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Abstract

In evolutionary biology, networks are becoming increasingly used to represent evolutionary histories for species that
have undergone non-treelike or reticulate evolution. Such networks are essentially directed acyclic graphs with a leaf
set that corresponds to a collection of species, and in which non-leaf vertices with indegree 1 correspond to speciation
events and vertices with indegree greater than 1 correspond to reticulate events such as gene transfer. Recently forest-
based networks have been introduced, which are essentially (multi-rooted) networks that can be formed by adding
some arcs to a collection of phylogenetic trees (or phylogenetic forest), where each arc is added in such a way that its
ends always lie in two different trees in the forest. In this paper, we consider the complexity of deciding whether a
given network is proper forest-based, that is, whether it can be formed by adding arcs to some underlying phylogenetic
forest which contains the same number of trees as there are roots in the network. More specifically, we show that it is
NP-complete to decide whether a tree-child network with m roots is proper forest-based, for each m ≥ 2. Moreover,
for binary networks the problem remains NP-complete when m ≥ 3 but becomes polynomial-time solvable for m = 2.
We also give a fixed parameter tractable (FPT) algorithm, with parameters the maximum outdegree of a vertex, the
number of roots, and the number of indegree 2 vertices, for deciding if a semi-binary network is proper forest-based.
A key element in proving our results is a new characterization for when a network with m roots is proper forest-based
in terms of certain m-colorings.
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1. Introduction

Recently, the concept of forest-based networks has
been introduced within the area of phylogenetics [8].
Informally, a forest-based network is defined as follows
(full definitions of the terms used in the introduction
are given in the next section). A phylogenetic tree is
a rooted tree whose leaf-set is a collection of taxa or
species; a phylogenetic forest is a collection of leaf-
disjoint phylogenetic trees. A forest-based network is
a directed acyclic graph N that can be formed by adding
a set of arcs to a phylogenetic forest F so that for each
added arc, the end vertices of that arc lie in two differ-
ent trees of F ; N is proper if the number of roots of N
is equal to the number of trees in F . For example, the
network in Figure 1 is proper forest-based. Forest-based
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networks can be regarded as a certain type of phyloge-
netic network, and are related to the intensively studied
tree-based networks [6] (see e.g. [11, 14] for recent re-
views of phylogenetic networks, including more details
concerning tree-based networks).
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Figure 1: A proper forest-based network N on ten leaves. Each of
the three phylogenetic trees in the underlying forest represents a hy-
pothetical butterfly lineage with main wing pattern indicated next to
the root of the tree. The network N is the result of adding dashed arcs
in between pairs of trees in the forest. Each added arc corresponds to
some genetic material being introduced into a lineage from one of the
others, which results in a wing pattern change for the descendants.

Forest-based networks arise in the study of reticulate
evolutionary processes in which species exchange ge-
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netic information through processes such as introgres-
sion [13] and lateral gene transfer [8]. In the case of in-
trogression, the phylogenetic trees underlying a forest-
based network correspond to the evolutionary histo-
ries of different subgroups or lineages within a certain
species. The arcs in between different trees then repre-
sent the past interchange of genetic material between
these lineages. A well-studied example of this phe-
nomenon is butterfly evolution, where the genetic ma-
terial that is swapped between lineages influences wing
patterns [1, 16]. Figure 1 shows a hypothetical exam-
ple to illustrate this phenomenom. An application of a
special type of forest-based network called an overlaid
species forest for analysing introgression in butterflies
can be found in [13].

In this paper we consider the problem:

(P) Is a given network N proper forest-based?

Our main results are as follows. A network is binary
if all vertices have indegree and outdegree at most 2 and
all non-root vertices have overall degree 1 or 3. A net-
work is tree-child if each non-leaf vertex has at least one
child with indegree 1. For networks with v vertices, m
roots, n leaves, r vertices with indegree at least 2, and
maximum outdegree ∆, we shall prove that problem (P):

(R1) can be decided in O(nr) time when N is restricted
to be binary and tree-child and m = 2 (Theo-
rem 6.2);

(R2) is NP-complete even when N is restricted to be bi-
nary and tree-child, for each fixed m ≥ 3 (Theo-
rem 6.1);

(R3) is NP-complete even when N is restricted to be
tree-child, with maximum outdegree 2 and maxi-
mum indegree at most 3, for each fixed m≥ 2 (The-
orems 4.1 and 6.1);

(R4) can be decided using an FPT algorithm with pa-
rameters r, m and ∆, which is linear in v, assuming
the maximum indegree is 2 (Theorem 7.2).

Before proceeding, it is worth pointing out that recog-
nition problems such as (P) frequently arise in the the-
ory of phylogenetic networks. For example, the recog-
nition of tree-based networks has been intensively stud-
ied and there are polynomial-time algorithms for decid-
ing whether a phylogenetic network is tree-based (see
e.g. [6, 10]). Results are also known for tree-based
unrooted phylogenetic networks (undirected analogues
of phylogenetic networks) where, in contrast to the di-
rected case, it is NP-complete to decide whether such a

network is tree-based [4]. More recently, there has also
been some interest in the recognition problem for other
classes of networks, such as planar [12], orchard [15],
and labellable phylogenetic networks [5], as well as the
related problem of deciding how far away a given phy-
logenetic network is from being within a certain class
[3]. Generally speaking, developing techniques for rec-
ognizing whether a network belongs to a specific class
can be useful as it provides insights into the structure of
the networks within that class.

We now briefly summarise the rest of the paper. In the
next section, we present some formal definitions con-
cerning networks. In Section 3, we derive a key charac-
terization of proper forest-based networks (Lemma 3.1).
In Section 4, we establish Statement (R3) by reducing
from the SET-SPLITTING problem. Using colorings,
in Section 5 we present an alternative proof for State-
ment (R3) in the special case that m ≥ 3 by reducing
from the GRAPH m-COLORABILTY problem. The con-
struction that we use in this proof is then used again in
Section 6 to prove that Statement (R2) holds. Using the
concept of so-called omni-extensions [8] we also prove
Statement (R1). Finally, in Section 7, we prove State-
ment (R4), before concluding in Section 8 with a brief
discussion of potential directions for future research.

2. Definitions

From now on, X is a finite set with |X | ≥ 2. Suppose
that N is a connected, directed acyclic graph (DAG) and
v ∈V (N). Then v is a leaf if it has outdegree 0, a root if
it has indegree 0, and a reticulation if it has indegree at
least 2. If v is not a leaf, then v is an internal vertex of
N. In particular, roots are internal vertices. We call an
arc a = (u,v) of N internal if u and v are both internal
vertices of N. If v is an internal vertex that has indegree
at most 1, then v is a tree-vertex.

For vertices u,v ∈V (N), we say that u is an ancestor
of v if there exists a directed path from u to v in N. In
this case, we say that v is a descendant of u. Note that
each vertex is an ancestor and a descendant of itself.

We call N a network (on X) if it has leaf-set X (which
we also denote by L(N)), each leaf has indegree 1, every
root has outdegree at least 2, every reticulation has out-
degree 1, and there is no vertex with indegree and outde-
gree 1. If N has m roots, we also call it an m-network2.
For example, the network depicted in Figure 1 is a 3-
network. We say that two m-networks N and N′ on X

2Note that this is more general than the definition given in [8].
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are isomorphic if there is a DAG isomorphism between
N and N′ which is the identity on X .

A network is semi-binary if all reticulations have in-
degree 2. It is quasi-binary if all tree-vertices have out-
degree 2 and all reticulations have indegree 2 or 3. Note
that a network is binary if it is quasi-binary and semi-
binary. A network is tree-child if every internal vertex
has a child that is a tree-vertex or a leaf.

A phylogenetic network (on X) is a network on X with
exactly one root and a phylogenetic tree (on X) is a phy-
logenetic network on X with no reticulations. For tech-
nical reasons, we shall also call an isolated vertex v a
phylogenetic tree (on {v}). Two distinct leaves x,y of a
phylogenetic tree form a cherry if they share a parent.
We denote such a cherry by {x,y}. A phylogenetic tree
T on X a caterpillar tree (on X) if T has a unique cherry
and every internal arc of T lies on the directed path from
the root of T to the parent of the cherry.

A phylogenetic forest (on X) is a directed graph F
whose connected components are phylogenetic trees
and such that X =

⋃
T∈F L(T ). For convenience, we will

sometimes also call a non-empty set of pairwise leaf-set
disjoint phylogenetic trees a phylogenetic forest.

Suppose N = (V,A) is an m-network on X , some
m ≥ 2. Then N is forest-based if there exists a subset
A′ ⊆ A such that F ′ = (V,A′) is a forest with leaf set X
and each arc in A−A′ has end vertices that are in dif-
ferent trees of F ′. We call F ′ a subdivision forest of N.
The phylogenetic forest F obtained from F ′ by repeat-
edly suppressing any vertices of indegree and outdegree
1 and any outdegree 1 roots until this is no longer possi-
ble is a base forest of N. Note that, in particular, we can
think of F as being embedded within N. A forest-based
m-network is proper forest-based if it has a base forest
that contains m trees – see [8, 9] for more on this.

To illustrate, consider the network N depicted in Fig-
ure 1. Clearly, N is forest-based since the forest F ′ ob-
tained from N by removing the dashed arcs is a forest
with L(F ′) = L(N), and each dashed arc has end ver-
tices in distinct trees of F ′. Hence, F ′ is a subdivision
forest of N. A base forest F of N is obtained from F ′

by suppressing the vertices u, v, w, h1, h2 and h3, as all
have indegree and outdegree 1 in F ′. Since F contains
3 trees and N is a 3-network, N is proper forest-based.

3. Colorings and proper forest-based networks

Suppose G is a (simple) graph and C , /0 is a finite
set of colors. A surjective map σ : V (G)→ C is a |C|-
coloring of G. For v ∈V (G), the color of v under σ , or
simply the color of v if σ is clear from the context, is

σ(v). A coloring σ of G is proper if σ(x) , σ(y), for
any two adjacent vertices x,y ∈V (G).

We now characterize proper forest-based networks in
terms of colorings of their vertex sets.

Lemma 3.1. Let N be an m-network on X, m ≥ 2. Then
N is proper forest-based if and only if there exists an
m-coloring of N such that:

(C1) Each non-root vertex of N has the same color as
exactly one of its parents.

(C2) Each internal vertex of N has the same color as at
least one of its children.

Proof. Suppose first that N is proper forest-based. Let
F ′ be a corresponding subdivision forest of N. We claim
that the map σ : V (N) → F ′ that assigns to each v ∈
V (N) the tree in F ′ that contains v in its vertex set is an
m-coloring of N that satisfies (C1) and (C2).

To see (C1), let v be a non-root vertex of N. Since
the root of each tree of F ′ is a root of N, v is not the
root of σ(v). So at least one of the parents of v has the
same color as v. If v has two or more parents satisfying
this property, then v has indegree 2 or more in σ(v), a
contradiction as σ(v) is a tree. Hence, (C1) holds.

To see (C2), let v be an internal vertex of N. Since
L(N)= L(F ′), v is not a leaf of σ(v). Hence, there exists
at least one child u of v in N such that σ(u) = σ(v).

Conversely, suppose that there exists an m-coloring
σ of N = (V,A) satisfying (C1) and (C2). Let F ′ be the
graph with vertex set V and arc set A′ = {(u,v) ∈ A :
σ(u) = σ(v)}. By (C1), no vertex in F ′ has indegree
greater than 1, and by (C2), L(N) = L(F ′). So F ′ is a
subdivision forest of N. Since the end vertices of each
arc in A−A′ have different colors, they appear in differ-
ent trees of F ′. Hence, N is proper forest-based.

Note that if σ is an m-coloring of an m-network N
satisfying (C1) and (C2), then these two properties to-
gether with the fact that the image of σ has size m imply
that no two roots of N have the same color under σ .

4. Tree-child networks

The main result in this section implies Statement (R3)
for the case m = 2. To prove it, we shall reduce from
the NP-complete SET-SPLITTING decision problem [7,
page 221] which is defined as follows.

• Given some finite set X , |X | ≥ 3, and a set C of
size-3 subsets of Y , is there a bipartition {A,B} of
X such that, for all S ∈ C , S∩A , /0 and S∩B , /0?
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Theorem 4.1. For m = 2, the problem of deciding
whether a quasi-binary tree-child m-network is proper
forest-based is NP-complete.

Proof. The problem is in the NP since, for each proper
forest-based, quasi-binary, tree-child m-network, an m-
coloring satisfying (C1) and (C2) serves as a certificate
and (C1) and (C2) can be verified in polynomial time.

We shall prove NP-completeness by giving a reduc-
tion from SET-SPLITTING. Suppose that we are given
a collection C of size-3 subsets of X . We create a 2-
network as follows (see Figure 2 where we illustrate
the various constructions that we perform as part of this
proof in terms of an example). Let X ′ = X ∪ {ℓ} for
some element ℓ < X , and let T1 and T2 denote two iso-
morphic caterpillars trees on X ′ such that ℓ is a leaf in
the unique cherry of T1 (and therefore also of T2). For
all x ∈ X , we identify leaf x of T1 with leaf x of T2. The
resulting network has |X | reticulations. We call all ver-
tices in the resulting DAG Gen1 vertices.

For all x ∈ X , we attach to x a path Px of length c(x)+
1 via an arc (x,ax), where ax is the first vertex on Px and
c(x) is the number of sets in C containing x. We then
bijectively label for each x ∈ X the internal vertices of
Px with the elements in C that contain x. We call all
vertices added during this step Gen2 vertices. Finally,
for all S ∈ C and all x ∈ S, we create a reticulation hS
with parents the vertices on Px labelled by S and add a
leaf ℓS to hS by adding the arc (hS, ℓS). We call vertices
added during this step Gen3 vertices.

Let N denote the resulting DAG. By construction, N
is an m-network on L(N) that is quasi-binary and tree-
child. We now show that there exists a solution to the
SET-SPLITTING problem for X and C if and only if N
is proper forest-based, which will complete the proof.

Suppose first that {A,B} is a solution to the SET-
SPLITTING problem for X and C . We define an m-
coloring σ : V (N) → {1, . . . ,m} for N as follows. Let
v ∈V (N). If v is a Gen1 tree-vertex, we set σ(v) = 1 if
v ∈V (T1), and σ(v) = 2 if v ∈V (T2). if v ∈ {r2, ℓ2,h2},
and if v ∈ {rm, ℓm} we put σ(v) = m. If v ∈V (Px)∪{x}
for some x ∈ X , then we put σ(v) = 1 if x ∈ A and
σ(x) = 2 if x ∈ B. Finally, if v ∈ {hS, ℓS} for some
S ∈ C , then we put σ(v) = 1 if |S∩A|= 1 and σ(v) = 2
if |S∩B|= 1. Note that since {A,B} is a solution to the
SET-SPLITTING problem, precisely one of these equal-
ities always holds. We claim that σ satisfies (C1) and
(C2), which implies that N is proper forest-based.

To see that (C1) holds, note first that, by construc-
tion, all non-root vertices v have at least one parent u
satisfying σ(u) = σ(v). Suppose now that v is a retic-
ulation. If v is a Gen1 vertex, then σ(v) ∈ {1,2} and

v has exactly two parents. Calling them v1 and v2 we
have σ(v1),σ(v2) ∈ {1,2} and σ(v1) , σ(v2). Thus,
exactly one of σ(v1) = σ(v) or σ(v2) = σ(v) holds. If
v is a Gen3 vertex, then v has three parents v1,v2,v3 and
two of them must have the same color under σ . Without
loss of generality assume that that σ(v2) = σ(v3). By
definition, σ(v) = σ(v1) follows. Hence, (C1) holds.

To see that (C2) holds, let v ∈V (N)−L(N). If v is a
Gen1 vertex that is not a reticulation, then v is an inter-
nal vertex of either T1 or T2. Since, for all i ∈ {1,2}, Ti
is a caterpillar tree and, by definition of σ , all vertices
on the directed path from the root of Ti to ℓ have the
same color under σ , (C2) follows. If v is a Gen2 ver-
tex or a Gen1 reticulation then v ∈ {x}∪V (Px), some
x ∈ X . Since Px is a directed path whose first vertex is
adjacent with x, the definition of σ implies (C2) again.
Finally, if v is a Gen3 vertex, then v = hS, some S ∈ C .
By definition, σ(hS) = σ(ℓS). Hence, (C2) also holds.

Conversely, suppose that N is proper forest-based. By
Lemma 3.1, there exists an m-coloring σ of N satisfy-
ing (C1) and (C2). Note that, by construction, the set
of all Gen1 reticulations of N is X and also that every
element in X is a descendant of both r2 and the root
ρ1 of T1. By (C1), it follows that either σ(x) = σ(r2)
or σ(x) = σ(ρ1) holds for all x ∈ X . Let A = {x ∈
X : σ(x) = σ(ρ1)} and B = {x ∈ X : σ(x) = σ(r2)}.
Clearly, {A,B} is a bipartition of X as σ(r2) , σ(ρ1).

We claim that {A,B} is a solution to the SET-
SPLITTING problem. To see this, consider a set S =
{x,y,z} ∈ C . By construction, hS has three ancestors,
all of which are Gen2 vertices that are a descendant of
x, y and z, respectively. Since a Gen2 vertex is a vertex
on Pw for some w ∈ X , (C1) implies that σ(w) = σ(u),
for all u∈V (Pw). Moreover, by (C2), exactly one parent
u of hS satisfies σ(u) = σ(hS). Without loss of general-
ity, we may assume that u is a descendant of x. Hence,
σ(x) , σ(y) = σ(z). By definition of A and B, it fol-
lows that S∩A , /0 and S∩B , /0. Since this holds for
all S ∈ C , the claim follows.

5. Tree-child networks revisited

In this section, we prove a result using network color-
ings from which a weaker form of Statement (R3) also
follows. We do this in part because the construction that
we shall use in the proof will be used in the next sec-
tion for establishing our results concerning binary, tree-
child m-networks. We shall reduce from the GRAPH
m-COLORABILTY decision problem for m ≥ 3 ([7, page
190]) which is as follows.
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Figure 2: The 2-network N for X = {a,b,c,d,e} and C =
{{a,b,c},{a,c,e},{b,c,d}}, as described in the proof of Theo-
rem 4.1. Gen1, Gen2, and Gen3 vertices are indicated as vertices
in a band labelled Gen1, Gen2, and Gen3, respectively. For clarity
purposes, we have indicated the reticulation with the set in C its three
parents correspond to and not the parents themselves. A 2-coloring
σ : V (N)→{•,◦} associated to the solution A = {a,b}, B = {c,d,e}
of the SET-SPLITTING problem for (X ,C ).

• Given a (simple) graph G, does there exist a proper
m-coloring of G?

Note that this problem can be solved in polynomial
time for m = 2 but is NP-complete for each m ≥ 3.
Hence, the reduction below can only be used for m ≥ 3.

Proposition 5.1. For each fixed m ≥ 3, the problem of
determining whether a tree-child m-network is proper
forest-based is NP-complete.

Proof. Membership of NP can be argued in the same
way as in the proof of Theorem 4.1. We prove NP-
completeness by giving a reduction from GRAPH m-
COLORABILTY.

Suppose that we are given a graph G with vertex set
X . Then we construct an m-network N as follows (see
Figure 3 where we illustrate the various constructions
performed in this proof in terms of an example). Let
T1, . . . ,Tm denote m isomorphic caterpillars trees on a
set Y with |X |+1 leaves. Without loss of generality we
may assume that Y = X ∪ {ℓ} and that ℓ < X is a leaf
in the unique cherry of T1 (and therefore also of all Ti,
2 ≤ i ≤ m). For all x ∈ X and all 1 ≤ i ≤ m, we identify
the leaves x to obtain a vertex x of indegree m. We call
all vertices in the resulting graph Gen1 vertices.

Denoting for all x ∈ X the degree of x in G
by degG(x), we attach a directed path Px of length
degG(x) + 1 via an arc (x,ax) to the first vertex ax of
Px. We label each internal vertex of Px with an edge in
G that is incident with x and call all vertices added dur-
ing this step Gen2 vertices. Finally, for all edges e of

G, we create a new reticulation he with parents the two
vertices in the DAG constructed thus far labelled e and
add a leaf ℓe as a child to he. We call vertices added
during this step Gen3 vertices.

Let N denote the resulting DAG. One can easily
verify that N is an m-network that is tree-child. We
now show that there exists a solution to GRAPH m-
COLORABILTY for G if and only if N is proper forest-
based, which will complete the proof.

Suppose first that there exists a proper m-coloring κ :
X →{1, . . . ,m} of G. From κ , we derive an m-coloring
σ : V (N)→{1, . . . ,m} of N as follows. Let v∈V (N). If
v is a Gen1 tree-vertex then there exists some 1 ≤ i ≤ m
such that v ∈ V (Ti). In this case, we put σ(v) = i. If v
is a Gen2 vertex or a Gen1 reticulation, then v ∈ {x}∪
V (Px) for some x ∈ X , and we put σ(v) = κ(x). Finally,
if v is a Gen3 vertex, then v∈ {he, ℓe} for some edge e=
{x,y} of G. In this case, we choose σ(v)∈ {κ(x),κ(y)}
if v = he and we put σ(v) = σ(he) if v = ℓe.

To see that N is proper forest-based it suffices to show
by Lemma 3.1 that σ satisfies Properties (C1) and (C2).

To see that (C1) holds, note first that, by construc-
tion, all non-root vertices v of N have at least one parent
u satisfying σ(u) = σ(v). Suppose now that v is a retic-
ulation. Then v is either a Gen1 reticulation or v = he
for some edge e of G. If v is a Gen1 reticulation then
v∈X . Hence, v has m parents v1, . . . ,vm. Since, for each
1 ≤ i ≤ m, there exists a unique tree Ti that contains vi
it follows that there exists a unique 1 ≤ j ≤ m such that
σ(v) = σ(v j) = j. If v = he then let x,y ∈ X such that
e = {x,y}. Without loss of generality, assume that v1
is a vertex on Px and that v2 is a vertex on Py. Assume
that we have chosen σ(he) = κ(x) in the definition of
σ . Then σ(he) = κ(x) = σ(v1). Since κ is a proper m-
coloring of G, we also have σ(v2) = κ(y) , κ(x). Thus,
(C1) holds.

To see that (C2) holds, let v ∈V (N)−L(N). If v is a
Gen1 vertex that is not a reticulation, then v has at least
one child u that is a Gen1 vertex that is not a reticulation.
In particular, v and u belong to the same tree Ti, 1 ≤
i ≤ m. Hence, σ(v) = σ(u), by the definition of σ . If
v is a Gen2 vertex or a Gen1 reticulation, then v has
exactly one child u that is a Gen2 vertex. By definition,
σ(u) = σ(v) also holds in this case. Finally, if v is a
Gen3 vertex, then v = he for some edge e of G. Hence,
σ(ℓe) = σ(v) holds by definition. Thus, (C2) holds.

Conversely, suppose that N is proper forest-based.
By Lemma 3.1, there exists an m-coloring σ : V (N)→
{1 . . . ,m} of N satisfying (C1) and (C2). Since the set
of Gen1 reticulations of N is X , the restriction of σ to X
induces an m-coloring κ : X →{1, . . . ,m} of G.

We claim that κ is a proper m-coloring of G. To
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Figure 3: The 3-network N constructed from the graph
G with vertex set X = {a,b,c,d,e} and edge set E(G) =
{{a,b},{a,c},{b,c},{b,d},{c,d},{d,e}}, as described in the proof
of Proposition 5.1. Gen1, Gen2 and Gen3 vertices are indicated as
described in Figure 2. A 3-coloring σ : V (N) → {•,◦,×} associ-
ated to the proper 3-coloring κ of G given by κ(a) = κ(d) = •,
κ(b) = κ(e) = ◦ and κ(c) =×.

see the claim, consider an edge e = {x,y} of G. By
construction, there exists a (unique) Gen3 reticulation v
such that v = he. Let v1 denote the parent of he on Px.
Similarly, let v2 denote the parent of he on Py. By (C1),
σ(v1) = κ(x) and σ(v2) = κ(y) hold. Since, by (C2),
σ(he) = σ(vi) for a unique i ∈ {1,2}, say i = 1, it fol-
lows that κ(y) = σ(v2) , σ(he) = σ(v1) = κ(x). Thus,
κ is a proper m-coloring of G.

6. Binary tree-child networks

In this section, we prove Statements (R1) and (R2).
We begin with some definitions. Suppose N is an m-
network and v ∈V (N). We denote by PN(v) the set of
parents of v and by CN(v) the set of children of v.

Statement (R2) follows from the following result.

Theorem 6.1. For each fixed m ≥ 3, the problem of
determining whether a binary tree-child m-network is
proper forest-based is NP-complete.

Proof. Membership of NP follows from Proposi-
tion 5.1. We again reduce from the GRAPH m-
COLORABILTY problem. Suppose G is a graph with ver-
tex set X . We use the construction described in the proof
of Proposition 5.1 to obtain a tree-child m-network Ns.
We then create a binary tree-child network Nb from Ns

by applying the following operation to each reticula-
tion x with indegree d ≥ 3 (by construction, d = m).

(i) Introduce vertices u2, v2, w2, . . . ,ud−1, vd−1, wd−1.

(ii) Remove arcs (p1,x), . . . ,(pd−1,x), with p1, . . . , pd
the parents of x in Ns (in arbitrary order).

(iii) Add arcs (p1,u2), (pi,ui), (ui,vi), (vi,wi),
(vi,ui+1) for i = 2, . . . ,d −1 with ud = x.

We illustrate the above construction for a reticulation
with indegree d = 4 in Figure 4. We comment that, for
a general tree-child network Ns, it does not necessarily
hold that Ns is proper forest-based if and only if Nb is
proper forest-based. Therefore, we will use the specific
structure of the network Ns constructed here.

We next show that Nb is proper forest-based if and
only if G admits a proper m-coloring. Suppose first that
G admits a proper m-coloring. Then, by the proof of
Proposition 5.1, Ns is proper forest-based. Hence, there
exists an m-coloring σ : V (Ns)→C of Ns in terms of a
set C of colors such that (C1) and (C2) hold.

We define an m-coloring σ ′ : V (Nb) → C of Nb as
follows. For w∈V (Ns), we put σ ′(w)=σ(w). For each
vertex introduced in Step (i) for some reticulation x, we
do the following. Let p j be the parent of x satisfying
σ(p j) = σ(x) (which must exist in view of (C1)). For
1< i< j, we put σ ′(ui) =σ ′(vi) =σ ′(wi) =σ(p1). For
j ≤ i ≤ d−1 we put σ ′(ui) = σ ′(vi) = σ ′(wi) = σ(x) =
σ(p j). To see that Nb is proper forest-based, we show
that σ ′ satisfies (C1) and (C2).

To see that σ ′ satisfies (C1), let w be a non-root vertex
of Nb. If w ∈V (Ns) and w has indegree at most 2 in Ns,
then PNs(w) = PNb(w), σ ′(w) = σ(w), and σ ′(q) =
σ(q), for all parents q ∈ PNs(w). By (C1), there exists
exactly one parent q in PNs(w) that satisfies σ(q) =
σ(w). It follows that q is the unique parent in PNb(w)
satisfying σ ′(q) = σ ′(w). So, (C1) holds.

Now assume w is introduced in Step (i) for some
reticulation x. Let p j again be the parent of x satisfy-
ing σ(p j) = σ(x).

If w ∈ {vi,wi}, for some 2 ≤ i ≤ d − 1, then w has
exactly one parent q and σ ′(w) = σ ′(q). So (C1) holds.

Before continuing to the next case, observe that, since
every root of N has a different color, the parents of x
in Ns also have different colors, by (C1).

Now consider the case w = ui for i ∈ {2, . . . , j− 1}.
Then w has two parents vi−1, pi, with v1 = p1, and
σ ′(w) = σ ′(vi−1) = σ ′(p1) , σ ′(pi). So (C1) holds.

If w = u j, then w has two parents v j−1, p j and
σ ′(w) = σ ′(p j) , σ ′(v j−1) = σ ′(p1). So (C1) holds.

Finally assume w = ui for i ∈ { j + 1, . . . ,d} with
ud = x. Then w has two parents vi−1, pi and σ ′(w) =
σ ′(vi−1) = σ ′(p j) , σ ′(pi). So (C1) holds again.

To show that σ ′ also satisfies (C2), consider an in-
ternal vertex w of Nb. First suppose w ∈ V (Ns) and w
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is not a parent of a reticulation with indegree greater
than 2 in Ns. Then CNs(w) = CNb(w). In particu-
lar, σ ′(w) = σ(w) and σ ′(z) = σ(z), for all children
z ∈ CNs(w). By (C2), there exists at least one child
z ∈ CNs(w) with σ(z) = σ(w). So σ ′(z) = σ ′(w) holds.

Now assume w is introduced in Step (i) for some
reticulation x. Then, by the construction of σ ′, w has
the same color as at least one of its children.

Now assume w is a parent of a reticulation with in-
degree greater than 2 in Ns. Then w has a child c
with indegree 1 in Ns and with σ(c) = σ ′(c). Hence,
σ(c) = σ(w) and σ ′(c) = σ ′(p). So, σ ′ satisfies (C2).

Conversely suppose Nb is proper forest-based. Then
there exists an m-coloring σ of Nb in terms of a set C of
colors that satisfies Properties (C1) and (C2). Restrict-
ing this coloring to X to obtain a coloring κ : X →C and
then applying the same arguments as in the last para-
graph of the proof of Proposition 5.1 implies that κ is a
proper m-coloring of G. Note that these arguments only
use the vertices in X and their descendants and hence
they are the same for Nb as for Ns.

x

p1 p2 p3 p4

p1 p2

p3

p4

x

u2

u3

v2

v3w2

w3

(i) (ii)

Figure 4: (i) A reticulation x with 4 parents p1, . . . , p4. (ii) The con-
struction described in the proof of Theorem 6.1, which reduces the
indegree of x to 2.

To prove the next result, we require further concepts
from [9]. Let N be a semi-binary m-network, m ≥ 2,
and let v be a vertex of N. We denote by γN(v) the
(necessarily unique) lowest ancestor of v in N whose
indegree is not 1. Note that γN(v) is either a root or a
reticulation of N. Building on this definition, we de-
fine an undirected graph Γ(N) as follows. The vertex
set of Γ(N) is the set of all vertices of N whose inde-
gree is not 1. Two such vertices v1, v2 are joined by
an edge in Γ(N) if there exists two distinct vertices u1,
u2 in N such that γN(u1) = v1, γN(u2) = v2, and u1 and
u2 share a child in N. The intuitive idea behind these
edges is that they indicate that the vertices v1,v2 need
to be contained in different trees in a potential subdi-
vision forest of N and so need to be assigned different
colors. Indeed, for an m-coloring σ of N satisfying (C1)
and (C2), σ(u1) = σ(v1) and σ(u2) = σ(v2) must hold
by (C1) and by definition of γN(v), v ∈ V (N). Property
(C1) together with the fact that the common child of u1
and u2 has indegree 2 implies σ(u1) , σ(u2).

As it turns out, the edges of the graph Γ(N) are not
sufficient to determine whether N is proper forest-based.
This is caused by internal vertices of N for which all
children have indegree 2 or more. We call such a vertex
an omnian (vertex) [10]. In order for (C2) to hold, for
all omnian vertices v of N, at least one child of v needs
to be assigned the same color as v. To ensure that this
property is satisfied, we will use certain supergraphs of
Γ(N) called “omni-extensions”. For a semi-binary net-
work N, we define an omni-extension of Γ(N) as a su-
pergraph Γ′(N) of Γ(N) such that V (Γ′(N)) =V (Γ(N))
and for all omnians v of N there exists a child h of v
such that {h,γN(u)} is an edge of Γ′(N), with u being
the parent of h in N other than v [8]. Note that Γ(N)
may be an omni-extension of itself. This is the case,
in particular, if N has no omnian vertex. If Γ′(N) is
an omni-extension of Γ(N), and no proper subgraph of
Γ′(N) is an omni-extension of Γ(N), we say that Γ′(N)
is a minimal omni-extension of Γ(N).

We illustrate these concepts in Figure 5. Observe that
vertex v in Figure 5(i) is an omnian. At least one of
the children of v needs to be assigned the same color
as v (in a colouring satisfying (C2) in Lemma 3.1). In
this example, we choose child h3 as h. This means that
the other parent u of h3 needs to be assigned a differ-
ent color than h3 (by (C1)) and hence that γN(u) = r3
needs to be assigned a different color than h3 (again us-
ing (C1)). This is the intuitive idea behind adding the
dashed edge {h3,r3} in Figure 5(ii).

r2

h2

h1 h3

r1 r3

(i) (ii)

r1 r2 r3

h1 h2 h3

a b c d e f g h i j

Figure 5: (i) A forest-based 3-network on X = {a,b,c,d,e, f ,g,h, i, j}.
(ii) The graph with vertices r1,r2,r3,h1,h2 and h3 and solid edges
{r1,r2} and {r2,r3} is the graph Γ(N). Adding the dashed edge
{r1,h3} results in a minimal omni-extension of Γ(N).

Statement (R1) is a consequence of the next result.

Theorem 6.2. Given a binary tree-child 2-network N,
it can be determined in O(nr) time whether N is proper
forest-based, where r is the number of reticulations of N
and n = |L(N)|.

Proof. [8, Theorem 8] states that a 2-network, in which
all reticulations have indegree 2, is proper forest-based
if and only if the graph Γ(N) has a bipartite omni-
extension. This theorem is applicable to N since it
is binary. Since N is tree-child, it has no omnians.
Hence, Γ(N) is an omni-extension of Γ(N).
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We claim that N is proper forest-based if and only
if Γ(N) is bipartite. First suppose that N is proper
forest-based. Then, by [8, Theorem 8] recalled above,
Γ(N) has a bipartite omni-extension. Since Γ(N) is a
subgraph of every omni-extension of Γ(N), it follows
that Γ(N) is bipartite. Conversely, if Γ(N) is bipartite,
then, since Γ(N) is an omni-extension of Γ(N), it fol-
lows again by [8, Theorem 8] recalled above that N is
proper forest-based. The claim therefore holds.

To construct Γ(N), we need to find, for each parent
v of a reticulation of N, the vertex γN(v). This takes
O(|V (N)|) time per reticulation of N. Hence, the con-
struction of Γ(N) takes O(|V (N)| · r) time. Checking
whether Γ(N) is bipartite takes O(r) time, since Γ(N)
has at most r edges. Hence, the total running time is
O(|V (N)| · r).

Finally, to obtain the running time stated in the the-
orem, note that by [14, Proposition 10.7] a tree-child
1-network with n leaves has fewer than 4n vertices.
Adding a vertex ρ and an arc from ρ to each of the
two roots in N results in a tree-child 1-network, and in-
creases the number of vertices by only 1. It follows that
N has O(n) vertices. This concludes the proof.

7. An FPT algorithm

In this section, we shall present a fixed-parameter
tractable (FPT) algorithm called CHECK for deciding
whether a semi-binary m-network N, m ≥ 2, is forest-
based, with respect to the parameter combination of m,
the number r of reticulations of N, and the maximum
outdegree ∆ of N. This will enable us to prove that
Statement (R4) holds. Note that we do not require the
network to be tree-child.

For N an m-network, m≥ 2, we denote the set of roots
and reticulations of N by RH(N). Note that RH(N) is
precisely the vertex set of Γ(N). For G a graph with
vertex set RH(N) and σ a coloring of G, we say that a
directed path P in N is a σ -uniform path if for all ver-
tices v,v′ ∈ RH(N) on P, we have σ(v) = σ(v′). Note
that a directed path in N containing at most one vertex
of RH(N) is trivially σ -uniform.

Correctness of the algorithm CHECK follows from
Theorem 7.1 which is a slight strengthening of [8, The-
orem 7] to minimal omni-extensions.

Theorem 7.1. Let N be a semi-binary m-network, m ≥
2. Then N is proper forest-based if and only if there
exists a minimal omni-extension Γ′(N) of Γ(N) and a
proper m-coloring σ of Γ′(N) satisfying:

(F1) The restriction of σ to the set R(N) of roots of N is
a bijection.

Algorithm 1 The algorithm CHECK.
Input: A semi-binary m-network N, m ≥ 2.
Output: The statement “N is proper forest-based” or

the statement “N is not proper forest-based”.
1: Construct Γ(N) and find all minimal omni-

extensions of Γ(N).
2: for all minimal omni-extension of Γ(N) do
3: Add an edge between any two distinct roots

of N to obtain a graph Γ∗(N).
4: Find all proper m-colorings of Γ∗(N).
5: for all proper m-coloring σ of Γ∗(N) do
6: for all reticulations h of N and all roots ρ of

N with σ(ρ) = σ(h) do
7: Check that there exists a σ -uniform path

from ρ to h in N.

8: if the latter holds for all reticulations h of N
and all roots ρ of N with σ(ρ) = σ(h) then

9: return “N is proper forest-based”.
10: return “N is not proper forest-based”.

(F2) For all u ∈ R(N) and all reticulations v of N such
that σ(u) = σ(v) there exists a σ -uniform path
from u to v in N.

Proof. Suppose first that there exists a minimal omni-
extension Γ′(N) of Γ(N) and a proper m-coloring of
Γ′(N) satisfying (F1) and (F2). Then by [8, Theorem
7], N is proper forest-based.

Conversely, suppose that N is proper forest-based.
Then by [8, Theorem 7], there exists an omni-extension
G of Γ(N) and a proper m-coloring σ of G satisfying
(F1) and (F2). Since (F1) and (F2) are independent of
the structure of G, it follows for all subgraphs G− of G
with V (G) = V (G−) that σ is a proper m-coloring of
G− satisfying (F1) and (F2). In particular, if there exists
an omni-extension of Γ(N) and a proper m-coloring of
G satisfying (F1) and (F2), then there exists a minimal
omni-extension of Γ(N) and a proper m-coloring of G
satisfying (F1) and (F2).

We now analyze the run time of algorithm CHECK.
The graph Γ(N) can be constructed in O(r|V (N)|) time
and can have at most ∆ω minimal omni-extensions
where ω is the number of omnians of N. Since N is
semi-binary, ω is at most 2r (each omnian is the parent
of at least one reticulation and each reticulation has two
parents). All proper m-colorings of Γ∗(N) can be found
in O(mr+m(r+m)2) time since Γ∗(N) has r+m vertices
(Line 4). Since, by construction, the set of roots of N
forms a clique in Γ∗(N) and we are interested in proper
m-colorings of Γ∗(N) it follows that for every reticula-
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tion h of N there exist a unique root ρh of N that has
the same color under the m-coloring σ under consid-
eration as h. In the worst case, checking the existence
of a σ -uniform path from ρh to h in N takes O(|V (N)|)
time per pair (ρh,h) (by deleting all reticulations that do
not have the same color as ρh and then doing a depth-
first search) (Line 7). The total run time of algorithm
CHECK therefore is O(∆2rmr+m(r+m)2|V (N)|).

In conclusion, we have the following result from
which Statement (R4) immediately follows.

Theorem 7.2. There exists an algorithm with running
time O(∆2rmr+m(r + m)2|V (N)|) to decide whether a
semi-binary m-network with r reticulations and maxi-
mum outdegree ∆ is proper forest-based, with m ≥ 2.

8. Discussion

In this paper, we have shown that it can be decided in
polynomial time whether a binary, tree-child, 2-network
is proper forest-based. It would be interesting to know
if the same problem can be solved in polynomial time
for more general binary 2-networks, e.g. for binary
tree-sibling 2-networks (i.e. 2-networks in which for
every reticulation v, there exists a tree-vertex or leaf u
such that u and v share a parent) or even for general bi-
nary 2-networks. In addition, although we have shown
that there is an FPT algorithm for deciding whether a
semi-binary m-network, m ≥ 2 is proper forest-based, it
would be interesting to see if FPT-algorithms with im-
proved run-times can be developed, or if an FTP algo-
rithm can be found for general m-networks.

Also, we have not considered the problem of decid-
ing whether an m-network is forest-based, m ≥ 1, i.e.
the problem where we do not insist that the underly-
ing forest must have m trees. It would be interesting to
know whether this is an NP-complete problem. Note
that since an m-network N is forest-based if and only if
it contains a subdivision forest in which every tree is an
induced, directed path in N (cf. [8, Theorem 1]), this
question is closely related to the induced path partition
problem which is known to be NP-complete [2].

Finally, as more methods become available for com-
puting networks from biological data (see e.g. [17]),
our results should be useful for understanding whether
a computed network is proper forest-based. It could
also be interesting to develop approaches to decide how
close a network is to being forest-based in case it is not
forest based (see e.g. [3] for related work on edge-based
1-networks).
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