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We introduce a new method for building models of CH, together with Π2 statements over
H(ω2), by forcing. Unlike other forcing constructions in the literature, our construction
adds new reals, although only ℵ1-many of them. Using this approach, we build a model
in which a very strong form of the negation of Club Guessing at ω1 known as Measuring
holds together with CH, thereby answering a well-known question of Moore. This con-
struction can be described as a finite-support weak forcing iteration with side conditions
consisting of suitable graphs of sets of models with markers. The CH-preservation is
accomplished through the imposition of copying constraints on the information carried
by the condition, as dictated by the edges in the graph.
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1. Introduction

The problem of building models of consequences, at the level of H(ω2), of classical
forcing axioms in the presence of the Continuum Hypothesis (CH) has a long history,
starting with Jensen’s landmark result that Suslin’s Hypothesis is compatible with
CH [10]. Much of the work in this area is due to Shelah (see [22]), with contributions
also by other people (see e.g. [2, 6, 12, 13, 19] or [20]). Most of the work in the area
done so far proceeds by showing that some suitable countable support iteration
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whose iterands are proper forcing notions not adding new reals fails to add new
reals also at limit stages.

There are (nontrivial) limitations to what can be achieved in this area. One
conclusive example is the main result from [6], which highlights a strong global lim-
itation: There is no model of CH satisfying a certain mild large cardinal assumption
and realizing all Π2 statements over the structure H(ω2) that can be forced, using
proper forcing, to hold together with CH. In fact there are two Π2 statements over
H(ω2), each of which can be forced, using proper forcing, to hold together with
CH — for one of them we need an inaccessible limit of measurable cardinals — and
whose conjunction implies 2ℵ0 = 2ℵ1 .

The above example is closely tied to the following well-known obstacle to not
adding reals, which appears in [11] (see also [12]) and which is more to the point in
the context of this papera: Given a ladder system �C = (Cδ : δ ∈ Lim(ω1)) (i.e. each
Cδ is a cofinal subset of δ of order type ω), let Unif(�C) denote the statement that
for every coloring F : Lim(ω1) −→ {0, 1} there is a function G : ω1 −→ {0, 1} with
the property that for every δ ∈ Lim(ω1) there is some α < δ such that G(ξ) = F (δ)
for all ξ ∈ Cδ\α (where, given an ordinal α, Lim(α) is the set of limit ordinals
below α). We say that G uniformizes F on �C. Given �C and F as above there is
a natural forcing notion, let us call it Q�C,F , for adding a uniformizing function

for F on �C by initial segments. It takes a standard exercise to show that Q�C,F is
proper, adds the intended uniformizing function, and does not add reals. However,
any long enough iteration of forcings of the form Q�C,F , even with a fixed �C, will

necessarily add new reals. As a matter of fact, the existence of a ladder system �C

for which Unif(�C) holds cannot be forced together with CH in any way whatsoever,
as this statement actually implies 2ℵ0 = 2ℵ1 . The argument is well known and may
be found for example in [11] and in [12].

In this paper, we distance ourselves from the tradition of iterating forcing with-
out adding reals and tackle the problem of building interesting models of CH with
an entirely different approach: starting with a model of CH, we build a forcing which
adds new reals,b albeit only ℵ1-many of them.

In [7], a framework for building finite-support forcing iterations incorporating
systems of countable models as side conditions was developed (see also [3, 8, 9] for
further elaborations). These iterations arise naturally in, for example, situations
in which one is interested in building a forcing iteration of length κ (where κ is
relatively long) which is proper and which, in addition, does not collapse cardinals.c

Much of what we will say in the next few paragraphs will probably make sense

aWe will revisit this obstacle in Sec. 2.2 with the purpose of addressing the following question:
Why do our methods work with the present application (forcing Measuring) and not with the
problem of forcing Unif(�C) (for any given �C)?
bAs it turns out, the construction resembles a classical finite-support iteration, and in fact it adds
Cohen reals.
cFor example if, as in [7], we want to force certain instances of the Proper Forcing Axiom (PFA)
together with 2ℵ0 = κ > ℵ2.
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only to readers with at least some familiarity with the framework as presented, for
example, in [7].

In the situations we are referring to here, one typically aims at a construction
which in fact has the ℵ2-chain condition, and in order to achieve this goal it is
natural to build the iteration in such a way that conditions be of the form (F, Δ),
for F a (finitely supported) κ-sequence of working parts, and with Δ being a set
of models with markers, i.e. a set of ordered pairs (N, ρ), where N is a countable
elementary submodel of H(κ), possibly enhanced with some predicate T ⊆ H(κ),
and where ρ ∈ N ∩ κ. N is one of the models for which we will try to “force” each
working part F (α), for every stage α ∈ N∩ρ, to be generic for the generic extension
of N up to that stage; thus, ρ is to be seen as a “marker” that tells us that N is to
be seen as “active” as a side condition at least up to stage ρ.

In order for the construction to have the ℵ2-chain condition and be proper, it
is often necessary to start from a model of CH and require that the domain of
Δ be a set of models with suitable symmetry properties. We call (finite) sets of
models having these properties T -symmetric systems (for a fixed T ⊆ H(κ)). One
of these properties, and the one on which we will focus our attention in a moment,
is the following: In a T -symmetric system N , if N and N ′ are both in N and
N∩ω1 = N ′∩ω1, then there is a (unique) isomorphism ΨN,N ′ between the structures
(N ;∈, T,N ∩N) and (N ′;∈, T,N ∩N ′) which, moreover, is the identity on N ∩N ′.

At this point one could take a step back and analyze the pure side condition
forcing P0 by itself. This forcing P0, which we can naturally see as the first stage of
our construction, consists of all finite T -symmetric systems of submodels, ordered
by reverse inclusion. P0 first appeared in the literature in [24]. It is a relatively well-
known fact, and was noted in [9],d that forcing with P0 adds Cohen reals, although
not too many; in fact it adds exactly ℵ1-many of them. This may be somewhat
surprising given that P0 adds, by finite approximations, a new rather large object
(a symmetric system covering all of H(κ)V ).e The argument for this is contained
in the proof of Lemma 3.16 from this paper, but it will nonetheless be convenient
at this point to sketch it here.

Let us assume, towards a contradiction, that CH holds and there is a sequence
(ṙν)ν<ω2 of P0-names which some condition N forces to be distinct subsets of ω.
Without loss of generality we may take each ṙν to be a member of H(κ). For
each ν we can pick Nν to be a sufficiently correct countable model — meaning
that (Nν ;∈, T ∗) � (H(κ);∈, T ∗) for a suitably expressive predicate T ∗ ⊆ H(κ) —
containing all relevant objects, which in this case includes N and ṙν . As CH holds, we
may find distinct indices ν and ν′ such that there is a unique isomorphism ΨNν ,Nν′

between the structures (Nν ;∈, T ∗,N , ṙν) and (Nν′ ;∈, T ∗,N , ṙν′) fixing Nν ∩ Nν′ .
But then N ∗ = N∪{Nν , Nν′} is a condition in P0 forcing that ṙν = ṙν′ . The point is

dSee also [18].
eIncidentally, P0 is in fact strongly proper, and so each new real it adds is in fact contained in an
extension of V by some Cohen real. The preservation of CH by P0 was exploited in [16].
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that if n ∈ ω and N ′ is any condition extending N ∗ and forcing n ∈ ṙν , then N ′ is in
fact compatible with a condition M ∈ Nν forcing the same thing. This is true since
N ∗ is an (Nν ,P0)-generic condition. But then ΨNν ,Nν′ (M) is a condition forcing
n ∈ ΨNν ,Nν′ (ṙν) = ṙν′ (since, by taking T ∗ expressive enough, we may assume the
forcing relation for P0 to be definable in (H(κ);∈, T ∗) without parameters). Finally,
if N ′′ is any common extension of N ′ and M, then N ′′ forces also that n ∈ ṙν′ ,
since it extends ΨNν ,Nν′ (M) as ΨNν ,Nν′ (M) ⊆ N ′′ by the symmetry requirement.f

P0 has received some attention in the literature. For example, Todorčević proved
that P0 adds a Kurepa tree (see [18]). Also, [18] presents a mild variant of P0 which
not only preserves CH but actually forces ♦.

The iterations with symmetric systems of models as side conditions that we
were referring to before do not preserve CH, and in fact they force 2ℵ0 = κ > ℵ1.
The reason is of course that there are no symmetry requirements on the working
parts. Actually, even if the first stage of the iterations — which is, essentially,
P0 — preserves CH, the iterations are in fact designed to add new reals at all later
(successor) stages.

Something one may naturally envision at this point is the possibility to build
a suitable forcing with systems of models (with markers) as side conditions while
strengthening the symmetry constraints, so as to make them apply not only to the
side condition part of the forcing but also to the working parts; one would hope to
exploit the above idea in order to show that the forcing thus constructed preserves
CH, and would of course like to be able to do that while at the same time forcing
some interesting statement. In this paper, we implement this idea by proving that
a very strong form of the failure of Club Guessing at ω1 known as Measuring (see
[12]) that follows from PFA can be forced adding new reals while, nevertheless,
preserving CH.

Definition 1.1. Measuring holds if and only if for every sequence �C = (Cδ : δ ∈
ω1), if each Cδ is a closed subset of δ in the order topology, then there is a club
C ⊆ ω1 such that for every δ ∈ C there is some α < δ such that either

• (C ∩ δ)\α ⊆ Cδ or
• (C\α) ∩ Cδ = ∅.

In the above definition, we say that C measures �C. Measuring is of course equiv-
alent to its restriction to club-sequences �C on ω1, i.e. to sequences of the form
�C = (Cδ : δ ∈ Lim(ω1)), where each Cδ is a club of δ. It is also not difficult to see
that Measuring can be rephrased as the assertion that the algebra P(ω1)/ NSω1 —
where NSω1 denotes the nonstationary ideal on ω1 — forces that CV

ω1
is a base for

an ultrafilter on the Boolean subalgebra of P(ωV
1 ) generated by the closed sets as

f It is worth noticing the resemblance of this argument with Shelah’s argument for showing that
CH gets preserved by the limit of any countable support iteration of length less than ω2 of proper
forcings of size at most ℵ1 (see e.g. the proof of [1, Theorem 2.10]).
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computed in the generic ultrapower M = V/Ġ, where CV
ω1

denotes the club filter
on ω1 in V .

A partial order P is ℵ2-Knaster if for every sequence (qξ : ξ < ω2) of P-conditions
there is a set I ⊆ ω2 of cardinality ℵ2 such that qξ and qξ′ are compatible for all ξ,
ξ′ ∈ I. Of course, every ℵ2-Knaster partial order has the ℵ2-chain condition.

Our main theorem is the following.

Theorem 1.2 (CH). Let κ ≥ ω2 be a regular cardinal such that 2<κ = κ. Then
there is a partial order P ⊆ H(κ) with the following properties :

(1) P is proper.
(2) P is ℵ2-Knaster.
(3) P forces the following statements :

(a) Measuring;
(b) CH;
(c) 2ℵ1 = κ.

Theorem 1.2 answers a question of Moore, who asked if Measuring is compatible
with CH (see [12] or [21]). The relative consistency of Measuring with CH has also
been obtained recently by Golshani and Shelah in [14], where they have actually
shown that every countable support iteration of the natural proper posets for adding
a club of ω1 measuring a given club-sequence by countable approximations fails to
add new reals.g Prior to [14], the strongest failures of Club Guessing at ω1 known
to be within reach of the forcing iteration methods for producing models of CH

without adding new reals (see [23]) were only in the region of the negation of weak
Club Guessing at ω1, ¬WCG, which is the statement that for every ladder system
(Cδ : δ ∈ Lim(ω1)) there is a club C ⊆ ω1 having finite intersection with each
Cδ.h Moore upon learning about an earlier version of Theorem 1.2, asked whether
Measuring implies that there are non-constructible reals. This question was aimed
at addressing the issue whether or not adding new reals is a necessary feature of any
successful approach to forcing Measuring + CH, and it obtains a negative answer
by the Golshani–Shelah result.

Our construction is a sequence 〈Pβ : β ≤ κ〉 which is not a forcing iteration,
in the usual sense of Pα being a complete suborder of Pβ for all α < β ≤ κ, but
which nevertheless has a sufficiently nice property; it is what we will refer to as a
weak forcing iteration. This means that for all α < β, every Pα-condition is a Pβ-
condition, for all p0, p1 ∈ Pα, if p1 ≤Pα p0, then p1 ≤Pβ

p0,i and, moreover, every

gIt is straightforward to see that these natural forcings for adding a given instance of Measuring
do not add reals; however, before [14] it was not known whether their countable support iterations
also (consistently) have this property.
hMeasuring implies ¬WCG. To see this, suppose (Cδ : δ ∈ Lim(ω1)) is a ladder system and D ⊆ ω1

is a club measuring it. Then every limit point δ ∈ D of limit points of D is such that D ∩ Cδ is
bounded in δ since no tail of D ∩ δ can possibly be contained in Cδ as Cδ has order type only ω.
iAlthough it not be the case that if p1 ≤Pβ

p0, then p1 ≤Pα p0. In other words, Pα need not be
a suborder of Pβ .
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predense subset of Pα is also predense in Pβ. Using this piece of terminology, our
construction can be roughly described as a finitely supported weak forcing iteration
〈Pβ : β ≤ κ〉 in which conditions come together with a side condition consisting of a
graph of edges {(N0, ρ0), (N1, ρ1)}, where each (Ni, ρi) is a model with marker, with
suitable structural properties. Given any such edge {(N0, ρ0), (N1, ρ1)}, N0

∼= N1.
Furthermore, all the information carried by the condition — including both its
working part and its side condition — contained in N0 and attached to any α ∈
N0∩ρ0 such that ΨN0,N1(α) < ρ1 (where ΨN0,N1 is the unique isomorphism between
(N0;∈) and (N1;∈)) is to be copied over into N1 by ΨN0,N1 . This copying will be
crucially used in the proof of CH-preservationj and also in other parts of the proof
of Theorem 1.2 (most notably in the proof of the ℵ2-chain condition). The working
part consists of conditions for natural forcing notions adding instances of Measuring.

Rather than delving into more details here, we direct the reader to the actual
construction in Sec. 2.

1.1. Some observations on extensions of Measuring

We conclude this introduction by briefly considering some extensions of Measuring.
It is immediate to see that Measuring is equivalent to the statement that if

(Cδ : δ ∈ Lim(ω1)) is such that each Cδ is a countable collection of closed subsets of
δ, then there is a club of ω1 measuring all members of Cδ for each δ. We may thus
consider the following family of strengthenings of Measuring.

Definition 1.3. Given a cardinal κ, Measκ holds if and only if for every family C
consisting of closed subsets of ω1 and such that |C| ≤ κ there is a club C ⊆ ω1 with
the property that for every D ∈ C and every δ ∈ C there is some α < δ such that
either

• (C ∩ δ)\α ⊆ D or
• ((C ∩ δ)\α) ∩ D = ∅.

Measℵ0 is trivially true in ZFC. Also, it is clear that Measκ implies Measλ when-
ever λ < κ, and that Measℵ1 implies Measuring.

Recall that the splitting number, s, is the minimal cardinality of a splitting
family, i.e. of a collection X ⊆ [ω]ℵ0 such that for every Y ∈ [ω]ℵ0 there is some
X ∈ X such that X ∩ Y and Y \X are both infinite.

In the proof of Fact 1.4, if (Cδ : δ ∈ Lim(ω1)) is a ladder system on ω1, we write
(Cδ(n))n<ω to denote the strictly increasing enumeration of Cδ. Also, [α, β) = {ξ ∈
Ord : α ≤ ξ < β} for all ordinals α ≤ β.

Fact 1.4. Meass is false.

Proof. Let X ⊆ [ω]ℵ0 be a splitting family. Let (Cδ)δ∈Lim(ω) be a ladder system
on ω1 such that Cδ(n) is a successor ordinal for each δ ∈ Lim(ω1) and n < ω, and

jSee also [4] for another forcing construction using edges in order to preserve GCH.
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let C be the collection of all sets of the form

ZX
δ =

⋃
{[Cδ(n), Cδ(n + 1)) : n ∈ X} ∪ {δ}

for some δ ∈ Lim(ω1) and X ∈ X . Let D be a club of ω1, let δ < ω1 be a limit
point of D, and let

Y = {n < ω : [Cδ(n), Cδ(n + 1)) ∩ D �= ∅}.

Let X ∈ X be such that X ∩ Y and Y \X are infinite. Then ZX
δ ∩ D and D\ZX

δ

are both cofinal in δ. Hence, D does not measure C.

The following is proved in joint work of the first author with John Krueger.

Theorem 1.5 ([5]). Measℵ1 can be forced over any model of ZFC and follows from
BPFA.

Another natural way to strengthen Measuring is to allow, in the sequence to be
measured, not just closed sets, but also sets of higher complexity (from a descriptive
set-theoretic point of view). The version of Measuring where one considers sequences
�X = (Xδ : δ ∈ Lim(ω1)), with each Xδ an open subset of δ in the order topology,
is of course equivalent to Measuring. A natural next step would therefore be to
consider sequences in which each Xδ is a countable union of closed sets. This is of
course the same as allowing each Xδ to be an arbitrary subset of δ. Let us call the
corresponding statement Measuring∗.

Definition 1.6. Measuring∗ holds if and only if for every sequence �X = (Xδ : δ ∈
Lim(ω1)), if Xδ ⊆ δ for all δ, then there is some club C ⊆ ω1 such that for every
δ ∈ C, a tail of C ∩ δ is either contained in or disjoint from Xδ.

It is easy to see that Measuring∗ is false in ZFC. As a matter of fact, given a
stationary and co-stationary S ⊆ ω1, there is no club of ω1 measuring �X = (S ∩ δ :
δ ∈ Lim(ω1)). In fact, if C is any club of ω1, then both C ∩ S ∩ δ and (C ∩ δ)\S
are cofinal subsets of δ for each δ in the club of limit points in ω1 of both C ∩ S

and C\S.
The status of Measuring∗ is more interesting in the absence of the Axiom of

Choice. Let Cω1 = {X ⊆ ω1 : C ⊆ X for some club C of ω1}.

Observation 1.1 (ZF +Cω1 is a normal filter on ω1). Suppose �X = (Xδ : δ ∈
Lim(ω1)) is such that

(1) Xδ ⊆ δ for each δ.
(2) For each club C ⊆ ω1,

(a) there is some δ ∈ C such that C ∩ Xδ �= ∅ and
(b) there is some δ ∈ C such that (C ∩ δ)\Xδ �= ∅.

Then there is a stationary and co-stationary subset of ω1 definable from �X.
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Proof. We have two possible cases. The first case is when for all α < ω1, either

• W 0
α = {δ < ω1 : α /∈ Xδ} is in Cω1 or

• W 1
α = {δ < ω1 : α ∈ Xδ} is in Cω1 .

For each α < ω1 let Wα be W ε
α for the unique ε ∈ {0, 1} such that W ε

α ∈ Cω1 ,
and let W ∗ = Δα<ω1Wα ∈ Cω1 . Then Xδ0 = Xδ1 ∩ δ0 for all δ0 < δ1 in W ∗. It
then follows, by (2), that S =

⋃
δ∈W∗ Xδ, which of course is definable from �X, is a

stationary and co-stationary subset of ω1. Indeed, suppose C ⊆ ω1 is a club, and
let us fix a club D ⊆ W ∗. There is then some δ ∈ C ∩D and some α ∈ C ∩D∩Xδ.
But then α ∈ S since δ ∈ W ∗ and α ∈ W ∗ ∩ Xδ. There is also some δ ∈ C ∩ D

and some α ∈ C ∩D such that α /∈ Xδ, which implies that α /∈ S by a symmetrical
argument, using the fact that Xδ0 = Xδ1 ∩ δ0 for all δ0 < δ1 in W ∗.

The second possible case is that in which there is some α < ω1 with the property
that both W 0

α and W 1
α are stationary subsets of ω1. But now we can let S be W 0

α,
where α is first such that W 0

α is stationary and co-stationary.

It is worth comparing the above observation with Solovay’s classic result that
an ω1-sequence of pairwise disjoint stationary subsets of ω1 is definable from any
given ladder system on ω1 (working in the same theory).

Corollary 1.7 (ZF + Cω1 is a normal filter on ω1). The following are
equivalent:

(1) Cω1 is an ultrafilter on ω1.
(2) Measuring∗.
(3) For every sequence (Xδ : δ ∈ Lim(ω1)), if Xδ ⊆ δ for each δ, then there is a

club C ⊆ ω1 such that either

• C ∩ δ ⊆ Xδ for every δ ∈ C or
• C ∩ Xδ = ∅ for every δ ∈ C.

Proof. (3) trivially implies (2), and by the observation (1) implies (3). Finally,
to see that (2) implies (1), note that the argument right after the definition of
Measuring∗ uses only ZF together with the regularity of ω1 and the negation
of (1).

In particular, the strong form of Measuring∗ given by (3) in the above observation
follows from ZF together with the Axiom of Determinacy.

Much of the notation used in this paper follows the standards set forth in [15, 17].
Other, less standard, pieces of notation will be introduced as needed. The rest of
this paper is structured as follows. In Sec. 2, we construct a sequence (Pβ : β ≤ κ)
of forcing notions. In Sec. 3, we prove the relevant facts about this construction
which will show Pκ to witness the conclusion of Theorem 1.2. Section 3.4 contains
some remarks on why our construction in Sec. 2 cannot possibly be adapted to force
Unif(�C) for any ladder system �C (which, as we already mentioned, is well known to
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be incompatible with CH), and on the (closely related) obstacles towards building
models of reasonable forcing axioms together with CH using the present approach.

2. The Main Construction

The theorem we will prove in this and the following section, we recall, is the
following.

Theorem 2.1 (CH). Let κ ≥ ω2 be a regular cardinal such that 2<κ = κ. Then
there is a partial order P ⊆ H(ω2) with the following properties :

(1) P is proper.
(2) P is ℵ2-Knaster.
(3) P forces the following statements :

(a) Measuring;
(b) CH;
(c) 2ℵ1 = κ.

In this section, we present the construction of a certain sequence (Pβ : β ≤ κ)
of forcing notions. In Sec. 3, we will prove that Pκ is a forcing P witnessing the
conclusion of Theorem 2.1.

We start out by fixing some pieces of notation that will be used in both this
and the following section. If N is a set such that N ∩ ω1 ∈ ω1, δN denotes this
intersection. δN is also called the height of N .

Given P ⊆ H(κ) and N ⊆ H(κ), we will tend to write (N, P ) as short hand for
(N, P ∩ N). Also, if N0 and N1 are ∈-isomorphic elementary submodels of H(κ),
we refer to the unique ∈-isomorphism Ψ : (N0;∈) → (N1;∈) as ΨN0,N1 .

We will make use of the following notion of symmetric system from [7].

Definition 2.2. Let T ⊆ H(κ) and let N be a finite collection of countable subsets
of H(κ). We say that N is a T -symmetric system if and only if the following holds:

(1) For every N ∈ N , (N ;∈, T ) is an elementary substructure of (H(κ);∈, T ).
(2) Given N0 and N1 in N , if δN0 = δN1 , then there is a unique isomorphism

ΨN0,N1 : (N0;∈, T ) → (N1;∈, T ).

Furthermore, ΨN0,N1 is the identity on N0 ∩ N1.
(3) For all N0, N1, M ∈ N , if M ∈ N0 and δN0 = δN1 , then ΨN0,N1(M) ∈ N .
(4) For all N and M in N , if δM < δN , then there is N ′ ∈ N such that δN ′ = δN

and M ∈ N ′.

Taking up a suggestion of Inamdar, we call condition (4) the shoulder axiom.
Strictly speaking, the phrase “T -symmetric system” is ambiguous in general

since H(κ) may not be determined by T . However, in all practical cases (
⋃

T ) ∩
Ord = κ, so T does determine H(κ) in these cases.

2350009-9
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We will talk about symmetric systems in some contexts in which T is clear or
irrelevant.

The following two amalgamation lemmas are proved in [7].

Lemma 2.3. Let T ⊆ H(κ) and let N be a T -symmetric system. Let N ∈ N and
let M ∈ N be a T -symmetric system such that N ∩ N ⊆ M. Let

W(N ,M, N) := N ∪ {ΨN,N ′(M) : M ∈ M, N ′ ∈ N , δN ′ = δN}.

Then W(N ,M, N) is the ⊆-minimal T -symmetric system W such that N ∪
M ⊆ W.

Given T ⊆ H(κ) and N0 and N1, T -symmetric systems, let us write N0
∼=T N1

if |N0| = |N1| = n, for some n < ω, and there are enumerations (N0
i : i < n) and

(N1
i : i < n) of N0 and N1, respectively, for which there is an isomorphism

Ψ :
(⋃

N0;∈, N0
i , T

)
i<n

→
(⋃

N1;∈, N1
i , T

)
i<n

which is the identity on (
⋃
N0) ∩ (

⋃
N1).

Lemma 2.4. Let T ⊆ H(κ) and let N0 and N1 be T -symmetric systems such that
N0

∼=T N1. Then N0 ∪ N1 is the ⊆-minimal T -symmetric system W such that
N0 ∪ N1 ⊆ W.

We will recursively build a sequence (Pβ : β ≤ κ) of forcing notions, together
with a sequence of predicates (Φα : α < κ). Theorem 2.1 will be witnessed by Pκ.
Given β < κ we let

Tβ = {N ∈ [H(κ)]ℵ0 : (N ;∈, Φβ) � (H(κ);∈ Φβ)}.

Let Succ(κ) denote the set of successor ordinals below κ. To start with, let
us fix a function Φ : Succ(κ) → H(κ) with the property that {α ∈ Succ(κ) :
Φ(α) = x} is unbounded in κ for each x ∈ H(κ) (which exists by 2<κ = κ), and
let Φ0 be the satisfaction predicate for the structure (H(κ);∈, Φ). Also, given any
β > 0, Φβ will uniformly encode, among other things, the sequences (Φα : α < β)
and (Sat(Φα) : α < β), where Sat(Φα) denotes the satisfaction predicate for the
structure (H(κ);∈, Φα).

We will call an ordered pair (N, ρ), where

• N is a countable elementary submodel of (H(κ);∈, Φ0);
• ρ ∈ N ∩ κ and
• N ∈ Tα+1 for every α ∈ N ∩ ρ,

a model with marker.k

kIn the definition of Pβ , we will assume Φα+1 has been defined for all α < β. While defining Pβ ,
we will refer to the notion of model with marker. In that case, the marker ρ will be at most β,
and hence Φα+1 — and therefore Tα+1 — will be defined for all α ∈ N ∩ ρ.
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If (N, ρ) is a model with marker, we will sometimes say that ρ is the marker of
(N, ρ).

In our forcing construction, we will use models with markers (N, ρ) in a crucial
way. The presence of the marker ρ will tell us that N is to be seen as “active” for
all stages in N ∩ ρ.

Given an unordered pair

e = {(N0, ρ0), (N1, ρ1)}
of models with markers, we will call e an edge in case

(1) N0
∼= N1;

(2) for every α ∈ N0 ∩ ρ0, if ᾱ = ΨN0,N1(α) < ρ1, then ΨN0,N1 is an isomorphism
between

(N0;∈, Φα+1)

and

(N1;∈, Φᾱ+1).

We note that, in the above definition, (N0, ρ0) and (N1, ρ1) may or may not be
distinct. Hence, an edge may contain two models with markers or may just be the
singleton {(N, ρ)} of a model with marker (N, ρ).

Also, we call an ordered pair 〈(N0, ρ0), (N1, ρ1)〉 a directed edge if
{(N0, ρ0), (N1, ρ1)} is an edge. If G is a set of edges, we say that a directed edge
〈(N0, ρ0), (N1, ρ1)〉 comes from G if {(N0, ρ0), (N1, ρ1)} ∈ G.

If e = 〈(N0, ρ0), (N1, ρ1)〉 is a directed edge, we write Ψe for ΨN0,N1 .
If β < κ, we say that an edge {(N0, ρ0), (N1, ρ1)} is below β if ρ0 ≤ β and

ρ1 ≤ β.
Given a set G of edges,l we denote

⋃
G by Δ(G); i.e. Δ(G) is the set of models

with markers (N, ρ) for which there is some (N ′, ρ′) such that {(N, ρ), (N ′, ρ′)} ∈ G.
Given a directed edge e = 〈(N0, ρ0), (N1, ρ1)〉 and an edge e′ = {(N ′

0, ρ
′
0),

(N ′
1, ρ

′
1)} such that

• e′ ∈ N0;
• max{ρ′0, ρ′1} ≤ ρ0 and
• ΨN0,N1(max{ρ′0, ρ′1}) ≤ ρ1,

we denote

{(ΨN0,N1(N
′
0), ΨN0,N1(ρ

′
0)), (ΨN0,N1(N

′
1), ΨN0,N1(ρ

′
1))}

by Ψe(e′).

Fact 2.5. Suppose e = 〈(N0, ρ0), (N1, ρ1)〉 is a directed edge and e′ = {(N ′
0, ρ

′
0),

(N ′
1, ρ

′
1)} is an edge such that

• e′ ∈ N0;

lWe think of sets of edges as graphs, hence the choice of the letter G in this context.
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• max{ρ′0, ρ′1} ≤ ρ0 and
• ΨN0,N1(max{ρ′0, ρ′1}) ≤ ρ1.

Then Ψe(e′) is an edge.

Proof. For i ∈ {0, 1}, let N ′′
i = ΨN0,N1(N ′

i). Then, for each i, the elementarity of
ΨN0,N1 , together with the fact that N ′

0
∼= N ′

1 and ρ′i ∈ N ′
i , implies that N ′′

0
∼= N ′′

1

and ΨN0,N1(ρ′i) ∈ N ′′
i . Furthermore, for each α ∈ N ′

i ∩ ρ′i, the fact that ΨN0,N1 is
also an isomorphism between the structures (N0;∈, Φα+1) and (N1;∈, Φᾱ+1), for
ᾱ = ΨN0,N1(α), together with (N ′

i ;∈, Φα+1) � (N0;∈, Φα+1), implies that

(N ′′
i ;∈, Φᾱ+1) � (N1;∈, Φᾱ+1) � (H(κ);∈, Φᾱ+1).

Hence, (N ′′
i , ΨN0,N1(ρ′i)) is a model with marker. Finally, if α and ᾱ are as above,

with i = 0, β = ΨN ′
0,N ′

1
(α) and α† := ΨN ′′

0 ,N ′′
1
(ᾱ) = ΨN0,N1(β) < ΨN0,N1(ρ′1),

then letting α∗ = max{α, β} and α∗∗ = ΨN0,N1(α∗) and using the fact that (N ′
0;∈,

Φα+1) ∼= (N ′
1;∈, ΦΨN′

0,N′
1
(α)+1) and that ΨN0,N1 is also an isomorphism between

(N0;∈, Φα∗+1) and (N1;∈, Φα∗∗+1), we get that (N ′′
0 ;∈, Φᾱ+1) ∼= (N ′′

1 ;∈, Φα†+1).
To see this, simply use that (N ′

0;∈, Φα+1) � (N0;∈, Φα+1), (N ′
1;∈, Φβ+1) � (N0;∈,

Φβ+1) and, if α∗ > min{α, β}, also that Φα∗+1 codes the satisfaction relation of
(H(κ);∈, Φmin{α,β}+1).

Given a set G of edges, we say that G is closed under restrictions if
{(N0, α0), (N1, α1)} ∈ G whenever {(N0, ρ0), (N1, ρ1)} ∈ G, α0 ∈ N0 ∩ (ρ0 + 1)
and α1 ∈ N1 ∩ (ρ1 + 1). Also, we say that G is closed under copying in case for
every directed edge e = 〈(N0, ρ0), (N1, ρ1)〉 coming from G and every edge e′ =
{(N ′

0, ρ
′
0), (N

′
1, ρ

′
1)} ∈ G, if e′ ∈ N0, max{ρ′0, ρ′1} ≤ ρ0, and ΨN0,N1(max{ρ′0, ρ′1}) ≤

ρ1, then Ψe(e′) ∈ G.
If Δ is a set of models with markers and β < κ, we let

NΔ
β = {N : (N, β) ∈ Δ}.

m

We say that a set G of edges is sticky in case for every ordinal α and for all N0,
N1 ∈ NΔ(G)

α+1 , if δN0 = δN1 , then {(N0, α + 1), (N1, α + 1)} ∈ G.n

Given sets G0 and G1 of edges, we say that G0 and G1 are compatible in case
for all α < κ and N0, N1 ∈ NΔ(G0)

α+1 ∪ NΔ(G1)
α+1 such that δN0 = δN1 we have that

(N0;∈, Φα+1) ∼= (N1;∈, Φα+1). If this is the case, then there is a ⊆-minimum sticky
set G of edges including both G0 and G1 and which is closed under restrictions and
closed under copying. We denote this set G by G0 ⊕ G1.

If G is a set of edges, we denote by M(G) some canonically chosen structure with
universe

⋃
dom(Δ(G)) coding G and〈(
α, Φα+1 ∩

⋃
dom(Δ(G))

)
: α ∈

⋃
{N ∩ ρ : (N, ρ) ∈ Δ(G)}

〉
.

mNote that if G is a set of edges closed under restrictions and Δ = Δ(G), then NΔ
0 is the same

thing as dom(Δ).
nIn particular, if G is sticky, then {(N, α + 1)} ∈ G for every ordinal α and every N ∈ NΔ(G)

α+1 .
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Also, we consider the following form of the isomorphism relation ∼=T for T -
symmetric systems, for sets of edges: If G0 and G1 are sets of edges, we write
G0

∼= G1 in case there is an isomorphism Ψ : M(G0) → M(G1) which is the identity
on (

⋃
dom(Δ(G0))) ∩ (

⋃
dom(Δ(G1))).

We will use the following easy extension of Lemma 2.4.

Lemma 2.6. Let G0 and G1 be sticky sets of edges closed under restrictions and
under copying. Suppose G0

∼= G1. Then G0 ⊕ G1 is the union of G0 ∪ G1 and the
set of unordered pairs {(N0, α0 + 1), (N1, α1 + 1)} such that δN0 = δN1 , α0 ∈ N0,

α1 ∈ N1, and for which there is some α ≥ α0, α1 such that N0 ∈ NΔ(G0)
α+1 and N1 ∈

NΔ(G1)
α+1 .o Hence, if, in addition, NΔ(G0)

0 and NΔ(G1)
0 are Φ0-symmetric systems and

NΔ(G0)
α+1 and NΔ(G1)

α+1 are Φα+1-symmetric systems for each α < κ, then NΔ(G0⊕G1)
0

is a Φ0-symmetric system and NΔ(G0⊕G1)
α+1 is a Φα+1-symmetric system for

each α < κ.

If G is a set of edges and α < κ, we let

G|α = {{(N0, ρ0), (N1, ρ1)} ∈ G : ρ0, ρ1 ≤ α}.

We will need the following easy lemma.

Lemma 2.7. Suppose G is a sticky set of edges closed under restrictions and under
copying. Suppose NΔ(G)

0 is a Φ0-symmetric system and NΔ(G)
α+1 is a Φα+1-symmetric

system for each α < κ. Let α0 < κ. Then the following holds :

(1) G|α0 is a sticky set of edges closed under restrictions and under copying.
(2) NΔ(G|α0)

α = NΔ(G)
α for every α ≤ α0. In particular, NΔ(G|α0)

0 is a Φ0-symmetric
system and for each α < κ, NΔ(G|α0 )

α+1 is a Φα+1-symmetric system.

Given functions f0, . . . , fn, for some n < ω, we let

fn ◦ · · · ◦ f0

be f0 if n = 0; if n > 0, we let this expression denote the function f with domain
the set of x such that for every i < n, x ∈ dom(fi ◦ · · · ◦ f0) and (fi ◦ · · · ◦ f0)(x) ∈
dom(fi+1), and such that for every x ∈ dom(f), f(x) = fn((fn−1 ◦ · · · ◦ f0)(x)).

If �E = (〈(N i
0, ρ

i
0), (N

i
1, ρ

i
1)〉 : i < n), for some n < ω, is a sequence of pairs of

models with markers such that N i
0
∼= N i

1 for all i < n, we denote ΨNn−1
0 ,Nn−1

1
◦ · · · ◦

ΨN0
0 ,N0

1
by Ψ�E . We also let δ�E = {δNi

0
: i < n}.

If G is a set of edges and a ∈ H(κ), we call 〈a, �E〉 a G-thread if �E is a finite
sequence of directed edges coming from G and a ∈ dom(Ψ�E).

Given a set G of edges and an ordinal α < κ, we say that

〈α, (〈(N i
0, ρ

i
0), (N

i
1, ρ

i
1)〉 : i ≤ n)〉

oWe note that, in particular, G0 and G1 are compatible, and so G0 ⊕ G1 exists.
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is a connected G-thread in case the following holds:

(1) 〈α, (〈(N i
0, ρ

i
0), (N

i
1, ρ

i
1)〉 : i ≤ n)〉 is a G-thread.

(2) α ∈ N0
0 ∩ (ρ0

0 + 1) and ΨN0
0 ,N0

1
(α) < ρ0

1 + 1.
(3) If n > 0, then 〈(ΨN0

0 ,N0
1
(α), (〈(N i

0, ρ
i
0), (N i

1, ρ
i
1)〉 : 0 < i ≤ n)〉 is a connected

G-thread.

If G is a set of edges and (δ, α), (δ, ᾱ) ∈ ω1×κ, we say that (δ, ᾱ) is G-accessible
from (δ, α) if

• ᾱ = α or
• there is a connected G-thread 〈α, �E〉 such that ᾱ = Ψ�E(α) and δ ≤ min(δ�E ).

In the proof of Lemma 2.8, if

�E = (〈(N i
0, ρ

i
0), (N

i
1, ρ

i
1)〉 : i < n)

is a sequence of ordered edges, we will denote the sequence

(〈(Nn−1−i
1 , ρn−1−i

1 ), (Nn−1−i
0 , ρn−1−i

0 )〉 : i < n)

by (�E)−1.
We will need the following counterpart of Lemma 2.3 for sets of edges.

Lemma 2.8. Let β < κ. Let G0 be a sticky set of edges below β closed under
restrictions and under copying and such that NΔ(G0)

0 is a Φ0-symmetric system
and NΔ(G0)

α+1 is a Φα+1-symmetric system for each α < κ. Let N ∈ NΔ(G0)
β . Suppose

G1 ∈ N is a sticky set of edges below β closed under restrictions and under copying
and such that NΔ(G1)

0 is a Φ0-symmetric system and NΔ(G1)
α+1 is a Φα+1-symmetric

system for each α < κ. Suppose G0 ∩ N ⊆ G1. Finally, suppose that for every
Q ∈ dom(Δ(G0)) ∩ N, G1 ∩ Q = G0 ∩ Q. Let G∗ be the union of the following sets :

(1) G0.
(2) The set G2 consisting of unordered pairs of the form

{(Ψ�E(N0), Ψ�E(ρ0)), (Ψ�E(N1), Ψ�E(ρ1))},

where {(N0, ρ0), (N1, ρ1)} ∈ G1, 〈{N0, N1}, �E〉 is a G0-thread with min(δ�E) =
δN , and 〈ρ0, �E〉 and 〈ρ1, �E〉 are connected G0-threads.

(3) The set G3 consisting of unordered pairs of the form

{(M0, α0), (M1, α1)}

such that δM0 = δM1 and for which there is some α < β such that {(M0, α +
1)} ∈ G2, {(M1, α + 1)} ∈ G2, α0 ∈ M0 ∩ (α + 2) and α1 ∈ M1 ∩ (α + 2).

Then G∗ is a sticky set of edges closed under restrictions and under copying, NΔ(G∗)
0

is a Φ0-symmetric system, and NΔ(G∗)
α+1 is a Φα+1-symmetric system for each α < κ.
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Proof. It is immediate to check that, by our construction, G∗ is closed under
restrictions. Also, it is clear that NΔ(G∗)

0 = NΔ(H)
0 , where

H = G0 ∪ {{(ΨN,N ′(M), 0)} : M ∈ NΔ(G1)
0 , N ′ ∈ NΔ(G0)

0 , δN ′ = δN}.

Hence, by Lemma 2.3, NG∗
0 is a Φ0-symmetric system. We will now prove, for every

α < β, that NΔ(G∗)
α+1 is a Φα+1-symmetric system. The point that needs the most

work is the verification of the shoulder axiom for NΔ(G∗)
α+1 , which we will go through

next.
For this, given M∗

0 , M∗
1 ∈ NG∗

α+1 such that δM∗
0

< δM∗
1
, it is enough to show

that there is some M∗∗
1 ∈ NΔ(G∗)

α+1 such that δM∗∗
1

= δM∗
1

and M∗
0 ∈ M∗∗

1 . If
δM∗

0
≥ δN , then M∗

0 and M∗
1 are both in dom(Δ(G0)) and so we are done by the

shoulder axiom for NΔ(G0)
α+1 . Hence, we will assume in what follows that δM∗

0
<

δN . If M∗
0 ∈ NΔ(G0)

α+1 , then we may of course assume that M∗
1 /∈ NΔ(G0)

α+1 . It then
follows, by the definition of G2, together with the stickiness of G0 and the shoulder
axiom for NΔ(G0)

α+1 , that there is a sequence �E such that 〈M∗
0 , �E〉 is a G0-thread

with min(δ�E) = δN , 〈α + 1, �E〉 is a connected G0-thread, and Ψ�E(M∗
0 ) ∈ N . Then

M0 := Ψ�E(M∗
0 ) ∈ dom(Δ(G0)) ∩ N , and therefore M0 ∈ dom(Δ(G1)).

For i = 0, 1, let us fix αi < β, Mi ∈ NΔ(G1)
αi+1 and �Ei such that 〈(Mi, αi + 1), �Ei〉

is a G0-thread, min(δ�Ei
) = δN and 〈αi + 1, �Ei〉 is a connected G0-thread. Suppose

α = Ψ�E0
(α0) = Ψ�E1

(α1) and δM0 < δM1 . By the analysis in the previous paragraph,

in order to show the shoulder axiom for NΔ(G∗)
α+1 it will suffice to prove that there

is some M ′
1 ∈ NΔ(G∗)

α+1 such that δM ′
1

= δM1 and Ψ�E0
(M0) ∈ M ′

1. By, if necessary,
appending suitable ordered edges from G0 at the right places using stickiness of G0

and the shoulder axiom for NΔ(G0)
γ+1 for appropriate γ — these places could be the

beginning or the end of �E0, the beginning or the end of �E1, or somewhere inside �E0

or �E1 — we obtain �E ′
0 and �E ′

1 such that

Ψ−1
�E′
1
◦ Ψ�E′

0
: (N ;∈) → (N ;∈)

is an isomorphism. But then Ψ−1
�E′
1
◦ Ψ�E′

0
� N is of course the identity on N , which

implies that α0 = α1 since Ψ−1
�E′
1
◦ Ψ�E′

0
(α0) = α1 from the way we have constructed

�E ′
0 and �E ′

1 from �E0 and �E1, respectively. Now, by the shoulder axiom for NΔ(G1)
α0+1 , we

can find M †
1 ∈ NΔ(G1)

α0+1 such that δM†
1

= δM1 and M0 ∈ M †
1 , and M∗∗

1 := Ψ�E0
(M †

1 )

is then a model in NG∗
α+1 as desired.

Similarly, by an argument as in the above proof of the shoulder axiom, we can
see that if M0, M1 ∈ NΔ(G∗)

α+1 are such that δM0 = δM1 , then (M0;∈, Φα+1) ∼=
(M1;∈, Φα+1). More specifically, and as in the proof of the shoulder axiom, we may
assume that we are in the case in which for each i ∈ {0, 1} there are αi < β,
M−

i ∈ NΔ(G1)
αi+1 and �Ei such that 〈(M−

i , αi + 1), �Ei〉 is a G0-thread, min(δ�Ei
) = δN ,
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〈αi + 1, �Ei〉 is a connected G0-thread and Ψ�Ei
(M−

i ) = Mi. To see that (M0;∈,

Φα+1) ∼= (M1;∈, Φα+1), we notice that α0 = α1 as in the previous argument
and therefore (M−

0 ;∈, Φα0+1) ∼= (M−
1 ;∈, Φα1+1). Also, by the same construc-

tion as in the argument in the proof of the shoulder axiom, we may obtain
�E ′
0 = (〈(N i,0

0 , ρi,0
0 ), (N i,0

1 , ρi,0
1 )〉 : i ≤ n0) and �E ′

1 = (〈(N i,1
0 , ρi,1

0 ), (N i,1
1 , ρi,1

1 )〉 :
i ≤ n1) from �E0 and �E1, so that dom(�E ′

0) = dom(�E ′
1) = N , Ψ�E′

0
(M−

0 ) = M0 and
Ψ�E′

1
(M−

0 ) = M1. But then the desired conclusion holds since

Ψ�E′
0

: (N ;∈, Φα0+1) → (Nn0,0
1 ;∈, Φα+1)

and

Ψ�E′
1

: (N ;∈, Φα0+1) → (Nn1,1
1 ;∈, Φα+1)

are isomorphisms. The proof that (ΨM0,M1(M), α + 1) ∈ Δ(G∗) whenever M0, M1

are as above and M ∈ NΔ(G∗)
α+1 ∩ M0, which concludes the proof that NΔ(G∗)

α+1 is a
Φα+1-symmetric system, is contained in the argument in the next paragraph.

We now show that G∗ is closed under copying. For this, suppose e =
{(M0, ρ0), (M1, ρ1)} ∈ G∗ and e′ = {(M ′

0, ρ
′
0), (M

′
1, ρ

′
1)} ∈ G∗ ∩ M0 are such

that max{ρ′0, ρ′1} ≤ ρ0 and ΨN0,N1(max{ρ′0, ρ′1}) ≤ ρ1, and let us prove that
ΨM0,M1(e′) ∈ G∗. The case when δM0 ≥ δN follows from the construction of G2 —
in this case of course M0, M1 ∈ NΔ(G0)

α+1 . Now, suppose δM0 < δN . If e ∈ G2,
then the conclusion follows from the construction of G2 and the hypothesis that
Q ∩ G1 = Q ∩ G0 for every Q ∈ dom(Δ(G0)) ∩ N . In order to finish this proof
it thus remains to consider the case in which e ∈ G3. We then have that there is
α + 1 ≥ ρ0, ρ1 such that the edges {(M0, α + 1)} and {(M1, α + 1)} are both in
G2. Hence there are α∗ < β and {(M∗

0 , α∗ + 1)}, {(M∗
1 , α∗ + 1)} ∈ G1 such that

M0 = Ψ�E0
(M∗

0 ) and M1 = Ψ�E1
(M∗

1 ) for suitable �E0 and �E1 as in the definition of G2

such that Ψ�E0
(α∗) = Ψ�E1

(α∗) = α. Since then {(M∗
0 , α∗ +1), (M∗

1 , α∗ +1)} ∈ G1 by
stickiness of G1 and Ψ−1

�E0
(e′) ∈ G1 ∩M∗

0 , e∗ := ΨM∗
0 ,M∗

1
(Ψ−1

�E0
(e′)) ∈ G1. This finishes

the proof in this case since then ΨM0,M1(e′) = Ψ�E1
(e∗) ∈ G2 ⊆ G∗.

Finally, we note that stickiness of G∗ holds at α + 1 (i.e. the unordered pair
{(M0, α + 1), (M1, α + 1)} ∈ G∗ for all M0, M1 ∈ NΔ(G∗)

α+1 such that δM0 = δM1)
since, by the definition of G2, we can assume that {(M0, α + 1), (M1, α + 1)} /∈ G0,
δM0 = δM1 < δN , and hence

{(M0, α + 1), (M1, α + 1)} ∈ G3.

Remark 2.9. The set G∗ in the proof of Lemma 2.8 is precisely G0 ⊕ G1.

Remark 2.10. The main reason for requiring our sets of edges G to be sticky,
rather than simply asking that NΔ(G)

α+1 be a Φα+1-symmetric system for each α, it
to secure the above amalgamation lemma. As observed by Inamdar, this lemma
does not hold if we do not require stickiness.
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We will call a function F pertinent if dom(F ) ∈ [Succ(κ)]<ω and for every
α ∈ dom(F ), F (α) = (bα, dα), where

• bα ∈ [Lim(ω1) × ω1]<ω is a regressive function (i.e. bα(δ) < δ for each δ ∈
dom(bα));

• dα ∈ [ω1 × H(κ)]<ω.

In the above situation, we will often refer to bα and dα as, respectively, bF
α and

dF
α . Also, if α /∈ dom(F ), bF

α and dF
α are both defined to be the empty set.

Given an ordered pair q = (F,G), where F is a function and G is a set of edges,
we will denote F and G by, respectively, Fq and Gq. Given α ∈ dom(Fq), we will
denote b

Fq
α and d

Fq
α by, respectively, bq

α and dq
α.

If q = (Fq ,Gq), where Fq and Gq are as above, and β < κ, we let N q
β stand

for NΔ(Gq)
β . If G is a set of ordered pairs as above, we denote by NG

β the set⋃
{N q

β : q ∈ G}.
Given q = (Fq ,Gq), where Fq and Gq are as above, and given N ⊆ H(κ), we

denote by q � N the ordered pair (Fq �� N,Gq ∩ N), where Fq �� N is the function
with domain dom(Fq) ∩ N such that

(Fq �� N)(α) = (bq
α ∩ N, dq

α ∩ N)

for each α ∈ dom(F ) ∩ N .
Also, given q = (Fq,Gq) as above, δ < ω1 and α < κ, we denote by Ξq,α

δ the
set of ordinals ᾱ such that (δ, ᾱ) is Gq-accessible from (δ, α), ᾱ ∈ dom(Fq) and
δ ∈ dom(bq

ᾱ).
We will now define our sequence (Pβ : β ≤ κ) and (Φβ : β < κ). As we said

before, Theorem 2.1 will be witnessed by Pκ. We already defined Φ0.
Given α ≤ κ, Ġα will be the canonical Pα-name for the generic filter added

by Pα. We will denote the forcing relation for Pα by �α, and the extension relation
for Pα by ≤α.

Given any α < κ, and assuming Pα has been defined, we let Ċα be some
canonically chosen (using Φ) Pα-name for a club-sequence on ωV

1 for which the
following holds:

• If Φ(α) is a Pα-name for a club-sequence on ω1, then Ċα = Φ(α).
• If Φ(α) is not a Pα-name for a club-sequence on ω1, then Ċα is a Pα-name for �C,

where �C ∈ V is some fixed club-sequence on ω1.

Given δ ∈ Lim(ω1), we let Ċα
δ be a Pα-name for Ċα(δ) (where Ċα(δ) of course

refers to the δth member of Ċα).
We are finally in a position to define our construction. Let β < κ, and suppose

Pα, Φα and Φα+1 have been defined for each α < β. Suppose, in addition, that for
all ᾱ < α < β, every Pᾱ-name is also a Pα-name. We aim to define Pβ and Φβ+1,
and also Φβ if β < κ is a nonzero limit ordinal.
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An ordered pair q = (Fq ,Gq) is a Pβ-condition if and only if it has the following
properties:

(1) Gq is a sticky set of edges below β closed under restrictions and under copying,
and such that

(a) NΔ(Gq)
0 is a Φ0-symmetric system;

(b) for every α < β, NΔ(Gq)
α+1 is a Φα+1-symmetric system.

(2) Fq is a pertinent function with dom(Fq) ⊆ β.
(3) For every α < β, the restriction of q to α, q|α, is a condition in Pα, where

q|α := (Fq � α,Gq|α).

(4) If α ∈ dom(Fq), then Fq(α) = (bq
α, dq

α) has the following properties:

(a) For every δ ∈ dom(bq
α) there is some N ∈ N q

α+1 such that δ = δN .
(b) For every N ∈ N q

α+1 and δ ∈ dom(bq
α), if bq

α(δ) < δN < δ and β = α + 1,
then q|α �α δN /∈ Ċα

δ .
(c) For every N ∈ N q

α+1, (δ, a) ∈ dq
α ∩ N and N ′ ∈ N q

α+1, if δN ′ = δN , then
(δ, ΨN,N ′(a)) ∈ dq

α.
(d) For every (δ, a) ∈ dq

α and N ∈ N q
α+1, if δ < δN , then there is some N ′ ∈

N q
α+1 such that δN ′ = δN and a ∈ N ′.

(5) Suppose β = α + 1. For every N ∈ N q
α+1, if Ξq,α

δN
�= ∅, then q|α forces that for

every a ∈ N there is some M ∈ N Ġα
α ∩ Tα+1 ∩ N such that

(a) a ∈ M and
(b) δM /∈

⋃
{Ċᾱ

δN
: ᾱ ∈ Ξq,α

δN
}.p

(6) Suppose {(N0, ρ0), (N1, ρ1)} ∈ Gq, α ∈ dom(Fq)∩N0∩ρ0 and ᾱ = ΨN0,N1(α) <

ρ1. Then

(a) ᾱ ∈ dom(Fq);
(b) bq

α ∩ N0 = bq
ᾱ ∩ N1;

(c) ΨN0,N1“dq
α = dq

ᾱ ∩ N1.

(7) The following holds for every α < β and every N ∈ N q
α+1:

(a) For all Q ∈ N q
α+1 ∩ N and (δ0, δ1) ∈ bq

α, if δ1 < δQ < δ0 and δ0 < δN , then
there is some p ∈ Pα ∩ N such that q|α ≤α p and p �α δQ /∈ Ċα

δ0
.

(b) For every Q ∈ N q
α+1∩N , if Ξ(q�N)|α+1,α

δQ
�= ∅, then there is some p ∈ Pα∩N

such that q|α ≤α p and such that p forces that for every a ∈ Q there is some
M ∈ N Ġα

α ∩ Tα+1 ∩ Q with a ∈ M and δM /∈
⋃
{Ċᾱ

δQ
: ᾱ ∈ Ξ(q�N)|α+1,α

δQ
}.q

pIt is worth noting that clauses (4)(b) and (5) only apply when β = α + 1. Also, notice that item
(b) in (5) makes sense since, in the situation of this clause, every Pᾱ-name is itself a Pα-name by
our working hypothesis.
qJust to be clear, Ξ

(q�N)|α+1,α

δQ
is of course the set of ordinals ᾱ such that (δQ, ᾱ) is (Gq)|α+1∩N-

accessible from (δQ, α), ᾱ ∈ dom(Fq) ∩ N and δQ ∈ dom(bq
ᾱ).
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Given Pβ-conditions qi, for i = 0, 1, q1 ≤β q0 if and only if the following holds:

(1) dom(Fq0 ) ⊆ dom(Fq1 ) and for every α ∈ dom(Fq0 ),

(a) bq0
α ⊆ bq1

α and
(b) dq0

α ⊆ dq1
α .

(2) Gq0 ⊆ Gq1

(3) For every {(N0, ρ0), (N1, ρ1)} ∈ Gq0 and α ∈ N0 ∩ (ρ0 + 1), the following holds:

(a) If ΨN0,N1(α) > β, then N q1
α ∩ N0 = N q0

α ∩ N0.
(b) If α ∈ dom(Fq1 ) ∩ ρ0 and ΨN0,N1(α) ≥ β, then

(i) if bq1
α ∩ N0 �= ∅, then α ∈ dom(Fq0 ) and bq1

α ∩ N0 = bq0
α ∩ N0;

(ii) if dq1
α ∩ N0 �= ∅, then α ∈ dom(Fq0) and dq1

α ∩ N0 = dq0
α ∩ N0.

We will refer to clause (7) of the definition of Pβ holding for q by saying that q

is N -saturated below β.

Fact 2.11. ≤β is a transitive relation.

Proof. Let q0, q1, q2 ∈ Pβ and suppose q1 ≤β q0 and q2 ≤β q1. In order to show
that q2 ≤β q0, it suffices to verify (3) as all other clauses are trivial. For this, let
{(N0, ρ0), (N1, ρ1)} ∈ Gq0 , α ∈ N0 ∩ (ρ0 +1) and ᾱ = ΨN0,N1(α), and let us assume
that ᾱ > β. We will prove that N q2

α ∩ N0 = N q0
α ∩ N0. (The argument taking care

of (3)(b) is the same.)
Since Gq0 ⊆ Gq1 ⊆ Gq2 , by (3)(a) in the definition of q2 ≤β q1 we have that

N q2
α ∩ N0 = N q1

α ∩ N0. Since N q1
α ∩ N0 = N q0

α ∩ N0 by (3)(a) in the definition of
q1 ≤β q0, we have that N q1

α ∩N0 = N q0
α ∩N0. Putting these two equalities together

it follows that N q2
α ∩ N0 = N q0

α ∩ N0.

We still need to define Φβ+1, and Φβ if β < κ is a nonzero limit ordinal.
Let �∗

β denote the restriction of the forcing relation �β for Pβ to formulas
involving only names in H(κ). Then we let Φβ+1 ⊆ H(κ) canonically code the
satisfaction relation for the structure

(H(κ); Φβ ,Pβ , �∗
β).

Finally, if β < κ is a nonzero limit ordinal, we let Φβ be a subset of H(κ)
canonically coding (Φα : α < β).

We will assume that the definition of (Φβ : β < κ) is uniform in β.
Finally, we define Pκ =

⋃
β<κ Pβ .

3. Proving Theorem 2.1

We will now prove the relevant lemmas that, together, will show Pκ to witness
Theorem 2.1.

Given partial orders P and Q, we will say that P is a weak suborder of Q in case
dom(P) ⊆ dom(Q) and for all p0, p1 ∈ dom(P), if p1 ≤P p0, then p1 ≤Q p0. Thus,
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P is a suborder of Q in case it is a weak suborder of Q and for all p0, p1 ∈ dom(P)
we have that if p1 ≤Q p0, then p1 ≤P p0.

It is clear that if P is a weak suborder of Q, then every P-name is itself also a
Q-name.

Our first two lemmas are obvious.

Lemma 3.1. For all α < β ≤ κ, Pα is a weak suborder of Pβ.r

On the other hand, it is not true in general that for all α < β, Pα is a suborder
of Pβ.s

Lemma 3.2. For every β < κ, Pβ and �∗
β are uniformly (in β) definable over the

structure (H(κ);∈, Φβ+1) without parameters.

Given partial orders P and Q, we will say that P is a weak complete suborder of
Q in case P is a weak suborder of Q and every predense subset of P is also predense
in Q (i.e. if D ⊆ P is predense in P, then for every q ∈ Q there are p ∈ D and r ∈ Q

such that r ≤Q p and r ≤Q q). Also, we will call a sequence 〈Pα : α ≤ λ〉 of forcing
notions a weak forcing iteration if for all α < β, Pα is a weak complete suborder
of Pβ.

Given partial orders P and Q such that P is a weak suborder of Q, we call a
function π : Q → P a weak projection of Q onto P in case for every q ∈ Q and every
condition p ∈ P such that p ≤P π(q) there is some r ∈ Q such that r ≤Q p and
r ≤Q q. In this situation P is clearly a weak complete suborder of Q.

Our sequence (Pβ : β ≤ κ) is a weak forcing iteration. In fact, given α < β ≤ κ,
the function sending q ∈ Pβ to q|α is a weak projection of Pβ onto Pα. This is an
immediate consequence of the following lemma, the proof of which is straightforward
thanks to clause (3) in the definition of the extension relation ≤α.

Lemma 3.3. Let α < β ≤ κ, let q ∈ Pβ and r ∈ Pα, and suppose r ≤α q|α. Then

(Fq ∪ Fr,Gq ∪ Gr)

is a condition in Pβ extending both q and r in Pβ.

Given α < β ≤ κ, q ∈ Pβ and r ∈ Pα extending q|α, we write q ⊕ r to denote
the common extension

(Fq ∪ Fr,Gq ∪ Gr)

of q and r defined in the statement of Lemma 3.3.

rThis lemma shows, in particular, that for all α < β, every Pα-name is also a Pβ -name, and hence
that our construction (Pβ : β ≤ κ) is well defined.
sSee Remark 3.4.
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Given an edge {(M0, γ0), (M1, γ1)}, we will write

〈{(M0, γ0), (M1, γ1)}〉

to denote the ⊆-least set of edges containing {(M0, γ0), (M1, γ1)} and closed under
restrictions, i.e. the set

{{(M0, α0), (M1, α1)} : α0 ∈ M0 ∩ (γ0 + 1), α1 ∈ M1 ∩ (γ1 + 1)}.

Remark 3.4. As we have just seen, our construction is a weak forcing iteration,
and in fact, given any α < β ≤ κ, the function sending q ∈ Pβ to q|α is a weak
projection of Pβ onto Pα. However, it is not an iteration in the usual sense. Actually,
it is easy to find ordinals α < β and conditions q0, q1 ∈ Pα such that q1 ≤β q0 and
yet q0 and q1 are actually incompatible in Pα. For example, for some high enough
β, we can consider Pβ-conditions q0 = (∅,G0) and q1 = (∅,G1), where

• G0 = 〈{(N0, ρ0), (N1, ρ1)}〉;
• G1 is the union of

— G0;
— 〈{(M, ρ0)}〉 and
— {{(ΨN0,N1(M), γ)} : γ ∈ ΨN0,N1(M) ∩ ρ1},

and where ρ0 < ρ1, M ∈ N0, (M, ρ0) is a model with marker, and ΨN0,N1(ρ0) > ρ1.
Let α = ρ1. Then q1 ≤β q0 but q0 and q1 are incompatible in Pα since every r ∈ Pα

such that r ≤α q0, q1 would have to be such that M ∈ N r
ρ0

(since it would extend
q1) and M /∈ N r

ρ0
(since it would extend q0 and since ΨN0,N1(ρ0) > ρ1).

The following lemma will be used in the proofs of Lemmas 3.11 and 3.16.

Lemma 3.5. Let β < κ and q ∈ Pβ. Suppose {(N0, ρ0), (N1, ρ1)} ∈ Gq, α ∈
N0 ∩ ρ0, ȧ ∈ N0 is a Pα-name, ϕ(x) is a formula in the language of set theory,
(q � N0)|α ∈ Pα and (q � N0)|α �α ϕ(ȧ). Suppose α∗ := ΨN0,N1(α) < ρ1. Then
ΨN0,N1((q � N0)|α) = (q � N1)|α∗ ∈ Pα∗ , ΨN0,N1(ȧ) is a Pα∗-name and (q �
N1)|α∗ �α∗ ϕ(ΨN0,N1(ȧ)).

Proof. By Lemma 3.2 and since

ΨN0,N1 : (N0;∈, Φα+1) → (N1;∈, Φα∗+1)

is an isomorphism, we have that ΨN0,N1((q � N0)|α) is a Pα∗ -condition and
ΨN0,N1(ȧ) is a Pα∗ -name. And since (q � N0)|α �α ϕ(ȧ), we also have that

ΨN0,N1((q � N0)|α) ∈ Pα∗

and

ΨN0,N1((q � N0)|α) �α∗ ϕ(ΨN0,N1(ȧ))

again by Lemma 3.2 and the fact that

ΨN0,N1 : (N0;∈, Φα+1) → (N1;∈, Φα∗+1)
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is an isomorphism. Finally, clause (6) in the definition of condition, and the closure
of Gq under copying, together entail that

ΨN0,N1((q � N0)|α) = (q � N1)|α∗ .

3.1. Properness and ℵ2-c.c.

The goal of this section is to show both the properness and the ℵ2-chain condition of
all members Pβ of our construction. Our first lemma shows, given a Pβ-condition
q and an edge {(N0, ρ0), (N1, ρ1)} below β such that q ∈ N0 ∩ N1, how to add
{(N0, ρ0), (N1, ρ1)} to q.

Lemma 3.6. Let β < κ, q ∈ Pβ , and let {(N0, ρ0), (N1, ρ1)} be an edge below β

such that q ∈ N0 ∩ N1. Let G∗ be the union of Gq and 〈{(N0, ρ0), (N1, ρ1)}〉. Then
q∗ = (Fq,G∗) is a condition in Pβ extending q.

Proof. This is immediate since G∗ is the ⊆-minimal sticky set of edges closed under
restrictions and such that Gq ∪ {(N0, ρ0), (N1, ρ1)} ⊆ G∗.

The proof of the following lemma is the same as that of the previous lemma.

Lemma 3.7. Let β∗ ≤ κ, q ∈ Pβ and N � H(κ) such that N ∈ Tβ+1 for every
β ∈ N ∩ β∗. Suppose q ∈ N . Then there is an extension q∗ ∈ Pβ∗ of q such that
{(N, β)} ∈ Gq∗ for every β ∈ N ∩ β∗.

It will be convenient to prove the ℵ2-chain condition and our main properness
result in the same lemma, by a simultaneous induction. This will be the content
of Lemma 3.11. Before getting there, it will be useful to introduce some pieces of
notation and some technical lemmas.

The following lemma, which is immediate, asserts a useful interpolation property
of the extension relation.

Lemma 3.8. Let β < κ, q ∈ Pβ and N ∈ N q
0 . Suppose q � N ∈ Pβ , and let

p ∈ Pβ ∩ N be a condition such that q ≤β p. Then q ≤β q � N and q � N ≤β p.

Lemma 3.9. Let β < κ, q ∈ Pβ and N ∈ N q
β . Then q � N ∈ Pβ.

Proof. We prove, by induction on α ≤ β, that

(q � N)|α := ((Fq �� N) � α, (Gq ∩ N)|α)

is a condition in Pα.
Clause (1) in the definition of condition holds for (q � N)|α due to the fact

that if N is a symmetric system and M ∈ N , then N ∩ M is also a symmetric
system. Clauses (2), (6) and (7) are trivial, and clause (3) follows from the induction
hypothesis. All subclauses in (4) except for (4)(b) are trivial. Finally, (4)(b) holds
by clause (a) in the definition of N -saturatedness below β together with Lemma 3.8,
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and (5) holds by clause (b) in the definition of N -saturatedness below β together
with, again, Lemma 3.8.

We will also need the following technical lemma, which is an immediate conse-
quence of Lemma 2.8.

Lemma 3.10. Let α < β < κ, q ∈ Pβ , N ∈ N q
0 , t ∈ Pβ ∩ N, and suppose

q � N ∈ Pβ and t ≤β q � N .t Suppose for every Q ∈ NΔ(Gq) ∩ N, Q ∩ Gt = Q ∩ Gq.
Let p ∈ Pα, and suppose p ≤α q|α and p ≤α t|α. Let q′ = q⊕p and let G = Gq′ ⊕Gt.
Then G is a sticky set of edges closed under restrictions and under copying and such
that NΔ(G)

0 is a Φ0-symmetric system and NΔ(G)
α+1 is a Φα+1-symmetric system for

every α < β.

Proof. This is by an application of Lemma 2.8 with Gq′ and Gt′ , where t′ = t ⊕
(p � N).

Given a set G of edges and a pertinent function F such that dom(F ) ⊆⋃
dom(Δ(G)), we define the closure of F via edges coming from G to be the function

F ∗ with domain the set X of ordinals of the form Ψ�E(α), for some α ∈ dom(F )
and some connected G-thread 〈α, �E〉, defined by letting F ∗(ᾱ) be, for every ᾱ ∈ X ,
the ordered pair (bF∗

ᾱ , dF∗
ᾱ ), where

• bF∗
ᾱ = bF

ᾱ ∪bF ′
ᾱ ,u where bF ′

ᾱ is the union of the collection of sets of the form Ψ�E“bF
α ,

for some α ∈ dom(F ) and some connected G-thread 〈α, �E〉 with ᾱ = Ψ�E(α);v

• dF∗
ᾱ = dF

ᾱ ∪dF ′
ᾱ , where dF ′

ᾱ is the union of the collection of sets of the form Ψ�E“dF
α ,

for some α ∈ dom(F ) and some connected G-thread 〈α, �E〉 with ᾱ = Ψ�E(α).

We will denote this function F ∗ by clG(F ).
Also, given pertinent functions F0 and F1 and given α ∈ dom(F0) ∩ dom(F1),

let F0(α) + F1(α) denote

(bF0
α ∪ bF1

α , dF0
α ∪ dF1

α ).

We will then denote by F0 + F1 the function F with domain dom(F0) ∪
dom(F1) defined by letting

• F (α) = Fε(α) for all ε ∈ {0, 1} and α ∈ dom(Fε)\ dom(F1−ε) and
• F (α) = F0(α) + F1(α) for all α ∈ dom(F0) ∩ dom(F1).

tThe hypothesis that q � N ∈ Pβ is actually not needed; if we drop it, then t ≤β q � N needs
to be replaced by a hypothesis to the effect that the relevant forms of clauses (1) and (2) in the
definition of ≤β hold between t and q � N .
uRecall that bF

ᾱ is defined to be ∅ if ᾱ /∈ dom(F ). And a similar remark applies to the next bullet
point.
vΨ�E“bF

α is of course bF
α � min(δ�E ).
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Given a countable elementary substructure N of H(κ) and a Pβ-condition q,
for some β < κ, we will say that q is potentially (N,Pβ)-generic if and only if for
every maximal antichain A of Pβ such that A ∈ N and every q′ ∈ Pβ such that
q′ ≤β q there is some r ∈ A and some q∗ ∈ Pβ such that q∗ ≤β r and q∗ ≤β† q′ for
some β† ≥ β. Note that this, even in the stronger version in which β† is required
to be β, is more general than the standard notion of (N, P)-genericity, for a forcing
notion P, which applies only if P ∈ N . Indeed, in our situation Pβ is of course never
a member of N if N ⊆ H(κ).

We are now ready to prove the main lemma in this section.

Lemma 3.11. The following holds for every β ≤ κ :

(1) Pβ is ℵ2-Knaster.
(2) If β < κ, then for every q ∈ Pβ and N ∈ N q

β ∩ Tβ+1, q is potentially (N,Pβ)-
generic.

Proof. We prove (1) and (2) by simultaneous induction on β < κ.
We start with the proof of (1). We prove that if (qν : ν < ω2) is a sequence of

Pβ-conditions, then there is I ∈ [ω2]ℵ2 such that qν0 and qν1 are compatible in Pβ

for all ν0, ν1 ∈ I. Let M∗
ν be, for each ν < ω2, a countable elementary submodel of

H(κ+) such that �Φβ , qν ∈ M∗
ν and let Mν = M∗

ν ∩ H(κ).
By CH we may find I ∈ [ω2]ℵ2 and some countable R such that Mν0 ∩Mν1 = R

for all distinct ν0, ν1 in I. Again by CH, and after shrinking I if necessary, we may
assume in addition that, for some n, m < ω, there are, for all ν ∈ I, enumerations
(Nν

i : i < n) and (ξν
j : j < m) of N qν

0 and dom(Fqν ), respectively, such that for all
ν0 �= ν1 in I there is an isomorphism Ψ between Mν0 and Mν1 fixing Mν0 ∩ Mν1 ,
where, given any ν ∈ I, Mν is some canonically chosen structure with universe Mν

coding R, (Nν
i : i < n), Gqν , (ξν

j : j < m), ((bqν

ξν
j
, dqν

ξν
j
) : j < m) and �Φβ ∩ Mν .

We may moreover assume that (αν0 ;∈, πν0“R) ∼= (αν1 ;∈, πν1“R), where ανi ∈
ω1 is the Mostowski collapse of Mνi ∩ Ord and πνi is the corresponding collapsing
function. But then we have that Ψ is the identity on R∩Ord. This yields that Ψ is
the identity on R ∩ H(κ) since the function Φ : κ → H(κ) is surjective.

Let us now pick ν0 �= ν1 in I. We will prove that

q∗ := ((Fqν0
+ Fqν1

), (Gqν0
⊕ Gqν1

) ∪ 〈{(Mν0 , β), (Mν1 , β)}〉)

is a condition in Pβ extending both qν0 and qν1 . For this, we will prove, by induction
on α ≤ β, that

q∗|α := ((Fqν0
+ Fqν1

) � α, (Gqν0
⊕ Gqν1

)|α ∪ 〈{(Mν0 , β), (Mν1 , β)}〉|α)

is a condition in Pα such that q∗|α ≤α qν0 |α and q∗|α ≤α qν1 |α.
Clause (1) in the definition of Pα-condition holds thanks to Lemma 2.6, together

with Lemma 2.7 in the case α < β. Clause (2) is trivial by construction of the
function Fqν0

+ Fqν1
, and (3) is true by the induction hypothesis. All subclauses of

(4) except for (4)(b) are true by construction of Fq0 + Fq1 , and (4)(b) holds by the
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induction hypothesis. (6) follows from the fact that Ψ is an isomorphism between
Mν0 and Mν1 , and (7) is immediate from the construction of q∗ and the present
induction hypothesis.

Finally, for clause (5), suppose α = α0+1. It is enough to prove that if N ∈ N qν0
α ,

Ξq∗|α0+1,α0

δN
�= ∅, a ∈ N and q ∈ Pα0 is such that q ≤α0 q∗|α0 , then there is some

q′ ≤α0 q and some M ∈ N q′
α0

∩Tα0+1∩N such that a ∈ M and q′ �α0 δM /∈
⋃
{Ċᾱ

δN
:

ᾱ ∈ Ξq∗|α0+1,α0

δN
}.

We may assume that α0 ∈ Mν0 (the proof when α0 ∈ Mν1 is completely sym-
metrical to the proof in the present case). Let us first consider the case when
α0 ≤ Ψ(α0). Let q′ ≤α0 q and M ∈ N q′

α0
∩ Tα0+1 ∩ N such that a ∈ M and

q′ �α0 δM /∈
⋃

{Ċᾱ
δN

: ᾱ ∈ Ξ(qν0 )|α0+1,α0

δN
}.

Such q′ and M exist since, if Ξq∗|α0+1,α0

δN
\Ξ(qν0 )|α0+1,α0

δN
�= ∅, then we have that

Ξ
(qν1 )|Ψ(α0)+1,Ψ(α0)

δN
�= ∅ (since α0 ≤ Ψ(α0)), and therefore Ξ(qν0 )|α0+1,α0

δN
�= ∅ as Ψ is

an isomorphism between Mν0 and Mα1 . Let ᾱ ∈ Ξq∗|α0+1,α0

δN
\Ξ(qν0)|α0+1,α0

δN
. We will

be done in this case if we can show that q′ �α0 δM /∈ Ċᾱ
δN

. Let α∗ = Ψ−1(ᾱ) and let

us note that α∗ ≤ α0 since ᾱ ≤ Ψ(α0). Since also α∗ ∈ Ξ(qν0 )|α0+1,α0

δN
, we have that

q′ �α0 δM /∈ Ċα∗
δN

. Suppose now that α∗ ≤ ᾱ (the case ᾱ < α∗ is proved similarly,
by reversing the roles of Mν0 and Mν1 in the following argument). Now, we note
that {(Mν0 , α∗), (Mν1 , ᾱ)} ∈ Gq′ and therefore, by (2) of our induction hypothesis
for ᾱ, q′|ᾱ is potentially (Mν1 ,Pᾱ)-generic. Hence, for every ξ < δN , every r ≤ᾱ q′

is Pᾱ†-compatible, for some ᾱ† ≥ ᾱ, with some condition in Mν1 deciding whether
or not ξ ∈ Ċᾱ

δN
.

Claim 3.12. q′ �α0 Ċα∗
δN

= Ċᾱ
δN

.

Proof. Let r ≤ᾱ q′, ξ < δN , suppose r �α0 ξ ∈ Ċᾱ
δN

, and let us show that
r ��α0 ξ /∈ Ċα∗

δN
(arguing symmetrically we can show that if r �α0 ξ /∈ Ċᾱ

δN
, then

r ��α0 ξ ∈ Ċα∗
δN

). Let s ∈ Mν1 be a Pᾱ† -condition, for some ᾱ† ≥ ᾱ, which is
compatible with r in Pᾱ† and decides whether or not ξ ∈ Ċᾱ

δN
. Since obviously

also r �ᾱ† ξ ∈ Ċᾱ
δN

, we must have that s �ᾱ† ξ ∈ Ċᾱ
δN

, and since Ċᾱ
δN

is a Pᾱ-
name, we in fact have that s|ᾱ �ᾱ ξ ∈ Ċᾱ

δN
. Let q′′ be a common extension of

r|ᾱ and s|ᾱ in Pᾱ. Since {(Mν0 , α∗), (Mν1 , ᾱ)} ∈ Gq′′ , q′′ extends ΨN0,N1(s|ᾱ). But
ΨN0,N1(s|ᾱ) �α∗ ξ ∈ Ċα∗

δN
by Lemma 3.5, from which it follows that q′′ �α∗ ξ ∈ Ċα∗

δN
.

Since q′′|α∗ ≤α∗ r|α∗ , we in particular have that r|α∗ ��α∗ ξ /∈ Ċα∗
δN

, and therefore
r ��α0 ξ /∈ Ċα∗

δN
(if r �α0 ξ /∈ Ċα∗

δN
, then we would have that also r|α∗ �α∗ ξ /∈ Ċα∗

δN

since Ċα∗
δN

is a Pα∗ -name).

The above claim finishes the proof in this case since q′ �α0 δM /∈ Ċα∗
δN

.
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The second case is when Ψ(α0) < α0. Since we may of course assume that
Ξq∗|α0+1,α0

δN
\Ξ(qν0 )|α0+1,α0

δN
�= ∅, we in fact have that Ξq∗|α0+1,Ψ(α0)

δN
\Ξ(qν0 )|α0+1,α0

δN
�= ∅,

so it makes sense to define α1 as the maximum ordinal in Ξ(qν1 )|α0+1,Ψ(α0)

δN
.

Since Ξq∗|α0+1,α0

δN
\Ξ(qν0 )|α0+1,α0

δN
�= ∅, there is some γ ∈ R such that (δN , γ)

is Gqν0
-accessible from (δN , α0) and Gqν1

-accessible form (δN , α1). Using suitable
instances of the shoulder axiom as in the proof of Lemma 2.8 we may then find
sequences

�E0 = (〈(N i,0
0 , ρi,0

0 ), (N i,0
1 , ρi,0

1 )〉 : i ≤ n0)

and

�E1 = (〈(N i,1
0 , ρi,1

0 ), (N i,1
1 , ρi,1

1 )〉 : i ≤ n1)

such that 〈α0, �E0〉 is a connected Gqν0
-thread with Ψ�E0

(α0) = γ, 〈γ, �E1〉 is a con-
nected Gqν1

-thread with Ψ�E1
(α0) = α1, min(δ�E0

) = δN , N0,0
0 = N and N ′ := N1,1

n1

is such that δN ′ = δN .w Letting then �E be the concatenation of �E0 and �E−1
1 , we

have that 〈α0, �E〉 is a connected Gq∗|α-thread with Ψ�E(α0) = α1. Since N ′ ∈ N qν1
α1+1,

by an instance of clause (7)(b) in the definition of condition for qν1 together with
Lemma 3.3, we may find q′ ≤α0 q and M ′ ∈ N q′

α1
∩Tα1+1∩N ′ such that Ψ�E(a) ∈ M ′

and

q′|α1 �α1 δM ′ /∈
⋃

{Ċᾱ
δN

: ᾱ ∈ Ξ(qν1 )|α1+1,α1

δN
}.

Let M = Ψ−1
�E (M ′) ∈ N and let us note that M ∈ N q′

α0
∩ Tα0+1 ∩ N and a ∈

M . It thus suffices to prove that q′ �α0 δM /∈ Ċᾱ
δN

for every ᾱ ∈ Ξq∗|α0+1,α0

δN
. If

ᾱ ∈ Ξ(qν1)|α0+1,Ψ(α0)

δN
, then we are clearly done since then ᾱ ≤ α1. Hence, we may

assume ᾱ ∈ Ξ(qν0)|α0+1,α0

δN
\Ξ(qν1 )|α0+1,Ψ(α0)

δN
. Let α∗ = Ψ(ᾱ) ≤ α1 and let us note

that α∗ ∈ Ξ(qν1 )α1+1,α1

δN
. It thus follows that q′|α1 �α1 δM /∈ Ċα∗

δN
. But now, arguing

as in the proof of Claim 3.12, using the fact that {(Mν0 , ᾱ), (Mν1 , α∗)} ∈ Gq′ and
the induction hypotheses for either ᾱ or α∗, we get that q′ �ᾱ Ċᾱ

δN
= Ċα∗

δN
. This

finishes the proof in this case since q′ �α0 δM /∈ Ċα∗
δN

.
Now that we know that q∗|α is a Pα-condition, it is easy to check that it extends

both qν0 |α and qν1 |α in Pα. The only point that is not completely trivial is the
verification of clause (3) in the definition of the extension relation. But this clause
holds thanks to the fact that qν0 and qν1 carry the same information on R.

We will now prove (2). For this, it is enough to show that if A ∈ N is a maximal
antichain of Pβ, then there is some β† ≥ β such that q is ≤β†-compatible with some
condition in A ∩ N .x The case β = 0 follows at once from Lemma 2.3, so we will

wNote that we can indeed proceed here as in the proof of Lemma 2.7 (more specifically, as in the
verification of the shoulder axiom at the successor stages of that construction) since the definition
of pertinent function implies that α0 and α1 are successor ordinals.
xThis is of course the same thing as showing that there is some r∗ ∈ A ∩ N and some q∗ ∈ Pβ

such that q∗ ≤β r∗ and q∗ ≤β† q.
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assume in what follows that β > 0. By extending q if necessary we may, and will,
assume that q extends some r0 ∈ A.

Let us first consider the case that β = α + 1. Suppose Ξq,α
δN

�= ∅. Let Ḃ be a Pα-
name for a (partially defined) function on ω1 × A sending (η, r) to some condition
t ∈ Pβ with the following properties (provided there is some such t; otherwise the
function is not defined at (η, r)).

(1) t|α ∈ Ġα.
(2) t extends r.
(3) t extends q � N .y

(4) For every Q ∈ N t
α+1, if δQ �= δQ′ for any Q′ ∈ N q

α+1, then δQ > η.
(5) For every Q ∈ N q

0 ∩ N , Q ∩ Gq = Q ∩ Gt, Q ∩ bt
α = Q ∩ bq

α and Q ∩ dt
α =

Q ∩ dq
α.

By conclusion (1) for β — which we have already proved — we know that Pβ

has the ℵ2-c.c. and hence we may assume that Ḃ ∈ H(κ). Hence, by Lemma 3.2
and since N � (H(κ);∈, Φβ+1) and A ∈ N , we may assume that Ḃ ∈ N .

By an instance of clause (5) in the definition of Pβ-condition, together with the
openness of δ̄\Ċᾱ

δ̄
in V Pα for all ᾱ ≤ α and δ̄ < ω1,z there is an extension p ∈ Pα

of q|α for which there are M ∈ N p
α ∩ Tα+1 ∩ N and η < δM such that

(1) A, Ḃ, q � N ∈ M ;
(2) p �α [η, δN ] ∩ Ċᾱ

δ = ∅ whenever ᾱ is such that (δN , ᾱ) is Gq-accessible from
(δN , α) and there is (δ, δ̄) ∈ bq

ᾱ such that δ̄ < δN < δ and
(3) p �α [η, δM ] ∩

⋃
{Ċᾱ

δN
: ᾱ ∈ Ξq,α

δN
} = ∅.

Indeed, by openness of the relevant sets δ\Ċᾱ
δ (in the extension by Pᾱ) we can

extend q|α to some p0 ∈ Pα deciding some η0 < δN such that [η0, δN ]∩Ċᾱ
δ whenever

(δN , ᾱ) is Gq-accessible from (δN , α) and there is (δ, δ̄) ∈ bq
ᾱ such that δ̄ < δN < δ

(since there only finitely many such pairs (δN , ᾱ)). Then, by an instance of clause
(7)(b) in the definition of condition, this time using the openness of the relevant
(finitely many) sets of the form δN\Ċᾱ

δN
, we may extend p0 to some p ∈ Pα for

which there is some M ∈ N p
α ∩ Tα+1 ∩ N and some η1 < δM such that A, Ḃ,

q � N , η0 ∈ M and such that p �α [η1, δM ] ∩
⋃
{Ċᾱ

δN
: ᾱ ∈ Ξq,α

δN
} = ∅. Then, letting

η = max{η0, η1}, we get the desired conclusion.
By (2) of the induction hypothesis for α there is some u ∈ M ∩Pα, r∗ ∈ M ∩A

and t∗ ∈ M ∩ Pβ such that u is Pα† -compatible with p for some α† ≥ α and u

forces in Pα that ḂĠα
(η, r∗) is defined and ḂĠα

(η, r∗) = t∗. This is true since, in
the extension of V by Pα, the existence of such a member of A is witnessed by r0,
as in turn witnessed by q, and is expressible over (H(κ)V [Ġα];∈, H(κ)V , Ġα) by a

yWe note that, by the assumption that q be N-saturated below β, q � N is actually a Pα-condition.
This, however, is not an essential point; one could in fact phrase this condition alternatively,
without using the fact that q � N ∈ Pα.
zWhich follows from the openness of δ̄\Ċᾱ

δ̄
in V Pα together with Lemma 3.3.
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sentence with Ḃ and η as parameters, both of which are in M). Let also p′ ∈ Pα

be such that p′ ≤α† p and p′ ≤α† u.
Let β† be any ordinal such that β† ≥ β and such that ΨN0,N1(ρ0) < β† for

every edge {(N0, ρ0), (N1, ρ1)} ∈ Gq. We will now construct a condition in Pβ ≤β-
extending p′ and t∗ and ≤β†-extending q. For this, we let q′ = q⊕p′, G∗ = Gq′ ⊕Gt∗ ,
and let F ∗ = clG∗(Fq′ + Ft∗). Let q∗ = (F ∗,G∗). We already know that q∗|α is a
condition in Pα, and using this fact we will show that q∗ ∈ Pβ. It will then follow
that q∗ ≤β r∗ (by Lemma 3.8, since t∗ ≤β r∗ and since clearly q∗ � N ≤β t∗) and
q∗ ≤β† q (by t∗ ≤β q � N together with the fact that (5) above holds for t∗, the
definition of G∗ as Gq′ ⊕Gt∗ , the definition of F ∗ as clG∗(Fq′ + Ft∗), and the choice
of β†), which will finish the proof of the lemma in this case since r∗ ∈ N .

Clause (1) in the definition of condition holds for q∗ by Lemma 3.10 noting that,
by the choice of t∗, we are indeed under the hypotheses of this lemma. As usual (2)
is trivial, (3) follows from the fact that q∗|α ∈ Pα, and all subclauses of (4) except
for (4)(b) are trivial. (4)(b) follows from our choice of η and the fact that t∗ satisfies
(5) with respect to η, together with Lemma 3.5 and the induction hypothesis, and
(5) follows from Lemma 3.5, the induction hypothesis, and the fact that for every
Q ∈ N q

β such that δQ < δN and every ᾱ ∈ Ξq∗,α
δQ

there is some α† ∈ Ξq∗,α
δQ

∩ M

such that q∗ �α Ċᾱ
δQ

= Ċα†
δQ

— by arguments as in the verification of clause (5) for
the amalgamation q∗ in the proof of part (1), using (2) of the induction hypothesis
for α and for the relevant ᾱ. Finally, (6) follows from the construction of F ∗ as
clG∗(Fq′ + Ft∗), and (7) is verified in the same way as (5).

The argument when Ξq,α
δN

= ∅ is exactly the same, except that in the choice of
η we make sure that it satisfies (1) and (2) above, rather than (1)–(3). Also, in this
case there is no need to argue in any M ∈ N ; we can work in N itself.

It remains to prove the lemma in the case that β is a limit ordinal. Let α ∈ N∩β

be such that dom(Fq)∩ [α, β) ∩N = ∅ and let β† be defined in the same way as in
the successor case. Using (1) of the induction hypothesis for α, we may then find
r∗ ∈ A ∩ N , t∗ ∈ Pβ ∩ N , p ∈ Pα and α† ≥ α such that

(1) p ≤α t∗|α;
(2) t∗ ≤β r∗;
(3) t∗ ≤β q � N ;
(4) p ≤α† q|α and
(5) for every Q ∈ N q

0 ∩ N , Q ∩ Gq = Q ∩ Gt∗ .

Finally, we amalgamate p, q and t∗ into a condition q∗ ∈ Pβ as in the successor
case; specifically, we let q′ = q ⊕ p, G∗ = Gq′ ⊕ Gt∗ , F ∗ = clG∗(Fq′ + Ft∗) and
q∗ = (F ∗,G∗). The verification that q∗ is a condition in Pβ such that q∗ ≤β t∗ and
q∗ ≤β† q is contained in the corresponding proof in that case. Since r∗ ∈ N , this
concludes the proof in the present case, and hence the proof of the lemma.

Corollary 3.13. Pκ is proper.
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Proof. Let N∗ � H(κ+) be a countable model such that Φ ∈ N∗ and let q ∈
Pκ ∩ N∗. It is enough to show that there is an extension q∗ ∈ Pκ of q which is
(N∗,Pκ)-generic. Let N = N∗∩H(κ). By Lemma 3.7 there is an extension q∗ ∈ Pκ

of q such that {(N, β)} ∈ Gq∗ for every β ∈ N ∩ κ. Let now A ∈ N∗ be a maximal
antichain of Pκ and let q′ ∈ Pκ be such that q′ ≤κ q∗. We will show that q′ is
≤κ-compatible with a condition in A ∩ N .

By the ℵ2-c.c. of Pκ (i.e. case κ of Lemma 3.11(1)) and cf(κ) ≥ ω2, A ∈ N

and there is some ordinal β ∈ N such that A is also a maximal antichain of Pβ .
Since A is a maximal antichain of Pκ to begin with, we may assume, by picking
β high enough, that dom(Fq′ )\β = ∅. By Lemma 3.11(2) applied to β there are
then r∗ ∈ A ∩ N , q∗ ∈ Pβ and β† ≥ β such that q∗ ≤β r∗ and q∗ ≤β† q′|β. Let
G∗∗ = Gq∗ ⊕Gq′ and F∗∗ = clG∗∗(Fq∗) and let q∗∗ = (F∗∗,G∗∗). Since dom(Fq′) ⊆ β,
it is then easy to show, by arguing as in the proof of Lemma 3.11, that q∗∗ is a
condition in Pκ such that q∗∗ ≤κ q′. But now we are done since also q∗∗ ≤κ r∗.

Remark 3.14. Our argument to prove properness does not work for β < κ. In
fact it may not be the case that Pβ is proper in general for β < κ.

3.2. New reals

The following is proved in [9, Fact 2.6].

Lemma 3.15. P0 adds ℵ1-many Cohen reals.

We will now use clause (6) in the definition of condition (and the closure of Gq

under copying whenever q is a condition) to prove Lemma 3.16, which is a counter-
point to Lemma 3.15. Lemma 3.16 shows that Pκ does not add more than ℵ1-many
new reals, and hence that this forcing preserves CH (cf. [9, Proof of Proposition 2.7]
or the proof sketched in the introduction).

Lemma 3.16 (Few new reals). Pκ adds not more than ℵ1-many new reals.

Proof. Suppose, towards a contradiction, that there is a Pκ-condition q and a
sequence (ṙν)ν<ω2 of Pκ-names for subsets of ω such that

q �κ ṙν �= ṙν′

for all ν �= ν′. We will find an extension q∗ of q together with ν0 �= ν1 such that
q∗ �κ ṙν0 = ṙν1 , which will be a contradiction.

By Pκ =
⋃

β<κ Pβ , we may fix β < κ such that q ∈ Pβ. Let ν < ω2 be given.
By Lemma 3.11(1) and, again, the fact that Pκ =

⋃
β<κ Pβ, we may assume that

ṙν ∈ H(κ) and we may find βν < κ above β and such that ṙν is in fact a Pβν -name
for a subset of ω.

For each ν < ω2 let N∗
ν � H(κ+) be countable and containing q, Φ, ṙν and βν ,

and let Nν = N∗
ν ∩ H(κ).
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Using CH we may find ν0 �= ν1 in ω2 such that

(Nν0 ;∈, q, ṙν0 , {βν0}, Φβν0+1)

and

(Nν1 ;∈, q, ṙν1 , {βν1}, Φβν1+1)

are isomorphic structures. In particular,

e = {(Nν0 , βν0 + 1), (Nν1 , βν1 + 1)}

is then an edge.
Let us assume that βν0 ≥ βν1 . By Lemma 3.6, we may find an extension q∗ ∈

Pβν0
of q such that e ∈ Gq∗ and Fq∗ = Fq. Let now q′ ∈ Pβν0

be any extension
of q∗|βν0

and suppose, towards a contradiction, that q′ �βν0
n ∈ ṙν0Δṙν1 for some

n < ω. Let us assume that q′ �βν0
n ∈ ṙν0\ṙν1 .

By Lemma 3.11(2), q∗|βν0
is potentially (Nν0 ,Pβν0

)-generic. Hence, there are
β†

ν0
≥ βν0 and q′′ ∈ Pβν0

, q′′ ≤β†
ν0

q′, such that q′′ ≤βν0
p for some p ∈ Nν0 ∩ Pβ0

such that p �βν0
n ∈ ṙν0 . We know that (q′′|βν0

) � Nν0 ∈ Pβν0
(by Lemma 3.9) and

(q′′|βν0
) � Nν0 ≤βν0

p (by Lemma 3.8). We then have that

(q′′|βν0
) � Nν0 �βν0

n ∈ ṙν0 ,

and therefore (q′′|βν1
) � Nν1 ∈ Pβν1

and

(q′′|βν1
) � Nν1 �βν1

n ∈ ΨNν0 ,Nν1
(ṙν0)

by Lemma 3.5. Again by Lemmas 3.9 and 3.8, we have that q′′|βν1
≤βν1

(q′′|βν1
) �

Nν1 , and therefore q′′|βν1
�βν1

n ∈ ΨNν0 ,Nν1
(ṙν0 ).aa But this yields a contradiction

since ΨNν0 ,Nν1
(ṙν0 ) = ṙν1 .

The argument in the case that q′ �βν0
n ∈ ṙν1\ṙν0 is symmetrical to the proof in

the previous case; in that case, we take r ∈ Nν0 ∩ Pβν0
such that r �βν0

n /∈ ṙν0 .bb

Given α < κ and a Pκ-generic filter G, let

DG
α = {δN : N ∈ NG

α+1}.

Let also Ḋα be a Pκ-name for DG
α .

We now prove the other conclusion in Theorem 2.1 involving cardinal arithmetic.

Lemma 3.17. Pκ forces 2ℵ1 = κ.

Proof. In order to prove that �Pκ 2ℵ1 ≥ κ, it suffices to show that Pκ forces that
Ḋα0\Ḋα1 �= ∅ for all α0 < α1. For this, let q be a Pκ-condition, which we may

aaCf. the argument in the verification of clause (5) in the definition of condition for the amalga-
mation q∗ in the proof of ℵ2-c.c. from Lemma 3.11.
bbCompare this proof with the proof of Claim 3.12.
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assume is such that α1 ∈ dom(Fq), and let N ∈ [H(κ)]ℵ0 be a sufficiently correct
model such that q ∈ N . By the same argument as in the proof of Lemma 3.6 we
may find an extension q′ ∈ Pκ of q such that N ∈ N q′

α0+1 and N q′
α1+1 = N q

α1+1. Let
δ < δN be above δM for every M ∈ N q

α1+1 and let q∗ ∈ Pκ be the extension of
q′ resulting from adding (δ, δN) to dq′

α1
. Then q∗ forces that δN ∈ Ḋα0\Ḋα1 . Since

q ∈ Pκ was arbitrary, this density lemma shows that Pκ forces Ḋα0\Ḋα1 �= ∅.
Finally, a simple counting argument of nice Pκ-names for subsets of ω1 (see [17])

using the ℵ2-chain condition of Pκ and the fact that |Pκ|ℵ1 = κℵ1 = κ shows that
Pκ forces 2ℵ1 ≤ κ.

3.3. Measuring

The following lemma completes the proof of Theorem 2.1.

Lemma 3.18. Pκ forces Measuring.

Proof. Let G be Pκ-generic and let �C = (Cδ : δ ∈ Lim(ω1)) ∈ V [G] be a club-
sequence on ω1. We want to see that there is a club of ω1 in V [G] measuring �C.
By Pκ =

⋃
α<κ Pα together with the ℵ2-c.c. of Pκ, we may assume that, for some

α0 < κ, �C = ĊG for some Pα0 -name Ċ ∈ H(κ) for a club-sequence on ω1. Again
by the ℵ2-c.c. of Pκ and the unboundedness of {α ∈ Succ(κ) : Φ(α) = Ċ} in κ,
we may fix some α > α0 in Succ(κ) such that Φ(α) = Ċ. We then have that Φ(α)
is a Pα-name, and by Lemma 3.3 it is in fact a Pα-name for a club-sequence on
ω1. Hence, we then have that �C = Φ(α)G. We will see that (Ḋα)G is a club of ω1

measuring �C.
First of all, it is easy to see that Ḋα is forced to be unbounded in ω1. In fact,

given any condition q ∈ Pκ and any sufficiently correct countable N � H(κ) such
that q, α ∈ N , we may find by Lemma 3.6 an extension q∗ ∈ Pκ of q such that
N ∈ N q∗

α+1, and every such condition forces that δN ∈ Ḋα.

Claim 3.19. DG
α is closed in ω1.

Proof. It suffices to prove that if δ ∈ Lim(ω1) and q ∈ Pκ are such that q forces δ

to be a limit point of Ḋα, then there is some N ∈ N q
α+1 such that δN = δ.

Suppose, towards a contradiction, that q ∈ Pκ and δ ∈ Lim(ω1) are such that
q forces δ to be a limit point of Ḋα but there is no N ∈ N q

α+1 such that δN = δ.
We may extend q to a condition q′ obtained by adding (δ̄, δ) to dq

α, where δ̄ < δ

is above δM for every M ∈ N q
α+1 such that δM < δ, and taking copies under

ΨN0,N1 as dictated by relevant edges {〈(N0, ρ0), (N1, ρ1)〉} ∈ Gq. But that yields a
contradiction since then q′ forces, by clause (4)(d) in the definition of condition,
that Ḋα ∩ δ is bounded by δ̄.

Given any q ∈ G such that α ∈ dom(Fq) and any limit point δ ∈ DG
α , if

(δ, δ̄) ∈ bq
α for some δ̄ < δ, then DG

α ∩ (δ̄, δ) is disjoint from Cδ. Hence, in order
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to finish the proof of the lemma it is enough to show that if q ∈ G is such that
α ∈ dom(Fq), N ∈ N q

α+1, and there is no q′ ∈ G extending q and such that
δN ∈ dom(bq′

α ), then a tail of DG
α is contained in CδN .

So, let q be a condition with α ∈ dom(Fq) and let N ∈ N q
α+1 be such that

δN /∈ dom(bq′
α ) for any q′ ∈ Pκ extending q. It suffices to find an extension q∗ of q in

Pκ and some δ < δN with the property that if q′ ∈ Pκ extends q∗ and M ∈ N q′
α+1

is such that δ < δM < δN , then q′|α �α δM ∈ Ċα
δN

.

We will assume that Ξq|α+1,α
δN

�= ∅ — the proof in the case Ξq|α+1,α
δN

= ∅
is a simpler version of the proof in this case. Let α0 = max(Ξq,α

δN
), which is

well defined since ∅ �= Ξq|α+1,α
δN

⊆ Ξq,α
δN

. As usual, we may find a sequence
�E = (〈(N i

0, ρ
i
0), (N i

1, ρ
1
i )〉 : i ≤ n) such that 〈α, �E〉 is a connected Gq-thread with

min(δ�E ) = δN , Ψ�E(α) = α0, N0
0 = N , Nn

1 ∈ N q
α0+1 and δNn

1
= δN .

Claim 3.20. There is some extension q0 ∈ Pκ of q, together with some a ∈ N,

such that q0 forces in Pκ that if M ∈ N Ġκ
α0

∩ Tα0+1 ∩ Nn
1 , Ψ�E(a) ∈ M, and

δM /∈
⋃

{Ċᾱ
δN

: ᾱ ∈ Ξq,α0
δN

},

then δM ∈ Ċα
δN

.

Proof. Let us assume that the conclusion fails. Given any extension q′ of q and
any a ∈ N , by an instance of clause (7)(b) in the definition of condition for q|α0+1

together with Lemma 3.3, there is some q′′ ≤κ q′ and some M ∈ N q′′
α0

∩Tα0+1 ∩Nn
1

such that Ψ�E(a) ∈ M and

q′′|α0 �α0 δM /∈
⋃

{Ċᾱ
δN

: ᾱ ∈ Ξq,α0
δN

}.

By our assumption, we then have that q′′|α0 ��α0 δM ∈ Ċα
δN

. Hence, every such q′′

forces δM /∈ Ċα
δN

. We have thus seen that q forces that for every a ∈ N there is
some M ∈ N Ġκ

α0
∩ Tα0+1 ∩ Nn

1 such that Ψ�E(a) ∈ M and

δM /∈
⋃

{Ċᾱ
δN

: ᾱ ∈ Ξq,α0
δN

} ∪ {Ċα
δN

}.

Let now δ̄ < δN be above δQ for every Q ∈ N q
α+1 such that δQ < δN and let

q∗ be the result of adding (δN , δ̄) to bq
α and closing under relevant isomorphisms

ΨN0,N1 . Then q∗ is a condition in Pκ extending q (all clauses in the definition of
condition except for (7)(b) are immediate, and (7)(b) follows from Ξq∗|α+1,α

δN
\{α} =

Ξq|α+1,α
δN

⊆ Ξq,α
δN

and the property of q we have just proved), which is a contradiction
since δN ∈ dom(bq∗

α ).

Let q0 and a ∈ N be as in Claim 3.20. Let δ < δN be above δQ for every
Q ∈ N q0

α+1 such that δQ < δN and let q∗ be the extension obtained by adding the
pair (δ, a) to dq0

α and closing under relevant isomorphisms ΨN0,N1 .
We now show that q∗ and δ are as desired. For this, suppose q′ ∈ Pκ extends q∗

and M ∈ N q′
α+1 is such that δ < δM < δN . By an instance of (4)(d) in the definition
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of condition for q′, we then have some M ′ ∈ N q′
α+1 such that δM ′ = δM and a ∈ M ′.

By the shoulder axiom for N q′
α+1 there is some N ′ ∈ N q′

α+1 such that δN ′ = δN and
M ′ ∈ N ′. Then M ′′ = ΨN ′,N (M ′) ∈ N q′

α+1 ∩ N and a ∈ M ′′ since ΨN ′,N (a) = a as
a ∈ N ∩ N ′. Since M ′′ ∈ N q′

α+1 ∩ N , we then have of course that

q′|α �α δM ′′ /∈
⋃

{Ċᾱ
δN

: ᾱ ∈ Ξq,α0
δN

},cc

from which it follows by the choice of a that q′|α �α δM ′′ ∈ Ċα
δN

. This finishes the
proof since δM ′′ = δM .

3.4. On adapting the construction of Theorem 1.2
to other contexts

It will be sensible to finish this section with some words addressing the issue of what
goes wrong if we try to modify the present forcing so as to force CH together with
Unif(�C), for some given ladder system �C = (Cδ : δ ∈ Lim(ω1)) — as we mentioned
in Sec. 1, the conjunction of these two statements cannot hold. One could in fact try
to build something like a sequence of partial orders (Pβ)β≤κ in our construction in
such a way that, at every stage α < κ, we attempt to add a uniformizing function on
�C for some coloring F : Lim(ω1) −→ {0, 1} fed to us by our book-keeping function
Φ. Thus, rather than the present pairs (b, d), we would plug in conditions for a
natural forcing for adding such a uniformizing function with finite conditions.

Everything would seem to go well — and in particular our construction would
have the ℵ2-c.c., would be proper, and would preserve CH — except that, because
of the copying constraint expressed in the corresponding version of clause (6) in the
definition of condition, it would not be able to force Unif(�C). The reason is that we
would not be in a position to rule out situations in which there is a condition q with,
for example, an edge {(N0, ρ0), (N1, ρ1)} in Gq for which there is some α ∈ N0 ∩ ρ0

such that the color of Ḟ (α) at δN0 is forced to be, say, 0, whereas the color of Ḟ (ᾱ)
at δN0 is forced to be 1 (where ᾱ = ΨN0,N1(α) and where Ḟ (ξ) denotes of course
the name for the coloring to be uniformized at stage ξ of the construction). The
requirement, imposed by the current version of clause (6), that any relevant amount
of information below δN0 on the generic uniformizing function at the coordinate α

be copied over to the coordinate ᾱ, would then make it impossible for these generic
uniformizing functions to be defined on any tail of CδN0

. This type of problems does
not arise when forcing Measuring due to the more lenient nature of the “guessing” in
this case; if we cannot get the club to eventually stay outside a given Cδ, then it has
to eventually get inside (see the density argument in the proof of Lemma 3.18). The
fact whether one or the other is the case is determined by the specific club-sequence
being measured (and by the “shape” of the surrounding condition, of course).

ccNote the presence in this expression of Ξq,α0
δN

rather than Ξq′,α0
δN

or Ξ
q′|α+1,α

δN
.
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It may also be worth pointing out that the type of situation described above is a
source of serious obstacles towards trying to force any reasonable forcing axiom to
hold together with CH using the present methods. To see this in a particularly simple
case, suppose, for example, that (Qβ)β≤κ is exactly as our present construction
(Pβ)β≤κ, except that at each stage we force with Cohen forcing. This construction
enjoys all relevant nice properties that (Pβ)β≤κ has. On the other hand, Qκ cannot
possibly force FAℵ1(Cohen), as it preserves CH. Letting α∗ < κ be such that all
reals in V Qκ have already appeared in V Qα∗ , if α < κ is above α∗, then the real
constructed by the generic at the coordinate α will actually fail to be Cohen-generic
over V Qα∗ ; in fact, for every condition q ∈ Qκ such that α ∈ dom(Fq) there will be
a condition q′ extending q for which there is connected Gq′ -thread 〈α, �E〉 such that
ᾱ := Ψ�E(α) < α∗. The information at the coordinate ᾱ contained in any extension
of q′ will then have to be copied over into the coordinate α, which in this situation
means that the real rα constructed at the coordinate α is identical to the real at
ᾱ, and this obviously prevents rα from being Cohen-generic over V Qα∗ .
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