol 
Breed. 2016;36:161.

 28. Wittern L, Steed G, Taylor LJ, Ramirez DC, Pingarron-Cardenas G, Gardner 
K, et al. Wheat EARLY FLOWERING 3 affects heading date without disrupt-
ing circadian oscillations. Plant Physiol. 2023;191(2):1383–403.

 29. Wu DC, Yao J, Ho KS, Lambowitz AM, Wilke CO. Limitations of alignment-
free tools in total RNA-seq quantification. BMC Genomics. 2018;19:510.

 30. Rees H, Rusholme-Pilcher R, Bailey P, Colmer J, White B, Reynolds C, et al. 
Circadian regulation of the transcriptome in a complex polyploid crop. 
PLoS Biol. 2022;20(10): e3001802.

 31. Vijaya Satya R, Zavaljevski N, Reifman J. A new strategy to reduce allelic 
bias in RNA-Seq readmapping. Nucleic Acids Res. 2012;40(16): e127.

 32. Liu X, MacLeod JN, Liu J. iMapSplice: Alleviating reference bias through 
personalized RNA-seq alignment. PLoS ONE. 2018;13:8.

 33. Kaminow B, Ballouz S, Gillis J, Dobin A. Pan-human consensus genome 
significantly improves the accuracy of RNA-seq analyses. Genome Res. 
2022;32:738–50.

 34. Chen NC, Solomon B, Mun T, Iyer S, Langmead B. Reference flow: reduc-
ing reference bias using multiple population genomes. Genome Biol. 
2021;22:8.

 35. Vaddadi NSK, Mun T, Langmead B. Minimizing Reference Bias with an 
Impute-First Approach. bioRxiv. 2023. https:// doi. org/ 10. 1101/ 2023.

 36. Athiyannan N, Abrouk M, Boshoff WHP, Cauet S, Rodde N, Kudrna D, et al. 
Long-read genome sequencing of bread wheat facilitates disease resist-
ance gene cloning. Nat Genet. 2022;54:227–31.

 37. Guo W, Xin M, Wang Z, Yao Y, Hu Z, Song W, et al. Origin and adaptation to 
high altitude of Tibetan semi-wild wheat. Nat Commun. 2020;11:5085.

 38. Shi X, Cui F, Han X, He Y, Zhao L, Zhang N, et al. Comparative genomic 
and transcriptomic analyses uncover the molecular basis of high 
nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol Plant. 
2022;15(9):1440–56.

 39. Jia J, Zhao G, Li D, Wang K, Kong C, Deng P, et al. Genome resources for 
the elite bread wheat cultivar Aikang 58 and mining of elite home-
ologous haplotypes for accelerating wheat improvement. Mol Plant. 
2023;16(12):1893–910.

 40. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. 
Variation graph toolkit improves read mapping by representing genetic 
variation in the reference. Nat Biotechnol. 2018;36(9):875–81.

 41. Martiniano R, Garrison E, Jones ER, Manica A, Durbin R. Removing refer-
ence bias and improving indel calling in ancient DNA data analysis by 
mapping to a sequence variation graph. Genome Biol. 2020;21:250.

 42. Sibbesen JA, Eizenga JM, Novak AM, Sirén J, Chang X, Garrison E, et al. 
Haplotype-aware pantranscriptome analyses using spliced pangenome 
graphs. Nat Methods. 2023;20:239–47.

 43. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting 
the limits in wheat research and breeding using a fully annotated refer-
ence genome. Science. 2018;361(6403):eaar7191.

 44. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The 
Sequence Alignment/Map format and SAMtools. Bioinformatics. 
2009;25(16):2078–9.

 45. Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-
Seq data with or without a reference genome. BMC Bioinformatics. 
2011;12:323.

 46. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 
BLAST+: Architecture and applications. BMC Bioinformatics. 2009;10:421.

 47. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing 
genomic features. Bioinformatics. 2010;26:841–2.

 48. Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A 
framework for variation discovery and genotyping using next-generation 
DNA sequencing data. Nat Genet. 2011;43(5):491–8.

 49. Pedersen BS, Quinlan AR. hts-nim: scripting high-performance genomic 
analyses. Bioinformatics. 2018;34(18):3387–9.

 50. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics. 2018;34(18):3094–100.

 51. King J, Grewal S, Othmeni M, Coombes B, Yang CY, Walter N, Ashling S, 
Scholefield D, Walker J, Hubbart-Edwards S, Hall A, King IP. Introgression 
of the Triticum timopheevii Genome Into Wheat Detected by Chromo-
some-Specific Kompetitive Allele Specific PCR Markers. Front Plant Sci. 
2022;13(919519). https:// doi. org/ 10. 3389/ fpls. 2022. 919519.

 52. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

 53. Coombes B, Lux T, Akhunov E, Hall A. Supplementary Data for paper titled 
’Introgressions lead to reference bias in wheat RNA-Seq analysis’. 2023. 
figshare https:// doi. org/ 10. 6084/ m9. figsh are. 24242 767. v1.

 54. RNA-seq data for a wheat diversity panel. ENA https:// www. ebi. ac. uk/ 
ena/ brows er/ view/ PRJNA 670223 (2022).

 55. Regulatory sequence diversity in the wheat genome. ENA https:// www. 
ebi. ac. uk/ ena/ brows er/ view/ PRJNA 787276 (2020).

 56. Yates DY, Allen J, Amode RM, Azov AG, Barba M, Becerra A, et al. Ensembl 
Genomes 2022: an expanding genome resource for non-vertebrates. 
Nucleic Acids Res. 2022;50:D996–1003.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13059-019-1744-x
https://doi.org/10.1101/2024.01.09.574802
https://doi.org/10.1101/2023
https://doi.org/10.3389/fpls.2022.919519
https://doi.org/10.6084/m9.figshare.24242767.v1
https://www.ebi.ac.uk/ena/browser/view/PRJNA670223
https://www.ebi.ac.uk/ena/browser/view/PRJNA670223
https://www.ebi.ac.uk/ena/browser/view/PRJNA787276
https://www.ebi.ac.uk/ena/browser/view/PRJNA787276

	 Sum�mary
	 Whole-genome sequenc�ing facil�i�tates high-res�o�lu�tion intro�gres�sion detec�tion
	pbi13859-fig-0001
	 Intro�gres�sion breed�ing pro�cess induces homoe�ol�o�gous pair�ing and large chro�mo�so�mal aber�ra�tions
	 Genome assem�bly and anno�ta�tion of Am. muticum:
	 Expres�sion of intro�gressed genes and impact on the back�ground wheat tran�scrip�tome
	 Iden�ti�fy�ing can�di�date intro�gressed genes under�ly�ing Am. muticum derived rust resis�tance
	pbi13859-fig-0002
	pbi13859-fig-0003
	 Using whole-genome sequenc�ing to pin�point wild rel�a�tive intro�gres�sions in wheat - An afford�able approach to bet�ter char�ac�ter�ize intro�gres�sion lines
	pbi13859-fig-0004
	 Genomic insta�bil�ity gen�er�ated through intro�gres�sion breed�ing pro�gramme
	pbi13859-fig-0005
	 Iden�ti�fi�ca�tion of novel intro�gressed genes and gene expres�sion pro�file of intro�gres�sion lines
	 A case study for uncov�er�ing can�di�date intro�gressed genes under�ly�ing phe�no�types of inter�est
	 Intro�gres�sion line selec�tion
	 Whole-genome sequenc�ing, map�ping and SNP call�ing
	 In sil�ico kary�otyp�ing - cal�cu�lat�ing map�ping cov�er�age devi�a�tion com�pared to wheat par�ents
	 Iden�ti�fy�ing Am. muticum-speci�fic SNPs and assign�ing intro�gressed regions
	 KASP val�i�da�tion
	 Junc�tion val�i�da�tion using Oxford nanopore long reads
	 Genome assem�bly of Am. muticum
	 Gene anno�ta�tion
	 Protein fam�ily anal�y�sis
	 Assign�ing ortho�logue pairs
	 Clas�si�fy�ing intro�gressed genes
	 mRNA extrac�tion, sequenc�ing, align�ment and quan�tifi�ca�tion
	 Expres�sion of intro�gressed Am. muticum genes
	 Dif�fer�en�tial expres�sion anal�y�sis
	 Test�ing triad expres�sion bal�anc�ing
	 GO term anal�y�sis
	 Iden�ti�fy�ing intro�gressed resis�tance genes
	 Data avail�abil�ity

	 Ref�er�ences
	pbi13859-bib-0001
	pbi13859-bib-0002
	pbi13859-bib-0003
	pbi13859-bib-0004
	pbi13859-bib-0005
	pbi13859-bib-0006
	pbi13859-bib-0007
	pbi13859-bib-0008
	pbi13859-bib-0009
	pbi13859-bib-0010
	pbi13859-bib-0011
	pbi13859-bib-0012
	pbi13859-bib-0013
	pbi13859-bib-0014
	pbi13859-bib-0015
	pbi13859-bib-0016
	pbi13859-bib-0017
	pbi13859-bib-0018
	pbi13859-bib-0019
	pbi13859-bib-0020
	pbi13859-bib-0021
	pbi13859-bib-0022
	pbi13859-bib-0023
	pbi13859-bib-0024
	pbi13859-bib-0025
	pbi13859-bib-0026
	pbi13859-bib-0027
	pbi13859-bib-0028
	pbi13859-bib-0029
	pbi13859-bib-0030
	pbi13859-bib-0031
	pbi13859-bib-0032
	pbi13859-bib-0033
	pbi13859-bib-0034
	pbi13859-bib-0035
	pbi13859-bib-0036
	pbi13859-bib-0037
	pbi13859-bib-0038
	pbi13859-bib-0039
	pbi13859-bib-0040
	pbi13859-bib-0041
	pbi13859-bib-0042
	pbi13859-bib-0044
	pbi13859-bib-0045
	pbi13859-bib-0046
	pbi13859-bib-0047
	pbi13859-bib-0048
	pbi13859-bib-0049
	pbi13859-bib-0050
	pbi13859-bib-0051
	pbi13859-bib-0052
	pbi13859-bib-0053
	pbi13859-bib-0054
	pbi13859-bib-0055
	pbi13859-bib-0056
	pbi13859-bib-0057
	pbi13859-bib-0058
	pbi13859-bib-0059
	pbi13859-bib-0060
	pbi13859-bib-0061

	Exotic alleles contribute to heat tolerance in wheat under field conditions
	Results
	Physiological evaluation of HiBAP I under heat stress
	Genome-wide association analysis reveals genetic associations under heat stress
	Aegilops tauschii introgression underlies 6D MTA
	Candidate genes for MTAs in 1B, 2B and 6D

	Discussion
	Methods
	Plant material and growth conditions
	Agronomic measurements
	Unmanned Aerial Vehicle (UAV) for canopy temperature and NDVI estimation
	Stress tolerance Indices
	Statistics and reproducibility
	DNA extraction, capture enrichment and genotyping
	Genome-wide association study (GWAS)
	Identifying regions of divergence
	Producing species-specific SNPs
	Synteny between Ae. tauschii and T. aestivum
	Extracting corresponding region and genes from Ae. tauschii genomes
	Exploring functionality of candidate genes
	Reannotating candidate gene and assessing tissue-specific expression

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

	Introgressions lead to reference bias in wheat RNA-seq analysis
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Reference bias in wheat is driven by divergent genes introduced via introgressions and results in underestimation of gene expression
	Reducing reference bias by constructing a pantranscriptome reference
	Exploring reference bias caused by introgressions in experimentally generated RNA-seq data

	Discussion
	RNA-seq reference bias in wheat
	Using a pantranscriptome reference to reduce reference bias
	Examining reference bias in experimentally generated RNA-seq data

	Conclusions
	Methods
	Read simulation, alignment and quantification
	Defining triad balance
	Calculating CDS identity
	Binning incorrectly quantified genes
	Processing sequencing data generated by He et al. [11]
	Using mapping coverage deviation to identify divergent regions of the genome
	Locating coordinates of introgression boundaries
	Characterising the chr1D introgression donor species
	Calculating SCC between homoeologues
	Statistical tests

	Acknowledgements
	References


