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 Abstract 

 Revised  models  of  megakaryocyte  (Mk)  commitment  from  haematopoietic  stem  cells  (HSCs) 

 are  emerging,  supported  by  increasing  evidence  that  heterogeneity  in  the  HSC  pool  enables 

 rapid  platelet  replenishment  through  a  direct  commitment  to  the  Mk  lineage  (Haas  et  al.  ,  2015; 

 Roch,  Trachsel  and  Lutolf,  2015;  Grover  et  al.  ,  2016)  .  Platelet-biassed  differentiation  potential 

 in  a  subset  of  HSCs  corresponding  to  high  expression  of  von  Willebrand  Factor  (vWF)  may 

 support  this  direct  commitment  (Sanjuan-Pla  et  al.  ,  2013;  Shin  et  al.  ,  2014)  ,  but  the  cellular  and 

 molecular  transitions  underpinning  this  process,  and  how  they  vary  with  age  and  under  stress, 

 remain to be elucidated. 

 In  this  thesis,  single-cell  transcriptomics  was  used  to  explore  the  continuum  of  differentiation 

 between  HSC  and  Mk,  in  both  steady  state  and  in  response  to  stresses  including  platelet 

 depletion  and  ageing.  Full-length  scRNA-seq  of  mouse  bone  marrow-derived  Lin  −  c-Kit  + 

 Cd150  +  (LK  CD150+)  cells  was  employed,  hypothesising  that  this  gating  strategy  would  enable 

 unbiased  capture  of  HSCs,  Mk  progenitors  as  well  as  any  intermediate  cell  types  and  states. 

 The  use  of  full-length  scRNA-seq,  generated  from  both  short-  and  long-read  sequencing 

 platforms,  enabled  the  analysis  of  both  gene  and  isoform  expression  during  megakaryopoiesis. 

 To  explore  the  plasticity  of  the  system  under  stress,  this  thesis  outlines  the  cellular  and 

 transcriptomic  changes  along  this  trajectory  in  response  to  acute  platelet  depletion  as  well  as 

 normal ageing. 

 scRNA-seq  data  from  a  total  of  2,016  LK  Cd150+  cells  was  generated,  and  pseudotime  analysis 

 used  to  confirm  that  this  population  captures  the  entire  trajectory  of  early  Mk  and  erythroid 

 differentiation.  Upon  acute  platelet  depletion,  global  and  cell-type  specific  changes  in  gene 

 expression  were  observed,  including  an  increased  proportion  of  HSCs  exiting  quiescence,  and 

 the  expansion  of  Mk  progenitor  populations  with  distinct  expression  profiles  marked  by 

 upregulation  of  markers  involved  in  Mk  maturation  compared  to  steady  state  control.  Taken 

 together,  these  data  suggest  an  ‘emergency’  response  is  triggered  to  counteract  the  threat  of 

 acute  thrombocytopenia  at  multiple  levels  of  megakaryopoiesis,  involving  the  activation  of 

 stem cells and the generation of novel intermediate cell types. 

 Differential  expression  programmes  were  identified  between  young  and  old  Mk  progenitors  for 

 genes  related  to  proliferation,  plasma  membrane  and  inflammation  as  well  as  altered 

 frequencies  of  HSC  and  progenitor  populations,  consistent  with  previous  reports  that  show  an 

 expansion of HSCs with age. 
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 This  thesis  also  explores  differential  isoform  expression  arising  from  alternative  splicing, 

 revealing  heterogeneity  across  HSCs  in  key  genes  for  HSC  and  Mk  function,  highlighting  the 

 importance  of  isoform-level  interrogations  of  single  cells  in  megakaryopoiesis.  Overall,  this 

 work  adds  to  the  understanding  of  the  mechanisms  which  enable  the  first  steps  with  which 

 HSCs  commit  to  the  Mk  lineage,  representing  an  important  resource  for  further  insights  into 

 ageing, stress and plasticity in haematopoiesis. 
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 Preface 

 Haematopoiesis  is  the  process  in  which  the  heterogeneous  cell  populations  that  comprise  blood 

 are  formed  and  replenished  throughout  an  organism’s  lifetime.  It  is  an  essential  process  for 

 organism  survival,  with  its  primary  functions  being  the  transport  of  oxygen  throughout  the  body 

 by  red  blood  cells  (erythrocytes),  the  generation  of  the  white  blood  cells  of  the  immune  system 

 (leukocytes)  that  are  critical  for  fighting  infections,  and  the  vital  formation  of  blood  clots  by 

 platelets  (thrombocytes)  to  stop  bleeding  (Orkin,  2000)  .  Haematopoiesis  is  classically  depicted 

 in  a  hierarchical  fashion,  with  haematopoietic  stem  cells  (HSCs)  at  the  apex  giving  rise  first  to 

 progenitors and then to increasingly lineage-restricted precursors (Figure 1.1). 

 Given  in  part  by  the  accessibility  of  blood  cells  relative  to  other  tissues,  and  the 

 well-established  experimental  approaches  for  studying  haematopoiesis  over  the  last  50  years  it 

 is  arguably  one  of  the  most  thoroughly  studied  cellular  systems.  With  over  10  blood  cell  fates 

 and  its  generation  of  more  than  300  billion  cells  daily,  it  has  served  as  a  paradigm  for 

 understanding  heterogeneous  cellular  systems,  stem  cell  biology  and  function  and  how  when 

 behaving  aberrantly  they  contribute  to  disease,  oncogenesis  and  ageing  (Orkin  and  Zon,  2008)  . 

 The  lack  of  proliferative  ability  and  limited  life  span  of  most  mature  blood  cells  -  with 

 estimates  suggesting  the  production  of  1.5×10  6  blood  cells  every  second  in  an  adult  human  - 

 necessitates  their  constant  replenishment  and  requires  extensive  homeostatic  regulatory 

 mechanisms  to  keep  up  with  the  high  turnover  rate  (Fliedner  et  al.  ,  2002;  Orkin  and  Zon, 

 2008)  .  This  control  primarily  resides  with  HSCs,  the  first  tissue-specific  stem  cell  to  be  isolated 

 and  routinely  used  clinically  in  the  treatment  of  a  variety  of  blood  cell  diseases  (Delaney, 

 Gutman  and  Appelbaum,  2009;  Munoz  et  al.  ,  2014;  Piemontese  et  al.  ,  2015)  .  It  is  also 

 mediated  at  the  level  of  a  subset  of  more  committed  progenitors,  that  exhibit  high  proliferative 

 capacity within the haematopoietic system  (Pietras  et al.  , 2015)  . 

 Haematopoiesis  is  divided  into  three  ‘waves’  during  the  mammalian  lifespan,  each 

 characterised  by  the  type  of  cells  that  are  produced,  the  location  of  haematopoiesis,  and  the 

 growth  factors  and  cytokines  that  regulate  the  process  (Figure  1.2)  (Galloway  and  Zon,  2003)  . 

 The  first  site  of  haematopoiesis  in  human  and  murine  ontogeny  occurs  in  the  yolk  sac,  where 

 the  transitory  primitive  wave  takes  place  and  gives  rise  to  primitive  erythrocytes  and 

 macrophages  to  facilitate  tissue  oxygenation  in  early  embryonic  development.  The  second 

 wave  of  haematopoiesis  occurs  in  the  foetal  liver  and  spleen,  it  is  characterised  by  the 

 production  of  definitive  erythrocytes  (Ery),  granulocytes,  and  monocytes  until  ultimately  the 

 system migrates to the adult bone marrow (BM) where all types of blood cells are produced 
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 1 

 Figure 1.1. The classic hierarchy model of the haematopoietic system.  A schematic 

 representing the classical dogma of the haematopoietic system, with HSCs at the apex of the 

 hierarchy. 

 1  Created with BioRender.com 
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 throughout  the  organism’s  lifetime,  comprising  the  third  and  final  wave  of  haematopoiesis 

 (Ivanovs  et al.  , 2011, 2014)  . 

 Our  understanding  of  haematopoiesis  has  undergone  profound  shifts  over  the  last  50  years  as  a 

 consequence  of  methodology  and  technological  developments,  particularly  within  genomics 

 and  advances  in  the  field  of  single-cell  biology.  This  chapter  covers  the  evolution  of  our  current 

 understanding  of  haematopoiesis,  with  particular  emphasis  on  lineage  commitment  towards  the 

 platelet  lineage.  Detailing  key  research  and  the  implications  of  single-cell  technologies  in  the 

 field  of  megakaryocyte  (Mk)  lineage  commitment,  whilst  highlighting  gaps  in  our  knowledge 

 within this field. 
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 2 

 Figure  1.2.  The  three  waves  of  haematopoiesis.  The  first  wave  begins  around  embryonic  day 

 7  (E7.0)  and  is  called  the  primitive  haematopoiesis  which  gives  rise  to  p-Ery,  p-Ml  and  p-Mφ 

 cells.  The  second  wave,  called  pro-definitive,  starts  at  E8.25  where  EMPs  begin  to  emerge.  The 

 third  wave,  termed  definitive,  sees  the  generation  of  both  haematopoietic  stem  (HSC)  and  their 

 resulting progenitor cells. 

 2  Created with BioRender.com 
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 1.1 Haematopoietic hierarchy models 

 1.1.1. The classic hierarchical model of haematopoiesis 

 The  classic  model  of  haematopoiesis  is  credited  to  research  led  by  Dr  Ernest  McCulloch  and  Dr 

 James  Till  at  the  University  of  Toronto  in  the  early  1960s,  who  first  described  a  small  number 

 of  homogenous  HSCs  existing  atop  a  cellular  hierarchy,  capable  of  ultimately  giving  rise  to  all 

 mature  blood  cell  types  through  a  cascade  of  differentiation  steps  (Figure  1.1).  A  series  of 

 experiments  helped  define  HSCs  by  their  ability  to  differentiate  into  all  blood  cell  lineages  as 

 well  as  a  self-renew  and  enter  a  non-proliferative  quiescent  state  -  which  remain  key  defining 

 properties  of  all  stem  cells  (Till  and  McCulloch  ,  1961;  Becker,  McCulloch  and  Till,  1963; 

 Siminovitch,  McCulloch  and Till, 1963; Wu  et al.  , 1967, 1968)  . 

 Over  the  following  two  decades,  significant  progress  has  been  made  in  the  field  of  HSC 

 research,  thanks  to  advancements  in  techniques  such  as  fluorescence-activated  cell  sorting 

 (FACS)  and  magnetic-activated  cell  sorting  (MACS).  These  technologies  have  played  a  crucial 

 role  in  the  isolation  of  HSCs  and  the  identification  of  progenitors  necessary  for  rebuilding  the 

 blood  hierarchy.  A  major  contributing  factor  to  these  advancements  has  been  the  increased 

 availability  of  monoclonal  antibodies,  which  exhibit  high  specificity  for  specific  antigens.  This 

 development  has  greatly  facilitated  the  isolation  and  functional  evaluation  of  different  cellular 

 subsets.  As  a  result,  researchers  have  been  able  to  discover  key  markers  that  are  still  utilised 

 today to identify specific cell populations  (Weissman  and Shizuru, 2008)  . 

 One  notable  example  of  these  includes  Sca-1  (van  de  Rijn  et  al.  ,  1989)  ,  which  was  found  to 

 separate  BM  cells  into  approximately  25%  Sca1-positive  and  75%  Sca1-negative  populations. 

 Importantly,  only  the  Sca-1-positive  cells  exhibited  consistent  clonal  and  in  vivo  reconstitution 

 capabilities  (Spangrude,  Heimfeld  and  Weissman,  1988)  .  Today,  we  recognise  Sca-1  as  a  key 

 stem  cell  antigen  used  as  a  marker  for  the  identification  of  primitive  HSCs.  Its  expression 

 decreases  as  cells  differentiate,  and  it  plays  a  vital  role  in  maintaining  the  bone  marrow  HSC 

 compartment  throughout  an  individual's  life  (Chatterjee  et  al.  ,  2010)  .  Together  with  the 

 expression  of  c-kit  (CD117)  and  the  low  expression  of  several  surface  markers  associated  with 

 mature  blood  lineages  (collectively  known  as  Lin-),  the  Lin-  Sca-1+  cKit+  (LSK)  profile  is 

 used  in  FACS  enrichment  for  HSCs  and  the  most  immature  blood  progenitors.  Later,  Nakauchi 

 and  colleagues  identified  that  ~30%–40%  of  the  CD34-  LSK  cells  have  HSC  potential  (Osawa 

 et  al.  ,  1996)  ,  followed  by  the  discovery  of  numerous  other  markers  such  as  CD150  over 

 subsequent  years  (Kiel  et  al.  ,  2005;  Balazs  et  al.  ,  2006;  Wagers  and  Weissman,  2006; 

 Benveniste  et  al.  ,  2010)  .  These  discoveries  improved  HSC  enrichment  enabling  HSC 
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 fractionation  thus  making  molecular  and  behavioural  analyses  within  the  HSC  compartment 

 feasible. 

 With  such  developments,  the  classical  model  of  haematopoiesis  was  further  expanded  to 

 subcategorise  HSCs  into  long-term  (LT)  or  short-term  (ST)  subsets.  LT-HSCs  are  largely 

 quiescent,  capable  of  both  symmetric  and  asymmetric  division,  but  critically  are  defined  by 

 their  ability  to  completely  reconstitute  the  haematopoietic  system  over  several  months 

 post-irradiation  (Morrison  and  Weissman,  1994)  .  ST-HSCs  are  also  capable  of  multilineage 

 repopulation,  however  unlike  LT-HSCs,  they  exhibit  finite  self-renewal  capacity  (Morrison  et 

 al.  ,  1997)  .  Within  the  same  bone-marrow  compartment  are  multipotent  progenitors  (MPPs), 

 capable  of  transiently  providing  multilineage  reconstitution  (Morrison  et  al.  ,  1997)  .  Because 

 HSCs  themselves  only  rarely  divide  (  Bradford  et  al.,  1997  ,  Cheshier  et  al.,  1999  )  and  are 

 limited  in  numbers,  these  MPPs,  which  are  more  numerous  and  harbour  differential 

 proliferative  potentials,  also  serve  to  maintain  a  primary  level  of  homeostatic  control  (  Passegue 

 et  al.,  2005  ).  Together  these  cells  exist  at  the  top  of  a  hierarchy  of  increasingly 

 lineage-restricted  progenitors  towards  each  of  the  blood  lineages,  with  HSCs  at  the  conceptual 

 apex.  The  fundamental  aspect  of  this  model  of  haematopoiesis  is  that  at  each  stage  of 

 differentiation,  cells  undergo  binary  fate  choices  in  discrete  stages,  whereby  cells  within  the 

 same  conceptual  stage  are  uniformly  lineage  committed  and  have  an  equal  propensity  to 

 differentiate towards unipotency (Figure 1.3, left). 
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 1.1.1.  Paradigm  shifts  from  discrete  differentiation  to  a  continuum  of 

 haematopoietic lineage commitment 

 The  separation  of  cells  on  the  basis  of  surface  markers,  followed  by  bioassays  of  developmental 

 potential  have  identified  progenitors  committed  to  lymphoid  or  myeloid  programmes  (common 

 lymphoid  (CLP)  and  myeloid  (CMP)  progenitors,  respectively  (Kondo,  Weissman  and  Akashi, 

 1997;  Akashi  et  al.  ,  2000)  .  The  classical  model  of  haematopoiesis  proposed  that  this  first 

 lineage  bifurcation  separated  progenitors  with  myeloid  vs  lymphoid  potential,  however,  it  was 

 subsequently  demonstrated  that  the  earliest  bifurcation  occurred  immediately  downstream  of 

 multipotent  HSCs,  in  MPPs,  whereby  cells  with  lympho-myeloid  but  no  Mk-Ery  potential 

 diverged  from  cells  with  combined  Mk-Ery  and  myeloid  potential  (Adolfsson  et  al.  ,  2001, 

 2005;  Månsson  et  al.  ,  2007;  Luc  et  al.  ,  2008)  .  Supporting  this,  the  comparison  of  CLPs  and  a 

 pre-granulocyte-macrophage  (PreGM)  cell  type  of  predominant  myeloid  potential  revealed  they 

 share  more  similarity  than  either  cell  type  has  to  cells  of  the  Ery  lineage  (Pronk  et  al.  ,  2007)  . 

 Together  these  results  suggest  a  lymphoid  and  myeloid  branch  (LMPP)  precedes  before  the  Ery 

 lineage,  and  as  cells  become  increasingly  lymphoid-restricted  (losing  granulocyte-monocyte 

 (GM)  potential)  generate  CLPs,  which  lack  myeloid  potential  but  can  rapidly  produce  natural 

 killer (NK) cells, B cells and T cells  (Kondo, Weissman  and Akashi, 1997)  . 

 Although  the  classical  model  still  serves  as  a  valuable  paradigm,  improved  cell  purification 

 combined  with  large-scale  single-cell  transcriptomics  and  lineage  tracing  experiments  have 

 provided  deeper  insights  into  the  transcriptomic  landscape  of  haematopoiesis  (Laurenti  and 

 Göttgens,  2018)  .  Further  complexities  within  haematopoiesis  that  were  not  explained  through 

 the  classic  model  were  revealed.  One  notable  finding  is  the  discovery  of  substantial  functional 

 and  molecular  variability  among  cells  exhibiting  similar  cell  surface  marker  phenotypes.  This 

 variability  indicates  that  cells  with  seemingly  identical  characteristics  possess  distinct  gene 

 expression  profiles  and  functional  attributes;  including  differential  self-renewal  capacities  and 

 multiple routes of commitment towards distinct lineages  (Notta  et al.  , 2016)  . 

 Importantly,  it  became  apparent  that  HSCs  exhibit  significant  heterogeneity  in  properties  key  to 

 stem  cell  function.  Studies  within  the  HSC  compartment  showed  that  individual  HSCs  exhibit 

 differential  reconstitution  patterns,  cell  cycling  kinetics  and  self-renewal  durability,  with 

 numbers  of  mature  cells  that  individual  HSCs  produce  ranging  from  1  to  up  to  almost  100%  of 

 the  recipient’s  peripheral  blood  cells  (Müller-Sieburg  et  al.  ,  2002;  Dykstra  et  al.  ,  2007; 

 Beerman  et  al.  ,  2010;  Benveniste  et  al.  ,  2010;  Morita,  Ema  and  Nakauchi,  2010;  Wilkinson  and 

 Göttgens,  2013)  .  In  addition,  the  ratio  of  myeloid  and  lymphoid  cells  generated  can  vary 
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 significantly  between  individual  HSCs  (Muller-Sieburg  et  al.  ,  2004;  Sieburg  et  al.  ,  2006; 

 Dykstra  et al.  , 2007; Challen  et al.  , 2010)  . 

 Moreover,  advances  in  functional  transplantation  assays  shed  light  on  alternative  lineage 

 commitment  pathways,  further  expanding  our  knowledge  of  the  intricate  cellular  processes 

 involved  in  haematopoiesis.  Naik  et  al  .  showed  that  nearly  50%  of  the  LMPP  compartment  is 

 biassed  toward  dendritic  cell  (DC)  commitment,  which  was  previously  thought  to  arise  strictly 

 via  the  CMP-to-GMP  differentiation  route  (Naik  et  al.  ,  2013)  .  Similarly,  Yamamoto  et  al. 

 identified  a  HSC  subpopulation  that  could  produce  one  multipotent  daughter  cell,  and  one 

 lineage-committed  daughter,  revealing  that  some  multipotent  stem  cells  can  undergo  direct 

 lineage  commitment  (Yamamoto  et  al.  ,  2013)  .  This  work  demonstrated  the  differentiation  of 

 Mk-Er  progenitors  (MEPs)  from  HSC  that  arise  directly  without  cell  division,  ‘by-passing’ 

 intermediate  differentiation  stages  of  progressing  through  conventional  MPPs  and  CMPs. 

 Moreover,  approximately  10%  of  LT-HSCs  were  found  to  express  the  Mk  surface  antigen 

 CD41  and  contained  self-renewing  cells  with  differential  patterns  of  restricted  differentiation 

 output  (CMP-like  20%,  Mk-like  12%,  and  Mk-E  2%),  as  well  as  intermediate  and  ST-HSCs. 

 This  indicated  that  lineage-restricted  progenitors  could  have  long-term  repopulating  activity, 

 challenging  the  assumption  that  only  HSCs  at  the  top  of  the  hierarchy  could  self-renew 

 (Yamamoto  et al.  , 2013) 

 Broadly,  two  models  to  explain  the  heterogeneity  within  the  HSC  compartment  and  their  early 

 downstream  progenitors  were  formed.  Either  there  still  exists  a  mixture  of  distinct  cell  types, 

 but  they  consist  of  lineage-biassed  subsets;  or  cells  are  in  fact  all  equivalent  and  the 

 heterogeneity  is  a  result  of  stochastic  fate  choices  and/or  differences  in  extrinsic  influences 

 such  as  niche  signals  (Schroeder,  2010)  .  While  it  is  clear  that  extrinsic  signals  do  play  a 

 significant  role  in  differentiation  behaviours  (Zhang  et  al.  ,  2003;  Florian  et  al.  ,  2012;  Vas  et  al.  , 

 2012;  Mirantes,  Passegué  and  Pietras,  2014;  Mead  et  al.  ,  2017)  ,  research  has  demonstrated 

 consistent  lineage  bias  that  is  heritable  across  cell  divisions  -  suggesting  lineage  bias  is  an 

 intrinsic  property  in  some  stem  cells  that  can  be  inherited  by  their  offspring  (Dykstra  et  al.  , 

 2007;  Kent  et  al.  ,  2009;  Weinreb  et  al.  ,  2020)  .  To  date,  lineage-biassed  HSPCs  have  been 

 identified  for  the  lymphoid  lineage  (Ly-HSCs)  (Muller-Sieburg  and  Sieburg,  2008)  ,  myeloid 

 lineage  (Mye-HSCs)  (Muller-Sieburg  et  al.  ,  2004;  Beerman  et  al.  ,  2010;  Challen  et  al.  ,  2010)  , 

 and  Mk  lineage  (Sanjuan-Pla  et  al.  ,  2013;  Grover  et  al.  ,  2016;  Carrelha  et  al.  ,  2018; 

 Rodriguez-Fraticelli  et al.  , 2018)  . 

 As  single-cell  transcriptomics  became  possible,  there  was  a  unique  opportunity  to  assay  cells  of 

 the  haematopoietic  system  simultaneously,  and  hierarchically  organise  them  based  on  their 
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 unique  transcriptomic  profiles.  Assessments  of  populations  of  cells  that  previously  were 

 thought  to  be  homogeneous  and  analyses  of  differentiation  continuity  at  single-cell  resolution 

 transformed  haematopoietic  research.  The  identification  of  differential  functional  properties 

 within  immunophenotypically  defined  cell  types  challenged  the  assumption  that  ‘marker-pure’ 

 subsets  (ie.  cells  isolated  based  on  surface  marker  expression)  are  synonymous  with 

 ‘functionally-pure’  subsets.  The  transcriptional  continuity  of  single-cell  transcriptomics 

 promoted  a  paradigm  shift  in  the  field,  contributing  to  a  revised  model  of  haematopoiesis  as  a 

 continuum  of  differentiation  rather  than  a  series  of  discrete  cell  types  where  multiple 

 differentiation routes towards unipotency exist (Figure 1.3, centre). 

 The  continuum  model  addressed  some  of  the  oversimplifications  of  the  classic  model  of 

 haematopoiesis,  however,  gene  expression  alone  arguably  may  be  insufficient  to  distinguish 

 discrete  cell  populations  and  ignores  other  relevant  aspects  of  cellular  commitment.  Coupling 

 gene  expression  with  the  assessment  of  different  subpopulations  has  defined  distinct  functional 

 groups  (Pietras  et  al.  ,  2015)  .  The  perturbation  of  key  master  regulators  of  haematopoiesis,  such 

 as  haematopoietic  transcription  factors  (TFs)  has  identified  clear  transition  points  that  occur 

 over  the  continuous  transcriptomic  landscape,  suggesting  the  presence  of  punctuated  transitions 

 (Figure  1.3,  right)  (Giladi  et  al.  ,  2018;  Laurenti  and  Göttgens,  2018;  Liggett  and  Sankaran, 

 2020)  . 
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 3 

 Figure  1.3.  Revisions  to  classic  haematopoiesis  model.  The  classic  model  (left)  describes 

 differentiation  through  a  series  of  discrete  branching  populations  of  increasing  lineage 

 restriction  until  reaching  unipotency,  where  HSCs  and  progenitor  populations  display  uniform 

 lineage  potential  and  make  binary  fate  decisions.  The  continuum  of  differentiation  model 

 (centre)  describes  sub-populations  of  HSCs  and  progenitors  with  differential  propensities 

 towards  specific  lineages,  and  differentiation  as  a  stochastic  and  continuous  rather  than 

 step-wise  process.  The  punctuated  continuum  model  (right)  describes  heterogeneous 

 subpopulations  of  varying  lineage  biases  existing  within  distinct  cell  states  (Liggett  and 

 Sankaran, 2020)  adapted from  (Liggett and Sankaran,  2020)  . 

 3  Created with BioRender.com 
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 1.2 Lineage commitment 

 One  of  the  key  concepts  in  haematopoiesis  is  the  process  of  lineage  commitment,  which  refers 

 to  the  mechanism  by  which  a  cell  becomes  restricted  to  producing  a  single  progenitor  or  mature 

 blood  cell  type.  This  occurs  through  a  multistep  process,  first  involving  the  decision  by  HSCs 

 for  either  self-renewal  versus  differentiation  followed  by  the  decision  for  commitment  to 

 distinct  lineage  fates.  A  cell  is  considered  committed  to  a  specific  lineage  once  it  has  acquired 

 irreversible  cell-type  specific  characteristics  and  activated  signalling  pathways  that  regulate  the 

 expression  of  genes  involved  in  the  development  and  function  of  that  particular  cell  type.  These 

 characteristics  and  pathways  typically,  though  not  always,  reflect  the  cell's  developmental 

 history  and  dictate  its  future  fate.  The  molecular  mechanisms,  cellular  interactions  and  timing 

 of  lineage  commitment  are  fundamental  to  the  regulation  of  blood  production  in  homeostasis 

 and in disease. 

 1.2.1 Regulation of cell fate decisions 

 The  study  of  lineage  specification  has  been  greatly  facilitated  by  in  vitro  colony  forming  assays, 

 which  have  provided  valuable  insights  into  the  cellular  and  molecular  mechanisms  underlying 

 this  process.  The  limitations  of  these  assays  from  a  physiological  standpoint  are  minimised  by 

 combining  in  vivo  strategies,  such  as  single-cell  transplantation  and  label-retention  assays,  that 

 allow  the  tracking  of  haematopoietic  lineage  restriction  at  different  stages  of  commitment 

 (Perié  et  al.  ,  2015;  Upadhaya  et  al.  ,  2018;  Lee-Six  and  Kent,  2020;  Rodriguez-Fraticelli  et  al.  , 

 2020;  Weinreb  et  al.  ,  2020)  .  These  complementary  approaches,  when  combined  with  functional 

 assays  that  analyse  the  properties  of  the  succeeding  cell  progeny,  have  greatly  enhanced  our 

 understanding  of  the  dynamic  and  complex  process  of  cell  fate  decisions.  As  a  result,  we  have 

 gained  new  insights  into  the  heterogeneity  and  plasticity  of  haematopoietic  stem  and  progenitor 

 cells, revealing previously unrecognised levels of complexity and regulation. 

 In  addition,  with  the  advent  of  high-throughput  sequencing  technologies,  research  of  gene 

 expression  patterns  across  haematopoietic  populations  has  revealed  cell-type  specific  signatures 

 and  led  to  the  identification  of  key  regulators  of  haematopoietic  differentiation.  Indeed,  cell  fate 

 choices  are  closely  associated  with  changes  in  gene  expression,  as  different  cell  types  express 

 sets  of  genes  that  are  responsible  for  their  molecular  features  and  biological  functions.  By 

 controlling  gene  expression,  cells  up-  and  down-regulate  genes  that  promote  differentiation 

 towards  specific  lineages.  Gene  expression  involves  the  conversion  of  DNA  into  RNA,  which 

 may  then  be  translated  into  a  protein  by  a  ribosome.  Its  regulation  occurs  through  several 
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 mechanisms  at  multiple  levels  of  the  process,  including  transcriptional  control, 

 post-transcriptional  regulation,  and  translational  control,  which  are  in  turn  influenced  by  a 

 multitude  of  extrinsic  signalling  and  epigenetic  factors.  Transcriptional  regulation  involves  the 

 direct  or  indirect  binding  of  trans  -acting  TFs  to  specific  DNA  elements,  which  can  either 

 activate  or  repress  gene  expression  (Wilson  et  al.  ,  2010;  Palii  et  al.  ,  2019)  .  Post-transcriptional 

 regulation  involves  the  processing  of  RNA  molecules  to  produce  mature  mRNAs,  which  can  be 

 subject  to  various  forms  of  RNA  modifications  and  stability  control.  Finally,  translational 

 control  involves  the  regulation  of  protein  synthesis  by  factors  that  affect  the  activity  of 

 ribosomes  and  the  efficiency  of  translation  initiation.  Together,  these  regulatory  mechanisms 

 ensure  careful  control  over  gene  expression  in  response  to  different  physiological  signals  and 

 environmental cues, and underpin the dynamic nature of haematopoietic lineage commitment. 

 1.2.2. Gene regulatory elements 

 Gene  regulatory  elements  (GREs)  are  generally  cis-acting  components  of  DNA  that  interact 

 with  specific  TFs  and  other  regulatory  proteins  to  modulate  gene  activity  (Davidson,  2010)  . 

 The  term  GRE  encompasses  multiple  types  of  elements  categorised  by  their  function;  including 

 promoters,  enhancers,  insulators,  silencing  elements  and  locus  control  regions  (Maston,  Evans 

 and  Green,  2006)  .  In  the  context  of  haematopoietic  lineage  specification,  GREs  are  responsible 

 for  orchestrating  the  activation  or  repression  of  genes  that  drive  the  differentiation  of  HSCs  into 

 specific  blood  lineages.  Their  intricate  regulatory  networks  and  interactions  ensure  the 

 progression  and  balance  of  different  lineages,  contributing  to  homeostatic  control  of  the  cellular 

 composition of the haematopoietic system. 

 Promoters 

 A  promoter  is  a  region  of  DNA  upstream  of  a  gene  that  promotes  the  initiation  of  transcription. 

 By  sequence-specific  TF  and  RNA  polymerase  interactions,  promoters  facilitate  the  binding 

 and  assembly  of  the  pre-initiation  complex.  The  most  common  is  the  TATA  box  promoter, 

 which  induces  DNA  partial  unwinding  to  facilitate  transcription  upon  binding  the 

 TATA-binding protein  (Lee and Young, 2000)  . 

 Enhancers 

 Enhancers  ensure  proper  regulation  of  transcription  levels  by  activating  transcription  above 

 basal  levels,  resulting  in  tissue-specific  patterns  of  gene  expression.  They  regulate  the 

 spatio-temporal  activity  of  genes,  and  are  considered  to  be  key  determinants  of  cell  identity. 

 Enhancers  can  be  distal  or  co-localised  with  promoters,  where  TF  binding  resulting  in  enhancer 

 looping  to  the  promoter  or  “chromatin  hub”  interactions  are  their  respective  regulatory 
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 mechanisms  (Bulger  and  Groudine,  2011;  Ong  and  Corces,  2011)  .  For  example,  MYC  has  been 

 found  to  be  regulated  by  the  BENC  cluster  of  enhancers  (Bahr  et  al.  ,  2018)  .  MYC  is  an 

 essential  TF  for  HSC  and  progenitor  regulation  with  implications  in  haematopoietic 

 malignancies  (Delgado  and  León,  2010)  .  Bahr  et  al.  showed  BENC  is  composed  of 

 lineage-specific  enhancer  modules  and  the  deletion  of  these  modules  leads  to  cell-type-specific 

 downregulation of MYC expression (Bahr  et al.  2018). 

 Locus control regions 

 Locus  control  regions  (LCR)  enhance  the  expression  of  linked  genes  at  distal  chromatin  regions 

 in  a  tissue-specific  manner,  regulating  gene  expression  through  chromatin  domain-opening 

 activity  (Maston,  Evans  and  Green,  2006)  .  Unlike  enhancers,  LCRs  possess  all  the  properties 

 necessary  for  opening  a  chromosome  domain  and  preventing  hetero-chromatinisation  at  ectopic 

 sites  (Grosveld  et  al.  ,  1987)  .  The  first  identified  LCR  was  in  the  human  β-globin  Ery  locus,  and 

 illustrated  cell  lineage–specific  gene  expression  regulation  based  on  long-range  interactions  of 

 various  cis-elements  and  chromatin  alterations,  not  exclusively  gene-proximal  elements 

 (promoters, enhancers, and silencers)  (Li  et al.  ,  2002)  . 

 Silencers 

 Silencers  are  sequence-specific  elements  that  confer  a  negative  (i.e.,  repressing)  effect  on  the 

 transcription  of  a  target  gene  (Maston,  Evans  and  Green,  2006)  .  Individual  TFs  that  drive  the 

 gene  expression  for  cells  to  develop  down  one  pathway  can  simultaneously  repress  pathways  to 

 other  lineages.  For  example,  high  levels  of  the  Ery  Kruppel-like  factor  (KLF)  promote 

 erythropoiesis  whilst  suppressing  megakaryopoiesis,  in  part  by  repressing  the  level  of  FLI-1 

 (Frontelo  et al.  , 2007) 

 Insulators 

 Also  known  as  boundary  elements,  insulators  function  to  block  genes  from  being  affected  by 

 the  transcriptional  activity  of  neighbouring  genes,  thus  preventing  crosstalk  between  genomic 

 regions  by  limiting  the  action  of  transcriptional  regulatory  elements  to  defined  domains 

 (Maston,  Evans  and  Green,  2006)  .  For  example,  a  region  upstream  of  the  Ankyrin-1  Ery 

 promoter  is  a  barrier  insulator  in  vivo  in  Ery  cells,  demonstrating  both  prevention  of  gene 

 silencing, and occupancy by barrier-associated proteins  (Gallagher  et al.  , 2010)  . 
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 1.2.3. Transcription factors and haematopoietic differentiation 

 The  decision  of  HSCs  to  differentiate  or  self-renew,  or  of  progenitors  to  differentiate  towards 

 particular  lineages  depends  on  complex  and  tightly  regulated  processes  that  are  contingent  on 

 the  appropriate  and  timely  execution  of  specific  expression  signatures.  In  particular,  TFs  are 

 critical  gene  expression  regulators  that  orchestrate  fate  specification.  TFs  are  trans-  acting 

 regulators  that  function  in  conjunction  with  other  GREs  such  as  chromatin  modifiers  and 

 co-factors,  as  well  as  other  TFs,  which  enable  them  to  establish  transcriptional  profiles  and  cell 

 fates  in  often  a  cell-type-specific  manner  (Wilkinson  and  Göttgens,  2013)  .  Early  studies  of 

 haematopoiesis  focused  on  uncovering  the  specific  roles  of  master  regulator  TF  in  the  fate 

 decision  process,  often  through  genetic  ablation  of  TFs  or  epigenetic  regulators,  such  as 

 GATA-1,  SPI-1  (PU.1),  CEBPA,  GFI-1,  and  IKZF1  (Ikaros)  in  mice  to  determine  their 

 functional  roles  (Shivdasani  et  al.  ,  1997;  Nichogiannopoulou  et  al.  ,  1999;  Hock  et  al.  ,  2004;  P. 

 Zhang  et al.  , 2004; Chou  et al.  , 2009; Doulatov  et  al.  , 2012)  . 

 Several  critical  TFs  are  known  to  play  major  roles  in  HSPC  regulation.  Using  genome-wide 

 computational  analysis  of  TF  binding  patterns  and  functional  validation,  Wilson  et  al.  reported 

 combinatorial  interactions  for  ten  key  regulators  of  HSPCs  including  TAL1,  LYL1,  LMO2, 

 GATA-2,  RUNX-1,  MEIS-1,  ERG,  FLI-1,  and  GFI-1B.  This  seminal  work  revealed  the 

 interaction  between  a  heptad  of  HSPC-associated  TFs,  including  functional  links  between 

 RUNX1  and  other  key  HSPC  regulators  (Wilson  et  al.  ,  2010)  .  RUNX-1  for  example  is  involved 

 in  the  maintenance  of  HSC  quiescence,  by  controlling  the  balance  between  self-renewal  and 

 differentiation  through  regulating  the  expression  of  genes  maintaining  the  expression  of  those 

 important  for  HSC  function,  such  as  CD41  and  CD42.  Its’  deletion  in  adult  BM  causes  the 

 expansion  of  immature  progenitors  with  a  concomitant  reduction  of  LT-HSC  activity  (Growney 

 et  al.  ,  2005)  .  GATA-2  has  been  shown  to  promote  the  self-renewal  inducing  HSC  quiescence 

 by  interacting  with  a  network  of  TFs  that  specify  early  lineage  commitment  (Tipping  et  al.  , 

 2009; Doré  et al.  , 2012; Johnson  et al.  , 2012; Collin,  Dickinson and Bigley, 2015)  . 
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 1.2.4. Chromatin structure and epigenetics 

 Epigenetics  originally  referred  to  heritable  features  of  a  cellular  phenotype  independent  of 

 changes  in  DNA  sequence,  but  has  over  time  evolved  to  define  chromatin-based  reactions  that 

 regulate  DNA-templated  processes  (Zhao  et  al.  ,  2023)  .  The  interplay  between  chromatin 

 structure,  DNA  methylation,  and  histone  modifications  contributes  to  the  epigenetic  regulation 

 of  haematopoiesis  (Sashida  and  Iwama,  2012)  .  These  mechanisms  involve  modifications  to  the 

 packaging  of  DNA  in  chromatin,  as  well  as  the  establishment  and  maintenance  of  epigenetic 

 marks  that  control  gene  expression.  Chromatin  can  exist  in  different  states,  ranging  from  closed 

 and  condensed  (heterochromatin)  to  open  and  accessible  (euchromatin)  (Felsenfeld  and 

 Groudine,  2003)  .  The  balance  between  these  states  is  dynamically  regulated  through 

 chromatin-remodelling  during  haematopoietic  development  to  allow  for  appropriate  gene 

 expression  ie.  enabling  lineage-specific  genes  to  become  accessible  while  silencing  genes 

 associated with alternative lineages  (Rodrigues, Shvedunova  and Akhtar, 2020)  . 

 Epigenetic  modifications  on  DNA  and  histones  also  contribute  to  haematopoietic  cell-fate 

 decisions.  DNA  methylation  typically  results  in  the  repression  of  gene  expression,  while 

 depending  on  the  type,  histone  modifications  can  lead  to  both  expression  activation  and 

 repression.  Acetylation  is  generally  associated  with  gene  activation,  while  certain  histone 

 methylations  can  be  either  activating  or  repressive  depending  on  the  specific  residues  and 

 context. 

 Adelman  and  colleagues  analysed  histone  modifications  and  DNA  methylation  together  with 

 RNAseq  data  of  HSCs  during  ageing  and  revealed  widespread  epigenetic  changes  reporting 

 significant  epigenomic  deregulation  in  aged  HSCs  as  compared  to  young.  For  instance,  35%  of 

 all  active  enhancers  lost  H3K27ac  (acetylation  of  the  27th  lysine  on  the  H3  histone  protein) 

 with  age,  including  enhancers  regulating  numerous  TFs  such  as  RUNX3,  FLI1,  GATA2,  GFI1, 

 HIF1A,  and  KLF6,  as  well  as  epigenetic  modifiers  –  implicating  enhancer  deregulation  as  a  key 

 factor responsible for HSC loss of function during ageing  (Adelman  et al.  , 2017)  . 

 Moreover,  dissociated  TF  motif  activity  variability  within  immunophenotypically  defined 

 populations  have  been  shown  to  correlate  to  specific  axes  of  differentiation,  for  instance,  GATA 

 motif  activity  in  HSCs  is  likely  to  represent  indicators  of  lineage  priming  (Buenrostro  et  al.  , 

 2015)  .  Most  recently,  chromatin  mapping  in  haematopoietic  cells  found  that  HSCs  and  Mks 

 have  strongly  overlapping  chromatin  signatures,  with  open  sites  corresponding  particularly  to 

 key  Mk  TF  binding  sites  implicating  that  epigenetics  in  the  control  of  Mk  differentiation  from 

 HSC  (Heuston  et  al.  ,  2018)  .  We  are  only  now  beginning  to  resolve  how  the  epigenomic 

 landscape  is  involved  in  the  process  of  cell  fate  decisions,  with  single-cell  resolution  epigenetic 

 approaches demonstrating promising signs its contributions are significant. 
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 1.3 Megakaryocytes 

 1.3.1 Megakaryocytes and platelets: form and function 

 Megakaryocytes  (Mks)  are  rare  (0.05%-0.1%)  terminally  differentiated  polyploid  cells  that 

 primarily  reside  within  the  bone  marrow,  whose  most  prominent  function  is  the  production  and 

 release  of  anucleate  thrombocytes  (platelets)  into  the  bloodstream.  Each  cell  measures  up  to 

 100  µm  and  can  generate  between  1,000-3,000  platelets  (Ebaugh  and  Bird,  1951;  Machlus, 

 Thon  and  Italiano,  2014)  .  Mks  have  also  been  found  in  other  organs  such  as  the  lungs,  kidney, 

 liver  and  spleen  (Davis  et  al.  ,  1992;  Lefrançais  et  al.  ,  2017)  .  Unlike  other  haematopoietic 

 progenitors  that  require  cytokinesis  for  maturation,  Mks  undergo  multiple  rounds  of  DNA 

 replication  without  cell  division  during  maturation,  resulting  in  an  endomitotic  lobulated 

 nucleus  in  some  cases  reaching  up  to  64N  before  the  cell  undergoes  terminal  maturation  and 

 platelet  release  (Figure  1.4)  (Noetzli  Leila  J.,  French  Shauna  L.  and  Machlus  Kellie  R.,  2019)  . 

 The  multi-lobed  nucleus  is  retained  in  the  Mk  as  the  rest  of  the  Mk  cell  body  is  transformed 

 into  protrusions  known  as  proplatelets  (platelet-sized  swellings  connected  by  cytoplasmic 

 bridges  are  released  into  sinusoidal  blood  vessels),  and  then  once  the  entirety  of  the  Mk  cell 

 body  is  used  the  nucleus  is  extruded  and  degraded  (Italiano  et  al.  ,  1999;  Machlus,  Thon  and 

 Italiano,  2014)  .  It  is  thought  Mks  are  polyploid  in  order  to  support  the  large  quantities  of 

 mRNA  and  protein  that  are  packaged  into  granules  and  ultimately  platelets  while  still  retaining 

 their ability to perform multiple functions. 

 Platelets  are  the  second  most  abundant  blood  cell  type  (after  erythrocytes)  at  between 

 150-400×10  6  per  mL  of  blood,  with  vital  roles  in  maintaining  the  balance  between  haemostasis 

 and  blood  clot  formation  (thrombosis),  as  well  as  roles  in  inflammation  (Grozovsky  et  al.  , 

 2015;  Portier  and  Campbell,  2021)  .  They  are  small  (2–4  µm  in  diameter),  anuclear  cells  that 

 stay  in  circulation  for  7–10  days  in  humans  before  being  consumed  in  clot  formation  or 

 eliminated  by  macrophages  in  the  spleen,  and  to  a  lesser  extent  the  liver,  as  part  of  homeostatic 

 turnover  (van  der  Meijden  and  Heemskerk,  2019)  .  Platelets  are  metabolically  active;  equipt 

 with  several  functionally  active  organelles  including  mitochondria,  several  types  of  storage 

 granules  and  multiple  intracellular  membrane  structures,  including  endoplasmic  reticula,  Golgi 

 apparatus,  lysosomes,  peroxisomes  and  endosomes  (Thon  and  Italiano,  2012)  .  Though  platelets 

 have  no  nucleus  or  genomic  DNA,  they  contain  mRNA  that  is  transported  from  Mks  during 

 platelet  release,  after  which  there  can  be  no  further  transcription  and  therefore  no  further  RNA 

 generation.  For  a  long  time,  the  proteome  of  platelets  was  considered  static,  determined  by  the 

 Mks  from  which  they  originate,  wherein  transcription  may  be  influenced  by  external  stimuli  in 
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 the  bone  marrow  microenvironment  such  as  inflammation  (Rondina,  Weyrich  and  Zimmerman, 

 2013)  .  However,  more  recent  data  has  shown  platelets  not  only  contain  a  pool  of  Mk-derived 

 mRNAs  (Newman  et  al.  ,  1988;  Gnatenko  et  al.  ,  2003)  ,  and  are  capable  of  encoding  for 

 different  proteins  (Kieffer  et  al.  ,  1987;  Freedman,  2011;  Plé  et  al.  ,  2012;  Bray  et  al.  ,  2013)  . 

 Moreover,  they  also  contain  the  complete  machinery  for  de  novo  protein  synthesis,  making 

 possible  dynamic  modifications  of  protein  expression  in  mature  platelets,  with  activating 

 stimuli shown to induce proteome reorganisation  (Bray  et al.  , 2013; Cimmino  et al.  , 2015)  . 
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 Figure  1.4.  Features  of  megakaryocyte  developmental  stages.  (a)  Developmental  stages 
 from  HSCs  differentiating  towards  Mk  lineage  commitment  (b)  vWF+  HSCs  are  primed  for 
 platelet-specific  gene  expression  increasing  expression  of  Mk-associated  transcripts  and 
 proteins  with  Mk  maturation  (c)  Markers  associated  with  specific  stages  of  Mk  lineage 
 commitment with (adapted from Davizon-Castillo  et  al,  2020).  4 

 4  Created with BioRender.com 
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 1.3.2 Regulation of megakaryopoiesis and the expression of Mk lineage genes 

 Megakaryopoiesis  involves  the  coordinated  interplay  of  TF-controlled  cellular  programmes 

 with  extracellular  cues  in  supporting  niches  or  as  circulating  factors.  Its  regulation  occurs 

 across  multiple  levels  by  different  cytokines,  the  most  important  of  which  is  TPO,  which  is 

 regarded  as  the  key  regulator  of  Mk  maturation  and  proliferation  (Noetzli  Leila  J.,  French 

 Shauna L. and Machlus Kellie R., 2019)  . 

 1.3.2.1. Signalling Pathways in Megakaryopoiesis 

 Thrombopoietin  (TPO)  regulates  Mk  differentiation  from  HSCs,  with  all  progenitors  primed  to 

 become  Mks  expressing  the  TPO  receptor,  Mpl  (Debili  et  al.  ,  1995)  .  This  regulation  is  the 

 result  of  a  feedback  loop;  where  constitutive  TPO  production  by  the  liver  is  sequestered  by 

 circulating  platelets  in  an  Mpl–dependent  manner  (Lok  et  al.  ,  1994;  Alexander  et  al.  ,  1996;  de 

 Sauvage  et  al.  ,  1996;  Kuter  and  Begley,  2002)  .  The  reduction  in  platelet  counts  leads  to 

 increased  levels  of  circulating  TPO,  which  exerts  its  stimulatory  effects  on  BM  HSC  increasing 

 Mk  (and  platelet)  numbers  (McCarty  et  al.  ,  1995;  Fielder  et  al.  ,  1997)  .  TPO  binding  results  in 

 the  initiation  of  multiple  signalling  pathways,  notably  including  the  phosphorylation  of  JAK2 

 which  in  turn  phosphorylates  downstream  targets  including  activation  of  the  TFs  STAT3/STAT5 

 (Miyakawa  et  al.  ,  1995,  1996;  Yamada  et  al.  ,  1995)  .  This  signalling  cascade  causes 

 downstream  activation  of  Mk-specific  TFs  and  regulation  of  expression  of  Mk-specific  genes. 

 Kimura  et  al.  demonstrated  the  importance  of  TPO  signalling  for  Mk  function  using  Mpl  KO 

 mice,  showing  a  global  decrease  in  HSCs  and  a  drastic  reduction  in  specifically  Mks  and 

 platelets  (Kimura  et al.  , 1998)  . 

 Besides  the  well-established  role  of  TPO  signalling  in  optimal  Mk  function,  there  are 

 TPO-independent  pathways  of  megakaryopoiesis  that  are  less  understood  but  still  exist.  Some 

 patients  lacking  functional  TPO  signalling  are  still  capable  of  platelet  production,  indicating  the 

 presence  of  alternative  mechanisms  (van  den  Oudenrijn  et  al.  ,  2000)  .  One  such 

 TPO-independent  mechanism  involves  the  chemokine  IGF-1  (insulin-like  growth  factor-1). 

 IGF-1  promotes  the  differentiation  of  CD34+  cells  toward  the  Mk  lineage  through  AKT 

 signalling.  Studies  have  shown  that  administering  IGF-1  in  vivo  increases  platelet  counts  in 

 mice  lacking  the  Mpl  receptor  and  in  lethally  irradiated  mice,  suggesting  a  TPO-independent 

 phenotype  (Chen  et  al.  ,  2018)  .  Previous  research  has  also  implicated  other  signalling  effectors 

 in  TPO-independent  megakaryopoiesis,  including  interleukin  (IL)  1α,  CCL5  (C-C  motif 

 chemokine  ligand  5),  and  Notch  signalling  (Mercher  et  al.  ,  2008;  Nishimura  et  al.  ,  2015; 

 Machlus  et al.  , 2016)  ). 
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 1.3.2.2. Transcription Factors in Megakaryopoiesis 

 TFs  are  involved  from  foetal  HSC  specification  to  adult  HSC  maintenance  and  renewal  and  Mk 

 commitment,  regulating  differentiation  along  each  lineage  decision  point  from  HSC  to  Mk 

 (Noetzli Leila J., French Shauna L. and Machlus Kellie R., 2019)  . 

 At  the  CMP  juncture,  myeloid  commitment  depends  on  the  balance  of  expression  of 

 antagonistic  transcription  factors  GATA1  and  PU.1  (Spi-1)  which  influence  skewing  towards 

 the  MEP  and  GMP  respectively  (Rekhtman  et  al.  ,  1999;  Rhodes  et  al.  ,  2005;  Arinobu  et  al.  , 

 2007)  .  It  was  shown  these  TFs  were  capable  of  upregulating  their  own  expression  whilst 

 inhibiting  the  expression  of  the  other  (Tsai,  Strauss  and  Orkin,  1991;  Yu  et  al.  ,  2002;  Ferreira  et 

 al.  ,  2005;  Okuno  et  al.  ,  2005;  Rosmarin,  Yang  and  Resendes,  2005)  .  This  work  proposed  that 

 when  both  lineage-specific  TFs  are  expressed  at  low  levels,  myeloid  progenitors  remain  in  a 

 multipotential  state  until  one  of  the  TFs  dominates  resulting  in  an  autoregulatory  loop  that 

 drives  commitment  one  way  or  another  (Cantor  and  Orkin,  2001)  .  This  hypothesis  is  supported 

 by  data  showing  co-expression  of  Gata1  and  Spi1  within  CMPs  (Palii  et  al.  ,  2019)  ,  however, 

 some  reports  dispute  the  abrupt  binary  switching  for  myeloid  fate  decisions,  suggesting  instead 

 that these TFs work to reinforce lineage choice once made  (Hoppe  et al.  , 2016)  . 

 MEP  differentiation  to  the  Mk  vs.  Ery  lineages  is  coordinated  by  the  time-  and  dose-dependent 

 expression  of  various  TFs.  MEPs  express  NFE2  (nuclear  factor,  erythroid  2),  SCL,  GFI1B 

 (growth  factor–independent  transcriptional  repressor),  GATA1,  GATA2,  KLF1  (Kruppel-like 

 factor),  and  ETV6,  whilst  EKLF  (erythroid  Krüppel-like  factor)  and  c-Myb  are  exclusive  to  the 

 Ery  lineage  and  FLI1  and  RUNX1  are  exclusive  for  the  Mk  lineage  (Starck  et  al.  ,  2003; 

 Bouilloux  et al.  , 2008; Doré and Crispino, 2011; Kuvardina  et al.  , 2015)  . 

 GATA  family  TFs  are  among  the  most  studied  haematopoietic  TFs,  and  are  known  to  bind  to 

 cis-  GREs  of  many  Mk-  and  Ery-specific  genes.  GATA-1  is  essential  for  RBC  development  and 

 is  expressed  during  the  later  stages  of  haematopoietic  differentiation.  In  megakaryopoiesis,  it 

 has  been  shown  to  be  required  for  terminal  maturation,  while  GATA-2  on  the  other  hand  is 

 required  for  HSC  maintenance  as  well  as  further  downstream  during  early  megakaryopoiesis. 

 GATA-2  and  GATA-1,  along  with  its  cofactor  FOG1,  are  expressed  in  an  antagonistic  manner 

 in  the  MEP;  GATA-2  promotes  megakaryopoiesis  at  the  expense  of  erythropoiesis,  whereas 

 GATA-1  promotes  erythropoiesis  (Ikonomi,  Noguchi,  et  al.  ,  2000;  Ikonomi,  Rivera,  et  al.  , 

 2000; Cantor and Orkin, 2002; Galloway  et al.  , 2005)  . 

 RUNX-1  also  directs  MEPs  toward  Mk  fate,  suppressing  the  Ery-specific  TF  KLF-1.  This  shift 

 increases  the  ratio  of  Mk-specific  FLI-1  to  KLF-1,  ultimately  promoting  megakaryocyte 
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 differentiation  (Bouilloux  et  al.  ,  2008;  Kuvardina  et  al.  ,  2015)  .  Moreover,  Mk-specific  TF 

 FLI-1  (which  is  negatively  regulated  by  ETV6)  regulates  the  expression  of  Mk  receptors  GPIX 

 and  GPIbα  (glycoprotein  Ib  platelet  subunit  alpha)  (Kwiatkowski  et  al.  ,  1998,  2000)  .  Finally, 

 During  the  final  stages  of  Mk  maturation,  NFE2  is  essential.  It  controls  the  Mk-specific 

 microtubule  component  β1-tubulin  (Lecine  et  al.  ,  1998;  Schwer  et  al.  ,  2001)  .  Mice  lacking 

 NFE2  exhibit  normal  Mk  proliferation  but  impaired  platelet  production,  highlighting  its  critical 

 role in Mk proplatelet formation  (Shivdasani  et al.  ,  1995; Levin  et al.  , 1999)  . 
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 1.3.3 Differentiation models of megakaryopoiesis 

 In  the  classic  haematopoiesis  model,  after  myeloid/lymphoid  bifurcation  at  the  MPP,  CMPs 

 differentiate  into  bipotent  MEPs  which  eventually  go  on  to  differentiate  into  unipotent  mature 

 Mk  progenitors  (MkPs)  (Figure  1.5A)  (Akashi  et  al.  ,  2000)  .  Over  the  last  decade  however, 

 refined  experiments  have  demonstrated  this  to  be  an  oversimplified  model  that  does  not  account 

 for  the  complexities  of  Mk  differentiation/lineage  commitment  subsequently  driving  many  to 

 explore other possible models. 

 1.3.3.1. The overlapping signatures of Mk and Ery lineages 

 The  vast  majority  of  cells  produced  by  the  BM  are  of  Mk  and  Ery  lineages.  Data  have 

 consistently  shown  that  the  Mk  and  Ery  lineages  are  closely  related,  including  their  largely 

 parallel  ontogeny  during  embryonic  development,  common  regulatory  networks  and  shared 

 expression  of  lineage-determining  transcription  factors  such  as  GATA-1  and  -2,  TAL1,  FOG-1 

 and  GFI-1b  (Psaila  and  Mead,  2019)  .  The  antagonistic  expression  of  these  TFs  factors  with 

 others  has  been  shown  to  promote  Mk-Ery  differentiation  while  simultaneously  repressing 

 myeloid  programmes  (Chou  et  al.  ,  2009)  .  In  the  clinic,  the  link  between  Mk  and  Ery  lineages 

 was  recognized  from  observations  that  erythroleukaemia  cell  lines  and  blasts  isolated  from 

 patients  with  bi-phenotypic  leukaemias  can  possess  features  of  both  Ery  and  Mk  lineages, 

 whereas  Ery  or  Mk  with  B  or  T  lymphoid  characteristics  were  rarely  observed  (Matutes  et  al.  , 

 2011)  .  Further  illustrating  their  shared  signature,  erythropoietin  (EPO)  treatment  was  found  to 

 stimulate  platelet  production  in  addition  to  erythropoiesis,  and  the  exposure  of  CD34+  cells  to 

 both  EPO  and  thrombopoietin  (TPO)  was  found  to  increase  both  Ery  and  Mk  progenitors 

 (McDonald  et al.  , 1987; Papayannopoulou  et al.  , 1996)  . 

 The  first  early  clonogenic  assays  of  multipotency  found  that  MEPs  gave  rise  to  Mk-only, 

 Ery-only,  and  Ery-Mk  mixed  colonies  (Debili  et  al.  ,  1996;  Akashi  et  al.  ,  2000;  Klimchenko  et 

 al.  ,  2009)  .  These  MEPs  were  distinguishable  from  CMP  and  GMP  populations  through  the 

 absence  of  the  surface  antigens  CD123  or  Flt3  (Manz  et  al.  ,  2002;  Adolfsson  et  al.  ,  2005)  . 

 However,  the  majority  of  cells  from  MEP  subsets  were  later  shown  to  generate  primarily  single 

 lineage  progeny,  with  a  small  minority  generating  mixed  Mk/Ery  progenitors  (Pronk  et  al.  , 

 2007)  .  The  lineage  potential  of  MEPs,  initially  presented  as  a  bipotent  cell  type,  was  largely 

 skewed  toward  the  Ery  lineage,  with  up  to  80%  of  single  MEPs  producing  pure  Ery  colonies 

 (Manz  et  al.  ,  2002)  -  a  finding  that  has  been  recapitulated  in  multiple  investigations  since 

 (Psaila  et al.  , 2016; Miyawaki  et al.  , 2017)  . 
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 A  caveat  to  studies  on  the  output  of  MEPs  concerns  the  difference  between  the  maturation  of 

 Mk  vs  Ery  lineages.  Debili  et  al.  showed  dual  potential  progenitors  in  liquid  culture  quickly 

 made  lower  numbers  of  Mk  than  Ery  cells,  which  disappeared  after  making  platelets  followed 

 by  a  much  greater  numerical  expansion  of  Ery  cells  (Debili  et  al.  ,  1991)  .  Moreover,  considering 

 Ery-committed  cells  undergo  considerably  more  cell  divisions  that  Mk-committed  cells,  and 

 how  mature  Mks  typically  survive  <  3  weeks  in  culture  it  is  possible  the  analysis  of  cell 

 potential  in  culture  by  FACS  could  be  masking  the  yield  of  rare  Mks;  missing  Mk  potential  no 

 longer  evident  at  later  time  points  as  used  to  assess  Ery  and  myeloid  progeny  (Besancenot  et 

 al.  ,  2010;  Pop  et  al.  ,  2010;  Sim  et  al.  ,  2016;  Xavier-Ferrucio  and  Krause,  2018)  .  This  lack  of 

 effective  MEP  purification  complicated  the  early  studies  aiming  to  establish  the  role  of  the 

 MEP  in  haematopoiesis.  Using  the  more  reliable  MEP  gating  strategies,  it  was  later  revealed 

 the  originally  defined  MEP  compartment  is  composed  of  at  least  three  subfractions  with  distinct 

 gene  expression  and  functional  capacities  -  cells  enriched  for  Mk/Ery  output  but  with  residual 

 myeloid  differentiation  capacity  (“Pre-MEP”),  and  Ery-primed  and  Mk-primed  bipotent 

 fractions (“E-MEP” and “Mk-MEP”)  (Psaila  et al.  , 2016)  . 

 Studies  suggest  that  the  MEP  fate  decision  is  governed  at  least  in  part  by  the  regulation  of 

 several  TFs  factors  promoting  either  Ery  and  Mk  differentiation  (Starck  et  al.  ,  2003;  Doré  and 

 Crispino,  2011;  Bianchi  et  al.  ,  2015;  Sanada  et  al.  ,  2016)  .  But  also  upstream  of  TFs  GTPase 

 activating  proteins  such  as  Arhgap21  and  Rgs18  have  been  implicated  in  the  MEP  fate 

 decision,  supporting  Ery  and  suppressing  Mk  commitment.  Acting  as  an  effector  for  Gfi1, 

 Rgs18  has  been  shown  to  regulate  downstream  signalling  through  Erk1  to  modify  the  balance 

 of  Fli1  and  Klf1  (Sengupta  et  al.  ,  2013;  Xavier-Ferrucio  and  Krause,  2018;  Xavier-Ferrucio  et 

 al.  , 2018) 

 Sufficient  evidence  exists  at  the  transcriptional,  immunophenotypic,  and  functional  levels 

 connecting  Mk  and  Ery  differentiation  pathways  and  the  existence  of  a  bipotent  MEP.  While 

 MEPs  clearly  do  exist  in  vivo  in  both  mice  and  humans,  alternative  pathways  to  achieve  fate 

 commitment  to  the  Ery  and  Mk  lineages  that  do  not  require  that  they  pass  through  this  bipotent 

 MEP  stage  are  now  known  to  exist.  For  example,  the  reconstruction  of  differentiation 

 trajectories  across  murine  cKit+  single  cells  indicated  coupling  of  Ery  and  basophilic  lineages, 

 and  the  earlier  divergence  of  Mk  cells  from  multipotent  progenitors,  with  lympho-myeloid 

 differentiation  occurred  along  a  separate  trajectory  -  suggesting  Mk-Ery  lineages  are  not  always 

 intertwined  (Tusi  et  al.  2018).  MEPs  may  therefore  represent  a  transient  state  and  are  thus 

 difficult to isolate in contrast to other more well-defined progenitors. 
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 1.3.3.2 Shared features between Mks and HSCs 

 The  conceptual  distance  between  Mk  commitment  and  the  HSC  compartment  became 

 increasingly  shorter  with  the  more  we  came  to  discover  about  both  cell  types.  First  with  the 

 revision  to  the  haematopoietic  model  describing  the  Mk-Ery  lineage  bifurcation  from  the 

 myelo/monocytic  lineage  that  co-segregates  with  the  lymphoid  fate  as  the  first  major  lineage 

 fate  decision  in  haematopoietic  differentiation  (Doulatov  et  al.  ,  2010)  .  Indeed,  in  spite  of  the 

 hierarchical  distance  between  Mks  as  terminally  differentiated  cells  and  HSCs  as  the  most 

   undifferentiated  cell  type,  they  share  several  important  features  (Figure  1.4).  These  include  cell 

 surface  molecules,  lineage-specific  TFs,  and  specialised  signalling  pathways  -  supporting  the 

 notion  that  these  cell  types  are  more  closely  connected  than  once  thought,  and  the  possibility 

 that  Mk  lineage  specification  occurs  at  immature  haematopoietic  stages  (Nishikii,  Kurita  and 

 Chiba, 2017)  . 

 Both  Mks  and  HSCs  rely  on  TPO  signalling,  critical  for  platelet  production  and  stem  cell 

 maintenance  respectively,  where  HSCs  derived  from  Mpl  -/-  mice  showed  significantly  reduced 

 long-term  repopulating  capacity  (Kimura  et  al.  ,  1998;  Solar  et  al.  ,  1998;  Qian  et  al.  ,  2007; 

 Yoshihara  et  al.  ,  2007)  .  Likewise,  TPO  KO  itself  reduces  HSC  function  It  has  also  been  shown 

 that  severe  thrombocytopenia  (disease  of  low  blood  platelet  count)  is  caused  by  loss  of  function 

 mutations  in  Mpl,  and  patients  have  been  found  to  have  a  higher  risk  of  bone  marrow  failure, 

 further  implicating  the  role  of  TPO  in  both  Mk  and  HSC  function  (Huang  and  Cantor,  2009)  . 

 Other  key  Mk  cell  surface  receptors  co-expressed  by  HSCS  include  CD9  (Karlsson  et  al., 

 2013),  CD41  (Gekas  and  Graf,  2013)  ,  CXCR4  and  CD150  (Kiel  et  al.  ,  2005)  .  To  demonstrate 

 the  effect  of  CD41  on  stem  cell  phenotypes,  Gekas  and  Graf  used  competitive  BM 

 transplantation  to  show  that  CD41+  HSCs  had  a  more  quiescent  phenotype,  and  the  knockout 

 of  CD41  in  mice  resulted  in  pancytopenia  in  animals,  where  platelet  and  red  blood  cell  and 

 leukocyte  numbers  were  significantly  reduced  (Gekas  and  Graf,  2013)  .  High  CD150  expression 

 has  long  been  used  for  the  enrichment  of  HSCs,  having  been  identified  as  a  marker  for  HSCs 

 with greater self-renewal  (Beerman  et al.  , 2010)  . 

 Several  important  TFs  play  significant  roles  in  both  HSCs  and  Mks.  These  shared  TFs  include 

 RUNX-1,  GATA-2,  EVI-1,  TAL1  and  PBX1  (Huang  and  Cantor,  2009)  .  Specifically, 

 deficiencies  in  RUNX-1  have  been  shown  to  reduce  HSC  numbers  and  result  in  abnormalities 

 in  Mk  nuclei,  including  hypo-lobulation,  low  DNA  ploidy,  and  under-developed  cytoplasm 

 (Sun  and  Downing,  2004;  Talebian  et  al.  ,  2007)  .  Similarly,  EVI-1  KOs  significantly  decrease 

 the  number  of  phenotypic  HSCs,  leading  to  impaired  self-renewal  and  repopulation  capacity. 

 These  mice  also  experience  thrombocytopenia  and  delayed  platelet  recovery  following 

 treatment  with  the  cytotoxic  agent  5-fluorouracil  (5-FU)  (Goyama  et  al.  ,  2008)  .  These  findings 
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 collectively  suggest  that  certain  TFs  have  lineage-specific  functions  in  both  HSC  and  Mk 

 development. 

 Moreover,  Notch  signalling  has  a  significant  role  in  both  the  multipotency  of  HSCs  and  the 

 specification  of  Mk  lineage  from  HSCs  in  in  vitro  co-culture  systems.  Notch  signalling  is  a 

 well-established  pathway  that  influences  various  developmental  processes  and  regulates  cell 

 fate  decisions  (Wilson  and  Radtke,  2006)  .  Activation  of  Notch  signalling  was  found  to  promote 

 increased  Mk  specification  from  HSCs  in  co-culture  systems,  while  inhibition  of  Notch 

 signalling reverses this effect  (Burns  et al.  , 2005;  Mercher  et al.  , 2008; Cornejo  et al.  , 2011)  . 

 The  functional  and  compositional  similarities  among  Mks,  HSCs,  and  endothelial  cells  suggest 

 an  important  connection  between  HSCs  and  Mks.  Platelets,  derived  from  Mks,  serve  to  repair 

 endothelial  lesions  and  prevent  bleeding.  This  process  involves  adhesion  to  exposed 

 subendothelial  structures,  platelet  activation,  aggregation,  and  activation  of  angiogenesis. 

 Consequently,  platelets  and  endothelial  cells  share  pathways  that  regulate  hemostasis  and 

 thrombosis.  Additionally,  many  lineage-specific  factors  expressed  in  Mks  and  HSCs  are  also 

 present  in  endothelial  cells  and/or  hemangioblasts,  the  common  precursor  of  HSCs  and 

 endothelial  cells  during  embryogenesis  (Choi  et  al.  ,  1998;  Lancrin  et  al.  ,  2009)  .  Given  the 

 similarities  in  the  development  of  HSCs  and  endothelial  cells,  as  well  as  the  functional  roles 

 shared  by  Mks  and  endothelial  cells,  it  is  reasonable  to  propose  this  strengthens  links  between 

 Mks and HSCs. 

 In  recent  years,  the  co-localisation  of  HSCs  and  Mks  within  the  BM  has  emerged  as  another 

 important  factor.  Both  HSCs  and  Mks  reside  in  the  vascular  sinusoid  regions  of  the  BM,  and 

 recent  studies  have  highlighted  the  significant  roles  of  Mks  in  supporting  the  HSC  niche  (Kiel 

 et  al.  ,  2005)  .  Bruns  et  al.  demonstrated  in  mice  that  Mks  directly  regulate  the  size  of  the  HSC 

 pool.  They  found  that  endogenous  HSCs  are  frequently  located  in  close  proximity  to  Mks  in  a 

 non-random  manner.  Their  findings  were  further  confirmed  by  in  vivo  depletion  of  Mks,  which 

 resulted  in  the  loss  of  HSC  quiescence  and  expansion  of  functional  HSCs.  This  indicates  that 

 terminally  differentiated  Mks  derived  from  HSCs  contribute  to  the  HSC  niche  (Bruns  et  al.  , 

 2014)  .  Multiple  mechanisms  have  been  proposed  to  explain  how  Mks  directly  influence  HSC 

 behaviour,  including  the  involvement  of  CXCL4,  TPO,  and  TGF-beta  (Bruns  et  al.  ,  2014; 

 Nakamura-Ishizu  et al.  , 2014; Zhao  et al.  , 2014)  . 

 Extensive  research  has  focused  on  the  shared  characteristics  between  Mks  and  HSCs  to 

 elucidate  Mk  lineage  commitment.  As  the  body  of  evidence  has  grown,  it  became  increasingly 

 clear that HSCs exhibit lineage bias towards the Mk fate. 
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 1.3.3.3. Mk-biassed HSCs 

 The  prospective  isolation  of  platelet-biassed  LT-HSCs  by  Sanjuan-Pla  and  colleagues 

 confirmed  the  existence  of  a  HSC  subset  showing  strong  Mk  lineage-biassed  reconstitution 

 (with  limited  lymphoid  potential)  proving  that  this  lineage  is  not  strictly  derived  from  the  CMP 

 to  MEP  route.  This  subset  exhibits  platelet-specific  gene  expression  that  is  identifiable  based  on 

 high  expression  of  von  Willebrand  factor  (  vWF  ),  a  key  Mk  marker  protein  involved  in  platelet 

 aggregation  (Sadler,  1998;  Sanjuan-Pla  et  al.  ,  2013)  .  Importantly,  they  were  among  the  first  to 

 show  a  hierarchical  relationship  between  HSC  subtypes  in  vivo  ,  where  only  vWF+  can  give  rise 

 to  v  WF+  HSCs  (Ly-HSCs),  and  not  the  opposite,  strongly  suggesting  platelet-primed  HSCs 

 exist  at  the  apex  of  the  HSC  subtypes  (Figure  1.5C)  (Sanjuan-Pla  et  al.  ,  2013)  .  Using  a 

 transgenic  (vWF)–green  fluorescent  protein  (GFP)  mouse  model  they  demonstrated  that  around 

 half  of  murine  LT-HSCs  expressed  the  Mk  gene  vWF  and  with  platelet-biassed  reconstitution 

 and myeloid but low lymphoid contribution. 

 Further  corroborating  Mk-priming  in  the  HSC  compartment,  cKit  high  LT-HSCs  were  found  to 

 exhibit  Mk-biassed  potential.  Researchers  showed  that  HSCs  with  differential  lineage  output 

 correlated  with  cKit  cell  surface  expression,  where  cKit  low  HSCs  were  more  quiescent  than 

 cKit  high  HSCs and displayed lower Mk-reconstitution  potential  (Shin  et al.  , 2014)  . 

 Soon  after,  several  groups  demonstrated  Mk-lineage  bias  using  single-cell  in  vitro  methods, 

 confirming  a  subpopulation  of  HSCs  exhibit  strong  Mk  bias  (Mk-HSCs)  but  also  revealing 

 even  direct  differentiation  towards  Mk  unipotent  progenitors  without  cell  division  (Yamamoto 

 et  al.  ,  2013;  Nishikii  et  al.  ,  2015;  Roch,  Trachsel  and  Lutolf,  2015)  ).  Notably,  Yamamoto  et  al. 

 demonstrated  both  the  direct  commitment  from  HSCs  towards  Mk  unipotent  progenitors,  as 

 well  as  the  presence  of  a  functional  MEP  in  vivo.  Using  FACS-sorted  candidate  HSPCs 

 transplanted  into  recipients,  they  showed  that  reconstituting  HSCs  generated  1  HSC  and  1  MkP 

 showing  that  Mk  unipotency  can  arise  directly  from  HSCs  (Yamamoto  et  al.  ,  2013)  .  This  work 

 further  confirmed  the  existence  of  Mk-HSCs  in  addition  to  MEP-based  Mk  reconstitution, 

 suggesting  that  Mk-HSCs  possibly  serve  as  an  important  source  of  Mks  under  specific 

 physiological conditions. 

 Consistent  with  Yamamoto’s  findings,  a  single  cell  transplantation  approach  of  over  1000 

 single-cells  found  approximately  10%  of  vWF+  LT-HSCs  were  capable  of  stable  replenishment 

 only  Mks,  whilst  90%  replenished  other  lineages  in  addition  to  Mks.  Mk-biassed  HSCs 

 sustained  multipotency  in  vitro  and  in  secondary  transplants  and  platelets  were  the  only  lineage 

 that was invariably reconstituted in 100% of transplants  (Carrelha  et al.  , 2018)  . 
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 5  Figure  1.5.  Models  of  megakaryocyte  commitment  (a)  The  classical  hierarchical 
 haematopoiesis  model:  the  bifurcation  of  myeloid/lymphoid  lineage  first  occurs  in  MPPs,  and 
 MkPs  eventually  generate  from  MEPs  as  the  progeny  of  CMPs  (b)  Alternative  model:  Based  on 
 the  identification  of  LMPPs  from  short-term  HSCs,  with  almost  no  Mk/  Ery  lineage  potential 
 where  the  bifurcation  of  Mk  lineage  first  occurs  during  differentiation  from  HSCs  (c)  Proposed 
 model  from  recent  literature:  An  immunophenotypic-defined  HSC  population  contains  a 
 functionally  heterogeneous,  Mk-biassed  subpopulation  of  HSCs  that  directly  gives  rise  to  MkPs 
 and bypass the MEP stage. 

 5  Abbreviations:  HSC,  haematopoietic  stem  cell;  MPP,  multipotent  progenitor;  CMP,  common 
 myeloid  progenitor;  Ery,  erythroid;  LT-HSC,  long-term  haematopoietic  stem  cells;  ST-HSC, 
 short  term  HSC;  MEP,  Mk/Ery  progenitor;  Mk,  megakaryocytes;  MkRP,  Mgk-repopulating 
 progenitors; SL-MkP, stem-like Mk committed progenitor, Mk HSC, Mk-biassed  Vwf+  HSCs. 

 45 



 Moreover,  whole  transcriptome  single-cell  analysis  of  the  HSC  compartment  identified  a 

 subpopulation  expressing  a  strong  signature  of  Mk-specific  genes  (Grover  et  al.  ,  2016)  . 

 Together  these  data  indicate  whilst  lineage  biases  have  been  seen  across  other  blood  cell 

 lineages,  the  platelet  lineage  is  the  only  cell  type  that  has  been  found  to  exclusively  comprise 

 100%  progeny  in  some  HSCs,  suggesting  that  HSC  Mk-priming  may  be  a  phenomenon 

 exclusive to the Mk lineage  (Ceredig, Rolink and Brown,  2009)  . 

 Lineage-tracing  experiments  using  transposon  tagging  for  clonal  tracing  the  fates  of  progenitors 

 and  HSCs  have  also  provided  evidence  for  Mk-biassed  HSCs.  Rodriguez-Fraticelli  et  al  .  found 

 approximately  50%  of  Ery  clones  shared  transposon  tags  with  myeloid  cells  whilst 

 comparatively  very  few  Mk  clones  were  shared  with  Ery  cells,  which  would  have  been 

 predicted  under  the  premise  a  shared  MEP  is  the  predominant  differentiation  route  in 

 haematopoiesis.  This  work  suggested  instead  a  shared  origin  for  Ery  and  myeloid  lineages,  but 

 a  largely  separate  pathway  for  Mk  differentiation  (Rodriguez-Fraticelli  et  al.  ,  2018)  .  Together 

 these  data  prompted  important  revisions  to  the  existing  model  of  megakaryopoiesis,  of 

 platelet-primed  HSCs  at  the  apex  of  the  hierarchy  with  multiple  and  even  direct  routes  towards 

 Mk commitment (Figure 1.5C). 

 With  indications  overwhelmingly  in  agreement  that  multiple  routes  for  Mk  generation  exist,  it 

 seems  reasonable  to  presume  this  may  be  a  protective  mechanism  linked  to  the  blood  demand 

 in  emergency  cases  such  as  infections  or  acute  bleeding.  Under  this  hypothesis,  Haas  et  al.  used 

 an  LPS  infection  system  and  found  Mk  repopulating  progenitors  (Mk-RPs)  within  the  Lin- 

 cKit+  CD150+  CD48-  compartment,  in  addition  to  Mk-HSCs.  These  unipotent  progenitors 

 upregulated  CD41  expression  directly  giving  rise  to  Mks  by-passing  any  other  intermediate 

 progenitors of the Mk differentiation axis  (Haas  et  al.  , 2015)  . 

 The  evolving  understanding  of  megakaryopoiesis,  specifically  the  direct  differentiation  of  Mks 

 from  Mk-HSCs,  presents  new  opportunities  to  study  this  process  more  thoroughly.  It  is  crucial 

 to  understand  the  branching  points  of  the  haematopoietic  system,  as  it  has  significant  clinical 

 implications.  This  understanding  can  improve  our  knowledge  of  how  the  body  responds  to 

 haematopoietic  stresses  like  ageing  and  infection,  as  well  as  the  initiation  and  progression  of 

 leukaemia  and  other  myeloproliferative  neoplasms  (MPNs).  Moreover,  by  studying  the 

 regulation  of  Mk  commitment  pathways,  we  can  identify  therapeutic  targets  for  disorders  such 

 as  anaemia  or  thrombocytopenia,  which  are  associated  with  abnormal  Mk  function.  Finally, 

 research  suggests  changes  in  Mks  and  platelets  during  disease  can  exacerbate  inflammation  by 

 affecting  the  BM  environment.  Therefore,  it  is  essential  to  investigate  Mks  not  only  as 

 platelet-producing cells but also as cells involved in maintaining the BM niche 
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 1.4 Alternative splicing in lineage commitment 

 In  the  1950s  and  ’60s,  the  study  of  bacterial  genetics  first  opened  the  way  toward  understanding 

 life  as  the  genetically  encoded  interactions  of  macromolecules  and  the  shift  to  seeing  the  world 

 through  the  lens  of  molecular  biology  (Stent  1968)  .  In  these  early  days  of  modern  molecular 

 biology,  scientists  almost  exclusively  worked  with  bacterial  systems,  which  were  easy  to  grow 

 and  manipulate  in  the  laboratory.  Although  the  concept  of  “genetic  information”  had  been 

 rapidly  and  widely  adopted  at  this  point,  no  one  was  clear  about  what  exactly  genetic 

 information  might  consist  of.  The  central  dogma  of  molecular  biology  -  that  DNA  is  transcribed 

 into  RNA  and  RNA  translated  into  proteins  -  was  first  publicly  proposed  in  1957  by  Francis 

 Crick  as  part  of  a  Society  for  Experimental  Biology  Symposium  on  the  Biological  Replication 

 of  Macromolecules  held  at  University  College  London  (Crick,  1958)  .  Ultimately  the  “flow  of 

 information”  and  the  concept  of  RNA  as  an  intermediate  between  DNA  and  protein  resolved 

 the  link  between  base  sequences  of  nucleic  acids  and  those  of  amino  acids  in  a  protein  (Crick, 

 no  date)  .  At  the  time  ribosomes  were  known  only  as  microsomes,  and  their  function  was 

 uncertain;  messenger  RNA  was  still  undreamt  of—it  would  be  properly  identified  only  in  the 

 summer  of  1960,  and  the  discovery  was  not  published  until  the  following  year  (Brenner,  Jacob 

 and  Meselson,  1961;  Gros  et  al.  ,  1961;  Cobb,  2015)  .  We  now  know  coding  regions  of  the 

 genome,  defined  as  nucleic  acid  sequences  that  when  transcribed  into  mRNA  can  ultimately  be 

 translated into polypeptides, are characterised as genes. 
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 1.4.1 Alternative Splicing 

 Molecular  biology  progressed  and  with  it,  our  understanding  of  genomics  developed.  The  next 

 major  challenge  in  understanding  the  process  of  gene  expression  was  to  prove  the  conversion  of 

 DNA  into  protein.  Several  groups  in  the  late  1970s  studying  the  relationship  between 

 cytoplasmic  RNA  and  the  DNA  structure  of  adenovirus  using  electron  microscopy  first 

 identified  a  series  of  RNA  molecules  late  in  viral  infection  containing  sequences  from 

 noncontiguous  sites  in  the  viral  genome  that  they  termed  "mosaics"  (Berget,  Moore  and  Sharp, 

 1977;  Chow  et  al.  ,  1977)  .  This  heterogeneous  nuclear  RNA  discovered  by  Sharp,  Berget  and 

 Moore  turned  out  to  be  the  evidence  of  a  process  coined  as  RNA  splicing  (Berget,  Moore  and 

 Sharp,  1977)  .  This  landmark  discovery  described  for  the  first  time  the  process  by  which  DNA 

 information  is  transcribed  into  mRNA.  When  a  gene  is  copied  into  RNA,  it  contains  a  long, 

 ‘jumbled  message’  of  nucleotide  sequences  called  exons  and  introns  (Gilbert,  1978)  .  While 

 exons  compose  a  message  with  specific  instructions  from  a  particular  gene,  they  are  separated 

 by  introns  that  are  interspersed  in  the  RNA,  rendering  the  message  incomprehensible.  Similar 

 to  a  message  that  needs  to  be  decoded  because  of  a  sentence  with  extra  letters,  introns  must  be 

 excised  from  pre-mRNA  to  form  a  coherent  message  consisting  only  of  coding  exons  (codons) 

 as  a  single-stranded  molecule  called  a  mature  mRNA  transcript  -  the  genetic  information  used 

 to  synthesise  proteins  in  the  cytoplasm.  This  discovery  revealed  that  the  expression  of  genes 

 and  their  protein  products  involves  a  series  of  complex  processing  stages.  Subsequently,  introns 

 were  found  in  many  other  viral  and  eukaryotic  genes,  one  of  the  first  being  those  for 

 haemoglobin and immunoglobulin  (Darnell, 1978; Early  et al.  , 1980)  . 

 Before  knowledge  of  RNA  splicing,  the  consensus  was  that  all  organisms  have  the  same  gene 

 structure  as  bacteria,  which  lack  introns.  Bacterial  RNA  transcripts  are  mostly  collinear  - 

 meaning  there  is  one-to-one  correspondence  of  bases  between  the  gene  and  the  mRNA 

 transcribed  from  the  gene  -  following  this  hypothesis  that  ‘one  gene  =  one  protein’,  when 

 taking  the  human  transcriptome  with  a  predicted  ~20,000  genes  as  a  reference,  there  should  be 

 ~20,000  canonical  human  proteins.  RNA  splicing  demonstrated  that  eukaryotic  cells,  with  their 

 discontinuous  genes,  are  far  more  complex  than  bacterial  cells.  It  also  debunked  the  dogma  that 

 one  gene  produces  one  mRNA,  and  all  mRNAs  from  a  gene  produce  one  protein.  The 

 completion  of  the  Human  Genome  Project  in  2003  confirmed  a  vast  discrepancy  between  the 

 number  of  annotated  protein-coding  genes  and  the  number  of  observed  human  polypeptides 

 violating  this  hypothesis  (International  Human  Genome  Sequencing  Consortium,  2004)  .  It 

 quickly  became  clear  that  the  expression  of  genes  and  their  protein  products  relies  on  many 

 more  levels  of  regulation.  In  eukaryotic  transcription,  RNA  polymerases  in  the  nucleus  copy 

 DNA that is composed of exons (amino-acid coding regions) and introns (non-amino-acid 
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 6 

 Figure  1.6.  Alternative  splicing  during  transcription  results  in  different  mRNA  isoforms 
 and protein products. 

 6  Created with BioRender.com 
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 coding  regions)  5’  to  3’  generating  complementary  messenger  RNA  (mRNA)  products.  The 

 purpose  of  transcription  is  to  process  the  DNA  such  that  intronic  regions  are  excised  from  the 

 resulting  mRNA  transcript,  leaving  behind  only  the  coding  exons  (codons)  as  part  of  the 

 single-stranded molecule for export into the cell’s cytoplasm. 

 Alternative  splicing  is  the  summation  of  multiple  mechanisms  in  every  eukaryotic  cell 

 including  differential  usage  of  splice  sites,  transcription  start  sites  (TSS)  and  polyA  sites  that 

 enable  the  expression  of  multiple  unique  isoforms  for  each  gene  (Wang  et  al.  ,  2008)  (Figure 

 1.6).  Consequently,  the  proteins  translated  from  alternatively  spliced  mRNAs  will  contain 

 differences  in  their  amino  acid  sequence  and,  often,  in  their  biological  functions.  It  is  estimated 

 that  up  to  95%  of  human  multi-exon  genes  undergo  alternative  splicing  to  encode  proteins  with 

 different  functions  (Figure  1.7).  In  fact,  splice  isoforms  can  have  even  opposing  functions  and 

 there  are  many  instances  whereby  a  splice  isoform  acts  as  an  inhibitor  of  canonical  isoform 

 function, thereby adding an additional layer of regulation to important processes. 

 Exon skipping 

 Exon  skipping  is  a  splicing  event  where  specific  exons  are  excluded  or  skipped  during  mRNA 

 processing,  leading  to  the  removal  of  particular  sequences  from  the  final  mRNA  transcript. 

 Mutations  within  an  exon  or  its  adjacent  splice  sites  can  disrupt  normal  splicing,  resulting  in  the 

 exclusion  of  the  affected  exon  during  mRNA  processing.  As  a  consequence,  the  protein 

 produced  from  the  aberrantly  spliced  mRNA  may  be  incomplete  or  truncated,  leading  to 

 functional impairment or loss. 

 Intron retention 

 Intron  retention  occurs  when  an  intron  is  not  properly  removed  from  the  pre-mRNA  during 

 splicing  and  is  retained  in  the  final  mRNA  transcript.  This  results  in  the  inclusion  of  intronic 

 sequences within the mature mRNA, which can have functional implications. 

 Alternative 5’ donor site 

 This  occurs  when  an  alternative  site  within  an  exon  or  intron  is  used  as  the  starting  point  for  the 

 splicing  process.  For  example,  in  T  cells,  the  CD45  (Ptprc)  gene  exhibits  AS  with  different  5' 

 donor  sites,  giving  rise  to  CD45  isoforms  with  distinct  expression  patterns  and  functions, 

 thereby impacting the structure and function of the protein  (Hermiston, Xu and Weiss, 2003) 

 Alternative 3’ acceptor site 

 This  occurs  when  an  alternative  site  within  an  exon  or  intron  is  used  as  the  ending  point 

 (acceptor  site)  for  the  splicing  process.  The  utilisation  of  alternative  3'  acceptor  sites  can  result 

 in  the  inclusion  of  additional  exonic  sequences  or  the  skipping  of  exons.  A  mutation  upstream 

 of  GATA1,  a  crucial  TF  for  Ery  and  Mk  lineage  development,  was  identified  in  two  unrelated 
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 patients  with  a  unique  form  of  dyserythropoietic  anaemia.  Researchers  revealed  the  mutation 

 reduced  normal  splicing  of  this  region  of  GATA1  and  promoted  an  intron  retention  event  of  15 

 nucleotides involving an alternative splice acceptor site  (Abdulhay  et al.  , 2019)  . 

 These  diverse  splicing  mechanisms  offer  cells  the  capacity  to  generate  a  broad  spectrum  of 

 protein  isoforms,  thereby  enhancing  protein  diversity  and  functional  complexity.  Dysregulation 

 of  AS  can  have  far-reaching  consequences  for  cellular  functions  and  is  closely  linked  to  various 

 diseases.  An  in-depth  investigation  of  AS  and  its  influence  on  protein  expression  and  function 

 holds  great  potential  for  advancing  our  comprehension  of  intricate  biological  processes  and 

 disease  mechanisms  in  hematopoiesis  at  the  single-cell  level.  By  unravelling  the  intricacies  of 

 AS,  we  can  gain  valuable  insights  into  the  molecular  underpinnings  of  haematopoietic 

 differentiation, lineage specification, and disease progression. 
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 Figure  1.7.  Mature  mRNA  products  that  arise  through  different  types  of  splicing  of 
 pre-mRNA. 
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 1.5 Single-cell biology 

 The  demand  for  sufficiently  sensitive  methods  to  investigate  molecular-level  heterogeneity 

 within  tissues  was  an  evident  universal  challenge  in  biology.  Traditional  gene  expression 

 analyses  often  obscured  critical  differences  in  gene  expression  between  cells,  hindering  the 

 understanding  of  divergent  functions.  The  use  of  bulk  cell  populations  provides  information  on 

 cell  population  averages,  making  the  assumption  of  homogeneity  within  a  population  and, 

 depending  on  the  experimental  question,  often  fails  to  capture  the  true  state  within  the  sample 

 (Figure  1.8).  The  emergence  of  single-cell  resolution  approaches,  combined  with  computational 

 tools  necessary  for  their  interpretation,  has  significantly  enhanced  our  capacity  to  comprehend 

 complex cellular systems. 

 For  decades,  stem  and  progenitor  cells  were  characterised  based  on  their  behaviour  using  the 

 traditional  haematopoietic  single  cell  assays  such  as  in  vitro  colony-forming  assays,  other 

 clonal  assays  and  transient  in  vivo  repopulation  (Kondo,  Weissman  and  Akashi,  1997;  Akashi  et 

 al.  ,  2000;  Adolfsson  et  al.  ,  2005;  Månsson  et  al.  ,  2007;  Pronk  et  al.  ,  2007)  .  But  how  properties 

 of  the  assays  may  influence  the  readout  and  therefore  the  conclusions  that  can  be  reached  is  an 

 important  consideration  when  interpreting  generated  data.  For  instance,  HSC  transplantation 

 assays  evaluate  repopulation  ability  but  may  not  reflect  the  cells'  contribution  to  haematopoiesis 

 in  their  native,  steady-state  setting  (Wilson  et  al.  ,  2008;  Bernitz  et  al.  ,  2016)  .  Lineage  potential 

 and  fate  can  vary  greatly  between  in  vivo  and  in  vitro  conditions  (Carrelha  et  al.  ,  2018)  . 

 Likewise,  progenitor  cell  populations,  even  when  identified  by  specific  markers,  may  exhibit 

 functional  heterogeneity,  and  individual  cells  do  not  necessarily  adopt  all  possible  lineage 

 outcomes  in  vitro  (Rieger  et  al.  ,  2009)  .  Therefore,  while  early  models  of  haematopoiesis 

 undoubtedly  served  as  useful  guides  for  genetic  perturbation  studies,  they  also  have  revealed 

 technical limitations. 

 Cell  type  and  state  are  influenced  by  various  molecular  aspects,  including  genomics, 

 epigenomics,  transcriptomics,  proteomics,  and  metabolomics,  which  are  in  turn  shaped  by 

 intrinsic  and  extrinsic  factors  (Mincarelli  et  al.  ,  2018)  .  Single-cell  transcriptome,  epigenetic  and 

 transplantation  analysis,  barcoding,  and  in  vitro  clonal  functional  assays  have  helped  to  resolve 

 molecular  heterogeneity  that  population-based  strategies  could  not  capture.  Consequently, 

 many  annotations  have  been  redefined  through  the  lens  of  single-cell  transcriptomics,  enabling 

 exploration of molecular heterogeneity. 
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 Figure  1.8.  Schematic  of  single-cell  analysis  compared  to  traditional  bulk  sample  analysis. 

 Single-cell  assays  enable  tissue  profiling  at  single-cell  resolution,  where  distinct  expression 

 profiles  of  individual  cells  can  be  appreciated.  Single-cell  approaches  allow  for  the  detection  of 

 unique  signatures  between  cell  types  where  genes  that  are  lowly  expressed  at  the  tissue  level 

 and often obscured can be captured and studied.  7 

 7  Created with BioRender.com 
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 Single cell technologies 

 Key  to  the  study  of  single  cells  is  the  capacity  to  effectively  isolate  cells  to  enable  analysis  of 

 their  unique  molecular  identity.  Numerous  methods  to  achieve  this  are  available,  and  broadly 

 can  be  categorised  into  manual  isolation  (using  micropipettes  or  micromanipulation),  FACS 

 based  isolation,  combinatorial  indexing  and  microfluidic  isolation  (Mincarelli  et  al.  ,  2018)  .  The 

 approach  selected  is  dependent  on  the  specific  biological  question,  as  well  as  the  practical 

 considerations and experimental objectives for a given experiment. 

 Combinatorial  indexing  involves  using  a  two-step  barcoding  strategy  combined  with 

 FACS-sorting  enabling  each  sequencing  read  to  be  assigned  to  an  individual  cell.  This  is  a 

 popular  strategy  to  increase  throughput  without  the  need  for  microfluidics.  Microfluidic  based 

 isolation,  in  which  cells  are  captured  in  individual  droplets  or  nanowells  for  processing,  is  well 

 suited  to  maximising  throughput  and  minimising  the  reagent  cost  per  cell.  Cells  are 

 co-encapsulated  in  droplets  with  uniquely  barcoded  oligodT  primers,  enabling  cDNA  to  be 

 pooled  and  sequenced  in  parallel,  with  reads  assigned  to  individual  cells  based  on  their  barcode. 

 Such  approaches  (such  as  the  popular  10x  Genomics  platform)  enable  3′  or  5’  transcript 

 counting from thousands of cells in parallel. 

 Plate-based  scRNA-seq  strategies  use  the  physical  single  cell  separation  and  combine 

 full-length,  PCR-based  cDNA  amplification  with  tagmentation-based  Next  Generation 

 Sequencing  (NGS)  library  preparation  to  generate  single  cell  libraries.  These  whole  transcript 

 methods  (such  as  Smart-seq2)  that  sequence  reads  from  all  regions  of  an  RNA  are  superior  in 

 their  ability  to  enable  high  sequence  coverage  often  leading  to  higher  numbers  of  genes 

 detected  per  cell,  while  also  capturing  sequence  variation  (SNVs,  UTRs,  and  alternative 

 splicing)  within  the  transcriptome  (Picelli  et  al.  ,  2014)  .  Hence  such  assays  are  most  often 

 applied  in  experiments  studying  rare  cell  types  and/or  genes  due  to  insufficient  coverage 

 provided from high-throughput strategies (Figure 1.9). 
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 Figure 1.9. Single-cell technologies and their coverage and number of genes detected.  8 

 8  Created with BioRender.com 
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 Isoform resolved single cell sequencing 

 scRNA-Seq  is  now  well  established  and  has  been  successful  in  identifying  cell  types  and  novel 

 cell  trajectories,  revealing  gene  expression  differences  across  cell  types.  Up  to  now,  single-cell 

 transcriptomic  analyses  have  largely  focused  on  gene-level  expression,  where  gene  expression 

 represents  the  aggregation  of  isoforms  originating  from  the  same  single  gene.  Short  read  (SR) 

 scRNA-Seq  studies  using  full-length  methods  have  uncovered  significant  cell-to-cell  variation 

 in  isoform  expression  (Shalek  et  al.  ,  2013;  Marinov  et  al.  ,  2014;  Yap  and  Makeyev,  2016;  Song 

 et  al.  ,  2017)  .  However,  due  to  SR  constraints  these  studies  largely  focused  on  changes  in  exon 

 usage  and/or  splice  junctions,  leaving  the  true  complexity  of  isoform  expression  in  and  between 

 single cells unresolved. 

 Coupling  long-reads  (LRs)  with  single  cell  sequencing  is  able  to  provide  the  missing  isoform 

 information  and  has  the  potential  to  once  again  revolutionise  transcriptomics  (Figure  1.10). 

 Full-length  isoform  sequencing  enables  the  characterisation  of  all  aspects  of  isoforms  including 

 exon-skipping,  alternative  3’  and  5’  splice  sites,  intron  retention  and  alternative  transcription 

 start  and  end  sites  (Wen,  Mead  and  Thongjuea,  2020)  .  LR  RNA-sequencing  is  able  to  leverage 

 on  the  full-length  cDNA  generated  from  library  preparations  through  direct  sequencing  of 

 transcripts  without  prior  fragmentation.  Examples  of  studies  combining  LRs  with  single-cell 

 technology  were  all  performed  on  less  than  ten  cells  using  either  Oxford  Nanopore  Technology 

 (ONT)  (Byrne  et  al.  ,  2019)  or  PacBio  sequencing  (Macaulay  et  al.  ,  2015;  Karlsson  and 

 Linnarsson,  2017)  ,  and  were  the  first  to  demonstrate  the  potential  of  applying  LR  sequencing 

 into single cell studies. 

 Later  demonstrations  of  LR  scRNA-Seq  across  a  more  substantial  number  of  cells  utilised  the 

 PacBio  ScISOr-Seq  method,  complemented  by  SR  scRNA-Seq  (Gupta  et  al.  ,  2018)  .  Isoforms 

 from  over  one  thousand  single  cells  were  sequenced,  but  a  small  median  number  of  reads  (270) 

 and  genes  (129)  per  cell  were  captured  (Gupta  et  al.  ,  2018)  .  More  recently,  deeper  per-cell 

 profiling  identified  differential  isoform  expression  in  395  genes  across  cell  types,  including  76 

 high  confidence  novel  isoforms  (Joglekar  et  al.  ,  2021)  .  They  demonstrated  differential  isoform 

 expression  due  to  a  single  cell  type  changing  its  isoform  expression  pattern,  providing  critical 

 insight  into  the  relative  importance  of  cell-types,  and  cell  composition  in  defining  splicing 

 patterns  (Joglekar  et al.  , 2021)  . 

 These  studies  highlighted  an  important  trade-off  between  per-cell  depth  (important  to  enable 

 isoform  comparisons)  and  number  of  cells  sequenced;  where  sequencing  large  cell  quantities 

 with  current  LR  scRNA-Seq  technologies  either  results  in  low  per-cell  read  depth  or  high 

 experimental  cost.  Attractive  solutions  to  this  limitation  were  developed  which  combine  the 
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 power  of  both  SR  and  LR  sequencing  to  counteract  each  technologies’  inherent  limitations. 

 Mincarelli  et  al.  leveraged  the  10X  Genomics  cell  barcode  to  integrate  SR  and  LR  data  to 

 single  cells  sequenced  across  both  (Mincarelli  et  al.  ,  2023)  ,  whilst  another  strategy  instead 

 implemented  a  sub-sampling  strategy  where  only  ~10–20%  of  the  cells  from  a  10x  Genomics 

 experiment  are  sub-sampled  for  ONT  sequencing  (Tian  et  al.  ,  2021)  .  This  approach  uses  SRs  to 

 identify  the  cell  barcodes  and  UMIs  as  well  as  providing  a  broader  view  of  the  cell-types 

 present,  while  LR  scRNA-Seq  enabled  insights  into  isoform  usage  at  the  single  cell  level  (Tian 

 et al.  , 2021; Mincarelli  et al.  , 2023)  . 

 The  combination  of  single  cell  and  LR  technologies  is  still  in  its  infancy,  and  with  the 

 developments  in  throughput  and/or  accuracy  of  LR,  subsampling  and/or  matched  SR 

 scRNA-Seq  may  eventually  become  unnecessary.  So  far,  experiments  into  coupling  LRs  with 

 single  cell  sequencing  have  only  reinforced  the  relevance  and  importance  to  the  study  of 

 isoform  heterogeneity  and  AS  patterns.  In  the  same  way  bulk-level  gene  expression  was  found 

 to  be  often  insufficient  to  appreciate  gene  expression  heterogeneity,  it  has  become  evident  that 

 bulk  isoform-sequencing  does  not  delineate  the  heterogeneity  across  AS  profiles.  Therefore  the 

 technological  development  of  LR  scRNA-seq  approaches  is  a  major  focus  of  current  research  to 

 provide novel insights into the splicing landscape of cells and tissues. 
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 Figure  1.10.  Unique  insights  gained  through  single-cell  alternative  splicing  analysis  using 

 short-  and  long-read  RNA-sequencing.  Top-left:  Bulk  short-read  RNA-sequencing  is  unable 

 to  resolve  cell  of  origin  for  alternative  splicing  event.  Top-right:  Single-cell  short-read 

 RNA-sequencing  is  able  to  distinguish  cells  of  origin  for  each  alternative  splicing  event.  With 

 the  exception  of  cells  with  coordinated  alternative  splicing  events  (yellow)  where  it  would  be 

 inferred  that  there  are  two  isolated  alternative  splicing  events.  Bottom-left:  Bulk  long-read 

 RNA-sequencing  is  able  to  distinguish  isolated  and  coordinated  alternative  splicing  events  but 

 is  unable  to  assign  the  events  to  the  cell  of  origin.  Bottom-right:  Single-cell  long-read 

 RNA-sequencing  is  able  to  distinguish  isolated  and  coordinated  alternative  splicing  events  as 

 well as assign the events to the cell of origin (adapted from  Wen, Mead and Thongjuea, 2020)  . 
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 1.6 PhD aims and objectives 

 The  aim  of  this  project  was  to  characterise  the  transcriptional  landscape  of  the  Mk  lineage  at 

 single-cell  resolution.  Mks  primarily  serve  for  the  lifelong  continuous  production  of  platelets 

 (thrombopoiesis),  with  additional  roles  beyond  platelet  production  across  other  physiological 

 processes  including  HSC  quiescence,  inflammation,  immunity,  and  bone  metastasis.  Contrary 

 to  initial  theories,  haematopoietic  stem  cells  and  downstream  haematopoietic  progenitors 

 exhibit  differential  propensities  towards  distinct  lineages.  Specifically,  the  classic  route  of  Mk 

 differentiation  from  HSCs  via  increasingly  lineage-restricted  intermediate  progenitors  has  been 

 challenged  with  the  identification  of  direct  commitment  from  multipotent  HSCs  as  the  first 

 lineage  bifurcation.  Moreover,  in  non-steady  state  haematopoietic  conditions  such  as 

 inflammatory  stress  or  acute  platelet  depletion  (thrombocytopenia),  novel  stem-like  progenitors 

 have  been  identified  within  the  stem  cell  compartment  exclusively  restricted  to  the  Mk  lineage 

 suggesting  alternate  pathways  of  HSC-Mk  commitment  exist  revealing  important  gaps  in  our 

 understanding  of  Mk  commitment.  Dysfunction  in  Mk  differentiation  including  both  excessive 

 proliferation  or  deficient  generation  of  megakaryocytes  has  long-established  implications  in  the 

 development  of  haematological  disorders.  Thus,  the  specific  emphasis  of  this  thesis  was  to 

 provide  a  comprehensive  landscape  of  the  transcriptional  signatures  across  cells  of  the  Mk 

 lineage at high resolution. 

 Characterisation  of  cells  along  the  Mk  lineage  was  achieved  by  employing  scRNA-seq  with 

 Smart-seq2  to  FACS-sorted  cells.  Cells  were  isolated  with  a  broad  gating  strategy  based  on 

 high  Cd150  expression;  shown  to  be  expressed  across  HSCs  through  to  committed  Mk 

 progenitor  cells.  The  hypothesis  behind  isolating  haematopoietic  stem  and  progenitors  with  this 

 approach  was  that  this  would  enable  the  capture  of  cells  at  different  stages  of  commitment  to 

 the  Mk  lineage,  including  intermediate  cell  states  that  may  have  been  missed  in  the  existing 

 literature  that  instead  employed  cell-type  specific  canonical  gating  strategies  based  on 

 individual  cell-type  marker  expression.  This  thesis  outlines  Mk  commitment  trajectories  under 

 steady-state  haematopoiesis  and  the  transcriptomic  signatures  that  arise  under  haematopoietic 

 stressors including ageing and acute thrombocytopenia. 

 Bioinformatic  analysis  of  single-cell  transcriptomic  profiles  produced  a  comprehensive 

 roadmap  of  cell  types  along  the  Mk  lineage,  including  Mk  progenitor  sub-populations  with 

 differential  signatures  with  age  and  activated  upon  stress.  Pseudotemporal  ordering  of  cells 

 enabled  the  delineation  of  HSC-Mk  commitment  trajectories,  identifying  genes  whose  pattern 

 of  expression  correlates  with  Mk  commitment.  This  includes  known  Mk-associated  genes 

 affirming  their  role  in  Mk  fate  commitment  and  differentially  expressed  genes  (DEGs)  that 

 have not been implicated previously in Mk lineage specification. 
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 Finally,  this  project  sought  to  explore  the  heterogeneity  in  isoform  expression  in  genes  with 

 important  roles  in  Mk  function  and  commitment.  Alternative  splicing  leads  to  the  expression  of 

 multiple  isoforms  from  individual  genes  that  often  play  important  and  in  some  cases  even 

 opposite  roles  in  cell  function.  The  inherent  technical  challenges  involved  in  the  study  of  single 

 cells  at  the  isoform  level  have  meant  that  historically  this  has  been  overlooked  when  studying 

 lineage  fate  decisions  in  haematopoiesis.  Technological  development  of  long-read  sequencing 

 from  low-input  samples  and  novel  strategies  to  increase  the  throughput  of  single-cell  long-read 

 data,  this  project  sought  to  also  evaluate  isoform  expression  in  genes  key  for  Mk  function. 

 Haematopoietic  stem  cells  characterised  based  on  their  short-read  transcriptomic  signatures 

 were  profiled  with  long-read  sequencing  to  compare  the  additional  power  long-read  sequencing 

 provides  when  seeking  to  evaluate  isoform  expression.  Strategies  for  concatenation  of  10X 

 scRNA-seq  cDNA  were  tested  and  applied  to  haematopoietic  cells  demonstrating  the  feasibility 

 and  advantages  of  combining  gene  and  isoform  level  measurements  from  single  cells  to 

 heterogeneity within the haematopoietic compartment 
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 Chapter 2: 

 Materials & Methods 

 Preface:  This  chapter  describes  the  methods  implemented  to  generate  data  for  Chapters  3  to  5. 
 Relevant  sections  from  these  methods  are  referenced  throughout  the  experimental  chapters 
 along  with  the  specific  experimental  approach  used.  All  experiments  were  performed  by  Anita 
 Scoones unless otherwise stated in each respective section. 
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 2.1 Materials 

 2.1.1 Equipment 

 BD FACS Aria Fusion-  BD Biosciences 

 Beckman Coulter Biomek FXP-  Beckman Coulter 

 Agilent 2100 Bioanalyzer system-  Agilent Technologies Inc 

 Centrifuge 5430 R-  Eppendorf 

 Countess 3 Automatic Cell Counter-  Thermo Fisher Scientific Inc. 

 BD FACS Melody-  BD Biosciences 

 EVOS XL Core Imaging System-  Thermo Fisher Scientific Inc. 

 Mosquito Liquid Handling Robot-  SPT Labtech 

 Qubit Fluorometer-  Thermo Fisher Scientific Inc. 

 Bio-Rad C1000 Touch Thermal cycler-  Bio-Rad Laboratories Inc 

 Digital general purpose water bath-  VWR International, LLC 

 Femto Pulse system-  Agilent Technologies Inc 

 10X Genomics Magnetic Separator-  10X Genomics 

 ThermoMixer C-  Eppendorf 

 10X GenomicsVortex Adapter-  10X Genomics 

 10X Genomics Chromium controller-  10X Genomics 

 EasySep™Magnet-  Stem Cell Technologies 
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 2.1.2 Buffers and Solutions 

 No  Name  Reagents 

 Tissue culture 

 1  Platelet counting media -  DPBS, 2mM EDTA, 0.1% BSA, 0.02 U/ml Apyrase, 0.0001M 
 PFI2 

 2  Dissection media -  DPBS 1X, 5% FCS, 2mM EDTA 

 3  FACS sorting media -  DPBS 1X, 4% FCS 

 Smart-seq2* 
 *Volumes for 100x samples 

 4  Smartseq2 lysis buffer -  1 μl of SUPERase RNase Inhibitor (Invitrogen) 
 19 μl of 0.2% (vol/vol) Triton X-100 (Sigma). 

 5  Smartseq2 annealing mix -  10 μl of 100 μM oligo-dT 
 (see oligonucleotide sequence section 2.1.4: 1) 
 100 μl of 10 mM dNTP mix (ThermoFisher) 
 80 μl of nuclease-free water 

 6  Smartseq2 reverse transcription mix 
 - 

 50 μl of Superscript II RT (Invitrogen) 
 200 μl of 5X Superscript II First Strand Buffer (Invitrogen) 
 50 μl of 100 mM DTT (Invitrogen) 
 25 μl of SUPERase RNAse Inhibitor 
 200 μl of 5M Betaine (Sigma) 
 6 μl of 1 M MgCl2 (Ambion) 
 10 μl of 100 μM TSO 
 (see oligonucleotide sequence section 2.1.4: 2) 
 29 μl of nuclease-free water 

 7  Smartseq2 pre-amplification mix -  1250 μl of 2X KAPA HiFi HotStart Ready Mix (KAPA 
 Biosystems) 
 25 μl of 10 μM IS PCR primer 
 (see oligonucleotide sequence section 2.1.4: 3) 
 225 μl of nuclease-free water 

 10X Genomics* 
 *Volumes for 1x sample 

 8  LT 10X GEM mix - 
 (HT mix volumes) 

 18.8 μl  (41.25 μl)  RT Reagent B (10X PN: 2000165,  PN: 
 2000435  ) 
 2.4 μl  (5.15 μl)  Template Switch Oligo (10X PN: 3000228) 
 2 μl  (4.25 μl)  Reducing Agent B (10X PN: 2000087) 
 8.7 μl  (12.95 μl)  RT Enzyme C (10X PN: 2000102,  PN: 
 2000436  ) 

 9  10X Elution solution -  98 μl EB Buffer (Qiagen) 
 1 μl 10% Tween 20 (Bio Rad) 
 1 μl Reducing Agent B (10X PN: 2000087) 

 10  10X cDNA amplification mix -  50 μl Amplification Mix (10X PN: 2000103,  PN: 2000440  ) 
 15 μl cDNA primers (10X PN: 2000089) 
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 11  10X Fragmentation, end repair and 
 A-tailing mix - 

 5 μl Fragmentation buffer (10X PN: 2000091) 
 10 μl Fragmentation enzyme (10X PN: 2000104,  PN: 
 2000090  ) 
 25 μl of EB buffer (Qiagen) 

 12  10X ligation mix -  20 μl 10X ligation buffer (10X PN: 2000092) 
 10 μl DNA ligase (10X PN: 220131,  PN: 220110  ) 
 20 μl Adaptor oligos (10X PN: 2000094) 

 PacBio Iso-Seq* 
 *  Volumes for 1x sample 

 13  Repair and A-tailing mix -  8 μl Repair buffer (PacBio 102-182-700) 
 4 μl End repair mix (PacBio 102-182-700) 
 2 μl DNA repair mix (PacBio 102-182-700) 

 14  Ligation mix -  30 μl Ligation mix (PacBio 102-182-700) 
 1 μl Ligation enhancer (PacBio 102-182-700) 

 15  Nuclease mix -  5 µl Nuclease buffer (PacBio 102-182-700) 
 5 µl Nuclease mix(PacBio 102-182-700) 

 PacBio MAS-seq* 
 *  Volumes for 1x sample 

 16  TSO PCR mix -  25 µl MAS PCR mix (2X) (PacBio 102-692-800) 
 5 µl MAS capture primer Fwd (PacBio 102-693-300) 
 5 µl MAS capture primer Rev (PacBio 102-693-900) 

 17  MAS PCR primer mix -  125 µl Nuclease-free water 
 212.5 µl MAS PCR mix (2X) (PacBio 102-692-800) 

 18  MAS primer digestion mix -  1.5 µl MAS adapter A Fwd (PacBio 102-695-800) 
 1.5 µl MAS adapter Q Rev (PacBio 102-695-900) 
 20 µl MAS ligation additive (PacBio 102-696-400) 

 19  MAS ligase mix -  10 µl MAS Ligase buffer (PacBio 102-693-100) 
 10 µl Ligase (PacBio 102-693-000) 

 20  DNA damage repair mix -  6 μl Repair buffer (PacBio 102-696-100) 
 2 μl DNA repair mix (PacBio 102-696-000) 

 21  Nuclease treatment mix -  5 μl Nuclease buffer (PacBio 102-696-300) 
 5 μl Nuclease mix (PacBio 102-696-200) 
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 2.1.3 Kits & General Reagents 

 No  Kit name  Product number  Source 

 1  SPRIselect Reagent Kit  B23318  Beckman Coulter, Inc 

 2  Buffer EB  19086  Qiagen 

 3  Glycerin (glycerol), 50% (v/v) 
 Aqueous Solution 

 3290-32  Ricca Chemical Company 

 4  Low TE Buffer (10 mM Tris-HCl 
 pH 8.0, 0.1 mM EDTA) 

 12090-015  Thermo Fisher Scientific 

 5  Nuclease-free Water  AM9937  Thermo Fisher Scientific 

 6  KAPA Library Quantification Kit 
 for Illumina Platforms 

 KK4824  KAPA Biosystems 

 7  High Sensitivity DNA Kit  5067-4626  Agilent 

 8  Qubit 1x dsDNA HS Assay Kit  Q32854  Thermo Fisher Scientific 

 9  SMRTbell cleanup beads  PacBio 102-158-300  Pacific Biosciences 

 10  MAS-Seq for 10x 3’ 
 concatenation kit 

 PacBio 102-407-900  Pacific Biosciences 

 11  Chromium Next GEM Single Cell 
 3ʹ LT Kit v3.1 

 PN-1000325  10X Genomics 

 12  Chromium Next GEM Single Cell 
 3' HT Kit v3.1 

 PN-1000370  10X Genomics 

 13  Dual Index Kit TT Set A  PN-1000215  10X Genomics 

 14  SMRTbell prep kit 3.0  PacBio 102-182-700  Pacific Biosciences 

 15  PacBio Elution Buffer  PacBio 101-633-500  Pacific Biosciences 

 16  EasySep Mouse Haematopoietic 
 Progenitor Cell 

 19856  Stem Cell Technologies 

 17  Trypan Blue Solution, 0.4%  15250061  Thermo Fisher Scientific 

 18  Femto Pulse gDNA 165 kb 
 analysis kit 

 FP-1002-0275  Agilent 

 19  AMPure XP beads  A63882  Beckman Coulter, Inc 
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 2.1.4 Oligonucleotide sequences 

 No  Oligo name  Sequence (5’-3’)  Source 

 1  Oligo-dT30V 
 * 

 AAGCAGTGGTATCAACGCAGAGTAC(T30)VN  IDT 

 2  TSO oligo 
 (LNA) 

 AAGCAGTGGTATCAACGCAGAGTACATrGrG  Qiagen 

 3  IS PCR 
 * 

 AAGCAGTGGTATCAACGCAGAGT  IDT 

 4  10X cDNA 
 primer (Fwd) 

 CTACACGACGCTCTTCCGATCT  10X Genomics 

 5  10X cDNA 
 primer (Rev) 

 AAGCAGTGGTATCAACGCAGAG  10X Genomics 

 6  10X Adapter 
 Oligos 

 GATCGGAAGAGCACACGTCTGAACTCCAGTCAC 
 TCTAGCCTTCTCG 

 10X Genomics 

 7  Illumina P5 
 (Dual Index 
 Plate TT set 

 A) 

 AATGATACGGCGACCACCGAGATCTACAC  10X Genomics 

 8  Illumina P7 
 (Dual Index 
 Plate TT set 

 A) 

 AAGCAGAAGACGGCATACGAGAT  10X Genomics 

 Smart-seq2*  (Picelli  et al.  , 2014) 
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 2.2 Methods 

 2.2.1 Sample collection 

 Mice 

 C57BL/6  female  mice  were  obtained  from  the  University  of  East  Anglia  under  a  United 

 Kingdom  Home  Office  project  licence  held  by  Dr.  Stuart  Rushworth.  Mice  were  bred  and 

 maintained  in  individually  ventilated  cages  in  conditions  complying  with  the  Code  of  Practice 

 for  the  Housing  and  Care  of  Animals  Bred,  Supplied  or  Used  for  Scientific  Purposes  .  All 

 experiments  as  part  of  this  thesis  were  performed  in  accordance  with  the  regulations  set  by  the 

 United  Kingdom  Home  Office  and  the  Animal  Scientific  Procedures  Act  (1986),  where 

 euthanasia was performed in compliance with  Schedule  1  of the act. 

 2.2.1.1 Platelet depletion experiment 

 A  total  of  6  mice  were  used  for  experiments  presented  in  Chapter  3.  Mice  were  subject  to 

 platelet  depletion  through  intravenous  injection  of  anti-GPIb  antibody  (Emfret  Analytics 

 #R300).  Dr  Jayna  Mistry  performed  tail  vein  injections  under  the  guidance  of  Dr  Stuart 

 Rushworth.  Antibody-induced  thrombocytopenia  was  performed  in  four  mice  by  injections  of 

 anti-GPIb  suspended  in  200  µl  sterile  PBS  at  2  µg/g  average  body  weight  (platelet  depleted 

 samples)  .  Mice's  body  weight  ranged  between  18-24  g  ie.  body  weight  average  of  22  g  was 

 used  for  injections.  Two  mice  were  injected  with  an  equal  dose  of  IgG  control,  also  suspended 

 in  200  µl  sterile  PBS  total  volume  (control  samples).  Mice  were  housed  in  separate  cages  and 

 24  hours  post-injection  whole-blood  samples  were  collected  prior  to  euthanization  by  cardiac 

 puncture to confirm platelet depletion by FACS analysis. 

 To  prepare  blood  samples  for  platelet  quantification,  whole  blood  in  Microvette  EDTA  tubes 

 (Sarstedt  16.444)  was  centrifuged  very  briefly  to  collect  peripheral  blood  at  the  bottom  of  the 

 tubes.  6  µl  of  whole  blood  from  control  samples  was  mixed  with  114  µl  of  platelet  counting 

 mix  (x20  dilution)  (see  section  2.1.3.  Buffers  and  solutions:  1),  and  5  µl  of  platelet  depleted 

 samples  was  mixed  with  5  µl  SPHERO  beads  and  300  µl  of  PBS.  Next  2  µl  of  CD41-PC7 

 antibody  was  added  to  all  samples,  followed  by  brief  vortexing  and  then  incubation  at  4°C  for 

 15  minutes.  After  incubation,  300  µl  of  platelet  counting  mix  was  added  to  samples,  pipette 

 mixed,  and  5  µl  was  transferred  into  new  tubes  with  SPHERO  beads  at  a  1:1  ratio  (5  µl). 

 Platelet  and  bead  quantification  for  each  sample  was  performed  on  the  FACS  Melody  by  gating 

 with  size  (forward  scatter,  FSC)  granularity  (side  scatter,  SSC)  and  CD41  expression  -  ensuring 

 both  platelets  and  beads  were  visible  but  distinct  on  FSC  and  SSC  plots.  This  was  performed  in 
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 triplicates  per  sample,  along  with  unstained  controls  and  CD41-PC7  stained  beads  to  ensure 

 proper voltages for PC7. Data acquisition was performed on a total of 500,000 of events/cells. 

 2.2.1.2 Ageing experiment 

 A  total  of  6  mice  were  used  for  experiments  presented  in  Chapters  4  and  5.  Three  8-10  weeks 

 of  age  (young)  and  three  of  72  weeks  of  age  (aged)  mice,  preserved  in  accordance  with  the 

 regulations  set  by  the  United  Kingdom  Home  Office  and  the  Animal  Scientific  Procedures  Act 

 (1986). 

 Human PBMCs 

 Sample  preparation  of  human  PBMCs  was  performed  by  Charlotte  Utting  and  Lydia  Pouncey. 

 Two  vials  of  frozen  human  peripheral  blood  mononuclear  cells  (PBMCs)  were  obtained  from 

 Stem  Cell  Technologies  (cat:  #70025)  and  stored  in  -80°C  until  used.  Cells  were  isolated  from 

 peripheral  blood  (PB)  leukapheresis  samples  using  density  gradient  separation  and/or  red  blood 

 cell  lysis  using  Institutional  Review  Board  (IRB)-approved  consent  forms  and  protocols. 

 Samples  were  thawed  in  a  water  bath  at  37°C  with  gentle  shaking  and  used  immediately.  The 

 total  volume  per  vial  was  measured  by  aspirating  all  of  the  contents  of  each  vial.  To  determine 

 total  cell  counts  per  sample,  20  μl  of  each  sample  was  mixed  at  1:1  ratio  with  Trypan  blue  and 

 cell  counts  obtained  using  the  Countess  3  automated  cell  counter.  Cell  counting  was  performed 

 three  times  per  sample  to  obtain  an  average  concentration  from  three  readings.  After  cell 

 counting,  the  remaining  volume  per  vial  was  transferred  to  a  50  mL  falcon  tube.  To  capture  any 

 cells  left  in  the  vial,  each  vial  was  rinsed  with  an  equal  volume  of  PBS,  gently  swirled,  and 

 added  to  the  respective  falcon  for  each  sample.  To  wash  cells,  each  falcon  was  supplemented 

 with  PBS  media  until  20  mL  and  then  pelleted  in  a  centrifuge  at  300g  for  10  minutes  at  room 

 temperature.  After  centrifugation  the  supernatant  was  discarded  and  each  pellet  was  gently 

 resuspended  again  in  20  mL  of  PBS  for  a  second  wash.  Using  the  same  conditions,  cells  were 

 pelleted  one  final  time  in  a  centrifuge.  After  this,  most  of  the  supernatant  was  discarded  only 

 this  time  leaving  behind  approximately  2  mL  of  media,  and  cells  were  gently  resuspended  by 

 flicking  each  tube.  To  obtain  a  final  count  of  each  cell  suspension  after  wash  steps,  cells  were 

 re-counted  using  Trypan  blue  on  the  Countess  2  instrument.  Cells  were  also  studied  under  a 

 microscope at x20 magnification to visually inspect the quality of cells. 

 2.2.2 Mouse bone marrow dissection 

 Bone  marrow  was  isolated  from  mouse  spine  and  hind  legs  (femora,  tibiae,  tibiofemoral  joints 

 and  ilia)  following  schedule  one.  Clean  bones  were  crushed  using  sterile  pestles  and  mortars 

 containing  dissection  medium  (see  section  2.1.3.  Buffers  and  solutions:  2).  Cell  suspensions 

 obtained  from  each  mouse  were  filtered  through  70  M  filters  into  50  ml  polypropylene  falcon    µ

 tubes (Eppendorf) and then pelleted by centrifugation at 300 g for 5 minutes at 4°C. 
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 2.2.3 Red blood cell depletion of bone-marrow samples 

 After  discarding  the  supernatant,  pellets  containing  bone-marrow  cells  were  resuspended  in  3 

 ml  of  dissection  medium,  and  4  ml  of  ammonium  chloride  solution  (NH  4  Cl)  was  added  for  red 

 blood  cell  depletion.  The  influx  of  NH  4  Cl  into  erythrocytes  causes  cellular  swelling  and 

 rupture  enabling  white  blood  cells  to  be  isolated  from  whole  blood  marrow.  Samples  were 

 incubated  on  ice  for  10  minutes  and  the  centrifugation  step  was  repeated,  where  after 

 removing the supernatant containing red blood cells, pellets were resuspended in 5 ml of PBS. 

 2.2.4 Enrichment of haematopoietic stem and progenitor cells from bone marrow 

 To  quantify  cell  suspension  concentrations  and  determine  cell  viability  after  red  blood  cell 

 depletion,  samples  were  diluted,  stained  with  Trypan  blue  and  manually  counted  with  a  cell 

 counting  chamber.  To  deplete  lineage-positive  cells,  first  cells  were  incubated  with  Mouse 

 Haematopoietic  Progenitor  Cell  Isolation  Cocktail  and  Rat  Serum  for  15  mins  at  4°C  in  the 

 dark,  then  mixed  with  streptavidin-coated  magnetic  particles  (RapidSpheres™)  and  incubated 

 at  room  temperature  for  a  further  10  mins  (EasySep™  Mouse  Haematopoietic  Progenitor  Cell 

 Isolation  Kit).  Samples  were  supplemented  with  PBS  to  the  recommended  volume  (2.5  ml)  and 

 incubated  at  room  temperature  for  3  mins  on  a  magnet  for  column-free  immunomagnetic 

 separation  (EasySep™  Magnet).  In  this  step,  unwanted  cells  are  targeted  for  removal  with 

 biotinylated  antibodies  directed  against  non-haematopoietic  stem  cells  and  non-progenitor  cells 

 (Table  2.1)  and  streptavidin-coated  magnetic  particles.  The  depleted  cell  suspensions  were 

 poured  into  new  tubes,  the  above  step  was  repeated  once  more  to  capture  any  remaining  desired 

 cells  from  the  original  suspension,  combining  the  first  and  second  fractions  into  a  single  cell 

 suspension tube per sample. 

 2.2.5 Cell staining for fluorescence-activated cell sorting of bone-marrow samples 

 After  lineage  depletion,  cells  were  counted  as  described  above  and  then  resuspended  in  an 

 equimolar  antibody  cocktail  containing  primary  antibodies  for  30  mins  at  4°C  in  the  dark 

 (Table  2.2).  After  incubation,  cells  were  centrifuged  to  remove  excess  antibodies  and 

 resuspended  into  approximately  1  ml  cell  suspension  of  cell  sorting  media  (see  section  2.1.3 

 Buffers and solutions: 3) 
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 Table 2.1.  Lineage cocktail panel 

 Cell surface Marker  Clone  Manufacturer  Catalogue No 

 CD4  REA604  Miltenyi Biotec  130-118-692 

 CD8a  53-6.7  BioLegend  100711 

 CD5  REA421  Miltenyi Biotec  130-106-205 

 Gr-1  REA810  Miltenyi Biotec  130-112-302 

 CD11b (Mac-1)  REA592  Miltenyi Biotec  130-113-810 

 CD45R (B220)  REA755  Miltenyi Biotec  130-110-851 

 Ter119  REA847  Miltenyi Biotec  130-112-914 

 Table 2.2.  Antibody panel used for FACS isolation  of HSC and early Mk progenitors. 

 Antigen  Fluorochrome  Clone  Manufacturer  Catalogue No 

 CD48  Pe-Cy5  HM48-1  Biolegend  103405 

 CD117 (cKit)  PE-vio770  REA791  Miltenyi Biotec  130-111-695 

 Sca1  BV786  D7  BD Biosciences  563991 

 CD150  BV510  TC15-12F12.2  BioLegend  115929 

 Flt3  APC  A2F10  BioLegend  135309 

 CD16/32  APC-Cy7  93  BioLegend  101325 

 CD105  PE  MJ7/18  BioLegend  120407 

 CD41  FITC  MWReg30  BioLegend  133903 

 Lineage cocktail 
 (see Table 2.1) 

 VioBlue  NA  NA  NA 
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 2.2.6 FACS gating strategy for isolating LK Cd150+ single-cells 

 2.2.6.1 Plate-based scRNA-seq experiments 

 To  ensure  a  high  level  of  purity  for  single-cell  RNAseq  flow  cytometry  analysis  and  cell  sorting 

 was  performed  using  the  BD  FACSMelody  cell  sorter  (BD  Biosciences,  San  Jose,  California) 

 according  to  manufacturer’s  instructions.  Viable  LK  (Lin  -  ,  cKit  +  )  single  cells  were  sorted  by 

 gating  forward  and  side  scatter  for  lineage-negative  cKit  +  ,  and  Cd150+  expressing  cells.  Due  to 

 the  rarity  of  stem  cells  in  bone  marrow,  the  gating  was  adapted  for  some  wells  to  include  the 

 Sca-1  marker,  where  Sca-1  low  (LSK  Cd150+)  cells  were  sorted  to  enrich  for  more  immature 

 HSPCs.  To  record  the  levels  of  the  conventional  surface  markers  that  separate  HSCs  and 

 progenitor subpopulations index sorting was utilised for some of the sorted cells. 

 2.2.6.2 10X Genomics experiments 

 After  processing  samples  as  described  above  (see  sections  2.2.2  -  2.2.5),  to  generate  a  sample 

 suspension  concentrated  enough  for  FACS  sorting  a  sufficient  number  of  cells  for  loading  the 

 10X  Genomics  chip,  equal  concentrations  of  each  mouse  cell  suspension  were  pooled  to  create 

 a  single  concentrated  cell  suspension  for  cell  sorting.  Using  the  same  gating  strategy  as  for 

 Smart-seq2  FACS  sorts,  viable  LK  (Lin  -  cKit  +  )  by  gating  forward  and  side  scatter  for 

 lineage-negative  cKit  +  ,  and  Cd150+  expressing  single-cells  were  sorted.  To  enrich  for  more 

 immature  HSPCs,  after  sorting  3600  LK  Cd150+  cells,  a  new  gate  including  the  Sca-1  marker 

 was  created  to  sort  800  Sca-1  low  (LSK  Cd150+)  cells  into  the  same  well.  Cells  were  sorted 

 into  a  single  well  of  a  96-well  plate  containing  7  μl  of  FACS  sorting  media  (see  Buffers  & 

 Solutions  2.1.2,  3).  Each  well  consisted  of  4,400  cells,  with  approximately  80%  coming  from 

 LK  Cd150+  and  20%  LSK  Cd150+  gates.  In  total,  two  wells  were  sorted  for  this  experiment  ie. 

 two technical replicates from the same cell suspension for sample loading. 
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 2.2.7 Single-cell RNAseq 

 Smart-seq2 

 Full-length  RNA-seq  libraries  from  single  cells  were  generated  using  the  Smart-seq2  protocol 

 as  previously  described  (Picelli  et  al.  ,  2014)  .  Reactions  were  performed  in  UV-treated  96-well 

 PCR  plates,  and  all  centrifugation  steps  were  performed  at  4℃  for  1  minute  at  500  g  unless 

 otherwise stated. 

 2.2.7.1 Single-cell lysis 

 Cells  were  sorted  directly  into  wells  containing  2.2  l  Smart-seq2  lysis  buffer  (see  2.1.3  Buffers µ

 and  solutions:  4).  After  sorts  were  completed,  plates  were  centrifuged  and  immediately  stored 

 at -80℃ until processed. All plates were processed within 6 months or less of sorting. 

 2.2.7.2 Reverse transcription and pre-amplification 

 Before  collecting  plates  from  long-term  storage,  the  annealing  and  reverse  transcription  (RT) 

 master  mixes  were  prepared  within  laminar  flow  hoods  and  kept  on  ice  until  used  (see  2.1.3 

 Buffers  and  solutions:  5,  6).  Plates  containing  sorted  cells  were  thawed  on  ice  until  fully 

 defrosted  and  2.2  l  of  annealing  mix  was  added  to  each  well.  Plates  were  then  sealed  and µ

 centrifuged  to  ensure  all  liquid  was  collected  at  the  base  of  wells  and  incubated  for  3  minutes  at 

 72°  C.  Immediately  after  incubation  plates  were  placed  back  onto  ice  for  approximately  2 

 minutes.  For  RT,  5.5  l  RT  mix  was  deposited  into  wells,  plates  were  securely  sealed, µ

 centrifuged, and transferred into the thermocycler for RT using conditions detailed in Table 2.3. 

 Upon  completion  of  RT,  15  l  of  the  PCR  pre-amplification  mix  was  added  to  each  well  (see µ

 2.1.3  Buffers  and  solutions:  7).  Plates  were  then  sealed,  centrifuged,  and  transferred  into  the 

 thermal cycler for PCR pre-amplification using conditions detailed in Table 2.4. 

 Table 2.3.  Thermal cycling programme for Smartseq2*  reverse transcription (RT). 

 Step  Temperature (C°)  Time (min)  Cycles 

 RT and template switching  42  00:90:00  1 

 RNA unfolding  50 

 42 

 00:02:00 

 00:02:00 
 10 

 Completion of RT and template 
 switching 

 Enzyme inactivation  70  00:15:00  1 

 Hold  4  ∞  1 

 *  (Picelli  et al.  , 2014) 
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 Table 2.4.  Thermal cycling programme for Smart-seq2* pre-amplification. 

 Step  Temperature (C°)  Time  Cycles 

 Denaturing  98  00:03:00  1 

 Annealing  98 
 67 
 72 

 00:00:20 
 00:00:15 
 00:06:00 

 21 

 Extend  72  00:05:00  1 

 Hold  4  ∞  1 

 *  (Picelli  et al.  , 2014) 

 After  pre-amplification,  plates  containing  single-cell  cDNA  were  stored  in  -20℃,  or 

 immediately  cleaned  up  using  the  Beckman  Coulter  Biomek  FXP  using  a  1:0.8  ratio  of  sample 

 to  AMPure  XP  beads.  All  samples  were  washed  twice  with  80%  ethanol  and  the  final 

 PCR-purified  cDNA  was  eluted  in  22  l  of  nuclease-free  water,  20  l  of  which  was  transferred    µ µ

 to a new 96-well plate. 

 To  check  the  quality  of  cDNA  libraries,  8-10  single-cell  wells  were  randomly  selected  (as  well 

 as  at  least  one  positive  and  negative  control  well)  from  each  plate  and  assayed  for  both 

 concentration  and  size  distribution  on  the  Qubit  fluorometer  (Qubit  1X  dsDNA  HS  assay  kit) 

 and Agilent 2100 Bioanalyzer system (Agilent High Sensitivity DNA Kit) respectively. 

 2.2.7.3 Library preparation 

 All  Smart-seq2  libraries  were  prepared  using  the  Illumina  NextEra  XT  DNA  Library 

 Preparation  Kit  and  the  Nextera  XT  96-Index  Kit  (384  samples)  according  to  manufacturer’s 

 instructions, optimised to 1/12.5 of the volume of the original protocol. 

 Prior  to  NextEra,  cDNA  was  first  normalised  to  the  recommended  input  concentration  for 

 library  preparation.  After  measuring  the  average  cDNA  concentration  of  single-cell  wells  for 

 each  plate  of  Smart-seq2  described  in  the  previous  step,  aliquots  of  cDNA  were  transferred  into 

 new  96-well  plates  with  a  multichannel  pipette  and  diluted  in  nuclease-free  water  to  generate 

 0.2ng/ μl dilutions for each sample. 

 All  NextEra  liquid  handling  steps  were  automated  using  the  Mosquito  LV  multi-channel  liquid 

 handling  robot  for  accurate  liquid  transfer  at  low  reaction  volumes.  To  enable  this,  a  384-well 

 ‘reagent  plate’  containing  sufficient  volumes  of  all  reagents  to  process  four  96-well  plates  of 

 Smart-seq2  cDNA  (+  10%  overage)  were  aliquoted  into  specific  positions  for  liquid  transfer 

 into  sample  wells.  Robot  tips  were  changed  after  every  liquid  handling  step  to  prevent 
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 cross-contamination  of  samples.  First,  400nL  of  each  sample  was  transferred  from  four  96-well 

 plates  containing  Smart-seq2  cDNA  normalised  to  0.2ng/  μl  into  wells  of  a  384-well  plate  for 

 Nextera  reactions.  To  this,  1.2  μl  of  Tagmentation  mix  (see  table  2.5)  was  transferred  into  all 

 sample  wells  of  the  384  reaction  plate,  after  which  plates  were  immediately  sealed,  centrifuged 

 to  collect  liquid  at  the  base  of  wells,  and  incubated  at  55°C  for  10  minutes  in  a  thermal  cycler 

 for  tagmentation.  In  this  step  Nextera  transposome  tagments  cDNA,  which  is  a  process  that 

 creates short fragments and then tags the DNA with adapter sequences in one step. 

 Immediately  proceeding  tagmentation,  400  nL  of  NT  buffer  was  added  to  all  samples,  mixed, 

 and  incubated  at  room  temperature  for  5  minutes.  This  neutralises  the  reaction  to  prevent  over 

 tagmentation.  After  5  minutes,  1.2  μl  of  PCR  master  mix  along  with  800  nL  of  pre-mixed  i7 

 and  i5  index  primers  were  added  to  each  sample  well  across  the  384-well  plate.  Plates  were 

 then  sealed,  centrifuged  to  collect  liquid  at  the  base  of  wells,  and  incubated  on  a  thermal  cycler 

 with  the  NextEra  Limited-cycle  PCR  programme  (Table  2.6).  This  step  uses  the  adapters  to 

 amplify  the  DNA  whilst  also  adding  index  adapter  sequences  on  both  ends  which  enables 

 dual-indexed sequencing of pooled libraries for Illumina sequencing. 

 Each  96-well  plate  was  pooled  to  generate  a  single  library  per  plate  by  combining  equal 

 volumes  from  each  well.  The  pooled  single-cell  library  underwent  manual  bead  clean-up  using 

 a  1:0.8  ratio  of  sample  to  AMPure  XP  beads  according  to  manufacturer’s  instructions.  All 

 samples  were  washed  twice  with  fresh  80%  ethanol  and  the  libraries  were  eluted  in  20  μl  of 

 nuclease-free water which was transferred to a new 1 ml Eppendorf tube. 

 Table 2.5.  Reagent master mixes to process 384 samples  for Nextera XT library preparation. 

 NextEra master mix  Reagent  Volume of reagent 
 in master mix 

 (384X samples) (μl) 

 Volume of mix 
 per 1X sample 

 (μl) 

 Tagmentation mix  Amplicon tagment mix  59.5  1.2 

 Tagment DNA buffer  110.5 

 NT buffer  Neutralise tagment buffer  17  0.4 

 PCR master mix  Nextera PCR mix  23  1.2 

 Sample index adapters 
 (unique for each 

 sample) 

 Pre-paired i7 and i5 index 
 adapters 

 NA  0.8 
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 Table 2.6.  Nextera PCR amplification thermal cycling programme. 

 Step  Temperature (C°)  Time  Cycles 

 Denaturing  72 
 98 

 00:03:00 
 00:00:30 

 1 

 Annealing  95 
 55 
 72 

 00:00:10 
 00:00:30 
 00:01:00 

 12 

 Extend  72  00:05:00  1 

 Hold  4  ∞  1 

 2.2.7.4 Library quality control and normalisation 

 To  ensure  the  pooled  libraries  (pooled  96-well  plates)  would  be  sequenced  at  equal 

 concentrations  to  generate  an  even  read  distribution  for  all  samples,  libraries  underwent  manual 

 normalisation  to  the  same  concentration  before  volumetric  pooling  of  multiple  plates.  First,  the 

 quality  of  cDNA  libraries  was  assessed  by  determination  of  final  fragment  size  distribution  and 

 concentration  on  an  Agilent  HS  DNA  Bioanalyzer  and  Qubit  fluorometer  respectively.  This 

 step  also  provided  visibility  into  possible  library  issues,  such  as  adapter  dimers  or  unexpected 

 library  sizes.  Libraries  within  300-600  bp  that  met  the  minimum  concentration  requirements  for 

 sequencing were selected for final pooling. 

 The  quantification  of  plate  pools  to  enable  equimolar  pooling  of  multiple  plates  for  sequencing 

 was  performed  using  quantitative  polymerase  chain  reaction  (qPCR)  using  the  Kapa  Library 

 Quantification  Kit  according  to  manufacturer’s  instructions.  In  comparison  to  Qubit  readings, 

 qPCR  quantification  results  in  higher  accuracy  quantification  because  it  only  detects  molecules 

 with  complete  sequencing  adapters  at  both  ends  ie.  the  only  fragments  that  will  successfully 

 generate sequence reads. 

 qPCR  was  performed  at  two  dilutions  per  sample  (1/100  and  1/10,000)  in  triplicates.  Six 

 standards  of  known  concentration,  also  added  in  triplicates,  were  used  for  all  assays  to  generate 

 a  standard  curve  for  accurate  library  quantification.  Calculations  to  obtain  final  total  nanomolar 

 (nM)  readings  for  each  plate  pool  were  performed,  each  pool  was  diluted  to  4  nM  in 

 nuclease-free  water,  and  pooled  at  equal  volumes  to  generate  final  sequencing-ready  libraries, 

 each containing four pooled plates of 96 wells totalling 384 wells per sequencing library. 
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 10X Genomics 

 This  section  describes  the  protocols  implemented  for  10X  Genomics  Single  Cell  3’  library 

 preparation  for  two  sets  of  experiments,  both  presented  in  Chapter  6.  The  methodology  for  both 

 experiments  follow  the  same  workflow  and  are  outlined  below,  where  details  that  differ 

 between the two experiments are mentioned within the text. 

 2.2.7.5 GEM incubation and cDNA generation 

 Mouse  samples  (see  Materials  and  Methods  2.2.6.2)  were  processed  using  the  10X  Genomics 

 Single  Cell  3’  LT  v3.1  kit,  and  PBMC  samples  (see  Materials  and  Methods  2.2.1:  Human 

 PBMCs)  were  processed  using  the  10X  Genomics  Single  Cell  3’  HT  v3.1  kit  according  to 

 manufacturer’s  instructions.  To  prepare  samples  for  loading  at  the  optimal  cell  concentration 

 for  each  experiment,  mouse  LK  Cd150+  cells  were  FACS  sorted  directly  into  the  total  volume 

 of  PBS  to  be  loaded,  and  PBMCs  were  prepared  by  diluting  the  cell  suspension  after  final  cell 

 counting  in  PBS.  ~1000  mouse  single-cells  for  the  LT  and  ~9000  PBMC  cells  for  the  HT  runs 

 were  the  target  number  of  cells  to  capture  for  each  experiment.  A  sample  mixture  was 

 generated  by  combining  10X  GEM  mix  (see  mix  2.1.3  Buffers  and  solutions:  8)  and 

 nuclease-free  water  with  the  volume  of  cell  suspension  containing  ~4000  and  ~15,000  cells 

 respectively.  The  10X  Chromium  NextGEM  chip  (‘L’  10X  PN:  2000414  for  LT  experiment, 

 ‘M’  10X  PN:  2000417  for  HT  experiment)  was  carefully  loaded  with  the  sample  mixture,  and 

 all  unused  wells  of  the  chip  loaded  with  50%  glycerol  solution.  To  complete  chip  assembly, 

 10X  partitioning  oil  and  barcoded  gel  beads  were  pipetted  into  chip  wells  according  to 

 manufacturer’s  instructions,  and  the  chip  loaded  onto  the  10X  Chromium  Controller  for  GEM 

 generation.  Upon  completion  of  the  GEM  generation,  the  GEM  suspension  was  carefully 

 transferred  into  a  tube  strip  placed  on  ice,  and  then  immediately  incubated  in  a  thermal  cycler 

 with  the  thermal  cycling  programme  for  GEM  reverse  transcription  (RT)  (Table  2.7).  In  this 

 step,  the  gel  bead  is  dissolved,  primers  are  released,  and  the  co-partitioned  cell  is  lysed  to 

 enable  the  cell  lysate  and  RT  reagents  to  mix  and  produce  barcoded,  full-length  cDNA  from 

 poly-adenylated mRNA. 

 Table 2.7.  Thermal cycling programme for 10X GEM reverse  transcription incubation. 

 Step  Temperature  Time 
 1  53°C  00:45:00 
 2  85°C  00:05:00 
 3  4°C  Hold 
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 2.2.7.6 Post GEM-RT cleanup and cDNA amplification 

 After  GEM  RT  incubation,  125  μl  10X  recovery  agent  was  added  to  the  samples  and  incubated 

 at  room  temperature  for  2  minutes  until  biphasic  separation.  The  separated  recovery  agent  was 

 carefully  removed,  and  the  remaining  aqueous  phase  containing  first-strand  cDNA  from  the 

 post-GEM-RT  mixture,  which  includes  leftover  reagents  and  primers,  was  bead  purified  using 

 10X  Dynabeads  MyOne  SILANE  (10X  PN:  2000048)  and  10X  magnetic  separator  according 

 to  manufacturer’s  instructions.  Samples  were  washed  twice  with  80%  ethanol  and  purified 

 products  eluted  in  35  μl  10X  Elution  Solution  (see  2.1.3  Buffers  and  solutions:  9).  For 

 amplification  of  cDNA,  samples  were  mixed  with  65  μl  of  10X  cDNA  amplification  mix  (see 

 2.1.3  Buffers  and  solutions:  10),  pipette  mixed,  and  incubated  in  a  thermal  cycler  with  the 

 cDNA  amplification  programme  according  to  manufacturer’s  instructions  (Table  2.8).  This 

 generates  barcoded,  full-length  cDNA  at  sufficient  mass  for  library  construction.  The  amplified 

 cDNA  samples  were  then  cleaned  up  using  SPRIselect  beads  at  0.6:1  SPRIselect  reagent  to 

 sample  ratio,  to  remove  excess  amplification  reagents.  Samples  were  washed  twice  with  80% 

 ethanol  and  eluted  in  40  μl  of  EB  buffer  (Qiagen)  .  To  assess  the  quality  of  the  final  cDNA,  the 

 concentration  was  determined  using  a  Qubit  fluorometer  and  size  distribution  was  determined 

 on a Bioanalyzer High Sensitivity chip. 

 Table 2.8.  Thermal cycling programme for 10X cDNA  amplification. 

 Step  Temperature  Time  Cycles 
 Denaturing  98°C  00:03:00  1 

 Annealing 
 98°C 
 63°C 
 72°C 

 00:00:15 
 00:00:20 
 00:01:00 

 12 

 Extension  72°C  00:01:00  1 
 Hold  4°C  ∞  1 

 2.2.7.7 cDNA Fragmentation, End Repair and A-tailing 

 After  ensuring  successful  cDNA  generation,  10  μl  of  cDNA  generated  with  the  LT  experiment 

 and  20  μl  of  cDNA  generated  with  the  HT  experiment  was  used  to  generate  sequencing  ready 

 libraries.  For  this,  enzymatic  fragmentation  and  size  selection  are  performed  to  optimise  the 

 cDNA  amplicon  size,  where  TruSeq  Read  2  (read  2  primer  sequence)  is  added  via  End  Repair, 

 A-tailing.  First,  cDNA  was  transferred  to  a  new  tube  strip  and  mixed  with  10X  fragmentation 

 end  repair  and  A-tailing  mix  (see  2.1.3  Buffers  and  solutions:  11).  This  was  then  incubated  on  a 

 pre-cooled  thermal  cycler  on  the  fragmentation,  end  repair  and  A-tailing  programme  (Table 

 2.9).  After  this,  samples  were  bead  purified  for  double-sided  size  selection  using  SPRIselect 

 beads,  where  samples  were  mixed  at  0.6:1  bead-to-sample  ratio,  then  after  5  minutes  and 
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 magnetic  separation,  the  supernatant  was  transferred  to  a  new  tube  strip  (leaving  behind  larger 

 fragments)  and  mixed  with  SPRIselect  reagent  at  0.8:1  bead  to  sample  ratio.  Samples  were 

 washed  twice  with  80%  ethanol  and  fragments  on  beads  were  eluted  in  50  μl  of  EB  buffer 

 (while smaller fragments are discarded). 

 Table 2.9.  Thermal cycling programme for 10X fragmentation,  end repair and A-tailing. 

 Step  Temperature  Time 
 Pre-cool block  4°C  ∞ 
 Fragmentation  32°C  00:05:00 

 End Repair and A-tailing  65°C  00:30:00 
 Hold  4°C  ∞ 

 2.2.7.8 Adaptor ligation and sample index PCR 

 To  prepare  final  libraries,  Illumina  P5,  P7,  i7  and  i5  sample  indexes  are  ligated  to  amplicons 

 through  PCR.  For  this,  50  μl  sample  post-double-sided  size  selection  was  mixed  with  50  μl  10X 

 ligation  mix  (see  2.1.3  Buffers  and  solutions:  11)  and  incubated  in  a  thermal  cycler  for  15 

 minutes  at  20  °C.  Post  ligation,  samples  were  purified  using  SPRIselect  magnetic  beads  at  0.8:1 

 bead-to-sample  ratio.  Samples  were  washed  twice  with  80%  ethanol  and  eluted  in  30  μl  of  EB 

 buffer.  To  add  sample  index  sets,  50  μl  of  10X  amplification  solution  (10X  PN:  2000103)  was 

 added  to  the  sample  along  with  20  μl  of  an  individual  Dual  Index  TT  Set  A  (10X  PN:  3000431) 

 and  incubated  on  a  thermal  cycler  with  the  sample  index  PCR  programme  (Table  2.10).  After 

 sample  indexing,  PCR  libraries  again  underwent  double-sided  size  selection,  first  at  0.6:1  then 

 0.8:1  bead-to-sample  ratio  to  remove  large  and  smaller  fragments  respectively.  Samples  were 

 washed  twice  with  80%  ethanol  and  final  sequencing-ready  libraries  eluted  in  35  μl  EB  buffer. 

 Libraries were stored at -20°C until sequencing. 

 Table 2.10.  Thermal cycling programme for 10X sample  index PCR. 

 Step  Temperature  Time  Cycles 
 Denaturing  98°C  00:00:45  1 

 Annealing 
 98°C 
 54°C 
 72°C 

 00:00:20 
 00:00:30 
 00:00:20 

 16 

 Extension  72°C  00:01:00  1 
 Hold  4°C  ∞  1 
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 2.2.8 PacBio Iso-Seq library preparation 

 2.2.8.1 Sample selection 

 cDNA  generated  from  young  and  aged  single-cells  for  Smart-seq2  (see  Methods  sections 

 2.2.7.1  -  2.2.7.2)  was  used  to  obtain  material  for  Iso-Seq  library  preparation.  This  was  achieved 

 using  results  from  clustering  short-read  scRNA-seq  data  of  cells  from  the  Smart-seq2 

 experiment  in  Chapter  4.  To  do  this,  after  clustering  the  cell  identities  (sample  names)  of  cells 

 classified  as  LT-HSCs  and  HSCs,  annotated  based  on  the  expression  of  canonical  markers  in  the 

 short-read  data,  were  extracted  into  two  lists.  Each  list  consisted  of  the  cell  identities  of  cells 

 from  young  and  old  mice,  along  with  the  well  and  plate  ID  for  each  cell.  The  96-well  plates 

 containing  purified  cDNA  generated  with  Smart-seq2  were  removed  from  -20  °C  storage, 

 thawed  on  ice,  then  centrifuged  briefly  to  collect  cell  volumes  at  the  bottom  of  all  wells.  Using 

 the  two  lists  of  cells  and  their  well  positions  in  each  plate,  two  pools  were  created  in  separate 

 1.5  ml  Eppendorfs  by  careful  aspiration  of  10  μl  from  each  listed  HSC  well  based  on  mouse  age 

 resulting  in  two  mini-bulk  pools  of  cDNA  from  single-cells  from  either  young  (34  cells)  or 

 aged  mice  (46  cells).  The  resulting  two  samples  were  measured  for  cDNA  concentration  using 

 a  Qubit  fluorometer  and  size  distribution  was  measured  on  a  Bioanalyzer  in  order  to  confirm 

 the  amount  of  cDNA  available  in  each  pool  to  proceed  with  Iso-Seq  library  preparation 

 (minimum 160 ng). 

 2.2.8.2 cDNA purification 

 Iso-seq  libraries  were  prepared  using  the  PacBio  SMRTbell  prep  kit  3.0  (PacBio  102-182-700). 

 After  pooling  libraries  and  performing  initial  quality  control,  libraries  were  first  purified  using 

 Ampure  XP  beads  at  a  1:1  bead-to-sample  ratio  to  remove  traces  of  primer  fragments  from 

 Smart-seq2  cDNA  and  also  to  concentrate  each  pool  into  the  required  input  volume  for 

 SMRTbell  prep.  Samples  were  washed  twice  with  freshly  prepared  80%  ethanol  and  eluted  in 

 47  µl  of  low  TE  buffer.  Final  cDNA  concentration  post-purification  was  measured  on  a  Qubit 

 fluorometer and size distribution was measured on a Bioanalyzer.. 

 2.2.8.3 Repair and A-tailing 

 Purified  cDNA  was  then  mixed  with  14  µl  Repair  and  A-tailing  mix  (see  2.1.3  Buffers  and 

 solutions:  13).  The  reaction  of  60  µl  was  pipette  mixed  thoroughly,  briefly  centrifuged  to 

 collect  all  liquid  and  incubated  in  a  thermal  cycler  with  the  Repair  and  A-tailing  programme 

 (Table 2.11). 
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 Table 2.11.  Repair and A-tailing  thermal cycling programme. 

 Step  Temperature  Time  Cycles 
 Repair  37°C  00:30:00  1 

 A-tailing  65°C  00:05:00  1 

 Hold  4°C  ∞  1 

 2.2.8.4 Adapter ligation 

 To  ligate  PacBio  adapters  which  enable  SMRT  sequencing,  4  μl  of  SMRTbell  adapter 

 (non-barcoded)  was  added  to  each  sample  from  the  previous  step  along  with  31  μl  ligation  mix 

 (see  2.1.3  Buffers  and  solutions:  14).  Each  sample  was  pipette  mixed  thoroughly  and 

 centrifuged  briefly  to  collect  all  liquid  and  then  incubated  on  a  thermal  cycler  at  20°C  for  30 

 minutes.  After  adapter  ligation,  each  sample  was  bead  purified  with  124  μl  SMRTbell  cleanup 

 beads  (1.3X)  according  to  manufacturer’s  instructions.  Samples  were  first  mixed  with  beads, 

 incubated  at  room  temperature  for  10  minutes  then  placed  in  a  magnetic  separation  rack  until 

 beads  separate  fully  from  the  solution  and  the  supernatant  discarded.  Beads  were  washed  twice 

 with freshly prepared 80% ethanol, and eluted in 40 µl of elution buffer (PacBio 101-633-500). 

 2.2.8.5 Nuclease treatment 

 For  nuclease  treatment  of  the  final  Iso-Seq  libraries,  10  µl  of  nuclease  mix  (see  2.1.3  Buffers 

 and  solutions:  15)  was  added  to  each  sample,  thoroughly  pipette  mixed  and  briefly  centrifuged 

 to  collect  all  liquid.  Samples  were  then  incubated  on  a  thermal  cycler  at  37°C  for  15  minutes. 

 After  15  minutes,  samples  were  finally  bead  purified  with  65  μl  SMRTbell  cleanup  beads 

 (1.3X)  according  to  manufacturer’s  instructions.  Samples  were  first  mixed  with  beads, 

 incubated  at  room  temperature  for  10  minutes  then  placed  in  a  magnetic  separation  rack  until 

 beads  separate  fully  from  the  solution  and  the  supernatant  discarded.  Beads  were  washed  twice 

 with  freshly  prepared  80%  ethanol,  and  final  libraries  were  eluted  in  15  µl  of  elution  buffer 

 (PacBio  101-633-500).  Final  Iso-Seq  libraries  were  assessed  by  measuring  the  concentration 

 and  size  distribution  of  each  cDNA  sample  with  a  Qubit  Fluorometer  and  Bioanalyzer 

 respectively. Final SMRTbell libraries were stored at -20°C until sequencing. 
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 2.2.9 MAS-seq library preparation 

 Preface:  MAS-seq  is  a  newly  released  library  preparation  approach  for  high-throughput 

 long-read  transcriptome  sequencing  by  PacBio  collaboratively  developed  with  Dr  Aziz 

 Al’Khafaji  et  al.  of  the  Broad  Institute  (Al’Khafaji  et  al.  ,  2021)  .  This  novel  method  uses 

 intramolecular  multiplexing  to  maximise  the  yield  of  PacBio  sequencing  of  cDNA  libraries 

 prepared  with  a  10x  Genomics  kit  through  the  concatenation  of  multiple  cDNA  molecules  into 

 a large library fragment. 

 MAS-seq  library  preparation  of  mouse  samples  generated  by  Anita  Scoones  using  the  10X 

 Genomics  Single  Cell  3’  LT  v3.1  kit  was  performed  by  Dr  Eirini  Lampraki  of  PacBio. 

 MAS-seq  preparation  of  PBMC  cDNA  generated  using  the  10X  Genomics  Single  Cell  3’  HT 

 v3.1 kit was performed by Ashleigh Lister and Lydia Pouncey. 

 2.2.9.1 cDNA sample input 

 cDNA  products  made  using  the  10X  Genomics  Single  Cell  3’  LT  v3.1  kit  with  FACS  sorted 

 mouse  Lin-  cKit+  Cd150+  cells  (see  2.2.7.1  -  2.2.7.2),  along  with  cDNA  products  made  using 

 the  10X  Genomics  Single  Cell  3’  HT  v3.1  kit  with  PBMC  samples  (see  2.2.8.1  -  2.2.8.2)  were 

 first  thawed  on  ice  from  -20  °C  storage.  After  mixing  samples  briefly  and  centrifuging  to  collect 

 all  the  liquid  all  samples  were  evaluated  using  a  Qubit  fluorometer  and  Bioanalyzer  to 

 determine  sample  concentration  and  size  distribution.  Aliquots  were  taken  from  each  sample, 

 and normalised to 15 ng in EB buffer (Qiagen). 

 2.2.9.2 TSO artefact depletion 

 First  a  PCR  was  performed  to  generate  biotinylated  DNA  fragments  to  enable  the  removal  of 

 TSO  priming  artefacts  generated  during  10X  cDNA  synthesis.  To  do  this,  up  to  15  µl  of  each 

 library  was  combined  with  30  µl  TSO  PCR  master  mix  in  a  tube  strip  tube  (see  2.1.3  Buffers 

 and  solutions:  16),  and  the  overall  reaction  volume  was  supplemented  with  nuclease-free  water 

 to  total  50  µl.  Each  sample  was  pipette  mixed  and  briefly  centrifuged  to  collect  all  liquid.  The 

 tube  strip  was  then  incubated  on  a  thermal  cycler  with  the  TSO  PCR  programme  (Table  2.12). 

 After  the  PCR,  each  cDNA  sample  was  purified  using  SMRTbell  cleanup  beads  (PacBio 

 102-158-300)  at  a  1.5:1  bead-to-sample  ratio.  Beads  were  pipette-mixed  with  samples 

 thoroughly,  and  incubated  for  10  minutes  at  room  temperature  before  magnetic  separation.  The 

 supernatant  was  removed  without  disturbing  beads,  and  beads  were  washed  twice  with  80% 

 ethanol.  Purified  samples  were  eluted  in  42  µl  of  EB.  Finally,  sample  concentration  was 

 measured on a Qubit fluorometer. 
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 Next,  the  removal  of  DNA  fragments  containing  TSO  artefacts  was  performed  using  MAS 

 capture  beads.  MAS  capture  beads  (PacBio  102-428-400)  were  prepared  by  adding  10  µl  of 

 resuspended  beads  per  sample  to  a  tube  strip  placed  on  a  magnet.  Upon  magnetic  separation, 

 the  supernatant  was  removed  and  40  µl  of  bead  binding  buffer  was  gently  used  to  resuspend  the 

 beads.  This  was  discarded,  and  repeated  once  more  off  the  magnet,  where  the  beads 

 resuspended  in  40  µl  binding  buffer  were  transferred  to  PCRs  tubes.  40  µl  of  samples  were 

 combined  with  beads  at  a  1:1  ratio  and  mixed  carefully  with  wide  bore  tips  and  incubated  at 

 room  temperature.  After  15  minutes,  the  tube  strip  was  placed  on  a  magnet  and  the  supernatant 

 removed.  Beads  were  washed  twice  with  MAS  bead  washing  buffer,  and  once  with 

 nuclease-free  water,  before  the  MAS  bead-DNA  complex  was  finally  resuspended  in  40  µl  EB 

 buffer.  To  cleave  the  captured  DNA  products  from  the  MAS  beads,  2  µl  MAS  enzyme  was 

 added  to  samples,  pipette  mixed  and  briefly  spun  to  collect  liquid.  Samples  were  then  incubated 

 on a thermal cycler for 30 minutes at 37  °C for TSO  artefact removal. 

 Samples  were  purified  post-TSO  artefact  removal  using  SMRTbell  cleanup  beads  at  1.5:1 

 beads-to-sample  ratio  as  previously  described.  Beads  were  washed  twice  whilst  on  the  magnet 

 with  80%  ethanol,  and  the  final  cDNA  products  were  eluted  in  46  µl  EB  buffer  and  transferred 

 to  a  fresh  tube  strip  .  Final  cDNA  yield  post-TSO  artefact  depletion  was  measured  on  a  Qubit 

 fluorometer. 

 Table 2.12.  TSO PCR thermal cycling programme. 

 Step  Temperature  Time  Cycles 
 Denaturing  98°C  00:03:00  1 

 Annealing 
 98°C 
 65°C 
 72°C 

 00:00:20 
 00:00:30 
 00:04:00 

 5 

 Extension  72°C  00:05:00  1 
 Hold  4°C  ∞  1 

 2.2.9.3 MAS Primer PCR 

 To  generate  DNA  fragments  containing  orientation-specific  MAS  segmentation  adapter 

 sequences,  16  parallel  cDNA  amplification  reactions  with  MAS  primers  were  performed.  This 

 was  achieved  by  first  combining  45  µl  purified  cDNA  from  the  previous  step  with  337.5  µl 

 MAS  PCR  primer  mix  (see  2.1.3  Buffers  and  solutions:  17)  on  ice.  22.5  µl  of  this  MAS  PCR 

 primer  mix  containing  cDNA  was  arrayed  across  16  tubes  per  sample  being  processed.  To  each 

 of  the  16  tubes  2.5  µl  of  MAS  pre-mixed  primers  were  added  in  the  order  shown  in  Table  2.13 

 to  total  final  volumes  of  25µl  per  tube.  Each  sample  was  pipette  mixed  and  briefly  spun  to 

 collect liquid, then incubated on a thermal cycler on the MAS PCR programme (Table 2.14). 
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 Table 2.13.  MAS assay PCR primer sets 

 Reaction  MAS primer premix set  PacBio Reagent Code 

 1  MAS primers premix A  102-694-000 

 2  MAS primers premix B  102-694-100 

 3  MAS primers premix C  102-694-200 

 4  MAS primers premix D  102-694-300 

 5  MAS primers premix E  102-694-400 

 6  MAS primers premix F  102-694-500 

 7  MAS primers premix G  102-694-600 

 8  MAS primers premix H  102-694-700 

 9  MAS primers premix I  102-694-800 

 10  MAS primers premix J  102-694-900 

 11  MAS primers premix K  102-695-000 

 12  MAS primers premix L  102-695-100 

 13  MAS primers premix M  102-695-300 

 14  MAS primers premix N  102-695-500 

 15  MAS primers premix O  102-695-600 

 16  MAS primers premix P  102-695-700 

 Table 2.14.  MAS PCR thermal cycling programme. 

 Step  Temperature  Time  Cycles 
 Denaturing  98°C  00:03:00  1 

 Annealing 
 98°C 
 68°C 
 72°C 

 00:00:20 
 00:00:30 
 00:04:00 

 9 

 Extension  72°C  00:05:00  1 
 Hold  4°C  ∞  1 
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 2.2.9.4 Pooling and MAS array formation 

 The  entire  volume  of  all  16  reactions  were  pooled  into  a  single  1.5ml  LoBind  Eppendorf  tube, 

 and  purified  with  SMRTbell  cleanup  beads  at  1.5:1  beads  to  sample  ratio  as  previously 

 described.  Sample-bound  beads  were  washed  twice  with  80%  ethanol  and  the  final  purified 

 product  was  eluted  in  50  µl  of  EB  buffer.  The  final  yield  of  cDNA  post  MAS  array  PCR  was 

 measured  on a Qubit fluorometer to ensure sufficient  material for ligation. 

 To  create  single-stranded  extensions  to  enable  directional  assembly  of  cDNA  segments  into  a 

 linear  array  PCR  amplified  cDNA  fragments  were  treated  with  MAS  enzyme.  This  was 

 achieved  by  adding  10  µg  of  sample  from  the  previous  step  in  47  µl  EB  to  a  0.2  ml  PCR  tube 

 with  23  µl  of  MAS  primer  digestion  and  20  µl  MAS  ligase  mix  (see  2.1.3  Buffers  and 

 solutions:  18  and  19).  The  reaction  volumes  were  pipette  mixed,  briefly  spun  to  collect  liquid, 

 and Eppendorfs incubated for 1hr at 42  °C for ligation. 

 After  ligation  reactions  were  bead  purified  again  using  SMRTbell  cleanup  beads  at  1.2:1  beads 

 to  sample  ratio  as  previously  described.  Sample-bound  beads  were  washed  twice  with  80% 

 ethanol,  and  purified  ligated  cDNA  product  was  eluted  in  43  µl  EB  buffer.  MAS  array  yield 

 post-ligation was measured  on a Qubit fluorometer. 

 2.2.9.5 DNA damage repair and nuclease treatment 

 In  a  new  PCR  strip  tube,  5  µg  of  MAS  array  in  EB  buffer  was  combined  with  8  µl  of  DNA 

 damage  repair  mix  (see  2.1.3  Buffers  and  solutions:  20),  pipette  mixed  and  briefly  spun  to 

 collect  liquid.  Samples  were  incubated  at  37  °C  for  30  minutes.  After  incubation,  reactions  were 

 bead  purified  again  using  SMRTbell  cleanup  beads  at  a  1.2:1  beads-to-sample  ratio  as 

 previously  described.  Sample-bound  beads  were  washed  twice  with  80%  ethanol,  and  purified 

 ligated  cDNA  product  was  eluted  in  40  µl  EB  buffer.  For  nuclease  treatment,  10  µl  of  nuclease 

 treatment  mix  (see  2.1.3  Buffers  and  solutions:  21)  was  added  to  each  sample,  pipette  mixed, 

 and  briefly  spun  to  collect  liquid.  Samples  were  then  incubated  at  37  °C  for  1  hour  on  a  thermal 

 cycler. 

 For  the  final  cleanup  of  MAS  libraries,  samples  were  purified  with  SMRTbell  cleanup  beads  at 

 a  1.2:1  beads-to-sample  ratio  as  previously  described.  Samples  were  washed  twice  with  80% 

 ethanol,  and  final  MAS-seq  products  were  eluted  in  20  µl  EB  buffer.  To  determine  final 

 reaction  yield,  sample  concentration  and  size  distribution  were  determined  using  a  Qubit 

 fluorometer  and  Femto  Pulse  System  respectively.  SMRTbell  MAS  libraries  were  stored  at 

 -20  °C until sequencing. 
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 2.2.10 Sequencing parameters 

 2.2.10.1 Smart-Seq2 libraries 

 All  Smart-Seq2  libraries  were  sequenced  on  the  NovaSeq  6000  using  SP  flow  cells  with  150bp 

 PE  reads.  Each  Nextera  library  of  384  pooled  single  cells  was  submitted  at  approximately  4 

 nM, sequenced on one SP lane to generate approximately 1M reads per cell on average. 

 2.2.10.2 10X Genomics libraries 

 Mouse derived LK Cd150+ libraries from 10X Genomics Single Cell 3ʹ LT Kit v3.1 

 Libraries  generated  from  mouse  single  cells  with  the  10X  Single  Cell  3ʹ  LT  kit  were  sequenced 

 on  1  lane  of  the  MiSeq  v3  flow  cell  with  28-10-10-90  configuration  to  generate  22  million 

 reads per lane for each direction sequenced (3.3 Gb sequencing data). 

 Human PBMC libraries from 10X Genomics Single Cell 3ʹ HT Kit v3.1 

 Libraries  generated  from  human  PBMCs  with  the  10X  Single  Cell  3ʹ  HT  kit  were  sequenced  on 

 1  lane  of  the  NovaSeq  v1.5  with  28-10-10-90  configuration  to  generate  28K  reads  per  cell  for 

 each direction sequenced. 

 2.2.10.3 Iso-seq libraries 

 Mouse HSC Iso-Seq libraries 

 Libraries  were  sequenced  following  PacBio  recommendations  for  Iso-Seq  libraries. 

 Approximately  5  nM  of  each  library  was  submitted  for  sequencing  on  two  SMRT  cells  of  the 

 PacBio  Sequel  II  (8M,  v2)  with  a  30hr  movie  to  generate  3M  polymerase  reads,  and  an 

 expected yield of 140 Gb per SMRT cell. 

 MAS-seq libraries 

 MAS-seq  libraries  were  sequenced  following  PacBio  recommendations  for  MAS-seq  libraries. 

 Approximately  5  nM  of  each  library  was  submitted  for  sequencing  on  4  SMRT  cells  of  the 

 PacBio  Sequel  IIe  (8M,  v2)  with  a  30  hr  movie.  Sequel  II  Binding  kit  3.2  and  a  2-hour 

 pre-extension  time  was  used  for  these  libraries  as  recommended  by  the  manufacturer  to 

 generate at least 3.5M polymerase reads per sample. 
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 Table 2.15.  Summary of experiments presented in this  thesis. 

 Experiment  Species  Sample  Experimental 
 Condition 

 Cell isolation 
 approach 

 Library 
 preparation 

 method 

 Cells per 
 experiment 

 Sequencing 
 method 

 Chapter(s) 
 featured 

 1  Mus musculus 
 (n = 6) 

 Single-cells 
 (Lin  -  cKit  +  Cd150+) 

 Platelet 
 depletion vs 

 Control 

 FACS  Smart-Seq2 
 NextEra 

 1288  Illumina  3 

 2  Mus musculus 
 (n = 6) 

 Single-cells 
 (Lin  -  cKit  +  Cd150+) 

 Young vs old  FACS  Smart-Seq2 
 NextEra 

 672  Illumina  4 

 3  Mus musculus 
 (from experiment 2) 

 cDNA 
 (Smart-Seq2 cDNA) 

 Young vs old  HSCs pooled based 
 on single-cell 
 clustering of 
 Experiment 2 

 Iso-Seq 
 SMRTbell prep 

 NA  PacBio  5 

 4  Mus musculus 
 (n = 2) 

 Single-cells 
 (Lin  -  cKit  +  Cd150+) 

 NA  FACS and 
 10X Genomics 

 10X Genomics 
 Single Cell 3'  LT 

 and MAS-seq 

 73  Illumina 
 PacBio 

 5 

 5  Mus musculus 
 (n = 2) 

 Whole bone-marrow 
 suspension 

 NA  10X Genomics  10X Genomics 
 Single Cell 3'  LT 

 and adaptation of 
 HITscIso-Seq 

 1040  Illumina 
 PacBio 

 5 

 6  Homo sapiens 
 (n = 2) 

 Peripheral blood 
 mononuclear cells 

 (PBMCs) 

 NA  10X Genomics  10X Genomics 
 Single Cell 3  '  HT 

 and MAS-seq 

 >12,000  Illumina 
 PacBio 

 5 

 87 



 2.3 Computational analysis 

 For all computational packages mentioned, versions and citations are detailed Table 2.16. 

 Smart-seq2 scRNA-seq data pre-processing pipeline 

 Single-cell  RNAseq  Smart-seq2  data  preprocessing  was  performed  by  Anita  Scoones  using  the 

 ScOmix: Integrated Single-cell analysis pipeline  developed  by Matthew Madgwick. 

 2.3.1 Genome alignment 

 Raw  FASTQ  paired-end  sequencing  reads  were  aligned  using  the  universal  RNA-seq  STAR 

 aligner  (Dobin  et  al.  ,  2013)  to  the  mouse  reference  genome  version  M23  (GRCm38.p6) 

 obtained  from  GENCODE  (Frankish  et  al.  ,  2019)  using  annotations  extracted  from  the  GTF  file 

 for  that  genome.  Pre-alignment  statistics  were  obtained  from  the  raw  sequences  using  FASTQC 

 (Andrews,  2010).  These  results  were  aggregated  together  with  additional  post-alignment 

 quality  control  summary  statistics  using  MultiQC  (Ewels  et  al.  ,  2016)  the  read  quality  and 

 alignment scores against the reference genome. 

 2.3.2 Gene count quantification 

 BAM  files  of  mapped  sequence  reads  were  processed  using  SamTools  (Li  et  al.  ,  2009)  .  For 

 quantification,  reads  were  annotated  (vM23q)  with  genomic  features  (as  genes,  junctions, 

 exons,  promoters,  gene  bodies,  genomic  bins  and  chromosomal  locations)  and  counted  using 

 the  general-purpose  featureCounts  (Liao,  Smyth  and  Shi,  2014)  summarisation  program  for 

 read  count  quantification.  Gene  expression  matrices  containing  the  counts  of  unique  RNA 

 molecules  that  mapped  to  each  gene  ID  (rows)  for  each  cell  (columns)  were  created  for  each 

 sample plate of cells sequenced. 
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 10X Genomics scRNA-seq data preprocessing pipeline 

 10X  Genomics  data  pre-processing  was  performed  by  Dr  Yuxuan  Lan  using  the  CellRanger 

 (  https://github.com/10XGenomics/cellranger  )  analysis  pipelines  for  Chromium  single-cell  data 

 analysis. 

 2.3.3 10X Genomics data demultiplexing 

 First,  raw  base  call  (BCL)  files  containing  sequencing  data  of  all  the  libraries  in  the  sequencing 

 run  generated  by  the  Illumina  software  were  demultiplexed  using  the  CellRanger  (Zheng  et  al.  , 

 2017)  mkfastq  pipeline  -  a  pipeline  adapted  for  10X  Genomics  data  that  wraps  Illumina's 

 bcl2fastq  software. This generated FASTQ files for  each individual library sequenced. 

 2.3.4 Gene count quantification 

 Cellranger  count  was  then  used  to  generate  single  cell  gene  counts  for  each  GEM  well  that  was 

 demultiplexed  by  CellRanger  mkfastq  using  default  software  settings.  The  run  ID,  FASTQ  files, 

 sample  name  and  the  mouse  or  human  transcriptome  references  for  each  experiment 

 respectively  were  provided  as  input.  Count  performs  read  alignment,  UMI  counting,  and 

 secondary analysis (dimensionality reduction, clustering, and visualisation) for each run. 

 First,  the  first  16  bases  of  read  1  containing  the  10x  barcode,  which  identifies  the  partition  from 

 which  the  DNA  originates,  were  extracted  from  read  pairs.  Using  the  10X  barcode  whitelist  of 

 737,000  different  sequence  barcodes  error  correction  was  performed,  which  checked  whether 

 all  observed  barcodes  matched  any  barcode  on  the  whitelist  due  to  sequencing  error.  After 

 trimming  the  barcode  sequence,  the  trimmed  read  pairs  were  aligned  to  the  reference  genome 

 and  post-alignment  duplicate  read  pairs  were  marked  using  the  heuristic  that  when  two  read 

 pairs  with  the  same  barcode  align  to  the  same  fragment  on  the  reference  genome  they  are 

 duplicates  of  each  other.  Next,  to  define  cell  barcodes  in  partitions  containing  a  cell  (each 

 barcode  labels  a  partition  but  not  every  partition  contains  a  cell)  the  distribution  of 

 non-duplicate  reads  with  a  mapping  quality  of  at  least  30  per  barcode  was  calculated.  Finally,  to 

 compute  a  coverage  profile  matrix  the  read-pair  coverage  over  the  genome  for  each  cell 

 barcode  using  only  read-pairs  that  had  mapping  quality  of  at  least  30  and  were  not  marked 

 duplicates  was  performed.  The  final  output  included  a  web_summary.html  file  containing 

 summary  metrics  and  automated  secondary  analysis  results,  and  the  feature,  barcode,  and  count 

 folders containing counts for every gene per cell for downstream analysis. 
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 Bioinformatic data analysis 

 2.3.5 Single-cell RNAseq quality control 

 Bioinformatics  analysis  was  conducted  in  RStudio  and  processed  using  the  Seurat  R  package 

 (Stuart  et  al.  ,  2019)  .  Matrices  of  gene  expression  counts  per  cell  for  each  96-well  plate  of 

 samples  were  loaded  into  Seurat  as  .tsv  files.  For  quality  control,  the  number  of  reads  mapped 

 to  the  genome  (counts),  number  of  genes  detected  (features),  and  the  proportion  of  the  reads 

 mapping  to  the  mitochondrial  genome  per  cell  were  quantified  for  every  cell.  Cells  with  low 

 sequencing  depth  (less  than  1M  reads),  expressing  less  than  200  or  more  than  10,000  features, 

 and  a  high  fraction  of  reads  mapping  to  the  mitochondrial  genome  (>15%)  were  excluded  from 

 downstream  analyses.  Prior  to  merging  the  matrices  into  a  single  aggregated  Seurat  object, 

 global-scaling  normalisation  was  employed  where  the  feature  expression  values  were 

 normalised  for  each  cell  by  the  total  expression  and  then  multiplied  by  a  scale  factor  of  10,000, 

 then log-transformed using log1p to account for any 0s before normalisation. 

 2.3.6 Data integration 

 Datasets  were  integrated  using  nonlinear  transformation  of  the  underlying  data  and  identified 

 anchors  across  dimensions  1:50  of  the  datasets  using  the  FindIntegrationAnchors  function. 

 Post-normalisation,  the  top  5000  most  highly  variable  genes  were  selected  using 

 variance-stabilising  transformation,  calculated  prior  for  each  separate  object  using  the 

 FindVariableFeatures  function  (subset  of  features  that  exhibit  cell-to-cell  variation  in  the 

 dataset  most  likely  to  highlight  biological  signal).  These  features  (genes)  identified  as  most 

 variables across the dataset were then used to complete the integration (  IntegrateData)  . 

 2.3.7 Cell-cycle annotation and regression 

 To  explore  the  effects  of  cell  cycle  heterogeneity  in  the  data,  cells  were  scored  based  on 

 canonical  cell  cycle  markers  loaded  within  Seurat  (Kowalczyk  et  al.  ,  2015)  .  After  completing 

 the  initialisation  of  the  Seurat  object,  the  CellCycleScoring  function  was  implemented  to  assign 

 and  store  S  and  G2/M  scores  in  the  metadata  along  with  the  predicted  cell  cycle  classification 

 (either  G2M,  S  or  G1  phase)  per  cell.  To  minimise  the  influence  of  cell-cycle  associated  genes 

 in  downstream  analysis,  the  difference  between  the  G2M  and  S  phase  scores  (CC.difference) 

 were  regressed  during  data  scaling  according  to  Seurat’s  Alternative  Workflow  for  cell-cycle 

 regression.  This  approach  maintains  signals  separating  non-cycling  cells  and  cycling  cells,  but 

 differences  in  cell  cycle  phase  among  proliferating  cells  were  regressed  so  as  to  not  dominate 

 marker  identification.  This  was  achieved  by  providing  CC.difference  into  the  vars.to.regress 

 parameter during linear transformation (data-scaling). 
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 2.3.8 Dimensionality reduction and clustering 

 Principal  component  analysis  (PCA)  was  performed  to  the  normalised  scaled  expression  values 

 on  the  first  50  principal  components  (PCs).  Both  Jackstraw  and  Elbow  plots  were  inspected  to 

 determine  the  appropriate  number  of  top  PCs  capturing  the  most  variances.  Clustering  of  the 

 processed  data  was  performed  using  the  FindClusters  function.  To  visualise  and  explore  the 

 clusters  within  the  dataset,  non-linear  dimensional  reduction  with  uniform  manifold 

 approximation  and  projection  (UMAP)  was  applied  with  the  same  principal  components  as 

 input  to  the  clustering  analysis,  placing  similar  cells  together  in  a  low-dimensional  space.  This 

 superimposes the clusters on the two-dimensional UMAP projection. 

 2.3.9 Single-cell differential expression analysis for cell type annotation 

 Wilcoxon  Rank  Sum  test  was  used  through  Seurat’s  FindAllMarkers  to  identify  differentially 

 expressed  genes  (DEGs)  for  each  cluster  to  serve  as  marker  genes  for  cell  type  annotation  using 

 canonical  lineage/cell  type-specific  markers  published  in  haematopoiesis  datasets/  literature 

 that  is  cited  where  relevant  within  the  text.  The  data  were  represented  by  heatmaps  and 

 expression  plots  to  demonstrate  the  unique  transcriptional  profiles  of  each  cluster  for  cell  type 

 identification. 

 2.3.10 Pseudotemporal ordering of single-cells 

 Cells  were  ordered  along  a  pseudotime  trajectory  using  the  Monocle3  R  package  (Trapnell  et 

 al.  ,  2014;  Cao  et  al.  ,  2019)  .  This  applies  a  reversed  graph  embedding  machine  learning  strategy 

 to  reconstruct  a  cell  trajectory  of  differentiation  using  the  top  DEGs  with  most  biological 

 over-dispersion.  Genes  to  be  used  for  defining  pseudotime  ordering  in  the  construction  of  the 

 trajectory  were  selected  by  identifying  DEGs  between  cells  based  on  cell  types  assigned  in 

 Seurat  .  This  was  achieved  through  two  approaches,  first  the  direct  conversion  of  the  Seurat 

 object  into  the  Monocle  equivalent  cell  data  set  (  cds  )  using  as_cell_dataset()  from 

 Seurat_Wrappers  -  a  collection  of  community-provided  methods  and  extensions  for  Seurat. 

 This  approach  preserves  cell-type  annotations  and  UMAP  cell  embeddings  per  cell  to  recreate 

 the  same  partitions  for  pseudotime  analysis.  Or  second,  the  Seurat  object  was  loaded  into 

 monocle  post  single-cell  annotation,  pre-processed  (  pre_process_cds())  using  the  default 

 recommended  parameters  based  on  the  size  of  the  dataset,  and  reduced  into  smaller  dimensions. 

 cluster_cells()  cells  was  applied  using  default  parameters  unless  otherwise  stated  in  the  text  to 

 cluster  cells  and  assign  them  into  partitions.  This  approach  adopted  by  Monocle  is  based  on  the 

 partition-based  graph  abstraction  (PAGA),  a  topology-preserving  map  of  single  cells  (Wolf  et 

 al.  ,  2019)  .  Annotations  stored  within  the  cds  object  metadata  from  Seurat  were  then  re-assigned 

 to  partitions  if  the  partitions  identified  correlated  with  the  existing  clusters.  Using  these  clusters 

 as  input,  a  graph  was  learned  over  the  existing  projected  cells  with  learn_graph()  .  This  applies 
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 a  principal  graph-embedding  procedure  that  is  based  on  the  SimplePPT  algorithm  ultimately 

 creating  a  path  of  connecting  points  across  clusters  enabling  pseudotime  ordering  (Mao  et  al.  , 

 2015,  2017)  .  To  perform  pseudotime  ordering  of  cells  the  cds  was  processed  using  the 

 order_cells()  function,  with  default  parameters,  and  t  he  resulting  trajectory  was  visualised  using 

 plot_cell_trajectory  (Qiu  et  al.,  2017)  .  To  perform  differential  expression  analysis  of  genes 

 differentially  expressed  both  along  pseudotime  and  across  experimental  conditions  described 

 within  results  chapters,  graph-autocorrelation  analysis  (  graph_test())  and  regression  analysis 

 (  fit_models()  ) were used respectively. 

 2.3.11 Differential expression analyses 

 Differential  gene  expression  testing  was  achieved  using  the  pseudobulk  approach,  aggregating 

 data  from  single  cells  at  the  sample  level  and  subsetting  based  on  the  cell-type  or  condition 

 being  tested.  This  enabled  tools  traditionally  created  for  bulk  expression  testing  to  be  used  as 

 opposed  to  more  recent  methods  designed  for  single-cell  data,  which  continue  to  be 

 out-performed  due  to  inherent  technical  noise  artefacts  in  single-cell  data  such  as  dropout, 

 zero-inflation and high cell-to-cell variability  (Hicks  et al.  , 2018; Squair  et al.  , 2021)  . 

 Pseudobulk  differential  gene  expression  analyses  were  performed  with  edgeR  and  DESeq2 

 (Robinson,  McCarthy  and  Smyth,  2010;  Love,  Huber  and  Anders,  2014)  .  First,  the  counts  from 

 single  cells  were  aggregated  using  the  AggregateExpression()  function  based  on  pseudobulk 

 annotations  (cell  type  and  biological  replicate  identity).  For  edgeR,  raw  counts  were  used  as 

 input,  where  DGEList()  was  used  to  generate  a  data  object  from  counts  and  group  identifier 

 extracted  from  the  metadata  (cell  type  and  biological  replicate  split  by  condition).  The  DESeq2, 

 equivalent  to  this  was  achieved  using  DESeqDataSetFromMatrix().  Median-of-ratios 

 normalisation  was  performed  on  the  count  data  and  normalisation  factor  values  noted  across 

 samples. 

 Next,  pre-filtering  of  genes  was  performed  to  retain  for  downstream  analysis  only  those  above  a 

 minimum  threshold  of  10  reads,  and  present  across  all  samples  across  experimental  conditions. 

 EdgeR  filtering  was  achieved  with  filterbyExpr()  ,  retaining  genes  that  had  sufficiently  large 

 counts  in  a  statistical  analysis  by  determining  library  size  (a  numeric  vector  giving  the  total 

 count  for  each  library).  After  pre-filtering,  estimateDisp()  was  applied  to  give  the  estimate  of 

 the  common  dispersions  across  samples  to  determine  within-group  variability.  This  calculated 

 the  adjusted  profile  log-likelihood  for  each  gene,  of  which  the  square  root  of  the  common 

 dispersion  was  calculated  to  obtain  the  coefficient  of  biological  variation.  Next,  edgeR  glmFit() 

 was  used  to  fit  a  negative  binomial  generalised  log-linear  model  (GLM)  to  the  read  counts  for 

 each  gene,  followed  by  applying  glmLRT()  to  conduct  likelihood  ratio  tests  for  coefficients  in 

 the  linear  model.  To  extract  the  most  significant  DEGs  the  GLM  outputs  were  filtered  for 
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 adjusted  P  values  (<=0.05)  and  ranked  by  descending  absolute  log-fold-change.  For  DESeq2 

 analysis,  the  DESeq()  function  (wraps  estimateSizeFactors  ,  estimateDispersions  and  GLM 

 fitting  as  a  single  default  function)  was  used  to  achieve  differential  expression  analysis  based 

 on  the  negative  binomial  distribution.  Statistical  tests  were  implemented  as  default  to  determine 

 the  significance  of  differential  expression  across  conditions.  The  Wald  test  was  used  to  compare 

 the  estimated  fold-change  in  expression  between  the  conditions  to  the  estimated  standard  error 

 of  the  fold-change.  P-values  were  adjusted  for  multiple  testing  using  the  Benjamini-Hochberg 

 method  to  control  the  false  discovery  rate.  Visualisation  of  results  was  achieved  with  ggplot2 

 and  EnhancedVolcano  packages. 

 2.3.12 Functional Analysis 

 To  gain  insights  into  over-represented  functional  annotations  from  gene  sets  such  as  DEGs 

 across  pseudotime,  cell  types  or  conditions  gene  enrichment  analysis  was  performed  using  the 

 clusterProfiler()  (Wu  et  al.,  2021)  and  Reactome()  (Gillespie  et  al.,  2022)  R  packages.  This 

 involved  first  converting  lists  of  genes  of  interest  from  gene  symbols  into  their  respective 

 Entrez  gene  identifiers  from  the  National  Center  for  Biotechnology  Information  (NCBI) 

 database  (Maglott  et  al.  ,  2007)  .  The  Entrez  ID  represents  tracked,  unique  identifiers  for  genes 

 assigned  as  a  stable  species-specific  integer.  Functional  annotation  based  on  known 

 associations  described  across  biological  databases  was  performed  on  gene  sets  using 

 enrichGO(),  enrichPathway()  and/or  enrichKEGG()  to  perform  over-representation  analysis 

 across  gene  ontology  classes  (GO),  pathway  and/or  Kyoto  Encyclopedia  of  Genes  and 

 Genomes  (KEGG)  databases  respectively  (Kanehisa  and  Goto,  2000;  G.  Yu  et  al.  ,  2012;  Yu  and 

 He, 2016)  . Results were visualised using  ggplot2  . 
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 Iso-seq data pre-processing pipeline 

 2.3.13 Genome alignment 

 HiFi reads (FASTQ) were aligned to the mouse reference genome version M23 (GRCm38.p6) 

 obtained from GENCODE using annotations presented in the GTF file for that genome using 

 minimap2  (Li, 2018; Frankish  et al.  , 2020)  . This generated  mapped BAM files for each sample. 

 2.3.14 Collapsing of redundant isoforms 

 After  transcript  sequences  were  mapped  to  the  mouse  reference  genome,  the  software  package 

 cDNA  cupcake  (Tseng,  no  date)  was  used  to  collapse  redundant  transcripts  into  unique 

 isoforms.  This  step  identifies  groups  of  isoforms  with  high  sequence  similarity,  combining 

 them  into  single  clusters.  Low-quality  isoforms  were  redacted  based  on  default  parameters  and 

 any  differences  between  the  remaining  isoforms  within  each  group  were  resolved  to  generate 

 the  final  consensus  isoform  representative  for  that  group.  This  step  generated  collapsed 

 isoforms  unique  for  each  sample  in  GFF  format  and  secondary  files  containing  information 

 about the number of reads supporting each unique isoform. 

 2.3.15 Classification of isoforms using SQANTI3 

 Once  the  final  dataset  containing  collapsed  isoforms  per  sample  was  generated,  they  were 

 classified  and  annotated  using  the  SQANTI3  software  (Tardaguila  et  al.  ,  2018)  .  SQANTI3  uses 

 a  set  of  defined  criteria  to  classify  isoforms  based  on  their  transcript  structure,  coding  potential 

 and  support  from  existing/  published  annotations.  The  input  required  for  this  included  the 

 collapsed  isoform  data  in  GFF  format,  the  mouse  reference  genome  (GRCm38.p6)  and 

 annotations  presented  in  the  GTF  file  for  that  genome.  Additionally,  the  polyA  motif  list  (TXT 

 format)  and  CAGE  peak  data  (BED  format)  containing  annotated  transcription  start  sites  (TSS) 

 for  mouse  obtained  from  the  SQANTI3/data  GitHub  repository  were  also  provided.  This 

 enables  additional  QC  of  TSS  (RNA  degradation  at  the  5’  end  can  result  in  mistaken 

 classification  of  novel  TSS)  and  detection  of  transcription  terminal  sites  (TTS)  within  or 

 proximal to polyA motifs. Isoforms were classified into categories described in Table 2.16. 
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 Table 2.16.  SQANTI3  9  Isoform classification categories used to annotate isoforms in the data. 

 Type  Description 

 Full Splice Match (FSM)  Complete match of all splice junctions in the reference 

 Incomplete Splice Match (ISM)  Partial match of splice junctions in the reference 

 Novel in Catalogue (NIC)  Isoform with a novel combination of known splice sites 

 Novel not in Catalogue (NNC)  Novel isoform with at least 1 novel splice site 

 Antisense  Does not overlap a same-strand reference gene but is 
 anti-sense to an annotated gene 

 Genic Intron  The isoform lies entirely within an annotated intron 

 Genic Genomic  The isoform overlaps introns and exons of the reference 

 Intergenic  The isoform is within the intergenic region of the 
 reference 

 2.3.16 Isoform artefact removal 

 Finally,  the  output  classification  file  generated  from  SQANTI3  QC  was  filtered  with  the 

 sqanti_filter.py  python  script  included  in  the  SQANTI3  workflow.  Here,  isoforms 

 post-classification  were  filtered  using  default  parameters  defined  within  the  rules  argument  of 

 the  script  which  searches  for  artefact  isoforms.  This  step  classifies  artefact  isoforms  based  on 

 several  criteria.  Intrapriming  at  the  3’  end  in  isoforms  categorised  as  FSMs  may  result  in  false 

 FSM  classification,  hence  FSM  transcripts  found  to  contain  >=12  adenines  within  20  bp  of  an 

 annotated  TTS  are  deemed  as  intrapriming  artefact  and  removed  from  the  data.  For  all 

 transcripts  not  defined  as  FSMs,  transcripts  are  excluded  under  the  following  criteria:  3’  end  is 

 deemed  an  intrapriming  artefact,  a  junction  previously  annotated  as  RT-switching  is  detected,  or 

 if  non-canonical  junction  read  coverage  does  not  meet  the  minimum  threshold.  This  step 

 generated  a  filtered  version  of  the  classifications  from  SQANTI  QC,  with  an  additional  QC 

 column indicating whether the isoform was retained or discarded and the reason for its removal. 

 9  (Tardaguila  et al.  , 2018)  (Figure 2.1) 
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 Figure  2.1.  Schematic  illustrating  the  structural  categories  used  for  isoform 
 characterisation  based  on  Structural  and  Quality  Annotation  of  Novel  Transcript  Isoforms 
 (SQANTI3) descriptions  (Tardaguila  et al.  , 2018)  . 

 10  Created with BioRender.com 
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 MAS-seq data analysis 

 2.3.18 Deconcatenation of PacBio MAS-seq reads 

 Data  pre-processing  was  performed  using  the  PacBio  SMRT  Link  software  v11.1.  First,  PacBio 

 Hifi  reads  (CCS  reads  with  >Q20  sequencing  accuracy)  were  deconcatenated  into  segmented 

 reads  (S-reads)  of  individual  cDNA  molecules  using  the  PacBio  SMRT  read  splitter  programme 

 Skera  version  0.1.0.  Skera  was  used  to  split  MAS-Seq  single-cell  reads  at  adapter  positions  to 

 generate BAM records for each S-read using adapter sequences provided in FASTA format. 

 2.3.19 Primer removal 

 After  deconcatenation,  the  removal  of  primers  from  S  reads  and  identification  of  cell  barcodes 

 was  performed  using  the  PacBio  barcode  demultiplexer  programme  lima.  Here,  unwanted 

 primer  sequences  and  non-barcoded  cDNA  sequences  were  removed  and  reads  oriented  into  5’ 

 - 3’ orientation for downstream processing steps. 

 2.3.20 Cell barcode and UMI extraction and read refinement 

 Cell  barcode  and  UMI  extraction  were  performed  using  the  PacBio  tool  isoseq3  Tag,  by 

 providing  the  bam  output  from  the  lima  step  above  together  with  the  10X  12bp  UMI  and  16bp 

 3’  barcode  lists,  generating  tagged  full-length  (FL)  reads.  In  this  step,  correct  UMI  and  cell 

 barcodes  sequences  were  clipped  from  reads,  and  metadata  for  each  successfully  tagged  read 

 was  generated.  Next,  FL  tagged  reads  were  refined  using  isoseq3  Refine  by  trimming  of 

 poly(A)  tails  with  a  minimum  of  20  bp  in  length  to  generate  full-length  tagged  non-concatemer 

 (FLTNC) reads. 

 2.3.21 Unique molecule identification and deduplication 

 To  improve  yield  and  accuracy  during  barcode  calling  in  downstream  steps,  isoseq3  correct 

 was  used  to  correct  errors  in  cell  barcodes  that  may  have  occurred  during  sequencing.  Barcode 

 error  correction  of  FLTNC  reads  were  indexed  against  a  list  of  candidate  cell  barcodes  taken 

 from  the  10x  3’  (v3.1)  kit,  whereby  candidates  matching  the  barcode  whitelist  were  marked  as 

 real  cells,  and  statistics  such  as  the  number  of  reads  matching  known  barcodes  and  whether 

 they  match  cellular  barcodes  or  UMI  sequences  is  annotated.  The  UMIs  correctly  identified 

 within  the  data  were  then  used  in  isoseq3  groupdedup  to  collapse  reads  that  match  the  same 

 sequence, correcting for PCR duplicates resulting in only unique molecules. 
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 2.3.22 Genome mapping 

 Transcripts  were  mapped  to  their  reference  genomes  (  Mus  musculus  and  Homo  Sapiens)  and 

 classified  against  transcript  reference  annotation  from  GENCODE  (  Mus  musculus  and  Homo 

 sapiens)  using  pbmm2  -  a  minimap2  SMRT  wrapper  for  PacBio  data  generating  mapped  bam 

 files for each cell. 

 2.3.23 Removal of redundant isoforms and isoform classification 

 Isoseq3  collapse  was  used  to  collapse  redundant  transcripts  based  on  exonic  structures  into 

 unique  isoforms  generating  unique  isoforms  in  GFF  format  along  with  meta  information 

 including  the  number  of  reads  supporting  each  unique  isoform.  classified  using  Pigeon.  This 

 characterises  isoforms  into  categories  following  the  SQANTI3  classification  categories  (see 

 section  2.3.6)  generating  a  classification  text  file,  along  with  files  detailing  reads  that  spanned 

 junctions, and a Seurat-ready input for tertiary downstream analysis. 
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 Table 2.17.  Software package versions for all packages used in data analysis for this thesis. 

 Package  Access/ citation 

 CellRanger v 3.1.0  (Zheng  et al.  , 2017) 

 CellLoupeBrowser v 4.1.0  (Zheng  et al.  , 2017) 

 FlowJo v 10  BD Biosciences 

 FACSChorus  BD Biosciences 

 FACSDiva  BD Biosciences 

 STAR v 2.7.9a  (Dobin  et al.  , 2013) 

 FastQC v 0.11.7  (Andrews, no date) 

 MultiQC v 1.5  (Ewels  et al.  , 2016) 

 minimap2 v 2-2.7  (Li, 2018) 

 featureCounts v 1.6.4  (Liao, Smyth and Shi, 2014) 

 Python v 3.6.0  (Van Rossum and Drake, 2009) 

 Biopython v 1.61  (Cock  et al.  , 2009) 

 Samtools v 1.15.1  (Danecek  et al.  , 2021) 

 cDNA cupcake v   29.0.0  (Tseng, no date) 

 SQANTI3 v 4.2  (Tardaguila  et al.  , 2018) 

 R v. 4.2.0  R Core Team (2022). 

 RStudio v 22.07.1  R Core Team (2022) 

 edgeR package v .3.38.4  (Robinson, McCarthy and Smyth, 2010) 

 goseq v 1.48.0  (Young, Wakefield and Smyth, 2012) 

 monocle3 v 1.0.0  (Trapnell  et al.  , 2014) 

 ggplot2 v 3.3.6  (Wickham, 2016) 

 Seurat v 4.2.0  (Butler  et al.  , 2018; Stuart  et al.  , 2019; Hao  et  al.  , 2021) 

 ReactomePA v 1.40.0  (Gillespie  et al.  , 2022) 

 clusterProfiler v 4.4.4  (Wu  et al.  , 2021) 

 tidyverse v 1.3.2  (Wickham  et al.  , 2019) 

 reshape2 v 1.4.4  (Wickham, 2007) 

 SingleCellExperiment v 1.18.0  (Amezquita  et al.  , 2020) 

 stringr v 1.4.1  (Wickham, 2010) 

 BiocGenerics v 0.42.0  (Huber  et al.  , 2015) 

 Iso-Seq (3.8.2)  https://isoseq.how/ 
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 Chapter 3: 

 Single-cell profiling of the trajectory from 
 haematopoietic stem cells to megakaryocyte 

 progenitor in response to stress 

 Chapter disclosures: 

 Preprocessing  of  scRNA-seq  libraries  (genome  alignment,  sequencing  quality-control,  and  gene 
 count  quantification)  were  performed  by  Anita  Scoones  using  the  ScOmix:  Integrated 
 Single-cell  analysis  pipeline  (unpublished)  developed  by  Matthew  Madgwick  (see  Materials 
 and Methods 2.3.1 - 2.3.2). 
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 3.1 Introduction 

 Distinct  subsets  of  HSCs  exist  with  differential  propensities  towards  the  generation  of  lymphoid 

 or  myeloid  fates  is  an  accepted  phenomenon  within  haematopoiesis  (Müller-Sieburg  et  al.  , 

 2002;  Adolfsson  et  al.  ,  2005;  Dykstra  et  al.  ,  2007;  Copley,  Beer  and  Eaves,  2012)  .  One  subset 

 in  particular  marked  by  high  expression  of  the  Vwf  gene  not  only  has  a  higher  tendency  towards 

 myeloid  cell  differentiation  but  is  distinctly  stably  biassed  towards  the  platelet  lineage,  with 

 competitive  transplantation  assays  verifying  that  Vwf+  HSCs  have  a  long-term  increased 

 platelet  output  compared  to  Vwf-  HSCs  which  instead  show  lymphoid-biassed  reconstitution 

 (Sanjuan-Pla  et  al.  ,  2013)  .  Extensive  functional  assays  interrogating  the  potent  platelet-primed 

 reconstitution  pattern  of  Vwf+  HSCs,  combined  with  global  gene  expression  profiling  have 

 shown  this  to  be  in  part  regulated  by  TPO  signalling,  and  exhibit  higher  expression  of 

 Mk-lineage  genes  including  Vwf,  and  Itga2b  (Cd41)  (Gekas  and  Graf,  2013;  Sanjuan-Pla  et  al.  , 

 2013)  . 

 The  cell  surface  molecule  signalling  lymphocytic  activation  molecule  family  member  1 

 (Slamf1)  also  designated  Cd150  -  which  is  expressed  in  the  primitive  HSC  compartment  (Kiel 

 et  al.  ,  2005)  -  has  been  identified  as  a  specific  marker  for  subfractionation  of  functionally 

 distinct  myeloerythroid  precursors  with  high-clonal  Mk  capacity  both  in  vitro  and  in  transplant 

 assays  in  vivo  (Pronk  et  al.  ,  2007)  .  Although  high  Cd150  expression  is  commonly  used  to 

 isolate  HSCs,  its  expression  was  revealed  to  be  maintained  in  cells  Mk  lineage  and  of  the 

 myeloerythroid  compartment  including  MkPs.  Both  CMPs  and  MEPs  were  divided  into 

 Cd150+  and  a  Cd150-  cells,  where  the  Cd150+  cells  exhibited  high  clonal  megakaryocyte 

 capacity  indicating  the  potential  of  utilising  this  as  a  marker  for  cells  committed  to  the  Mk  fate 

 (Pronk  et al.  , 2007)  . 

 The  strong  evidence  for  Mk-biassed  reconstitution  by  HSCs  (Månsson  et  al.  ,  2007;  Sanjuan-Pla 

 et  al.  ,  2013;  Shin  et  al.  ,  2014)  ,  and  corroborating  evidence  of  Mk-restricted  cells  identified 

 within  the  HSC  compartment  (Yamamoto  et  al.  ,  2013)  in  steady-state  haematopoiesis  prompted 

 the  question  as  to  whether  this  potential  bypass  of  intermediate  commitment  steps  exists  as  part 

 of  a  protective  mechanism  under  non-homeostatic  conditions.  In  extensive  platelet 

 consumption,  such  as  caused  by  infection  or  injury,  the  haematopoietic  system  recruits  HSCs  to 

 generate  the  necessary  platelet  precursors  to  coordinate  platelet  regeneration  in  order  to  restore 

 homeostasis.  According  to  the  commitment  roadmap  of  classic  haematopoiesis,  this  would 

 require  the  hierarchical  transition  through  discrete  stages  of  MPP,  CMP,  MEP  to  reach  Mk 

 unipotency  before  Mk  maturation.  Using  single-cell  ex  vivo  lineage  tracking  Haas  et  al  . 

 demonstrated  in  an  infection  model  that  inflammation-driven  changes  within  the  phenotypic 
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 HSC  compartment  was  detected  in  a  particular  subset  of  cells  that  exclusively  generated  mature 

 Mks  but  are  distinct  from  MkPs  (Haas  et  al.  ,  2015)  .  They  showed  that  this  fraction  of  cells  - 

 coined  stem-like  Mk  progenitors  (SL-MkPs)  -  exists  as  an  Mk-committed  subset  of  the  wider 

 Mk-primed  but  multipotent  Vwf+  HSC  population  identified  by  Sanjuan-Pla  et  al.  ,  with 

 uniformly high expression of all Mk genes not only enriched transcriptional priming. 

 Taken  together  this  research  has  provided  important  insights  into  the  cells  involved  in  Mk 

 lineage  fate  commitment  from  HSCs,  suggesting  multiple  routes  of  Mk  differentiation  exist. 

 However  the  transcriptional  heterogeneity  of  cells  along  the  Mk  lineage,  the  differences  in 

 expression  along  the  Mk  differentiation  trajectory  and  how  this  is  impacted  by  acute  platelet 

 depletion  is  yet  to  be  elucidated  at  high-resolution.  Moreover,  although  assays  have  been 

 performed  at  the  single-cell  level,  they  have  been  applied  to  discrete  populations  independently 

 isolated  based  on  cell-surface  marker  expression,  therefore  may  be  missing  intermediate  stages 

 of Mk fate restriction. 
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 3.1.1 Aims 

 The aims of this chapter were to: 

 ●  Capture  cells  along  the  trajectory  towards  Mk  commitment  by  FACS  gating  LK  and 

 LSK Cd150+ cells. 

 ●  Apply  single-cell  transcriptomics  using  Smart-seq2  to  order  cells  along  the  continuum 

 of differentiation between HSC and MkP. 

 ●  Interrogate  the  differentiation  trajectory  in  both  steady  state  and  in  response  to  platelet 

 depletion. 

 These  aims  were  addressed  by  profiling  HSPCs  from  mouse  bone  marrow  using  scRNA-seq. 

 Through  targeted  depletion  of  platelets  in  mice,  the  hypothesis  was  that  this  would  induce 

 megakaryopoiesis  for  the  replenishment  of  platelets,  prompting  changes  in  the  bone-marrow 

 compartment  including  increased  HSC  Mk  differentiation  and  consequently  the  increased 

 expression  of  genes  promoting  commitment  to  Mks.  Employing  Smart-seq2  on  cells  captured 

 using  a  broad  gating  approach  enabled  the  analysis  of  cells  from  HSC  to  committed  MkPs  and 

 any  intermediate  cell  types  that  may  represent  important  transitional  stages  in  Mk 

 differentiation,  normally  excluded  by  narrow  gating  strategies.  The  scRNA-seq  profiles  of  cells 

 were  used  to  visualise  and  study  the  transcriptional  heterogeneity  of  cells  in  the  LK  Cd150+ 

 BM  fraction,  and  using  pseudotime  trajectory  analysis  single  cells  were  computationally 

 ordered  along  a  differentiation  trajectory.  This  chapter  describes  the  analysis  of  transcriptional 

 changes  along  Mk  commitment  and  differential  expression  signatures  associated  with  a  model 

 of acute thrombocytopenia. 
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 3.2 Experimental approach 

 To  investigate  the  trajectories  of  the  Mk  lineage  in  response  to  platelet  depletion,  intravenous 

 injection  of  anti-GPIb  antibody  was  administered  to  mice.  This  treatment  induces 

 antibody-induced  thrombocytopenia,  causing  significant  and  irreversible  Fc-independent 

 platelet  depletion  in  mice  (Bergmeier  et  al.  ,  2000;  Nieswandt  et  al.  ,  2000)  .  Four  mice  were 

 injected  with  anti-GPIb,  while  two  mice  were  injected  with  IgG  control  suspended  in  PBS  as 

 controls.  LK  and  LSK  Cd150+  single-cells  were  sorted  into  96-well  plates  (Methods  2.2.2  - 

 2.2.6.1)  and  processed  for  Smart-seq2  as  previously  described  (Picelli  et  al.,  2014)  (Methods 

 2.2.7.1-2.2.7.4).  A  total  of  14  96-well  plates  of  scRNA-seq  data  were  generated  and  sequenced. 

 The  resulting  single-cell  transcriptional  profiles  were  analysed  to  determine  the  captured  cell 

 types.  Differential  expression  and  functional  analyses  were  performed  to  investigate  the  effects 

 of platelet depletion Mk differentiation trajectories. 

 11  Figure 3.1.  Schematic workflow of the experimental  approaches implemented for Chapters 3. 

 11  Created with BioRender.com 
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 3.3 Results 

 3.3.1 Isolation of haematopoietic stem and megakaryocyte progenitors for scRNA-seq 

 To  capture  cells  along  the  Mk  trajectory  for  scRNA-seq,  cells  were  isolated  from  mouse  bone 

 marrow and sorted by single-cell FACS coupled with index sorting (Figure 3.1). 

 Prior  to  single-cell  sorting,  we  conducted  quantitative  measurements  to  evaluate  the  efficacy  of 

 platelet  depletion  across  all  subjects.  Blood  aliquots  obtained  via  cardiac  puncture  24  hours 

 antibody  treatment  were  subjected  to  flow  cytometry  analysis  targeting  the  expression  of  Itga2b 

 (CD41),  a  platelet-specific  glycoprotein,  relative  to  the  number  of  FACS  beads  introduced  into 

 each  sample.  FACS  beads,  engineered  with  a  consistent  fluorescence  intensity,  served  as 

 internal  controls.  Following  CD41  staining  and  addition  of  FACS  beads,  samples  were 

 processed  through  the  flow  cytometer  to  quantify  the  fluorescence  intensity  of  individual  cells. 

 The  frequency  of  CD41+  events  relative  to  FACS  bead  events  was  utilised  to  determine  platelet 

 counts  in  each  sample.  In  platelet-depleted  mice,  the  average  frequency  of  platelets  per  bead 

 was  0.8,  contrasting  with  the  range  of  150-151  platelets  per  bead  observed  in  mice  administered 

 IgG  control  antibody.  This  discrepancy  confirms  the  successful  and  significant  depletion  of 

 platelets in mice treated with anti-CD41 antibody (Figure 3.2). 

 In  addition,  the  same  blood  aliquots  were  analysed  using  an  automated  haematology  analyser 

 (Alinity  HQ,  Abbott  Laboratories)  to  assess  the  specificity  of  anti-GPIb  treatment  to  platelets, 

 and  ensure  other  blood  cell  populations  remained  unaffacted  by  the  experiment.  As  expected 

 these  results  show  significantly  fewer  platelets  24  hours  post  anti-GPIb  treatment  (13.8  billion 

 cells  /  L)  compared  to  mice  injected  with  control  antibody  (626  billion  cells  /  L),  with  no 

 significant  differences  observed  in  the  frequency  of  white  blood  cells  (WBC)  or  red  blood  cells 

 (RBC)  between  platelet-depleted  and  control  mice  (see  Appendix  Supplementary  Figure  3.1). 

 These  findings  confirmed  the  selective  action  of  the  antibody  on  platelets,  successfully 

 depleting platelets without affecting other cellular components of blood. 

 Broad  gates  based  on  c-Kit  and  Cd150  expression  (Lin  -  cKit  +  Cd150+)  were  used  to  sort 

 LT-HSCs,  Mk  progenitors  and  all  intermediate  cells  with  high  Cd150  expression,  which  has 

 been  shown  to  be  a  shared  marker  that  is  expressed  at  all  stages  of  Mk  commitment  (Pronk  et 

 al.  ,  2007)  .  Due  to  their  low  frequency  compared  to  other  cell  types  in  the  LK  Cd150+  gating 

 strategy,  LT-HSCs  were  gated  (Lin  -  Sca  +  cKit  +  Cd150+)  and  sorted  separately  to  ensure 

 sufficient  coverage  of  the  population.  Cells  from  both  platelet-depleted  and  control  mice  were 

 sorted  into  fourteen  96-well  PCR  plates,  with  LK  Cd150+  and  LT-HSC  cell  enrichment 
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 represented  for  each  plate  (Figure  3.3A)  for  a  total  of  1288  cells  (784  LK  Cd150+  and  504  LSK 

 Cd150+  cells  respectively,  excluding  controls).  Using  this  sort  layout  accounts  for  possible 

 batch  effects  that  could  arise  during  sorting  and  downstream  library  preparation  of  plates 

 (Figure 3.3B). 

 Plates  were  randomised  and  processed  in  four  batches  for  Smart-seq2  single-cell  RNAseq  as 

 previously  described  (Picelli  2014).  After  the  generation  of  cDNA  from  samples,  0.2ng/uL  of 

 cDNA  was  used  per  sample  to  generate  Illumina  sequencing-ready  libraries  with  Nextera. 

 Sample  quality  was  evaluated  at  several  stages  before  sequencing,  including  post-cDNA 

 amplification  product  clean-up  and  post-Nextera  library  preparation  (Appendix  Supplementary 

 Figure  3.2).  Plates  were  pooled  at  equimolar  concentrations  to  ensure  equal  read  coverage 

 across  libraries  during  sequencing  to  generate  a  minimum  of  1M  reads  per  cell.  A  total  of  four 

 libraries with pooled single cells were sequenced to generate data for this chapter (Table 3.1). 
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 Figure  3.2.  Flow  cytometry  analysis  of  whole  blood  collected  from  mice  24  hours 
 post-injection.  Shows  either  anti-GPIb  treatment  or  isotype  control  confirms  depletion  of 
 platelets. 
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 Figure 3.3. Isolation of mouse bone-marrow HSCs and Mk-EryPs single cells with index FACS sorting.  (a) Flow cytometry sorting gating 
 strategy used for FACS isolation of LK and LSK Cd150+ single cells. (b) Summary of cell isolation experimental design outlining plate sorting strategy 
 and numbers of cells isolated per population. 
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 Table 3.1. Overview of sequencing strategy employed  to generate single-cell libraries.  12 

 12  Sequences for the four Illumina index sets of 96-well plates used in Nextera library preparation are 
 listed in Supplementary Table 2.1. 
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 3.3.2 Sequencing quality metrics and markers of poor cell viability allows the 

 identification of high-quality samples for downstream analyses 

 To  evaluate  the  integrity  of  the  sequencing  data,  the  output  generated  by  FASTQC  underwent 

 comprehensive  analysis  using  MultiQC.  This  process  generated  a  detailed  report  for  each 

 single-cell  library,  presenting  statistics  on  various  parameters  including  read  count,  read  length 

 distribution,  GC  content,  adapter  contamination,  and  duplication  rates.  Additionally,  the 

 percentage  of  reads  uniquely  mapping  to  the  mouse  genome  per  cell  was  assessed  (refer  to 

 Appendix  Supplementary  Figure  3.3).  During  this  analysis,  few  samples  exhibited 

 lower-quality  indicators  such  as  reduced  read  quality  or  the  presence  of  overrepresented 

 sequences.  However,  all  samples  were  retained  as  part  of  the  dataset  and  subsequently 

 processed using featureCounts to generate a feature counts matrix for each batch of libraries. 

 To  remove  low-quality  cells  from  the  dataset,  commonly  used  metrics  to  assess  single-cell  data 

 quality  were  assessed.  These  criteria  meant  samples  with  fewer  than  100,000  total  reads  per 

 cell,  a  total  number  of  genes  detected  below  2,000  per  cell,  and  mitochondrial  gene  expression 

 content  exceeding  15%  were  excluded  from  the  dataset  -  leaving  a  total  of  933  high-quality 

 single-cell  samples  suitable  for  further  analysis  (Figure  3.4  and  3.5).  Moreover,  any  samples 

 with  preceeding  indications  of  low  quality  with  MultiQC  that  were  not  already  removed  based 

 on  these  metrics  were  specifically  assessed  and  individually  excluded.  The  calculation  of  these 

 QC  statistics  confirmed  that  sequencing  resulted  in  an  average  1.3M  reads  and  a  median  of 

 8,646  genes  detected  for  cells  that  passed  QC,  meeting  the  expected  minimum  read-depth 

 criteria  of  ~1M  reads  per  cell  (Figure  3.5).  The  relationship  between  the  number  of  reads  per 

 cell  and  the  number  of  detected  genes  follows  a  trend  of  proportionality  up  to  a  saturation  point. 

 Beyond  this  point,  additional  reads  cease  to  contribute  to  the  detection  of  new  genes.  This 

 phenomenon  can  be  attributed  to  the  random  sampling  of  each  mRNA  molecule  during  library 

 preparation  and  sequencing.  As  the  number  of  reads  increases,  there  is  a  higher  probability  of 

 capturing  rare  or  lowly  expressed  transcripts.  Consequently,  this  leads  to  the  detection  of  a 

 greater  diversity  of  genes  within  the  sample.  This  trend  is  evident  in  this  data  when  visualising 

 the  relationship  between  reads  and  counts  per  cell  where  the  steep  increase  in  genes  detected  as 

 counts  per  cell  increases  begins  to  plateau  after  approximately  1M  reads  per  cell  (Figures  3.4 

 and  3.5).  The  average  number  of  genes  captured  from  platelet-depleted  and  control  mice  were 

 8,764  and  6,942  respectively,  values  consistent  using  Smart-seq2  scRNA-seq  gene  detection 

 across  the  literature  -  ranging  between  5-15K  genes  per  cell  depending  on  experimental 

 conditions and quality of input cells  (Svensson  et  al.  , 2017; Ziegenhain  et al.  , 2017)  . 
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 Figure  3.4.  Single-cell  sample  quality  control  for  selecting  high-quality  cells  suitable  for  further  analysis  .  The  top  panel  shows  raw  data  statistics 
 of  1288  cells.  (a)  Violin  plots  showing:  (1)  number  of  genes  (nFeature),  (2)  number  of  reads  (nCount)  and  (3)  percentage  of  reads  attributed  to 
 mitochondrial  genes  (percent.mt)  per  single  cell.  Violins  are  coloured  by  experimental  condition  (red  =  control  ,  teal  =  platelet  depleted  )  and  split  by 
 mouse  ID  (  control  1  and  2,  platelet  depleted  1  to  4).  (b)  (1)  Correlation  between  the  number  of  reads  and  the  percentage  of  mitochondrial  content  per 
 cell,  coloured  by  plate  ID  (  plates  1-14  ).  (2)  Correlation  between  the  number  of  reads  and  the  number  of  genes  detected  per  cell,  coloured  by  well  type 
 (  pos =  multi-cell well,  neg =  empty well,  sc =  single-cell  well). 
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 Figure  3.5.  Single-cell  post-quality  control  data  selection,  comprising  933  cells.  (a)  Violin  plots  showing:  (1)  number  of  genes  (nFeature),  (2) 
 number  of  reads  (nCount)  and  (3)  percentage  of  reads  attributed  to  mitochondrial  genes  (percent.mt)  per  single  cell.  Violins  are  coloured  by 
 experimental  condition  (red  =  control  ,  teal  =  platelet  depleted  )  and  split  by  mouse  ID  (  control  1  and  2,  platelet  depleted  1  to  4).  (b)  (1)  Correlation 
 between  the  number  of  reads  and  the  percentage  of  mitochondrial  content  per  cell,  coloured  by  plate  ID  (  plates  1-14  ).  (2)  Correlation  between  the 
 number of reads and the number of genes detected per cell, coloured by well type (  sc =  single-cell well). 
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 3.3.3.  Batch  correction  and  cell  cycle  marker  regression  enable  the  identification  of 

 primary sources of heterogeneity of scRNA-seq data 

 After  the  selection  of  high-quality  samples,  the  data  were  aggregated  into  four  objects  based  on 

 batch  (1-4),  normalised  (see  Methods  section  2.3.5)  and  the  top  5,000  variable  features  for  each 

 object  calculated  independently.  This  enabled  the  identification  of  repeatedly  variable  genes  to 

 use  for  the  integration  of  data  from  across  the  four  batches.  Once  variable  features  per  batch 

 were  calculated,  a  list  of  anchors  between  the  batches  -  or  cross-dataset  cell  pairs  that  were  in  a 

 matched  biological  state  -  were  used  to  integrate  samples  back  into  a  single  dataset  for  further 

 analysis.  A  major  challenge  in  single-cell  data  integration  is  the  presence  of  batch  effects  that 

 arise  from  technical  variations  between  samples  that  can  significantly  influence  gene 

 expression  measurements,  complicating  the  distinction  between  biological  and  technical 

 effects.  ScRNA-seq  data  integration  combines  data  from  multiple  samples/experiments 

 generating  a  unified  dataset  for  downstream  analysis.  Moreover,  data  integration  from  multiple 

 samples  often  aids  in  the  accuracy  and  resolution  of  cell  type  identification  and  annotation.  By 

 combining  data  from  multiple  experiments  the  number  of  cells  available  for  analysis  is  larger, 

 which  can  improve  the  sensitivity  and  specificity  of  cell  type  identification.  Here,  the  objective 

 of  integrating  the  data  based  on  sequencing  batches  of  randomised  plates  was  to  correct  for 

 technical  differences  between  scRNA-seq  datasets  i.e.  removal  of  ‘uninteresting’  sources  of 

 variation  such  as  technical  noise  or  batch  effects,  as  opposed  to  matching  data  based  on 

 conserved  cell  types  across  the  treatment  conditions.  This  approach  ensured  that  any 

 differences  that  may  be  present  as  a  result  of  either  technical  or  biological  sources  of  variability 

 between  treatment  conditions  were  ignored,  and  intentionally  performed  as  such  so  as  not  to 

 mask  the  presence  of  differential  expression  signatures  or  cell  types  not  conserved  across  the 

 two treatment conditions which would be key in data interpretation. 

 Another  common  source  of  variation  is  the  inherently  high  expression  of  cell-cycle-associated 

 gene  markers  within  cells,  which  often  has  a  confounding  role  during  dimensionality  reduction 

 and  clustering  of  scRNA-seq  data  (Kowalczyk  et  al.  ,  2015;  Tirosh  et  al.  ,  2016)  .  Whilst  this  is  a 

 true  source  of  biological  variation  and  is  valuable  in  understanding  cell  states  within  the  data 

 particularly  in  differentiating  processes  such  as  haematopoiesis,  the  dominating  effect  on  gene 

 expression  can  obscure  other  important  signals  during  principal  component  analysis  (PCA).  To 

 minimise  the  influence  of  cell-cycle  gene  expression  variability  on  downstream  analysis, 

 Seurat’s  cell-cycle  scoring  approach  was  employed  to  first:  score  cells  into  either  G2M,  S  or  G1 

 cell-cycle  phases  based  on  the  expression  of  canonical  cell  cycle  associated  markers  (Tirosh  et 

 al.  ,  2016)  ,  and  secondly  to:  regress  the  difference  between  G2M  and  S  phase  scores  during 

 scaling  of  the  data.  This  approach  maintains  variability  caused  by  non-cycling  and  cycling 

 cells,  preserving  signals  that  would  likely  be  important  to  distinguish  stem  vs  progenitor  cells, 
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 whilst  regressing  differences  in  cell-cycle  phase  in  cells  undergoing  proliferation,  mitigating  the 

 unwanted effects of cell-cycle heterogeneity. 

 To  identify  the  primary  sources  of  heterogeneity  present  in  the  newly  integrated  dataset, 

 containing  cells  from  all  mice  and  both  treatments,  the  5000  features  of  highest  variance  were 

 recalculated  post-data  integration.  The  contribution  of  these  features  were  then  assessed  using 

 PCA,  where  the  first  principal  component  (PC)  contains  the  features  contributing  the  most 

 heterogeneity,  the  second  most  and  so  forth.  This  enabled  initial  exploration  of  highly  variable 

 gene  patterns  present  in  the  data,  providing  early  indications  of  the  cells  captured  within  the 

 experiment. 

 Canonical  haematopoietic  lineage-specific  markers  for  myeloid  (  Mpo,  Ctsg,  Elane)  ,  platelet 

 (  Pf4),  erythroid  (  Car1)  as  well  as  HSC-specific  markers  (  Cd74)  were  among  the  genes  showing 

 highest  standardised  variance,  providing  preliminary  confirmation  the  cell  types  expected  were 

 captured  (Figure  3.6A)  .  PC  loadings  represent  the  weights  of  each  gene  used  when  calculating 

 the  PCs.  Positive  loadings  indicate  a  positive  correlation  between  the  expression  of  genes  and 

 the  PC,  whilst  negative  loadings  indicate  a  negative  correlation,  whereby  the  larger  (either 

 positive or negative) gene loading indicates a strong effect on the specific PC. 

 To  pull-out  which  genes  were  contributing  to  the  construction  of  PCs  and  identify  correlated 

 gene  sets  prior  to  clustering  or  cell  type  annotation,  the  loadings  of  the  first  50  PCs  were 

 assessed.  Given  the  genes  with  the  highest  standard  variance  are,  for  the  most  part,  associated 

 with  myeloid  cell  function  (Figure  3.6A),  unsurprisingly  the  loadings  for  the  first  PC  is 

 populated  by  other  myeloid-associated  genes  including  Mafb  -  essential  in  early  myeloid 

 differentiation  (Kelly  et  al.  ,  2000)  and  Aif1  -  highly  expressed  in  committed  subsets 

 differentiating  from  common  myeloid  CMPs  (Elizondo  et  al.  ,  2019)  (Figure  3.6B).  The  positive 

 loadings  of  PC2,  which  is  uncorrelated  with  the  first  component  and  accounts  for  the  next 

 largest  variance,  include  genes  related  to  HSC  function  Mpl,  Esam,  Hlf,  Ifitm1  and  3  with 

 negative loadings for myeloid-associated genes. 

 Altogether,  the  loadings  for  the  first  PCs  provided  initial  insights  suggesting  variable 

 expression  in  myeloid-associated  genes,  as  well  as  HSC  and  genes  previously  linked  with 

 Mk-Ery  commitment.  Although  the  high  variability  in  the  expression  of  myeloid  genes  could 

 be  of  biological  significance,  it  is  most  likely  due  to  the  fact  that  myeloid  cells  have  a  more 

 significantly  different  expression  profile  to  all  other  cells  captured.  HSCs  along  with  cells  of 

 the  Mk  and  Ery  lineages  have  a  higher  proportion  of  genes  in  common  with  each  other 

 compared  to  myeloid  cells.  As  the  implemented  sorting  strategy  was  intended  for  the  isolation 

 of  HSCs  and  cells  from  Mk-Ery  lineages,  it  is  most  probable  this  saturation  of 
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 myeloid-associated  genes  in  PC  loadings  is  a  product  of  a  small  number  of  myeloid  cells  that 

 were captured that express a stronger diverging signature compared to the rest of the dataset. 

 For  efficient  downstream  analysis  of  single-cell  expression  signatures  and  cell  clustering,  the 

 standard  deviation  of  PCs  was  calculated  to  determine  the  number  of  components  containing 

 the  highest  sources  of  heterogeneity.  This  mathematical  optimisation  technique  where  variation 

 is  plotted  as  a  function  of  the  number  of  PCs  enables  the  determination  of  the  minimum  number 

 of  components  that  contains  the  most  variation  to  describe  the  data,  to  not  only  avoid 

 unnecessary  computational  work-load  but  most  importantly  data  overfitting  and  remove 

 potential  noise  from  the  dataset.  To  achieve  this  a  typical  approach  would  be  to  implement  a 

 heuristic  approach  called  the  “elbow  method”  and  represent  the  data  in  a  scree  plot.  This  would 

 capture  the  PCs  which  have  the  largest  proportion  of  variation  explained  in  the  data.  Here  the 

 first  seven  PCs  contain  the  highest  standard  variation,  and  PC  fifteen  was  determined  as  the 

 cut-off  (or  “elbow”)  for  downstream  clustering  analyses  -  adding  further  PCs  was  determined 

 as unnecessary for modelling of the data (Figure 3.6C). 

 As  part  of  PCA,  each  cell  is  given  a  score  in  each  PC  which  can  be  used  to  project  and  visualise 

 the  distribution  of  cells  in  relation  to  each  other  based  on  their  gene  expression  (Figure  3.6D). 

 While PCA is an informative method of dimensionality reduction and pulls out variations in 

 the  data,  it  assumes  the  data  has  a  linear  structure  and  may  therefore  miss  any  non-linear 

 patterns  (Lever,  Krzywinski  and  Altman,  2017)  .  Moreover,  PCA  can  only  take  into 

 consideration  two  or  three  principal  components  at  a  time,  whereas  more  modern  approaches  of 

 dimensionality  reduction  consider  all  components  only  plotting  them  in  two  dimensions 

 (Maaten  and  Hinton,  2008;  McInnes,  Healy  and  Melville,  2018)  .  scRNA-seq  datasets,  such  as 

 this,  are  nonlinear  in  nature,  and  have  a  highly-dimensional  and  complex  structure,  therefore 

 PCA  is  not  recommended  as  the  sole  method  to  represent  the  underlying  and  often  hidden 

 structure  of  the  dataset  (Becht  et  al.  ,  2018)  .  As  a  linear  technique  that  assumes  normal  data 

 distribution,  PCA  projections  were  used  for  the  purposes  of  preliminary  exploration  of  variance 

 in  the  data  based  on  experimental  conditions,  but  other  methods  were  used  to  determine 

 single-cell  clusters.  PCA  confirms  no  detectable  batch  effect  from  the  processing  of  plates  - 

 where  cells  are  not  separated  based  on  plate  ID  (1-14)  nor  differential  treatment  condition 

 (control  or  depleted),  but  it  is  clear  that  is  insufficient  to  resolve  cell-type  clusters  (Figure 

 3.6D). 
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 Figure  3.6.  Principal  component  analysis  of  the  dataset  post-integration  identifies  the  top 
 principal  components  containing  the  most  highly-variable  genes  and  confirms  no  plate-  or 
 treatment-induced  batch  effects.  (a)  Standard  variance  of  genes  against  average  expression. 
 Teal:  5000  most  highly  variable  genes,  with  the  top  20  gene  IDs  annotated  (b)  Loadings  for  top 
 three  principal  components  (c)  Scree  plot  of  standard  deviation  as  a  function  of  principal 
 component  number  used  to  determine  the  number  of  components  to  include  for  downstream 
 clustering  (d)  PCA  projection  of  all  cells  coloured  by  the  plate  of  origin  (1-14)  where  point 
 shapes (circle and triangle) indicate control or depleted treatment conditions. 
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 3.3.4  Unbiased  hierarchical  clustering  reveals  transcriptionally  distinct  populations  from 

 LT-HSC towards Mk and Ery progenitor signatures 

 Unsupervised  clustering  of  the  single-cell  dataset  was  performed  using  Seurat’s  FindClusters() 

 function,  where  cells  were  grouped  into  clusters  based  solely  on  their  gene  expression  profiles 

 without  the  input  of  cell  type  classifications  or  experimental  metadata.  FindClusters  is  a  shared 

 nearest  neighbours  method  which  builds  a  graph  over  the  data  to  determine  which  cluster  each 

 cell  should  be  in  based  on  how  "similar"  its  neighbours  are.  It  then  recursively  applies  a 

 modularity  optimization  technique  based  on  the  Louvain  algorithm  to  recursively  group  cells, 

 merging  each  of  these  nodes  (cells)  into  communities  (clusters).  Clustering  the  data  in  this  way 

 enabled  first  the  identification  of  cell  populations  captured  in  the  experiment  without 

 investigator  bias  influencing  the  structure  of  the  data,  as  well  as  facilitating  dimensionality 

 reduction,  visualisation  and  the  downstream  analysis  of  the  different  expression  signatures  of 

 cells  within  the  dataset.  Dimensionality  reduction  to  visualise  clusters  calculated  with  a 

 resolution  =  1  was  performed  using  uniform  manifold  approximation  and  projection  (UMAP) 

 (Figure  3.7).  The  gene  expression  signatures  of  the  top  most  highly  expressed  genes  per  cluster 

 were visualised using a heatmap (Figure 3.8). 

 Cells  were  grouped  into  11  clusters,  which  were  individually  assigned  into  cell  types  by 

 thorough  analysis  of  gene  lists  of  the  top  marker  genes  with  positive  expression  within  each 

 cluster  against  all  other  clusters  using  previously  published  literature  sources  and  expression 

 atlases  as  references  (Pronk  et  al.  ,  2007;  Haas  et  al.  ,  2015;  Paul  et  al.  ,  2015;  Pietras  et  al.  , 

 2015;  Miyawaki  et  al.  ,  2017;  Dahlin  et  al.  ,  2018)  .  Cell-type  annotations  were  assigned  to 

 clusters  onto  the  integrated  dataset,  with  both  treatment  conditions  combined.  This  enabled 

 grouping  of  cell  types  based  on  their  expression  signatures,  irrespective  of  treatment  condition. 

 No  dominating  effect  on  clustering  as  a  result  of  platelet  depletion  was  observed,  therefore 

 confirming no cluster was composed of cells unique to one condition (Figure 3.7A). 

 The  expression  signature  of  cells  in  cluster  1  is  consistent  with  a  canonical  immature  HSPC 

 signature  with  high  expression  of  markers  such  as  Cd34,  and  more  HSC-specific  Esam,  and  Hlf 

 a  key  regulator  in  HSC  quiescence  (Ishibashi  et  al.  ,  2016;  Komorowska  et  al.  ,  2017)  .  Cluster  9 

 largely  shares  an  overlapping  expression  of  multiple  genes  highly  expressed  in  cluster  1 

 suggesting  it  is  also  composed  of  HSCs,  however  with  low  expression  of  CD34  ,  and  highest 

 levels  of  genes  including  Procr,  Sult1a1,  and  Mpl  -  markers  of  rare  and  most  primitive  HSCs,  it 

 is  consistent  with  well-established  literature  stipulating  the  Cd34  low  HSC-subset  as  murine 

 long-term  multilineage  reconstituting  HSCs  (LT-HSCs)  (Balazs  et  al.  ,  2006;  Gazit  et  al.  ,  2014; 

 Ali  et al.  , 2017)  (Figure 3.9). 

 117 

https://paperpile.com/c/H5DC9c/ML3Q+IKDt+lr9V+ETkn+mnVt+7Q5se
https://paperpile.com/c/H5DC9c/ML3Q+IKDt+lr9V+ETkn+mnVt+7Q5se
https://paperpile.com/c/H5DC9c/JFRo+SWvE
https://paperpile.com/c/H5DC9c/MhnL+Iz5H+py7k
https://paperpile.com/c/H5DC9c/MhnL+Iz5H+py7k


 Cell type  % 
 control 

 % 
 depleted 

 Total cells 
 per 

 cluster 

 HSC  21.5  22.2  203 

 MkP  13.4  11.4  110 

 MEP_Mk  5.7  14.2  110 

 CMP  13  10.4  102 

 Early_EryP  11  10.5  98 

 MPP-2  7  9.2  79 

 MEP_Ery  6  7  63 

 EryP  7  6.1  58 

 LTHSC  12.6  3.5  55 

 MP  1.2  3.4  26 

 GMP  1.6  1.9  17 

 Figure  3.7.  Dimensionality  reduction  and  clustering  of  single  cells  from  control  and 
 platelet-depleted  mice.  (a)  UMAP  projection  of  integrated  dataset  where  each  point  represents  a 
 single-cell,  coloured  based  on  treatment  condition  (b)  UMAP  projection  coloured  instead  by  clusters 
 annotated  by  cell-type  (c)  Proportion  of  cells  in  each  cluster  per  condition  (total  cells:  control  =  246, 
 depleted = 675) (d) Numbers of cells per cluster and proportion from total cell numbers per condition. 
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 Figure 3.8. Heatmap showing the distribution of expression levels of the top 10 markers 
 per cluster. 
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 Cluster  2  contains  MkP  cells  with  high  expression  of  genes  canonical  to  Mk  function  including 

 Plek,  Pf4  and  Itga2b  (CD41)  ,  as  well  as  Mpl  and  Vwf  -  notably  also  expressed  in  LT-HSCs 

 (Paulus  et  al.  ,  2004;  Chen,  Hu  and  Shivdasani,  2007;  Pronk  et  al.  ,  2007;  Lambert  et  al.  ,  2009; 

 Sanjuan-Pla  et  al.  ,  2013;  Grover  et  al.  ,  2016)  (Figure  3.9).  Clusters  5  and  8  exhibit  high 

 expression  of  markers  associated  with  erythrocytes,  including  “master”  transcription  factor  in 

 erythropoiesis  Gata1,  known  to  regulate  all  aspects  of  erythroid  maturation  and  function  at  the 

 transcriptional  level  (Gutiérrez  et  al.  ,  2020)  ,  as  well  as  other  erythroid  cell  markers  Klf1,  Epor, 

 Rhd  (Siatecka  and  Bieker,  2011;  Watowich,  2011)  .  The  two  clusters  are  separated  based  on 

 differential  expression  of  genes  related  to  cell-cycle  stage,  and  genes  associated  with  distinct 

 Ery  progenitor  maturity  stages  where  cluster  8  contains  more  cells  in  the  G2M  cell  cycle  phase 

 and high expression in markers for lineage committed erythroid progenitors (Figure 3.10A). 

 Clusters  10  and  11  respectively  showed  strong  signatures  of  monocyte-macrophage  progenitors 

 (MPs)  and  granulocyte-macrophage  progenitors  (GMPs).  The  three  subunits  of  C1q  are  C1qA, 

 C1qB,  and  C1qC  components  of  the  C1  complement  activation  complex  and  known  mature 

 macrophage  markers,  along  with  Vcam  1  and  Mafb  -  key  regulators  of  macrophage  are  highly 

 expressed  in  cluster  10  (Kishore  and  Reid,  2000;  Yang  et  al.  ,  2022)  .  Classic  markers  for  the 

 more  immature  GMPs  Mpo,  Elane,  and  Clec12a  are  most  highly  expressed  in  cluster  11  (Figure 

 3.10B and 3.10C). 

 Altogether  there  were  more  cells  from  depleted  than  control  samples  that  passed  QC  (675  and 

 246  cells  respectively).  A  comparison  of  cell-type  abundance  per  condition  was  achieved  by 

 calculating  the  distribution  of  cells  for  each  condition  across  clusters  as  percentages  (Figure 

 3.7C).  Cells  from  both  treatment  conditions  were  identified  in  every  cluster,  with  a  few  notable 

 differences.  A  lower  proportion  of  LT-HSCs  were  captured  from  platelet-depleted  mice  than 

 control.  Also,  platelet-depletion  samples  contained  higher  numbers  of  cells  in  the  MPP-2  and 

 Mk-MEP  clusters  (Figure  3.7D).  These  results  suggest  that  platelet  depletion  induces  LT-HSC 

 exit  from  the  HSC  compartment,  and  the  expansion  of  MPP-2  and  Mk-MEPs  for  the 

 differentiation of Mks and ultimately the rescue of platelet levels in the blood. 
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 Figure 3.9. Feature expression of markers associated with Mks and HSCs. 
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 Clusters  3  and  7  are  also  cell  populations  where  genes  associated  with  the  G2M  cell-cycle 

 phase  acted  as  principal  components  governing  the  clustering.  This  is  evident  from  the  high 

 expression  of,  for  example,  DNA  topoisomerase  II  alpha  (  Top2a),  essential  in  governing 

 topological  states  of  DNA  during  transcription  and  Ubiquitin-conjugating  enzyme  E2C  (  Ube2c) 

 known  for  its  required  role  in  the  destruction  of  mitotic  cyclins  during  cell  cycle  progression  - 

 both  highlighted  as  positive  markers  (Figure  3.11).  To  explore  further  the  relationship  of 

 cell-cycle  phase  across  this  dataset,  the  proportion  of  cells  classified  as  either  being  in  G2M,  S 

 or  G1  cell  cycle  phases  were  compared  across  all  clusters  (Figure  3.11).  This  confirmed  that 

 cluster  3  was  indeed  primarily  composed  of  cells  in  G2M,  undergoing  cell  division,  explaining 

 the  high  saturation  of  DNA  replication  and  cell  cycle  progression  genes  listed  as  cluster  3 

 markers  (  Prr11,  Pimreg,  Nusap1,  Hmmr,  and  Mki67)  .  Further  inspection  of  cluster  3  markers, 

 aside  from  those  related  to  cell  cycle,  shows  a  positive  expression  of  Mk-associated  genes 

 including  Plek,  Mpl,  Gfi1b,  and  Itga2b.  Cluster  7  in  comparison  expressed  higher  levels  of 

 Ery-associated  markers  such  as  both  Gata1  and  Gata2  and  Epor.  Clusters  3  and  7  best 

 recapitulate  the  expression  of,  and  were  annotated  as,  MEP  progenitors  which  were 

 sub-clustered  whereby  cluster  3  has  higher  expression  of  Mk-lineage  genes  (Mk-MEP)  and  7 

 higher expression of Ery-lineage genes (MEP Ery) respectively. 

 Though  successful  isolation  of  haematopoietic  progenitors  with  bi-potency  towards  exclusively 

 Mk  and  Ery  lineages  has  been  demonstrated  (Manz  et  al.  ,  2002;  Pronk  et  al.  ,  2007;  Klimchenko 

 et  al.  ,  2009;  Sanada  et  al.  ,  2016)  ,  gaps  in  our  understanding  of  the  properties  of  these  cells 

 remain  and  whether  these  are  sufficient  to  warrant  designation  as  a  unique  cell-type,  or  whether 

 these  MEPs  exist  only  as  a  transient  state  of  differentiation.  This  is  enforced  by  the  difficulty  of 

 the  isolation  of  MEPs  based  on  a  cell-surface  repertoire  and  the  challenge  of  identifying  a 

 unique  gene  expression  signature  (Xavier-Ferrucio  and  Krause,  2018)  .  It  is,  however,  both 

 consistent  that  MEPs  can  be  found  within  the  LSK  Cd150+  BM  fraction  isolated  in  this 

 experiment,  and  the  expression  patterns  observed  here  correlate  with  previous  work  studying 

 MEP  lineage  output  (Psaila  et  al.  ,  2016)  .  Moreover,  both  exhibit  limited  expression  of 

 myeloid-associated  genes  (e.g.  Mpo,  Elane  )  suggesting  the  cells  captured  here  are  specifically 

 primed  for  either  Mk-specific  or  Ery-specific  gene  expression  (Leonard  et  al.,  1993;  Tsai  et  al., 

 1994;  Lira  and  Friedman,  1997;  Osawa,  2002).  When  testing  clustering  of  data  using  a  lower 

 resolution,  clusters  3  and  7  were  grouped  into  a  single  population,  having  a  signature  most 

 closely  resembling  CMPs,  suggesting  that  these  populations  share  a  similar  pattern  of 

 expression  with  one  another  and  have  a  more  immature  expression  pattern  than  traditional 

 unipotent  progenitors  (Notta  et  al.  ,  2016)  .  Altogether,  these  data  suggest  these  cells  express 

 transcriptomic signatures consistent with our current knowledge of MEPs. 
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 Figure 3.10. Violin expression plots of example canonical markers.  (a) erythroid (b) 
 macrophage-monocyte and (c) granulocyte-macrophage progenitors. 
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 Figure  3.11.  Cell-cycle  phase  analysis  and  pattern  of  expression  of  G2M  and  S  phase 
 markers  across  clusters.  (a)  UMAP  projection  of  single  cells  captured  coloured  by  cell  cycle 
 stage  (b)  Proportion  of  cells  in  each  cell  cycle  stage  per  cluster  from  control  (left)  and  platelet 
 depleted  (right)  samples  (c)  Expression  levels  of  four  cell-cycle  associated  markers  across  all 
 clusters. 
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 3.3.5 Transcriptional ordering along pseudotime reveals a differentiation continuum 

 Clustering  is  a  useful  tool  to  characterise  gene  expression  patterns  within  a  dataset  inherently 

 by  forcing  high-dimensional  data  from  many  cells  into  discrete  groups,  enabling  differential 

 expression  analyses  between  cell  populations  and  across  ‘meta’  parameters  including  in  this 

 case  treatment  condition.  However,  clusters  do  not  adequately  represent  the  differentiation 

 continuum  occurring  in  haematopoiesis  as  the  point  of  differentiation  is  not  taken  into  account. 

 Particularly  in  haematopoiesis,  critical  differences  in  gene  expression  between  cells  can  be 

 explained  by  the  temporal  position  they  occupy  along  the  process  of  lineage  commitment.  For 

 this  reason,  tools  for  trajectory  analysis  inference  from  ‘snapshot’  scRNA-seq  data  were 

 developed  to  order  cells  along  a  pseudotime  metric,  recapitulating  the  dynamic  process  in 

 question by providing temporal resolution to expression measurements from single cells. 

 Since  2015,  more  than  50  algorithms  for  trajectory  inference  from  scRNA-seq  data  have  been 

 published  (Saelens  et  al.  ,  2019)  .  One  of  these  approaches,  packaged  in  the  tool  Monocle  ,  uses 

 an  algorithm  to  learn  the  sequence  of  gene  expression  changes  each  must  go  through  as  part  of 

 a  dynamic  process,  and  using  the  overall  trajectory  of  gene  expression  changes  projects  cells  in 

 order  (Trapnell  et  al.  ,  2014)  .  Briefly,  Monocle  first  employs  a  differential  expression  test, 

 similar  to  FindVariableFeatures()  of  Seurat,  to  identify  a  number  of  genes  that  vary 

 significantly  across  cells  in  the  dataset.  Then  it  applies  independent  component  analysis  for 

 dimensionality  reduction,  computing  a  minimum  spanning  tree  to  build  a  trajectory  by  finding 

 the  longest  connected  path  in  that  tree.  Monocle  then  projects  each  cell  onto  the  nearest  point  to 

 them  along  the  longest  connected  path  of  the  tree,  where  in  case  of  multiple  ‘end  points’  a 

 branched trajectory representing diverging trajectories are constructed  (Qiu  et al.  , 2017)  . 

 Whilst  a  wide  variety  of  trajectory  inference  tools  are  available,  Monocle  is  well-established  as 

 one  of  the  methods  best  suited  for  pseudotime  ordering  complex  trajectories  with 

 multi-branching  topologies,  and  includes  functions  for  differential  gene  expression  analyses 

 along  trajectories  across  multiple  criteria  (Saelens  et  al.  ,  2019)  .  To  infer  a  trajectory  from  this 

 single-cell  RNAseq  dataset,  pseudotime  analysis  was  performed  using  Monocle3,  the  latest 

 version  released  by  the  Trapnell  lab.  As  cells  were  assigned  into  clusters  using  Seurat,  the 

 dataset  from  Seurat  object  was  directly  converted  into  the  Monocle  equivalent  cell  data  set 

 (cds),  preserving  cell-type  annotations  and  UMAP  cell  embeddings  per  cell  to  recreate  the  same 

 partitions  for  pseudotime  analysis  as  those  presented  in  section  3.3.4.  Using  these  partitions  as 

 input,  a  graph  was  learned  over  the  projected  cells,  creating  a  path  of  connecting  points  across 

 clusters  enabling  pseudotime  ordering.  To  calculate  cell-wise  pseudotime  the  cds  was  parsed 

 into  order_cells()  calculating  a  numeric  value  per  cell  based  on  the  position  in  which  it  lies 

 along  pseudospace.  This  was  performed  semi-supervised,  where  the  only  parameter  used  for 

 pseudotime ordering was setting the root point of the trajectory as cells in the LT-HSC cluster. 
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 Figure  3.12.  Pseudotime  analysis  of  single-cells  (a)  UMAP  projection  of  single-cells  showing 
 the  trajectory  learned  over  dataset  (black)  coloured  by  cluster  (left)  and  pseudotime  values 
 (right).  (b)  Median pseudotime values per cluster  along pseudospace per treatment condition. 
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 Pseudotime  analysis  ordered  cells  along  a  trajectory  from  LT-HSCs  to  Mk  and  Ery  progenitors, 

 with  LT-HSCs  having  the  lowest  and  EryPs  the  highest  pseudotime  values  (Figure  3.12).  To 

 visualise  the  order  and  range  of  pseudotime  values  assigned  to  each  cell  in  all  clusters,  the 

 median  pseudotime  value  per  cluster  was  plotted  across  pseudotime  (Figure  3.12B),  showing 

 the  successive  order  of  clusters  within  the  pseudospace.  This  order  corroborates  the  existing 

 literature  suggesting  that  commitment  to  the  Mk  lineage  occurs  at  earlier  stages  of 

 haematopoiesis  as  compared  to  other  mature  blood  cells  including  the  Ery  lineage  (Haas  et  al.  , 

 2015;  Grover  et  al.  ,  2016;  Miyawaki  et  al.  ,  2017;  Psaila  and  Mead,  2019)  .  This  also  revealed  a 

 small  discrepancy  between  control  vs  platelet  depleted  samples,  where  MkP  cells  from  the 

 depleted  object  were  assigned  into  an  earlier  slot  along  pseudotime  than  MkPs  from  control 

 mice. 

 3.3.6  Differential  expression  along  pseudotime  reveals  expression  dynamics  of  genes 
 implicated in Mk function 

 For  unbiassed  identification  of  genes  within  this  dataset  that  are  differentially  expressed  across 

 the  constructed  trajectory,  the  Monocle3  graph_test  was  applied  which  draws  on  the  Moran’s  I 

 statistical  test,  a  technique  in  spatial  correlation  analysis  (Moran,  1950)  .  Moran’s  I  is  a  measure 

 of  multi-directional  and  multi-dimensional  spatial  autocorrelation  which  describes  whether 

 cells  at  nearby  positions  on  a  trajectory  will  have  similar  (or  dissimilar)  expression  levels  for  all 

 genes  tested.  The  goal  of  this  analysis  was  to  extract  genes  that  vary  significantly  in  expression 

 across  cells  from  low  to  high  pseudotime  values,  in  order  to  confirm  our  data  recapitulates 

 well-established  gene  signatures  of  Mk  lineage  restriction,  but  also  potentially  identify  novel 

 genes  involved  in  lineage  specification  towards  Mks.  This  identified  3,212  genes  that  vary 

 along  pseudotime  across  the  dataset.  Many  genes  identified  in  this  analysis  corroborate  with 

 existing  literature  to  vary  in  expression  during  HSC  differentiation  along  the  Mk-Ery  lineage. 

 For  example,  Mpl,  Mecom,  Esam,  Socs2  and  Hlf  were  all  identified  as  significantly 

 differentially  expressed  early  in  the  trajectory;  these  are  well-established  markers  for  HSCs  and 

 only  expressed  in  the  most  primitive  HSPC  compartment  (Balazs  et  al.  ,  2006;  Kustikova  et  al.  , 

 2006;  Qian  et  al.  ,  2007;  Yokota  et  al.  ,  2009;  Balenci  et  al.  ,  2013)  .  Correspondingly,  in  late 

 pseudospace,  lineage-specific  markers  were  identified  as  differentially  expressed.  This  includes 

 Ery-specific  Klf1,  Epor  and  Car1,  myeloid/  monocyte-specific  Plac8  and  Apoe  and  Mk-specific 

 Itga2b  and  Gp5  -  all  enriched  in  cells  with  high  pseudotime  values  as  expected  (Figure  3.12) 

 (Debili  et  al.  ,  2001;  Hodge  et  al.  ,  2006;  Klimchenko  et  al.  ,  2009;  Reddi  and  Belibasakis,  2012; 

 Song  et al.  , 2012)  . 

 Conducting  differential  expression  analysis  on  the  entire  dataset  revealed  the  global  changes 

 along  the  entire  tree  end-to-end.  However,  with  MkPs  having  lower  pseudotime  values  than  the 

 EryP, GMP and MP populations captured in this experiment, markers for these populations 
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 Figure  3.13.  Heatmap  of  top  100  genes  differentially  expressed  along  pseudotime.  Top 
 genes were selected from those which were statistically significant (sig q < 0.05). 
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 characterised  as  further  along  in  pseudotime  were  dominating  the  list  of  genes  returned  as 

 differentially  expressed,  consequently  complicating  the  changes  along  the  Mk-lineage  from 

 being  resolved  with  this  approach.  This  is  emphasised  in  Figure  3.13,  where  the  heatmap  is 

 clearly  clustered  into  two  compartments  based  on  the  two  extremes  of  the  pseudotime  scale, 

 with  comparatively  lower  detection  of  genes  along  intermediate  pseudotime  states  -  largely 

 composed  of  the  MkP  cells  of  interest  (Figure  3.12).  To  specifically  interrogate  the  dynamics  in 

 the  expression  of  genes  along  the  Mk  trajectory,  the  dataset  was  subset  to  include  only  cells 

 along  the  Mk  lineage.  This  was  achieved  by  using  Monocle’s  choose_cells()  function,  which 

 enables  the  specific  selection  of  cells  into  a  new  object  for  further  analysis,  where  only 

 LT-HSCs, HSCs, MPP-2, Mk-MEP and MkP cells were included (Figure 3.14). 

 Figure  3.14.  Subset  excluding  cells  outside  of  the  Mk  trajectory  to  enable  differential 
 expression  with  pseudotime.  Cell  selection  was  performed  using  Monocle3  choose_cells() 
 excluding  cells  of  the  Ery  lineage.  This  approach  isolated  the  Mk  lineage  so  analyses  of 
 differential  gene  expression  along  pseudotime  reflected  only  differential  expression  within  a 
 single lineage. 
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 Figure  3.15.  Heatmap  of  top  100  genes  differentially  expressed  along  Mk  trajectory.  Top 
 genes were selected from those which were statistically significant (sig q < 0.05). 
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 Differential  expression  genes  (DEGs)  as  a  function  of  the  Mk  pseudotime  trajectory  calculated 

 genes’  spatial  autocorrelation,  assessing  the  similarity  or  dissimilarity  of  neighbouring  cells  in 

 terms  of  gene  expression.  Key  markers  of  HSCs  and  committed-MkPs  were  among  the  most 

 statistically  significant  genes  with  variable  expression.  A  set  of  830  genes  exhibited  a 

 significant  correlation  with  pseudotime,  as  indicated  by  adjusted  p-values  below  0.05. 

 Inspection  of  the  significant  genes  list,  along  with  studying  the  distribution  of  their  expression 

 patterns  across  the  cells,  and  existing  gene  annotations  suggested  the  vast  majority  of  genes 

 broadly  could  qualitatively  fit  one  of  three  main  categories:  1.  Genes  with  implications  in  HSC 

 function;  2.  Genes  associated  with  cell  cycle  transition  (particularly  G2M/S  cell  cycle  phase); 

 and 3. Genes with implications in Mk function. 

 Plotting  the  top  100  most  variable  genes  along  pseudotime  along  the  Mk  trajectory  shows  a 

 subset  of  these  genes,  and  revealed  in  total  3  ‘major’  gene  clusters,  and  a  total  of  6  subclustered 

 gene  sets  (Figure  3.15).  Clusters  represent  grouped  genes  that  exhibit  similar  expression 

 dynamics,  allowing  for  easier  interpretation  and  analysis.  Genes  within  the  same  cluster  can 

 often  have  similar  functions  or  are  co-regulated,  hence  this  may  be  indicative  of  potential 

 functional relationships and shared regulatory mechanisms across genes. 

 Clusters  4  and  5  are  enriched  for  genes  highly  expressed  in  cells  with  low  pseudotime  values  ie. 

 LTHSCs  and  HSCs.  This  includes  for  example  Nectin  (Ndn),  which  encodes  for  a 

 multifunctional  protein  that  plays  an  important  role  in  restricting  excessive  HSC  proliferation 

 during  haematopoietic  regeneration  (Kubota  et  al.  ,  2009)  .  Another  example  is  Pdzk1ip1  ;  an 

 important  gene  encoding  a  membrane-associated  protein  shown  to  modulate  the  levels  of 

 reactive  oxygen  species  and  an  important  determinant  of  HSC  function.  Moreover,  previous 

 work  has  shown  Pdzk1ip1  is  within  the  expression  domain  of  Scl  with  known  implications  in 

 Mk  maturation,  sharing  transcriptional  enhancer  elements  (Pimanda  et  al.  ,  2007;  Tijssen  et  al.  , 

 2011)  . 

 Conversely,  clusters  3  and  6  are  enriched  with  genes  that  are  lowly  expressed  at  the  beginning 

 of  the  pseudotime  trajectory.  In  particular,  cluster  3  is  instead  composed  of  genes  expressed  in 

 Mk-Ery  progenitors  such  as  Gata1,  Klf1  and  Gata2  (Iturr  i  et  al.,  2021)  ,  while  6  grouped  known 

 MkP  genes  including  Itga2b,  and  thrombin-receptors  of  the  protease-activated  receptor  (PAR) 

 family  F2r  and  F2rl2  (Figure 3.15)  (Sun  et al.  , 2013)  . 

 The  remaining  two  subclustered  sets  of  genes  that  correlate  with  pseudotime  progression  are 

 highly  composed  of  genes  associated  with  cell  proliferation  (Figure  3.15).  This  includes 

 canonical G2M/S phase transition genes such as  Ube2c  and  Birc5,  as well as  Ccnd1 and Ccne2; 
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 Figure  3.16.  Dynamics  of  expression  levels  of  genes  that  vary  along  pseudotime  in  Mk 

 commitment  . 

 which  have  additionally  also  been  implicated  in  promoting  endomitosis  (repeated  rounds  of 

 DNA  synthesis  without  cell  division)  during  megakaryopoiesis  (Geng  et  al.  ,  2003;  Muntean  et 

 al.  ,  2007)  .  Mks  are  unique  from  all  other  blood  cell  types  as  committed  MkPs  proliferate  to  a 

 relatively  limited  extent  to  give  rise  to  colonies  of  Mks.  Cells  then  undergo  terminal 

 differentiation  where  they  bypass  the  latter  stages  of  mitosis  to  increase  their  DNA  content  and 

 size.  Previous  work  has  demonstrated  TPO-induced  Mk  differentiation  is  in  part  linked  to 

 up-regulation  of  cyclin  D1  (  Ccnd1)  ,  cyclin  D2  (  Ccnd2)  ,  and  cyclin  D3  (Ccnd3)  ,  where  Ccnd2 

 overexpression  specifically  was  found  to  facilitate  Mk  differentiation  even  in  the  absence  of 

 TPO  (Matsumura  et  al.  ,  2000)  .  Similarly,  E  type  cyclins  (E1  and  E2)  are  believed  to  drive  cell 

 entry  into  the  S  phase  and  are  thus  required  for  proliferation  for  many  cell  types.  Mk 

 endoreplication  was  found  to  be  severely  impaired  in  the  absence  of  cyclin  E  (  Ccne),  where 

 Cyclin  E1  and  E2  KO  Mks  exhibited  significantly  reduced  ploidy  profiles  compared  to  WT 

 Mks  (Geng  et  al.  ,  2003;  Eliades,  Papadantonakis  and  Ravid,  2010)  .  It  is  thought  cyclins  may 
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 mediate  their  effects  by  promoting  the  expression  of  components  of  the  pre-replication  complex 

 (Eliades,  Papadantonakis  and  Ravid,  2010)  ,  and  that  cyclin  expression  is  likely  controlled  by 

 essential  Mk-promoting  TFs,  such  as  GATA-1  however  these  mechanisms  remain  to  be  fully 

 elucidated  (Muntean  et  al.,  2007)  .  This  data  shows  an  upregulation  of  cyclin  genes  with 

 pseudotime,  which  is  expressed  from  MPP-2s,  Mk-MEPs  to  MkPs  (Figure  3.16),  and  may 

 suggest  increased  expression  of  cyclin  genes  contributes  to  the  expansion  of  the  Mk  lineage, 

 potentially acting as positive regulators of endomitosis. 

 Moreover,  cell-cycle-associated-genes  and  cyclin  expression  across  single  cells  is  correlated 

 with  other  important  components  involved  with  cell  cycle  regulation,  spindle  organisation,  and 

 chromosome  segregation.  This  includes  examples  such  as  spindle  assembly  factor  Hyaluronan 

 Mediated  Motility  Receptor  (  Hmmr)  (He  et  al.,  2020)  ,  protein  kinases  Aurora  kinases  A  and  B 

 (Aurka,  Aurkb)  (Geddis  and  Kaushansky,  2004;  Goldenson  et  al.,  2015)  ,  as  well  as  histone  gene 

 family  proteins  (Hist1h2ao  and  Hist1h2ap)  that  are  important  for  DNA  packaging  and  nuclear 

 organisation  (Figure  3.16).  Together  the  overall  signature  of  this  gene  set  is  enriched  for  cell 

 proliferation  indicators,  including  both  well  established  markers  and  co-expressed  genes  that 

 have not previously been explored in the context of Mk differentiation. 

 To  establish  the  expression  of  pseudotime-DEGs  in  the  context  of  cell-type  annotations,  the 

 expression  levels  of  known  and  novel  genes  that  exhibit  dynamic  expression  during 

 megakaryopoiesis  was  plotted  across  cells’  Seurat  annotations  (Figure  3.17).  This  step 

 confirmed  the  concordance  between  cell  type  annotations,  Monocle3  pseudotime  state 

 annotations  and  the  available  existing  literature  that  have  identified  variable  expression  in 

 certain  genes  during  Mk  differentiation.  TPO  receptor  Mpl  is  most  highly  expressed  in 

 LTHSCs.  It  is  co-expressed  with  Trpc6  and  Ptk7  both  of  which  are  highly  expressed 

 exclusively  in  the  earliest  pseudotime  states  and  have  previously  been  implicated  in 

 megakaryocyte  commitment.  Trpc6  is  present  on  the  platelet  membrane  and  is  thought  to 

 participate  in  calcium  influx  during  platelet  activation  (Hassock  et  al.  ,  2002)  .  Its’  expression 

 during  the  differentiation  of  Mks  has  been  previously  reported  and  has  been  proposed  to  play  a 

 role  in  the  initiation  and  maintenance  of  TPO-induced  calcium-mediated  differentiation  (Carter 

 et  al.  ,  2006;  Ramanathan  and  Mannhalter,  2016)  .  The  Ptk7  tyrosine  kinase  receptor  on  the  other 

 hand  is  a  is  a  planar  cell  polarity  receptor  belonging  to  the  Ig  superfamily  found  largely  on 

 endothelial  cells  (Lhoumeau  et  al.  ,  2016)  ,  but  has  also  been  identified  on  the  cell  surface  of 

 human  HSPCs  and  blast  cells  from  patients  with  AML  where  it  confers  a  poor  prognosis  to 

 patients independently of other risk factors  (Prebet  et al.  , 2010)  . 
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 Another  surface  receptor  associated  with  endothelial  cells  was  also  identified;  Adgrl4  is  a  G 

 protein-coupled  receptor  that  plays  a  role  in  angiogenesis  and  promotes  tumour  growth  and 

 metastasis  (Schiöth  and  Fredriksson,  2005)  .  Discovered  in  2001,  very  little  about  the  gene’s 

 function  and  its  mechanism  of  activation  has  been  elucidated.  In  2019,  Adgrl4  silencing  was 

 found  to  regulate  endothelial  cell  metabolism  by  suppressing  the  mitochondrial  gene  SLC25A1  , 

 as  well  as  inducing  cKit  upregulation  -  where  the  authors  suggest  it  may  serve  to  maintain  an 

 equilibrium  in  endothelial  metabolism  and  homeostasis  (Favara  et  al.  ,  2019)  .  Adgrl4  has  the 

 potential  to  serve  as  a  treatment  target  for  multiple  cancers,  as  it  is  frequently  dysregulated  in 

 tumour-associated  endothelial  cells  of  patients  with  renal  carcinoma,  as  well  as  other  malignant 

 and  non-malignant  diseases.  Its  aberrant  expression  correlates  to  tumour  invasiveness  (Kan  et 

 al.  ,  2018)  ,  tumour  angiogenesis,  as  well  as  renal  thrombotic  microangiopathy  amongst  other 

 known phenotypes  (Niinivirta  et al.  , 2020)  . 

 Here,  Adgrl4  expression  was  revealed  to  be  strongly  correlated  with  Mk-lineage  associated 

 cell-types-  from  LTHSCs  to  MkPs  (Figures  3.17  and  Appendix  Supplementary  Figure  3.5). 

 Literature  connecting  this  gene  to  haematopoietic  cell  function  /  differentiation  could  not  be 

 identified.  With  important  interactions  between  Mks  and  endothelial  cells  in  other  areas  well 

 documented,  it  is  plausible  to  speculate  this  gene  may  represent  another  feature  in  common 

 between  the  cell  types  that  is  yet  to  be  explored.  For  instance,  thrombotic  microangiopathy 

 (TMA)  is  a  condition  whereby  endothelial  injury  and  associated  platelet  activation  contribute  to 

 microvascular  thrombosis  formation,  tissue  ischemia,  and  subsequent  end-organ  injury  (Genest 

 et  al.  ,  2023)  .  Most  cases  are  caused  by  ADAMTS13  deficiency  which  results  in  accumulation 

 of  ultralarge  vWF  multimers,  followed  by  widespread  platelet  aggregation  and  thrombosis 

 (Noone  et  al.  ,  2016;  Bettoni  et  al.  ,  2017)  .  It  can  also  be  triggered  by  infections,  autoimmune 

 reactions,  and  other  causes  (Genest  et  al.  ,  2023)  .  This  is  a  pathological  example  of 

 dysfunctional  endothelial  and  thrombotic  function  that  can  lead  to  clinical  features  of 

 microangiopathic  hemolytic  anaemia,  thrombocytopenia,  and  ischemic  end-organ  injury 

 (George  and  Nester,  2014)  .  The  identification  of  this  gene  along  cells  of  the  Mk  lineage  may 

 represent an interesting avenue for further investigation. 
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 Figure  3.17.  Average  expression  dotplot  in  a  subset  of  genes  identified  as  significantly 
 enriched across distinct pseudotime states.  Rows correspond  to the annotated cell types 
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 3.3.7  Pseudo-bulk  differential  expression  analysis  within  clusters  identifies  significantly 
 differentially expressed genes caused by platelet depletion 

 Single-cell  specific  tools  for  differential  expression  (DE)  such  as  Seurat’s  FindMarkers, 

 although  useful  for  cell  type  annotation  of  clusters,  often  result  in  inflated  p-values  as  each  cell 

 is  treated  as  a  sample.  However,  single  cells  within  each  sample  are  not  independent  of  each 

 other,  and  methods  that  ignore  biological  variation  between  biological  replicates  lead  to  biassed 

 results  and  are  prone  to  false  discoveries.  Failing  to  account  for  the  intrinsic  biological  variation 

 between  biological  replicates  increases  the  probability  of  false  discoveries  in  the  presence  of  a 

 real  biological  perturbation,  leading  to  confounded  results  (see  Appendix  Supplementary  Figure 

 3.4).  Moreover,  single-cell  DE  methods  have  a  systematic  tendency  towards  highly  expressed 

 genes,  identifying  highly  expressed  genes  as  DE  even  when  their  expressions  were  unchanged 

 (Squair  et al.  , 2021)  . 

 To  identify  DE  across  cell  types  after  platelet  depletion,  DE  analyses  were  performed  by 

 aggregating  single  cell  counts  in  pseudo-bulk  replicates  both  by  biological  replicate  (mouse  ID) 

 and  cell  type  annotations  (clusters).  This  was  achieved  by  subsetting  cells  from  the  dataset  by 

 the  cell  type(s)  of  interest  to  perform  the  DE  analysis  within  clusters,  and  using  mouse  ID 

 metadata  to  split  samples  into  their  respective  conditions  and  biological  replicates  from  which 

 gene  counts  were  aggregated.  DE  was  performed  using  the  DESeq2  package  (Love,  Huber  and 

 Anders,  2014)  .  Functional  analysis  of  DEGS  between  conditions  was  performed  using  gene  set 

 enrichment  analysis  (GSEA)  with  ReactomePA()  and  clusterProfiler()  (Yu  and  He,  2016;  Wu  et 

 al.  ,  2021)  .  GSEA  determines  whether  DEGS  or  pathways  are  overrepresented  between 

 conditions, using a background gene set of all expressed genes in the dataset. 

 DE  in  LTHSCs  between  treatment  conditions  revealed  a  total  of  1348  DEGs,  of  which  186 

 were  statistically  significant  (  adjusted  P-values  <=  0.05)  (Figure  3.18).  To  confirm  pseudo-bulk 

 DEGs  could  be  seen  at  the  single  cell  level,  DEGS  were  also  visualised  in  LTHSCs  between  the 

 conditions, some of which are presented in Figure 3.18B. 

 DEGs  and  GSEA  revealed  that  platelet-depleted  LTHSCs  had  a  marked  increase  in  expression 

 of  genes  associated  with  cell  cycle  progression,  differentiation  and  DNA  replication  (Figure 

 3.18C-D).  This  includes  examples  such  as:  canonical  proliferation  markers  like  Mki67  (Uxa  et 

 al.,  2021)  ;  kinetochore-associated  proteins  (Knstrn)  that  promote  chromosome  segregation 

 during  mitosis  (Deng  et  al.  ,  2021)  ;  DNA  unwinding  proteins  e.g.  Helq  (  Anand  et  al.,  2021)  and 

 epigenetic  co-ordinators  like  Uhrf1  which  has  previously  been  shown  to  be  upregulated  in 

 proliferating cells and required for G1/S phase transition  (Mousli  et al.  , 2003)  (Figure 3.18B). 
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 Figure  3.18.  Differential  expression  analyses  of  LT-HSCs  after  platelet  depletion.  (a) 
   Volcano  plot  of  log2  fold  change  in  expression  of  significantly  DEGs  in  LT-HSCs  post  platelet 
 depletion.  (b)  Violin  plots  of  expression  levels  of  a  subset  of  DEGS  in  LT-HSCs  across 
 conditions.  (c)  Top  10  GO  enrichment  terms  identified  from  significant  DEGs.  Bar  length  is 
 equal  to  the  number  of  genes  identified  corresponding  to  each  term,  and  bars  are  coloured 
 based  on  the  adjusted  p-value  for  each  term  (d)  Top  10  enriched  pathways  identified  from 
 significant  differentially  expressed  genes.  Point  size  corresponds  to  the  number  of  genes 
 identified  corresponding  to  each  term,  points  are  coloured  based  on  the  adjusted  p-value  for 
 each  term,  and  gene  ratio  corresponds  to  the  degree  of  variance  between  control  and 
 post-platelet-depletion LT-HSCs. 
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 Platelet-depletion  also  induced  down  regulation  of  expression  of  the  genes  encoding  the  TF 

 EGR1,  and  Fosb  which  is  part  of  the  TF  complex  AP-1  together  with  Jun  and  other  cofactors 

 (Figure  3.18B).  EGR1  can  act  as  an  activator  or  repressor  of  transcription  depending  on  the 

 regulation  of  distinct  co-factors  (Thiel  and  Cibelli,  2002)  .  Egr1  expression  is  enriched  within 

 the  most  primitive  subset  of  LTHSCs  under  steady-state  conditions,  and  is  downregulated  upon 

 stimulation  for  cell  division  and  migration  (Min  et  al.  ,  2008)  .  Similarly,  previous  data  has 

 shown  prolonged  expression  of  Fosb  negatively  controls  cell  cycle  progression  acting  as  a 

 gatekeeper  in  cell  cycle  progression  of  primitive  HSCs;  whereby  their  activation  in  cell  cycling 

 and  subsequent  proliferation  require  coordination  by  early  acting  cytokines  including  SCF, 

 IL-3,  and  IL-6  (Okada  et  al.  ,  1999)  .  This  existing  data  suggests  platelet-depletion  has  resulted 

 in downregulation of  Egr1  and  Fosb  in LTHSCs to promote  cell division. 

 On  the  other  hand,  LTHSCs  from  platelet-depleted  mice  had  significantly  higher  expression  of 

 Socs2  (  p  adj  =  0.007).  This  is  a  feedback  inhibitor  of  JAK-STAT  pathways  expressed  in 

 primitive  HSCs  and  can  be  upregulated  in  response  to  STAT5-inducing  cytokines  (Baker,  Rane 

 and  Reddy,  2007;  Kimura  et  al.  ,  2010)  .  Previous  work  has  implicated  Socs2  in  the  regulation  of 

 cell  proliferative  responses  to  myelopoietic  stress  (using  myeloablation  by  5-FU)  (Vitali  et  al.  , 

 2015)  .  Specifically,  this  work  revealed  higher  expansion  of  differentiated  progenitors  post 

 myeloablation  in  Socs2−/−  mice  from  LSK,  CMP,  GMP,  and  MEP  amplification  with  a 

 reduction  in  frequency  of  LTHSCs;  suggesting  Socs2  expression  acts  as  a  regulatory 

 mechanism  at  the  HSC  level.  The  authors  proposed  Socs2  deficiency  contributes  to  exhaustion 

 of  LTHSC  stemness,  whereby  in  WT  conditions  Socs2  expression  leads  to  negative  regulation 

 of  STAT5  signalling;  accounting  for  the  increased  myelopoietic  response  seen  in  Socs2−/− 

 mice  (Vitali  et  al.  ,  2015)  .  Moreover,  Vitalli  et  al.  and  others  have  shown  in  vitro  TPO 

 stimulation  of  BM  Lin−  cells  is  a  potent  inducer  of  Socs2  expression  (Bradley,  Hawley  and 

 Bunting,  2002;  Baker,  Rane  and  Reddy,  2007;  Vitali  et  al.  ,  2015)  and  induces  both  tyrosine 

 phosphorylation  and  activation  of  STAT5  and  STAT3  (Bacon  et  al.  ,  1995;  Kato  et  al.  ,  2005)  . 

 They  showed  TPO  stimulation  of  LSKs  from      Socs2−/−  mice  exhibited  a  higher  proliferative 

 potential to WT LSKs - suggesting  Socs2  induction  by TPO limits HSC proliferative response. 

 Here,  platelet-depletion  correlates  with  wide-spread  Socs2  upregulation  (Figure  3.19A), 

 suggesting  its  expression  was  induced  in  response  to  megakaryopoietic  stress.  Therefore,  a 

 possible  explanation  for  this  experiment  may  be  that  the  targeted  depletion  of  platelets  led  to  an 

 accumulation  of  TPO  in  mice,  in  turn  inducing  Socs2  upregulation,  which  acted  as  a  protective 

 mechanism  in  LTHSCs  by  inhibiting  JAK/STAT  proliferation.  Supporting  this,  Vitalli  et  al  also 

 showed  that  after  multiple  rounds  of  BM  transplants  (BMTs)  from  either  Socs2-/-  mouse  BM  or 

 WT  mouse  BM  led  to  an  enhanced  haematopoietic  response  in  mice  receiving  Socs2-/-  BM. 

 However,  this  was  only  observed  for  the  first  3  transplants  and  in  turn  resulted  in  the  exhaustion 
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 of  LT-HSC  repopulating  potential  by  the  4th  BMT  and  ultimately  reduced  survival  (Vitali  et  al.  , 

 2015)  .  There  was  a  decrease  in  the  number  of  LTHSCs  captured  compared  from 

 platelet-depleted  mice  to  control  mice,  with  only  3.5%  of  platelet-depleted  cells  annotated  as 

 LTHSCs  compared  to  12.6%  from  control  mice;  while  the  inverse  was  the  case  for  downstream 

 precursors  of  the  Mk  lineage  with  higher  proportions  of  cells  from  platelet  depleted  mice  across 

 both  MPP2  and  Mk-MEP  cells.  It  is  plausible  that  post  antibody  administration  over  time  stem 

 cell  protective  mechanisms  were  upregulated  to  safeguard  the  HSC  compartment,  which  was 

 induced  to  generate  progeny  as  an  emergency  response  and  consequently  depleted  in  numbers. 

 It  would  be  interesting  to  compare  the  proportions  of  cells  within  the  Cd150+  HSPC 

 compartment  at  time  intervals,  and  correlate  this  to  TPO  cytokine  levels  in  mice  post 

 platelet-depletion to assess the immediate and long-term effects across the BM cell populations. 

 Similarly,  LTHSCs  from  mice  who  were  platelet-depleted  also  exhibited  higher  expression  of 

 tetraspanin  CD53  (Figure  3.18B).  A  recent  publication  has  reported  CD53  upregulation  in 

 HSCs  in  response  to  both  inflammatory  and  proliferative  stressors,  revealing  that  the  loss  of 

 CD53  is  associated  with  a  reduction  in  HSC  function  and  prolonged  cycling  under 

 haematopoietic  stress  (Greenberg  et  al.  ,  2023)  .  CD53  was  previously  identified  as  a  marker  that 

 segregates  differentially  in  dividing  human  HSCs,  localising  to  a  more  functionally  primitive 

 population  (Beckmann  et  al.  ,  2007)  .  Greenberg  et  al.  are  the  first  to  suggest  CD53  expression 

 facilitates  the  return  of  cycling  HSCs  to  quiescence.  The  RB-like,  E2F  and  multi-vulval  class  B 

 (DREAM)  complex  is  a  master  transcriptional  regulator  that  is  known  to  repress  cell  cycling  in 

 response  to  stress  (Sadasivam  and  DeCaprio,  2013)  .  Greenberg  et  al.  showed  that  CD53 

 promotes  the  activity  of  pocket  proteins  in  response  to  HSC  stress,  facilitating  DREAM 

 complex binding and returning to quiescence  (Greenberg  et al.  , 2023)  . 

 The  DEG  signature  and  GSEA  (Figures  3.18C-D)  show  platelet-depletion  induces  LTHSC 

 proliferation  to  produce  the  downstream  progenitors  necessary  to  restore  platelet  levels.  Based 

 on  the  literature,  the  expression  of  Socs2  and  CD53  in  LTHSCs  post  platelet  depletion  suggests 

 their  upregulation  may  serve  as  a  protective  mechanism  to  help  prevent  HSC  exhaustion  during 

 stress.  By  comparing  the  expression  levels  these  DEGs  to  the  Fosb  and  Egr1  as  well  as  a 

 canonical  cell-cycling  marker  shows  there  is  variance  within  platelet-depleted  LTHSCs  of  cells 

 undergoing  cell-cycling  and  cells  in  G1  phase  (Figure  3.19B).  Both  downregulation  of  Egr1 

 and  Fosb,  and  upregulation  of  Socs2  and  Cd53  with  platelet-depletion  is  evident  -  but  each  of 

 these  signatures  are  largely  found  across  different  cells.  This  data  suggests  genes  promoting 

 both  LTHSC  differentiation  and  genes  promoting  stemness  are  within  the  DEG  signature  post 

 platelet  depletion,  with  some  LTHSCs  continuing  to  respond  while  others  have  either  retained  a 

 quiescent phenotype, or reverted back to quiescence post exerting a stress response. 
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 Figure  3.19.  Signatures  of  LTHSC  expression  regulation  post  platelet  depletion  (a) 
 Expression  levels  of  Socs2  on  UMAP  projections  of  single  cells  split  based  on  treatment 
 condition  shows  its  upregulation  across  HSCs  and  cells  of  the  Mk-lineage  (b)  Heatmap  of 
 expression  in  5  genes  across  all  LTHSCs  from  both  treatment  conditions  shows  LTHSCs  from 
 platelet  depleted  mice  have  variable  expression  in  stem-cell  protective  (upregulated  CD53, 
 Socs2  )  vs  cell  cycle  /  proliferation-promoting  genes  (down  regulated  Fosb  and  Egr1  , 
 upregulated  Uhrf1  )  . 
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 DEA  between  cells  in  the  MPP2  cluster  identified  a  total  2395  genes  with  DE  with 

 platelet-depletion,  of  which  395  were  statistically  significant  (Figure  3.20A).  Platelet  depleted 

 samples  exhibited  higher  expression  of  G2M  cell  cycle  phase  genes  and  genes  that  encode  for 

 metabolic  proteins.  This  includes  Ccnb1  –  cell  cycle  progression  gene  (Grinenko  et  al.  ,  2018)  , 

 Golm1  -  involved  in  protein  biosynthesis  in  the  rough  endoplasmic  reticulum  and  protein 

 transportation  through  the  Golgi  apparatus  (Q.  Song  et  al.,  2021)  ,  and  Rab40c  -  involved  in 

 metabolism  of  GTP-  and  GDP-binding  (Rossaint  et  al.  ,  2021)  .  The  top  enriched  GO  terms 

 associated  with  significant  DEGs  found  multiple  metabolic  pathways  were  enriched,  multiple 

 of  which  were  related  to  tRNA  metabolism  (Figure  3.20B).  To  study  further  the  molecular 

 pathways  associated  with  the  DEG  signature,  pathway  enrichment  was  performed  and 

 interestingly  identified  a  single  enriched  pathway  (Figure  3.20C).  Aminoacyl-tRNA  synthetases 

 (aaRSs)  catalyse  aminoacylation  of  tRNAs  in  the  first  step  of  protein  synthesis  in  the 

 cytoplasm.  These  charged  tRNAs  serve  as  adaptors  during  translation,  bringing  the  correct 

 amino  acid  to  the  ribosome  during  protein  synthesis.  In  total,  13  DEGs  were  found  to  be  related 

 to  aaRSs  including  Aars2,  Mars2  and  Sepsecs  which  were  indeed  upregulated  in 

 platelet-depleted MPP2s (Figure 3.20D). 

 Previous  work  has  demonstrated  that  aaRSs,  in  particular  an  activated  form  of  tyrosyl-tRNA 

 synthetase  (YRS  ACT  )  is  implicated  to  enhance  megakaryopoiesis  and  platelet  production  both  in 

 vitro  and  in  vivo  (Kanaji  et  al.,  2018)  .  Tyrosyl-tRNA  synthetase  is  a  type  of  aaRS  responsible 

 for  attaching  the  amino  acid  tyrosine  to  its  corresponding  tRNA  molecule,  allowing  for  the 

 accurate  incorporation  of  tyrosine  during  protein  synthesis.  Kanaji  et  al.  demonstrated  that 

 ex-translational  activities  of  tyrosyl-tRNA  synthetase  YRS  ACT  promote  megakaryopoiesis  in 

 two  ways:  (i)  inducing  a  distinct  subset  of  Mks;  and  (ii)  up-regulating  secretion  of  ‘monokines’ 

 (monocyte  cytokines),  including  IL-6,  that  support  Mk  expansion  and,  ultimately,  platelet 

 production  (Kanaji  et  al.  ,  2018)  .  Moreover,  the  authors  showed  that  YRS  ACT  is  secreted  under 

 stress  and  induces  stress-stimulated  signalling  through  toll-like  receptor  pathways  as  well  as 

 translocation  to  the  nucleus  where  it  contributed  to  trigger  pathways  for  cell  rescue. 

 Importantly,  the  activity  of  YRS  ACT  was  independent  of  TPO,  as  evidenced  by  Mk  expansion 

 from  iPS  cell-derived  HSCs  from  a  patient  deficient  in  TPO  signalling  (Kanaji  et  al.  ,  2018)  . 

 This  work  suggests  YRS  ACT  may  serve  as  an  important  mechanism  in  response  to 

 thrombocytopenia  accelerating  platelet-count  recovery  through  a  distinct  and  complementary 

 mechanism to TPO stimulation. 

 More  recently,  they  have  also  shown  YRS  ACT  mimics  inflammatory  stress  in  mice,  inducing  a 

 distinct  population  Mks  from  Mk-biassed  HSCs  bypassing  the  MEP  where  in  addition  to 

 promoting  platelet  production,  platelets  induce  the  release  of  pro-inflammatory  cytokines  from 

 platelets and immune cells leading to an inflammatory response  (Morodomi  et al.  , 2022)  . 

 141 

https://paperpile.com/c/H5DC9c/PmFZ
https://paperpile.com/c/H5DC9c/AGt9
https://paperpile.com/c/H5DC9c/03Qj
https://paperpile.com/c/H5DC9c/VSwh
https://paperpile.com/c/H5DC9c/VSwh
https://paperpile.com/c/H5DC9c/VSwh
https://paperpile.com/c/H5DC9c/YBTG


 Figure  3.20.  Differential  expression  analyses  of  MPP2  cells  after  platelet  depletion  (a) 
 Volcano  plot  of  log2  fold  change  in  significant  DEGs  plotted  in  MPP-2  cluster 
 post-platelet-depletion  (b)  Top  10  GO  enrichment  terms  identified  from  significant  DEGs.  Bar 
 length  is  equal  to  the  number  of  genes  identified  corresponding  to  each  term,  and  bars  are 
 coloured  based  on  the  adjusted  p-value  for  each  term  (c)  Enriched  pathway  identified  from 
 significant  differentially  expressed  genes  (d)  Violin  plots  of  expression  levels  between  control 
 and  platelet-depleted  samples  across  genes  part  of  the  Aminoacyl-tRNA  biosynthesis  pathway 
 enrichment list. 
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 Altogether  their  work  implicates  alternative  functions  of  aaRSs  contribute  to  platelet  production 

 under  stress,  suggesting  they  may  represent  possible  pharmacologic  modulator  of  inflammatory 

 thrombopoiesis  to  replenish  platelets  and  prevent  haemorrhage  (Morodomi  et  al.  ,  2022)  .  Here, 

 the  robust  enrichment  of  genes  for  aaRSs  in  MPP2  cells  from  platelet  depleted  samples 

 corroborates  this  research  (Figure  3.20B-D),  and  suggests  a  possible  role  for  aaRSs  in  Mk 

 generation  to  recover  from  acute  platelet  loss.  Further  research  is  needed  to  fully  understand  the 

 roles  of  aaRS  in  the  context  of  megakaryopoiesis  but  together  these  data  indicate  there  may 

 exist potential regulators of Mk differentiation within the aaRS family. 

 The  Mk-MEP  DEG  signature  was  dominated  by  the  upregulation  of  genes  associated  with  cell 

 division,  DNA  damage  repair  proteins,  and  cellular  energy  metabolism  as  indicated  by  the  top 

 GO  enrichment  terms  from  significant  DEGs  (Figure  3.21A-B).  The  Haspin  gene,  which 

 encodes  a  protein  kinase  imperative  for  mitosis,  is  among  the  most  significant  upregulated 

 genes  in  Mk-MEP  cells  of  platelet  depleted  mice  (Higgins,  2010)  .  It  is  a  member  of  the  mitotic 

 kinase  family  along  with  Aurora  kinases,  where  specifically  it  phosphorylates  H3T3  during 

 cellular  mitosis  where  it  becomes  crucial  for  recruitment  of  the  chromosome  passenger 

 complex  (CPC)  (Dai,  Sullivan  and  Higgins,  2006;  Huang  et  al.  ,  2020)  .  Previous  work  has 

 demonstrated  Haspin  is  an  important  regulator  of  cell  cycle  progression,  where  knock-down 

 experiments  showed  multiple  cell  cycle  defects  along  with  suppressed  cell  proliferation  by  both 

 induced cell-death or prolonged interphase progression  (Wang  et al.  , 2021)  . 

 Moreover,  upregulation  of  genes  associated  with  DNA  damage  repair  pathways  was  also 

 observed  across  Mk-MEPs  from  platelet  depleted  samples  (Figure  3.21C).  This  includes  for 

 example  Ercc4,  a  gene  which  encodes  a  protein  component  of  the  nucleotide  excision  repair 

 pathway  tasked  with  repairing  DNA  damage  caused  by  ultraviolet  radiation,  chemical  agents, 

 and  other  mutagens  (H.  Yu  et  al.  ,  2012)  .  Working  in  coordination  with  other  proteins  it  removes 

 damaged  sections  of  DNA  and  facilitates  the  synthesis  and  ligation  of  new  DNA  strands  to 

 restore  the  integrity  of  the  genome.  Nthl1,  another  gene  upregulated  in  Mk-MEPs  of  platelet 

 depleted  mice  (Figure  3.21C),  encodes  for  a  protein  involved  in  DNA  base-excision  repair  that 

 is specifically responsible for repair of oxidative damage to DNA  (Mjelle  et al.  , 2015)  . 

 In  addition  to  DNA  damage  repair  proteins,  the  upregulation  of  genes  involved  in  RNA 

 surveillance  was  also  observed  (Figure  3.21C).  Dis3l  encodes  for  an  RNA  exonuclease  found  in 

 the  cytoplasm  which  functions  in  RNA  degradation  and  regulation  (Brouze  et  al.  ,  2022)  .  It  is 

 thought  to  participate  in  the  surveillance  and  ‘quality-control’  of  RNA  molecules,  whereby  it 

 helps  to  eliminate  aberrant  or  defective  RNAs,  including  those  with  incomplete  or  incorrect 

 processing,  modifications,  or  secondary  structures  (Houseley,  LaCava  and  Tollervey,  2006)  .  By 

 removing  faulty  RNA  species  and  regulating  their  abundance,  it  contributes  to  the  overall 

 143 

https://paperpile.com/c/H5DC9c/YBTG
https://paperpile.com/c/H5DC9c/Lw58
https://paperpile.com/c/H5DC9c/qlK9+5mOa
https://paperpile.com/c/H5DC9c/7jKe
https://paperpile.com/c/H5DC9c/osUF
https://paperpile.com/c/H5DC9c/vSxS
https://paperpile.com/c/H5DC9c/OEzo
https://paperpile.com/c/H5DC9c/ceHB


 fidelity  and  functionality  of  cellular  RNA  and  supporting  cellular  homeostasis.  More  recently  it 

 has  been  implicated  in  the  coordinated  control  of  cell  proliferation,  where  mutated  Dis3l  led  to 

 decreased rates of proliferation  (Towler  et al.  , 2020;  Hojka-Osinska  et al.  , 2021) 

 The  increased  expression  of  cell  proliferation,  DNA  damage  repair  and  surveillance  genes 

 suggest  platelet-depletion  induced  Mk-MEPs  towards  proliferation,  likely  to  replenish  Mks  and 

 restore  platelet  levels,  while  also  upregulating  safe-guarding  mechanisms  to  cope  with  the 

 increased  levels  of  DNA  damage  that  can  occur  during  rapidly  dividing  and  differentiating 

 progenitors.  Indeed,  once  driven  into  the  cell  cycle,  the  expressions  of  DNA  damage  repair 

 genes  in  haematopoietic  progenitor  cells  have  previously  been  reported,  allowing  insults  to  be 

 repaired  to  prevent  cellular  dysfunction  and  malignancy,  particularly  at  the  HSC  level.  It  would 

 be  reasonable  to  conclude  that  post  platelet  depletion  Mk-MEPs  upregulate  the  expression  of 

 genes  important  to  regulatory  mechanisms  at  various  levels  to  ensure  the  fidelity  of 

 transcriptomes as they differentiate into committed MkPs. 

 Altogether  this  data  shows  platelet-depletion  induces  changes  in  both  the  cellular  composition 

 and  transcriptional  signatures  across  multiple  levels  of  megakaryopoiesis  (Figure  3.22).  DEA 

 across  individual  cell-types  along  the  Mk  trajectory  revealed  cell-type  specific  signatures  of 

 stress  in  response  to  platelet-depletion,  providing  insights  into  how  cells  at  different  stages  of 

 Mk  commitment  regulate  their  transcriptomic  repertoire  to  counteract  thrombocytopenic 

 conditions. 
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 Figure  3.21.  Differential  expression  analyses  of  Mk-MEP  cells  after  platelet  depletion.  (a) 
 Volcano  plot  of  log2  fold  change  in  significant  DEGs  plotted  in  Mk-MEP  cluster 
 post-platelet-depletion  (b)  Top  5  GO  enrichment  terms  identified  from  significant  DEGs.  Bar 
 length  is  equal  to  the  number  of  genes  identified  corresponding  to  each  term,  and  bars  are 
 coloured  based  on  the  adjusted  p-value  for  each  term  (c)  Violin  plots  of  expression  levels 
 between control and platelet-depleted samples across Mk-MEP cells. 
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 Figure 3.22. Heatmap of log-normalised expression levels in the top 100 DEGs after 
 platelet depletion across cell types  (a) LT-HSCs (b)  MPP2 (c) Mk-MEPs and (d) MkPs. 
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 3.4 Discussion 

 The  primary  purpose  of  this  study  was  to  capture  the  full  differentiation  trajectory  from  HSC 

 towards  MkP,  and  interrogate  the  response  of  this  trajectory  to  platelet  depletion  using 

 scRNA-seq.  Mouse  BM  cells  were  isolated  with  FACS  using  a  broad  gate  capturing  LK 

 Cd150+  cells,  with  an  additional  LT-HSC  gate  to  ensure  sufficient  coverage  of  stem  cells. 

 Without  using  cell-type  specific  gates,  the  goal  was  to  capture  the  full  process  including  cell 

 states  that  may  exist  outside  of  narrowly  defined  population  gates,  thus  representing  a  complete 

 continuum  of  HSC-MkP  differentiation.  The  decision  to  employ  this  sorting  strategy  was  based 

 on  data  from  Pronk  et  al.  ,  that  demonstrated  in  vitro  high  proportions  of  LSK  Cd150+  cells 

 generated  exclusively  Mk  progeny,  while  the  LSK  Cd150-  populations  contained  no  stem  cell 

 activity  and  lacked  Mk  potential  at  a  clonal  level.  Importantly,  these  findings  were  successfully 

 recapitulated  in  vivo,  with  Cd150+  HSCs  exhibiting  robust  platelet  recovery  after 

 transplantation  (Pronk  et  al.  ,  2007)  .  Moreover,  the  MkPs  isolated  based  on  Cd150  expression 

 were  functionally  equivalent  to  the  CD9+  MkPs  previously  described  (Nakorn,  Miyamoto  and 

 Weissman,  2003)  .  These  results  provided  a  strong  rationale  for  using  Cd150  expression  to 

 isolate  cells  along  the  Mk  lineage,  indicating  Cd150  expression  enables  enrichment  for  cells  of 

 the  Mk  lineage  at  primitive  and  up  to  committed  progenitor  states.  In  total,  this  sorting  strategy 

 enabled  the  isolation  of  1288  single  cells  from  six  mice  treated  with  either  platelet-depleting 

 antibody  or  an  isotype  control,  and  provided  a  comprehensive  dataset  for  further  analysis  and 

 interrogation  of  transcriptional  changes  associated  with  Mk  commitment  under  steady-state  and 

 stress conditions. 

 The  hypothesis  driving  this  study  proposed  that  platelet  depletion  would  trigger  emergency 

 megakaryopoiesis  to  rapidly  replenish  platelet  levels,  resulting  in  changes  to  the  cellular 

 composition  and  transcriptional  profiles  of  cells.  Specifically,  an  increased  proportion  of  cells 

 committed  to  the  Mk  lineage  was  anticipated,  accompanied  by  activation  of  transcriptional 

 programmes  involved  in  driving  megakaryopoiesis.  By  testing  this  hypothesis  and  carrying  out 

 bioinformatic  analyses  of  the  resulting  data,  the  study  sought  to  expand  our  understanding  on 

 genes  governing  different  stages  of  Mk  commitment,  and  also  serve  as  a  valuable  resource 

 enabling future research of the first steps in which HSCs commit to the Mk lineage. 

 Previous  research  into  platelet  recovery  from  induced  thrombocytopenia  has  shown 

 inflammatory  signalling  associated  with  depletion  of  platelet  levels  leads  to  the  activation  of  an 

 Mk  maturation  programme  and  expansion  of  a  subpopulation  of  Mk-committed  HSCs  (Haas  et 

 al.  ,  2015)  .  These  findings  were  in  concordance  with  the  growing  body  of  evidence  for  the 

 existence  of  platelet-biassed  HSCs,  and  that  multiple  differentiation  routes  can  lead  to  Mk 

 commitment,  including  direct  HSC  MkP  differentiation  (Sanjuan-Pla  et  al.  ,  2013;  Yamamoto  et 
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 al.  ,  2013;  Shin  et  al.  ,  2014)  .  Building  upon  this  existing  body  of  work,  this  study  aimed  to 

 further  elucidate  this  pathway,  utilising  antibody-induced  thrombocytopenia  as  opposed  to  an 

 infection-based  model.  While  previous  work  focused  on  infection-induced  thrombocytopenia, 

 this  study  sought  to  specifically  examine  the  impact  of  isolated  platelet  depletion  on  the 

 transcriptome,  a  distinct  strategy  to  elucidate  molecular  and  cellular  responses  under  stress. 

 Moreover,  this  study  employed  Smart-seq2  to  provide  deep  coverage  of  the  transcriptional 

 landscape  of  single  cells,  resulting  in  detection  of  an  average  ~7.8K  genes  per  cell  from  an 

 average  sequencing  depth  of  ~1.3M  reads  per  cell.  By  leveraging  this  approach  this  set  of 

 experiments  provided  high  resolution  data  on  gene  expression  dynamics  during  Mk 

 commitment during acute thrombocytopenia. 

 The  findings  of  this  study  provide  valuable  insights  into  the  dynamics  of  Mk  lineage 

 commitment  and  the  transcriptional  programmes  involved  in  driving  megakaryopoiesis  under 

 stress.  Through  unsupervised  clustering,  cells  were  grouped  into  11  clusters  based  on  their 

 transcriptional  profiles,  which  were  cell-type  annotated  based  on  information  from  relevant 

 studies  in  the  existing  literature  (Pronk  et  al.  ,  2007;  Haas  et  al.  ,  2015;  Paul  et  al.  ,  2015;  Pietras 

 et  al.  ,  2015;  Psaila  et  al.  ,  2016;  Miyawaki  et  al.  ,  2017;  Dahlin  et  al.  ,  2018)  .  Pseudotime 

 analysis  allowed  cells  to  be  ordered  along  a  trajectory,  revealing  the  differentiation  continuum 

 from  LT-HSCs  to  Mk  and  Ery  progenitors.  The  cell  types  captured  were  in  alignment  with  those 

 expected  within  the  LK/LSK  Cd150+  fraction  and  the  reference  literature,  indicating  a 

 successful  sorting  strategy.  Furthermore,  no  significant  sample  effects  were  observed, 

 suggesting  that  the  experimental  conditions  did  not  introduce  any  notable  biases.  A  small 

 proportion  of  cells  captured  (~3%  of  all  cells)  were  found  to  express  an  immature  myeloid  cell 

 signature,  including  markers  of  the  GM  lineage.  However,  the  presence  of  these  cells  was 

 deemed  negligible,  confirming  the  overall  minor  contamination  of  cells  outside  of  the  Mk 

 lineage. 

 In  addition  to  successfully  capturing  the  expected  cell  populations  within  the  LK/LSK  Cd150+ 

 fraction,  this  analysis  revealed  further  heterogeneity  within  MEPs.  Specifically,  this  data 

 enabled  MEPs  to  be  subdivided  into  two  distinct  subpopulations,  each  characterised  by 

 differential  expression  levels  of  genes  associated  with  the  Mk  lineage  (Mk-MEP)  or  Ery  lineage 

 (Ery-MEP).  This  result  aligns  with  previous  studies  that  have  reported  differential  expression 

 patterns  in  key  Mk  and  Ery  genes  across  cells  within  the  MEP  compartment,  rather  than  a 

 homogenous  cell  type  with  equal  propensity  towards  Mk  and  Ery  fates.  Importantly,  these 

 differential  expression  patterns  observed  have  been  linked  to  functional  differences  in  lineage 

 propensities  between  the  subtypes  (Psaila  et  al.  ,  2016)  .  By  identifying  and  characterising  these 

 MEP  subpopulations  based  on  their  gene  expression  profiles,  this  study  further  supports  the 

 notion  of  functional  heterogeneity  and  lineage-specific  characteristics  within  the  MEP 
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 compartment  (Psaila  et  al.  ,  2016;  Lu,  Krause,  et  al.  ,  2018)  .  The  analysis  of  cell  population 

 frequencies  revealed  platelet  depletion  induces  the  expansion  of  Mk-MEPs,  with  no  change  in 

 the  frequency  of  Ery-MEPs.  This  finding  suggests  that  Mk-MEPs  and  Ery-MEPs  possess 

 distinct  mechanisms  of  activation  to  elicit  differentiation,  enabling  the  selective  expansion  and 

 differentiation  of  Mk-MEPs  while  retaining  a  stable  Ery  committed  MEP  population.  The 

 differential  response  of  Mk-MEPs  and  Ery-MEPs  to  platelet  depletion  shows  that  the  regulatory 

 mechanisms  governing  their  proliferation  are  distinct,  with  3.5-fold  more  genes  identified  as 

 significantly  differentially  expressed  in  Mk-MEPs,  including  upregulation  of  cell  cycle  and 

 DNA  damage  repair  genes  in  response  to  platelet  depletion.  Indeed,  there  is  evidence  to  suggest 

 that  activation  or  repression  of  the  cell  cycle  essentially  serves  as  a  rheostat  to  affect  the  Ery 

 versus  Mk  specification  of  MEPs  (Lu,  Sanada,  et  al.  ,  2018)  ,  however  further  research  of  how 

 the  cell  cycle  affects  MEP  fate  decisions  are  required  to  determine  the  underlying  explanations 

 of these observations. 

 To  gain  further  insights  into  the  distinct  MEP  subpopulations,  it  would  be  valuable  to  integrate 

 the  index-sort  data  in  conjunction  with  scRNA-seq  analysis  to  explore  their  surface  marker 

 expression  profiles.  This  would  help  determine  if  the  MEP  subpopulations  identified  using 

 scRNA-seq  can  be  distinguished  based  on  their  surface  marker  profiles,  while  providing 

 information  of  their  phenotypic  characteristics.  In  addition,  integrating  FACS  analysis  with 

 scRNA-seq  data  could  also  improve  the  purity  of  future  FACS  sorting  experiments,  enabling 

 more  selective  isolation  of  cells  of  interest.  As  previously  stated,  a  low  proportion  of  cells  from 

 the  GM  lineage  were  captured  in  this  study.  Correlating  surface  marker  expression  with 

 single-cell  annotations  would  reveal  whether  the  captured  GM  cells  are  distinguishable  by 

 FACS  analysis.  For  instance,  if  they  are  found  to  lie  in  proximity  to  the  minimal  threshold  used 

 for  Cd150+  gating,  this  would  indicate  further  restriction  by  raising  the  minimal  threshold  of 

 Cd150  levels  may  enhance  sort  purity  of  future  experiments.  Therefore  integration  of 

 index-sorting  data  will  provide  the  complete  phenotype  of  sorted  cells,  and  may  also  be  useful 

 for further optimisation of sort gates leading to better enrichment of the cells of interest. 

 Among  the  results  for  this  study,  notable  differences  were  observed  in  the  population  of 

 LT-HSCs  between  platelet-depleted  mice  and  the  control  group.  Firstly,  fewer  LT-HSCs  were 

 captured  from  platelet-depleted  mice,  indicating  a  reduction  in  the  LT-HSC  pool  in  response  to 

 platelet  depletion.  Among  the  LT-HSCs  that  were  captured,  a  higher  proportion  of  stem  cells 

 from  platelet-depleted  mice  were  found  in  G2M  and  S  phases  of  the  cell  cycle,  suggesting 

 increased  proliferation  and  cell  division  compared  to  the  mostly  quiescent  state  observed  in 

 control  LT-HSCs.  Functional  enrichment  analysis  of  DEGs  between  the  experimental 

 conditions  further  supported  these  findings,  revealing  enrichment  of  multiple  pathways  related 

 to  increased  cell  proliferation.  This  supports  existing  evidence  that  Mk-associated  signalling 

 149 

https://paperpile.com/c/H5DC9c/xKnY+vUt8
https://paperpile.com/c/H5DC9c/FwZf


 affects  the  abundance  of  LT-HSCs  and  influences  their  cell  cycle  progression  and  proliferative 

 behaviour  (Hock  et  al.  ,  2004;  Qian  et  al.  ,  2007;  Yoshihara  et  al.  ,  2007;  Nakamura-Ishizu  et  al.  , 

 2014;  Zhao  et  al.  ,  2014)  .  Indeed,  previous  research  has  established  a  link  between  Mks  and  the 

 regulation  of  HSC  quiescence.  Zhao  et  al.  used  Mk  ablation  to  study  HSC  function  in  vivo, 

 where  they  found  Mks  contribute  to  maintenance  of  HSC  quiescence  through  TGF-β  signalling 

 under  homeostasis,  and  switch  upon  stress  to  instead  promote  HSC  expansion  via  fibroblast 

 growth  factor  1  (FGF1)  signalling  (Zhao  et  al.  ,  2014;  Gong  et  al.  ,  2018)  .  Bruns  et  al.  instead 

 implicated  Pf4  (CXCL4)  production  from  Mks  in  the  regulation  of  HSC  quiescence  (Bruns  et 

 al.  ,  2014)  .  Multiple  groups  have  established  the  role  of  TPO  signalling  in  both  Mk  and  HSC 

 function  (Kimura  et  al.  ,  1998;  Qian  et  al.  ,  2007)  .  However,  this  study  specifically  implicates 

 platelet  abundance  in  and  of  itself  is  capable  of  modulating  multiple  levels  of 

 megakaryopoiesis,  independent  of  Mk  levels,  where  platelet  levels  elicit  a  response  that  extends 

 all  the  way  back  to  the  HSC  compartment.  The  intravenous  injection  of  anti-GPIbα  was  used  to 

 specifically  target  platelets  for  clearance,  and  has  been  shown  previously  not  to  affect 

 megakaryopoiesis  in  the  BM  before  8  days  post  administration  (Morodomi  et  al.  ,  2020)  . 

 Therefore  these  results  suggest  that  not  only  Mks,  but  also  platelets  can  lead  to  changes  in  the 

 HSC compartment to promote rapid expansion of stem cells when required. 

 Cytokine  signalling  is  well  established  to  play  a  crucial  role  in  regulating  HSC  function, 

 including  in  modulating  HSC  self-renewal,  proliferation,  differentiation,  and  mobilisation 

 (Zhang  and  Lodish,  2008)  .  It  was  suspected  that  if  platelet  depletion  led  to  shifts  in  cells’ 

 transcriptomic  signatures,  altered  cytokine  signalling  would  likely  also  be  observed.  As  part  of 

 the  initial  study  design,  plasma  from  peripheral  blood  samples  taken  from  mice  was  going  to  be 

 tested  with  a  cytokine-array  assay  to  complement  the  transcriptomic  data.  However,  due  to  time 

 constraints  and  limited  access  to  the  required  imaging  equipment,  the  cytokine  assay  could  not 

 be  integrated  into  this  study.  Nevertheless,  the  cytokine  array  assay  remains  a  crucial  avenue  for 

 future  work,  as  it  holds  the  potential  to  provide  valuable  insights  into  the  signalling  pathways 

 and  thus  molecular  mechanisms  involved  in  the  regulation  of  megakaryopoiesis  under 

 thrombocytopenic  conditions.  By  combining  the  transcriptomic  analysis  of  this  study  with  a 

 cytokine  array  assay,  it  is  anticipated  a  more  comprehensive  understanding  of  the  changes 

 associated  in  cytokine  signals  in  response  to  platelet  depletion  can  be  achieved.  For  example, 

 by  comparing  the  cytokine  profiles  between  the  control  and  platelet-depleted  groups,  it  would 

 be  possible  to  identify  specific  cytokines  that  are  differentially  expressed  in  response  to  platelet 

 depletion,  and  to  correlate  this  with  differentially  expressed  transcriptomic  signatures.  This 

 would  include  circulating  levels  of  thrombopoietic  and  inflammatory  cytokines,  shedding  light 

 on  both  TPO-dependent  and  independent  mechanisms  involved  in  megakaryopoiesis  under 

 thrombocytopenic  conditions.  Therefore,  incorporation  of  a  cytokine  array  assay  to  these  results 
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 is  part  of  the  future  outlook  of  this  study,  to  create  a  more  complete  picture  of  the  response  to 

 platelet depletion and ultimately a deeper understanding of regulatory mechanisms involved. 

 To  further  validate  this  study’s  results  and  provide  phenotypic  insights  across  cell  populations 

 in  response  to  platelet  depletion,  integrating  FACS  analysis  would  also  be  advantageous.  FACS 

 analysis  allows  for  the  quantification  of  cell  type  abundance  based  on  specific  surface  markers, 

 providing  specific  measure  of  the  cellular  composition  following  platelet  depletion.  In  this 

 study,  a  smaller  number  of  LT-HSCs  and  higher  proportion  of  Mk-MEPs  was  observed  in 

 samples  from  platelet  depleted  animals.  This  finding,  in  conjunction  with  the  transcriptomic 

 analysis,  indicates  that  platelet  depletion  induces  the  activation  of  HSCs  into  an  active  cycling 

 state  and  selectively  expands  progenitors  of  the  Mk  lineage  under  conditions  of  scarce  platelet 

 abundance.  To  strengthen  this  conclusion  and  provide  additional  evidence,  it  would  be  valuable 

 to  quantify  the  abundance  of  LT-HSCs  and  Mk-MEPs  in  BM  samples  obtained  from  mice  under 

 steady-state  conditions  and  post-platelet  depletion  using  FACS  analysis.  This  approach  would 

 allow  direct  comparison  of  the  proportions  in  these  cell  populations  in  response  to  platelet 

 depletion  and  validate  the  observed  changes  in  cell  composition.  This  complementary 

 approach,  combined  with  the  transcriptomic  analysis  performed  in  this  study,  would  provide  a 

 more  comprehensive  understanding  of  the  phenotypic  changes  associated  with  platelet 

 depletion and strengthen the conclusions drawn from this study. 

 Differential  expression  analysis  along  pseudotime  provided  insights  into  the  dynamic 

 expression  of  genes  implicated  in  Mk  function,  including  genes  associated  with  Mk 

 development  and  platelet  function  but  crucially  also  those  not  previously  implicated  in  Mk 

 commitment.  These  findings  contribute  to  our  understanding  of  the  molecular  mechanisms 

 governing  Mk  lineage  commitment,  and  underscore  the  power  of  the  approach  to  study  the 

 process  of  differentiation  at  the  single  cell  level.  Differential  expression  analysis  across 

 treatment  conditions  identified  hundreds  of  genes  with  differential  expression  within  cell  types 

 along  the  Mk  trajectory.  An  important  area  for  future  work  lies  in  the  validation  of  these  DEG 

 signatures  associated  with  platelet  depletion  identified  across  the  observed  cell  types.  Indeed,  a 

 substantial  number  of  genes  with  significantly  altered  expression  levels  were  identified  across 

 cell  types  following  platelet  depletion,  encompassing  both  known  genes  implicated  in  Mk 

 commitment  and  also  novel  candidate  genes.  To  ensure  the  robustness  and  reliability  of  these 

 findings,  it  is  acknowledged  that  validation  of  DEGs  through  additional  experimental 

 techniques,  such  as  employing  quantitative  polymerase  chain  reaction  (qPCR)  will  be 

 imperative  to  confirm  any  conclusions  drawn  from  this  data.  The  use  of  qPCR  assays  is  widely 

 implemented  for  such  validation,  providing  accurate  quantification  of  gene  expression  levels. 

 This  will  involve  the  use  of  gene-specific  primers  and  fluorescent  probes  to  obtain 

 quantification  of  individual  target  genes  (in  this  case,  designed  to  target  DEG  genes),  providing 
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 quantitative  data  of  mRNA  abundance  in  samples.  The  qPCR  results  will  then  be  compared  to 

 the  scRNA-seq  data,  evaluating  the  concordance  between  the  two  techniques  either  confirming 

 the  differential  expression  observed  in  the  scRNA-seq  analysis  or  identifying  false  positive 

 results  from  this  study.  In  this  way,  the  validation  of  DEGs  through  qPCR  will  provide 

 independent  confirmation  of  their  differential  expression  patterns,  reinforcing  the  findings  from 

 the scRNA-seq analysis and will be performed as a future experiment. 

 Moreover,  if  this  experiment  were  to  be  repeated  the  sample  size  of  the  control  group  would  be 

 increased  to  at  least  n  =  3,  to  improve  statistical  power  during  DEA.  Fewer  cells  in  total  were 

 captured  from  mice  in  the  isotype  control  treatment  group,  consequently  resulting  in  relatively 

 lower  numbers  of  all  cell  types  from  control  samples  for  downstream  analyses.  Moreover,  it  is 

 acknowledged  this  limitation  of  sample  size  could  impact  the  statistical  power  and 

 generalisability  of  results.  While  acknowledging  the  limitation  of  sample  size,  single  cell 

 transcriptional  profiling  and  bioinformatic  analyses  showed  consistency  across  samples 

 between  treatment  groups  in  terms  of  the  cellular  composition  and  transcriptional  dynamics 

 within  the  samples.  Additionally,  in  an  attempt  to  mitigate  the  small  sample  size  of  the  control 

 group,  a  pseudo-bulk  DEA  approach  was  employed  to  carry  out  statistical  tests  between 

 conditions  rather  than  single-cell  DEAs.  This  approach  involves  aggregating  the  expression 

 data  from  multiple  cells  within  each  condition  and  for  each  cell  type  to  generate  pseudo-bulk 

 samples,  allowing  for  statistical  analyses  to  be  representative  of  DEG  signatures  across  cell 

 types  taking  into  account  sample  size.  Although  this  approach  addresses  the  low  cell  numbers 

 issue  to  some  extent,  it  is  nonetheless  an  important  consideration  as  it  may  overlook  potential 

 cell-to-cell  heterogeneity  within  the  samples.  Therefore,  it  may  be  required  to  supplement  this 

 data  with  more  replicates  to  increase  sample  size  and  ensure  sufficient  statistical  power  for 

 single-cell  analysis,  which  would  provide  a  more  comprehensive  understanding  of  the  cellular 

 heterogeneity and dynamics in response to platelet depletion. 

 In  conclusion,  this  chapter  describes  the  analysis  of  933  single  cells,  elucidating  the  process  of 

 murine  megakaryopoiesis  in  steady-state  and  platelet  depletion.  Among  the  results  this  study 

 shows  differential  gene  expression  along  megakaryopoiesis,  including  identification  of  multiple 

 trajectories  towards  MkP  commitment,  and  revealed  the  dynamic  expression  of  genes  over 

 pseudotime  including  novel  signatures  induced  by  stress.  DEA  across  individual  cell-types 

 along  the  Mk  trajectory  revealed  cell-type  specific  signatures  of  stress  in  response  to 

 platelet-depletion,  providing  insights  into  how  cells  at  different  stages  of  Mk  commitment 

 regulate  their  transcriptomic  repertoire  to  counteract  thrombocytopenic  conditions.  These 

 findings  provide  valuable  insights  into  the  molecular  mechanisms  underlying  emergency 

 megakaryopoiesis  and  shed  light  on  the  dynamic  changes  occurring  within  the  first  steps  of 

 megakaryopoiesis. 
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 Chapter 4 

 Exploring trajectories of megakaryopoiesis with 
 age using scRNA-seq 

 Chapter disclosures: 

 Preprocessing  of  scRNA-seq  libraries  (genome  alignment,  sequencing  quality-control,  and  gene 
 count  quantification)  were  performed  by  Anita  Scoones  using  the  ScOmix  pipeline 
 (unpublished) developed by Matthew Madgwick (see Materials and Methods 2.3.1 - 2.3.2). 
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 4.1 Introduction 

 The  process  of  ageing  is  accompanied  by  an  overall  loss  of  fitness  and  a  dramatically  increased 

 prevalence  of  many  diseases,  including  dementia,  autoimmunity,  and  cancer.  In  the 

 haematopoietic  system,  ageing  is  associated  with  profound  changes  within  the  bone  marrow 

 compartment  that  ultimately  result  in  reduced  adaptive  immune  system  function,  lower 

 haematopoietic  cellularity  and  increased  incidence  of  haematological  malignancies  and 

 anaemia  (Geiger,  de  Haan  and  Carolina  Florian,  2013)  .  Unsurprisingly,  ageing  is  also  the  major 

 risk  factor  for  several  haematologic  syndromes  and  malignancies,  such  as  myelodysplastic 

 syndromes (MDS) and acute myeloid leukaemia (AML)  (Klepin, 2016)  . 

 Research  into  the  ageing  haematopoietic  compartment  is  a  large  field  in  itself,  with  the 

 overarching  aim  to  explain  the  underlying  mechanisms  behind  the  phenotypic  consequences  of 

 ageing  to  haematopoiesis.  Long  considered  as  one  of  the  central  mechanisms  behind 

 age-related  haematopoietic  defects  is  the  accumulation  of  damage  to  cellular  macromolecules, 

 in  particular,  DNA  damage  (Kirkwood,  2005)  .  Accumulation  of  DNA  damage  is  a  common 

 feature  of  ageing  in  different  tissues  in  many  organisms  (López-Otín  et  al.  ,  2013)  ,  and  despite 

 the  many  mechanisms  in  HSCs  for  genome  protection  from  DNA  alterations,  specific 

 mutations  have  been  shown  to  be  highly  recurrent  in  the  HSC  compartment  (Vas  et  al.  ,  2012; 

 Beerman  et  al.  ,  2014;  Flach  et  al.  ,  2014)  .  Depending  on  the  extent  and  nature  of  lesions  on 

 DNA,  the  repercussions  may  be  cytotoxic  or  mutagenic  leading  to  apoptosis  or  dysfunction  of 

 cells  respectively.  Apoptosis  and  dysfunction  exceeding  the  rate  of  self-renewal  would  be 

 expected  to  ultimately  result  in  depletion  of  the  stem  cell  compartment  but  with  the  HSC 

 distinctive  features  of  quiescence  and  attenuation  of  DNA  repair  pathways,  DNA  damage 

 consequently  is  able  to  accumulate  in  HSCs  with  time  (Beerman  et  al.  ,  2014)  .  Moreover,  the 

 unique  properties  of  stem  cells  potentiate  the  impact  of  damage  because  lesions  can  be  both 

 propagated  through  self-renewal  and  (horizontally)  and  conveyed  into  downstream  progeny 

 (vertically)  meaning  that  damage  starting  at  the  stem  cell  level  can  have  consequences  across 

 all  levels  of  the  haematopoietic  system  (Rossi,  Seita,  et  al.  ,  2007)  .  Whilst  the  important  role  of 

 genetic  defect  accumulation  in  HSCs  with  age  is  evident,  other  factors  have  also  been  strongly 

 implicated  in  HSC  ageing  including  the  interactions  within  the  bone  marrow 

 microenvironment, changes in epigenetic regulation, and altered metabolism  (Ho  et al.  , 2019)  . 

 The  production  of  mature  haematopoietic  cell  types  has  been  shown  to  be  altered  with  age  in 

 both  mouse  models  and  humans,  with  an  increased  myeloid  output  consistently  observed  at  the 

 expense  of  immune  cell  production  (Beerman  et  al.  ,  2010;  Pang  et  al.  ,  2011;  Florian  et  al.  , 

 2012)  .  Research  in  support  of  HSC  defects  resulting  in  imbalanced  haematopoiesis  with  age 
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 has  come  from  experiments  assessing  HSC  developmental  potential  post-transplantation  into 

 preconditioned  irradiated  recipients;  a  model  that  has  well-established  long-term  reconstitution 

 of  both  lymphoid  and  myeloid  lineages  (Dorshkind  et  al.  ,  2020)  .  These  reports  have 

 collectively  shown  an  increased  frequency  of  HSCs  with  age  but  a  generalised  HSC  functional 

 decline,  with  key  hallmarks  including  stem  cell  exhaustion  where  HSCs  from  aged  individuals 

 exhibit  lower  regenerative  potential  (diminished  ability  to  self-renew)  and  a  significant 

 reduction  in  lymphogenesis  capacity  that  correlates  with  the  accumulation  of  cellular  damage 

 over  time.  This  is  coupled  with  an  increased  propensity  towards  myelopoiesis,  with  reports 

 demonstrating  increased  cell  cycling  and  production  of  myeloid  cells  (Morrison  et  al.  ,  1996; 

 Sudo  et  al.  ,  2000;  Liang,  Van  Zant  and  Szilvassy,  2005)  ,  ultimately  suggesting  myeloid  biassed 

 HSCs  is  an  aged  haematopoietic  system  phenotype.  Moreover,  even  though  the  number  of 

 myeloid  cells  in  aged  individuals  is  higher,  their  quality  is  compromised  (Signer  et  al.  ,  2007; 

 Florian  et  al.  ,  2018)  .  Old  HSCs  have  been  described  as  functionally  inferior  through  both  in 

 vitro  and  in  vivo  assays,  with  delayed  proliferation  response  in  stromal  co-cultures,  a  reduced 

 efficiency  for  short-term  bone-marrow  homing,  production  of  smaller  clones  of  mature  cells  in 

 transplanted  recipients,  and  a  reduced  long-term  in  vivo  self-renewal  activity  (Dykstra  et  al.  , 

 2011)  .  A  culmination  of  these  factors  fueled  research  into  the  functional  heterogeneity  within 

 the  HSC  compartment  and  led  to  the  identification  of  subsets  of  HSCs  that  are 

 lymphoid-biassed  (Ly-HSCs),  and  myeloid-biassed  (Mye-HSCs)  distinguishable  based  on 

 phenotypic  differences  -  where  Mye-HSCs  which  have  been  shown  in  mice  to  outnumber 

 Ly-HSCs 6-fold with age  (Montecino-Rodriguez  et al.  ,  2019)  . 

 The  identification  of  two  functionally  distinct  HSC  subtypes  with  differential  lineage 

 propensities,  varying  life  spans,  and  cycling  patterns  revealed  a  further  layer  of  complexity  to 

 understanding  the  ageing  haematopoietic  system.  A  number  of  groups  used  clonal  composition 

 assays  of  cells  from  the  HSC  compartment  to  show  that  clones  with  a  balanced  or  Ly-biassed 

 lineage  output  are  depleted  with  domination  by  Mye-biassed  clones  (Muller-Sieburg  et  al.  , 

 2004;  Beerman  et  al.  ,  2010;  Challen  et  al.  ,  2010)  .  Single-cell  transplantation  of  highly  purified 

 stem  cells  demonstrated  that  the  clonal  contribution  to  different  lineages  varies  significantly 

 and  is  maintained  through  serial  passaging,  showing  these  are  stable  phenotypes  sustained  in 

 vivo  (Dykstra  et  al.,  2007)  .  Further  insight  into  the  heterogeneity  of  the  HSC  pool  was  enabled 

 through  the  identification  of  cell  surface  markers  that  allowed  prospective  isolation  of  these 

 subpopulations,  firstly  with  the  identification  that  CD150  expression  within  the  LSK  fraction 

 could  be  used  to  sub  fractionate  Mye  and  Ly-biassed  HSCs,  where  CD150low  HSCs  are 

 lymphoid  biassed,  and  Cd150+  cells  are  myeloid  biassed  (Beerman  et  al.  ,  2010;  Challen  et  al.  , 

 2010;  Morita,  Ema  and  Nakauchi,  2010)  .  Gekas  et  al.  also  revealed  a  role  for  CD41  expression 

 to  identify  myeloid-biassed  HSCs  and  as  a  marker  of  specifically  aged  HSCs  (Gekas  and  Graf 

 2013),  classically  known  as  a  platelet  marker  required  for  platelet  aggregation  and  clotting 
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 (Shattil,  Kashiwagi  and  Pampori,  1998)  .  Technical  breakthroughs  including  such  marker 

 identification  improved  purification  strategies  paving  the  way  in  assay  refinement  to  directly 

 interrogate  the  composition  and  regulation  of  the  stem  cell  compartment.  Moreover,  the 

 development  of  single-cell  genomic  technologies  saw  the  shift  in  assessing  HSC  function  based 

 on  lineage  output  or  reconstitution  capacity  towards  interrogation  of  the  molecular  mechanisms 

 underlying  HSC  functionality  at  single-cell  resolution,  enabling  the  gene  expression  governing 

 intrinsic changes in HSCs during ageing to be studied. 

 The  study  of  lineage  skewing  of  aged  HSCs  is  supported  by  concording  data  showing  an 

 upregulation  of  myeloid-specific  genes  and  a  downregulation  of  lymphoid-specific  genes 

 (Rossi  et  al.  ,  2005;  Chambers  et  al.  ,  2007;  Dykstra  et  al.  ,  2011;  Wahlestedt  et  al.  ,  2013)  .  A 

 seminal  paper  revealed  a  functionally  distinct  HSC  subset  that  expresses  high  levels  of  Vwf  that 

 not  only  often  exhibits  myeloid  bias,  but  instead  a  platelet-specific  gene  expression.  Using  a 

 Vwf-eGFP  reporter  to  study  the  distribution  of  expression  of  Vwf  across  HSCs  and  mature 

 progenitors  showed  platelet-biassed  HSCs  exist  within  the  phenotypically  defined  HSC  fraction 

 (LSK  CD150+  CD48-  CD34-),  have  long-term  platelet-biassed  of  platelet/Mye-biassed 

 reconstitution,  are  capable  of  self-renewal  and  are  capable  of  generating  Vwf-  Ly-biassed  HSCs 

 (Sanjuan-Pla  et  al.  ,  2013)  .  In  the  context  of  ageing,  by  measuring  platelet  output  from  single 

 HSCs  they  established  that  myeloid-biassed  HSCs  also  typically  produce  high  levels  of 

 platelets  in  young  individuals,  and  that  a  subset  of  HSCs  exist  with  a  distinct  and  stable  platelet 

 bias.  They  showed  HSC  ageing  is  accompanied  by  a  coordinated  upregulation  of 

 platelet-lineage  gene  expression,  both  in  terms  of  the  number  of  platelet-specific  genes 

 expressed per HSC and of their expression level  (Grover  et al.  , 2016)  . 

 Data  from  Poscablo  et  al.  showed  that  young  and  old  MkPs  have  different  gene  expression 

 programs,  reflecting  divergence  in  the  molecular  control  of  Mk  differentiation  during  ageing. 

 They  showed  that  despite  the  reconstitution  deficit  of  aged  HSCs  as  consistent  with  pre-existing 

 literature,  in  vitro  experiments  found  that  MkPs  from  aged  mice  in  fact  displayed  greater 

 proliferative  potential  and  when  transplanting  young  and  old  MkPs  that  old  MkPs  harboured  a 

 high  capacity  to  engraft,  expand,  and  reconstitute  platelets.  One  would  have  expected  that  old 

 MkPs  would  also  display  functional  deficiencies  in  the  same  way  limitations  were  consistently 

 observed in old HSCs. 
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 4.1.1 Aims 

 The aims of this chapter were to: 

 ●  Capture  cells  along  the  trajectory  towards  Mk  commitment  by  FACS  gating  LK  and 

 LSK Cd150+ cells. 

 ●  Apply  single-cell  transcriptomics  using  Smart-seq2  to  order  cells  along  the  continuum 

 of differentiation between HSC and MkP. 

 ●  Interrogate the differentiation trajectory in both steady state and in response to ageing. 

 To  investigate  the  changes  along  the  trajectory  towards  Mk  commitment  with  age,  single-cell 

 transcriptomics  was  employed  to  order  cells  along  the  differentiation  continuum,  and 

 interrogate the differentiation trajectory in both steady state and in response to ageing. 

 Previous  research  indicates  profound  changes  in  the  homeostatic  control  of  haematopoiesis  at 

 multiple  levels  of  differentiation  during  ageing,  however,  a  thorough  investigation  of  the  LK 

 Cd150+  compartment  and  targeted  analysis  of  Mk  lineage  trajectories  with  age  at  single-cell 

 resolution  has  not  yet  been  produced.  These  aims  were  addressed  by  profiling  HSPCs  from 

 mouse  bone  marrow  using  Smart-seq2,  scRNA-seq  profiles  of  cells  were  used  to  visualise  and 

 study  the  transcriptional  heterogeneity  of  cells  in  the  LK  Cd150+  BM  fraction.  Pseudotime 

 trajectory  analysis  was  used  to  computationally  order  single  cells  along  a  differentiation 

 trajectory.  This  chapter  describes  the  analysis  of  transcriptional  changes  along  Mk  commitment 

 and differential expression signatures associated with age. 
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 4.2 Experimental approach 

 To  investigate  the  trajectories  of  the  Mk  lineage  with  age,  scRNA-seq  experiments  were 

 performed  using  mice  from  two  age  groups  (8  weeks  and  72  weeks).  A  total  of  6  mice  were 

 utilised,  with  3  mice  per  age  group.  LK  and  LSK  Cd150+  single-cells  were  sorted  into  96-well 

 plates  (Methods  2.2.2  -  2.2.6.1)  and  processed  for  Smart-seq2,  following  previously  described 

 protocols  (Picelli  et  al.,  2014)  (Methods  2.2.7.1-2.2.7.4).  The  cells  from  a  total  of  7  96-well 

 plates  were  clustered  and  annotated  into  cell  types  based  on  their  transcriptomic  expression 

 signatures  and  ordered  using  pseudotime  analysis.  Furthermore,  differential  expression  and 

 functional  analyses  were  performed  to  identify  signatures  that  are  associated  with  pseudotime 

 states and age. 

 13 

 Figure  4.1.  Schematic  workflow  of  the  experimental  approaches  implemented  for 

 Chapters 4 and 5. 

 13  Created with BioRender.com 
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 4.3 Results 

 4.3.1 Isolation of megakaryocyte trajectory from young and aged bone-marrow samples 
 for scRNA-seq 

 To  study  cells  along  the  Mk  trajectory  in  ageing,  cells  were  isolated  from  mouse  bone  marrow 

 and  sorted  by  single-cell  FACS  coupled  (Figure  4.2).  In  total,  seven  96-well  plates  including 

 LK  Cd150+  and  LSK  Cd150+  single  cells  were  sorted  along  with  two  positive  controls  (50 

 cells  per  well  and  two  negative  controls  per  plate  (one  positive  and  negative  per  condition)  as 

 indicated  in  Figure  4.2B.  This  was  again  performed  as  such  to  enable  the  detection  of  errors 

 including  contamination,  reagent  failures  or  technical  problems.  Cells  from  young  and  aged 

 mice  were  sorted  into  each  PCR  plate,  yielding  a  total  of  644  cells  for  this  set  of  experiments 

 excluding  control  wells  (Figure  4.2C).  As  before,  combining  both  samples  in  each  plate 

 minimises  the  potential  for  batch  effects  or  variation  between  samples  due  to  technical  factors 

 either  during  sorting  or  downstream  library  preparation  between  each  experimental  condition. 

 Plates  were  randomised  and  processed  in  two  batches  for  Smart-seq2  single-cell  RNAseq  as 

 previously  described  (Picelli  2014),  and  as  before  0.2  ng/  µl  of  cDNA  was  used  per  sample  to 

 generate  Illumina  sequencing-ready  libraries  with  NextEra.  Sample  quality  was  evaluated 

 post-cDNA  amplification  product  clean-up,  and  post-NextEra  library  preparation  (Appendix 

 Supplementary  Figure  4.1).  Plates  were  pooled  at  equimolar  concentrations  to  ensure  equal 

 read coverage across libraries during sequencing to generate a minimum of 1M reads per cell. 
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 Figure  4.2.  Cell  isolation  strategy  of  scRNA-seq  data  presented  in  Chapter  4.  (a)  FACS  gating  strategy  for  sorting  LK  and  LSK  Cd150+  cells.  The 
 same  gating  strategy  was  applied  across  all  samples,  shown  is  one  representative  example  per  experimental  condition  (top  panel  aged,  bottom  panel 
 young  ).  (b)  Single-cell  sort  layout.  Wells  are  coloured  by  FACS  population,  and  the  dotted  line  depicts  the  split  across  experimental  conditions.  Control 
 well contents and locations are also shown. This layout was used across all plates in this chapter. (c) Summary of total cells isolated per FACS gate. 
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 4.3.2 Quality control of scRNA-seq libraries and data integration for batch effect 
 correction 

 After  sequencing,  scRNA-seq  data  preprocessing  was  performed  as  described  (see  Methods 

 sections  2.3.1  -  2.3.2)  and  data  quality  was  assessed  per  cell  with  MultiQC  in  the  same  way  as 

 described  in  Chapter  3.  All  data  from  every  cell  (including  control  samples)  were  retained  as 

 part  of  the  dataset  and  parsed  into  featureCounts  to  generate  one  feature  counts  matrix  based  on 

 mouse  age,  then  split  into  two  batches  to  generate  4  matrices  (ie.  young  batch  1,  old  batch  1, 

 young  batch  2  and  old  batch  2).  The  decision  to  aggregate  the  data  on  both  age  and  experiment, 

 rather  than  age  alone,  was  made  as  the  cell  sorting  for  these  experiments  was  performed  across 

 two  separate  occasions,  where  on  day  1  cell  isolation  was  performed  from  old  and  young  mice 

 30  and  31  respectively,  whilst  day  2  was  the  cell  isolation  from  young  mice  34  and  36  and  old 

 mice  35  and  37  (Table  4.1).  As  the  primary  objective  for  this  set  of  experiments  was  to  assess 

 the  differential  gene  expression  signatures  along  the  Mk  lineage  with  age,  it  was  important  to 

 account  for  batch  effects  between  young  and  old  samples  to  ensure  that  any  observed 

 differences  in  gene  expression  are  genuinely  due  to  age  and  not  due  to  technical  variability. 

 Integrating  scRNA-seq  data  from  both  experiments  increased  the  sample  size  naturally 

 improving  the  statistical  power  to  detect  age-related  changes  in  gene  expression.  However, 

 whilst  the  same  methodology  was  applied,  having  involved  two  separate  experiments  adds  the 

 potential  for  experiment-specific  technical  artefacts  which  had  to  be  accounted  for  during  data 

 integration, hence both batch and age variables were accounted for during data integration. 

 First,  low-quality  cells  were  excluded  from  the  dataset  prior  to  anchor  identification  for 

 integration.  The  criteria  for  high-quality  sample  selection  meant  samples  with  over  50,000  total 

 reads  per  cell,  between  2,500-10,000  genes  detected  per  cell  and  mitochondrial  gene  expression 

 content  below  15%  were  retained  in  the  dataset.  This  left  a  combined  total  of  520  single-cell 

 samples  suitable  for  further  analysis  -  excluding  positive  and  negative  control  wells  (Figures 

 4.3  and  4.4).  After  filtering  for  high-quality  cells,  each  dataset  was  normalised  (see  Methods 

 section  2.3.5)  and  the  top  5000  variable  features  for  each  object  calculated  independently  to 

 identify  integration  features  across  the  four  objects.  Once  variable  features  per  batch  were 

 calculated,  a  list  of  anchors  between  the  batches  were  used  to  integrate  samples  back  into  a 

 single  dataset  for  further  analysis.  This  approach  uses  the  canonical  correlation  analysis  (CCA) 

 statistical  technique  that  identifies  shared  sources  of  variation  between  multiple  datasets  by 

 finding  the  canonical  correlation  vectors  that  maximise  the  correlation  between  the  datasets 

 (Stuart  et  al.  ,  2019)  .  This  cross-dataset  alignment  can  then  be  used  to  generate  a  shared  latent 

 space  that  captures  the  biological  variation  across  batches  which  can  be  used  for  downstream 

 analyses.  The  goal  of  this  was  to  improve  the  accuracy  and  reproducibility  of  downstream 

 analyses,  and  facilitate  the  identification  of  biological  insights  in  a  way  that  takes  into  account 

 the  potential  sources  of  batch  effects,  in  this  case,  taking  into  account  both  mouse  age  and 
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 experimental  batch.  The  features  identified  as  anchors  using  SelectIntegrationFeatures  and 

 FindIntegrationAnchors  were  provided  as  input  to  integrate  the  data  using  default  parameters 

 aside  from  k.weight.  This  is  because  the  default  value  for  k.weight  in  Seurat's  IntegrateData 

 function  is  NULL  ,  meaning  the  optimal  weighting  for  each  dataset  based  on  the  number  of  cells 

 and  genes  in  each  dataset  is  automatically  calculated.  However,  after  QC  filtering  the  size  of  the 

 datasets  ie.  the  number  of  cells  that  remained  in  each  of  the  4  batches  was  not  equal.  In  order  to 

 be  able  to  combine  the  four  objects,  k.weight  was  set  to  88,  the  highest  value  to  enable 

 integration  which  is  equal  to  the  number  of  cells  in  the  object  containing  the  least  cells  after 

 QC. 

 Another  common  and  unwanted  source  of  variation  that  often  plays  an  influential  role  in  the 

 downstream  analysis  is  the  strong  cell-cycle  gene  expression  signal  inherent  in  scRNA-seq 

 data.  To  minimise  the  influence  of  cell-cycle  genes  in  downstream  clustering  and  differential 

 expression  analyses,  the  integrated  dataset  was  first  scored  into  G2M,  S  and  G1  phases  based 

 on  the  expression  of  pre-defined  canonical  cell-cycle-associated  genes  from  the  literature. 

 Using  these  scores,  the  difference  between  the  G2M  and  S  phase  scores  was  regressed  prior  to 

 conducting downstream analyses. 
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 Table  4.1.  Summary  of  the  total  number  of  cells  included  per  sequencing  run,  pooling  strategy 
 employed to sequence single-cell libraries.  14 

 14  Sequences for the four Illumina index sets of 96-well  plates used in NextEra library preparation are 
 listed in Supplementary Table 2.1. 
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 Figure 4.3. Single-cell sample quality control for selecting high-quality cells suitable for further analysis  . (a) Violin plots showing: (1) number of 
 genes (nFeature), (2) number of reads (nCount) and (3) percentage of reads attributed to mitochondrial genes (percent.mt) per single cell. Violins are 
 coloured by mouse age (red =  old  , teal =  young  ) and  split by mouse ID. (b) (1) Correlation between the number of reads and the percentage of 
 mitochondrial content per cell, coloured by batch ID and condition. (2) Correlation between the number of reads and the number of genes detected per 
 cell, coloured by well type (  pos =  multi-cell well,  neg =  empty well,  false =  single-cell well). 
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 Figure 4.4. Single-cell sample quality control post-filtering based on quality metrics  . (a) Violin plots showing:  (1) number of genes (nFeature), (2) 
 number of reads (nCount) and (3) percentage of reads attributed to mitochondrial genes (percent.mt) per single cell. Violins are coloured by mouse age 
 (red =  old  , teal =  young  ) and split by mouse ID. (b)  (1) Correlation between the number of reads and the percentage of mitochondrial content per cell, 
 coloured by batch ID and condition. (2) Correlation between the number of reads and the number of genes detected per cell, coloured by well type 
 (  false =  single-cell well). 
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 4.3.3. Principal component analysis of primary sources of variation across the dataset 

 PCA  was  performed  on  the  preprocessed  integrated  data  to  identify  the  major  sources  of 

 variability,  also  revealing  the  number  of  PCs  that  contained  the  most  significant  variability  in 

 the  data  and  retained  for  downstream  analysis.  Of  these,  the  gene  found  to  display  the  highest 

 standard  variance  across  the  dataset  was  Cd69,  a  transmembrane  C-type  lectin  protein 

 traditionally  associated  with  early-leukocyte  activation  and  expressed  by  activated  T,  B,  and 

 natural  killer  (NK)  cells  (Cebrián  et  al.  ,  1988;  Testi  et  al.  ,  1990;  Lauzurica  et  al.  ,  2000)  .  The 

 role  of  Cd69  is  implicated  during  differentiation  of  progenitors,  as  a  possible  player  in 

 haematopoietic  lineage  commitment.  Using  integrated  proteome,  transcriptome,  and  DNA 

 methylome  analysis  of  HSCs  and  immature  progenitors  Cabezas-Wallscheid  et  al.  found  that 

 Cd69  was  among  the  most  highly  differentially  expressed  genes  between  HSCs  and  their 

 downstream  progeny  (Cabezas-Wallscheid  et  al.  ,  2014)  .  With  that,  heterogenous  levels  of  Cd69 

 expression  have  also  been  reported  within  the  HSC  compartment,  as  an  HSC-activation  marker 

 upon  immune  stimulation  (Bujanover  et  al.  2018)  .  More  recently,  heightened  Cd69  expression 

 was  detected  again  in  activated  LSK  CD48−  150+  stem  and  progenitor  populations,  most 

 highly  in  HSCs,  which  was  found  to  positively  correlate  with  exit  from  quiescence  (Thapa  et 

 al.,  2023).  They  also  report  Cd69  expression  to  be  more  responsive  during  the  early  phase  of 

 immune  stimulation,  and  hypothesise  that  HSCs  sense  and  can  be  activated  at  a  low  threshold, 

 possibly  in  order  to  provide  "training"  through  multiple  immunological  stimulations  throughout 

 life  (Thapa  et  al.,  2023).  Interestingly,  Pang  et  al.  identified  increased  Cd69  expression  in 

 myeloid-biassed  HSCs  with  age  (Pang  et  al.,  2011).  Overall,  further  research  is  needed  to 

 elucidate  the  role  of  Cd69  expression  in  HSCs  fully,  but  there  exists  some  support  for  its  role 

 both  in  regulating  haematopoietic  differentiation  in  addition  to  serving  as  a  marker  of  stem-cell 

 activation. 

 Unsurprisingly,  classic  Mk  markers  Pf4  and  Vwf  were  among  those  most  variable,  as  they  are 

 canonical  markers  for  cells  in  the  Mk  lineage  with  known  importance  for  Mk  differentiation 

 and  identity  (Figure  4.5A).  Overall  this  initial  insight,  albeit  preliminary,  into  variable  genes 

 detected  across  the  dataset  shows  the  heterogeneous  expression  of  genes  known  to  vary  in 

 expression  across  the  haematopoietic  stem  and  progenitor  populations;  particularly  across  Mk 

 lineage  commitment.  It  highlighted  no  indicators  of  low-quality  data  or  batch  effects  (Figure 

 4.5C)  among  the  results.  To  gain  insights  into  genes  likely  driving  the  separation  between 

 different  cell  populations  captured  in  the  experiment,  the  contribution  of  genes  in  the  first  PCs 

 was  visualised  using  loading  plots  (Figure  4.5B).  Here,  genes  strongly  associated  with  a 

 particular  dimension  are  assigned  a  positive  value,  meaning  that  it  is  driving  the  separation 

 whilst  a  negative  value  for  a  gene  indicates  that  its  expression  is  negatively  correlated  with  a 

 specific  dimension  ie.  the  gene  is  expressed  at  low  levels  in  a  particular  population,  and  is 

 therefore  associated  with  the  absence  of  that  population  along  that  dimension  (Stuart  et  al.  , 
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 2018)  .  This  pulled  out  a  high  expression  of  markers  for  the  expected  haematopoietic  cell 

 populations,  primarily  HSCs,  EryP  and  MkP,  which  were  found  to  contribute  to  the  same 

 sources  of  variation  in  the  data.  For  example,  PC2  is  negatively  correlated  with  multiple  genes 

 associated  with  the  Mk  lineage  (  Pf4,  Mpl,  Vwf,  Pbx1,  and  Itga2b)  and  has  positive  loadings  for 

 myelo/erythroid-associated  genes  Car1,  Trib2  and  Plac8  (Figure  4.5B)  (Li  et  al.  ,  2013;  Liang  et 

 al.  , 2015; Upadhaya  et al.  , 2018)  . 

 Projecting  cells  into  a  reduced-dimensional  space  after  PCA  visualised  the  distribution  of  the 

 cells  captured  in  this  dataset.  By  grouping  cells  based  on  both  batch  and  experimental 

 conditions  (age),  no  discernable  batch  effect  influencing  the  structure  of  the  data  was  identified 

 (Figure  4.5C).  This  PCA  projection  revealed  the  global  structure  of  the  data  when  condensed 

 into  its  first  principal  components,  but  due  to  its  limited  capacity  to  visualise  non-linear 

 single-cell  expression  data  was  insufficient  to  reveal  clusters.  To  enable  cluster  identification 

 downstream,  first,  the  number  of  components  containing  the  highest  sources  of  heterogeneity  to 

 include  for  downstream  stages  of  analysis  was  determined  by  calculating  the  standard  deviation 

 of  each  PC.  This  was  achieved  using  the  Scree  plot  graphical  method  to  identify  significant  PCs 

 that  capture  meaningful  biological  variation.  For  this  dataset,  PC  fifteen  was  determined  as  the 

 cut-off for downstream analyses (Figure 4.5D). 
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   Figure  4.5.  Principal  component  analysis  of  the  dataset  post-integration  identifies  the  top 
 principal  components  containing  the  most  highly-variable  genes  and  confirms  no  plate-  or 
 age-based  batch  effects.  (a)  The  mean  expression  of  each  gene  against  its  standard  variance, 
 with  each  dot  representing  a  gene.  Points  in  red  indicate  the  top  5000  most  highly  variable 
 genes  used  for  downstream  analysis,  gene  ID  annotations  shown  for  the  top  20  (b)  Gene 
 loadings  for  the  first  three  principal  components  showing  the  top  genes  contributing  to  each  PC 
 (c)  PCA  projection  of  all  cells  coloured  by  age  where  point  shapes  indicate  batch  in  which 
 samples  were  processed  (d)  Scree  plot  of  standard  deviation  as  a  function  of  principal 
 component  number  used  to  determine  the  number  of  components  to  include  for  downstream 
 clustering. 
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 4.3.4. Cell type annotation of clusters using marker expression signatures identifies cells 

 captured in the ageing LK Cd150+ compartment 

 The  integrated  dataset  containing  all  cells  from  both  conditions  that  passed  filtering  was 

 assigned  into  clusters  using  the  FindNeighbours()  and  FindClusters()  functions,  respectively 

 constructing  a  shared  nearest-neighbour  graph  for  the  dataset  based  on  the  cell-cell  similarities, 

 followed  by  clustering  cells  using  the  first  15  PCs.  Dimensionality  reduction  and  unsupervised 

 clustering  were  performed  using  UMAP  and  Louvain  clustering  with  a  resolution  of  1.5 

 identifying  9  clusters  across  the  dataset  (Figure  4.6).  Cells  grouped  into  a  cluster  express  a 

 similar  transcriptomics  signature  (set  of  genes)  to  one  another  relative  to  cells  assigned  into 

 other  clusters.  Using  these  signatures  in  conjunction  with  known  haematopoietic  cell 

 type-specific  marker  genes  from  relevant  literature  clusters  were  annotated  by  cell  type  (Paul  et 

 al.  ,  2015;  Pellin  et  al.  ,  2019;  Psaila  et  al.  ,  2020;  Weinreb  et  al.  ,  2020;  Roy  et  al.  ,  2021)  .  Using 

 the  FindAllMarkers()  function,  sets  of  DEGs  specific  to  particular  clusters  were  identified  and 

 used  to  manually  annotate  clusters  into  cell  types  and  compare  expression  signatures  (Figure 

 4.7). 

 Cells  in  cluster  1  had  a  robust  expression  of  canonical  Mk-associated  genes  including  Cd41 

 (  Itga2b  ),  Pf4,  Pbx1,  Plek  and  Vwf.  This  panel  of  genes  is  routinely  used  to  identify  phenotypic 

 Mk-committed  progenitors,  thus  with  confidence  cluster  1  was  annotated  as  Mk  progenitors 

 (Supernat  et al.  , 2021)  . 

 The  signature  of  cells  belonging  to  cluster  2  was  more  complex  to  assign  to  a  specific  cell  type. 

 One  observation  was  that  genes  associated  with  the  myeloid  lineage  -  comprising  neutrophils, 

 monocytes  ,  macrophages,  and  dendritic  cells  (DCs)  -  were  found  to  be  enriched  in  cluster  2. 

 Some  examples  include  Plac8,  Vim  and  Jun  ,  a  transcription  factor  shown  to  be  involved  in 

 activating  myelomonocytic  differentiation  (Steidl  et  al.  ,  2006)  .  Irf1  was  also  identified  as 

 highly  expressed  in  cluster  2,  a  member  of  the  IFN  regulatory  factor  (IRF)  family  that  plays  an 

 important  role  in  myeloid  cell  development  and  the  maturation  of  the  lymphoid  lineage  (R. 

 Song  et  al.  ,  2021)  .  Another  gene  of  interest  highly  expressed  in  this  population  was  Egr1,  a 

 zinc  finger  transcription  factor  known  primarily  for  its  role  during  cell  growth,  differentiation, 

 and  cellular  depolarization  (Sukhatme  et  al.  ,  1988)  .  It  is  prominently  involved  in  establishing 

 early  cell  proliferative  responses  to  extrinsic  signals  through  transcriptional  regulation  of  genes 

 for  growth  and  differentiation,  but  more  recently  has  been  associated  with  a  shift  in  the 

 differentiation  behaviour  of  stem  cell-enriched  BM  cells  from  granulocyte  or  erythroid  lineages 

 towards  the  macrophage  lineage  (Krishnaraju,  Hoffman  and  Liebermann,  2001)  .  The 

 overexpression  of  Egr1  in  HSPCs  was  shown  to  result  in  failed  BM  engraftment  upon 

 transplantation  in  irradiated  mice  due  to  excessive  differentiation  bias  towards  the  macrophage 
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 lineage  -  suggesting  Egr1  is  a  positive  regulator  for  the  myeloid  fate.  Asides  from  the  increased 

 expression  in  myeloid  lineage-affiliated  genes,  it  was  also  observed  that  markers  typically 

 affiliated  with  HSCs  were  also  upregulated  in  cluster  2.  This  too  includes  Egr1,  as  not  only  has 

 it  been  linked  to  myeloid  fate  but  is  also  associated  with  HSC  homeostatic  regulation, 

 specifically  enhancing  HSC  quiescence  and  retention  in  the  niche  (Min  et  al.  ,  2008)  .  Also 

 highly  expressed  in  cluster  2  was  Cd69  ,  known  primarily  as  an  early  activation  marker  that  is 

 expressed  in  HSCs  and  lymphoid  cells  (Lauzurica  et  al.  ,  2000)  .  Cd69  upregulation  is  correlated 

 with  quiescence  and  low  proliferative  potential  in  HSCs,  together  with  Junb  and  Btg2,  which 

 too  were  identified  here  as  markers  of  cells  in  cluster  2  (Steidl  et  al.  ,  2006;  Desterke, 

 Bennaceur-Griscelli  and  Turhan,  2021)  .  Taken  together,  the  signature  observed  for  cluster  2  is 

 suggestive  that  this  cluster  may  comprise  a  highly  immature  progenitor  subset,  with 

 overlapping  signature  to  HSCs,  but  the  increased  expression  in  myeloid  lineage-associated 

 genes thus was annotated as immature myeloid progenitors (MyeP). 

 Clusters  3  and  4  were  assigned  as  EryPs  and  early  EryPs  respectively  based  on  the  high 

 expression  of  canonical  erythroid  marker  genes  including  the  early  specific  marker  of  the 

 erythroid  differentiation  Car1,  erythroid  membrane-associated  protein  (  Ermap),  erythropoietin 

 receptor  Epor  and  well-established  erythroid  TF  Klf1  (Su  et  al.  ,  2001;  Dolznig  et  al.  ,  2006; 

 Song  et  al.  ,  2012;  Merryweather-Clarke  et  al.  ,  2016)  .  Compared  to  one  another,  cells  in  cluster 

 3  expressed  genes  synonymously  associated  with  committed  erythroid  progenitors,  in  particular 

 genes  associated  with  terminal  stages  commitment  including  blood  antigen  protein  Rhd,  Sphk1 

 and  Gata1  (Kingsley  et  al.  ,  2013;  Xiong  et  al.  ,  2014)  .  Whilst  cluster  4  exhibited  higher 

 expression  of  immature  progenitor  markers  such  as  Gata2,  known  for  being  expressed  in 

 HSPCs before the commitment of progenitors  (Suzuki  et al.  , 2013)  . 

 Cluster  7  markers  show  an  overlapping  expression  signature  with  MkP  cluster  1  including 

 Mk-lineage  associated  genes  Itga2b,  Vwf,  Pf4  and  Mef2c  as  well  as  a  notable  upregulation  of 

 G2M  cycle  phase  genes  which  had  a  dominating  effect  during  marker  identification  (Gekas  et 

 al.  ,  2009;  Lambert  et  al.  ,  2009;  Miyawaki  et  al.  ,  2017)  .  In  the  same  manner,  Cluster  9  exhibits 

 expression  of  Ery-associated  markers  Ermap  ,  Epor,  Blvrb  and  Tfrc  (Cd71)  (Dolznig  et  al.  , 

 2006;  Merryweather-Clarke  et  al.  ,  2016;  Grzywa,  Nowis  and  Golab,  2021)  .  Comparing  the 

 markers  in  the  earlier  chapter  with  the  signatures  identified  here  clusters  7  and  9  were  annotated 

 sub-clustered  MEP  progenitors,  with  either  higher  Mk-lineage  gene  expression  (Mk-MEP,  7)  or 

 Ery-lineage  gene  expression  (Ery-MEP,  9)  respectively.  Exploring  different  resolution 

 parameters  during  clustering,  as  before,  showed  these  share  an  overlapping  signature  that  can 

 be seen in the heatmap of top marker genes per cluster (Figure 4.7). 
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 Cell type  % 
 YOUNG 

 % 
 OLD 

 Total cells per 
 cluster 

 MkP  17.4  19.6  99 

 MyeP  20.8  14.6  94 

 EryP  14.3  10.5  66 

 Early EryP  12  9.8  58 

 LTHSC  1.9  19.3  58 

 HSC  14.3  6.6  55 

 MEP (Mk)  6.2  7.3  36 

 MyeP 
 (cycling) 

 4.6  8.7  36 

 MEP (Ery)  8.5  3.6  32 

 Figure  4.6.  Single-cell  clustering  .  (a)  UMAP  projection  of  integrated  dataset  where  each  point 
 represents  a  single  cell,  coloured  by  cell-type  annotation  (b)  UMAP  projection  of  single-cell  clusters 
 coloured  based  on  mouse  age  (c)  Stacked  frequency  plot  showing  the  number  of  cells  per  cluster  in  each 
 age  group.  Numbers  above  each  stacked  bar  represent  the  number  of  cells  found  in  each  cluster  (d) 
 Percentage contribution of cells from each condition across clusters. 
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 Figure 4.7. Heatmap showing the distribution of expression levels of the top 10 markers 
 per cluster  . Coloured bars on Y-axis indicate cluster  cell-type annotation and cell-cycle phase 
 classification. 
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 Using  canonical  HSC-specific  markers  including  Mecom,  Ly6a  (  Sca-1),  Procr  and  Sult1a1 

 cluster  5  was  annotated  as  LTHSCs,  whilst  cells  in  cluster  6  were  assigned  as  HSCs  that  share  a 

 similar  expression  pattern  with  some  exceptions  that  enable  their  distinction  from  one  another 

 (Osawa  et  al.  ,  1996;  Balazs  et  al.  ,  2006;  Qian  et  al.  ,  2007;  Mohan  Rao,  Esmon  and  Pendurthi, 

 2014)  .  This  includes  higher  expression  of  Cd69,  Flt3,  and  Egr1  and  conversely  near  absent 

 levels  of  Vwf  and  Clu  (Figure  4.8)  (Peled  et  al.  ,  1999;  Adolfsson  et  al.  ,  2001;  Min  et  al.  ,  2008; 

 Sanjuan-Pla  et al.  , 2013; Koide  et al.  , 2021)  . 

 The  proportion  of  cells  belonging  to  each  cluster  between  the  conditions  was  largely  equivalent 

 with  a  few  notable  distinctions.  The  number  of  LTHSCs  from  old  samples  vastly  exceeded  that 

 of  young  samples;  19.3%  of  cells  from  aged  mice  were  LTHSCs  compared  to  only  1.9%  from 

 young  samples  (Figure  4.6D).  The  expansion  of  the  HSC  pool  with  age  is  well  documented, 

 with  multiple  reports  demonstrating  their  increased  frequency  but  reduced  self-renewal  and 

 functional  capacity  (Rossi  et  al.  ,  2005;  Chambers  et  al.  ,  2007;  Yamamoto  et  al.  ,  2013;  Yang 

 and  de  Haan,  2021)  .  Multiple  intrinsic  and  extrinsic  factors  including  changes  to  cell  division 

 kinetics,  increased  inflammation,  and  other  age-associated  changes  to  the  HSC  niche  are  among 

 the  hypotheses  explaining  this  phenotype  (Mirantes,  Passegué  and  Pietras,  2014;  Florian  et  al.  , 

 2018;  Pinho  et  al.  ,  2018)  .  Specifically,  it  has  been  previously  shown  that  Mk-biassed  Cd150+ 

 HSCs  increase  with  age,  with  an  altered  expression  signature  and  increased  expression  in  key 

 genes  including  Slamf1  (Cd150),  Vwf  and  Mpl  ;  all  of  which  were  upregulated  in  cells  from  old 

 vs  young  mice  in  this  data  (Figure  4.9)  (Sanjuan-Pla  et  al.  ,  2013;  Grover  et  al.  ,  2016)  . 

 Mirroring  this,  14.3%  of  cells  from  young  mice  contribute  towards  the  HSC  population 

 compared  with  only  6.6%  contribution  from  aged  mice  (Figure  4.6D).  Notably,  along  with  the 

 expression  of  HSC  markers,  the  expression  of  genes  associated  with  the  lymphoid  lineage,  such 

 as  Flt3,  Cd69,  Dntt  and  Plac8  was  also  detected  in  this  population  (Figure  4.8).  These 

 differences  in  expression  across  the  HSC  populations  and  differential  cluster  contribution  with 

 age  observed  here  are  in  agreement  with  the  existing  literature  showing  a  heterogeneous  HSC 

 compartment,  increased  Mk  lineage  signature  in  ageing  and  that  the  expression  of  Mk-lineage 

 genes correlates with signatures of the most primitive stem cells within the LSK compartment. 
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 Figure  4.8.  UMAP  projection  of  single  cells  coloured  by  expression  levels  in  a  selected 
 subset  of  canonical  haematopoietic  markers  from  existing  literature  used  for  manual 
 cell-type annotation. 
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 Figure  4.9.  Expression  of  a  subset  of  shared  HSC  and  Mk  markers  across  clusters 
 separated  by  condition.  Point  size  indicates  the  percentage  of  cells  in  the  cluster  that  express 
 the gene and opacity of colour indicates expression level. 

 Figure  4.10.  Cell  cycle  stage  assignment  across  clusters.  (a)  UMAP  projection  of  all  single 

 cells  coloured  by  cell  cycle  stage  (b)  Distribution  of  cell  cycle  assignments  shown  as  a 

 percentage each cluster split by mouse age. 
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 Cell  cycle  stage-specific  patterns  of  expression  were  apparent  throughout  clustering  and 

 studying  marker  expression  signatures.  In  particular,  there  was  an  evident  abundance  of 

 G2M-associated  genes  identified  as  markers  for  both  MEP  subpopulations,  such  as  high 

 expression  of  Spc24  and  Cdca3  (Figure  4.10A)  (Xu  et  al.  ,  2022;  Chen  et  al.  ,  2023)  .  Cell  cycle 

 stage  distribution  across  data  from  young  and  old  samples  was  visualised  to  compare 

 differential  frequencies  in  cell  cycle  assignment  between  conditions  (Figure  4.10B).  LTHSCs 

 and  HSCs  from  aged  mice  had  an  increased  proportion  of  cells  undergoing  cell  division  (in  S 

 and G2M phases) (Figure 4.10b). Previous work has demonstrated poor self-renewal of HSCs 

 and  a  shift  from  asymmetric  cell  division  (generating  one  stem  and  one  differentiated 

 progenitor)  to  symmetric  cell  division  (generating  either  only  stem  cell  clones  or  only 

 differentiated  progenitors)  with  age  (Dykstra  et  al.  ,  2011;  Florian  et  al.  ,  2018)  .  Increased 

 cycling  in  the  aged  HSC  compartment  correlates  with  deficiencies  in  DNA  damage  repair 

 pathways  and  an  accumulation  of  damage  in  the  HSC  compartment,  which  continues  to  serve 

 as  a  strong  explanation  for  the  rapid  deterioration  of  function  in  the  HSCs  and  the  heightened 

 incidence  of  disease  with  age  (Rossi,  Bryder,  et  al.  ,  2007;  Walter  et  al.  ,  2015)  .  The  underlying 

 cause(s)  of  this  behaviour  remain  to  be  fully  elucidated,  and  whilst  cell-cycle  behaviour  was  not 

 directly  assayed  the  use  of  known  cell-cycle  associated  markers  provided  supplementary 

 support  to  the  annotations  cells  were  assigned,  as  well  as  additional  insight  into  the  state  of 

 cells  at  the  time  they  were  collected.  This  is  of  particular  relevance  as  recent  findings  have 

 implicated  cell-cycle  progression  playing  a  direct  role  in  the  lineage  fate  determination  of 

 MEPs  (Lu,  Krause,  et  al.  ,  2018)  .  The  authors  demonstrated  that  cell-cycle  control  influenced 

 Mk  vs  Ery  specification  of  MEPs,  where  MEPs  with  a  smaller  increase  in  cell  cycle  speed 

 promoted  Mk  progenitor  specification  determined  by  the  increased  expression  of  Mk-specific 

 genes,  whilst  a  greater  increase  resulted  in  higher  Ery-specific  gene  expression  (Lu,  Sanada,  et 

 al.  ,  2018)  .  They  classified  MEPs  as  a  single  ‘transition  state’  distinct  from  the  CMP  or  MkP 

 and  EryP  populations.  The  data  presented  here  are  in  agreement  with  this  but  additionally, 

 resolve  the  MEP  state  into  subpopulations  with  distinct  signatures.  As  predicted,  both 

 populations  exhibit  a  highly  active  cell  state  across  both  age  groups.  Their  profiles  are  retained 

 with  age  with  the  exception  of  the  MEP  Ery  population,  which  was  found  to  contain  only  cells 

 in  G2M.  Previous  work  has  shown  that  the  shortening  of  the  S  phase  is  essential  for  Ery 

 differentiation  (Hwang  et  al.  ,  2017)  ,  suggesting  a  prospective  role  for  changes  in  cell  cycle 

 kinetics  influencing  MEP  fate  specification  with  age.  Whilst  this  hypothesis  is  as  of  yet 

 unsubstantiated, it poses an interesting avenue for further research. 

 Overall,  the  clustering  results  and  analysis  of  cell-type  specific  marker  expression  and  cell 

 cycle  states  identified  9  populations  of  stem  and  progenitors  of  the  Mk  and  Ery  lineages  that  are 

 in  agreement  with  the  existing  literature  and  provided  insights  into  the  signatures  and  cell  cycle 

 stages of cells within the LSK Cd150+ compartment. 
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 4.3.6 Pseudotime analysis orders differentiation trajectory from LT HSC towards Mk and 
 Ery lineages. 

 A  key  objective  of  this  chapter  was  to  delineate  the  trajectory  from  stem  cells  toward  the  Mk 

 lineage,  demonstrating  gene  expression  changes  along  different  stages  of  Mk  differentiation 

 and  how  this  is  affected  in  ageing.  After  establishing  the  populations  captured  in  the  experiment 

 through  cell-type  annotation  in  Seurat,  the  Seurat  object  was  then  converted  into  the  necessary 

 cds  data  format  to  perform  pseudotime  analysis  with  Monocle3.  This  ensured  that  only  the 

 same  high-quality  cells  that  passed  QC  and  annotated  were  retained  for  trajectory  inference  and 

 downstream  analyses.  Whilst  the  removal  of  samples  was  not  required,  other  important 

 preprocessing  steps  including  log  and  size  factor  normalisation,  scaling  and  dimensional 

 reduction  were  performed  before  running  trajectory  reconstruction.  These  steps  address  depth 

 differences  across  the  dataset  ensuring  genes  contribute  equally  to  the  analysis  to  account  for 

 possible  differences  in  sequencing  depth  or  other  technical  factors  inherent  in  scRNA-seq  data. 

 Data  preprocessing  was  performed  using  default  recommended  parameters,  and  the  first  fifty 

 principal  components  for  the  data  were  calculated  for  further  dimensionality  reduction 

 downstream.  Batch  correction  was  also  performed  with  the  aling_cds()  function,  using  both 

 experimental  condition  (mouse  age,  ‘young’  or  ‘old’)  and  experiment  (batch  1  or  batch  2)  as 

 input  groups  for  Batchelor  alignment  (Haghverdi  et  al.  ,  2018)  .  Finally  after  preprocessing  and 

 batch  correction  and  confirming  the  number  of  PCs  containing  the  highest  variance  in  the  data 

 (Figure  4.11A),  data  dimensionality  was  reduced  with  UMAP  with  max_components()  set  to  2 

 to facilitate trajectory inference downstream. 

 A  necessary  prerequisite  for  trajectory  reconstruction  with  Monocle3  is  data  clustering  into 

 partitions.  Unsupervised  Leiden  clustering  was  performed  with  k  and  resolution  parameters  set 

 to  5  and  1e-3  respectively,  partitioning  cells  into  10  clusters.  These  assignments  were  consistent 

 with  clusters  identified  in  Seurat  and  meant  that  annotations  assigned  to  cells  were  sufficiently 

 robust  for  labels  to  be  transferred  and  used  for  ordering  single  cells  along  a  pseudotime 

 trajectory (Figure 4.11B). 

 To  construct  a  trajectory  the  function  learn_graph()  was  applied  to  the  UMAP  projection, 

 creating  a  path  of  connecting  points  across  clusters  enabling  semi-supervised  pseudotime 

 ordering.  The  only  input  parameter  used  for  ordering  cells  was  setting  the  root  point  of  the 

 trajectory  as  cells  in  the  LT-HSC  cluster.  This  assigned  each  cell  with  a  numerical  pseudotime 

 value, which enabled cells to be ordered from low to high pseudotime states (Figure 4.11C-D). 
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 Figure  4.11.  Pseudotime  analysis  of  Mk/Ery  differentiation.  (a)  Principal  component 
 analysis  used  to  asses  variance  explained  across  principal  components  for  pseudotime  mapping 
 (b)  UMAP  projection  of  single  cell  trajectory  coloured  by  pseudotime  (c)  Density  plot  of  the 
 distribution  pattern  by  all  clusters  across  pseudotime  (d)  UMAP  projection  of  single  cell 
 trajectory coloured by cell-type annotations performed in  Seurat  . 
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 Pseudotime  ordering  generated  a  trajectory  of  single  cells  starting  from  LTHSCs,  followed  by 

 HSCs  and  MkPs  as  the  next  earliest  pseudotime  states.  This  result  was  unsurprising  as  MkPs 

 are  known  to  share  many  common  features  with  HSCs,  and  substantial  evidence  has  shown 

 expression  of  Mk-associated  genes  occurring  in  the  earliest  stages  of  HSC  differentiation 

 (Figure 4.11C)  (Huang and Cantor, 2009; Sanjuan-Pla  et al.  , 2013)  . 

 The  trajectory  continues  with  the  MyeP  progenitor  populations  preceding  early  and  late  EryPs. 

 This  order  supported  the  rationale  from  the  cluster  signatures;  whereby  the  MyeP  progenitor 

 populations  exhibit  heightened  expression  in  genes  associated  with  immature  stages  of 

 haematopoietic  commitment,  such  as  Gata2,  whilst  the  EryP  subpopulations  exhibit  lower 

 Gata2  and  higher  levels  of  Gata1  and  other  markers  associated  with  Ery  lineage  commitment 

 (Suzuki  et al.  , 2013)  . 

 Finally,  cells  assigned  the  largest  pseudotime  values  by  Monocle3  were  both  MEP  populations. 

 Whilst  this  result  might  dictate  that  MEPs  exist  later  along  the  trajectory  of  lineage 

 commitment  from  HSCs,  it  is  important  to  take  into  account  the  influence  of  graph  topology  in 

 the  UMAP  projection  of  cells  used  for  pseudotime  analysis.  Monocle3  utilises  UMAP  as  the 

 representation  of  the  underlying  structure  of  the  data  for  clustering,  which  by  definition  places 

 cells  with  similar  expressions  closer  in  proximity.  The  UMAP  projection  shows  EryP  and  Ery 

 MEPs  in  close  proximity,  followed  by  Mk  MEPs  which  share  a  high  degree  of  similarity  in 

 expression  to  Ery  MEPs  (Figure  4.7).  However,  tools  for  pseudotime  analysis  will  utilise  all 

 shared  expression  patterns  to  calculate  its  projection  irrespective  of  dominating  signatures  that 

 may  be  of  less  biological  significance  or  potential  batch  effects.  Visual  inspection  of  the  UMAP 

 shows  the  Mk  MEPs  proximal  to  MkPs,  but  the  higher  overlap  with  Ery  MEPs,  likely  based  on 

 the  higher  proportion  of  cells  expressing  G2M-associated  cell-cycle  genes  in  Ery  MEPs  and 

 EryPs  than  MkPs  (Figure  4.10B).  This  meant  that  calculating  the  path  connecting  the  data,  on 

 which  pseudotime  ordering  relies,  resulted  in  Mk  MEPs  being  placed  as  the  cell  type  furthest 

 along  the  trajectory;  which  is  not  consistent  with  the  expression  of  marker  genes  for  this 

 population  (Figure  4.11D).  This  highlights  a  known  limitation  of  graph-based  pseudotime 

 approaches,  the  importance  of  careful  interpretation  of  pseudotime  ordering  results,  and  the 

 requirement  for  validation  through  examining  the  expression  of  known  marker  genes  and 

 comparing results to independent datasets. 

 Cells  were  grouped  into  bins  at  regular  intervals  that  spanned  the  pseudotime  value  range, 

 assigning  cells  into  pseudotime  ‘states’  from  0-7  (Figure  4.12A).  These  states  batched  together 

 cells  within  sets  of  pseudotime  values  ie.  within  close  proximity  to  each  other  in  the  context  of 

 pseudotime,  irrespective  of  cell  type  identity  and  enabling  signatures  across  successive  stages 

 of pseudotime to be determined. 
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 Figure  4.12.  Pseudotime  state  analysis.  (a)  UMAP  of  pseudotime  trajectory  coloured  by  states 
 (b)  Gene  markers  with  highest  log  fold-change  and  statistical  significance  across  pseudotime 
 states (c) Expression levels in genes which exhibit differential expression with pseudotime. 
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 As  one  would  expect,  the  more  cells  of  the  same  cell-type  (and  therefore  that  have  a  greater  set 

 of  genes  in  common)  within  a  cell  state,  the  more  dominating  the  cell-type  signature  was  on  the 

 signature  for  that  state.  This  becomes  clear  when  studying  the  markers  across  each  pseudotime 

 state  with  the  highest  log  fold-change  difference  to  other  states.  Visualisation  of  the  top  marker 

 with  the  highest  log  fold-change,  and  the  top  marker  with  the  highest  adjuster  p  value  per  state 

 exemplifies  cell-type  specific  genes  marking  pseudotime  states,  for  instance  Mk  marker  Itga2b 

 (Cd41)  in  state  2  and  Ery  marker  Car1  in  states  5  and  6  having  the  highest  fold-change 

 difference  in  expression  (Figure  4.12b).  The  gene  with  the  highest  statistical  significance  in 

 marking  cells  at  the  most  primitive  pseudotime  state  (state  0)  was  Hk3  .  This  gene  encodes 

 hexokinase  3,  one  of  the  four  isoforms  of  the  hexokinase  family  of  enzymes  that  are  important 

 for  catalysing  the  initial  step  of  glycolysis  (ATP-dependent  phosphorylation  of  glucose  to 

 glucose-6-phosphate)  (González  et  al.  ,  1964)  .  It  is  primarily  expressed  in  haematopoietic  cells, 

 and  is  notably  distinct  to  its  isozyme  family  members  by  lacking  the  N-terminal  sequence 

 necessary  to  bind  to  mitochondria  but  still  exhibits  prosurvival  functions  (Preller  and  Wilson, 

 1992;  Wilson,  2003)  .  Relatively  little  is  known  about  the  function  of  Hk3  ,  but  it  has  been 

 identified  as  a  target  of  the  PU.1  transcriptional  factor  that  is  thought  to  be  activated  during 

 neutrophil  differentiation,  potentially  serving  as  a  supportive  mechanism  for  glycolysis  under 

 anaerobic  conditions  (Federzoni  et  al.  ,  2012)  .  More  recent  work  has  revealed  Hk3  is 

 significantly  induced  during  myeloid  differentiation,  is  upregulated  during  terminal 

 differentiation  in  AML  cell  line  models  and  upregulated  during  in  vitro  myeloid  differentiation 

 of  HSPCs  (Seiler  et  al.  ,  2022)  .  Here,  Hk3  was  found  to  be  the  most  significant  gene  in 

 identifying  the  earliest  pseudotime  state  of  the  trajectory,  while  Hk1  and  2  are  expressed 

 ubiquitously  this  isotype  was  exclusively  expressed  at  the  stem  cell  level.  This,  together  with 

 the  existing  literature  that  implicates  a  more  lineage-specific  role  for  Hk3  compared  to  its 

 isoform  counterparts  suggests  a  potential  role  of  Hk3  in  serving  a  distinct  metabolic  purpose 

 that is particularly important in stem cells and across specific haematopoietic lineages. 

 To  calculate  changes  in  gene  expression  along  the  full  span  of  the  trajectory  at  the  pseudotime 

 value  level,  the  graph_test()  function  was  performed  across  all  cells.  This  identified  4,966 

 genes  that  vary  significantly  (adjusted  P<0.05)  in  expression  along  the  pseudotime  trajectory, 

 assigning  each  gene  within  this  list  a  Moran’s  I  value  between  -1  to  1  indicating  the  correlation 

 in  expression  of  each  gene  between  neighbouring  cells.  Genes  of  known  variable  expression 

 through  differentiation  were  among  the  top  genes  with  the  highest  Moran’s  test  statistic, 

 including  HSC-specific  markers,  cell  cycle-associated  genes  and  lineage-restricted  genes. 

 Moreover,  genes  with  implications  in  Mk  differentiation  and  function  were  also  among  the  top 

 most  significant  such  as  Tmsb4x  (Figure  4.12C).  Birc5  and  Aurkb,  two  components  of  the 

 central  spindle  that  are  upregulated  during  Mk  differentiation  with  implications  in  cytokinesis 

 and  promoting  polyploidization  were  also  found  to  vary  significantly  across  pseudotime  (Y. 
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 Zhang  et  al.  ,  2004;  Wen  et  al.  ,  2012)  (Figure  4.12C).  The  DEGs  identified  here  make  up  the 

 global  picture  of  gene  expression  changes  that  were  identified  along  the  pseudotime  trajectory. 

 To  compile  this  output  and  streamline  the  interpretation  of  these  results,  gene  modules  were 

 calculated  ‘clustering’  the  list  of  genes  co-expressed  across  cells  into  groups  (Figure  4.13).  This 

 approach  condenses  the  DEGs  information  into  fewer  variables,  facilitating  their  interpretation 

 based  on  the  assumption  that  functionally  related  sets  will  be  grouped.  This  enabled  the 

 modules  to  be  analysed  within  variables  of  interest  to  provide  a  more  biologically  meaningful 

 interpretation  of  the  data  such  as  the  identification  of  cell  type  or  condition-dependent  patterns 

 of expression. A total of 37 different gene modules were generated from the pseudotime DEGs. 

 Visualisation  of  the  relationship  between  grouped  genes  across  the  different  cell  populations 

 highlighted  individual  and  sets  of  modules  of  interest  (Figure  4.13A).  Modules  10  and  15  were 

 strongly  correlated  with  both  MEP  subpopulations  and  poorly  correlated  with  other  cell  types, 

 indicating  that  the  set  of  genes  within  these  modules  are  highly  expressed  in  most  cells 

 belonging  to  these  populations  (Figure  4.13B).  Multiple  cell  types  had  more  than  1  correlating 

 module,  for  example,  module  numbers  9,  4  and  20  all  were  enriched  on  the  LTHSC  and  HSCs 

 populations,  but  11  and  16  exclusively  within  LTHSCs  -  suggesting  that  genes  that  distinguish 

 LTHSCs  from  HSCs  are  contained  within  these  2  groups.  Of  particular  interest,  modules  2  and 

 5  exhibited  clear  inversed  enrichment  patterns;  where  module  2  is  high  in  LTHSCs,  HSCs, 

 MkPs  and  Mk-MEPs  and  a  distinctly  negative  correlation  with  other  cell  types,  whilst  module  5 

 mirrors  the  inverse  pattern  showing  enrichment  exclusively  across  EryPs  MyePs  and  Ery  MEPs 

 (Figure  4.13B).  This  reveals  a  clear  distinction  of  the  gene  sets  that  were  differentially 

 expressed  between  the  Mk  and  Ery  lineages,  enabling  the  interpretation  of  DEGs  in  the  context 

 of the lineage they were exhibiting variable expression along pseudotime (Figure 4.14). 

 Of  the  genes  with  variable  expression  in  pseudotime  identified,  245  and  218  genes  were 

 grouped  in  modules  2  and  5  respectively.  Module  2  included  multiple  genes  that  have  been 

 previously  demonstrated  to  be  upregulated  during  Mk  differentiation  from  HSC  serving  as  a 

 positive  indication  that  module  2  is  enriched  for  an  Mk-associated  DEG  signature,  with 

 examples  such  as  Vwf,  Rgs18,  Fli1,  Mpl,  Selp,  Pbx1,  Bin2  and  Cavin2  (Debili  et  al.,  1995; 

 Klimchenko  et  al.,  2009;  Sengupta  et  al.,  2013;  Zhu  et  al.,  2018;  Walker  et  al.,  2022)  .  In  the 

 same  way,  module  5  was  enriched  for  erythroid-associated  genes  including  Car1,  Ermap,  Klf1, 

 Trib2,  and  Blvrb.  Pseudotime  values  assigned  per  cell  were  used  to  visualise  the  expression 

 dynamics  of  individual  genes,  plotting  the  order  of  changes  in  their  expression  along 

 pseudotime.  By  extracting  the  counts  information  for  a  given  list  of  genes,  it  was  possible  to 

 confirm  known  examples  of  genes  from  the  literature  that  vary  in  expression  across 

 pseudotime,  as  well  as  the  gene  expression  level  in  subsets  of  interest  from  DEG  and  module 

 analysis revealing patterns of expression relating to different stages of commitment (4.15). 
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 Figure 4.13. Gene modules across clusters capture co-expressed genes in cells at different 
 pseudotime states.  (a) Heatmap of cell populations  and the enrichment score across 37 gene 
 modules. (b) UMAP projection of all cells coloured by expression score for a subset of selected 
 modules. 
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 Aside  from  collating  canonical  lineage-associated  markers,  the  module-based  approach 

 identified  genes  of  interest  with  a  less  well-established  connection  with  Mk  differentiation 

 towards  the  Mk  and  Ery  lineages.  Inka1,  also  known  as  Pdcd7  (Programmed  Cell  Death  7),  is  a 

 multifunctional  gene  that  has  been  linked  with  diverse  roles  in  various  cellular  processes 

 including  apoptosis,  autophagy,  and  mitosis  and  is  known  to  be  expressed  among  HSPCs.  It  is 

 clinically  pertinent,  with  previous  work  demonstrating  that  Inka1  overexpression  stalls 

 leukaemia  stem  cells  in  quiescence,  resulting  in  the  accumulation  of  cells  in  G0,  and  reduced 

 output  of  differentiated  progeny.  This  cell-cyle  withdrawal  allows  leukaemia  stem  cells  to 

 retain  disease-initiation  properties  whilst  remaining  at  undetectable  levels  that  have  been  linked 

 to  therapy  failure  and  relapse  in  patients  with  AML  (Shlush  et  al.  ,  2017;  Kaufmann  et  al.  , 

 2019)  .  Whilst  Inka1  has  been  established  as  a  stem-ness-promoting  gene  in  HSCs,  it  has  not 

 been  directly  associated  with  Mk  differentiation  as  this  data  indicates.  Inka1  is  upregulated 

 throughout  all  cells  of  the  Mk  lineage,  at  a  sustained  expression  level  from  LTHSC  to  MkP,  and 

 has comparatively low expression in Ery cells. 

 Coro1a  was  also  listed  in  module  2  and  its  expression  level  was  found  to  be  correlated  with 

 cells  of  the  Mk  lineage  (Figure  4.15).  This  gene  encodes  Coronin-1A,  part  of  the  coronin 

 family  of  F-actin–  and  Arp2/3-binding  proteins,  that  is  exclusively  expressed  in  haematopoietic 

 cells  and  serves  as  an  auxiliary  to  cytoskeletal  reorganisation  processes  that  involve  actin  (de 

 Hostos,  2008)  .  Cytoskeletal  remodelling  is  important  for  Mk  maturation  and  platelet 

 production,  with  many  genes  implicated  for  proplatelet  formation  encoding  proteins  involved  in 

 cytoskeletal  dynamics  such  as  Rho  GTPases  and  their  downstream  targets  (Rojnuckarin  and 

 Kaushansky,  2001;  Ghalloussi,  Dhenge  and  Bergmeier,  2019)  .  Previous  work  using  Coro1a-KO 

 mice  showed  that  this  led  to  an  inhibitory  effect  on  steady-state  F-actin  formation  (Föger  et  al.  , 

 2006)  .  More  recently,  research  into  the  role  of  the  TF  serum  response  factor  (  Srf  )  in  Mks  found 

 Coro1a  and  other  cytoskeletal  regulatory  genes  were  downregulated  in  Srf-  KO  Mks.  These 

 Mks  were  found  to  exhibit  abnormal  maturation  and  function  resulting  in  significant 

 thrombocytopenia  in  mice  (Halene  et  al.  ,  2010)  .  Moreover,  Srf  and  Mrtfa  (a  co-factor  of  Srf) 

 overexpression  in  vitro  enhanced  megakaryopoiesis,  exhibiting  increased  TF-binding  at  target 

 sites  during  megakaryopoiesis  and  was  associated  with  upregulated  Mk-associated  and 

 cytoskeletal  genes  including  Coro1a  (Rahman  et  al.,  2018)  .  Whilst  it  remains  to  be  fully 

 elucidated,  these  reports  and  the  results  presented  here  suggest  Coro1a  plays  a  role  in 

 megakaryopoiesis,  likely  facilitating  proplatelet  formation  which  is  known  to  require 

 actin-mediated  forces  for  the  bending/branching  during  the  formation  of  processes  (Italiano  et 

 al.  , 1999)  . 
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 Figure 4.14. Heatmap of expression distribution in the top 100 DEGs of modules 2 (a) and 5 (b)  X-axis  represents pseudotime, heatmap colour 
 indicates positive or negative expression and intensity indicates expression level. Correlating genes were clustered with default parameters (Y-axis). 
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 Transmembrane  proteins  are  an  important  class  of  molecules  to  investigate  in  the  context  of 

 haematopoiesis  due  to  their  importance  in  processes  including  cell  signalling,  adhesion,  and 

 molecule  transfer  across  cell  membranes.  In  particular,  transmembrane  proteins  that  are 

 expressed  on  the  cell  surface  or  have  cytokine  or  growth  factor  extracellular  binding  domains 

 mediate  cell-cell  interactions  and  have  significant  influence  over  haematopoietic  regulatory 

 processes and indeed lineage specification. Among many known Mk-affiliated genes in module 

 2,  transmembrane-protein  176a  (  Tmem176a)  and  transmembrane-protein  176b  (  Tmem176b) 

 were  particularly  well-correlated  with  cells  along  the  Mk  pseudotime  trajectory.  Both  genes  are 

 expressed  among  all  stages  of  Mk  commitment,  with  high  expression  in  LT-HSCs  that  is 

 maintained  through  HSCs  Mk-MEPS  and  MkPs.  Tmem176b  was  found  to  be  expressed  at 

 higher  levels  across  pseudotime,  whilst  Tmem176a  levels  are  highest  amongst  the  immature 

 cells  (Figure  4.15).  Despite  the  robust  expression  levels  of  both  genes,  specificity  to  clusters  for 

 the  Mk  lineage,  and  their  co-expression  with  canonical  Mk  markers  such  as  TPO  receptor  gene 

 Mpl,  literature  connecting  them  to  Mk  commitment  and/or  function  could  not  be  found  (Figure 

 4.16).  The  Tmem176a  and  Tmem176b  proteins  are  considered  related  members  of  the  MS4A 

 family  based  on  their  shared  topological  characteristics,  specifically  their  characteristic  four 

 membrane-spanning  domains  (Zuccolo  et  al.  ,  2010)  .  The  MS4A  members  have  a  broad 

 expression  profile  across  tissues,  however,  several  are  limited  to  cells  in  the  haematopoietic 

 system  where  they  have  known  roles  in  immune  cell  functions.  Notable  examples  include 

 MS4A1  (CD20)  in  B  cells,  MS4A2  (  FcɛRIβ)  in  mast  cells  and  basophils,  and  the  involvement 

 of  MS4A3  in  haematopoietic  cell  cycle  regulation  (Tedder  et  al.  ,  1988;  Liang  and  Tedder,  2001; 

 Donato  et  al.  ,  2002)  .  Though  their  roles  are  diverse  MS4A  proteins  comprise  a  family  of  ion 

 channel/adaptor  proteins  facilitating  intracellular  protein–protein  interactions  (Eon  Kuek  et  al.  , 

 2016)  .  The  existing  literature  on  Tmem176a  and  (Wang  et  al.,  2002)  Tmem176b  (Lurton  et  al.  , 

 1999)  describe  their  expression  in  myeloid  cells,  specifically  at  the  immature  state  of  dendritic 

 cells  (Condamine  et  al.  ,  2010)  .  There  is  growing  evidence  to  suggest  that  MS4A  proteins  are 

 associated  with  cell  cycle  control  and  differentiation,  and  most  recently  Tmem176b  has 

 specifically  emerged  as  an  immunoregulatory  player  (Hill  et  al.  ,  2022)  .  This  data  suggests  the 

 expression  of  Tmem176a  and  Tmem176b  is  abundant  across  the  Mk  lineage,  and  prompts 

 further  investigation  to  verify  the  robustness  of  these  findings  and  whether  possible 

 implications to the Mk function exist. 

 A  final  transmembrane  protein-encoding  gene  also  identified  as  upregulated  in  Mk 

 differentiation  was  transmembrane  protein  123  (Tmem123).  This  gene  encodes  for  a  highly 

 glycosylated  transmembrane  protein  that  is  mostly  linked  to  mediating  membrane  dynamics 

 and  a  form  of  cell  death  distinct  from  apoptosis  known  as  oncosis,  cell  death  induced  by 

 mechanical,  chemical,  and  environmental  factors  (Zhang  et  al.  ,  1998)  .  Oncosis  is  marked  by 

 cell and organelle swelling, membrane blebbing, and an increase in membrane permeability in 
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 Figure 4.15. Expression dynamics of a subset of genes with differential expression along 
 pseudotime.  Plots show correlation with cells of the  Mk (left) and Ery (right) lineages. 
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 Figure  4.16.  Tmem176  gene  expression  is  upregulated  in  cells  of  the  Mk  lineage  and 
 correlates  with  important  canonical  genes  of  Mk  function.  (a)  UMAP  co-expression 
 projection  of  Mpl  (red)  and  Tmem176  (blue)  across  all  cells.  Cells  are  coloured  by  the 
 expression  level  of  each  gene,  where  cells  expressing  both  are  projected  in  pink.  (b)  Violin 
 expression  plots  of  expression  levels  of  Tmem176  genes  and  Mpl  across  cell  type  annotated 
 clusters. 

 188 



 contrast  to  apoptosis  with  cellular  shrinkage  and  nuclear  disruption  (Majno  and  Joris,  1995)  .  In 

 humans,  the  protein  Porimin  (a  member  of  the  cell  membrane-associated  mucin  family)  shares 

 the  highest  overall  homology  with  Tmem123  at  67%  and  is  also  thought  to  mediate  cell  death 

 by  oncosis  (Ma  et  al.  ,  2001)  .  Whilst  it  is  primarily  affiliated  with  oncosis  across  the  literature,  it 

 is  unclear  whether  Tmem123/  Porimin  may  have  other  roles  in  cell  function.  Interestingly,  a 

 paralog  of  Tmem123  is  CD164,  an  important  cell  adhesion  molecule  that  regulates  the 

 proliferation,  adhesion  and  migration  of  haematopoietic  progenitor  cells  (Zannettino  et  al.  , 

 1998;  Pellin  et  al.  ,  2019)  .  This  data  identifies  Tmem123  expression  across  cells  within  the  LK 

 Cd150+  compartment,  but  shows  it  is  most  highly  expressed  along  the  Mk  trajectory,  with 

 expression  levels  peaking  in  Mk-MEPs  and  MkPs  (Figure  4.15).  With  other  mucin-family 

 members  having  reported  roles  in  HSPCs,  such  as  CD43-regulation  of  cell  death  in  primitive 

 progenitor  cells  (Bazil  et  al.  ,  1995)  ,  it  would  be  interesting  to  explore  a  potential  functions  of 

 Tmem123  in  Mk-commitment  either  in  regulating  cell  death  in  Mks  or  other  mucin-associated 

 functions  such  as  roles  in  membrane  dynamics  that  facilitate  Mk  maturation  and/or  platelet 

 formation. 

 Altogether  this  analysis  describes  the  transcriptional  changes  from  HSCs  through  to  progenitors 

 of  the  Mk  and  Ery  lineages.  The  signatures  of  genes  that  were  differentially  expressed  along 

 pseudotime  included  genes  that  are  known  to  vary  in  expression  with  increasing  differentiation 

 stages, as well as genes not previously associated with Mk commitment. 
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 4.3.7. Differential signatures of Mk lineage in LK Cd150+ compartment with age 

 After  computationally  delineating  states  of  differentiation  in  pseudospace  and  differential 

 expression  testing  for  genes  that  vary  with  pseudotime  in  the  LK  Cd150+  compartment, 

 statistical  differential  expression  analyses  (DEA)  were  performed  to  determine  ageing-specific 

 transcriptional  signatures.  This  was  achieved  by  aggregating  counts  from  single  cells  based  on 

 pseudobulk  annotations,  grouping  data  by  cell  type  and  experimental  conditions  (young  vs  old) 

 whilst  taking  into  account  biological  replicates  (n  =  3).  This  approach  minimises  the  risk  that 

 dominating  signatures  ie.  highly  DEGs  present  in  a  small  number  of  cells  would  lead  to  inflated 

 p-values  and  false-positive  DEG  detection,  and  allows  for  better  detection  of  cell-type  specific 

 differences  with  age.  Reads  from  each  mouse  were  pseudobulked,  and  genes  with  low 

 expression  levels  (total  read  count  per  sample  <  10)  and  likely  to  be  noise  or  technical  artefacts 

 were  excluded  from  the  analysis.  For  additional  robustness,  only  genes  present  above  the 

 minimum  threshold  in  all  three  samples  per  condition  were  retained  for  downstream  analysis  to 

 focus on genes that were observed across all technical replicates. 

 Differential  expression  was  performed  for  each  cell  type  using  the  DESeq2  package,  setting  the 

 design  variable  as  mouse  age  (Love,  Huber  and  Anders,  2014)  .  This  calculated  differential 

 expression  from  the  normalised  count  data  based  on  the  negative  binomial  distribution  model 

 and  statistical  tests  performed  to  determine  significance.  The  lists  of  DEGs  were  filtered  to 

 include  only  genes  that  were  statistically  significant  with  age  (adj  P-values  <  0.05),  and  the 

 expression  of  the  top  DEGS  specifically  in  cell  types  implicated  in  the  Mk  lineage  were 

 visualised at the sample level (Figure 4.17). 
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 Figure  4.17.  Differential  expression  across  cells  of  the  Mk  lineage  with  age.  (a)  UMAP 
 projection  of  pseudotime  trajectory  split  by  age  (b)  Normalised  expression  level  of  genes  with  DEGs 
 with  age  in  each  cell  population,  split  by  biological  replicate.  Genes  (rows)  and  biological  samples 
 (columns) have been clustered using agglomerative hierarchical clustering. 
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 Pseudobulk  DEA  of  MkPs  identified  271  genes  that  exhibit  significantly  different  expression 

 levels  with  age,  including  DE  among  important  regulators  of  Mk  differentiation  including  Selp  , 

 Vwf,  Mapk7,  and  Arhgef6  (adj  p  <  0.05)  (Figure  4.18  A-B).  Aged  MkPs  were  found  to  express 

 significantly  higher  levels  of  Plscr2,  a  member  of  the  phospholipid  scramblase  family  of 

 proteins  that  mediate  calcium-dependent,  non-specific  movement  of  plasma  membrane 

 phospholipids.  This  gene  has  been  previously  implicated  in  early  HSPCs  with  clonal  output 

 toward  the  Mk  lineage  in  vitro  (Weinreb  et  al.,  2020)  ,  and  Sun  et  al.  also  showed  it  is 

 upregulated  in  old  HSCs  (Sun  et  al.  ,  2014)  .  There  has  been  an  increasing  appreciation  for  the 

 role  of  lipids  in  cell  fate  decisions  during  haematopoiesis  over  recent  years  (Bansal  et  al.  ,  2018; 

 Pernes  et  al.  ,  2019)  ,  this  result  shows  Plscr2  is  upregulated  with  age  at  multiple  levels  of  the 

 Mk  lineage,  including  MkPs,  Mk-MEPs  and  LTHSCs  supporting  the  correlation  of  Mk  clonal 

 output  in  vitro  and  Plscr2  expression.  To  further  evaluate  the  expression  signatures  of  young 

 and  old  MkPs,  functional  analysis  was  performed  using  GSEA  of  DEGs.  This  analysis 

 indicated  that  DEGs  between  young  and  old  MkPs  were  highly  enriched  in  categories  related  to 

 regulation  of  platelet  derived  growth  factor  signalling  and  E-box  binding,  indicative  that  the 

 transcriptional  regulation  mediated  by  E-box  binding  TFs  may  be  altered  during  the  ageing 

 process. 

 DEA  of  Mk-MEPs  identified  60  genes  with  significantly  variable  expression  levels  with  age 

 (Figure  4.18  C-D).  This  includes  the  RNA-binding  protein  Rbpms2,  a  gene  that  has  previously 

 been  identified  as  a  marker  for  progenitors  with  higher  Mk  clonal  output,  which  was 

 significantly  upregulated  in  aged  Mk-MEPs  (Weinreb  et  al.  ,  2020)  .  On  the  other  hand,  young 

 Mk-MEPs  had  significantly  higher  Nr4a1  gene  expression.  This  is  a  member  of  the  conserved 

 subgroup  of  nuclear  receptor  TFs  involved  in  the  regulation  of  expression  in  a 

 ligand-independent  manner,  with  diverse  roles  in  differentiation  and  function  of  distinct  subsets 

 of  lymphoid  and  myeloid  cells  (Pearen  and  Muscat,  2010)  .  Specifically,  Nr4a1  has  been 

 implicated  in  NF-κB  signalling;  a  fundamental  TF  involved  the  expression  of  various  genes 

 involved  in  the  inflammation  and  thrombotic  processes  (Mussbacher  et  al.  ,  2019)  .  Moreover, 

 Nr4a1  has  also  been  identified  as  a  tumour  suppressor  in  AML  and  pre-AML  malignancies, 

 including  myelodysplastic/myeloproliferative  disorders,  whereby  its  abrogation  provides  a  cell 

 proliferation  advantage  in  these  disorders  (Mullican  et  al.  ,  2007;  Ramirez-Herrick  et  al.  ,  2011; 

 Lin  et  al.  ,  2022)  .  In  the  context  of  this  study,  high  expression  of  Nr4a1  was  observed  in 

 LTHSCs,  HSCs  and  Mk-MEPs  and  MkPs,  with  highest  expression  seen  in  young  samples 

 across  all  but  one  cell  type  where  its  expression  is  proportionally  found  across  the  two  age 

 groups  (MkPs).  A  direct  link  between  Nr4a1  expression  and  a  young  cell  phenotype  as  this  data 

 suggests  has  not  previously  been  established,  however  with  important  roles  of  Nr4a1  in 

 regulating  cell  growth  and  preventing  the  development  of  haematological  malignancies  it 

 would be interesting to explore its potential implications in this context. 
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 Figure  4.18.  Differential  expression  across  MkP  and  Mk-MEPs  with  age.  (a)  Volcano  plot 
 of  top  significant  DEGs  in  MkPs  with  age.  (b)  GO  GSEA  result  of  enriched  ontologies  across 
 significant  MkP  DEGs.  (c)  Volcano  plot  of  top  significant  DEGs  in  Mk-MEPs  with  age.  (d)  GO 
 GSEA result of enriched ontologies across significant Mk-MEP DEGs. 
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 Aldehyde  dehydrogenase  (ALDH)  activity  is  a  known  feature  of  HSCs  and,  as  such,  has  been 

 previously  used  as  a  marker  to  identify  and  purify  HSCs  (Storms  et  al.  ,  1999)  .  In  general,  most 

 ALDHs  facilitate  the  oxidation  of  aldehydes  to  their  corresponding  carboxylic  acids.  Aldh1a1, 

 the  most  abundant  isoform  found  in  HSCs,  has  a  critical  role  in  retinoid  metabolism  through  its 

 role  in  metabolising  retinaldehyde  to  retinoic  acid  (Kavanagh  et  al.  ,  2008)  .  DEA  in  MkP  with 

 age,  and  indeed  most  other  cell  types  captured  as  part  of  this  experiment,  showed  significant 

 upregulation  of  Aldh1a1  with  age  (Figure  4.19).  However,  not  much  is  known  about  the 

 underlying  mechanism  of  Aldh1a1  expression  as  an  age-dependent  haematopoietic  phenotype. 

 Poscablo  et  al.  also  found  Aldh1a1  upregulation  in  MkPs  from  aged  mice  (Poscablo  et  al.  , 

 2021)  ,  however  provide  no  indications  as  to  biological  significance  and  correlation  with  age. 

 ALDH  overexpression  is  strongly  associated  cancer  cells  with  stem-like  features,  where  they 

 are  thought  to  protect  cancer  cells  by  metabolising  toxic  aldehydes  into  less  reactive  and  more 

 soluble  carboxylic  acids  (Jackson  et  al.  ,  2011;  Xu  et  al.  ,  2015)  .  Notably,  ALDH  expression  has 

 also  been  associated  with  functional  roles  in  normal  stem  cells  including  promoting 

 self-protection,  expansion  and  differentiation  (Ma  and  Allan,  2011)  .  In  the  context  of 

 haematopoietic  lineage  expression,  Rice  et  al.  found  Aldh1a1  expression  inhibited 

 lymphopoiesis in favour of myelopoiesis suggesting its expression may be associated with HSC 

 propensity  towards  myeloid  differentiation  (Rice  et  al.  ,  2008)  .  The  findings  here  show  robust 

 overexpression  with  age  across  almost  all  cell  types  captured,  with  the  exception  of  Ery  MEPs 

 and  EryP  cells.  However  there  is  not  sufficient  data  to  establish  a  direct  correlation  between 

 Aldh1a1  expression with a distinct lineage. 

 Another  gene  revealed  to  exhibit  age-associated  expression  was  Calcium-activated  chloride 

 channel  regulator  1  (  Clca3a1  ),  a  gene  encoding  an  accessory  protein  for  calcium-activated 

 chloride  channels.  Clca3a1  expression  was  found  to  be  significantly  higher  in  aged  LT-HSCs, 

 MkPs,  EryPs  and  Mk-MEPs  compared  to  the  same  cell  types  from  young  mice  (Figure  4.19). 

 This  finding  is  supported  by  previous  work  that  has  shown  Clca3a1  expression  in  LT-HSCs  can 

 be  used  as  a  marker  to  distinguish  HSC  sub-types  in  aged  mice,  where  a  low  Clca3a1  signal 

 marks  individual  “young-like”  HSCs  within  the  pool  of  aged  HSCs  (Kim  et  al.  ,  2022)  .  The 

 authors  found  that  the  high  expression  of  Clca3a1  in  HSCs  (the  aged  phenotype)  correlated 

 with  a  myeloid-biassed  Cd150+  LT-HSC  expression  profile,  whereby  the  vast  majority  of  genes 

 that  were  upregulated  in  Clca3a1  high  cells  were  also  upregulated  in  old  vs.  young  LT-HSCs. 

 Moreover,  in  vivo  functional  assays  of  these  cells  showed  that  recipients  of  Clca3a1  high 

 clones  not  only  produced  significantly  more  myeloid  cells,  but  over  time  exhibited  a  defect  in 

 long-term  repopulating  activity  (Kim  et  al.  ,  2022)  .  These  data  are  consistent  with  the 

 upregulated  expression  of  Clca3a1  observed  in  LT-HSCs,  MkPs,  EryPs  and  Mk-MEPs  in  this 

 analysis - all of which were isolated with a LK Cd150+ gate (as shown in Figure 4.19). 
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 Figure 4.19. UMAP feature expression plots of genes significantly upregulated with age 
 across multiple levels of Mk commitment. 
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 Upregulation  of  the  neural  proliferation,  differentiation  and  control  1  (  Npdc1  )  gene  was 

 identified  as  part  of  the  ageing  signature  in  this  study.  This  gene  encodes  for  a  neural  factor 

 involved  in  the  control  of  neural  cell  proliferation  and  differentiation,  where  it  is  thought  to 

 down-regulate  cell  proliferation,  however  we  know  relatively  little  about  how  Npdc1  functions 

 in  the  context  of  haematopoiesis  (Sansal  et  al.  ,  2000)  .  Sansal  et  al.  has  shown  that  Npdc1 

 interacts  with  some  cell  cycle  proteins  such  as  D-cyclins,  cdk2  and  most  notably  the  TF  E2F-1, 

 in  doing  so  reducing  its  binding  to  DNA  and  modulating  its  transcriptional  activity.  The  E2F 

 TF  family  is  known  to  play  key  roles  in  the  timely  expression  of  genes  required  for  cell  cycle 

 progression  and  proliferation.  E2F1's  role  is  extremely  multifaceted,  and  has  been  implicated 

 across  diverse  processes  including  both  cell  proliferation  and  antiproliferative  processes  such  as 

 apoptosis  and  senescence  (Collins  et  al.  ,  1995;  Ginsberg,  2002;  Trikha  et  al.  ,  2011;  Xu  et  al.  , 

 2018)  .  Npdc1  has  been  identified  as  a  significantly  up-regulated  gene  associated  in  relapse 

 incidences  of  AML,  however  has  not  previously  been  explored  in  the  context  of  and  ageing 

 (Hackl  et  al.  ,  2015)  .  The  observed  upregulation  of  Npdc1  expression  in  LT-  and  ST-HSCs  with 

 age  may  therefore  represent  a  noteworthy  finding  that  warrants  further  investigation.  To 

 validate  the  robustness  of  Npdc1  levels  in  HSCs  with  age,  future  experiments  are  necessary  to 

 help  establish  the  consistency  and  reliability  of  this  observed  upregulation.  The  upregulation  of 

 Npdc1  in  ageing  HSCs  may  raise  questions  about  its  potential  role  in  age-related  changes  in 

 haematopoiesis,  including  Mk  commitment,  and  warrant  further  research  to  explore  the 

 significance of  Npdc1  in these contexts and understand  its potential clinical relevance. 

 Gene  Fgd3  was  found  to  be  upregulated  with  age  in  Mk-MEPs.  This  gene  encodes  for  the 

 FYVE,  RhoGEF  and  PH  domain-containing  protein  3,  which  is  an  activator  or  modulator  of 

 Cdc42  signalling  (Rho  GTPase).  Rho  GTPases,  including  Cdc42,  are  the  primary  drivers  in  the 

 dynamic  cytoskeletal  reorganisation  process,  leading  to  the  development  of  filopodia  and 

 lamellipodia  which  increase  platelet  surface  area  upon  their  activation  (Pleines  et  al.  ,  2010; 

 Comer,  2021)  .  Fgd3  acts  as  a  guanine  nucleotide  exchange  factor  fo  r  Cdc42,  meaning  it 

 promotes  the  activation  of  Cdc42  b  y  facilitating  the  exchange  of  GDP  (guanosine  diphosphate) 

 for  GTP  (guanosine  triphosphate).  This  is  necessary  for  its  proper  functioning  in  regulating  the 

 dynamic  reorganisation  of  the  cytoskeleton  and  cellular  processes  associated  with  it 

 (Buchsbaum,  2007;  Pleines  et  al.  ,  2010)  .  In  the  context  of  Mks,  higher  expression  of  Fgd3  with 

 age  would  not  be  a  phenomenon  unique  to  Fgd3  ,  as  other  important  proteins,  such  as 

 β-thromboglobulin  and  Pf4  (secreted  from  platelet  α-granules),  are  also  found  at  significantly 

 higher levels in older individuals  (Zahavi  et al.  ,  1980; Bastyr, Kadrofske and Vinik, 1990)  . 

 Hyperactivity  of  platelet  function  is  a  known  phenotype  of  ageing,  that  results  in  higher  rates  of 

 both  vascular  and  thrombotic  disease  with  age.  Several  factors  have  been  implicated  to  explain 

 platelet  hyperactivity  with  age,  such  as  changes  in  the  platelet-serotonin  system,  increased 
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 oxidative  stress,  vascular  prostaglandins  alterations,  and  plasma  membrane  modifications  with 

 age  (Le  Blanc  and  Lordkipanidzé,  2019)  .  Interestingly,  multiple  of  these  factors  associated  with 

 platelet  function  hyperactivity  were  identified  among  the  top  enriched  terms  from  functional 

 GSEA  of  Mk-MEPs  ageing  DEGs,  including  significant  enrichment  for  oxidative  stress 

 response,  plasma  membrane  and  aberrant  signalling  from  the  DEG  signature  (Figure  4.18D). 

 This,  in  conjunction  with  the  upregulation  of  Fgd3  in  aged  Mk-MEPs,  may  indicate  a  possible 

 role  for  Fgd3  in  megakaryopoiesis  with  age,  likely  associated  with  its  target  Cdc42  which  has 

 been  established  as  essential  for  cytoplasmic  Mk  maturation  and  potentially  also  BM 

 localisation  (Pleines  et  al.  ,  2013;  Dütting  et  al.  ,  2017;  Pleines,  Cherpokova  and  Bender,  2019; 

 Heib  et al.  , 2021)  . 

 In  summary,  these  DEAs  identified  hundreds  of  genes  with  significantly  different  levels  of 

 expression,  providing  an  insight  of  the  transcriptional  landscape  of  megakaryopoiesis  with  age. 

 Theses  analyses  confirmed  several  known  signatures  associated  with  ageing  haematopoiesis, 

 including  upregulated  expression  of  Vwf,  Nupr1,  Sult1a1  and  others  (Figure  4.20),  but  crucially 

 also  revealed  multiple  novel  genes  which  have  not  been  previously  studied  in  the  context  of 

 ageing. 
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 Figure 4.20. Violin expression plots of a subset of genes with differential expression 
 signatures with age. 
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 4.4 Discussion 

 There  are  significant  changes  in  haematopoiesis  with  age,  both  in  terms  of  the  population 

 frequencies  within  the  BM  and  the  functional  capacity  of  cells.  The  consequences  of 

 ageing-associated  aberrant  gene  expression  and  compositional  changes  within  the 

 haematopoietic  compartment  of  the  elderly  contributes  towards  increased  incidence  in 

 haematological  diseases  across  the  population,  such  as  anaemia,  arterial  thrombosis,  and 

 myeloid  and  lymphoid  malignancies  (such  as  age-related  clonal  haematopoiesis, 

 myelodysplastic  syndromes  and  acute  myeloid  leukaemia)  (Eisenstaedt,  Penninx  and 

 Woodman,  2006;  Steensma  et  al.  ,  2015;  Zink  et  al.  ,  2017)  .  This  functional  decline  of  the 

 haematopoietic  system  is  associated  with  several  known  phenomena  some  of  which  include 

 diminished  lymphoid  potential,  reduced  regenerative  capacity,  heightened  autoimmunity,  and 

 DNA  damage  accumulation  (Sudo  et  al.  ,  2000;  Rossi,  Seita,  et  al.  ,  2007;  Dykstra  et  al.  ,  2011; 

 Beerman  et al.  , 2014; Flach  et al.  , 2014)  . 

 It  is  clear  the  challenges  to  the  blood  system  with  age  result  in  multifaceted  dysregulation  of 

 homeostatic  regulation  by  committed  progenitors.  Previous  research  has  shown  the  LSK 

 Cd150+  fraction  from  old  mice  contain  an  increased  proportion  of  myeloid-dominant  HSCs  and 

 a  lower  output  of  mature  blood  cells  per  HSC  (Cho,  Sieburg  and  Muller-Sieburg,  2008; 

 Weiskopf  et  al.  ,  2016)  .  Moreover,  an  increase  of  Mk-primed  HSCs  have  been  consistently 

 reported  in  the  old  HSC  compartment  (Sanjuan-Pla  et  al.,  2013;  Yamamoto  et  al.,  2013;  Grover 

 et  al.,  2016).  This  is  also  reflected  by  the  heightened  levels  of  expression  in  several  Mk/platelet 

 markers,  such  as  CD150,  CD41,  CD61  and  vWF  in  aged  HSCs  (Beerman  et  al.  ,  2010;  Gekas 

 and  Graf,  2013;  Sanjuan-Pla  et  al.  ,  2013;  Mann  et  al.  ,  2018)  .  The  changes  or  aberrant 

 expression  in  the  Mk  lineage  genes  with  age  contribute  to  a  progressive  increase  in  platelet 

 responsiveness  in  both  older  men  and  women,  which  poses  a  significant  problem  in  elderly 

 populations  with  higher  incidence  of  thrombotic  disease  and  use  of  anti-platelet  drugs  (Jones, 

 2016;  Zhang  et  al.  ,  2020)  .  Age-related  morbidity  is  associated  with  dysregulated  differentiation 

 from  HSCs,  including  megakaryopoiesis,  however  a  detailed  insight  of  the  transcriptional 

 signatures of Mk lineage commitment with age has not yet been fully elucidated. 

 The  primary  objective  of  this  study  was  to  produce  a  detailed  insight  of  the  LK/LSK  Cd150+ 

 BM  compartment  with  age  using  scRNA-seq.  To  achieve  this,  Smart-seq2  scRNA-seq  was 

 applied  to  FACS  sorted  LK  and  LSK  Cd150+  cells  from  young  (8  weeks)  and  aged  mice  (72 

 weeks),  generating  a  total  of  644  single  cell  libraries.  This  gating  strategy  builds  on  the  work  by 

 Pronk  et  al.  as  described  in  detail  in  Chapter  3,  and  was  employed  in  order  to  capture  the  full 

 continuum  of  differentiation  states  from  primitive  HSCs  to  committed  MkPs  (Pronk  et  al.  , 

 2007)  . 

 199 

https://paperpile.com/c/H5DC9c/UsnO+rjuv+eokX
https://paperpile.com/c/H5DC9c/UsnO+rjuv+eokX
https://paperpile.com/c/H5DC9c/4efb+Bm0m+6MVx+IjJC+mkkK
https://paperpile.com/c/H5DC9c/4efb+Bm0m+6MVx+IjJC+mkkK
https://paperpile.com/c/H5DC9c/8R7b+bpBo
https://paperpile.com/c/H5DC9c/8R7b+bpBo
https://paperpile.com/c/H5DC9c/D18s+jzIP+Kpqk+FQYnq
https://paperpile.com/c/H5DC9c/D18s+jzIP+Kpqk+FQYnq
https://paperpile.com/c/H5DC9c/BEpn+LE1N
https://paperpile.com/c/H5DC9c/BEpn+LE1N
https://paperpile.com/c/H5DC9c/ML3Q
https://paperpile.com/c/H5DC9c/ML3Q


 The  single  cell  data  were  assessed  based  on  quality  metrics  used  to  isolate  only  high  quality 

 samples  for  downstream  analysis,  leaving  a  total  of  520  single  cells.  Data  dimensionality 

 reduction  and  Louvain-based  clustering  identified  9  clusters  of  single  cells  within  the  LSK 

 Cd150+  compartment.  Cell  types  were  annotated  based  on  thorough  interrogation  of  highly 

 expressed  genes  across  each  cluster,  using  canonical  marker  expression  signatures  of 

 haematopoietic  cell  types  from  the  existing  literature  as  references  (Pronk  et  al.  ,  2007;  Haas  et 

 al.  ,  2015;  Paul  et  al.  ,  2015;  Pietras  et  al.  ,  2015;  Miyawaki  et  al.  ,  2017;  Dahlin  et  al.  ,  2018; 

 Mincarelli  et al.  , 2023)  . 

 Semi-supervised  pseudotime  analysis  was  employed  to  establish  a  trajectory  of  cell 

 differentiation  within  the  LK/LSK  Cd150+  compartment.  The  analysis  utilised  LT-HSCs  as  the 

 starting  point  to  construct  the  trajectory  in  pseudospace,  revealing  a  clear  continuum  of 

 differentiation  from  LT-HSCs  to  Mk  and  Ery  progenitors.  Transcriptional  dynamics  across  cells 

 were  investigated,  uncovering  differentially  expressed  genes  as  a  function  of  pseudotime. 

 Notably,  dynamic  expression  patterns  were  observed  in  genes  previously  known  to  vary  during 

 Mk  commitment  (Mpl,  Fli1,  Gata1,  Gata2,  Vwf,  Rgs18,  Selp,  Pbx1,  Bin2  and  Cavin2)  ,  as  well 

 as  in  novel  genes  not  previously  associated  with  Mk  commitment  (Debili  et  al.  ,  1995; 

 Klimchenko  et  al.  ,  2009;  Sengupta  et  al.  ,  2013;  Zhu  et  al.  ,  2018;  Walker  et  al.  ,  2022)  .  To 

 facilitate  the  interpretation  of  genes  exhibiting  dynamic  expression  along  the  trajectory,  gene 

 co-expression  modules  were  calculated  to  identify  co-expressed  genes  at  different  pseudotime 

 states.  Among  the  37  gene  modules  identified,  modules  16,  15,  and  17  displayed  a  strong 

 positive  correlation  with  LTHSCs,  Mk-MEPs,  and  MkPs,  respectively.  Additionally,  module  2 

 exhibited  correlation  with  cells  at  various  stages  of  the  Mk  lineage.  These  modules,  in 

 particular,  revealed  significant  correlations  of  genes  such  as  Tmem176a  &  b,  Adgrl4,  Coro1a, 

 Tmsb4x  ,  and  others  with  Mk  differentiation.  These  results  provide  valuable  insights  and 

 potentially  novel  signatures  underlying  Mk  commitment.  Validation  of  these  DEGs  associated 

 with  Mk  fate  restriction  based  on  this  data  will  be  critical  to  assess  the  robustness  of  these 

 findings,  and  pave  the  way  for  further  investigations  into  the  regulatory  networks  governing 

 Mk commitment. 

 There  are  well-established  phenomena  associated  with  haematopoietic  ageing,  including  the 

 expansion  of  the  HSC  compartment,  myeloid  skewing,  increased  lineage-biassed  HSCs,  and 

 several  age-related  HSC  niche  changes  (Dykstra  et  al.  ,  2011;  Pang  et  al.  ,  2011;  Grover  et  al.  , 

 2016;  Mead,  2021)  .  Specifically,  studies  have  shown  that  elderly  mice  exhibit  a  significant 

 increase  in  the  number  of  phenotypic  myeloid-dominant  HSCs  compared  to  young  adult  mice. 

 Previous  research  has  demonstrated  that  myeloid-dominant  HSCs  are  enriched  in  the  CD150+ 

 population  of  the  LSK  CD34^-flt3^-  bone  marrow  compartment,  and  the  size  of  this  population 

 increases  dramatically  with  age  (Beerman  et  al.  ,  2010;  Dykstra  et  al.  ,  2011)  .  Consistent  with 
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 the  existing  literature,  the  findings  of  this  study  align  with  these  observations.  Approximately 

 19%  of  cells  sequenced  from  aged  mice  were  identified  as  LT-HSCs,  whereas  only  1.9%  of 

 cells  from  young  mice  exhibited  this  phenotype.  This  stark  difference  further  supports  the 

 notion  of  age-related  changes  in  the  composition  of  the  HSC  compartment.  This  is  also 

 reflected  in  the  transcriptional  signature  of  the  LT-HSC  compartment,  which  is  dominated  by 

 genes  that  have  been  previously  correlated  with  an  aged  HSC/  biassed  signature  including 

 Sult1a1,  Vwf,  Nupr1,  Selp  and  Itgb3  (Grover  et  al.  ,  2016;  Flohr  Svendsen  et  al.  ,  2021; 

 Mincarelli  et  al.  ,  2023)  .  To  perform  cell-type  specific  DEA,  counts  from  single  cells  were 

 pseudo-bulked  for  each  cell  type  based  on  age  taking  into  account  biological  replicates.  These 

 analyses  revealed  significant  cell-type  specific  signatures  of  ageing,  further  highlighting  the 

 impact  of  age  on  the  molecular  characteristics  of  different  cell  populations  within  the 

 haematopoietic  system.  This  includes  Plscr2,  Aldh1a1,  Npdc1  and  Clca3a1  were  among  genes 

 significantly upregulated with age across multiple levels of haematopoiesis. 

 To  gain  further  insight  into  the  functional  implications  of  the  age-associated  DEGs,  functional 

 GSEA  analyses  were  performed.  Interestingly,  the  GSEA  results  revealed  a  correlation  between 

 the  age-associated  DEGs  and  factors  previously  implicated  in  platelet  hyperactivity  with  age. 

 Specifically,  among  these  findings  there  was  a  significant  enrichment  for  oxidative  stress 

 response,  plasma  membrane-related  functions,  and  aberrant  NF-κB  signalling  pathways  (Liu  et 

 al.  ,  2017;  Le  Blanc  and  Lordkipanidzé,  2019)  .  This  result  may  indicate  a  link  between  the 

 age-related  DEGs  identified  in  this  dataset  to  with  aberrant  Mk/  platelet  function  in  aged  mice. 

 Moreover,  Svendsen  et  al.  recently  published  a  comprehensive,  robust,  and  stable 

 transcriptomic  signature  of  HSC  ageing,  where  they  showed  the  HSC  ageing  signature  is  highly 

 enriched  for  membrane-associated  transcripts  (Flohr  Svendsen  et  al.  2021).  This  finding  of 

 enrichment  in  cell  membrane–associated  transcripts  suggests  that  physiologically  aged  HSCs 

 may  communicate  differently  with  their  environment  compared  with  their  young  counterparts, 

 which  is  likely  a  significant  factor  influencing  ageing  associated  phenotypes  of  the 

 haematopoietic system. 

 The  identification  of  age-associated  differentially  expressed  genes  (DEGs)  that  are  linked  to 

 known  clinical  factors  associated  with  age  provides  strong  evidence  for  the  functional 

 implications  and  potential  clinical  relevance  of  these  gene  expression  alterations.  However, 

 further  investigation  is  necessary  to  validate  the  robustness  of  the  observed  expression  levels 

 across  different  cell  types  captured  in  this  study.  This  validation  will  help  confirm  the  reliability 

 and consistency of the identified gene signatures in the ageing LK Cd150+ compartment. 

 To  unravel  the  underlying  mechanisms  driving  these  gene  expression  changes  and  gain  deeper 

 insights  into  the  ageing  process,  future  experiments  should  focus  on  evaluating  the  in  vivo 
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 functional  consequences  of  the  novel  genes  associated  with  the  ageing  LK  Cd150+ 

 compartment.  Specifically,  functional  assays  that  assess  platelet  production  and  function  can  be 

 performed  using  manipulated  expression  levels  of  these  genes  specifically  in  LK  Cd150+  cells. 

 For  example,  overexpression  assays  can  be  conducted  for  genes  that  were  identified  as  highly 

 expressed  in  aged  Mk-MEPs,  and  the  effects  on  the  production  of  functional  platelets  from  the 

 manipulated  LK  Cd150+  cells  can  be  evaluated  to  determine  whether  they  exacerbate  a 

 particular phenotype. 

 However,  before  designing  and  conducting  functional  assays,  it  is  also  important  to  consider 

 other  variables  that  may  be  of  influence  in  these  results.  Ageing  phenotypes  exhibit  high 

 variability  between  individuals,  and  the  observed  signatures  in  this  study  may  represent  specific 

 characteristics  of  the  analysed  samples.  Therefore,  validation  of  the  identified  signatures  using 

 a  larger  cohort  of  animals  is  essential  to  determine  whether  these  observations  are  consistently 

 present  as  ageing  phenotypes  across  a  significant  number  of  samples.  The  sample  size 

 implemented  in  this  study  enabled  the  analysis  of  the  Mk  lineage  with  age,  however  despite 

 capturing  a  consistent  number  of  cells  across  conditions,  due  to  the  scarcity  of  LT-HSCs  in 

 young  BM  a  very  low  number  of  LT-HSCs  were  captured  in  this  study  which  poses  a  limitation 

 in  assessing  DEG  signatures  of  LT-HSCs  with  age.  Consequently,  further  experiments  should 

 separately  sort  an  enrichment  of  LT-HSCs  to  ensure  sufficient  coverage  of  future  experiments 

 enabling  more  robust  statistical  analyses  of  the  primitive  LSK  Cd150+  young  BM.  This 

 validation  will  help  address  limitations  of  this  study,  and  enable  the  identification  of 

 transcriptomic  signatures  associated  with  ageing  and  determine  whether  findings  are 

 statistically significant at scale. 

 In  conclusion,  further  investigation  and  validation  of  the  observed  gene  expression  alterations 

 associated  with  ageing  are  necessary  to  confirm  their  reliability  and  establish  their  functional 

 consequences.  Future  experiments  should  focus  on  conducting  in  vivo  functional  assays, 

 particularly  assessing  platelet  production  and  function,  to  gain  a  better  understanding  of  the  role 

 of  these  gene  signatures  in  the  ageing  LK  Cd150+  compartment.  Additionally,  validation  using 

 a  larger  cohort  of  animals  will  help  determine  the  stability  and  significance  of  these 

 transcriptomic signatures as ageing phenotypes. 

 This  study  aimed  to  provide  a  detailed  understanding  of  the  LK/LSK  Cd150+  bone  marrow 

 compartment  with  age  using  scRNA-seq.  Through  the  analysis  of  high-quality  single-cell  data, 

 different  cell  clusters  within  the  LSK  Cd150+  compartment  were  identified  and  annotated 

 based  on  canonical  marker  expression  signatures,  capturing  all  levels  of  Mk  commitment  from 

 primitive  HSCs  to  committed  MkPs.  Pseudotime  analyses  revealed  a  continuum  of 

 differentiation  from  LT-HSCs  to  Mk  and  Ery  progenitors,  accompanied  by  dynamic  expression 
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 patterns  of  genes  many  of  which  were  associated  with  Mk  commitment.  Co-expression  module 

 analysis  further  identified  gene  modules  strongly  correlated  with  different  stages  of  Mk  lineage 

 commitment,  suggesting  potential  novel  signatures  underlying  differentiation.  Age-related 

 changes  in  the  composition  of  the  HSC  compartment  were  also  observed,  with  an  increase  in 

 LT-HSCs  in  aged  mice  in  line  with  a  wealth  of  existing  literature.  Cell-type-specific  DEA 

 highlighted  significant  signatures  of  ageing  at  multiple  levels  of  megakaryopoiesis.  Functional 

 GSEA  revealed  a  correlation  between  the  age-associated  DEGs  and  factors  implicated  in 

 platelet  hyperactivity  and  aberrant  NF-κB  signalling  pathways,  suggesting  a  link  between  the 

 identified  gene  expression  alterations  and  dysfunctional  Mk/platelet  function  in  aged  mice. 

 Further  investigation  and  validation  are  needed  to  confirm  the  reliability  and  functional 

 consequences  of  the  observed  ageing  signatures,  including  validation  using  a  larger  cohort  of 

 animals  to  determine  the  stability  and  significance  of  the  identified  transcriptomic  signatures  as 

 ageing  phenotypes.  In  conclusion,  the  data  presented  as  part  of  this  chapter  sheds  light  on  the 

 age-related  changes  during  megakaryopoiesis  within  the  LK  Cd150+  compartment.  The 

 identified  gene  expression  alterations  and  associated  functional  consequences  may  have 

 potential  implications  for  understanding  age-related  haematological  phenotypes.  Future 

 investigations  and  validations  will  deepen  the  understanding  of  the  underlying  mechanisms  and 

 regulatory  networks  governing  Mk  commitment  with  age,  and  provide  insights  into  potential 

 candidates for clinical applications. 
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 Chapter 5: 

 Isoform profiling from single cell experiments 
 using long-read sequencing 
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 Disclosures: 

 Annotation  of  isoforms  from  pooled  HSC  libraries  of  young  and  aged  mouse  cDNA  using 
 SQANTI3  15  was  performed  by  Anita  Scoones  with  help  from  Dr  David  Wright  and  Sofia 
 Kudasheva. 

 Results  from  experiments  using  an  adaptation  of  the  HIT  scIso-Seq  protocol  16  were  generated 
 as  part  of  a  collaborative  project  with  Pacific  Biosciences  (PacBio).  All  experimental  work 
 implemented  by  Anita  Scoones  was  performed  under  remote  oversight  by  Dr  Jason  Underwood 
 and  Dr  Jonas  Korlach  (CSO),  and  protocol  adaptations  are  subject  to  a  non-disclosure 
 agreement  between  the  Earlham  Institute  and  PacBio.  Data  deconvolution  was  performed  by  Dr 
 Roger Volden and Dr Elizabeth Tseng of PacBio. 

 MAS-seq  experiments  from  mouse  bone-marrow  samples  were  performed  by  Anita  Scoones, 
 with  laboratory  support  from  Dr  Eirini  Lamprak.  Data  transfer  and  bioinformatics  support  were 
 provided by Dr Elizabeth Tseng and Sam Holt of PacBio. 

 MAS-seq  experiments  from  human  PBMC  samples  were  performed  by  Charlotte  Utting, 
 Ashleigh  Lister  and  Lydia  Pouncey.  Computational  data  analysis  and  interpretation  for  this 
 chapter were performed by Anita Scoones. 

 16  (Shi  et al.  , 2022) 
 15  (Tardaguila  et al.  , 2018) 
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 5.1 Introduction 

 ScRNA-seq  is  a  powerful  tool  in  the  field  of  genomic  research,  allowing  scientists  to  study 

 individual  cells  and  their  expression  patterns  with  unprecedented  resolution.  This  has 

 revolutionised  the  way  we  can  dissect  the  heterogeneity  in  cell  types  present  within  tissues, 

 providing  insights  into  complex  biological  processes  underlying  development  and  disease 

 evolution. 

 The  gold  standard  high-throughput  methods  for  scRNA-seq  rely  on  capturing  the  3’  end  of 

 RNA  molecules  to  generate  sequencing  libraries.  This  is  typically  achieved  through  the  use  of 

 oligo-dT  primers  that  selectively  bind  to  poly(A)  tails  on  the  3’  end  of  eukaryotic  mRNAs, 

 priming  molecules  for  3’  cDNA  synthesis.  Two  of  the  most  widely  used  methods  to  achieve 

 this  are  the  Chromium  microfluidics  system  developed  and  marketed  by  10X  Genomics,  and 

 the  plate-based  Smart-Seq2  protocol  (Picelli  et  al.  ,  2014)  .  While  3’  end-based  scRNA-seq 

 methods  have  presented  scientists  with  the  opportunity  to  perform  transcriptomic  analyses  at 

 single-cell  resolution,  greatly  advancing  our  understanding  of  cellular  heterogeneity,  they  do 

 have limitations. 

 One  drawback  of  these  approaches  is  that  they  rely  on  the  fragmentation  of  cDNA  into  smaller 

 inserts  during  library  preparation.  After  full-length  cDNA  is  generated  from  cellular  mRNA  the 

 cDNA  is  cleaved  along  multiple  sites  into  smaller  inserts  during  library  preparation.  This  is 

 necessary  to  allow  for  the  ligation  of  Illumina  adapters,  which  enable  sequencing  of  fragments 

 on  Illumina  instruments,  which  historically  have  provided  high  sequencing  depth  and  accuracy 

 at  a  relatively  lower  cost  as  opposed  to  other  technologies.  With  10X  Genomics,  cDNA 

 fragmentation  is  achieved  using  a  combination  of  enzymatic  digestion  and  heat.  Similarly, 

 Smart-Seq2  uses  a  transposase  enzyme  to  cleave  and  insert  transposons  into  cDNA  molecules, 

 resulting  in  fragments  that  are  flanked  by  adapter  sequences  that  enable  Illumina  sequencing. 

 cDNA  fragmentation  is  also  important  to  mitigate  PCR  bias,  which  favours  the  5’  and  3’  end  of 

 transcripts  resulting  in  a  lower  coverage  of  the  middle  regions.  By  reducing  the  length  of 

 molecules,  library  complexity  is  increased  ultimately  leading  to  higher  accuracy  and  specificity 

 of the sequencing data. 

 However,  as  a  consequence  of  this  requirement,  these  technologies  may  miss  spliced  isoforms 

 or  non-polyadenylated  RNAs.  The  structures  of  transcripts  aren't  preserved  through  library 

 preparation  so  important  information  along  the  length  of  transcripts  can  often  be  lost. 

 Additionally,  the  majority  of  short  reads  during  sequencing  fail  to  span  successive  splice  sites, 

 prohibiting  the  detection  of  alternatively  spliced  isoforms  (Kanitz  et  al.  ,  2015)  .  This  means  the 
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 data  produces  an  incomplete  assessment  of  the  full  repertoire  of  transcript  isoforms  that 

 underpin cell signatures and function. 

 Alternative  splicing  (AS),  the  post-transcriptional  process  in  which  exons  of  pre-mRNA  can  be 

 selectively  included  or  excluded  during  splicing  to  produce  multiple  mRNA  transcripts  from  a 

 single  gene,  plays  a  crucial  role  in  regulating  gene  expression  and  proteome  diversity.  The 

 production  of  multiple  transcript  variants  from  a  single  gene  can  alter  protein  structure  and 

 function,  resulting  in  unique  isoforms  with  distinct  biological  properties;  often  in  a  tissue-  and 

 development stage-specific way  (Wang  et al.  , 2008;  Barbosa-Morais  et al.  , 2012)  . 

 In  haematopoiesis,  AS  has  been  shown  to  cause  differential  expression  of  isoforms  that  are 

 important  in  regulating  the  differentiation  and  function  of  blood  cells.  For  example,  AS  of  three 

 exons  (4,  5,  and  6)  in  the  CD45  gene  is  known  to  produce  multiple  isoforms  characterised  by 

 the  differential  inclusion  of  glycosylated  segments  of  the  CD45  cell-surface  protein  (Zikherman 

 and  Weiss,  2008)  .  This  alternative  isoform  expression  has  been  shown  to  be  regulated  in  a 

 cell-lineage  and  state-specific  fashion  where  the  long  isoform  (CD45RABC)  is  almost 

 exclusively  found  on  B  cells,  whilst  during  differentiation  of  naive  T  cells  (which  express 

 various  larger  isoforms)  to  memory  T  cells  is  accompanied  by  exon  exclusion  generating  the 

 RO  short  isoform,  a  canonical  marker  of  T  helper  cells  (Hermiston,  Xu  and  Weiss,  2003)  . 

 During  erythropoiesis,  AS  of  the  Bcl11a  gene  results  in  the  expression  of  different  isoforms  that 

 regulate  the  switch  from  foetal  to  adult  haemoglobin  production  (Uda  et  al.  ,  2008)  .  This  gene 

 encodes  a  transcriptional  repressor  with  essential  functions  during  development,  whereby 

 Bcl11a  haploinsufficiency  causes  Dias-Logan  syndrome  (a  developmental  disorder  associated 

 with the hereditary persistence of foetal haemoglobin)  (Dias  et al.  , 2016)  . 

 Recent  work  has  identified  disease-causing  variants  in  this  gene  that  lead  to  the  truncation  of 

 the  BCL11A-XL  protein  through  the  absence  of  the  C  terminal  components  necessary  for 

 nuclear  localisation  signalling,  rendering  it  inactive  (Wessels  et  al.  ,  2021)  .  In  fact,  splicing 

 mutations  are  among  the  most  recurrent  genetic  perturbations  in  haematological  malignancies, 

 common  to  all  forms  of  myeloid  malignancies  including  acute  myeloid  leukaemia  (AML)  and 

 myeloid  proliferative  neoplasms  (MPNs).  Over  50%  of  patients  with  myelodysplastic 

 syndromes  (MDS),  clonal  blood  disorders  characterised  by  impaired  haematopoiesis,  carry  1  or 

 more  mutations  affecting  splicing  factors  with  genes  including  Sf3b1,  U2af35  and  Zrsr2 

 (Graubert  et  al  .,  2011;  Papaemmanuil  et  al.  ,  2011;  Yoshida  et  al.  ,  2011;  Cazzola,  Della  Porta 

 and  Malcovati,  2013;  Wan  and  Wu,  2013;  Genovese  et  al.  ,  2014;  Haferlach  et  al.,  2014;  Desai 

 et  al  .,  2018)  .  These  are  but  a  few  known  examples  which  demonstrate  the  important  role  of  AS 

 in  regulating  cellular  function,  highlighting  how  its  dysregulation  can  also  lead  to  disease. 
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 However,  while  AS  is  of  crucial  importance  for  normal  haematopoiesis  and  haematopoietic 

 malignancies, the role it plays in haematopoietic lineage specification is still largely unknown. 

 Alternative  methods  are  continuously  emerging  to  address  the  limitations  of  current 

 technologies  with  the  overarching  goal  of  providing  a  more  comprehensive  view  of  cellular 

 expression  whilst  not  compromising  important  practical  factors  of  research,  such  as  throughput 

 and  cost.  The  quantification  of  RNA  isoforms  has  been  a  challenge  within  the  field  due  to  the 

 requirement  of  both  long  enough  reads  that  capture  full-length  isoforms  and  sufficient  coverage 

 depth  to  ensure  sequence  accuracy.  This  has  been  a  particular  challenge  in  single-cell 

 experiments  with  the  current  platforms  available  for  sequencing.  An  updated  version  of  the 

 Smart-Seq  protocol  by  Picelli  et  al.  ,  Smart-Seq3,  has  shown  improvements  in  its  ability  to 

 detect  isoforms  by  enabling  the  reconstruction  of  single  molecules  through  the  integration  of 

 reads  with  matching  5’  UMI  (Picelli  et  al.  ,  2014;  Hagemann-Jensen  et  al.  ,  2020)  .  However,  the 

 majority  of  transcripts  are  often  only  partially  reconstructed  yielding  only  marginal  gains  in 

 isoform quantification and therefore limited novel isoform discovery from single cells. 

 A  solution  for  obtaining  full-length  transcripts  is  to  transition  from  short-  to  long-read 

 sequencing  technologies.  Pacific  Biosciences  (PacBio)  and  Oxford  Nanopore  Technologies 

 (ONT)  enable  full-length  RNA  sequencing,  capable  of  generating  reads  that  are  tens  of 

 kilobases  in  length  without  the  computational  requirement  of  transcript  assembly  but, 

 conversely,  suffer  from  comparatively  lower  read  throughput  and  high  costs.  Fortunately  the 

 development  of  circularised  consensus  sequencing  (CCS)  by  PacBio,  whereby  consensus  reads 

 from  multiple  sequencing  ‘passes’  of  individual  library  molecules  are  generated,  has  led  to 

 reduced  error  rates  by  improving  the  raw  base  calling  accuracy  in  their  long-read  sequencing 

 runs  (Wenger  et  al.  ,  2019)  .  The  Phred  scale  is  a  widely-used  measure  of  sequencing  accuracy, 

 expressed  as  a  negative  logarithmic  scale  that  scores  base-calling  error  probability.  Higher 

 Phred  scores  correspond  to  lower  probabilities  of  base-calling  errors,  with  a  Phred  score  of  Q30 

 indicating  a  base-calling  accuracy  of  99.9%,  representing  highly-accurate  sequencing  reads. 

 PacBio  sequencing  generates  ~Q30  quality  reads  (HiFi  reads)  after  10  circular  passes,  and  is 

 achieved  from  input  libraries  ranging  between  15-20  kb.  This  poses  a  problem  for  sequencing 

 single-cell  transcripts  which  typically  range  1-2  kb  in  length,  as  it  results  in  excessive  numbers 

 of  passes  (50-60)  and  wasting  sequencing  potential  by  ‘over-sequencing’  molecules.  This  issue 

 is  particularly  important  when  performing  long-read  sequencing  from  single-cell  input,  as  it 

 reduces throughput and limits the sequencing potential of the PacBio platform. 

 Two  novel  approaches  were  recently  developed  by  independent  groups  to  enable  the  generation 

 of  long-read  single-cell  libraries  that  are  both  effective  in  capturing  full-length  transcripts  and 

 more  cost-effective  for  sequencing  with  long-read  technologies.  The  first,  high-throughput  and 
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 high-accuracy  single-cell  full-length  isoform  sequencing  (HIT  scIso-Seq)  is  a  novel  protocol 

 that  enables  head-to-tail  enzymatic  concatenation  of  cDNA  (Figure  5.1)  (Shi  et  al.  ,  2022)  .  This 

 approach  enables  full-length  cDNA  generated  using  the  10X  Genomics  system  to  be 

 concatenated  using  PCR-introduced  palindrome-overhangs  at  both  ends  of  cDNA  inserts  into 

 single,  longer  molecules  of  multiple  inserts.  In  addition,  HIT  scIso-Seq  also  incorporates  an 

 additional  step  for  the  removal  of  template  switching  oligo  (TSO)  artefacts,  prior  to  the 

 generation  of  concatenated  library  products.  TSO  artefacts  represent  another  limitation  in 

 current  scRNA-seq  approaches,  formed  through  priming  errors  during  cDNA  amplification 

 producing  cDNA  products  which  lack  the  3’-end  barcode-containing  sequence.  These  artefacts 

 that  lack  UMI  sequences  mean  that  cDNA  reads  cannot  be  assigned  to  cells  but  are 

 indistinguishable  from  ‘desired’  cDNA  products  and  consequently  are  carried  over  during 

 library  generation  and  sequenced.  Estimates  suggest  that  cell-barcode-free  TSO  artefacts  can 

 constitute  up  to  50%  of  reads  from  libraries  constructed  with  10X  Genomics  (Lebrigand  et  al.  , 

 2020)  . 

 A  second  method  builds  on  the  same  idea  of  cDNA  concatenation  to  generate  longer  reads,  and 

 also  implements  TSO-artefact  depletion  but  is  distinct  in  its  concatenation  strategy.  Multiplexed 

 Arrays  Sequencing  (MAS)  of  transcript  isoforms  (MAS-seq)  uses  barcoded  adapters  across 

 parallel  PCR  reactions  for  programmable  concatenation  with  a  narrow  length  distribution 

 (Figure  5.1)  (Al’Khafaji  et  al.  ,  2021)  .  This  approach  adds  adapters  of  specific  sequences  to  the 

 5’  and  3’  ends  of  cDNA  across  parallel  reactions  which,  when  pooled,  are  ligated;  generating 

 long  fragments  with  multiple  cDNA  inserts.  The  authors  of  HIT  scIso-Seq  and  MAS-seq 

 reported  8-  and  15-fold  yield  increase  in  total  corrected  read  counts  respectively,  demonstrating 

 the significant boosts in sequencing throughput that can be achieved with both methodologies. 

 scRNA-seq  has  revolutionised  genomic  research  at  the  gene-level,  but  progress  in  the  field  of 

 isoformed-resolved  transcriptomics  at  single  cell  resolution  has  been  hampered  by  the  current 

 technologies’  high  cost  and  low  throughput.  The  development  of  methods  such  as  these,  which 

 enhance  long-read  sequencing  throughput  from  single  cells,  is  crucial  to  enable  the  detection 

 and  hence  study  of  isoform  heterogeneity  across  cells.  Early  adoption  of  novel  methods  and 

 testing  across  diverse  experimental  systems  will  be  imperative  to  determine  their  efficacy, 

 uncover potential applications, reveal limitations and drive further technological development. 
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 Figure  5.1.  Side-by-side  methodology  workflows  for  HIT  scIso-Seq  (left)  and  MAS-seq 
 (right)  for  concatenation  of  10X  Genomics  scRNA-seq  cDNA.  HIT  scIsoSeq  uses  specific 
 biotinylated  PCR  primers  that  enable  TSO  artefact  depletion  and  introduce  deoxy  uracil  (dU) 
 sites  to  the  3’  ends  of  desired  cDNA  fragments.  USER  enzyme  is  used  to  generate  palindrome 
 overhangs  and  DNA  ligase  to  concatenate  complementary  palindrome  sequences  thus 
 concatenating  cDNA  through  cloning-based  ligation  (Shi  et  al.  ,  2022)  .  The  first  step  of  the 
 MAS-seq  workflow  also  applies  TSO  artefact  depletion  through  streptavidin  bead  selection  of 
 desired  fragments.  After  depletion,  the  TSO-depleted  cDNA  product  is  distributed  across 
 multiple  tubes  for  parallel  PCR  using  specific  sets  of  primer  pairs  per  reaction  to  append  dU 
 barcode  adapters  to  both  ends  of  cDNA  fragments.  After  PCR,  the  arrayed  reactions  are  pooled 
 and  undergo  dU  digestion  and  barcode-directed  ligation  generating  concatenated  cDNA  arrays 
 of programmable lengths  (Al’Khafaji  et al.  , 2021)  . 

 210 

https://paperpile.com/c/H5DC9c/8vtN
https://paperpile.com/c/H5DC9c/13Hv


 5.1.1. Aims 

 The  aims  of  this  chapter  were  to  assess  approaches  for  long-read  sequencing  of  cDNA  in 

 single-cell experiments. Two separate approaches were applied : 

 Part 1: Pooling strategy for cell type specific isoform sequencing 

 ●  Generate  PacBio  libraries  from  pooled  cDNA  from  LK  and  LSK  Cd150+  HSCs 

 annotated from scRNA-seq data (Chapter 4). 

 Illumina  single  cell  RNA  sequencing  provides  highly  accurate  coverage  to  enable  gene-level 

 analyses  from  single  cells.  However,  short-read  libraries  typically  range  between  150-300  bps 

 which  are  often  insufficient  to  resolve  isoform  expression.  In  the  previous  chapter,  Illumina 

 gene-level  clustering  was  used  to  identify  HSCs  within  the  LK  Cd150+  compartment.  Drawing 

 on  this,  it  was  hypothesised  that  long-read  sequencing  of  the  same  HSCs  would  enable 

 comprehensive isoform-resolved profiling of HSCs with age. 

 Part 2: Advanced methods for single-cell isoform sequencing 

 ●  Perform  HITsc-IsoSeq  PacBio  library  construction  to  generate  cDNA  concatemers 

 from mouse BM single cells (10X Genomics) 

 ●  Perform  MAS-seq  PacBio  library  construction  to  generate  cDNA  concatemers  from 

 human PBMCs and FACS sorted mouse LK Cd150+ single cells (10X Genomics) 

 The  hypothesis  was  that  the  utilisation  of  HITsc-IsoSeq  and  MAS-seq  cDNA  concatenation 

 would  increase  the  PacBio  sequencing  throughput  for  single-cell  RNA  generated  using  10X 

 Genomics,  as  excessive  passes  on  individual  molecules  with  fragments  of  <  3  kb  are  not 

 advantageous  for  read  accuracy.  Additionally,  it  was  predicted  that  the  absence  of 

 fragmentation  during  library  preparation,  preserving  full-length  cDNA,  would  enhance  isoform 

 classification from single cells. 
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 5.2 Experimental approach 

 Part 1 

 In  order  to  investigate  the  expression  of  isoforms  in  the  HSC  compartment  with  age,  PacBio 

 libraries  were  generated  of  LK  Cd150+  cells  annotated  as  HSCs  from  scRNA-seq  clustering 

 (see  Chapter  4  Results).  To  achieve  this,  IsoSeq  libraries  were  constructed  from  intact 

 full-length  cDNA  prepared  using  Smart-Seq2.  The  HSC  cDNA  samples  were  first  pooled  into 

 two  multi-cell  suspensions  based  on  the  ages  of  the  mice  (young  8  -  10  weeks,  or  aged  ~72 

 weeks)  (Figure  4.1).  The  resulting  SMRT  bell  libraries  were  subsequently  sequenced  using  the 

 PacBio Sequel II platform with long-read technology, as described in Methods 2.2.8. 

 Part 2 

 Recently,  two  novel  methods  have  been  published  that  aim  to  increase  the  PacBio  sequencing 

 throughput  from  single  cells  (Shi  et  al.,  2022;  Al'Khafaji  et  al.,  2021).  To  investigate  the 

 effectiveness  of  these  approaches,  concatenated  HITsc-IsoSeq  and  MAS-seq  libraries  were 

 generated  from  single  cell  cDNA  that  was  prepared  using  10X  Genomics  from  both  mouse  BM 

 and  human  PBMCs.  Furthermore,  two  MAS-seq  libraries  of  LK  Cd150+  FACS  sorted  cells 

 were  also  created  to  test  the  compatibility  of  FACS  cell-type  enrichment  for  10X  Genomics. 

 PacBio  and  Illumina  sequencing  were  performed  on  all  samples,  and  the  obtained  sequencing 

 metrics  for  each  approach  were  explored  using  Illumina  data  as  a  benchmark  for  the  captured 

 cell types (Figure 5.1). 
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 Figure  5.2.  The  summarised  experimental  approach  implemented  to  obtain  data 
 presented in part 2 of Chapter 5  17  . 

 17  Created with BioRender.com 

 213 



 5.3 Results 
 Part 1: 

 5.3.1. Generation of long-read libraries from cDNA of purified HSCs 

 The  scRNA-seq  data  generated  in  Chapter  4  using  Illumina  sequencing  technology  was  used  to 

 annotate  cell  types  based  on  their  transcriptomic  profiles.  Cell  IDs  corresponding  to  HSCs, 

 including  the  LT-HSC  subset,  were  extracted  from  the  Seurat  object  based  on  mouse  age.  Two 

 lists  containing  metadata  of  the  specific  plate  ID  and  well  position  across  the  7  Smart-seq2 

 plates  processed  were  generated,  these  consisted  of  34  cells  from  young  samples  and  34  and  46 

 from  aged.  Using  these  lists  up  to  10  µl  volumes  were  carefully  collected  from  wells  and 

 pooled  into  two  mini-bulk  cDNA  libraries,  one  for  each  experimental  age  group.  After  pooling, 

 bead  purification  was  performed  to  remove  any  degraded  material,  and  the  final  total  cDNA 

 concentration  was  measured.  The  young  sample  yielded  273  ng  of  total  mass,  while  the  aged 

 sample  yielded  297  ng,  both  met  the  minimum  input  requirement  of  160  ng  for  PacBio  library 

 construction. 

 SMRT  bell  libraries  were  constructed  for  each  sample  using  the  SMRTbell  prep  kit  3.0 

 (Materials  and  Methods  2.2.8.2  -  2.2.8.5).  Post-library  construction,  QC  was  performed  to 

 assess  library  concentrations  and  size  distributions  were  within  the  recommended  range.  The 

 young  IsoSeq  library  was  8.3  kb  (sample  1),  and  the  aged  sample  6.2  kb  (sample  2)  (Appendix 

 Supplementary  Figure  5.1).  Library  concentrations  were  normalised  and  sequenced  on  2  SMRT 

 cells of the PacBio Sequel II (8 M, v 2) with 30 hr movies. 

 5.3.2. Sequencing metrics from HSC IsoSeq libraries 

 Before  characterising  isoform  detection,  the  quality  of  SMRT  cell  runs  was  first  evaluated 

 based  on  a  number  of  criteria;  such  as  the  number  of  reads  generated  in  the  run,  average 

 sequence  length  and  polymerase  read  quality.  This  was  achieved  using  PacBio’s  SMRT  Link 

 software,  generating  raw  data  reports  for  both  libraries.  SMRT  Link  was  also  used  to  extract 

 High  Fidelity  (HiFi)  reads  from  the  raw  sequencing  output.  These  are  characterised  by  high 

 accuracy,  low  error  rates  and  long  read  lengths.  This  makes  them  particularly  useful  for 

 applications  including  transcript  isoform  discovery,  alternative  splicing  analysis  and  gene 

 expression  quantification.  The  high  accuracy  of  HiFi  Iso-Seq  reads  is  achieved  by  circular 

 consensus  sequencing  (CCS),  which  involves  multiple  passes  of  the  same  DNA  molecule  to 

 generate  a  high-confidence  consensus  sequence.  In  total,  run  1  generated  1.4  million  reads,  of 

 which  ~687  K  reads  met  HiFi  criteria  (Figure  5.3A).  Figure  5.3B  shows  the  correlation  between 

 predicted accuracy using the Phred scale metric and CCS read length, showing that most read  
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 Figure  5.3.  Sequencing  statistics  of  PacBio  IsoSeq  library  generated  from  pooled 
 single-cell  cDNA  from  young  mice.  (a)  Summary  of  key  HiFi  quality  metrics  (b)  Heat  map  of 
 CCS  Read  lengths  and  predicted  accuracies.  The  boundary  between  HiFi  Reads  and  other  CCS 
 Reads  is  shown  as  a  dashed  line  at  QV  20.  (c)  Histogram  distribution  of  HiFi  Reads  (QV 
 >=20),  other  CCS  Reads  (three  or  more  passes,  but  QV  <20),  and  other  reads,  by  number  of 
 passes  (d)  Histogram  distribution  of  HiFi  Reads  (QV  >=20),  other  CCS  Reads  (three  or  more 
 passes, but QV <20), and other reads, by read length. 
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 counts  passed  the  Q20  threshold.  The  average  HiFi  read  length  was  1,277  bps,  with  a  mean  20 

 passes  per  HiFi  molecule  (Figure  5.3C  and  D).  Overall,  these  statistics  suggest  the  production 

 of  high-quality  reads,  but  that  sequencing  efficiency  was  suboptimal.  The  loading  report 

 revealed  17%  productivity  in  P1,  which  represents  the  category  of  productive  zero-mode 

 waveguides  (ZMW)  with  a  high-quality  sequencing  region  detected  within  the  read.  81%  ZMW 

 productivity  was  categorised  as  P0  -  representing  a  non-productive  ZMW  with  no  signal 

 detected.  The  P0  metric  provides  an  accurate  estimate  of  sample  loading  on  SMRT  cells,  where 

 quantities  exceeding  the  optimal  inflection  point  of  loading  result  in  poorer  sequencing 

 performance.  Collectively  these  sequence  performance  metrics  suggest  the  library  was 

 overloaded,  resulting  in  a  poor  overall  yield,  but  give  no  indications  suggesting  library  quality 

 was compromised. 

 In  comparison,  a  better  sequencing  performance  from  sample  2  (aged)  is  evident.  60%  ZMW 

 productivity  was  recorded  in  P1,  with  only  39%  in  non-producing  P0.  The  number  of  HiFi 

 reads  reflects  this,  with  ~3.6  fold  more  HiFi  reads  than  sample  1  (Figure  5.4A).  Despite  the 

 worse  performance  in  sample  1,  the  HiFi  quality  across  both  libraries  is  consistent  in  terms  of 

 HiFi  read  average  length,  quality  score  and  the  number  of  passes;  suggesting  good  library 

 quality which was consistent between samples (Figure 5.4C and D). 
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 Figure  5.4.  Sequencing  statistics  of  PacBio  IsoSeq  library  generated  from  pooled 
 single-cell  cDNA  from  old  mice.  (a)  Summary  of  key  HiFi  quality  metrics  (b)  Heat  map  of 
 CCS  Read  lengths  and  predicted  accuracies.  The  boundary  between  HiFi  Reads  and  other  CCS 
 Reads  is  shown  as  a  dashed  line  at  QV  20.  (c)  Histogram  distribution  of  HiFi  Reads  (Q  value 
 >=20),  other  CCS  Reads  (three  or  more  passes,  but  QV  <20),  and  other  reads,  by  the  number  of 
 passes  (d)  Histogram  distribution  of  HiFi  Reads  (QV  >=20),  other  CCS  Reads  (three  or  more 
 passes, but QV <20), and other reads, by read length. 

 217 



 5.3.3. Quantification and annotation of isoforms based on structural categories 

 IsoSeq  enables  the  production  of  full-length  cDNA  and  thus  quantification  of  isoforms. 

 Smart-seq2  also  produces  full-length  cDNA,  and  with  high  sensitivity  and  low  input 

 requirements  is  a  popular  approach  for  studying  rare  and  heterogeneous  cell  types.  Comparing 

 the  normalised  coverage  of  IsoSeq  and  Smart-seq2  along  transcripts  shows  that  both 

 approaches  span  the  length  of  transcripts,  but  IsoSeq  provides  greater  coverage  of  5’  and  3’ 

 ends (Figure 5.5). 

 To  enable  characterisation  of  the  isoforms,  transcripts  first  had  to  be  mapped  to  the  mouse 

 genome  and  poor-quality  reads  removed.  The  minimap2  sequence  alignment  program  was  used 

 to  perform  spliced  alignment  of  PacBio  HiFi  FASTQ  reads  to  the  mouse  reference  genome 

 containing  known  splice  junctions  (Li,  2018;  Frankish  et  al.  ,  2019)  .  The  aligned  transcript 

 sequences  were  then  collapsed  into  unique  isoforms  using  cDNA  cupcake  ,  clustering  transcript 

 isoforms  that  map  to  the  same  region  into  a  representative  consensus  and  removing  redundant 

 mapped reads. 

 QC  and  classification  of  isoforms  were  then  achieved  using  SQANTI3  (Tardaguila  et  al.  ,  2018)  . 

 The  collapsed  mapped  reads  were  first  classified  based  on  their  mapping  quality  to  the 

 reference  and  overlap  with  known  splice  junctions.  Isoforms  were  then  classified  into  different 

 categories  based  on  their  annotation  status,  splicing  patterns,  and  genomic  context,  providing  a 

 comprehensive  and  detailed  analysis  of  isoform  diversity.  This  was  performed  for  both  samples 

 individually  and  for  a  merged  dataset  of  both  libraries,  as  sample  pooling  is  recommended  to 

 build a single transcriptome experiment on which to assign isoform identities. 

 A  total  of  5942  unique  genes  and  7456  unique  isoforms  were  identified  from  the  combined 

 IsoSeq  libraries.  Transcript  classification  grouped  isoforms  into  categories  based  on  reference 

 transcript  categories  and  generated  reports  on  data  quality  (Figure  5.6)  (see  also  Materials  and 

 Methods  section  2.3.15  and  Figure  2.1).  Transcripts  matching  all  splice  junctions  of  the 

 reference  genome  are  labelled  as  full  splice  match  (FSM),  while  transcripts  which  do  not 

 contain  all  splice  junctions  of  the  reference  but  have  matching  consecutive  junctions  are 

 designated  incomplete  splice  match  (ISM)  transcripts.  Novel  transcripts  are  also  annotated  with 

 SQANTI3,  novel  in  catalogue  (NIC)  and  novel  not  in  catalogue  (NNC).  NIC  isoforms  contain 

 novel  combination(s)  of  splice  junctions  that  have  been  previously  annotated,  or  novel  splice 

 junctions  from  annotated  donor  and  acceptor  sites.  While  NNC  are  distinct  by  using  novel 

 donors  and/or  acceptors  (Tilgner  et  al.  ,  2013;  Tardaguila  et  al.  ,  2018)  .  Further  subtyping  of 

 isoforms  is  performed  for  those  not  matching  the  splice  patterns  of  annotated  references  using 

 existing annotations as a reference. 
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 Figure  5.5.  Normalised  coverage  across  transcripts  of  young  and  old  Smart-Seq2  Illumina 

 and  PacBio  IsoSeq  libraries  from  the  same  cells  18  .  Data  from  Smart-seq2  samples  were 

 aggregated  by  batch  and  condition  (mice  31  and  30  =  yellow,  mice  34  and  35  =  green,  mice  36 

 and 37 = blue). 

 18  Figure generated by Dr David Wright 
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 This  includes  transcripts  in  novel  genes  outside  the  boundaries  of  an  annotated  gene 

 (Intergenic),  those  found  entirely  within  boundaries  of  an  annotated  intron  (Genic  intron),  and 

 those  with  partial  exon  and  intron  overlap  in  a  known  gene  (Genic  genomic).  In  addition, 

 polyA-containing  transcripts  that  overlap  the  complementary  strand  of  an  annotated  transcript 

 as  well  as  transcripts  spanning  two  annotated  loci  are  classed  as  antisense  and  fusion  isoforms, 

 respectively. 

 A  significant  proportion  of  the  identified  isoforms  were  classified  as  antisense,  indicating  that 

 they  were  transcribed  from  the  opposite  DNA  strand  compared  to  the  gene  of  interest  (Figure 

 5.6B).  These  antisense  isoforms  can  arise  from  various  processes  such  as  alternative 

 transcription  start  or  end  sites,  alternative  splicing,  or  genomic  rearrangements  (Xu,  Zhang  and 

 Zhang,  2018)  .  SQANTI3  categorises  isoforms  as  antisense  based  on  their  genomic  orientation 

 relative  to  annotated  genes  in  the  reference.  However,  this  unusually  high  level  of  antisense 

 isoforms  suggests  that  experimental  artefacts  might  be  accumulating  in  these  categories.  It  is 

 important  to  consider  the  influence  of  reverse  transcriptase-switching  events.  Reverse 

 transcription  (RT)  switching  during  cDNA  synthesis  can  introduce  gaps  that  are  erroneously 

 interpreted  as  non-canonical  splicing  events  (Houseley  and  Tollervey,  2010)  .  RT  is  of  course  an 

 essential  component  in  Smart-seq2  cDNA  generation,  however  this  intrinsic  property  can  lead 

 to  the  generation  of  artificially  deleted  cDNA  and  result  in  false-positive  detection  of 

 alternative  transcripts  (Tardaguila  et  al.  ,  2018)  .  A  higher  percentage  of  RT-switching  junctions 

 may  indicate  a  more  complex  and  diverse  library  with  a  greater  presence  of  novel  transcript 

 isoforms  and  AS  events.  However  it  could  also  indicate  an  increased  occurrence  of 

 template-switching  artefacts  during  cDNA  synthesis,  leading  to  inaccurate  quantification  of 

 gene  expression  levels  and  incorrect  annotation  of  transcript  isoforms.  RT  switching  events  are 

 associated  with  a  direct  repeat  sequence  between  the  upstream  mRNA  boundary  of  the 

 noncanonical  intron,  and  the  adjacent  intron  region  near  the  downstream  exon  boundary 

 (Cocquet  et  al.  ,  2006)  .  By  exploiting  this  hallmark  SQANTI3  is  able  to  generate  a  prediction  of 

 the likelihood the observed event is a RT switching artefact. 

 Additionally,  SQANTI3  assesses  the  possibility  of  intra-priming  events,  which  involve  the 

 binding  of  the  oligo(dT)  primer  during  the  first-strand  cDNA  synthesis  to  A-rich  regions  of  the 

 mRNA  template.  This  off-target  priming  can  lead  to  the  formation  of  false  cDNA  molecules,  as 

 it  occurs  with  intron-lariats  or  pre-messenger  RNAs  that  still  contain  non-poly(A)  tail  adenine 

 stretches  (Nam  et  al.  ,  2002;  Spies,  Burge  and  Bartel,  2013)  .  SQANTI3  addresses  this  by 

 calculating  the  percentage  of  adenines  (A)  within  a  specific  window  downstream  from  the 

 genetic coordinates corresponding to the 3' ends of transcripts to assign intra-priming events. 
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 Figure  5.6.  Isoform  classification  statistics  from  merged  long-read  data.  (a)  Isoform  counts 
 per  structural  categories  post  SQANTI  filter  artefact  removal  (b)  Percentage  distribution  of 
 isoforms  across  each  structural  category  from  both  datasets  combined  (c)  Good  quality  control 
 attributes  across  structural  categories  including  whether  they  are  canonical,  are  supported  by 
 the  annotation  and  poly(A)  coverage  (d)  Poor  quality  control  attributes  across  structural 
 categories,  including  RT  switching  predicted  nonsense-mediated  decay  and  detection  of 
 non-canonical junctions. 
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 RT  switching  has  been  previously  shown  to  impact  minor  isoforms  that  coexist  with  a  major 

 isoform  serving  as  the  template  for  intra-molecular  switching  (Cocquet  et  al.  ,  2006)  . 

 Examination  of  read  tracks  revealed  the  presence  of  many  antisense  isoforms  as  single  exon 

 reads  in  intergenic  and  intronic  regions  compared  to  the  mouse  reference  annotation,  potentially 

 due  to  intra-priming  resulting  from  RT  switching  (Tardaguila  et  al.,  2018).  Moreover,  the  NNC 

 transcript  category  was  accordingly  found  to  be  enriched  for  the  most  predicted  RT-switching 

 events  (Figure  5.6D).  This  suggests  that  QC  parameters  for  excluding  artefact  isoforms  need  to 

 be  refined  when  utilising  SQANTI3  for  isoform  annotation  from  Smart-seq2  cDNA  data.  These 

 findings  highlight  the  importance  of  considering  RT  switching  and  intra-priming  events  in  the 

 analysis  and  interpretation  of  isoform  data,  ensuring  accurate  annotation  and  quantification  of 

 transcript isoforms. 
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 5.3.4. IsoSeq captures multiple isoforms of key genes for both HSC and Mk function 

 Analysis  of  the  libraries  revealed  a  notable  disparity  in  the  number  of  genes  and  transcript 

 isoforms  detected  in  each  library.  The  aged  HSC  library,  benefiting  from  higher  sequencing 

 efficiency,  exhibited  a  significantly  higher  detection  of  unique  genes  (4723)  and  transcript 

 isoforms  (5737).  In  comparison  the  young  library  gave  only  1642  unique  genes  and  unique 

 1800  transcript  isoforms.  This  represents  an  approximately  2.8-fold  lower  detection  of  genes 

 and  3-fold lower detection of isoforms in the poorly sequenced library. 

 Considering  the  variation  in  sequencing  coverage,  the  distribution  of  isoforms  from  the  QC 

 analysis  of  different  structural  annotations  exhibited  high  consistency  between  both  libraries. 

 Despite  differences  in  the  total  number  of  isoforms  detected,  the  proportions  of  isoforms 

 belonging  to  structural  categories  remained  largely  similar  (Figures  5.7B  and  5.7D).  This 

 suggests  that  the  underlying  transcript  diversity  was  comparable  between  the  two  libraries, 

 providing  confidence  in  the  identified  isoform  categories.  However,  since  statistical  analyses 

 and  comparisons  of  expression  levels  were  not  performed  due  to  sequencing  depth  differences 

 and sample size (n = 1), analysis from this point is exploratory in nature. 

 IGV  was  used  to  visualise  individual  read  tracks  of  each  library  against  mouse  annotations 

 provided  by  RefSeq.  Most  transcripts  were  within  the  3  kb  range  across  both  libraries  (Figure 

 5.7  B  and  D)  and  many  canonical  HSC  markers  were  supported  by  multiple  reads  and  were 

 sequenced  end-to-end  in  both  libraries;  examples  include  Hlf,  Mpl,  Sult1a1,  and  Esam.  In 

 particular,  Mpl  is  known  to  be  a  critical  gene  for  both  supporting  HSC  function  and  promoting 

 megakaryopoiesis.  This  gene  encodes  for  the  TPO  receptor,  the  primary  regulator  of 

 megakaryopoiesis  (Kaushansky  and  Drachman,  2002)  .  In  HSCs,  Mpl  has  been  shown  to 

 support  HSC  quiescence  and  interactions  with  the  osteoblastic  niche,  as  well  as  metabolically 

 prime  HSCs  towards  megakaryopoiesis  (Yoshihara  et  al.  ,  2007;  Nakamura-Ishizu  et  al.  ,  2018)  . 

 This  gene  is  composed  of  12  exons  (Mignotte  et  al.  ,  1994)  ,  and  is  primarily  expressed  as  two 

 distinct  alternate  mRNA  isoforms.  The  transmembrane  variant  Mpl-II  is  due  to  use  of  a  cryptic 

 splice  acceptor  in  exon  4,  resulting  in  an  in-frame  deletion  of  60  amino  acids.  The  second 

 variant  encodes  a  truncated  soluble  receptor,  Mpl-tr,  generated  from  AS  of  exon  8  directly  to 

 exon  11;  eliminating  the  juxtamembrane  extracellular  part  and  the  transmembrane  domain 

 (Skoda  et  al.  ,  1993;  Coers,  Ranft  and  Skoda,  2004)  .  The  deletion  Mpl-tr  removes  the 

 transmembrane  domain,  consequently  Mpl-tr  is  expected  to  give  rise  to  a  secreted  form  which 

 might  antagonise  Mpl  signalling  by  sequestering  TPO.  Previous  work  has  shown  that  Mpl-tr 

 overexpression  results  in  a  decrease  in  Mpl  protein  abundance,  exerting  a  dominant-negative 

 effect on the proliferation and survival of HSCs  (Coers,  Ranft and Skoda, 2004)  . 
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 To  study  the  patterns  of  AS  in  Mpl,  reads  mapping  to  mouse  Mpl  locus  were  visualised  and  a 

 graphical  representation  of  the  exon-exon  junction  reads  was  generated  as  a  Sashimi  plot 

 (Figure  5.8).  This  shows  the  coverage  of  reads  across  AS  sites,  revealing  insights  into  patterns 

 of  AS  exhibited  within  the  sample.  Both  Mpl  isoforms  were  identified  within  HSC  reads  in 

 both  samples.  Study  of  the  aligned  reads  clearly  shows  exon  9  and  10  skipping  (Figure  5.9).  AS 

 variants  of  cytokine  receptors  that  result  in  protein  isoforms  with  differential  functional 

 characteristics  are  important  regulators  of  cytokine  signalling  (Heaney  and  Golde,  1998; 

 Nakamura  et  al.  ,  1998;  Ashman,  1999)  .  Another  example  of  a  gene  with  multiple  splice 

 variants  is  Racgap1  .  It  encodes  for  a  protein  belonging  to  the  Rho  family  of  small  monomeric 

 GTPases.  Rac  activity  has  been  demonstrated  to  be  important  for  such  diverse  functions  as 

 retention  in  the  BM,  including  long-term  engraftment  of  HSCs  and  HSC  mobilisation  (Jansen 

 et  al.  ,  2005;  Cancelas  and  Williams,  2009)  .  Moreover,  this  gene  has  been  implicated  as  a 

 regulator  of  microtubule  stabilisation  and  dynamics,  important  regulatory  features  of  Mk 

 proplatelet  formation  (Pleines  et  al.  2013).  It  was  identified  as  differentially  expressed  with  age 

 based  on  short-read  scRNA-seq  data,  the  combination  of  long-read  sequencing  provides 

 full-length transcript coverage showing the AS of exon 2 between conditions. 

 Chapter5: Part 1 - Results Summary: 

 In  summary,  this  cell-type  specific  approach  of  long-read  sequencing  provided  end-to-end 

 coverage  across  RNA  transcripts  in  HSCs,  enabling  the  study  of  isoform-level  expression 

 heterogeneity.  This  technique  allows  the  status  of  AS  to  be  explored  within  a  purified  cell 

 population  through  providing  bulk-level  sequencing  coverage  across  the  transcriptome  HSCs 

 that  were  characterised  through  both  FACS  analysis  and  their  single-cell  transcriptomic 

 signature from short-read data. 
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 Figure  5.7.  Isoform  classification  statistics  between  young  and  aged  IsoSeq  libraries.  (a) 
 Transcript  classifications  of  aged  IsoSeq  library  (b)  Aged  IsoSeq  Structural  Categories  by 
 Transcript  Length  (c)  Transcript  classifications  of  young  IsoSeq  library  (d)  Young  IsoSeq 
 Structural Categories by Transcript Length. 
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 Figure  5.8.  Sashimi  plot  of  splice  junction  coverage  of  Mpl  in  IsoSeq  libraries.  Refseq 
 annotations  of  known  Mpl  isoforms  showing  exon  positions  are  shown  in  blue.  The  height  or 
 width  of  each  rectangle  represents  the  number  of  reads  supporting  a  particular  exon  or  splice 
 junction. A  ged (top, red) and young (bottom, teal)  HSCs. 
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 Figure  5.9.  Alignment  tracks  of  HiFi  reads  mapping  to  Mpl  from  aged  samples  .  RefSeq 
 reference  annotations  of  known  splice  isoforms  of  Mpl  are  shown  in  blue  (top).  Splice  junction 
 coverage  is  shown  coloured  by  read  strand.  Notably,  these  tracks  show  AS  of  exons  9  and  10 
 (highlighted) which are known to produce a truncated isoform of Mpl. 
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 Figure  5.10.  Splice  junction  coverage  from  IsoSeq  libraries  and  HiFi  read  alignment  for 
 Racgap1  from  aged  and  young  samples.  (a)  Sashimi  plot  of  splice  junction  coverage  of 
 Racgap1  in  IsoSeq  libraries  from  aged  (top,  red)  and  young  (bottom,  blue)  HSCs.  (b)  Read 
 alignment  tracks  of  all  HiFi  reads  mapping  to  the  Racgap1  from  aged  and  young  samples  . 
 RefSeq  reference  annotations  of  known  splice  isoforms  of  Racgap1  are  shown  in  blue.  The  top 
 tracks  are  from  the  aged  library,  bottom  tracks  are  from  the  young  library.  Splice  junction 
 coverage  is  shown  for  each  track,  coloured  by  read  strand.  Notably,  these  tracks  show  the 
 inclusion of Exon 2 in only the young library (bottom). 
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 Part 2: 

 5.3.5. Cell isolation and library yields from 10X single-cell cDNA concatenated libraries 

 5.3.5.1. HIT scIso-Seq 

 To  obtain  a  single-cell  suspension  of  whole  mouse  bone-marrow  cells,  bones  were  dissected 

 and  prepared  as  described  (see  Materials  and  Methods  2.2.2  -  2.2.3).  After  processing 

 bone-marrow  samples  and  determining  a  cell  viability  of  92%  the  single-cell  suspension  was 

 diluted  in  DPBS  medium  to  the  optimal  concentration  of  600  cells/uL  and  loaded  onto  the  10X 

 Genomics  Chromium  NextGem  Chip  (L)  as  per  the  manufacturer’s  instructions  for  GEM 

 generation.  The  sample  was  then  processed  with  the  low-throughput  (LT)  3’  v3.1  10X 

 Genomics  chemistry  to  obtain  a  full-length  barcoded  cDNA  library.  This  yielded  a  total  mass  of 

 102  ng  of  cDNA  with  an  average  size  distribution  of  1882  bp  (see  Appendix  Supplementary 

 Figure  5.3).  21  ng  of  this  cDNA  was  used  for  Illumina  library  construction,  resulting  in  a  final 

 library  of  144  ng.  Sequencing  was  performed  on  1  lane  of  the  MiSeq  v3  flow  cell  with 

 28-10-10-90 configuration. 

 27  ng  of  the  total  cDNA  generated  was  used  as  input  for  cDNA  concatenation  with  an  adapted 

 version  of  the  HIT  scIso-Seq  protocol  (Shi  et  al.  ,  2022)  .  Briefly,  this  approach  uses 

 Uracil-Specific  Excision  Reagent  (USER)  enzyme  to  generate  palindrome  overhangs  at  specific 

 deoxy-Uracil  sites  introduced  to  both  5’  and  3’  ends  of  inserts  through  PCR.  DNA  ligase  is  then 

 used  to  concatenate  complementary  palindrome  sequences  resulting  in  the  concatenation  of 

 cDNA through cloning-based ligation. 

 Prior  to  the  concatenation  of  cDNA,  the  sample  was  depleted  of  TSO-artefacts  through 

 streptavidin  magnetic  bead  separation  and  PCR  amplified  for  primer  ligation,  enabling  USER 

 enzyme  to  create  necessary  overhangs  for  concatenation  on  cDNA  5’  and  3’  ends. 

 Concatenation  yielded  285  ng  of  SMRTbell  library,  with  an  average  size  distribution  of  10.4  kb 

 (Figure 5.11). 
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 Figure  5.11.  Library  quality  of  single-cell  library  post  HIT  sc-IsoSeq  concatenation.  Femto 
 Pulse  size  distribution  trace  of  concatenated  SMRTbell  library  generated  from  barcoded  mouse 
 whole bone-marrow cDNA. 
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 5.3.5.2. MAS-seq of PBMCs 

 The  viability  and  concentration  of  two  human  PBMC  aliquots  were  determined  using  the 

 Countess  2  automated  cell  counter  (see  Materials  and  Methods  section  2.2.1:  Human  PBMCs). 

 Cells  were  highly  viable,  with  approximately  97%  viability  measured  across  both  samples.  The 

 single-cell  suspensions  were  diluted  in  DPBS  medium  to  the  optimal  concentration  of  1100 

 cells/μL  and  loaded  onto  the  10X  Genomics  Chromium  NextGem  Chip  (M)  as  per  the 

 manufacturer’s  instructions  with  a  target  recovery  of  8000  cells.  Samples  were  processed  with 

 the  Chromium  Next  GEM  Single  Cell  3’  High-Throughput  (HT)  v3.1  kit  to  obtain  two 

 full-length  barcoded  cDNA  libraries.  The  resulting  cDNA  products  were  measured  on  a 

 Bioanalyzer  with  an  average  fragment  length  of  1.2  kb  and  total  yields  of  89.9ng  and  257.4ng 

 (see  Appendix  Supplementary  Figure  5.4).  25%  of  the  cDNA  generated  from  each  sample  was 

 used  for  Illumina  library  construction,  providing  60  ng  and  123  ng  respectively,  and  sequenced 

 on 1 SP lane of the Illumina NovaSeq. 

 To  first  generate  biotinylated  DNA  fragments  enabling  TSO-artefact  depletion  a  total  of  15ng 

 from  each  sample  was  PCR-amplified  with  MAS  capture  primers  that  selectively  bind  to 

 desired  cDNA  inserts.  After  5  cycles  of  amplification  and  bead-purification  a  total  of  372  ng 

 and  365  ng  cDNA  PCR  products  were  available  to  be  carried  into  TSO-artefact  depletion.  TSO 

 artefact  removal  was  performed  on  both  libraries  leaving  56  ng  and  45  ng  per  library.  This 

 difference  in  yield  means  ~86%  of  the  cDNA  library  was  discarded  during  TSO  artefact 

 removal,  double  the  predicted  ~40%  estimates  based  on  previous  work.  However,  bead 

 purification  is  known  to  result  in  some  loss  during  clean-up  steps,  so  as  much  as  >80%  of 

 libraries consisted of artefact inserts. 

 The  TSO-depleted  samples  were  then  arrayed  across  16  PCR  reactions  per  sample,  and 

 amplified  with  pre-mixed  MAS  array  primer  sets  for  a  total  of  9  cycles  based  on  the  cDNA 

 input  concentrations.  This  anneals  the  compatible  sequences  at  5’  and  3’  ends  of  cDNA 

 between  reactions  that  enable  cDNA  segment  concatenation  into  linear  arrays.  After  PCR 

 reactions  for  each  sample  were  pooled,  combining  each  array  into  a  single  reaction.  After 

 bead-purification  this  gave  a  total  of  13.2  ng  and  13.5  ng  of  each  cDNA  sample  which  were 

 used  as  input  for  downstream  concatenation  by  MAS  ligase.  The  final  concatenated  inserts 

 were  used  to  generate  SMRTbell  libraries  of  716  ng  and  842  ng  and  11.3  kbp  and  11.4  kbp 

 respectively (Figure 5.12). 
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 Figure  5.12.  Library  quality  of  single-cell  library  post  MAS-seq  concatenation  of  PBMC 
 cDNA.  Femto  Pulse  size  distribution  traces  of  concatenated  SMRTbell  libraries  generated  from 
 (a) PBMC Library 1 (b) PBMC Library 2. 
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 5.3.5.3. MAS-seq of FACS sorted mouse LK Cd150+ cells 

 10X  Genomics  offers  an  efficient  high-throughput  solution  for  scRNA-seq  across  various  cell 

 types.  However,  a  limitation  of  this  method  is  cell  loss  during  sample  loading  and  GEM 

 generation.  The  capture  rate  of  cells  with  the  10X  HT3'  v3.1  kit  is  65%,  requiring  a  minimum 

 of  3000  cells  per  reaction,  which  can  be  challenging  for  rare  cell  types.  For  instance,  it  is 

 estimated  that  mouse  bone  marrow  comprises  only  0.01%  HSCs,  and  approximately  5000  can 

 be  isolated  from  an  individual  mouse  (Challen  et  al.  ,  2009)  .  FACS  enrichment  prior  to  loading 

 is  a  popular  approach  to  improve  capture  rates  for  rare  cell  types,  whilst  also  selecting  for  live 

 cells  and  removing  debris.  By  enriching  the  population  of  interest,  sensitivity  and  specificity 

 can  be  increased.  To  test  the  compatibility  of  combining  FACS  population  enrichment  for  10X 

 Genomics  cDNA  generation,  cells  were  sorted  into  two  wells  of  a  96-well  plate  containing  7  μl 

 of  FACS  sorting  media  (see  Buffers  &  Solutions  2.1.2:  3).  Cells  were  gated  using  forward-  and 

 side-scatter  for  LKCd150  and  LSK  Cd150+  cells  (Figure  5.13).  A  total  of  3,600  and  800  LK 

 Cd150+  and  LSK  Cd150  were  sorted  into  wells  yielding  approximately  4,400  cells  per  sample 

 at  an  approximate  concentration  of  600  cells  per  μl,  which  is  the  recommended  optimal 

 concentration  to  capture  approximately  1000  cells.  Cells  were  immediately  loaded  onto  the  10X 

 Chromium Next GEM Chip (L) and run on the Chromium Controller with the L programme. 

 cDNA  generation  yielded  90  ng  and  145  ng  of  total  mass  for  samples  1  and  2  respectively,  with 

 mean  cDNA  fragment  lengths  of  771  bp  and  720  bp  (Appendix  Supplementary  Figure  5.5). 

 25%  of  cDNA  from  each  sample  was  used  for  Illumina  library  construction,  yielding  60  nM 

 and  65  nM  respectively,  and  were  sequenced  on  1  lane  of  MiSeq  v3  flow  cell  with  28-10-10-90 

 configuration. 

 TSO-artefact  depletion  and  MAS-seq  preparation  of  cDNA  were  performed  as  previously 

 described  using  the  recommended  input  of  15  ng  per  sample.  The  final  MAS-seq  library 

 concentrations  generated  were  214  and  106  ng,  and  the  mean  library  fragment  lengths  were 

 9271  bp  and  7134  bp  (Figure  5.14).  Libraries  were  sequenced  on  2  SMRT  cells  on  the  PacBio 

 Sequel IIe (8M, v2) with 30hr movies. 
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 Figure 5.13. Gating strategy for FACS sorting mouse LK Cd150+ and LSK Cd150+ cells 
 for 10X Genomics cDNA generation.  Gate P1 set uses  forward scatter (FSC) and side scatter 
 (SSC) signals to exclude debris from the sample based on size and granularity. FSC singlet and 
 SSC singlet gates (P2 and P3) are used to exclude doublets or aggregates of cells. Lin- isolates 
 haematopoietic progenitors which are negative for lineage-specific markers. cKit (Cd117) and 
 Sca-1 (Ly6a) are used to distinguish progenitors from immature progenitors and HSCs. Cd150 
 expression is used to enrich for HSCs and cells of the Mk lineage. 
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 Figure  5.14.  Library  quality  of  cDNA  libraries  generated  through  MAS-seq  concatenation 
 of  FACS  sorted  LK  Cd150+  single-cells:  Femto  Pulse  size  distribution  trace  of  final 
 concatenated SMRTbell libraries generated from single-cells (a) Sample 1 (b) Sample 2. 
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 5.3.6. scRNA-seq data processing of Illumina 10X Genomics data 

 Generating  short-read  single-cell  libraries  can  be  a  useful  complementary  approach  to  long-read 

 sequencing,  particularly  when  testing  new  sequencing  technologies  from  the  same  single  cells; 

 providing  validation,  complementarity,  efficiency,  and  benchmarking  advantages.  For  this 

 reason  Illumina  libraries  were  generated  for  every  experiment  to  provide  validation  and 

 complementary  information.  The  10X  genomics  scRNA-seq  data  were  first  pre-processed  using 

 CellRanger,  performing  read  alignment  to  the  mouse/human  genome,  cell  barcode 

 demultiplexing, gene count quantification and preliminary QC. 

 5.3.6.1 Mouse whole bone-marrow Illumina sequencing 

 This  experiment  yielded  a  total  of  1040  single  cells,  with  sequencing  coverage  capturing  an 

 average  of  1,528  genes  from  ~21K  reads  per  cell.  The  optimal  range  in  the  number  of  cells 

 captured  using  the  LT  10X  Genomics  chemistry  is  >100  and  <1000.  Inspection  of  the 

 distribution  of  UMIs  and  genes  across  the  cells  captured  provided  initial  insights  into  the 

 quality  of  the  data  and  the  number  of  cells  that  were  captured  during  the  experiment  (Figure 

 5.15A).  Most  cells  have  a  relatively  high  number  of  UMIs  and  genes,  indicating  that  they  were 

 successfully  captured  and  sequenced.  To  ensure  any  multiplets  and  low-quality  cells  captured 

 were  excluded  from  downstream  analysis,  only  cells  expressing  between  200-4K  genes  with  at 

 least  1K  reads  and  under  15%  mitochondrial  content  were  retained  (Figure  5.15B  and  C).  This 

 left 825 cells available for downstream analysis. 

 The  data  was  analysed  using  Seurat  following  the  same  workflow  described  previously  (see 

 Materials  &  Methods  2.3.5  -  2.3.8).  The  top  genes  with  the  highest  standard  variance  across  the 

 data  largely  consisted  of  canonical  markers  of  BM  cell  types  (Figure  5.14D).  No  cell-type 

 enrichment  was  performed  during  the  preparation  of  mouse  BM  so  it  is  unsurprising  that  genes 

 with  the  highest  standard  variance  are  markers  among  the  most  abundant  cells  in  BM. 

 Dimensional  reduction  was  performed  using  PCA  with  the  first  10  PCs,  Louvain  clustering 

 grouped  cells  in  9  clusters  (Figure  5.14E).  Clusters  were  then  annotated  using  the 

 TabulaMurisData  package  which  uses  pre-labelled  reference  scRNA-seq  data  from  the  Tabula 

 Muris  Consortium  (Tabula  Muris  Consortium  et  al.  ,  2018)  .  Using  the  “Marrow”  dataset  from 

 droplet  experiments  as  a  reference  in  combination  with  cluster  markers  identified  with  the 

 Seurat FindMarkers()  function  all clusters were assigned  to unique cell types (Figure 5.14F)  . 

 The  results  from  the  analysis  of  this  Illumina  dataset  represent  a  foundational  reference  of  the 

 cell  types  captured  in  this  experiment  and  their  viability  to  use  as  a  benchmark  to  the  PacBio 

 sequencing results. 
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 Figure  5.15.  10X  Genomics  scRNA-seq  analysis  of  whole  mouse  BM  from  Illumina 
 sequencing.  (a)  Distribution  of  the  number  of  UMIs  and  the  number  of  cells  (barcodes) 
 sequenced  (b)  Violin  plots  of  the  distribution  of  genes,  reads  and  percentage  of  mitochondrial 
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 content  (c)  Correlation  between  the  number  of  reads  (X-axis)  and  genes  captured  (Y-axis)  per 
 cell  from  Illumina  sequencing  (d)  Standard  variance  of  genes  across  the  dataset,  with  top  2000 
 genes  in  red  and  top  20  genes  annotated  (e)  UMAP  projection  of  single  cell  clusters  annotated 
 by  cell-type  (f)  Dot  plot  of  marker  expression  across  cell  clusters  (rows),  with  point  size 
 indicating  the  percentage  of  cells  expressing  genes  and  colour  opacity  showing  expression 
 level. 

 5.3.6.2. Human PBMC 10X Genomics Illumina 

 The  PBMC  Illumina  libraries  were  sequenced  on  1  SP  lane  of  the  NovaSeq  generating  on 

 average  227K  total  reads.  Read  alignment  was  performed  in  CellRanger,  where  ~95%  were 

 mapped  confidently  to  the  human  genome.  CellRanger  statistics  calculated  an  estimated  total  of 

 4,875  single  cells,  with  a  median  1,530  genes  from  a  mean  46,961  reads  per  cell.  On  the  other 

 hand,  sample  2  captured  7,384  cells,  1,562  genes  and  a  median  32,174  reads  per  cell.  Data  QC 

 was  performed  to  select  high-quality  cells  by  removing  cells  with  >15%  of  reads  mapping  to 

 mitochondrial  genes.  In  addition,  the  lower  and  upper  bounds  for  the  number  of  genes  per  cell 

 were  calculated  based  on  the  0.01  (lower  boundary)  and  0.99  (higher  boundary)  percentiles  of 

 the  distribution  of  all  genes  in  each  experiment.  Cells  were  only  retained  if  they  expressed  more 

 genes  than  the  lower  boundary  and  less  than  the  upper  boundary.  This  left  4,506  and  7,061  cells 

 for  downstream  analysis  from  samples  1  and  2  accordingly.  Removing  the  poor-quality  samples 

 increased  the  mean  number  of  genes  per  cell  to  1638  and  1841  respectively  and  improved  the 

 correlation  between  read  depth  and  genes  detected  due  to  higher  consistency  across  the  retained 

 cells (Figure 5.16A and B). 

 The  two  datasets  were  normalised  and  then  integrated  using  IntegrateData().  Data  integration 

 was  accomplished  by  identifying  cross-dataset  anchors  in  the  top  2000  most  variable  features 

 across  both  datasets.  This  was  critical  to  enable  the  datasets  to  be  merged,  as  sample  identity 

 was  identified  as  a  dominating  batch  effect  of  downstream  analysis  and  clustering  (Figure 

 5.16C  and  D).  After  data  integration,  scaling  and  PCA  were  conducted  to  determine  the  number 

 of  components.  Dimensionality  reduction  was  used  to  reduce  the  dataset  into  the  first  20  PCs. 

 Cells  were  grouped  into  clusters  as  previously  described  and  annotated  by  cell  type  using  the 

 SingleR()  package  (Aran  et  al.  ,  2019)  .  This  matched  the  expression  profile  of  each  individual 

 cell  to  the  corresponding  cell-type  using  the  HumanPrimaryCellAtlasData()  reference  dataset 

 (Regev  et  al.  ,  2017)  .  The  function  outputs  a  matrix  of  scores  indicating  the  similarity  of  each 

 cell  to  every  cell-type  in  the  reference  dataset.  Then  the  cell-type  with  the  best  similarity  score 

 based  on  its  average  expression  profile  is  assigned  to  each  cell.  Overall,  this  method  assigned 

 17  cell  types  to  the  dataset,  consisting  of  primarily  T  cells,  B  cells,  natural  killer  (NK)  cells  and 

 monocytes  (Figure  5.16E);  found  at  highly  consistent  proportions  across  the  two  samples 

 (Figure 5.16F). 
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 Figure  5.16.  10X  Genomics  PBMC  analysis  from  Illumina  sequencing.  (a)  Violin  plots  of  the 
 distribution  of  the  percentage  of  mitochondrial  content  in  cells  post-QC  separated  by  sample  (b) 
 Correlation  between  the  number  of  reads  and  genes  captured  per  cell  coloured  by  sample  ID  (c)  UMAP 
 of  single  cells  coloured  by  sample  prior  to  dataset  integration  (d)  UMAP  of  single  cells  coloured  by 
 sample  post  dataset  integration  (e)  UMAP  projection  of  single  cell  clusters  annotated  by  cell-type  (f) 
 Stacked bar plot of the proportion of cells across cluster populations separated by sample ID. 
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 5.3.6.3. Mouse FACS sorted LK Cd150+ 10X Genomics Illumina 

 The  libraries  generated  with  the  10X  Genomics  3’  LT  chemistry  from  FACS  sorted  LK  Cd150+ 

 mouse  BM  cells  were  sequenced  on  1  lane  of  the  MiSeq  v3  flow  cell.  The  total  number  of  read 

 pairs  that  were  assigned  to  each  library  in  demultiplexing  was  3.6M  and  17M  and  80%  mapped 

 with  high  confidence  to  the  mouse  genome.  However,  data  pre-processing  and  QC  in 

 CellRanger  revealed  both  samples  had  low  fractions  of  valid-barcodes,  which  are 

 confidently-mapped-to-transcriptome  reads  with  cell-associated  barcodes  (55.8%  and  65.7%). 

 The  estimated  number  of  cells  captured  in  each  experiment  was  unexpectedly  low  for  both 

 libraries,  capturing  23  and  50  cells  in  each  sample.  This  was  surprising,  given  the  concentration 

 of  cDNA  obtained  from  each  library  was  not  unusually  low  (90  ng  and  145  ng),  and  the  final 

 yield  and  size  distributions  for  both  libraries  were  comfortably  within  the  optimal  range  (see 

 Appendix  Supplementary  Figure  5.5).  FACS  reports  from  the  experiment  confirmed  ~4,400 

 cells  were  sorted  for  each  sample,  with  no  indications  of  poor  quality  cDNA  or  issues  with 

 library  preparation;  it  suggests  a  high  number  of  cells  may  have  been  lost  in  the  transfer  from 

 wells of the 96-well plate to the chip during loading. 

 To  assess  whether  the  cells  recovered  were  viable  for  downstream  analysis,  the  datasets  for 

 each  sample  were  processed  in  Seurat  as  previously  described.  Notably,  of  the  73  captured  in 

 total  only  3  cells  were  excluded  during  QC  filtering  based  on  the  percentage  of  mitochondrial 

 content  exceeding  15%,  with  70  cells  exhibiting  a  viable  signature  (Figure  5.17A).  On  average 

 3430  genes  were  detected  per  cell,  from  ~18K  counts  per  cell  and  a  strong  correlation  between 

 the  number  of  features  and  counts  for  both  samples  (Figure  5.17B  and  D).  Inspection  of  the 

 genes  with  the  highest  variance  across  the  data  revealed  expression  of  genes  canonical  to  cell 

 types  within  the  LK  Cd150+  compartment,  including  Mk-marker  Pf4,  Ery-marker  Car1  (Figure 

 5.17C).  This  confirms  that  despite  the  low  cell  recovery  of  the  experiment  some  viable  LK 

 Cd150+ cells were captured. 

 Due  to  the  size  of  the  dataset  the  ability  to  interpret  downstream  analyses  was  limited.  Small 

 datasets  are  more  susceptible  to  noise  and  prone  to  overfitting  which  obscures  the  underlying 

 patterns  in  the  data  and  can  result  in  the  identification  of  artificial  clusters.  Dimensionality 

 reduction  was  performed  using  UMAP  to  project  cells  into  a  latent  space,  from  which  two 

 major  clusters  were  distinguished.  These  two  clusters  were  largely  driven  by  a  difference  in 

 sequencing  coverage  whilst  cell-type  specific  signatures  can  be  seen  across  cells  in  clusters  1-3 

 (Figure 5.17E and F). 

 These  results  revealed  a  low  recovery  of  cells,  suggesting  that  further  protocol  development  is 

 required to refine any future 10X Genomics experiments from FACS-sorted cell populations. 

 240 



 Figure  5.17.  10X  Genomics  short-read  analysis  of  FACS  sorted  LK  Cd150+  single-cells.  (a) 
 Violin  plots  of  the  distribution  of  the  percentage  of  mitochondrial  content  in  cells  post-QC  separated  by 
 sample  (b)  Correlation  between  the  number  of  reads  and  genes  captured  per  cell  coloured  by  sample  (c) 
 Standard  variance  of  genes  across  the  dataset,  the  2000  genes  with  highest  standard  variance  (red)  (d) 
 Correlation  between  the  number  of  reads  and  mitochondrial  content  per  cell  coloured  by  sample  (e) 
 UMAP  projection  of  single-cells  coloured  by  cluster  identity  (f)  Dot  plot  of  Mk  and  myelo-erythroid 
 gene  expression  across  cell  clusters  (rows),  where  point  size  corresponds  to  the  percentage  of  cells  with 
 expression detected across genes (columns), and colour opacity signifies expression level. 
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 Table 5.1.  Experiment summary of all 10X Genomics  Illumina scRNA-seq libraries. 
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 5.3.7. Exploring single cell PacBio sequencing data generated from two different cDNA 
 concatenation approaches 

 2.3.7.1 HITsc-IsoSeq PacBio sequencing of mouse BM single cells 

 A  single  cell  IsoSeq  library  generated  using  an  adapted  version  of  the  HIT  scIsoSeq  protocol 

 and  was  sequenced  with  PacBio  on  one  SMRT  cell  of  the  Sequel  II  instrument  (8M  v2)  with  a 

 30hr  movie  and  2-hour  pre-extension.  The  SMRT  Link  Circular  Consensus  Sequencing  (CCS) 

 pipeline  was  used  to  obtain  highly  accurate  consensus  reads  from  multiple  passes  of  DNA 

 molecules,  generating  CCS  reads.  Briefly,  raw  sequencing  data  is  processed  using  PacBio's 

 base  caller  which  assigns  a  quality  score  to  each  base  of  the  sequencing  read.  A  consensus  read 

 is  generated  by  circularising  the  subreads  and  using  multiple  passes  to  generate  a  consensus 

 sequence,  followed  by  filtering  of  CCS  reads  based  on  quality  metrics  such  as  read  length, 

 number  of  passes,  and  quality  score.  CCS  Reads  with  a  quality  value  equal  to  or  greater  than  20 

 are  classified  as  HiFi  Reads,  with  a  raw  accuracy  of  up  to  99.99%  after  error  correction  and 

 polishing.  This  library  yielded  a  total  189,339  HiFi  reads,  with  a  median  read  quality  (Q)  of 

 Q34  at  an  average  of  5.5  kb  read  length  from  ~19  passes  per  molecule  on  average  (Figure 

 5.16A and B). 

 The  read-length  distribution  observed  is  largely  consistent  with  the  size  distribution  recorded 

 for  the  library  prior  to  sequencing  (Figure  5.11),  and  most  reads  had  a  predicted  accuracy  well 

 above  the  Q  threshold  for  HiFi  quality  (Figure  5.18A).  While  the  reads  obtained  were  of  high 

 quality,  the  library  overall  displayed  signs  of  low  loading  efficiency,  with  only  20%  of 

 polymerase-template  complexes  active  during  sequencing.  This  indicates  that  fewer 

 polymerases  successfully  bound  to  the  template  resulting  in  lower  sequencing  output,  reflected 

 by  the  lower  number  of  reads  obtained  than  anticipated  (target  yield  was  3M  molecules).  The 

 mean  polymerase  read  length  was  also  shorter  at  32.6  kb,  indicating  the  polymerase  enzyme 

 was  not  able  to  read  through  the  entire  template  during  sequencing.  This  could  be  due  to  several 

 factors, such as low template concentration or technical issues during sequencing. 

 Altogether  the  sequencing  metrics  indicated  the  HIT  sc-IsoSeq  library  was  underloaded,  which 

 caused  low  sequencing  efficiency.  However,  sufficient  levels  of  high-quality  data  were 

 generated  to  allow  demultiplexing  of  10X  barcodes,  enabling  the  assignment  of  reads  to  single 

 cells  and  further  downstream  analysis.  Segmentation  of  concatemers  into  cDNA  reads  was 

 performed  using  Longbow  ;  a  demultiplexing  command-line  tool  as  part  of  the  IsoSeq  analysis 

 suite.  Longbow  employs  a  generative  modelling  approach  to  accurately  annotate  adapter  and 

 transcript  boundaries  and  in  turn  segments  annotated  reads  for  use  with  other  downstream  tools. 

 This  revealed  the  distribution  of  concatemers  per  molecule,  which  varied  from  1  (ie. 

 non-concatenated) to >10 (Figure 5.18C). The average concatenation achieved was 4.7-fold. 
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 Figure  5.18.  HIT  sc-IsoSeq  long-read  sequencing  of  concatenated  cDNA  from  mouse  bone  marrow.  (a)  Heat  map  of  CCS  Read  lengths  and 
 predicted  accuracy  from  PacBio  sequencing  (b)  Distribution  of  HiFi  Reads  and  other  CCS  Reads  by  the  number  of  passes  (c)  Histogram  the  counts 
 distribution  across  concatemers  per  molecule  (d)  Distribution  of  transcript  lengths  after  read  segmentation  (e)  Percentage  of  transcripts  across 
 SQANTI3 isoform structural categories (f) Number of isoforms detected per gene. 
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 Primers  and  polyA  tails  were  used  to  orient  the  read  into  5’  –  3’  orientation  and  then  trimmed 

 from  the  final  transcript  reads.  This  was  followed  by  extraction  of  single-cell  barcode  and  UMI 

 information.  Reads  were  then  mapped  to  the  mouse  genome  and  classified  against  the 

 GENCODE  transcript  annotation  (Frankish  et  al.  ,  2020)  .  SQANTI3  was  applied  following  the 

 previously  described  method  and  an  isoform-level  single-cell  matrix  was  generated  which 

 served as the output for downstream analysis in  Seurat  . 

 After  deconcatenation,  the  average  transcript  length  was  approximately  1.2  kb  (Figure  5.18D). 

 In  the  HITsc  IsoSeq  data,  a  total  of  10,664  unique  genes  and  33,963  unique  isoforms  were 

 identified  by  SQANTI3  .  These  isoforms  were  classified  into  various  structural  categories,  as 

 illustrated  in  Figure  5.16E.  The  majority  of  genes  (over  35%)  were  found  to  have  a  single 

 isoform.  Notable  proportions  of  genes  with  multiple  isoforms  were  also  detected  across  the 

 single  cell  dataset,  indicating  additional  levels  of  transcript  diversity  and  highlighting  the 

 heterogeneity in isoform expression across genes (Figure 5.18F). 

 Among  the  isoforms,  the  largest  structural  category  observed  in  this  dataset  consisted  of  FSMs, 

 with  over  13,000  transcripts  matching  all  of  their  reference  sequences  in  the  mouse  annotation. 

 This  shows  a  significant  number  of  isoforms  that  align  well  with  known  references  were 

 captured.  Moreover,  the  analysis  revealed  a  comprehensive  coverage  of  splice  junctions,  with 

 approximately  75,000  junctions  detected.  Of  these  junctions  8%  were  classified  as  novel, 

 indicating the presence of previously unreported splice junctions within the dataset. 

 Seurat  analysis  of  the  isoform  expression  matrix  was  performed  following  the  standard 

 analytical  workflow  to  see  how  this  data  translated  at  the  single  cell  level.  825  single  cells  were 

 retained  after  QC,  filtering  out  cells  which  had  mitochondrial  content  of  >10%  and  a  read  count 

 of  <  100.  The  average  number  of  isoforms  detected  per  cell  was  200,  with  a  strong  correlation 

 between  the  number  of  isoforms  and  reads  detected  across  cells  (Figure  5.19A).  Multiple 

 isoforms  of  the  same  genes  were  identified  within  the  first  4  components  of  PCA,  indicating 

 that  isoform  diversity  contributes  towards  driving  cell  variability  (Figure  5.19B).  Single  cell 

 Louvain  clustering  was  performed  identifying  6  populations  of  cells  based  on  isoform-level 

 signatures.  Using  the  TabulaMuris()  reference  dataset  of  mouse  BM  data  as  performed  in  the 

 Illumina  single  cell  data  analysis,  cell  cluster  annotation  was  achieved  and  found  to  be 

 consistent with the short-read data (Figure 5.19C). 

 Altogether  these  results  demonstrate  HITsc  IsoSeq  is  a  viable  strategy  for  long-read  sequencing 

 from  single  cells  and  produces  isoform  resolved  single-cell  data.  Higher  throughput  sequencing 

 from  single  cells  was  achieved  with  an  effective  concatenation  factor  of  4.7,  with  concatemer 

 molecules of variable lengths being formed. 
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 Figure 5.19. HITsc-IsoSeq analysis of mouse BM single cells.  (a) Violin plots of distribution of single  cell isoform counts and isoform-level features 
 across cell clusters, and the correlation between isoform features and isoform counts (b) PC loadings of top 4 PCs from single cell data show multiple 
 isoforms of genes contribute to first PCs driving the variability among the cells (c) UMAP projections of isoform-resolved single cell RNAseq data 
 coloured by cell type and distribution of count levels in single cells. 
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 5.3.7.2. MAS-seq from human PBMCs 

 To  assess  the  quality  of  sequencing  data  from  single-cell  MAS-seq  PBMC  libraries,  sequencing 

 data  were  processed  using  the  SMRT  Link  software  to  obtain  initial  statistics  of  the  raw 

 sequencing results. 

 The  sequencing  efficiency  of  the  two  libraries  differed  greatly.  Library  1  generated  1.9  million 

 HiFi  reads  with  a  mean  length  of  116  kb,  while  library  2  only  generated  227,300  HiFi  reads 

 with  a  mean  length  of  82  kb,  resulting  in  an  almost  9-fold  difference  in  the  HiFi  read  yield. 

 Although  both  libraries  had  an  equal  number  of  productive  zero-mode  waveguides  (ZMW) 

 which  contained  the  DNA  polymerase  enzyme  and  template  DNA  during  sequencing,  only  9% 

 of  ZMW  in  library  2  detected  high-quality  reads  compared  to  50%  in  library  1.  This  indicates 

 that  there  may  be  underlying  differences  in  library  quality  or  characteristics  that  were  not 

 apparent  during  library  quality  control  prior  to  sequencing.  This  initial  QC  of  PBMC  MAS-seq 

 libraries  revealed  a  noticeable  discrepancy  in  sequencing  efficiency  despite  being  prepared  and 

 sequenced  under  the  same  conditions.  Illumina  sequencing  data  generated  from  the  cDNA  used 

 for  library  preparation  did  not  indicate  any  difference  in  cell  viability  between  the  two  samples. 

 Based  on  this  and  the  difference  in  high-quality  read  detection  in  ZMWs,  the  difference  in 

 sequencing efficiency is more likely attributable to differences in library loading. 

 In  terms  of  HiFi  read  length,  sample  1  had  an  average  of  12.5  kb  while  sample  2  had  an  average 

 of  11.5  kb,  both  libraries  had  a  median  accuracy  prediction  score  of  34  (Figures  5.18A  and 

 5.19A).  The  difference  in  read  length  can  be  attributed  to  the  number  of  passes  across  reads, 

 with  library  2  having  on  average  18  passes  compared  to  16  in  library  1  (Figures  5.20C  and 

 5.21C). 

 Each  multiplexed  array  was  split  into  individual  sequence  segments  (S  reads)  corresponding  to 

 their  original  cDNA  fragments.  The  segmentation  of  a  total  of  1.9  million  and  227,000  reads 

 from  samples  1  and  2,  yielded  29.3  and  3.4  million  S  reads,  of  ~750  bp  average  read  lengths. 

 Concatenation  of  MAS-seq  libraries  was  highly  consistent,  with  between  82%  -  85%  of  reads 

 with  full  MAS  arrays  and  a  concatenation  factor  of  15  concatemers  per  molecule  (Figures 

 5.20B, D and 5.21B, D), demonstrating the effectiveness of targeted array formation. 

 Demultiplexing  cell  barcodes  from  the  PacBio  S  reads  estimated  4773  and  7277  cells  captured 

 in  each  experiment,  consistent  with  the  number  of  cells  estimated  from  Illumina  libraries.  Of  all 

 detected  reads,  95%  were  assigned  to  single  cells,  giving  a  total  of  5495  reads  per  cell  in  PBMC 

 sample  1  and  only  434  in  sample  2.  This  disparity  between  the  two  libraries  is  also  evident  by 

 the  median  number  of  UMIs  transcripts  per  cell,  or  the  number  of  distinct  RNA  molecules 

 captured and sequenced from each cell, 3788 and 324 for library 1 and 2 respectively. 
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 F  igure  5.20.  MAS-seq  long-read  sequencing  of  concatenated  cDNA  from  PBMC  sample  1.  (a)  Heat  map  of  CCS  Read  lengths  vs  predicted 
 accuracies  (Q  scores)  (b)  Number  of  reads  across  MAS  array  lengths  (c)  Distribution  of  HiFi  Reads  and  other  CCS  Reads  by  number  of  passes  (d) 
 Number  of  reads  against  concatemer  read  lengths  (e)  Gene  saturation  plot:  Total  number  of  unique  genes  detected  across  reads  sequenced  (f) 
 Percentage of transcripts across SQANTI3 isoform structural categories. 
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 F  igure  5.21.  MAS-seq  long-read  sequencing  of  concatenated  cDNA  from  PBMC  sample  2.  (a)  Heat  map  of  CCS  Read  lengths  vs  predicted 
 accuracies  (Q  scores)  (b)  Number  of  reads  across  MAS  array  lengths  (c)  Distribution  of  HiFi  Reads  and  other  CCS  Reads  by  number  of  passes  (d) 
 Number  of  reads  against  concatemer  read  lengths  (e)  Gene  saturation  plot:  Total  number  of  unique  genes  detected  across  reads  sequenced  (f) 
 Percentage of transcripts across SQANTI3 isoform structural categories. 
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 Gene  saturation  plots  were  used  to  visualise  the  relationship  between  sequencing  depth  and  the 

 number  of  unique  genes  detected  for  both  libraries.  Where  the  plot  shows  a  plateau  it  indicates 

 adding  further  reads  gives  diminishing  returns  with  regard  to  capturing  additional  unique  genes. 

 The  total  number  of  unique  genes  was  30,750  in  sample  1  and  17,014  in  sample  2  (Figures 

 5.20E  and  5.21E).  The  difference  was  greater  at  the  transcript  level,  where  the  total  number  of 

 known unique transcripts detected in sample 1 was 331,684 and only 80,095 in sample 2. 

 SQANTI3  transcript  analysis  was  performed  as  previously  described  for  each  library,  producing 

 isoform  annotations  of  the  transcripts  captured  within  the  data  (Tardaguila  et  al.  ,  2018)  .  ISMs 

 were  the  most  prevalent  structural  category  isoform  identified  for  both  PBMC  libraries 

 followed  by  FSM  isoforms  (Figures  5.20F  and  5.21F);  showing  that  a  high  proportion  of 

 detected isoforms were well supported by existing annotations. 

 To  perform  downstream  expression  analyses  across  single  cells,  isoform-level  and  gene-level 

 expression  matrices  for  each  PBMC  dataset  were  processed  using  Seurat.  This  created  single 

 objects  for  each  PBMC  library  but  was  split  into  two  assays  with  gene-level  data  as  the  “RNA” 

 assay  and  isoform-level  expression  data  stored  within  the  “Iso”  assay.  Single  cell  QC  was 

 performed  for  each  assay  individually,  excluding  cells  which  did  not  express  the  number  of 

 genes  within  the  lower  threshold  (10th  percentile  of  the  number  of  features  expressed)  and 

 upper  threshold  (99th  percentile  of  the  number  of  features  expressed)  calculated  for  each 

 object.  This  retained  a  total  of  4242  cells  in  PBMC  sample  1  and  6528  cells  in  sample  2  for 

 downstream  analysis.  The  average  number  of  counts  across  each  of  the  gene-level  datasets 

 were  1099  and  102  counts  per  cell,  the  average  counts  per  cell  at  the  isoform-level  were  1017 

 and  114  for  PBMC  1  and  2  respectively  (Figures  5.22A  and  5.23A).  This  drastic  difference 

 seen  in  the  number  of  counts  per  cell  was  equally  observed  in  feature  detection,  and  was 

 expected  based  on  the  sequencing  data  QC.  Integration  of  the  two  datasets  was  attempted, 

 however  even  after  the  integration  of  the  dataset,  the  sample  identity  was  a  major  batch  effect, 

 dominating  the  analysis  and  cluster  identification  (Appendix  Supplementary  Figure  5.8).  For 

 this reason, each PBMC library was analysed independently. 

 Following  the  standard  Seurat  workflow  previously  described,  the  data  were  normalised, 

 scaled,  and  reduced  into  fewer  dimensions  using  the  top  most  variable  features  for  each  dataset. 

 Single  cell  clustering  at  the  gene-  and  isoform-levels  was  performed  for  each  dataset  by  setting 

 the  appropriate  assay  as  input  for  clustering  (Figures  5.22B  and  5.23B).  Isoform-level 

 clustering recapitulated clusters found at the gene level for both datasets. 
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 Figure 5.22. MAS-seq analysis of PBMC sample 1.  (a)  Violin plots of the distribution of single-cell gene and isoform counts and features across cell 
 clusters, and the correlation between isoform features and isoform counts (b) UMAP projections of gene- and isoform-level clusters coloured by cluster 
 identity (c) UMAP projection annotated by cell type annotations and distribution of count levels in single cells. 
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 Figure 5.23  .  MAS-seq analysis of PBMC sample 2.  (a)  Violin plots of the distribution of single cell gene and isoform counts and features across cell 
 clusters, and the correlation between isoform features and isoform counts (b) UMAP projections of gene- and isoform-level clusters coloured by cluster 
 identity (c) UMAP projection annotated by cell type annotations and distribution of count levels in single cells. 

 252 



 Clusters  were  annotated  into  cell  types  using  the  same  approach  as  implemented  for  short-read 

 data  analysis,  using  the  HumanCellAtlas()  BM  reference  dataset  to  estimate  cell  type 

 ontologies.  This  identified  a  total  of  6  cell-types  in  each  PBMC  dataset,  and  corroborated  the 

 populations identified in the short-read data of the same libraries (Figures 5.22C and 5.23C). 

 Notably,  single  cell  clustering  was  highly  influenced  by  the  distribution  of  counts  expressed  by 

 cells,  with  cells  containing  the  highest  counts  being  grouped  into  single  populations.  This  batch 

 effect  was  apparent  across  both  samples,  but  was  particularly  evident  in  PBMC  sample  2, 

 underscoring  the  significant  impact  sequencing  coverage  has  on  single  cell  cluster 

 identification. 

 Overall,  these  data  show  the  output  of  MAS-seq  library  construction  and  sequencing  of  human 

 PBMCs, enabling gene- and isoform-level analysis of single cells. 

 5.3.7.3. MAS-seq from FACS sorted LK Cd150+ cells 

 Sequencing  of  PacBio  MAS-seq  libraries  and  Illumina  10X  libraries  from  FACS  sorted  LK  and 

 LSK  Cd150+  cells  was  performed  in  parallel.  PacBio  libraries  generated  an  average  total  of  5.8 

 million  polymerase  reads  in  each  sample,  yielding  between  1.9-2  million  HiFi  reads  from  an 

 average  of  15  HiFi  passes.  This  output  is  consistent  with  metrics  observed  from  PBMC  library 

 1,  containing  ~4773  cells  while  these  libraries  were  expected  to  contain  ~1K  cells  (Figures 

 5.24A-B  and  5.25A-B).  The  polymerase  reads  translated  to  a  total  28,865,911  and  32,071,873 

 S-reads  across  the  two  samples,  which  were  on  average  617  bp  and  386  bp  in  length 

 respectively.  This  difference  in  S  read  length  corresponds  to  shorter  concatemer  units  in  sample 

 2  compared  to  sample  1,  which  corroborates  the  overall  shorter  MAS  array  observed  prior  to 

 (Figure 5.14) and post sequencing (Figures 5.24A and 5.25A). 

 As  observed  for  both  PBMC  libraries,  MAS-seq  generated  concatenated  libraries  with  a  narrow 

 distribution  in  the  number  of  concatemers  per  molecule,  with  ~80%  and  92%  of  reads  forming 

 full-length  MAS  arrays.  This  is  equal  to  a  concatenation  factor  of  14.5  and  15.8  for  libraries  1 

 and  2  respectively,  calculated  based  on  the  mean  array  size  (Figures  5.24C  and  5.25C).  A 

 higher  number  of  partial  arrays  (<  x16  concatenation)  were  generated  in  sample  1,  with  ~  5%  of 

 reads  attributed  to  15-fold  arrays  and  approximately  12%  of  all  reads  in  arrays  of  <=  10 

 segments  per  molecule  (Figure  5.24D).  The  source  behind  this  higher  proportion  of  incomplete 

 arrays  is  at  present  unknown,  but  factors  including  high  input  cDNA  concentration  and  large 

 size  of  fragments  are  known  factors  that  contribute  to  lower  concatenation  efficiency.  With  this 

 said,  these  data  demonstrate  efficient  cDNA  concatenation  from  FACS-sorted  LK  and  LSK 

 Cd150+ single cells. 
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 Despite  the  lack  of  indications  from  PacBio  sequencing  data  QC,  the  recovery  of  cells  was 

 unexpectedly  low  for  both  samples  -  with  only  17  and  22  cells  estimated  per  library  after 

 demultiplexing  barcodes  (Appendix  Supplementary  Figure  5.7).  This  meant  that  only  51%  - 

 57%  of  total  reads  were  found  in  cells  and  was  an  unexpected  finding  given  FACS  sort  reports 

 and  all  preceding  QC  steps  to  determine  library  quality  (both  post  cDNA  generation  and  post 

 MAS-seq  library  construction)  gave  no  indication  of  poor  cell  recovery  from  the  10X 

 Genomics  experiment.  As  libraries  were  sequenced  under  the  expectation  they  comprised 

 cDNA  from  approximately  1K  cells  per  sample,  this  meant  that  these  cells  were  sequenced  at  a 

 significantly  high  sequencing  depth,  on  average  obtaining  602,482  and  429,834  reads  per  single 

 cell  across  samples  1  and  2.  These  reads  equated  to  a  median  of  51,588  and  52,723  UMIs  being 

 detected per cell, capturing on average >11K genes per cell (Figures 5.24E and 5.25E). 

 The  QC  and  annotations  of  transcripts  based  on  SQANTI3  categories  were  in  agreement  with 

 the  demultiplexing  statistics.  After  de-duplication  and  the  exclusion  of  transcripts  classified  as 

 potential  artefacts,  a  total  of  11,230  and  10,785  unique  genes  (equating  to  38,069  and  35,669 

 total  unique  transcripts)  were  identified  across  the  two  samples.  In  terms  of  the  isoform 

 distribution,  on  average  83%  of  isoforms  detected  between  the  two  samples  were  classified  as 

 FSM  and  ISM,  meaning  most  of  the  transcripts  detected  are  well  supported  by  existing 

 references (Figures 5.24F and 5.25F). 

 Across  both  libraries,  3401  and  2830  novel  non-canonical  (NNC)  isoforms  were  detected,  these 

 are  isoforms  which  deviate  from  the  standard  canonical  annotation  of  a  gene.  These  isoforms 

 may  represent  previously  unannotated  transcripts  or  rare  events  that  are  not  well-characterised 

 in canonical gene annotations, representing interesting targets for future investigations. 

 Single  cell  resolution  analyses  were  performed  in  Seurat  as  previously  described.  The  same 

 viable  single  cells  that  were  analysed  from  Illumina  data  were  retained  for  downstream  analysis 

 of  PacBio  single  cell  data  using  cell  barcodes  to  identify  the  correct  cells,  and  included  a  total 

 of  70  cells  across  both  samples  (Figure  5.26).  Visualisation  of  the  number  of  counts  and 

 features  detected  in  each  sample  both  at  the  gene-  and  isoform-level  showed  an  average  of 

 29,000  counts  and  5753  genes  captured  across  single  cells  (Figure  5.26A  and  B).  PCA  and 

 dimensionality  reduction  based  on  the  most  variable  genes  (top  2000)  across  all  cells  revealed 

 gene-level  data  from  single  cells  exhibited  the  greatest  similarity  and  clustered  together  when 

 plotted  on  the  first  2  PCs.  The  distance  between  data  points  in  PCA  reflects  their  similarity  or 

 dissimilarity  in  terms  of  expression  signatures.  This  result  shows  that  isoform-level  expression 

 was  more  variable  between  the  two  samples  than  gene-level  expression  (Figure  5.26).  The 

 small  size  of  the  dataset  meant  that  limited  tertiary  analyses  could  be  performed,  however  it 

 was  possible  to  perform  exploratory  analysis  of  genes  known  to  be  expressed  within  cells  of  the 
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 LK  Cd150+  compartment.  For  example,  isoform-level  data  revealed  three  isoforms  of  Mpl 

 were expressed across single cells (Figure 5.26D). 

 Chapter 5: Part 2 - Results Summary: 

 In  summary  these  results  show  that  a  low-cell  yield  was  obtained  from  both  experiments, 

 suggesting  future  work  that  aims  to  combine  FACS  cell  type  enrichment  prior  to  10X  Genomics 

 sample  loading  will  require  protocol  optimisations.  The  cells  captured  however  were  in  the 

 most  part  viable  LK  Cd150+  cells,  with  only  3  cells  removed  during  QC.  With  adjustments  to 

 sample  suspension  loading,  this  data  shows  MAS-seq  from  FACS  sorted  cell  populations  is  a 

 successful strategy to obtain gene and isoform level expression from single cells. 
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 Figure  5.24.  MAS-seq  long-read  sequencing  of  concatenated  cDNA  from  FACS  sorted  LK  Cd150+  sample  1.  (a)  Heat  map  of  CCS  Read  lengths 
 vs  predicted  accuracies  (Q  scores)  (b)  Distribution  of  HiFi  reads  by  number  of  passes  (c)  Number  of  reads  across  MAS  array  lengths(d)  Number  of 
 reads  against  concatemer  read  lengths  (e)  Gene  saturation  plot:  Total  number  of  unique  genes  detected  across  reads  sequenced  (f)  Percentage  of 
 transcripts across  SQANTI3  isoform structural categories. 

 256 



 F  igure  5.25.  MAS-seq  long-read  sequencing  of  concatenated  cDNA  from  FACS  sorted  LK  Cd150+  sample  2.  (a)  Heat  map  of  CCS  Read  lengths 
 vs  predicted  accuracies  (Q  scores)  (b)  Distribution  of  HiFi  reads  by  number  of  passes  (c)  Number  of  reads  across  MAS  array  lengths  (d)  Number  of 
 reads  against  concatemer  read  lengths  (e)  Gene  saturation  plot:  Total  number  of  unique  genes  detected  across  reads  sequenced  (f)  Percentage  of 
 transcripts across  SQANTI3  isoform structural categories. 
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 Figure  5.26.  Gene  and  isoform  expression  analysis  from  the  same  FACS  sorted  LK 
 Cd150+  single  cell  libraries  sequenced  with  PacBio.  (a)  Violin  plots  showing  the  distribution 
 of  total  counts  across  each  modality  and  dataset.  (b)  Violin  plots  showing  the  distribution  of 
 total  features  across  each  modality  and  dataset  .  (c)  PCA  of  all  datasets  labelled  by  their 
 modality.  (d)  UMAP  projection  of  the  datasets  labelled  by  the  normalised  expression  levels  of 
 isoforms of Mpl. 
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 Table  5.2.  Experiment  summary  of  all  PacBio  libraries  made  from  concatenated  10X 

 cDNA. 
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 5.4 Discussion 

 RNA-seq  that  utilises  short-  next  generation  sequencing  (NGS)  or  long-read  sequencing  is  a 

 powerful  tool  to  enable  interrogation  of  the  transcriptional  diversity  among  cells.  Historically, 

 NGS  has  been  more  reliable  in  expression  quantification  but  limited  in  its  ability  to  study  AS 

 events  due  to  generating  reads  with  poor  connectivity  across  splice  junctions  (Trapnell  et  al.  , 

 2010)  .  The  advancements  in  long-read  sequencing  methods  such  as  PacBio  and  Oxford 

 Nanopore  provide  the  unique  ability  to  sequence  full-length  isoforms,  and  in  particular,  PacBio 

 IsoSeq  can  now  produce  reads  with  over  99.99%  accuracy.  This  removes  the  need  for 

 reconstructing  possible  transcript  isoforms  from  fragmented  short-reads  and  can  improve  our 

 understanding  of  alternatively  spliced  isoforms  of  complex  genes  (Steijger  et  al.  ,  2013;  Chen  et 

 al.  ,  2019)  .  With  the  advances  over  the  past  10  years  that  enable  accurate  sequencing  of 

 long-range  exon  connectivity  we  are  now  beginning  to  learn  the  full  extent  of  alternative 

 isoform  expression  (Sharon  et  al.  ,  2013;  De  Paoli-Iseppi,  Gleeson  and  Clark,  2021)  .  The 

 expression  of  different  RNA  isoforms  has  been  shown  to  drive  cellular  differentiation  and 

 regulate  cell  function,  while  aberrant  splicing  contributes  to  various  diseases  and  oncogenic 

 progression  (Trapnell  et al.  , 2010; Graubert  et al.  ,  2011; Haferlach  et al.  , 2014)  . 

 This  chapter  describes  several  approaches  that  were  implemented  to  study  isoform  expression 

 from  single  cells.  One  of  these  strategies  was  the  generation  of  long-read  libraries  from  cDNA 

 derived  from  HSCs.  Instead  of  focusing  on  single  cells,  a  'mini-bulk'  approach  was 

 implemented,  where  each  library  was  composed  of  40-50  cells.  Although  this  approach  did  not 

 provide  data  at  single-cell  resolution,  it  offers  a  distinct  advantage  in  capturing  isoform 

 diversity  from  a  defined  cell  population.  One  major  advantage  of  this  approach  was  the  higher 

 loading  concentration  of  libraries,  which  resulted  in  a  greater  yield  of  data.  This  increased  data 

 output  provides  greater  coverage  compared  to  what  is  typically  expected  from  low-input  'bulk' 

 samples  with  the  crucial  factor  being  that  the  sample  purity  was  known  prior  to  sequencing. 

 This  meant  that  prior  to  analysis,  it  was  known  that  the  results  were  specific  to  the  HSC 

 population,  whereby  long-read  sequencing  of  HSCs  was  used  to  augment  the  information 

 already obtained from short-read data. 

 Previous  work  has  demonstrated  intricate  hematopoietic  gene  expression  and  AS  programmes 

 in  HSCs  that  are  associated  with  differentiation  towards  specific  blood  cell  lineages  (Chen  et 

 al.  ,  2014;  Edwards  et  al.  ,  2016;  Goldstein  et  al.  ,  2017)  .  This  includes  the  expression  of 

 transcripts  unique  to  specific  progenitor  populations  and  AS  events  in  important  regulatory 

 genes  that  were  associated  with  the  gain  or  loss  of  functional  domains  such  as  exon  skipping 

 and  premature  stop  codon  introduction  (Chen  et  al.  ,  2014)  .  For  example,  the  isoform  nuclear 
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 factor  IB  (  Nf1b)  was  revealed  as  important  for  Mk  differentiation  and  was  identified  to  be 

 transcribed  from  a  previously-unannotated  transcription  start  site.  This  isoform  lacks  the  DNA 

 dimerisation  domain  that  is  necessary  for  binding  the  Nfic  (its  partner  protein)  illustrating  how 

 AS can result in functional consequences within the haematopoietic system  (Chen  et al.  , 2014)  . 

 Moreover,  a  dynamic  intron  retention  programme  was  identified  in  the  murine  Mk  and  Ery 

 lineages  involving  hundreds  of  introns  and  genes  with  higher  loss  of  intron  retention  in  Ery 

 cells  and  Mks  compared  with  MEPs.  The  authors  showed  despite  the  common  origin  of  Ery 

 and  Mk  cells  and  some  overlap  of  their  transcriptomic  signatures,  the  Mk  intron  retention 

 programme  was  entirely  distinct  from  that  of  the  Ery  lineage  suggesting  a  lineage-specific 

 regulation  of  intron  retention  (Edwards  et  al.  ,  2016)  .  This  finding  adds  a  layer  of  complexity  to 

 our  understanding  of  Mk  and  Ery  differentiation  and  suggests  that  the  intron  retention  process 

 may  be  specific  to  each  lineage,  and  might  serve  as  a  regulatory  mechanism.  For  instance,  the 

 higher  preservation  of  intron  retention  in  Mk  cells  may  have  functional  ramifications  in  the  Mk 

 lineage,  potentially  contributing  to  the  regulation  of  genes  involved  in  Mk  function.  This 

 example  of  distinct  intron  retention  programmes  between  Mk  and  Ery  cells  illustrate  the  need 

 for further investigations to unravel the cell lineage-specific AS mechanisms. 

 The  approach  to  study  HSC  isoform  expression  presented  in  this  chapter  was  performed  as  a 

 proof-of-concept  experiment  to  determine  whether  the  combination  of  single-cell  transcriptome 

 clustering  and  cell  surface-marker  expression  (provided  by  FACS)  enables  the  enrichment  of  a 

 highly  purified  sample  to  interrogate  the  HSC  AS  landscape.  Results  confirmed  the  successful 

 generation  and  sequencing  of  IsoSeq  libraries,  capturing  a  total  of  5942  unique  genes  and  7456 

 unique  isoforms  which  were  annotated  into  structural  categories  along  with  AS  analysis  across 

 key  genes  involved  in  HSC  function.  Hence  this  serves  as  a  powerful  strategy  to  obtain  a 

 comprehensive  view  of  isoform  expression  patterns  from  a  single  population,  enabling  a  more 

 in-depth analysis of isoform heterogeneity at a cell type specific level. 

 The  sample  size  in  this  experiment  posed  a  limitation  of  this  study.  Due  to  technical  constraints 

 and  the  availability  of  cells,  single  cells  from  multiple  young  and  aged  mice  were  pooled  to 

 generate  a  single  library  per  condition.  The  nature  of  this  experiment  means  sample  size  is 

 inherently  restricted  to  the  number  of  cells  captured  in  the  experiments  presented  in  Chapter  4, 

 and  insufficient  HSCs  were  captured  to  generate  multiple  replicates  per  condition.  Having  now 

 established  that  the  selection  of  Smart-seq2  full-length  cDNA  products  can  be  successfully 

 used  to  generate  long-read  libraries,  to  address  this  limitation  and  enhance  the  statistical  power 

 of  future  experiments,  a  future  study  could  be  designed  to  generate  sample-level  pools  for 

 long-read  sequencing.  In  this  way,  instead  of  pooling  cells  from  different  samples  into  a  single 

 library,  cells  belonging  to  a  specific  population  (ie.  HSCs)  would  be  pooled  together  based  on 
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 biological  replicates  (mice).  This  would  involve  generating  multiple  libraries  across  different 

 experimental  conditions,  thus  providing  greater  statistical  power  for  conducting  differential 

 isoform  usage  analyses  across  different  conditions.  With  a  larger  sample  size,  it  would  be 

 possible  to  more  reliably  identify  and  quantify  isoform  expression  differences  between  groups, 

 thereby  strengthening  the  robustness  and  validity  of  the  findings.  Furthermore,  sample-level 

 pools  would  also  enable  the  exploration  of  inter-individual  variability  and  the  identification  of 

 potential  age-related  differences  within  each  condition;  therefore  enabling  interrogation  of  the 

 impact of ageing on isoform expression and its potential implications for HSC function. 

 In  summary,  the  first  part  of  Chapter  5  presents  a  proof-of-concept  strategy  utilising  long-read 

 sequencing  to  study  isoform  expression  in  HSCs  with  age.  The  approach  involved  the  targeted 

 sequencing  of  cDNA  from  highly  purified  HSCs,  which  were  selected  based  on  their 

 transcriptomic  signatures  identified  through  short-read  scRNA-seq  data  clustering.  By 

 manually  pooling  the  cDNA  from  HSCs  and  preparing  long-read  libraries,  the  study  enabled 

 the  investigation  of  isoform  expression  in  HSCs.  The  utilisation  of  long-read  sequencing 

 allowed  for  end-to-end  full-length  coverage  of  isoforms,  providing  valuable  insights  into  the 

 isoform  expression  of  important  genes  for  HSC  and  Mk  function.  The  findings  to  date  from  this 

 approach  lay  the  foundation  for  further  investigations  into  isoform  diversity  in  HSCs.  While  the 

 limited  sample  size  and  absence  of  statistical  analyses  present  limitations,  the  initial  results 

 demonstrate  this  is  a  viable  strategy  to  study  isoform  diversity  in  defined  cell  populations,  and 

 set  the  stage  for  further  investigations.  Future  analysis  of  this  data  has  the  potential  to  uncover 

 novel  isoforms  that  may  have  been  overlooked  in  traditional  bulk  long-read  sequencing 

 approaches.  Moving  forward,  further  exploration  of  this  dataset  will  be  used  to  set  the  stage  for 

 future  investigations  into  isoform  diversity  in  HSCs  which  could  provide  valuable  insights  into 

 the mechanisms underlying HSC function. 

 The  utility  of  scRNA-seq  using  long-read  technologies  has  been  constrained  due  to  throughput 

 limitations.  Two  key  factors  contributing  to  these  limitations  are  the  presence  of  undesired 

 sequencing  TSO-artefacts,  and  the  library  construction  of  short  cDNA  inserts  which  are  not 

 optimal  with  the  long-read  sequencing  capacity  (Wenger  et  al.  ,  2019;  Lebrigand  et  al.  ,  2020)  . 

 However  recent  advancements  in  the  field  have  introduced  two  protocols  that  address  these 

 challenges,  opening  up  new  opportunities  for  accelerating  the  field  of  long-read  single-cell 

 transcriptomics (Shi  et al.,  2022; Al'Khafaji  et al.,  2021). 

 The  first  published  protocol,  HITscIso-Seq,  revolutionised  the  field  by  enabling  the 

 concatenation  of  cDNA  from  single  cells  for  PacBio  sequencing.  This  approach  incorporates  a 

 step  to  deplete  TSO-artefacts  using  a  PCR  biotin-assisted  capture  procedure,  followed  by 

 USER  cloning-based  cDNA  concatenation  (Shi  et  al.,  2022).  This  strategy  effectively  tackles 
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 the  issue  of  TSO-artefacts,  significantly  improving  the  quality  of  long-read  sequencing  data 

 obtained from single cells. 

 The  second  strategy,  developed  by  Al'Khafaji  et  al.  from  the  Broad  Institute,  also  addresses  the 

 challenge  of  TSO-artefacts  but  employs  a  different  approach  for  concatenation.  This  method 

 involves  dU  digestion  followed  by  barcode-directed  ligation  of  cDNAs  to  generate  a  long 

 cDNA  array  (Al’Khafaji  et  al.  ,  2021)  .  The  development  of  this  technique  into  a  commercialised 

 kit  by  PacBio,  released  in  December  of  2022,  has  provided  a  high-throughput  solution  for 

 single-cell  isoform  sequencing.  Fortunately,  early  access  to  this  kit  was  granted  by  PacBio, 

 facilitating the experiments presented in this thesis. 

 The  primary  objective  of  this  chapter  was  to  evaluate  the  effectiveness  of  these  two  approaches 

 to  enable  gene-  and  isoform-resolved  sequencing  at  single  cell  resolution.  Concatenated 

 HITsc-IsoSeq  and  MAS-seq  libraries  were  generated  from  single  cell  cDNA  that  was  prepared 

 using  10X  Genomics  from  both  mouse  BM  and  human  PBMCs.  Additionally,  MAS-seq 

 libraries  of  LK  Cd150+  FACS  sorted  cells  were  also  created  to  test  the  compatibility  of  FACS 

 cell-type enrichment for 10X Genomics long-read sequencing. 

 The  results  of  both  approaches,  HIT  scIsoSeq  and  MAS-seq,  provided  valuable  insights  into 

 their  performance  and  the  information  obtained  from  long-read  libraries  using  each  approach. 

 In  the  case  of  the  HIT  scIsoSeq  10X  Genomics  run,  a  total  of  1,040  single  cells  were 

 sequenced  using  short-read  sequencing,  resulting  in  an  average  of  1,528  genes  from  ~21K  reads 

 detected  per  cell.  The  Illumina  data  was  processed  following  the  standard  workflow  of  Seurat 

 scRNA-seq  data  analysis  and  enabled  single  cells  to  be  grouped  into  9  clusters.  Cluster 

 annotation  was  achieved  using  the  TabulaMurisConsortium()  as  a  reference;  this  data  served  as 

 a ground truth for the cell-types captured in the experiment. 

 The  concatenated  product  from  10X  Genomics  cDNA  inserts  generated  a  SMRTbell  library  of 

 285ng  with  an  average  size  of  10.4  kb.  Sequencing  with  PacBio  yielded  189,339  HiFi  reads, 

 with  an  average  read  length  of  5.5  kb.  However,  it  is  worth  noting  that  the  library  displayed 

 signs  of  low  loading  efficiency,  with  only  20%  of  polymerase-template  complexes  active 

 during  sequencing.  Gene-  and  isoform-level  analyses  identified  a  total  of  10,664  unique  genes 

 and  33,963  unique  isoforms,  which  translated  to  an  average  of  ~200  isoforms  detected  at  the 

 single  cell  level.  Single  cell  clustering  based  on  isoform  expression  was  found  to  recapitulate 

 the  short-read  gene-level  clusters,  and  cell  type  annotations  using  the  same  reference  were  in 

 concordance  between  the  two  datasets.  These  results  demonstrate  the  successful  generation  of 

 long-read libraries and the detection of isoform diversity using the HIT scIsoSeq approach. 
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 In  contrast,  two  PBMC  samples  were  prepared  into  MAS-seq  libraries.  Illumina  sequencing  of 

 10X  Genomics  libraries  revealed  sample  1  consisted  of  4,875  single  cells,  while  sample  2 

 comprised  7,384  cells.  Illumina  sequencing  yielded  a  median  of  1,530  and  1,562  genes  and 

 mean  ~42K  and  ~32K  reads  per  cell  for  each  library  respectively.  This  data  was  processed 

 following  the  standard  workflow  of  Seurat  scRNA-seq  data  analysis  and  after  integration  of  the 

 two  runs  single  cells  were  grouped  into  17  clusters.  Cluster  annotation  was  achieved  using  the 

 HumanPrimaryCellAtlasData()  reference  dataset  and  again  served  as  a  ground  truth  for  the 

 cell-types sequenced from the PBMC samples. 

 The  final  MAS-seq  concatenated  inserts  from  each  sample  generated  SMRTbell  libraries  of  716 

 ng  and  842  ng  and  11.3  kbp  and  11.4  kbp  insert  length  respectively.  PacBio  sequencing 

 revealed  an  almost  9-fold  difference  in  the  HiFi  read  yield  between  the  samples  (1.9  million 

 and  227,300  HiFi  reads),  and  meant  that  integration  of  the  two  runs  was  not  feasible  therefore 

 PBMC  PacBio  data  were  processed  independently.  In  terms  of  HiFi  read  length,  sample  1  of  the 

 MAS-seq  approach  exhibited  an  average  length  of  12.5  kb,  while  sample  2  had  an  average 

 length  of  11.5  kb.  These  values  demonstrate  a  higher  concordance  with  their  average  fragment 

 lengths  prior  to  sequencing  compared  to  the  HIT  scIsoSeq  approach,  which  had  an  average 

 HiFi  read  length  of  5.5  kb  despite  an  average  fragment  length  of  10.4  kb  prior  to  sequencing. 

 These  values  indicate  a  higher  concordance  with  the  average  fragment  lengths  of  the  cDNA  by 

 MAS-seq.  The  closer  alignment  between  the  HiFi  read  lengths  and  the  average  fragment 

 lengths  in  MAS-seq  samples  suggests  that  sequencing  was  effective  in  preserving  the  integrity 

 of  the  cDNA  array  molecules.  In  comparison,  the  discrepancy  observed  with  the  HIT  scIsoSeq 

 approach  could  be  due  to  a  number  of  factors  including  poor  polymerase  sequencing  efficiency 

 that was shown as part of the analysis. 

 SQANTI3  analysis  of  PBMC  libraries  was  performed  to  classify  the  isoforms  identified  in  each 

 sample  based  on  structural  categories.  In  total,  38,069  and  35,669  total  unique  transcripts  were 

 captured  in  the  two  samples  with  MAS-seq.  Further  downstream  analyses  of  MAS-seq  data  was 

 performed  in  Seurat  ,  to  analyse  the  data  at  single  cell  resolution.  Each  PBMC  library  was 

 processed  as  two  assays  split  based  on  isoform-level  or  gene-level  expression  data.  This 

 analysis  revealed  at  the  isoform-level  1017  and  114  isoforms  per  cell  on  average  for  each 

 sample.  This  result  clearly  illustrates  the  large  discrepancy  between  the  coverage  of  the  two 

 libraries  highlighting  the  impact  of  sequencing  depth  on  capturing  a  comprehensive 

 representation  of  isoform  expression.  Analysis  of  both  samples  independently  showed 

 isoform-level  clustering  recapitulated  clusters  found  at  the  gene  level.  However,  it  is  worth 

 noting  that  sample  2  exhibited  poorer  cluster  separation  compared  to  sample  1,  which  can  be 

 attributed to the relatively shallow coverage in sample 2. 
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 One  of  the  main  distinctions  between  the  results  of  the  two  methods  can  be  attributed  to  their 

 different  concatenation  approaches.  HIT  scIsoSeq  concatenation  relies  on  stochastic  enzymatic 

 end-to-end  ligation  of  cDNA  inserts,  whereas  MAS-seq  utilises  a  programmable  strategy  with 

 the  incorporation  of  specific  15  bp  barcoded  complementary  adapter  pairs  at  3’  and  5’  ends  of 

 cDNA  to  generate  the  final  array  length.  The  contrasting  concatenation  methods  employed  by 

 HIT  scIsoSeq  and  MAS-seq  contribute  to  the  observed  differences  in  the  consistency  and 

 distribution  of  fragment  lengths.  MAS-seq  ensures  highly  concatenation,  with  a  controlled 

 number  of  concatemers  per  molecule  resulting  in  uniform  distribution  of  read  and  fragment 

 lengths.  Indeed,  82%  -  85%  of  reads  from  MAS-seq  libraries  were  full  arrays  with  a 

 concatenation  factor  of  15  concatemers  per  molecule.  On  the  other  hand,  HIT  scIsoSeq 

 generated  a  wider  distribution  of  fragment  lengths  with  varying  numbers  of  concatemers  per 

 molecule,  which  varied  from  1  (ie.  non-concatenated)  to  >10  cDNA  inserts  per  library  resulting 

 in  an  average  4.7-fold  concatenation  achieved.  The  stochastic  enzymatic  ligation  process 

 introduces  more  variability  in  the  concatenation  step,  leading  to  a  broader  range  of  fragment 

 lengths within the library. 

 The  programmable  nature  of  MAS-seq's  concatenation  approach  provides  greater  control  and 

 reproducibility  in  generating  libraries  with  consistent  fragment  lengths,  enhancing  also  the 

 reliability  of  isoform-level  data  analysis.  The  variable  fragment  lengths  in  HIT  scIsoSeq 

 introduces  additional  challenges  in  downstream  data  analysis  including  more  complex 

 processes  for  read  segmentation,  and  read  alignment.  Ultimately,  this  variability  may  result  in 

 reduced  sensitivity  and  accuracy  in  downstream  analyses  in  comparison  to  libraries  of  highly 

 uniform fragment lengths that facilitate accurate alignment and comparison of reads. 

 In  order  to  compare  the  isoform  sensitivity  of  each  experiment,  the  number  of  isoforms 

 detected  per  cell  was  used  as  a  metric.  The  ratio  of  isoforms  per  cell  was  calculated  by  dividing 

 the  total  number  of  unique  isoforms  detected  in  each  experiment  by  the  number  of  cells.  The 

 HIT  scIsoSeq  experiment  exhibited  a  ~4-fold  higher  number  of  isoforms  per  cell  (32.65 

 isoforms/cell)  compared  to  MAS-seq  (7.81  isoforms/cell  for  Sample  1  and  4.83  isoforms/cell 

 for  Sample  2).  While  this  suggests  that  HIT  scIsoSeq  may  be  more  effective  in  capturing  a 

 greater  diversity  of  isoforms  per  cell,  indicating  higher  isoform  sensitivity,  it's  important  to 

 consider  several  factors.  These  include  differences  in  sample  isoform  diversity  (mouse  BM  vs. 

 human  PBMCs),  sequencing  depth,  and  other  experimental  variables  that  can  influence  the 

 results.  When  comparing  the  two  PBMC  libraries,  which  had  the  same  sample  input  but  a 

 significant  difference  in  sequencing  coverage,  Sample  1  exhibited  a  1.6-fold  higher  sensitivity 

 in  isoform  detection  per  cell.  This  underscores  the  influential  role  of  sequencing  coverage  on 

 isoform detection. 
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 This  chapter  also  details  a  supplementary  experiment  involving  the  FACS  sorted  LK  and  LSK 

 Cd150+  single  cells  from  mouse  BM  for  subsequent  loading  on  the  10X  Genomics  platform. 

 The  objective  of  this  experiment  was  to  assess  the  feasibility  of  using  FACS  enrichment  for  the 

 target  cell  population  in  generating  MAS-seq  libraries.  However,  the  results  revealed 

 suboptimal  cell  loading,  resulting  in  the  capture  of  only  73  cells  across  2  10X  Genomics  LT  3’ 

 scRNA-seq  runs.  Analysis  of  the  cells  after  sequencing  on  both  Illumina  and  PacBio  platforms 

 showed  that  they  exhibited  high  expression  of  genes  associated  with  the  Mk  lineage.  This 

 finding  showed  that  although  the  number  of  captured  cells  was  limited,  the  transcriptional 

 profile  of  these  cells  indicated  their  viability  as  LSK  Cd150+  cells.  Several  factors  could 

 explain  the  low  cell  recovery,  with  the  most  likely  one  being  the  loss  of  material  during  the 

 transfer  of  samples  from  the  wells  of  the  96-well  plate,  where  they  were  initially  sorted,  to  the 

 10X  Genomics  chip.  Notably,  assessments  of  sample  quality  at  various  stages  did  not  indicate 

 any issues with cell recovery. 

 Despite  the  challenges  faced  in  cell  recovery,  MAS-seq  libraries  were  successfully  generated 

 for  both  samples,  resulting  in  exceptionally  high  coverage  of  single  cells.  While  this  experiment 

 will  be  repeated  in  the  future  using  an  optimised  cell  isolation  protocol,  further  analysis  of  this 

 dataset  is  expected  to  reveal  insightful  information  on  isoform  expression  across  these  cells. 

 Future  iterations  of  this  experiment  will  incorporate  improvements  to  enhance  cell  isolation 

 efficiency  and  for  comprehensive  analysis  of  isoform  expression  patterns  in  the  LK  Cd150+ 

 compartment. 

 In  conclusion,  this  chapter  has  provided  a  comprehensive  overview  of  approaches  for  long-read 

 sequencing  of  cDNA  in  single-cell  experiments,  with  a  focus  on  novel  advanced  methods  for 

 single-cell  isoform  sequencing.  Through  the  testing  of  two  recently  published  protocols  to 

 increase  PacBio  throughput  from  single  cells,  these  results  demonstrated  that  both  methods  are 

 capable  of  achieving  high-throughput  gene-  and  isoform-level  single-cell  RNA  sequencing.  The 

 programmable  approach  of  MAS-seq  has  emerged  as  a  particularly  attractive  method,  offering 

 the  advantage  of  control  over  concatemer  generation.  This  programmability  and  flexibility 

 make  MAS-seq  a  valuable  tool  that  is  likely  to  be  easily  adopted  by  the  research  community. 

 The  results  presented  in  this  chapter  provide  a  solid  foundation  for  further  exploration  of 

 isoform  diversity  and  alternative  splicing  events  at  the  single-cell  level.  By  comparing  the 

 performance  of  different  sequencing  methods  and  analysing  the  relationship  between  the 

 number  of  isoforms  detected  and  various  experimental  parameters,  valuable  insights  have  been 

 gained into the strengths and limitations of each approach. 
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 6. General Discussion & 

 Concluding Remarks 
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 The  purpose  of  this  thesis  was  to  interrogate  differentiation  trajectories  of  Mk  commitment  in 

 the  LK  Cd150+  BM  compartment  with  isoform-resolved  single-cell  transcriptomics. 

 Specifically,  scRNA-seq  with  Smart-seq2  was  employed  to  study  the  transcriptomic  signatures 

 among  stem  and  Mk  progenitors  under  steady-state  haematopoiesis  and  stress;  including 

 normal  ageing  and  platelet  depletion.  The  scRNA-seq  datasets  generated  were  subject  to 

 bioinformatic  analyses  to  identify  the  cell  types  captured  in  experiments,  interrogate  patterns  of 

 gene  expression  across  single  cells  and  perform  differential  expression  analyses  across  cell 

 types  and  experimental  conditions.  Furthermore,  semi-supervised  pseudo-temporal  ordering  of 

 the  single-cell  data  was  implemented  to  delineate  trajectories  of  differentiation  from  stem  cells 

 toward Mk and Ery progenitors. 

 Additionally,  this  thesis  explores  the  technological  advances  in  the  field  of  isoform  resolved 

 single  cell  transcriptomics.  Three  strategies  were  implemented  to  enable  long-read  sequencing 

 and  isoform  profiling  from  haematopoietic  cells.  The  first  involved  pooling  of  highly  pure  HSC 

 cDNA  samples  from  young  and  aged  mice  to  produce  a  detailed  overview  of  isoform 

 expression  heterogeneity  among  HSCs  in  the  context  of  ageing.  The  latter  two  approaches 

 involved  the  implementation  of  two  novel  methods  for  advanced  long-read  sequencing  from 

 single cells. 

 It  is  important  to  acknowledge  that  by  focussing  on  the  transcriptional  programmes  of  Mk 

 commitment,  this  inherently  sidelines  other  potential  important  contributors  of  Mk 

 differentiation.  Haematopoietic  lineage  commitment,  as  demonstrated  by  a  large  and  diverse 

 body  of  previous  research,  is  influenced  by  a  myriad  of  factors  beyond  transcriptomic 

 signatures  alone.  Such  factors  include  differences  in  epigenetic  status,  cell  cycling  kinetics,  BM 

 microenvironment  characteristics,  HSC  niche  elements,  cell  metabolism,  and  the  intrinsic 

 transcriptional  ‘noise’  amongst  cells  (Passegué  et  al.  ,  2005;  Arias  and  Hayward,  2006;  Hayashi 

 et  al.  ,  2008;  Losick  and  Desplan,  2008;  Raj  and  van  Oudenaarden,  2008;  Shahrezaei  and 

 Swain,  2008;  Roundtree  and  He,  2016;  Ho  et  al.  ,  2019)  .  In  the  ensuing  discussion,  other 

 important  factors  involved  in  Mk  commitment  emerging  in  the  literature  will  be  explored  that 

 are not addressed by work presented in this thesis. 

 First,  a  noteworthy  recent  study  by  Meng  et  al.  used  transcriptome  and  chromatin  profiling  of 

 clonal  HSC  populations  from  single-cell  transplantations  to  study  epigenetic  and  transcriptional 

 programmes  in  haematopoietic  fate  restriction  (Meng  et  al.  2023)  .  Their  scRNA-seq  data  from 

 platelet-biassed  HSCs  (determined  based  on  platelet  restricted  lineage  output  of  Vwf+  BM 

 HSCs  [Lin–c-Kit+Sca-1+CD150+CD48–Gata1-eGFP–])  includes  complementary  insights  to 

 the  findings  presented  in  this  thesis.  For  example,  their  research  reinforces  the  observations 

 regarding  the  heightened  expression  of  genes  associated  with  HSC  quiescence,  stemness,  and 
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 platelet-lineage-specificity  in  platelet-biassed  HSCs.  Moreover,  they  also  revealed  an 

 enrichment  of  gene  signatures  related  to  inflammation,  including  elevated  NF-κB  signaling  in 

 the  context  of  Mk  fate  restriction,  which  is  in  agreement  with  the  identification  of 

 age-associated  DE  in  factors  implicated  in  platelet  hyperactivity  and  NF-κB  signalling  (Meng 

 et  al.,  2023).  However,  while  our  scRNA-seq  data  shares  many  points  of  convergence  with 

 their  research,  Meng  et  al.  also  emphasise  the  significance  of  epigenetic  priming  in  fate 

 restriction.  They  conclude  that  it  is  epigenetic  rather  than  transcriptional  lineage  priming  that 

 most  accurately  predicts  the  differential  lineage  output  from  platelet-biassed  vs.  multilineage 

 HSCs,  based  on  ATAC-seq  data  revealing  increased  chromatin  accessibility  to  both 

 platelet-lineage-specific  upstream  regulatory  elements  and  promoter  regions  in  platelet 

 restricted  HSCs  (Meng  et  al.,  2023).  Their  work,  among  various  previous  publications, 

 highlight  an  intricate  interplay  between  epigenetic  and  transcriptional  regulation  in  governing 

 haematopoietic  lineage  commitment  (Heuston  et  al.  2018;  Rodrigues  et  al.  2020;  Adelman  et 

 al.  2017;  Zhao  et  al.  2023;  Meng  et  al.  2023)  .  Therefore,  it  is  essential  to  emphasise  that  while 

 this  thesis  contributes  to  the  understanding  of  transcriptional  programs  of  Mk  fate  restriction,  it 

 acknowledges  that  data  overwhelmingly  indicates  transcriptional  regulation  is  not  the  sole 

 mechanism at play. 

 Another  emerging  area  of  research  is  the  role  of  uptake,  functionalisation,  and  metabolism  of 

 fatty  acids  in  Mk  function.  Lipidomics  has  revealed  lipids  fulfill  distinct  yet  crucial  roles  in  cell 

 function,  including  energy  provision,  signaling,  and  perhaps  most  notably  for  Mks,  membrane 

 architecture.  Indeed,  the  importance  of  a  lipid-rich  cell  membrane  composition  in  facilitating 

 the  extensive  membrane  remodeling  is  key  for  Mk  functionality,  generating  the  lipid-rich 

 demarcation  membrane  system  and  Mk  polarisation  toward  the  protrusion  of  proplatelets  into 

 the  sinusoids  of  the  bone  marrow  (Geue  et  al.  2019;  Eckly  et  al.  2014;  Kelly  et  al.  2020)  . 

 Recent  investigations  have  also  shed  light  on  the  involvement  of  lipids  in  the  Mk  maturation 

 process  itself.  Utilising  mass  spectrometry  to  elucidate  a  quantitative  lipidomics  map  of  Mk 

 differentiation,  Jonckheere  et  al.  lipid  uptake  increases  significantly  during  Mk  maturation, 

 both  in  vitro  and  in  vivo  ,  as  evidenced  by  the  heightened  expression  of  fatty  acid  receptors  such 

 as  CD36  (de  Jonckheere  et  al.  2023)  .  Furthermore,  de  novo  lipogenesis  has  emerged  as  a 

 potential  regulatory  mechanism  on  megakaryopoiesis,  particularly  in  the  late  stages  of  Mk 

 maturation  (Barrachina  et  al.  2023)  .  Liquid  chromatography  tandem-mass  spectometry  was 

 used  to  identify  lipidome  alterations  throughout  Mk  differentiation  stages,  and  also  revealed 

 platelet  production  can  be  manipulated  based  on  the  availability  of  exogenous  lipid  availability 

 including  dietary  polyunsaturated  fats  (Kelly  et  al.  2020;  Barrachina  et  al.  2023)  .  Our 

 understanding  of  the  role  of  lipid  biosynthesis  and  utilisation  in  Mk  differentiation  is  in  its 

 infancy,  but  these  reports  suggest  metabolic  shifts  and  changes  to  membrane  transporters  play 

 an  important  role  in  Mk  differentiation.  Further  work  in  this  field  poses  attractive  opportunities 
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 for  clinical  strategies  as  simple  as  dietary  intervention  to  regulate  megakaryopoiesis  and 

 manipulate platelet production. 

 In  the  context  of  discussing  limitations  of  this  work,  it  is  imperative  to  recognise  that  an 

 inherent  limitation  of  scRNA-seq  is  its  provision  of  a  mere  snapshot  of  a  cell's  transcriptome  at 

 the  time  of  sampling.  This  limitation  necessitates  the  reliance  on  computational  algorithms  to 

 infer  cell  state  transitions,  which  means  that  the  inferred  trajectories  of  cellular  differentiation 

 are  based  on  extrapolations  from  a  single  time  point,  potentially  overlooking  transient  or 

 dynamic  states  that  occur  between  sampling  intervals.  Consequently,  there's  a  risk  of 

 oversimplifying  the  complexity  of  such  processes,  as  the  actual  transitions  between  cellular 

 states  may  involve  intricate  temporal  dynamics  that  are  not  fully  captured  in  a  static  snapshot. 

 Despite  these  challenges,  computational  algorithms  used  in  scRNA-seq  data  analyses  have  been 

 continuously  improving,  with  the  development  of  sophisticated  methods  for  data  normalisation, 

 dimensionality  reduction,  and  trajectory  inference  (Haghverdi  and  Ludwig,  2023)  .  And  so 

 although  assumptions  are  made  about  cell  state  transitions,  these  assumptions  are  often  based 

 on well-established biological knowledge and are supported by experimental validation. 

 Moreover,  while  scRNA-seq  provides  valuable  insights  into  gene  expression  at  the  single-cell 

 level,  it  is  suceptible  to  both  technical  as  well  as  biological  variability.  Indeed,  data  from 

 scRNA-seq  experiments  can  be  affected  by  technical  noise  and  variability,  which  may  can 

 introduce  bias  and  compromise  the  accuracy  of  downstream  analyses  (Hicks  et  al.  ,  2018)  . 

 Hence,  it  was  imperative  to  employ  strategies  to  mitigate  technical  variability  and  ensure  the 

 reliability  of  the  data  obtained  for  analysis  and  interpretation  throughout  this  thesis.  Various 

 strategies  were  deployed  for  this  purpose,  such  as  inclusion  of  library  preparation  and 

 sequencing  controls,  stringent  data  QC  measures,  batch  correction  during  data  integration, 

 normalisation  of  sequencing  coverage  and  robust  statistical  analyses  tailored  to  account  for  the 

 inherent  noise  in  single-cell  data.  The  implementation  of  these  methods  demonstrates  a 

 conscientious  effort  to  minimise  technical  variability  effects  and  underscores  the  robustness  of 

 the data obtained for downstream analysis and interpretation across this thesis. 

 Lastly,  it's  also  important  to  note  that  disparities  in  mRNA  abundance  among  certain  genes  may 

 not  necessarily  translate  to  discernible  functional  consequences.  Meaning  although  mRNA 

 often  serves  as  a  proxy  for  protein  expression,  the  traditional  method  for  defining  cell  types,  the 

 relationship  is  not  strictly  one-to-one  (Vogel  and  Marcotte,  2012;  Edfors  et  al.  ,  2016)  . 

 Nevertheless,  the  vast  majority  of  genes  exhibit  a  strong  correlation  between  RNA  and  protein 

 expression,  even  at  the  single-cell  level  (Darmanis  et  al.  ,  2016)  .  And  so  while  this 

 simplification  overlooks  crucial  structural  elements  of  cells  and  external  influences,  it  still 

 provides  profound  insights  into  cell  state  and  identity.  Therefore  despite  these  inherent 
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 limitations,  scRNA-seq  remains  an  invaluable  tool  for  investigating  cellular  differentiation  and 

 uncovering the pivotal transcriptional regulators that govern cell fate decisions. 

 6.1. Delineating megakaryopoiesis using scRNA-seq under steady-state and stress 

 The  primary  focus  of  this  body  of  work  was  to  gain  a  deeper  understanding  of  the 

 transcriptional  signatures  activated  during  the  commitment  pathways  of  the  Mk  lineage.  To 

 achieve  this,  a  consistent  single-cell  sorting  strategy  was  implemented  across  experimental 

 chapters  3  and  4,  that  builds  upon  the  foundational  research  conducted  by  Pronk  et  al.  on  the 

 LK/LSK  Cd150+  compartment  (Pronk  et  al.  ,  2007)  .  By  adhering  to  a  single  sorting  strategy 

 across  these  chapters,  isolating  the  same  cellular  compartment  across  experiments,  the  separate 

 datasets  presented  corroborate  to  reveal  the  specific  cell  types  involved  in  Mk  differentiation, 

 alongside  Ery  cells  and  a  small  proportion  of  myeloid  committed  cells  in  the  context  of  both 

 normal ageing haematopoietic stress. 

 To  delineate  the  changes  occurring  during  Mk  lineage  commitment,  rigorous  bioinformatic 

 analyses  were  conducted  using  pseudotime  trajectory  construction.  This  powerful  tool  enabled 

 the  exploration  of  transcriptional  changes  along  different  states  of  Mk  commitment,  providing 

 insights  into  the  hierarchical  nature  of  these  changes.  Pseudotime  trajectory  construction 

 enabled  the  dynamic  expression  patterns  of  genes  from  LT-HSCs  to  committed  progenitor  states 

 during  both  steady-state  megakaryopoiesis  and  under  stress  conditions,  including  acute 

 thrombocytopenia  and  ageing.  Through  differential  expression  analyses,  genes  associated  with 

 specific  cell  states  along  the  pseudotime  trajectories  were  statistically  assessed,  resulting  in 

 comprehensive  collections  of  genes  exhibiting  significant  variable  expression  as  a  function  of 

 pseudotime.  Furthermore,  in  addition  to  pseudotime  trajectory  analysis  DEA  were  performed 

 throughout  this  thesis  to  identify  DEGs  across  experimental  conditions,  such  as  platelet 

 depletion  treatment  or  mouse  age.  Notably,  these  analyses  were  conducted  at  the  pseudo-bulk 

 level  to  minimise  the  likelihood  of  false-positive  detections  caused  by  inflated  p-values,  which 

 can  be  a  concern  with  many  single-cell  DEA  approaches.  This  approach  successfully  identified 

 hundreds  of  genes  associated  with  age  and/or  acute  thrombocytopenia  at  the  cell-type  level, 

 including previously unexplored genes that have not been implicated in these contexts before. 

 It  should  be  underscored  that  conducting  independent  validation  experiments  testing  the 

 identified  DEGs  described  in  Chapters  3  and  4  will  be  necessary  to  fortify  the  robustness  of 

 these  results.  For  instance,  qPCR  assays  are  a  robust  way  to  obtain  precise  quantification  of 

 gene  expression  levels  in  a  targeted  manner,  and  are  often  used  to  provide  validation  of  the 

 scRNA-seq  results.  By  measuring  the  abundance  of  select  genes  identified  as  differentially 

 expressed  from  pseudotime  analysis  in  cells  at  different  stages  of  Mk  commitment,  it  will  be 
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 possible  to  validate  whether  their  expression  levels  corroborate  the  levels  seen  in  the  RNA-seq 

 datasets  presented  in  this  thesis,  and  whether  their  expression  are  associated  with  specific  Mk 

 commitment  stages.  In  the  same  way,  qPCR  assays  of  the  same  cell  populations  but  different 

 sample  conditions,  namely  age  and  presence  of  haematopoietic  stress,  will  be  essential  before 

 concluding  the  correlation  of  transcriptomic  signatures  observed  here  are  biologically 

 significant.  Another  set  of  relevant  validation  strategies  worth  considering  includes  gene 

 knockdown  or  overexpression  techniques  like  RNA  interference  and  CRISPR/Cas9  gene 

 editing.  These  approaches  that  enable  modulation  of  expression  of  genes,  would  help  reveal 

 functional  roles  of  the  signatures  identified  here,  and  the  effect  of  specific  genes  of  interest 

 identified  in  this  work  on  cellular  phenotype.  Such  validation  experiments  will  support  the 

 observations of the identified DEGs and enhance the confidence in their biological significance. 

 Additionally,  these  experiments  may  uncover  novel  candidates  that  are  specifically  associated 

 with Mk fate restriction, further expanding our understanding of Mk lineage commitment. 
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 6.2  Implementation  of  long-read  sequencing  approaches  for  studying  isoform 

 expression at single cell resolution 

 Recent  advancements  in  the  field  of  isoform-profiling  at  the  single-cell  level  have  yielded 

 significant  progress  in  the  past  few  years.  The  growing  recognition  of  the  role  of  isoform 

 heterogeneity  and  the  functional  implications  of  alternative  splicing  in  haematopoiesis 

 underscore  the  need  for  methodologies  that  facilitate  isoform-resolved  single-cell 

 transcriptomics  at  high-throughput  (Chen  et  al.  ,  2014;  Yap  and  Makeyev,  2016;  Song  et  al.  , 

 2017)  .  Specifically,  a  crucial  question  that  remains  unanswered  is  the  impact  of  alternatively 

 spliced  isoforms  during  haematopoietic  cell  fate  decisions,  such  as  in  the  context  of  lineage 

 commitment  towards  the  Mk  fate.  While  lineage-biassed  HSCs  that  are  primed  for 

 platelet-specific  gene  expression  have  been  identified,  the  precise  mechanisms  governing  the 

 lineage bias towards the Mk fate are yet to be fully understood  (Sanjuan-Pla  et al.  , 2013)  . 

 In  this  thesis,  a  comprehensive  analysis  of  the  LK  Cd150+  compartment  has  contributed 

 towards  addressing  this  question,  elucidating  gene-level  transcriptional  signatures  associated 

 with  Mk  differentiation.  However,  as  the  field  of  single-cell  isoform  sequencing  continues  to 

 evolve,  it  becomes  imperative  to  transition  from  a  gene-centric  analysis  of  lineage  restriction  to 

 exploring isoform-resolved heterogeneity among differentiating cells. 

 The  integration  of  isoform-level  resolution  into  the  investigation  of  cell  fate  decisions  will  not 

 only  unravel  the  complex  interplay  between  alternative  splicing  events  and  commitment  but 

 also  likely  provide  a  more  comprehensive  understanding  of  the  underlying  regulatory 

 mechanisms.  By  delving  into  isoform  diversity  and  dynamics  during  Mk  lineage  commitment, 

 the  objective  is  to  potentially  uncover  novel  regulatory  networks  and  signalling  pathways  that 

 influence  the  fate  determination  of  haematopoietic  progenitor  cells.  Moreover,  this  approach 

 may  reveal  specific  isoforms  that  act  as  key  drivers  of  the  commitment  process,  steering  cells 

 towards particular lineages. 

 To  achieve  this  objective,  this  thesis  also  focused  on  implementing  long-read  sequencing 

 approaches  that  capture  full-length  isoforms  from  single  cells.  Chapter  5  outlines  multiple 

 strategies  employed  to  enable  isoform  sequencing.  The  first  strategy  involved  a  targeted 

 pooling  approach,  where  cDNA  from  highly  purified  HSCs  was  manually  pooled  based  on  their 

 transcriptomic  signatures  identified  through  short-read  scRA-seq  data  clustering.  By  preparing 

 long-read  libraries  from  these  pooled  cDNA  samples,  the  study  successfully  investigated 

 isoform  expression  in  HSCs.  The  utilisation  of  long-read  sequencing  technology  facilitated 
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 end-to-end  full-length  coverage  of  isoforms,  providing  valuable  insights  into  the  isoform 

 expression patterns of genes crucial for HSC and Mk functionality in the context of age. 

 Additionally,  Chapter  5  explored  two  novel  advanced  methods  for  single-cell  isoform 

 sequencing,  which  involved  concatenating  multiple  cDNA  inserts  from  single-cells  to 

 maximise  long-read  sequencing  throughput.  These  methods,  known  as  HITsc-IsoSeq  and 

 MAS-seq,  were  applied  to  haematopoietic  cells  with  the  goal  of  increasing  PacBio  throughput 

 from  the  10X  Genomics  scRNA-seq  platform.  The  hypothesis  underlying  these  experiments 

 was  that  the  utilisation  of  cDNA  concatenation  would  enhance  sequencing  throughput,  enabling 

 both  gene-  and  isoform-level  analysis  at  the  single-cell  resolution.  By  adopting  these  innovative 

 techniques,  this  set  of  experiments  aimed  to  establish  the  effectiveness  of  both  approaches  in 

 enabling  the  study  of  isoform  diversity  and  evaluate  potential  applications  of  these  protocols  in 

 haematopoiesis. 

 The  analysis  of  short-  and  long-read  sequencing  data  derived  from  experiments  utilising  both 

 concatenation  strategies  revealed  the  distinct  characteristics  of  each  method,  shedding  light  on 

 their  individual  strengths  and  limitations.  Importantly,  these  findings  highlighted  the  sensitivity 

 of  the  approaches  in  enabling  isoform  sequencing  analysis  of  single  cells,  providing  valuable 

 insights  into  the  potential  of  these  techniques  to  advance  our  understanding  of  gene-  and 

 isoform-level scRNA-seq in the context of haematopoiesis. 

 Further  analysis  of  the  collected  data  will  include  extracting  the  lists  of  isoforms  identified 

 using  SQANTI3,  with  a  specific  focus  on  the  identification  of  novel  isoforms  (NNC)  from  the 

 MAS-seq  data.  By  filtering  and  studying  the  sequence  alignments  of  this  subset  of  isoforms,  the 

 goal  would  be  to  assess  potentially  novel  alternative  variants  of  genes.  Priority  will  be  given  to 

 investigating  NNC  isoforms  found  in  genes  known  to  play  crucial  roles  in  haematopoiesis.  In 

 this  way  identifying  if  any  interesting  novel  signatures,  with  potential  functional  consequences, 

 have  been  identified  in  the  data  collected  thus  far.  This  may  provide  valuable  insights  into  the 

 landscape  of  isoform  diversity  within  the  MAS-seq  datasets,  shedding  light  on  potential  novel 

 mechanisms and functions underlying cellular processes that were captured. 

 By  successfully  demonstrating  the  high-throughput  gene-  and  isoform-level  scRNA-seq 

 capabilities  of  both  HITsc-IsoSeq  and  MAS-seq,  this  research  contributes  to  the  advancement 

 of  the  field.  These  novel  methodologies  pave  the  way  for  in-depth  investigations  into  the 

 complex  isoform  diversity,  offering  a  more  comprehensive  understanding  of  the  regulatory 

 mechanisms  governing  complex  processes  such  as  haematopoietic  cell  fate  decisions.  The 

 ability  to  capture  and  analyse  isoform-level  information  at  single-cell  resolution  will  enable 

 researchers  to  begin  to  unravel  the  functional  consequences  of  alternative  splicing  and  its 

 impact  on  lineage  commitment  in  haematopoiesis.  Indeed,  by  advancing  our  technical 
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 capabilities,  these  methodologies  contribute  to  the  ongoing  progress  in  the  field  of  single  cell 

 long-read  sequencing,  opening  new  avenues  for  investigating  isoform  diversity,  unravelling  the 

 complexity  of  alternative  splicing,  and  furthering  our  understanding  of  the  molecular 

 mechanisms driving haematopoietic cell fate determination. 

 6.3. Future perspectives 

 Single-cell  transcriptomics  has  predominantly  focused  on  gene-level  expression  to  investigate 

 the  signatures  and  functional  states  of  biological  systems.  These  gene  expression  measurements 

 capture  the  collective  expression  of  multiple  isoforms  originating  from  individual  genes  (Wen, 

 Mead  and  Thongjuea,  2020)  .  This  tendency  can  be  attributed,  at  least  in  part,  to  the  advantages 

 of  short-read  sequencing,  which  has  historically  dominated  genomics  due  to  its  high  accuracy 

 and  relatively  low  sequencing  costs.  However,  recent  advancements  in  long-read  sequencing 

 technologies, especially in the past few years, have significantly progressed. 

 The  rapid  development  of  long-read  sequencing  technologies,  such  as  ONT  and  PacBio 

 instruments,  has  facilitated  the  generation  of  highly  accurate  full-length  reads  that  cover  the 

 entire  length  of  transcripts.  While  the  significance  of  alternative  splicing  in  driving  protein 

 diversity  has  long  been  acknowledged,  the  interest  in  studying  isoform  diversity  at  the 

 single-cell  level  has  grown  substantially  with  the  increased  accessibility  of  profiling  isoforms 

 using  long-read  sequencing  (Pan  et  al.  ,  2008;  Wang  et  al.  ,  2008;  Trapnell  et  al.  ,  2010;  Chen  et 

 al.  ,  2019)  .  Furthermore,  the  integration  of  high-throughput  approaches  for  scRNA-seq  with 

 long-read  sequencing  has  made  the  utilisation  of  these  technologies  more  affordable  and 

 worthwhile for single-cell analyses. 

 This  thesis  implemented  and  evaluated  the  two  newest  strategies,  HIT  scIsoSeq  and  MAS-seq, 

 to  enhance  the  throughput  of  long-read  sequencing  in  profiling  haematopoietic  cells  at  both  the 

 gene  and  isoform  level  (Al’Khafaji  et  al.  ,  2021;  Shi  et  al.  ,  2022)  .  By  successfully 

 demonstrating  the  effectiveness  of  both  approaches  in  generating  concatenated  libraries  from 

 10X  Genomics  cDNA  inserts,  it  is  evident  that  they  have  tremendous  potential  in  enabling 

 alternative  splicing  analysis  at  the  single-cell  resolution.  Notably,  the  MAS-seq  concatenation 

 strategy  offers  the  advantage  of  consistency  through  its  programmability,  ensuring  stable  and 

 uniform  concatenation.  This  feature  not  only  guarantees  expected  fold-concatenation  in 

 experiments but also facilitates downstream read segmentation and analyses. 

 This  thesis  has  contributed  towards  the  understanding  of  the  gene-level  signatures  of 

 megakaryopoiesis,  however  several  important  questions  remain  unanswered.  A  burgeoning  area 

 275 

https://paperpile.com/c/H5DC9c/R3s7
https://paperpile.com/c/H5DC9c/R3s7
https://paperpile.com/c/H5DC9c/1k2E+0vbAu+z2ND+h4P3
https://paperpile.com/c/H5DC9c/1k2E+0vbAu+z2ND+h4P3
https://paperpile.com/c/H5DC9c/8vtN+13Hv


 of  research  has  revealed  the  critical  impact  of  alternatively  spliced  isoforms  on  cell  phenotypes, 

 including  cell  fate  decisions.  Biassed  haematopoiesis  towards  the  Mk  lineage  has  been 

 investigated  in  various  contexts,  such  as  the  effects  of  BM  localization,  cell-cell  interactions 

 within  the  BM  micro-environment,  and  clonal  haematopoiesis  (Sanjuan-Pla  et  al.  ,  2013;  Haas 

 et  al.  ,  2015;  Frisch  et  al.  ,  2019;  Psaila  et  al.  ,  2020;  Estevez  et  al.  ,  2021)  .  However,  the  potential 

 role  of  alternative  spliced  isoforms  as  a  mechanism  contributing  to  lineage  bias  remains 

 unexplored. 

 As  a  proof-of-concept  experiment,  FACS-sorted  LK  Cd150+  cells  were  isolated  for  single-cell 

 RNA  sequencing  (scRNA-seq)  using  the  10X  Genomics  LT  3'  scRNA-seq  chemistry.  However, 

 the  results  revealed  a  low  cell  recovery  rate  after  Illumina  and  PacBio  sequencing,  suggesting  a 

 loss  of  sample  during  the  experimental  library  preparation  process.  Despite  this  issue,  10X 

 Genomics  successfully  generated  cDNA,  which  was  then  used  to  generate  MAS-seq  libraries. 

 This  outcome  suggests  that  with  improvements  to  the  cell  loading  strategy  for  10X  Genomics, 

 this  approach  could  be  a  viable  method  for  performing  isoform-resolved  single-cell 

 transcriptomics of cells along the Mk lineage. 

 To  explore  cell-type-specific  signatures  of  alternative  splicing  in  the  Mk  lineage,  a  future 

 experiment  will  be  conducted  using  a  combination  of  the  10X  Genomics  HT  3'  chemistry, 

 which  has  since  become  the  recommended  chemistry  to  combine  with  PacBio  MAS-seq.  This 

 experiment  will  focus  on  the  LK  Cd150+  population,  which,  thus  far  in  this  thesis,  has  only 

 been examined at the gene level. 

 An  important  consideration  for  the  success  of  this  approach  will  be  to  ensure  adequate  and  as 

 uniform  coverage  across  single  cells  as  possible.  In  scRNA-seq  experiments,  there  is  a 

 well-known  trade-off  between  the  number  of  cells  captured  and  the  sequencing  coverage 

 obtained  per  cell.  In  this  experiment,  prioritising  sequencing  coverage  over  the  number  of  cells 

 captured  will  maximise  the  sensitivity  for  potentially  detecting  rare  isoforms.  The  PBMC  data 

 presented  as  part  of  Chapter  5  could  be  useful  to  help  determine  the  optimal  cell  loading 

 concentration  in  order  to  obtain  as  many  isoforms  per  cell  whilst  ensuring  sufficient  cells  are 

 loaded for successful cDNA generation. 

 Moreover,  to  provide  a  "ground-truth"  for  the  cell  types  captured  in  the  experiment,  10X 

 Genomics  cDNA  from  LSK  Cd150+  cells  will  also  be  sequenced  using  an  Illumina  platform. 

 This  sequencing  data  will  establish  the  cell  types  present  in  the  experiment  to  supplement 

 isoform-level  analyses  generated  from  PacBio  MAS-seq  libraries.generated  from  the  sample 

 cDNA  samples.  This  approach  will  enable  the  study  of  isoform  heterogeneity  across  cell  types 
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 within  the  LSK  Cd150+  compartment.  Analysing  differential  isoform  usage  between  cell  types 

 may reveal enriched expression of specific isoforms in different cell types. 

 An  additional  aspect  that  could  be  considered  is  the  integration  of  protein-level  expression 

 alongside  isoform-level  expression,  which  would  provide  an  additional  layer  of  information  for 

 exploring  the  relationship  between  isoform  expression  and  protein  expression.  CITE-seq,  for 

 example,  is  a  method  that  enables  the  detection  of  protein  expression  at  single-cell  resolution 

 (Stoeckius  et  al.  ,  2017)  .  This  approach  allows  for  the  simultaneous  measurement  of  gene 

 expression  and  the  proteins  expressed  on  the  cell  surface  within  individual  cells.  By 

 incorporating  this  additional  modality,  it  may  be  possible  to  address  questions  regarding 

 whether  isoform  heterogeneity  translates  to  the  protein  level.  This  integrated  approach, 

 covering  multiple  levels  of  expression,  holds  potential  for  exploring  the  relationships  between 

 isoforms  and  protein  expression.  However,  it  is  important  to  note  that  with  each  additional  layer 

 of  complexity,  there  are  increased  risks  in  experimental  design  and  execution.  Therefore, 

 careful  considerations  regarding  the  feasibility  of  introducing  an  additional  modality  must  be 

 taken into account. 

 Despite  the  challenges  faced  in  the  first  attempted  experiment,  the  combined  use  of  10X 

 Genomics  and  MAS-seq  shows  promise  in  enabling  isoform-resolved  single-cell 

 transcriptomics  of  cells  along  the  Mk  lineage.  Future  experiments  utilising  the  10X  Genomics 

 HT  3'  chemistry,  along  with  PacBio  MAS-seq,  will  provide  valuable  insights  into 

 cell-type-specific  signatures  of  alternative  splicing.  By  combining  these  strategies  and 

 considering  the  mentioned  considerations,  it  is  anticipated  that  this  future  work  will  contribute 

 to  a  deeper  understanding  of  alternative  splicing  and  its  impact  across  diverse  settings, 

 including megakaryopoiesis. 

 In  conclusion,  this  body  of  work  represents  a  significant  contribution  to  our  understanding  of 

 transcriptional  dynamics  involved  in  Mk  lineage  commitment.  Through  the  utilisation  of  robust 

 single  cell  experimental  methodologies  and  bioinformatic  analyses,  this  research  provides 

 valuable  insights  into  key  genes  and  processes  governing  different  states  of  Mk  differentiation, 

 thereby  delineating  a  high-resolution  transcriptomic  roadmap  of  Mk  differentiation  signatures. 

 This  work  uncovered  several  novel  potential  candidates  associated  with  Mk  cells  in  the  context 

 of  age  and  acute  thrombocytopenia.  These  findings  serve  as  a  valuable  resource  for  future 

 investigations  aiming  to  address  important  unanswered  questions  in  the  field.  By  shedding  light 

 on  the  intricate  molecular  profiles  of  Mk  cells,  this  research  enhances  our  understanding  of  the 

 complex  mechanisms  governing  megakaryopoiesis.  It  also  seeks  to  enable  continued 

 exploration  to  unravel  the  molecular  mechanisms  underlying  Mk  lineage-biassed  differentiation 

 and its potential implications in disease. 
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 Appendices 

 Supplementary Table 2.1.  Illumina index sequences  used in Nextera library preparation of 
 Smart-seq2 cDNA (Chapters 3 and 4). 

 Index Set Plate  Well position  i7 Index Sequence  i5 Index Sequence 

 Plate 1  A1  TAAGGCGA  CTCTCTAT 
 Plate 1  B1  TAAGGCGA  TATCCTCT 

 Plate 1  C1  TAAGGCGA  GTAAGGAG 

 Plate 1  D1  TAAGGCGA  ACTGCATA 

 Plate 1  E1  TAAGGCGA  AAGGAGTA 

 Plate 1  F1  TAAGGCGA  CTAAGCCT 

 Plate 1  G1  TAAGGCGA  CGTCTAAT 

 Plate 1  H1  TAAGGCGA  TCTCTCCG 

 Plate 1  A2  CGTACTAG  CTCTCTAT 

 Plate 1  B2  CGTACTAG  TATCCTCT 

 Plate 1  C2  CGTACTAG  GTAAGGAG 

 Plate 1  D2  CGTACTAG  ACTGCATA 

 Plate 1  E2  CGTACTAG  AAGGAGTA 

 Plate 1  F2  CGTACTAG  CTAAGCCT 

 Plate 1  G2  CGTACTAG  CGTCTAAT 

 Plate 1  H2  CGTACTAG  TCTCTCCG 

 Plate 1  A3  AGGCAGAA  CTCTCTAT 

 Plate 1  B3  AGGCAGAA  TATCCTCT 

 Plate 1  C3  AGGCAGAA  GTAAGGAG 

 Plate 1  D3  AGGCAGAA  ACTGCATA 

 Plate 1  E3  AGGCAGAA  AAGGAGTA 

 Plate 1  F3  AGGCAGAA  CTAAGCCT 

 Plate 1  G3  AGGCAGAA  CGTCTAAT 

 Plate 1  H3  AGGCAGAA  TCTCTCCG 

 Plate 1  A4  TCCTGAGC  CTCTCTAT 

 Plate 1  B4  TCCTGAGC  TATCCTCT 

 Plate 1  C4  TCCTGAGC  GTAAGGAG 

 Plate 1  D4  TCCTGAGC  ACTGCATA 

 Plate 1  E4  TCCTGAGC  AAGGAGTA 

 Plate 1  F4  TCCTGAGC  CTAAGCCT 

 Plate 1  G4  TCCTGAGC  CGTCTAAT 

 Plate 1  H4  TCCTGAGC  TCTCTCCG 

 Plate 1  A5  GGACTCCT  CTCTCTAT 

 Plate 1  B5  GGACTCCT  TATCCTCT 

 Plate 1  C5  GGACTCCT  GTAAGGAG 

 Plate 1  D5  GGACTCCT  ACTGCATA 

 Plate 1  E5  GGACTCCT  AAGGAGTA 

 Plate 1  F5  GGACTCCT  CTAAGCCT 

 Plate 1  G5  GGACTCCT  CGTCTAAT 

 Plate 1  H5  GGACTCCT  TCTCTCCG 

 Plate 1  A6  TAGGCATG  CTCTCTAT 

 Plate 1  B6  TAGGCATG  TATCCTCT 
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 Plate 1  C6  TAGGCATG  GTAAGGAG 

 Plate 1  D6  TAGGCATG  ACTGCATA 

 Plate 1  E6  TAGGCATG  AAGGAGTA 

 Plate 1  F6  TAGGCATG  CTAAGCCT 

 Plate 1  G6  TAGGCATG  CGTCTAAT 

 Plate 1  H6  TAGGCATG  TCTCTCCG 

 Plate 1  A7  CTCTCTAC  CTCTCTAT 

 Plate 1  B7  CTCTCTAC  TATCCTCT 

 Plate 1  C7  CTCTCTAC  GTAAGGAG 

 Plate 1  D7  CTCTCTAC  ACTGCATA 

 Plate 1  E7  CTCTCTAC  AAGGAGTA 

 Plate 1  F7  CTCTCTAC  CTAAGCCT 

 Plate 1  G7  CTCTCTAC  CGTCTAAT 

 Plate 1  H7  CTCTCTAC  TCTCTCCG 

 Plate 1  A8  CGAGGCTG  CTCTCTAT 

 Plate 1  B8  CGAGGCTG  TATCCTCT 

 Plate 1  C8  CGAGGCTG  GTAAGGAG 

 Plate 1  D8  CGAGGCTG  ACTGCATA 

 Plate 1  E8  CGAGGCTG  AAGGAGTA 

 Plate 1  F8  CGAGGCTG  CTAAGCCT 

 Plate 1  G8  CGAGGCTG  CGTCTAAT 

 Plate 1  H8  CGAGGCTG  TCTCTCCG 

 Plate 1  A9  AAGAGGCA  CTCTCTAT 

 Plate 1  B9  AAGAGGCA  TATCCTCT 

 Plate 1  C9  AAGAGGCA  GTAAGGAG 

 Plate 1  D9  AAGAGGCA  ACTGCATA 

 Plate 1  E9  AAGAGGCA  AAGGAGTA 

 Plate 1  F9  AAGAGGCA  CTAAGCCT 

 Plate 1  G9  AAGAGGCA  CGTCTAAT 

 Plate 1  H9  AAGAGGCA  TCTCTCCG 

 Plate 1  A10  GTAGAGGA  CTCTCTAT 

 Plate 1  B10  GTAGAGGA  TATCCTCT 

 Plate 1  C10  GTAGAGGA  GTAAGGAG 

 Plate 1  D10  GTAGAGGA  ACTGCATA 

 Plate 1  E10  GTAGAGGA  AAGGAGTA 

 Plate 1  F10  GTAGAGGA  CTAAGCCT 

 Plate 1  G10  GTAGAGGA  CGTCTAAT 

 Plate 1  H10  GTAGAGGA  TCTCTCCG 

 Plate 1  A11  GCTCATGA  CTCTCTAT 

 Plate 1  B11  GCTCATGA  TATCCTCT 

 Plate 1  C11  GCTCATGA  GTAAGGAG 

 Plate 1  D11  GCTCATGA  ACTGCATA 

 Plate 1  E11  GCTCATGA  AAGGAGTA 

 Plate 1  F11  GCTCATGA  CTAAGCCT 

 Plate 1  G11  GCTCATGA  CGTCTAAT 

 Plate 1  H11  GCTCATGA  TCTCTCCG 

 Plate 1  A12  ATCTCAGG  CTCTCTAT 

 Plate 1  B12  ATCTCAGG  TATCCTCT 

 Plate 1  C12  ATCTCAGG  GTAAGGAG 

 Plate 1  D12  ATCTCAGG  ACTGCATA 

 Plate 1  E12  ATCTCAGG  AAGGAGTA 
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 Plate 1  F12  ATCTCAGG  CTAAGCCT 

 Plate 1  G12  ATCTCAGG  CGTCTAAT 

 Plate 1  H12  ATCTCAGG  TCTCTCCG 

 Plate 2  A1  TAAGGCGA  TCGACTAG 

 Plate 2  B1  TAAGGCGA  TTCTAGCT 

 Plate 2  C1  TAAGGCGA  CCTAGAGT 

 Plate 2  D1  TAAGGCGA  GCGTAAGA 

 Plate 2  E1  TAAGGCGA  CTATTAAG 

 Plate 2  F1  TAAGGCGA  AAGGCTAT 

 Plate 2  G1  TAAGGCGA  GAGCCTTA 

 Plate 2  H1  TAAGGCGA  TTATGCGA 

 Plate 2  A2  CGTACTAG  TCGACTAG 

 Plate 2  B2  CGTACTAG  TTCTAGCT 

 Plate 2  C2  CGTACTAG  CCTAGAGT 

 Plate 2  D2  CGTACTAG  GCGTAAGA 

 Plate 2  E2  CGTACTAG  CTATTAAG 

 Plate 2  F2  CGTACTAG  AAGGCTAT 

 Plate 2  G2  CGTACTAG  GAGCCTTA 

 Plate 2  H2  CGTACTAG  TTATGCGA 

 Plate 2  A3  AGGCAGAA  TCGACTAG 

 Plate 2  B3  AGGCAGAA  TTCTAGCT 

 Plate 2  C3  AGGCAGAA  CCTAGAGT 

 Plate 2  D3  AGGCAGAA  GCGTAAGA 

 Plate 2  E3  AGGCAGAA  CTATTAAG 

 Plate 2  F3  AGGCAGAA  AAGGCTAT 

 Plate 2  G3  AGGCAGAA  GAGCCTTA 

 Plate 2  H3  AGGCAGAA  TTATGCGA 

 Plate 2  A4  TCCTGAGC  TCGACTAG 

 Plate 2  B4  TCCTGAGC  TTCTAGCT 

 Plate 2  C4  TCCTGAGC  CCTAGAGT 

 Plate 2  D4  TCCTGAGC  GCGTAAGA 

 Plate 2  E4  TCCTGAGC  CTATTAAG 

 Plate 2  F4  TCCTGAGC  AAGGCTAT 

 Plate 2  G4  TCCTGAGC  GAGCCTTA 

 Plate 2  H4  TCCTGAGC  TTATGCGA 

 Plate 2  A5  GGACTCCT  TCGACTAG 

 Plate 2  B5  GGACTCCT  TTCTAGCT 

 Plate 2  C5  GGACTCCT  CCTAGAGT 

 Plate 2  D5  GGACTCCT  GCGTAAGA 

 Plate 2  E5  GGACTCCT  CTATTAAG 

 Plate 2  F5  GGACTCCT  AAGGCTAT 

 Plate 2  G5  GGACTCCT  GAGCCTTA 

 Plate 2  H5  GGACTCCT  TTATGCGA 

 Plate 2  A6  TAGGCATG  TCGACTAG 

 Plate 2  B6  TAGGCATG  TTCTAGCT 

 Plate 2  C6  TAGGCATG  CCTAGAGT 

 Plate 2  D6  TAGGCATG  GCGTAAGA 

 Plate 2  E6  TAGGCATG  CTATTAAG 

 Plate 2  F6  TAGGCATG  AAGGCTAT 

 Plate 2  G6  TAGGCATG  GAGCCTTA 

 Plate 2  H6  TAGGCATG  TTATGCGA 
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 Plate 2  A7  CTCTCTAC  TCGACTAG 

 Plate 2  B7  CTCTCTAC  TTCTAGCT 

 Plate 2  C7  CTCTCTAC  CCTAGAGT 

 Plate 2  D7  CTCTCTAC  GCGTAAGA 

 Plate 2  E7  CTCTCTAC  CTATTAAG 

 Plate 2  F7  CTCTCTAC  AAGGCTAT 

 Plate 2  G7  CTCTCTAC  GAGCCTTA 

 Plate 2  H7  CTCTCTAC  TTATGCGA 

 Plate 2  A8  CGAGGCTG  TCGACTAG 

 Plate 2  B8  CGAGGCTG  TTCTAGCT 

 Plate 2  C8  CGAGGCTG  CCTAGAGT 

 Plate 2  D8  CGAGGCTG  GCGTAAGA 

 Plate 2  E8  CGAGGCTG  CTATTAAG 

 Plate 2  F8  CGAGGCTG  AAGGCTAT 

 Plate 2  G8  CGAGGCTG  GAGCCTTA 

 Plate 2  H8  CGAGGCTG  TTATGCGA 

 Plate 2  A9  AAGAGGCA  TCGACTAG 

 Plate 2  B9  AAGAGGCA  TTCTAGCT 

 Plate 2  C9  AAGAGGCA  CCTAGAGT 

 Plate 2  D9  AAGAGGCA  GCGTAAGA 

 Plate 2  E9  AAGAGGCA  CTATTAAG 

 Plate 2  F9  AAGAGGCA  AAGGCTAT 

 Plate 2  G9  AAGAGGCA  GAGCCTTA 

 Plate 2  H9  AAGAGGCA  TTATGCGA 

 Plate 2  A10  GTAGAGGA  TCGACTAG 

 Plate 2  B10  GTAGAGGA  TTCTAGCT 

 Plate 2  C10  GTAGAGGA  CCTAGAGT 

 Plate 2  D10  GTAGAGGA  GCGTAAGA 

 Plate 2  E10  GTAGAGGA  CTATTAAG 

 Plate 2  F10  GTAGAGGA  AAGGCTAT 

 Plate 2  G10  GTAGAGGA  GAGCCTTA 

 Plate 2  H10  GTAGAGGA  TTATGCGA 

 Plate 2  A11  GCTCATGA  TCGACTAG 

 Plate 2  B11  GCTCATGA  TTCTAGCT 

 Plate 2  C11  GCTCATGA  CCTAGAGT 

 Plate 2  D11  GCTCATGA  GCGTAAGA 

 Plate 2  E11  GCTCATGA  CTATTAAG 

 Plate 2  F11  GCTCATGA  AAGGCTAT 

 Plate 2  G11  GCTCATGA  GAGCCTTA 

 Plate 2  H11  GCTCATGA  TTATGCGA 

 Plate 2  A12  ATCTCAGG  TCGACTAG 

 Plate 2  B12  ATCTCAGG  TTCTAGCT 

 Plate 2  C12  ATCTCAGG  CCTAGAGT 

 Plate 2  D12  ATCTCAGG  GCGTAAGA 

 Plate 2  E12  ATCTCAGG  CTATTAAG 

 Plate 2  F12  ATCTCAGG  AAGGCTAT 

 Plate 2  G12  ATCTCAGG  GAGCCTTA 

 Plate 2  H12  ATCTCAGG  TTATGCGA 

 Plate 3  A1  ACTCGCTA  CTCTCTAT 

 Plate 3  B1  ACTCGCTA  TATCCTCT 

 Plate 3  C1  ACTCGCTA  GTAAGGAG 
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 Plate 3  D1  ACTCGCTA  ACTGCATA 

 Plate 3  E1  ACTCGCTA  AAGGAGTA 

 Plate 3  F1  ACTCGCTA  CTAAGCCT 

 Plate 3  G1  ACTCGCTA  CGTCTAAT 

 Plate 3  H1  ACTCGCTA  TCTCTCCG 

 Plate 3  A2  GGAGCTAC  CTCTCTAT 

 Plate 3  B2  GGAGCTAC  TATCCTCT 

 Plate 3  C2  GGAGCTAC  GTAAGGAG 

 Plate 3  D2  GGAGCTAC  ACTGCATA 

 Plate 3  E2  GGAGCTAC  AAGGAGTA 

 Plate 3  F2  GGAGCTAC  CTAAGCCT 

 Plate 3  G2  GGAGCTAC  CGTCTAAT 

 Plate 3  H2  GGAGCTAC  TCTCTCCG 

 Plate 3  A3  GCGTAGTA  CTCTCTAT 

 Plate 3  B3  GCGTAGTA  TATCCTCT 

 Plate 3  C3  GCGTAGTA  GTAAGGAG 

 Plate 3  D3  GCGTAGTA  ACTGCATA 

 Plate 3  E3  GCGTAGTA  AAGGAGTA 

 Plate 3  F3  GCGTAGTA  CTAAGCCT 

 Plate 3  G3  GCGTAGTA  CGTCTAAT 

 Plate 3  H3  GCGTAGTA  TCTCTCCG 

 Plate 3  A4  CGGAGCCT  CTCTCTAT 

 Plate 3  B4  CGGAGCCT  TATCCTCT 

 Plate 3  C4  CGGAGCCT  GTAAGGAG 

 Plate 3  D4  CGGAGCCT  ACTGCATA 

 Plate 3  E4  CGGAGCCT  AAGGAGTA 

 Plate 3  F4  CGGAGCCT  CTAAGCCT 

 Plate 3  G4  CGGAGCCT  CGTCTAAT 

 Plate 3  H4  CGGAGCCT  TCTCTCCG 

 Plate 3  A5  TACGCTGC  CTCTCTAT 

 Plate 3  B5  TACGCTGC  TATCCTCT 

 Plate 3  C5  TACGCTGC  GTAAGGAG 

 Plate 3  D5  TACGCTGC  ACTGCATA 

 Plate 3  E5  TACGCTGC  AAGGAGTA 

 Plate 3  F5  TACGCTGC  CTAAGCCT 

 Plate 3  G5  TACGCTGC  CGTCTAAT 

 Plate 3  H5  TACGCTGC  TCTCTCCG 

 Plate 3  A6  ATGCGCAG  CTCTCTAT 

 Plate 3  B6  ATGCGCAG  TATCCTCT 

 Plate 3  C6  ATGCGCAG  GTAAGGAG 

 Plate 3  D6  ATGCGCAG  ACTGCATA 

 Plate 3  E6  ATGCGCAG  AAGGAGTA 

 Plate 3  F6  ATGCGCAG  CTAAGCCT 

 Plate 3  G6  ATGCGCAG  CGTCTAAT 

 Plate 3  H6  ATGCGCAG  TCTCTCCG 

 Plate 3  A7  TAGCGCTC  CTCTCTAT 

 Plate 3  B7  TAGCGCTC  TATCCTCT 

 Plate 3  C7  TAGCGCTC  GTAAGGAG 

 Plate 3  D7  TAGCGCTC  ACTGCATA 

 Plate 3  E7  TAGCGCTC  AAGGAGTA 

 Plate 3  F7  TAGCGCTC  CTAAGCCT 
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 Plate 3  G7  TAGCGCTC  CGTCTAAT 

 Plate 3  H7  TAGCGCTC  TCTCTCCG 

 Plate 3  A8  ACTGAGCG  CTCTCTAT 

 Plate 3  B8  ACTGAGCG  TATCCTCT 

 Plate 3  C8  ACTGAGCG  GTAAGGAG 

 Plate 3  D8  ACTGAGCG  ACTGCATA 

 Plate 3  E8  ACTGAGCG  AAGGAGTA 

 Plate 3  F8  ACTGAGCG  CTAAGCCT 

 Plate 3  G8  ACTGAGCG  CGTCTAAT 

 Plate 3  H8  ACTGAGCG  TCTCTCCG 

 Plate 3  A9  CCTAAGAC  CTCTCTAT 

 Plate 3  B9  CCTAAGAC  TATCCTCT 

 Plate 3  C9  CCTAAGAC  GTAAGGAG 

 Plate 3  D9  CCTAAGAC  ACTGCATA 

 Plate 3  E9  CCTAAGAC  AAGGAGTA 

 Plate 3  F9  CCTAAGAC  CTAAGCCT 

 Plate 3  G9  CCTAAGAC  CGTCTAAT 

 Plate 3  H9  CCTAAGAC  TCTCTCCG 

 Plate 3  A10  CGATCAGT  CTCTCTAT 

 Plate 3  B10  CGATCAGT  TATCCTCT 

 Plate 3  C10  CGATCAGT  GTAAGGAG 

 Plate 3  D10  CGATCAGT  ACTGCATA 

 Plate 3  E10  CGATCAGT  AAGGAGTA 

 Plate 3  F10  CGATCAGT  CTAAGCCT 

 Plate 3  G10  CGATCAGT  CGTCTAAT 

 Plate 3  H10  CGATCAGT  TCTCTCCG 

 Plate 3  A11  TGCAGCTA  CTCTCTAT 

 Plate 3  B11  TGCAGCTA  TATCCTCT 

 Plate 3  C11  TGCAGCTA  GTAAGGAG 

 Plate 3  D11  TGCAGCTA  ACTGCATA 

 Plate 3  E11  TGCAGCTA  AAGGAGTA 

 Plate 3  F11  TGCAGCTA  CTAAGCCT 

 Plate 3  G11  TGCAGCTA  CGTCTAAT 

 Plate 3  H11  TGCAGCTA  TCTCTCCG 

 Plate 3  A12  TCGACGTC  CTCTCTAT 

 Plate 3  B12  TCGACGTC  TATCCTCT 

 Plate 3  C12  TCGACGTC  GTAAGGAG 

 Plate 3  D12  TCGACGTC  ACTGCATA 

 Plate 3  E12  TCGACGTC  AAGGAGTA 

 Plate 3  F12  TCGACGTC  CTAAGCCT 

 Plate 3  G12  TCGACGTC  CGTCTAAT 

 Plate 3  H12  TCGACGTC  TCTCTCCG 

 Plate 4  A1  ACTCGCTA  TCGACTAG 

 Plate 4  B1  ACTCGCTA  TTCTAGCT 

 Plate 4  C1  ACTCGCTA  CCTAGAGT 

 Plate 4  D1  ACTCGCTA  GCGTAAGA 

 Plate 4  E1  ACTCGCTA  CTATTAAG 

 Plate 4  F1  ACTCGCTA  AAGGCTAT 

 Plate 4  G1  ACTCGCTA  GAGCCTTA 

 Plate 4  H1  ACTCGCTA  TTATGCGA 

 Plate 4  A2  GGAGCTAC  TCGACTAG 

 321 



 Plate 4  B2  GGAGCTAC  TTCTAGCT 

 Plate 4  C2  GGAGCTAC  CCTAGAGT 

 Plate 4  D2  GGAGCTAC  GCGTAAGA 

 Plate 4  E2  GGAGCTAC  CTATTAAG 

 Plate 4  F2  GGAGCTAC  AAGGCTAT 

 Plate 4  G2  GGAGCTAC  GAGCCTTA 

 Plate 4  H2  GGAGCTAC  TTATGCGA 

 Plate 4  A3  GCGTAGTA  TCGACTAG 

 Plate 4  B3  GCGTAGTA  TTCTAGCT 

 Plate 4  C3  GCGTAGTA  CCTAGAGT 

 Plate 4  D3  GCGTAGTA  GCGTAAGA 

 Plate 4  E3  GCGTAGTA  CTATTAAG 

 Plate 4  F3  GCGTAGTA  AAGGCTAT 

 Plate 4  G3  GCGTAGTA  GAGCCTTA 

 Plate 4  H3  GCGTAGTA  TTATGCGA 

 Plate 4  A4  CGGAGCCT  TCGACTAG 

 Plate 4  B4  CGGAGCCT  TTCTAGCT 

 Plate 4  C4  CGGAGCCT  CCTAGAGT 

 Plate 4  D4  CGGAGCCT  GCGTAAGA 

 Plate 4  E4  CGGAGCCT  CTATTAAG 

 Plate 4  F4  CGGAGCCT  AAGGCTAT 

 Plate 4  G4  CGGAGCCT  GAGCCTTA 

 Plate 4  H4  CGGAGCCT  TTATGCGA 

 Plate 4  A5  TACGCTGC  TCGACTAG 

 Plate 4  B5  TACGCTGC  TTCTAGCT 

 Plate 4  C5  TACGCTGC  CCTAGAGT 

 Plate 4  D5  TACGCTGC  GCGTAAGA 

 Plate 4  E5  TACGCTGC  CTATTAAG 

 Plate 4  F5  TACGCTGC  AAGGCTAT 

 Plate 4  G5  TACGCTGC  GAGCCTTA 

 Plate 4  H5  TACGCTGC  TTATGCGA 

 Plate 4  A6  ATGCGCAG  TCGACTAG 

 Plate 4  B6  ATGCGCAG  TTCTAGCT 

 Plate 4  C6  ATGCGCAG  CCTAGAGT 

 Plate 4  D6  ATGCGCAG  GCGTAAGA 

 Plate 4  E6  ATGCGCAG  CTATTAAG 

 Plate 4  F6  ATGCGCAG  AAGGCTAT 

 Plate 4  G6  ATGCGCAG  GAGCCTTA 

 Plate 4  H6  ATGCGCAG  TTATGCGA 

 Plate 4  A7  TAGCGCTC  TCGACTAG 

 Plate 4  B7  TAGCGCTC  TTCTAGCT 

 Plate 4  C7  TAGCGCTC  CCTAGAGT 

 Plate 4  D7  TAGCGCTC  GCGTAAGA 

 Plate 4  E7  TAGCGCTC  CTATTAAG 

 Plate 4  F7  TAGCGCTC  AAGGCTAT 

 Plate 4  G7  TAGCGCTC  GAGCCTTA 

 Plate 4  H7  TAGCGCTC  TTATGCGA 

 Plate 4  A8  ACTGAGCG  TCGACTAG 

 Plate 4  B8  ACTGAGCG  TTCTAGCT 

 Plate 4  C8  ACTGAGCG  CCTAGAGT 

 Plate 4  D8  ACTGAGCG  GCGTAAGA 
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 Plate 4  E8  ACTGAGCG  CTATTAAG 

 Plate 4  F8  ACTGAGCG  AAGGCTAT 

 Plate 4  G8  ACTGAGCG  GAGCCTTA 

 Plate 4  H8  ACTGAGCG  TTATGCGA 

 Plate 4  A9  CCTAAGAC  TCGACTAG 

 Plate 4  B9  CCTAAGAC  TTCTAGCT 

 Plate 4  C9  CCTAAGAC  CCTAGAGT 

 Plate 4  D9  CCTAAGAC  GCGTAAGA 

 Plate 4  E9  CCTAAGAC  CTATTAAG 

 Plate 4  F9  CCTAAGAC  AAGGCTAT 

 Plate 4  G9  CCTAAGAC  GAGCCTTA 

 Plate 4  H9  CCTAAGAC  TTATGCGA 

 Plate 4  A10  CGATCAGT  TCGACTAG 

 Plate 4  B10  CGATCAGT  TTCTAGCT 

 Plate 4  C10  CGATCAGT  CCTAGAGT 

 Plate 4  D10  CGATCAGT  GCGTAAGA 

 Plate 4  E10  CGATCAGT  CTATTAAG 

 Plate 4  F10  CGATCAGT  AAGGCTAT 

 Plate 4  G10  CGATCAGT  GAGCCTTA 

 Plate 4  H10  CGATCAGT  TTATGCGA 

 Plate 4  A11  TGCAGCTA  TCGACTAG 

 Plate 4  B11  TGCAGCTA  TTCTAGCT 

 Plate 4  C11  TGCAGCTA  CCTAGAGT 

 Plate 4  D11  TGCAGCTA  GCGTAAGA 

 Plate 4  E11  TGCAGCTA  CTATTAAG 

 Plate 4  F11  TGCAGCTA  AAGGCTAT 

 Plate 4  G11  TGCAGCTA  GAGCCTTA 

 Plate 4  H11  TGCAGCTA  TTATGCGA 

 Plate 4  A12  TCGACGTC  TCGACTAG 

 Plate 4  B12  TCGACGTC  TTCTAGCT 

 Plate 4  C12  TCGACGTC  CCTAGAGT 

 Plate 4  D12  TCGACGTC  GCGTAAGA 

 Plate 4  E12  TCGACGTC  CTATTAAG 

 Plate 4  F12  TCGACGTC  AAGGCTAT 

 Plate 4  G12  TCGACGTC  GAGCCTTA 

 Plate 4  H12  TCGACGTC  TTATGCGA 
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 Supplementary  Figure  3.1.  The  average  count  of  platelets,  RBCs  and  WBCs  (Alinity  HQ, 
 Abbott  Laboratories)  from  mouse  peripheral  blood  samples  collected  24  hours  following 
 treatment with platelet depletion or control antibody (n = 2 per treatment condition). 
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 Supplementary  Figure  3.2.  Representative  bioanalyzer  size  distribution  traces  during 
 Smart-seq2  library  preparation  quality  control.  (a)  Single-cell  cDNA  trace  of  post  bead 
 clean-up (b) Nextera library pool of 384 single-cells. All libraries were normalised to 1 ng/L. 
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 Supplementary Figure 3.3  . MultiQC report summary statistics for one plate of Smart-seq2 
 libraries. (A) Percentage of uniquely assigned reads per cell using featureCounts (B) Percentage 
 of reads uniquely mapping to the mouse genome per cell using STAR. 
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 Supplementary  Figure  3.4.  Sample  level  variance  of  biological  replicates  across 
 experimental  conditions  for  each  cell  type.  (a)  LT-HSC  (b)  HSC  (c)  MPP2  (d)  Mk-MEPs 
 and (e) MkPs. 
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 Supplementary  Figure  3.5.  Expression  of  Aldgrl4  across  cell-types  showing  a  correlation 
 between its expression and the Mk lineage. 
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 Supplementary  Figure  4.1.  Representative  bioanalyzer  size  distribution  traces  during 
 Smart-seq2  library  preparation  quality  control.  (a)  Single-cell  cDNA  trace  of  post  bead 
 clean-up  (b)  NextEra  library  pool  of  384  single-cells.  All  libraries  were  normalised  to  1ng/uL 
 for loading. 
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 Supplementary  Figure  4.2.  Top  20  genes  within  modules  calculated  from  genes 
 differentially  expressed  along  pseudotime  that  correlated  with  cell  cluster  identity  (a) 
 LT-HSCS  (b)  throughout  Mk  lineage  (c)  throughout  Ery  lineage  (d)  MkPs  (e)  MEPs  (cell 
 cycling signature) (f) EryPs. 
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 Supplementary Figure 5.1  .  Size distribution bioanalyzer  traces of Iso-Seq libraries.  (a) 
 Size distribution of final young Iso-Seq library and (b) Final old Iso-Seq library sequenced in 
 PacBio. 
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 Supplementary  Figure  5.2.  Splice  junction  coverage  in  young  and  aged  IsoSeq  libraries  . 
 (a)  Distribution  of  splice  junctions  by  structural  classification  and  summary  statistics  for  the 
 library  from  young  mouse  HSC  cDNA  (b)  Distribution  of  splice  junctions  by  structural 
 classification and summary statistics for the library from aged mouse HSC cDNA. 
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 Supplementary  Figure  5.3.  Femto  pulse  size  distribution  trace  of  cDNA  generated  from 
 mouse bone-marrow single cells using the 10X Genomics LT 3’ GEM scRNA-seq kit. 
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 Supplementary  Figure  5.4.  Quality  control  of  cDNA  generated  from  human  PBMCs 
 using  the  10X  Genomics  HT  3’  GEM  scRNA-seq  kit.  Bioanalyzer  size  distribution  traces  of 
 cDNA from (a) Sample 1 (‘1b’) and (b) Sample 2 (‘2a’). 

 334 



 Supplementary Figure 5.5. Bioanalyzer size distribution of cDNA generated from FACS 
 sorted LK Cd150+ single cells with 10X Genomics LT 3’ Next GEM scRNA-seq  (a) Size 
 distribution from sample 1 (b) Size distribution from sample 2. 
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 Supplementary  Figure  5.6.  MAS-seq  PBMC  barcode  rank  plot  showing  the  distribution  of 
 10X  Genomics  barcodes  against  UMI  counts  (a)  Illumina  PBMC  sample  1:  4,875  cells  (blue) 
 with  a  median  of  5,062  UMI  counts  per  cell  (b)  Illumina  PBMC  sample  2:  7,384  cells  (blue) 
 with  a  median  of  4,993  UMI  counts  per  cell  (c)  PacBio  sample  1:  4,773  cells  (pink)  with  a 
 median  3,788  UMI  counts  per  cell  (d)  PacBio  sample  2:  7,277  cells  (pink)  with  a  median  of 
 327 UMI counts per cell. 
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 Supplementary  Figure  5.7.  MAS-seq  10X  Genomics  barcode  rank  plot  showing  the 
 distribution  of  barcodes  against  UMI  counts  (a)  Illumina  Sample  1:  23  cells  with  a  median 
 of  4,381  UMI  counts  per  cell  (b)  Illumina  Sample  2:  50  cells  with  a  median  of  4,030  UMI 
 counts  per  cell  (c)  PacBio  sample  1:  22  cells  with  a  median  57,723  UMI  counts  per  cell.(d) 
 PacBio sample 2: 17 cell cells with a median 51,588 UMI counts per cell. 
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 Supplementary  Figure  5.8.  Discrepancy  in  sequencing  depth  between  MAS-seq  PBMC 
 libraries  leads  to  batch-effect  during  downstream  analysis  at  RNA  and  isoform  level  (a) 
 Number  of  counts  and  features  at  the  gene  and  isoform  level  coloured  by  sample  ID  (b)  UMAP 
 projection  of  single  cell  data  prior  to  data  integration  coloured  by  seurat  cluster  (left)  sample  ID 
 (centre)  and  count  expression  (right)  (c)  UMAP  projection  of  single  cell  data  post  data 
 integration coloured by seurat cluster (left) sample ID (centre) and count expression (right). 
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