The FLARE Workshop perspective on Fire’s Role in the Carbon Cycle

Burton, Chantelle, Plummer, Stephen, Liguori-Bills, Noah, Perron, Morgane M. G., Kelley, Douglas, Morrill, Miriam, Vannière, Boris, Hall, Joanne, Hantson, Stijn, Forkel, Matthias, Völker, Christoph, Dintwe, Kebonye, Santín, Cristina, Thoreson, Jessie, Poulter, Benjamin, Jones, Matthew ORCID: and Hamilton, Douglas (2024) The FLARE Workshop perspective on Fire’s Role in the Carbon Cycle. In: European Geosciences Union, General Assembly 2024, 2024-04-14 - 2024-04-19.

Full text not available from this repository. (Request a copy)


Fire substantially influences and modulates the global carbon cycle through numerous processes, interactions, and feedbacks. Fires are also strongly intertwined with human activities; people act both as drivers of change through ignitions, suppression, land-cover change, prescribed burning, and climate change, and are affected in return by changes in fire regimes. Despite fire’s many complex interactions throughout the Earth System, it is often viewed only as a destructive process, and one that solely acts as a source of atmospheric carbon. In terms of fire’s carbon budget, the release of carbon only represents the very initial stages of the process, missing the drivers and complex ways in which fire shapes plant species evolution and ecosystem trajectories, nutrient cycling and redistribution, carbon allocation, deposition and sequestration over different spatiotemporal scales. Therefore, there is a clear need to fully understand the role of fire in the Earth System holistically. However, different aspects of fire’s role in the carbon cycle are often studied by different communities and disciplines, hindering this much-needed integrated understanding. Through the Fire Learning AcRoss the Earth Systems (FLARE) workshop (September 2023) we brought together fire scientists across multiple disciplines to facilitate transdisciplinary discussion. We propose that the visualization of fire processes as carbon colours across the Earth System can be a thematic tool for unifying disciplines. It explores all aspects of fire and smoke implications for living systems and opens questions about fire’s role in carbon budgets, afforestation, and climate change and related mitigation strategies. We also identified several scientific challenges for the community where, by working together, we can address some fundamental questions for fire’s role in the carbon cycle, such as: What is the contribution of fire and of individual fire events to the global carbon cycle? How do changes in fire regimes influence ecosystem stability across different timescales? How do future changes in fire regimes influence global climate, allowable emissions and carbon budgets, and temperature mitigation ambitions? In this presentation, we explore how we can bring a more interdisciplinary approach to fire science to address these fundamental questions.

Item Type: Conference or Workshop Item (Poster)
Uncontrolled Keywords: sdg 13 - climate action,sdg 15 - life on land ,/dk/atira/pure/sustainabledevelopmentgoals/climate_action
Faculty \ School: University of East Anglia Research Groups/Centres > Theme - ClimateUEA
Faculty of Science > School of Environmental Sciences
UEA Research Groups: Faculty of Science > Research Groups > Climatic Research Unit
University of East Anglia Schools > Faculty of Science > Tyndall Centre for Climate Change Research
Faculty of Science > Research Centres > Tyndall Centre for Climate Change Research
Depositing User: LivePure Connector
Date Deposited: 16 May 2024 09:31
Last Modified: 20 May 2024 02:35
DOI: 10.5194/egusphere-egu24-17935

Actions (login required)

View Item View Item