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Fig. S1 Nitrogen adsorption and desorption isotherm curves and pore size distribution curve of Co-Fe@NC.
[image: ]
Fig. S2 SEM images of (a) FeCoZn-ZIFs and (b) Co-Fe@NC.
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Fig. S3 SEM images of (a) FeZn-ZIFs and (b) Fe@NC.
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Fig. S4 SEM images of (a) CoZn-ZIFs and (b) Co@NC.
[bookmark: _Hlk86354439][image: 图片包含 游戏机

描述已自动生成]
Fig. S5 TEM of Co-NC.
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Fig. S6 (a,b) HRTEM of Co-Fe@NC.
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Fig. S7 Potential dependence of calculated kinetic current density (Jk).[image: 图片包含 灯光, 黑暗, 挂, 交通
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[bookmark: _Hlk86524637]Fig. S8 The Nyquist plots of Co-NC, Fe@NC, and Co-Fe@NC. Symbols represent experimental EIS data, and the line represents the fit to the equivalent circuit given in the inset. Where, R1 denotes solution series resistance, Q2 represents constant phase element, R2 means charge transfer resistance, and W2 refers to Warburg diffusion element.
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Fig. S9 The CV curves(a-e) of all electrocatalysts at different scan rates in the nonFaradaic potential range; (f) the Cdl of all electrocatalysts.
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Fig. S10 LSV curve of Co-Fe@NC at a rotating speed of 1600 rpm in the RRDE test.
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Fig. S11 ORR polarization plots of Co-Fe@NC with and without 10 mM KSCN in 0.1 M KOH.
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Fig. S12 LSV curves tested at 1600 rpm with a scanning sweep of 2 mV/s of Co-Fe@NC, before and after acid wash.

[image: ]
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Fig. S13 The i–t curve at 0.80 V vs. RHE of Co-Fe@NC and 20% Pt/C in O2-saturated 0.1 M KOH at a rotating speed of 1600 rpm.
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Fig. S14 (a) Discharge and charge curves of hybrid Na–air batteries with Co-Fe@NC as cathode catalyst at different current densities; (b) Comparison of the voltage gap and round-trip efficiency of the Co-Fe@NC at different current densities.
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Fig. S15 SEM images of Co-Fe@NC after long-term cycling test of HSAB. 
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Fig. S16 Mapping images of Co-Fe@NC after long-term cycling test of HSAB. Among them, Na comes from sodium hydroxide solution and fluorine comes from Nafion.


[bookmark: _Hlk86334911]Table S1 Summary of the specific surface area, pore volume, and pore diameter of Co-Fe@NC.
	Sample
	BET surface area (m2/g)
	Total pore volume
(cm3/g)
	Average pore diameter
(nm)

	Co-Fe@NC
	451.16
	0.38
	3.33



Table S2 Metal content of as-prepared materials measured by ICP-OES.
	Sample
	Fe / mg/L
	Co / mg/L

	Co-Fe@NC
	17.07
	1.08

	Fe@NC
	20.92
	--

	Co-NC
	--
	2.38



[bookmark: _Hlk86524716][bookmark: _Hlk86523852]Table S3 Comparison of simulated EIS parameters for Co-Fe@NC, Fe@NC, and Co-NC: solution series resistance (Rs) and charge transfer resistance (Rct).
	Electrocatalyst
	Rs
	Rct

	Co-Fe@NC
	45.9
	84.8

	Fe@NC
	47.5
	122.9

	Co-NC
	47.5
	152.2





Table S4 Summary of various recently reported ORR electrocatalysts.

	[bookmark: _Hlk75769277]Catalysts
	Onset potential (V vs. RHE)
	Half-wave potential (V vs. RHE)
	Ref.

	Co-Fe@NC
	1.02
	0.86
	This work

	Fe@FeSA-N-C-900
	
	0.83
	J. Energy Chem. 61 (2021) 612–621

	Fe-2-WNPC-NCNT
	0.95
	0.83
	ACS Appl. Mater. Interfaces 2021, 13, 21, 24710–24722

	Fe/OES
	1.0
	0.85
	Angew. Chem. Int. Ed. 2020, 59, 7384 –7389

	Fe3C@3DNC-1-900
	
	0.861
	Int. J. Hydrogen Energ. 45 (2020) 13272-13281

	CNCo-5@Fe-2
	0.971
	0.861
	Appl. Catal. B-Environ. 261 (2020) 118224

	CAN-Pc(Fe/Co)
	1.04
	0.84
	Angew. Chem. Int. Ed. 2019, 58,14724 –14730

	D-BNGFe-2-900
	0.95
	0.82
	ACS Sustain. Chem. Eng. 2019, 7, 19104−19112

	Fe3C@Fe,N,S-GCM
	0.98
	0.779
	Carbon 150 (2019) 93-100

	Fe/N-HCNFs
	
	0.83
	ChemistrySelect 2019, 4, 722–728

	Fe@C–NG/NCNTs
	0.93
	0.84
	J. Mater. Chem. A, 2018, 6,516–526

	Co/NCNT/NG
	0.96
	0.85
	J. Mater. Chem. A, 2018, 6, 3926

	
	
	
	


Table S5. Discharge/charge voltage, overpotential gap, round trip efficiency, power density, and cycles of hybrid sodium-air battery made by different air electrodes catalyst.
	[bookmark: _Hlk55245753]Cathodic catalyst
	Discharge/charge voltage@current density
	Voltage gap
	Round trip efficiency (%)
	Cycles/Current density
(mA cm-2)
	Power density
(mW cm-2)
	Catholyte 

	Ref.

	Co-Fe@NC
	2.82/3.09
	0.27
	91.2
	175/0.1
(700 h)
	5.39 mW cm−2
(2695 mW/g)
	1 M NaOH
	This work

	Pt/C+RuO2
	2.79/3.34
	0.55
	83.5
	100/0.1
(400 h)
	4.79 mW cm−2
(2395.0 mW/g)
	1 M NaOH
	This work

	Co-N-C
	2.8/3.11@0.1
	0.31
	85.8
	20/0.1
	N.A.
	1 M NaOH
	1

	Pt3Ni1/NixFe LDHs
	2.91/3.41@0.01
	0.5
	85.4
	350/0.01
(near to 117 h)
	N.A.
	O2-saturated 0.1 M NaOH
	2

	MA-Fe-N/CNT
	2.95@0.05
	N.A.
	N.A.
	over 250 h
	4.63 
	0.1 M NaOH
	3

	D-Co-PBA
	2.75/2.9@0.01
	0.15
	94.83
	1000/0.01
	N.A.
	O2-saturated 0.1 M NaOH
	4

	Pt/V-Co(OH)2-Ov
	
	0.07
	93.2
	1000/0.01
	407 mW g−1
	O2-saturated 0.1 M NaOH
	5

	MOF-NCNTs
	2.80/3.10@0.1
	0.30
	90.32
	35/0.1
	N.A.
	1 M NaOH
	6

	Na2CoPO4F
	2.94/3.34@0.01
	0.40
	~88
	30
	N.A.
	0.1 M NaOH
	7

	NixCo3−x(PO4)2
	2.76/3.54@0.01
	0.78
	78
	50/0.01
	N.A.
	0.1 M NaOH
	8

	Mn2O3 
	@5mAg-1
	0.33
	90
	75/2.5mAg-1
	200 mW g−1
	0.1 M NaOH
	9

	Bi2Ru2O7
	@0.01
	0.211
	93.58
	50/0.01
	156.32 mWg−1
	0.1 M NaOH
	10

	P-Tl2Ru2O7
	3.07/3.23@0.01
	0.16
	95
	50/0.01
	186.5 mW g-1
	0.1 M NaOH
	11

	Tl2Rh2O7
	@0.01
	0.208
	93.65
	50/0.01
	159.9 mW g−1
	0.1 M NaOH
	12

	P-Bi2Rh2O6.8
	@0.01
	0.17
	94.9
	50/0.01
	181.2 mW g-1
	0.1 M NaOH
	13

	Carambola-shaped VO2
	2.81/3.45@0.01
	0.64
	81
	50
	104 mW g-1
(260 μW cm-2)
	0.1 M NaOH
	14

	SnS2
	@5 mA g-1
	0.52
	83
	40/5 mAg-1
(400 h)
	300 mW g-1
	0.1 M NaOH
	15

	Co3(PO4)2
	2.82/3.41@0.05
	0.59
	~83
	50
	N.A.
	0.1 M NaOH
	16

	α-MnO2
	
	0.7
	81
	20/15 mA g−1
	N.A.
	0.1 M NaOH
	17
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