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Abstract

The purpose of this paper is to build and analyse a model of labour market slack
considering unemployment along with employment in which the number of hours is
limited to a level below that preferred by employees. We thus have ’underemploy-
ment’ along with unemployment. We analyse the need for potential policy action
directed at the reduction of unemployment, simultaneous with an autonomous pro-
cess of labour market job creation and migration. We model delays in labour market
responses to past unemployment and vacancies creation and capture the effect on
unemployment through a non-linear dynamic system. We observe job separation and
matching but also movement into and out of underemployment. The model allows
for migration in an open economy context. We analyse the stability behaviour of the
resulting equilibria for our dynamic system, including Dirac and weak kernels.
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1 INTRODUCTION

In this paper we propose a nonlinear mathematical model of unemployment, allowing for both an extensive and an intensive
margin of the labour market, generating unemployment as well as underemployment. As such, we reconsider the possibility
of ’time-limited jobs’ or underemployment, as an intermediary status in the labour market - between regular employment and
unemployment. Our system allows for both job market creation, and policy intervention to limit unemployment, along with the
possibility that migrants take some regular jobs.

We build on the documented incidence of underemployment (for example1), whereas workers in either full or part-time jobs
cite an interest to work a larger number of hours than those available to them in their present employment and at the going
wage rate. Our paper thereby extends an earlier analysis2 by focusing on policy effectiveness in reducing unemployment. In
this context, employers have the option to draw on immigrants to fill in labour shortages, as well as to use the pool of the
underemployed when the demand arises for extra hours of work. This builds on evidence in the post-2008 Great Recession
period, whereby employers draw on the underemployed or their internal labour market - in particular during a recovery period.
The mechanism also informs the possibility of filling in labour market gaps, such as those associated with post-pandemic labour
shortages.
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The adjustment in our model of unemployment dynamics could thus explain why unemployment rates changed only a little,
in spite of major events such as the Great Recession or the post-pandemic recovery. Moreover, after the 2008 financial crisis,
real wages stagnated during the recovery period, while underemployment stayed high relative to the level of unemployment
across most European countries, and also in the USA1. On the other hand, the end of the COVID-19 pandemic coincided with
some upward pressure on wages along with labour shortages. This happened in spite of the expectation of sharp increases in
unemployment following the end of furlough schemes during the times of COVID-19 - temporarily controlling unemployment
through policy intervention. Coupled with a subsequent decline in underemployment, this has also coincided with a sharp decline
in international migration - showing that unemployment has been influenced by a mix of these dynamic processes, which should
be modelled simultaneously. Going forward, it appears that underemployment is back to the relative levels experienced before
the Great Recession3, and time will tell whether its role in the unemployment dynamics is becoming less influential, or remains a
factor to be kept in check. Our model will capture the role of underemployment in the determination of unemployment dynamics,
by modelling policy intervention along with the contribution of limited-hours employment options. It further adds immigration
as part of the system, which is also in line with a significant explanation of how shortages developed in the post-pandemic period
along with disruptions to cross-border migrant flows.

In sum, we follow the intuition in Bell and Blanchflower4 and reconsider the slack in the labour market beyond unemployment,
to include those working fewer hours than intended. As such, underemployment needs to be added to a system of dynamic
interaction of labour market processes and policy intervention to model more realistic scenarios.

We acknowledge the approach of earlier work5,6,7,8,9,10,11,12,13,14 on unemployment control. Yet, unlike in7 we adjust our
unemployment model to allow for the possibility that workers of all skills can become subject to employment contracts that
allow for fewer hours of work compared to what some of them would be happy to provide at the going wage rate.

In fact, where labour market slack is linked with underemployment measures, rather than unemployment alone, it is estimated
that the share of those working part-time who would be interested in working full-time in Europe varies between 2 and almost
9 per cent of total employment over the decade leading to the Covid-19 pandemic1. Ultimately, we build on the fact that the
availability of an underemployed workforce reduces the need for external recruitment by employers from the unemployeds.
This results in similar dynamics as illustrated by a system where employers can fill in jobs from a pool of immigrants, thereby
reducing the speed of unemployment reduction. Motivated by the above considerations, our paper builds on this analogy and
creates a model of unemployment dynamics with both migration and underemployment, to check for the effectiveness of policy
intervention and the further significance of delayed reactions.

The paper is organised as follows. In Section 2 the model for unemployment reduction considering underemployment and
migration and two kernels is described. Section 3 adds a non-dimensional model. An equilibrium analysis is presented in Section
4. For different types of delay kernels a stability analysis is done in Section 5. and Section 6 for regular employment-free
equilibrium. Section 7 provides the local asymptotic stability for the positive equilibrium. Numerical simulation substantiates
the theoretical findings in Section 8. Finally, concluding remarks are given in Section 9.

2 THE MATHEMATICAL MODEL

The state variables of the considered mathematical model are: the number of unemployed persons 𝑈 (𝑡), the number of immi-
grants 𝑀(𝑡), the number of those underemployed persons or persons working limited hours 𝑇 (𝑡), the number of regularly
employed persons 𝑅(𝑡), and the number of available vacancies 𝑉 (𝑡), at time 𝑡.

In the model description, the following assumptions are made: the separation rate of unemployed individuals and the labour
market entry rate of migrants are constant at 𝑎1 and 𝑚1, respectively. Also, there are movements among different categories.

We model unemployment in a continuous time framework, along with a delayed reaction of markets in terms of job creation.
The number of individuals claiming unemployment rises over time under the influence of external factors and we see this
number diminish where a proportion of the unemployed find jobs created by recovering markets. Yet, some of those currently
in regular employment or underemployed might also be dismissed, and such job losses increase unemployment. Finally, some
of the unemployed can also leave or retire, thus diminishing the numbers of those in the unemployment pool. The change
in unemployment is captured in Eq. (1)1 below. At any time t, the number of unemployed persons, U(t) also changes by an
autonomous factor 𝑎1. The instantaneous rate of movement from unemployment to employment is jointly proportional to U(t)
and the number of available vacancies V(t), where V(t) is the total number of vacancies being created by the market.
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Migrants are further attracted to a particular labour market by economic opportunities, with an ongoing inflow of workers
from abroad ready and able to enter the labour market of our observed economy. As they do not have access to unemployment
benefits upon entry, they are not expected to add to the number of unemployed. There is an autonomous rise of migrant stocks,
independent of economic conditions. Yet migrants’ attraction to a labour market is a function of their employability, which
depends on the available vacancies in the destination economy. By joining the labour force at destination, immigrants add to the
regularly employed population. On the other hand, return migration often represents a significant proportion of the new arrivals
diminishing the migrant stock along with natural attrition. Such developments are captured by Eq. (1)2 . As envisaged in Eq.
(1)3 the pool of the underemployed is enlarged by people otherwise unemployed, but who can find limited-hours employment,
and diminishes where they can move to regular jobs according to job openings and the expected labour supply at going wage
rates. Attrition is also occurring amongst the underemployed, due to various reasons determining labour market exit.

The number of individuals in regular employment rises through the job findings of the unemployed and by migrant workers
occupying newly created jobs or vacancies and the underemployed filling in labour market gaps or temporary shortages arising
in recovery periods. Total employment decreases as a consequence of a number of workers losing their regular jobs, or becoming
unemployed, but also through retirement or natural loss. This is expressed formally in Eq. (1)4.

Finally, we observe the creation of job opportunities by the market, as a delayed reaction to the observation of employment
conditions at various points in time, with vacancy numbers also undergoing a process of decline, as modeled by Eq. (1)5.

The system of differential equations, defined on the half-line (𝑡 > 0), is:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑈̇ (𝑡) = 𝑎1 − 𝑎2𝑈 (𝑡)𝑉 (𝑡) + 𝑎3𝑅(𝑡) − 𝑎4𝑈 (𝑡) + 𝑎5𝑇 (𝑡) − 𝑏1 ∫
∞
0 ℎ1(𝑠)𝑈 (𝑡 − 𝑠)𝑑𝑠

𝑀̇(𝑡) = 𝑚1 − 𝑚2𝑀(𝑡)𝑉 (𝑡) − 𝑏2𝑀(𝑡)
𝑇̇ (𝑡) = 𝑎4𝑈 (𝑡) − 𝑎5𝑇 (𝑡) − 𝑐1𝑇 (𝑡)𝑉 (𝑡) − 𝑏3𝑇 (𝑡)
𝑅̇(𝑡) = 𝑎2𝑈 (𝑡)𝑉 (𝑡) + 𝑚2𝑀(𝑡)𝑉 (𝑡) + 𝑐1𝑇 (𝑡)𝑉 (𝑡) − 𝑎3𝑅(𝑡) − 𝑏4𝑅(𝑡)
𝑉̇ (𝑡) = 𝑐2 ∫

∞
0 ℎ2(𝑠)𝑅(𝑡 − 𝑠)𝑑𝑠 − 𝑏5𝑉 (𝑡)

(1)

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑚1, 𝑚2, 𝑐1 and 𝑐2 are positive constants and stand for: 𝑎1 is the constant growth
rate of unemployed persons entering the labour market, 𝑎2 is the rate of regular hiring, 𝑎3 is the rate of firing from regular
employment, 𝑎4 is the rate of movement from unemployment to limited hours employment, 𝑎5 is the rate of movement from
limited hours employment to unemployment; 𝑏1 is the rate of exit from unemployment; 𝑏2 is the rate of return or death of the
migrant population; 𝑏3 is the rate of exiting the labour market of the limited-hours employed persons; 𝑏4 is the rate of retirement,
migration or death of regularly employed persons; 𝑏5 is the rate of vacancies decline; 𝑐1 is the rate of upgrading from limited
hours to regular employment; 𝑐2 is the rate of vacancies creation in response to current employment conditions; 𝑚1 represents
the exogenous increase in migration and 𝑚2 is the migrants’ entry rate into regular employment.

The delay kernels ℎ1, ℎ2 ∶ [0,∞) → [0,∞) are the probability density functions, assumed to be bounded, piecewise
continuous and satisfying

∞

∫
0

ℎ1(𝑠)𝑑𝑠 = 1 , 𝜏1 =

∞

∫
0

𝑠ℎ1(𝑠)𝑑𝑠 < ∞. (2)
∞

∫
0

ℎ2(𝑠)𝑑𝑠 = 1 , 𝜏2 =

∞

∫
0

𝑠ℎ2(𝑠)𝑑𝑠 < ∞. (3)

Here, 𝜏1 is the average time delay for unemployment based on past exit from the labour market due to various factors including
disillusioned workers, migration, mortality, and 𝜏2 represents the average time delay for available vacancies related to past regular
employment levels.

3 NON-DIMENSIONAL MODEL

The following transformations are employed with the aim of reducing the number of parameters from system (1):
𝑥1(𝑡) =

𝑎2𝑐2
𝑎25

𝑈
(

𝑡
𝑎5

)

, 𝑥2(𝑡) =
𝑎2𝑐2
𝑎25

𝑀
(

𝑡
𝑎5

)

, 𝑥3(𝑡) =
𝑎2𝑐2
𝑎25

𝑇
(

𝑡
𝑎5

)

, 𝑥4(𝑡) =
𝑎2𝑐2
𝑎25

𝑅
(

𝑡
𝑎5

)

, 𝑥5(𝑡) =
𝑎2
𝑎5

𝑉
(

𝑡
𝑎5

)
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leading to the following equivalent non-dimensional system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇1(𝑡) = 𝛾1 − 𝑥1(𝑡)𝑥5(𝑡) + 𝛼3𝑥4(𝑡) − 𝛼4𝑥1(𝑡) + 𝑥3(𝑡) − 𝛽1 ∫
∞
0 𝑘1(𝑠)𝑥1(𝑡 − 𝑠)𝑑𝑠,

𝑥̇2(𝑡) = 𝛾2 − 𝛼2𝑥2(𝑡)𝑥5(𝑡) − 𝛽2𝑥2(𝑡),
𝑥̇3(𝑡) = 𝛼4𝑥1(𝑡) − 𝑥3(𝑡) − 𝛼1𝑥3(𝑡)𝑥5(𝑡) − 𝛽3𝑥3(𝑡),
𝑥̇4(𝑡) = 𝑥1(𝑡)𝑥5(𝑡) + 𝛼2𝑥2(𝑡)𝑥5(𝑡) + 𝛼1𝑥3(𝑡)𝑥5(𝑡) − 𝛼3𝑥4(𝑡) − 𝛽4𝑥4(𝑡),
𝑥̇5(𝑡) = ∫ ∞

0 𝑘2(𝑠)𝑥4(𝑡 − 𝑠) − 𝛽5𝑥5(𝑡),

(4)

where the coefficients are expressed as:
𝛾1 =

𝑎1𝑎2𝑐2
𝑎35

, 𝛾2 =
𝑎2𝑐2𝑚1

𝑎35
𝛼1 =

𝑐1
𝑎2

, 𝛼2 =
𝑚2

𝑎2
, 𝛼3 =

𝑎3
𝑎5

, 𝛼4 =
𝑎4
𝑎5

𝛽1 =
𝑏1
𝑎5

, 𝛽2 =
𝑏2
𝑎5

, 𝛽3 =
𝑏3
𝑎5

, 𝛽4 =
𝑏4
𝑎5

, 𝛽5 =
𝑏5
𝑎5

and the delay kernels are: 𝑘1(𝑠) = 1
𝑎5
ℎ1

(

𝑠
𝑎5

)

and 𝑘2(𝑠) =
1
𝑎5
ℎ2

(

𝑠
𝑎5

)

.
As general distributed time delays are taken into account in the mathematical model and its non-dimensional version, initial

conditions for system (4) are considered of the form
𝑥𝑖(𝜃) = 𝜑𝑖(𝜃), ∀ 𝜃 ∈ (−∞, 0], ∀ 𝑖 = 1, 5,

where 𝜑𝑖 belong to the Banach space 𝐶0,𝜇(ℝ−,ℝ) (where 𝜇 > 0) of continuous real valued functions defined on (−∞, 0] such
that lim

𝑡→−∞
𝑒𝜇𝑡𝜑(𝑡) = 0, considered with respect to the norm:

‖𝜑‖∞,𝜇 = sup
𝑡∈(−∞,0]

𝑒𝜇𝑡|𝜑(𝑡)|.

The existence and uniqueness of solutions of the distributed delay system (4) are a consequence of the theoretical results from15.
The positivity and boundedness of solutions of (4) can be proved by similar reasonings as in12, and is summarized in the
following Theorem:
Theorem 1. The open positive octant of ℝ5 is invariant to the flow of system (4). Moreover, the set

Ω =
{

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∶ 0 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤
𝛾1 + 𝛾2
𝛽𝑚

, 0 ≤ 𝑥5 ≤
𝛾1 + 𝛾2
𝛽𝑚𝛽5

}

,

where 𝛽𝑚 = min(𝛽1, 𝛽2, 𝛽3, 𝛽4) is a region of attraction for the system (1) and it attracts all the solutions initiating in the interior
of the positive octant of ℝ5.
Remark 1. The previous theorem states that solutions of system (4) originating from initial conditions belonging to the open
positive octant of ℝ5, i.e. 𝜑𝑖 ∶ (−∞, 0] → (0,∞), for 𝑖 = 1, 5, remain positive for any 𝑡 > 0. Moreover, such solutions satisfy
the inequalities:

lim sup
𝑡→∞

[𝑥1(𝑡) + 𝑥2(𝑡) + 𝑥3(𝑡) + 𝑥4(𝑡)] ≤
𝛾1 + 𝛾2
𝛽𝑚

and lim sup
𝑡→∞

𝑥5(𝑡) ≤
𝛾1 + 𝛾2
𝛽5𝛽𝑚

.

4 EQUILIBRIA ANALYSIS

The equilibrium points are obtained by solving the system of algebraic equations
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛾1 − 𝑥1𝑥5 + 𝛼3𝑥4 − 𝛼4𝑥1 + 𝑥3 − 𝛽1𝑥1 = 0,
𝛾2 − 𝛼2𝑥2𝑥5 − 𝛽2𝑥2 = 0,
𝛼4𝑥1 − 𝑥3 − 𝛼1𝑥3𝑥5 − 𝛽3𝑥3 = 0,
𝑥1𝑥5 + 𝛼2𝑥2𝑥5 + 𝛼1𝑥3𝑥5 − 𝛼3𝑥4 − 𝛽4𝑥4 = 0,
𝑥4 − 𝛽5𝑥5 = 0.

(5)

From the last equation of the system (5) we get
𝑥4 = 𝛽5𝑥5. (6)
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We distinguish two cases:
• Case 1: 𝑥5 = 0

Then using (6) we get 𝑥4 = 0. Replacing in the second equation of the system (5) we obtain
𝑥2 =

𝛾2
𝛽2

. (7)
Using the first and third equations of the system (5) we get

𝑥1 =
𝛾1(1 + 𝛽3)

𝛽1 + 𝛽1𝛽3 + 𝛼4𝛽3
(8)

and
𝑥3 =

𝛼4𝛾1
𝛽1 + 𝛽1𝛽3 + 𝛼4𝛽3

. (9)
Therefore, the first equilibrium point is denoted with 𝑆0 and is given by

𝑆0 ∶=
(

𝛿1(1 + 𝛽3), 𝛿2, 𝛿1𝛼4, 0, 0
)

where
𝛿1 =

𝛾1
𝛽1 + 𝛽1𝛽3 + 𝛼4𝛽3

and 𝛿2 =
𝛾2
𝛽2

,

called regular employment-free equilibrium.
First of all, we introduce the basic reproduction number 𝑅0 which has the role of a threshold parameter that prognosticates

whether the unemployment, immigration, and underemployed problems will increase or decrease. The next generation matrix
rises from the employment subsystem from the unemployment model rather than the infected subsystem in epidemic models.
To find 𝑅0 we associate the differential equations with the employed people 𝑅(𝑡) and the available vacancies 𝑉 (𝑡) in model (1)
as the following sub-model

(

𝑑𝑅
𝑑𝑡
𝑑𝑉
𝑑𝑡

)

=
(

−(𝛼3 + 𝛽4) 𝑈 + 𝛼2𝑀 + 𝛼1𝑇
1 −𝛽5

)(

𝑥4(𝑡)
𝑥5(𝑡)

)

.

The Jacobian matrix 𝐽 is evaluated at the equilibrium point 𝑆0:
𝐽 (𝑆0) =

(

−(𝛼3 + 𝛽4) 𝛿1(1 + 𝛽3) + 𝛼2𝛿2 + 𝛿1𝛼1𝛼4
1 −𝛽5

)

= 𝐹 −𝑊 ,

where
𝐹 =

(

0 𝛿1(1 + 𝛽3) + 𝛼2𝛿2 + 𝛿1𝛼1𝛼4
0 0

)

and 𝑊 =
(

−(𝛼3 + 𝛽4) 0
1 −𝛽5

)

.

Therefore, the threshold 𝑅0 is the spectral radius 𝜌 of the next generation matrix
𝐺 = 𝐹𝑊 −1,

in other words
𝑅0 = 𝜌(𝐺) =

𝛿1(1 + 𝛽3 + 𝛼1𝛼4) + 𝛿2𝛼2
(𝛼3 + 𝛽4)𝛽5

=
𝛽2𝛾1 + 𝛼1𝛼4𝛽2𝛾1 + 𝛽2𝛽3𝛾1 + 𝛼2𝛽1𝛾2 + 𝛼2𝛼4𝛽3𝛾2 + 𝛼2𝛽1𝛽3𝛾2

𝛽2(𝛽1 + 𝛼4𝛽3 + 𝛽1𝛽3)(𝛼3 + 𝛽4)𝛽5
.

• Case 2: 𝑥5 ≠ 0

Adding the first four equations of the system (5) we obtain
𝛾1 + 𝛾2 − 𝛽1𝑥1 − 𝛽2𝑥2 − 𝛽3𝑥3 − 𝛽4𝑥4 = 0. (10)

The second equation of the system (5) leads to
𝑥2 =

𝛾2
𝛽2 + 𝛼2𝑥5

. (11)
From the fourth equation of the system (5) we get:

𝑥1 = 𝛼3𝛽5 + 𝛽4𝛽5 −
𝛼2𝛾2

𝛽2 + 𝛼2𝑥5
− 𝛼1𝑥3. (12)
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Further, we write 𝑥1 and 𝑥3 in terms 𝑥5 by solving the system containing the equations (10) and (12), replacing (6) and (11)
⎧

⎪

⎨

⎪

⎩

𝛽1𝑥1 + 𝛽3𝑥3 = 𝛾1 + 𝛾2 −
𝛽2𝛾2

𝛽2+𝛼2𝑥5
− 𝛽4𝛽5𝑥5

𝑥1 + 𝛼1𝑥3 = 𝛼3𝛽5 + 𝛽4𝛽5 −
𝛼2𝛾2

𝛽2+𝛼2𝑥5

(13)

and we have
𝑥3 = −

𝐷0 +𝐷1𝑥5 − 𝛼2𝛽4𝛽5𝑥25
(𝛼1𝛽1 − 𝛽3)(𝛽2 + 𝛼2𝑥5)

,

where
𝐷0 = 𝛽2𝛾1 + 𝛼2𝛽1𝛾2 − 𝛽1𝛽2𝛽4𝛽5 − 𝛼3𝛽1𝛽2𝛽5,

𝐷1 = 𝛼2𝛾2 + 𝛼2𝛾1 − 𝛽2𝛽4𝛽5 − 𝛼2𝛽1𝛽4𝛽5 − 𝛼2𝛼3𝛽1𝛽5.
We now determine 𝑥1 in term of 𝑥5 from the second equation of the system (13) and we get

𝑥1 = −
𝐶0 + 𝐶1𝑥5 + 𝛼1𝛼2𝛽4𝛽5𝑥25
(𝛼1𝛽1 − 𝛽3)(𝛽2 + 𝛼2𝑥5)

,

where
𝐶0 = 𝛼2𝛽2𝛽3𝛽5 + 𝛽2𝛽3𝛽4𝛽5 − 𝛼1𝛽2𝛾1 − 𝛼2𝛽3𝛾2,

𝐶1 = 𝛼2𝛼3𝛽3𝛽5 + 𝛼1𝛽2𝛽4𝛽5 + 𝛼2𝛽3𝛽4𝛽5 − 𝛼1𝛼2𝛾1 − 𝛼1𝛼2𝛾2.
Therefore, the second equilibrium point which is denoted by 𝑆+ is given by

𝑆+ ∶=
(

−
𝑄(𝑥5) + 𝜈1𝑑(𝑥5)
(𝛽1 − 𝜈1)(𝑥5 + 𝜈2)

,
𝛾2

𝛼2(𝜈2 + 𝑥5)
,

𝑄(𝑥5) + 𝛽1𝑑(𝑥5)
𝛼1(𝛽1 − 𝜈1)(𝜈2 + 𝑥5)

, 𝛽5𝑥5, 𝑥5

)

where 𝑥5 is the solution of the following cubic equation
𝐸3𝑥

3
5 + 𝐸2𝑥

2
5 + 𝐸1𝑥5 + 𝐸0 = 0, (14)

with
𝐸3 = 𝛼1𝛽4𝛽5,

𝐸2 = 𝛼1(𝜈2𝛽4𝛽5 − 𝛾1 − 𝛾2) + 𝛽4𝛽5(1 + 𝛽3 + 𝛼1𝛼4) + 𝛼1𝛽1𝜇,

𝐸1 = (𝜈2𝛽4𝛽5 − 𝛾1 − 𝛾2)(1 + 𝛽3 + 𝛼1𝛼4) − 𝜈2𝛾1𝛼1 + 𝜇𝛽1
(

1 + 𝛽3 + 𝛼1𝛼4
𝜈1
𝛽1

)

+ (𝜇𝜈2 − 𝛾2)𝛽1𝛼1,

𝐸0 =
𝜇𝛾1𝛾2
𝛼2𝛿1𝛿2

(1 − 𝑅0),

where 𝑅0, 𝛿1 and 𝛿2 are given above and
𝜈1 =

𝛽3
𝛼1

, 𝜈2 =
𝛽2
𝛼2

, 𝜇 = (𝛼3 + 𝛽4)𝛽5,

𝑄(𝑥5) = (𝛽4𝛽5𝑥5 − 𝛾1 − 𝛾2)(𝑥5 + 𝜈2) + 𝛾2𝜈2,
𝑑(𝑥5) = 𝜇(𝑥5 + 𝜈2) − 𝛾2.

For two positive values 𝑥1 and 𝑥3 of the cubic equation (14) we observe
⎧

⎪

⎨

⎪

⎩

−𝑄(𝑥)+𝜈1𝑑(𝑥)
𝛽1−𝜈1

≥ 0

−𝑄(𝑥)+𝛽1𝑑(𝑥)
𝛽1−𝜈1

≥ 0

which implies
{

sign(𝛽1 − 𝜈1)[𝑄(𝑥) + 𝜈1𝑑(𝑥)] ≤ 0
sign(𝛽1 − 𝜈1)[𝑄(𝑥) + 𝛽1𝑑(𝑥)] ≥ 0.

(15)
Denoting with 𝑀 = 𝑚𝑎𝑥{𝛽1, 𝜈1} and 𝑚 = 𝑚𝑖𝑛{𝛽1, 𝜈1} we obtain

{

𝑄(𝑥) +𝑀𝑑(𝑥) ≥ 0
𝑄(𝑥) + 𝑚𝑑(𝑥) ≤ 0.

Therefore we get (𝑀 − 𝑚)𝑑(𝑥) ≥ 0 then 𝑑(𝑥) ≥ 0. Hence 𝑥5 ≥
𝛾2
𝜇
− 𝜈2.
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From (15) we have −𝑀𝑑(𝑥) ≤ 𝑄(𝑥) ≤ −𝑚𝑑(𝑥) then −𝑀 ≤ 𝑄(𝑥)
𝑑(𝑥)

≤ −𝑚.
Moreover the components of the positive equilibrium point 𝑆1 verify the third equation of the system (4). Replacing to obtain

the cubic equation (14) we have
−𝛼4

𝑄(𝑥) + 𝜈1𝑑(𝑥)
(𝛽1 − 𝜈1)(𝑥 + 𝜈2)

=
𝑄(𝑥) + 𝛽1𝑑(𝑥)

(𝛽1 − 𝜈1)(𝑥 + 𝜈2)𝛼2
(1 + 𝛽3 + 𝛼1𝑥)

which implies
𝑄(𝑥)
𝑑(𝑥)

= −
𝛽1(1 + 𝛽3) + 𝛼4𝛽3 + 𝛼1𝛽1𝑥

1 + 𝛽3 + 𝛼1𝛼4 + 𝛼1𝑥
and after computations we get

𝑄(𝑥)
𝑑(𝑥)

= −𝛽1 + 𝛼4
𝛽1 − 𝜈1

𝑥 + 𝛼4 +
1+𝛽3
𝛼1

∈ (−𝑀,−𝑚).

Considering
𝑃3(𝑥) = 𝑄(𝑥)[(1 + 𝛽3 + 𝛼1𝑥) + 𝛼1𝛼4] + 𝑑(𝑥)[𝛽1(1 + 𝛽3 + 𝛼1𝑥) + 𝜈1𝛼1𝛼4]

and computing
𝑄(0) = −𝛾1𝜈2 < 0
𝑑(0) = 𝜇𝜈2 − 𝛾2

and
𝑃3(0) = −𝛾1𝜈2(1 + 𝛽3 + 𝛼1𝛼4) + (𝜇𝜈2 − 𝛾2)

𝛾1
𝛿1

= 𝛾1

[

−
𝛾2
𝛼2𝛿2

(1 + 𝛽3 + 𝛼1𝛼4) +
(

𝜇
𝛾2
𝛼2𝛿2

− 𝛾2

)

1
𝛿1

]

=
𝛾1𝛾2
𝛼2

[

−
1 + 𝛽3 + 𝛼1𝛼4

𝛿2
+
(

𝜇 1
𝛿2

− 𝛼2

)

1
𝛿1

]

=
𝛾1𝛾2
𝛼2𝛿1𝛿2

[

𝜇 − 𝛿1(1 + 𝛽3 + 𝛼1𝛼4) + 𝛼2𝛿2
]

=
𝜇𝛾1𝛾2
𝛼2𝛿1𝛿2

(1 − 𝑅0),

it can be observed that if 𝑃3(0) < 0 then 𝑅0 > 1 which means we have at least one solution on (0,+∞).
In conclusion, we may either have one of the following situations:
• If 𝑅0 > 1 then 𝐸0 < 0 and system (4) has at least one positive equilibrum point. Moreover, if either 𝐸1 < 0, or 𝐸1 > 0

and 𝐸2 > 0, Descartes’ rule of signs guarantees the existence of a unique positive equilibrium point 𝑆+.
• If 𝑅0 < 1 then 𝐸0 > 0, we may have either two or zero positive equilibrium points.

5 LOCAL STABILITY ANALYSIS FOR 𝑆0

We study the local stability behaviour of equilibrium 𝑆0 by analysing the roots of the characteristic equation of (1):

det

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎11 − 𝛽1𝐾1(𝜆) − 𝜆 0 1 𝑎14 𝑎15
0 𝑎22 − 𝜆 0 0 𝑎25
𝑎31 0 𝑎33 − 𝜆 0 𝑎35
0 0 0 𝑎44 − 𝜆 𝑎45
0 0 0 𝐾2(𝜆) 𝑎55 − 𝜆

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 0,

where: 𝑎11 = −𝛼4, 𝑎14 = 𝛼3, 𝑎15 = −𝛿1(1+𝛽3), 𝑎22 = −𝛽2, 𝑎25 = −𝛿2𝛼2, 𝑎31 = 𝛼4, 𝑎33 = −1−𝛽3, 𝑎35 = −𝛿1𝛼1𝛼4, 𝑎44 = −𝛼3−𝛽4,
𝑎45 = 𝛿1(1 + 𝛽3 + 𝛼1𝛼4) + 𝛿2𝛼2 = 𝑅0(𝛼3 + 𝛽4)𝛽5 and 𝑎55 = −𝛽5.

The characteristic equation is:
(𝜆 + 𝛽2)𝑄1(𝜆)𝑄2(𝜆) = 0 (16)
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where
𝑄1(𝜆) = (𝜆 + 𝛼4)(𝜆 + 𝛽3 + 1) − 𝛼4 + 𝛽1(𝜆 + 𝛽3 + 1)𝐾1(𝜆),
𝑄2(𝜆) = (𝜆 + 𝛼3 + 𝛽4)(𝜆 + 𝛽5) − 𝑅0(𝛼3 + 𝛽4)𝛽5𝐾2(𝜆).

Lemma 1. All the roots of the function 𝑄2(𝜆) are in the open left half-plane if and only if 𝑅0 < 1.
Proof. Let us first assume that 𝑅0 < 1. Assuming by contradiction that there is a root 𝜆 of 𝑄2(𝜆) such that ℜ(𝜆) ≥ 0, it follows
that |𝜆 + 𝜇| ≥ 𝜇, for any 𝜇 > 0. On the other hand, based on the properties of the Laplace transform, it is also easy to see that
|𝐾2(𝜆)| ≤ 1 and hence:

|(𝜆 + 𝛼3 + 𝛽4)(𝜆 + 𝛽5)| ≥ (𝛼3 + 𝛽4)𝛽5 > 𝑅0(𝛼3 + 𝛽4)𝛽5|𝐾2(𝜆)|.
Therefore 𝑄2(𝜆) = 0 cannot take place, and hence, all the roots of the function 𝑄2(𝜆) have negative real part.

On the other hand, if we assume that 𝑅0 ≥ 1, we have
𝑄2(0) = (𝛼3 + 𝛽4)𝛽5(1 − 𝑅0) ≤ 0.

Moreover, it is easy to see that 𝑄2(𝜆) → ∞ as 𝜆 → ∞, and therefore, 𝑄2(𝜆) has at least one real root in the interval [0,∞).
Lemma 2. If the following inequality holds:

𝛼4𝛽3 − 𝛽1(𝛽3 + 1) > 0 (17)
then all the roots of the function 𝑄1(𝜆) are in the open left half-plane, regardless of the delay kernel 𝑘1(𝑡).

Moreover, in the absence of time delay, i.e. 𝑘1(𝑡) = 𝛿(𝑡), all the roots of the function 𝑄1(𝜆) are in the open left half-plane.
Proof. Assuming by contradiction that there is a root 𝜆 of 𝑄1(𝜆) such that ℜ(𝜆) ≥ 0, it follows that

𝜆 + 𝛼4 =
𝛼4

𝜆 + 𝛽3 + 1
− 𝛽1𝐾1(𝜆).

Using similar methods as in the proof of Lemma 1, based on inequality (17) we have
|

|

|

|

𝛼4
𝜆 + 𝛽3 + 1

− 𝛽1𝐾1(𝜆)
|

|

|

|

≤
𝛼4

𝛽3 + 1
+ 𝛽1 < 𝛼4 ≤ |𝜆 + 𝛼4|.

Hence, the equality 𝑄1(𝜆) = 0 cannot take place.
Moreover, in the absence of time delay, i.e. 𝐾1(𝜆) = 1, the function 𝑄1(𝜆) is a quadratic polynomial with positive coefficients,

and hence, the conclusion follows from the Routh-Hurwitz stability criterion.
Combining the results obtained in the previous two lemmas, we can conclude the following:

Theorem 2. The following results hold for the equilibrium point 𝑆0 of system (10):
(i) In the non-delayed case, 𝑆0 is locally asymptotically stable if and only if 𝑅0 < 1.

(ii) If 𝑅0 < 1 and inequality (17) holds, the equilibrium point 𝑆0 is locally asymptotically stable, for any choice of the delay
kernels 𝑘1(𝑡) and 𝑘2(𝑡).

(iii) If 𝑅0 ≥ 1, the equilibrium 𝑆0 is unstable, regardless of the delay kernels 𝑘1(𝑡) and 𝑘2(𝑡).
Proof. It is easy to see that 𝜆 = −𝛽2 < 0 is a root of the characteristic equation (16). In the absence of time delays, all the roots
of 𝑄1(𝜆) have negative real part (see Lemma 2), while the roots of 𝑄2(𝜆) have negative real part if and only if 𝑅0 < 1 (see
Lemma 1). Hence, (i) is proved.

Moreover, if 𝑅0 < 1 and inequality (17) holds, the asymptotic stability of the equilibrium point 𝑆0 follows from Lemma 1
and Lemma 2, regardless of the delay kernels 𝑘1(𝑡) and 𝑘2(𝑡), and hence, (ii) is true.

Finally, for the proof of (iii), if 𝑅0 ≥ 1, Lemma 1 shows that there is at least one root of 𝑄2(𝜆) which has positive (or null)
real part, and hence the characteristic equation (16) has at least one root in the right half-plane. Therefore, the equilibrium 𝑆0 is
unstable, regardless of the delay kernels 𝑘1(𝑡) and 𝑘2(𝑡).

We would like to point that in case of the presence of just the second delay kernel, as shown in12, the equilibrium point corre-
sponding to the state of no regular employment and no available vacancies is globally asymptotically stable. This is regardless
of the considered delay kernel, if the basic reproduction number satisfies an inequality.
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6 HOPF BIFURCATION ANALYSIS FOR 𝑆0

Let us denote by 𝜏1 > 0 the average time delay associated to the delay kernel 𝑘1(𝑡), and 𝐾1

(

𝜆
𝜏1

)

= 𝐾̂1(𝜆). Looking for pure
imaginary roots of the equation 𝑄1(𝜆) = 0 of the form 𝜆 = 𝑖 𝜔

𝜏1
, denoting 𝐾̂1(𝑖𝜔) = 𝐶1(𝜔) − 𝑖𝑆1(𝜔) and taking the real and

imaginary parts of 𝑄1(𝜆) = 0 we have
⎧

⎪

⎨

⎪

⎩

−
(

𝜔
𝜏1

)2
+ 𝛼4𝛽3 + 𝛽1

[

𝜔
𝜏1
𝑆1(𝜔) + (𝛽3 + 1)𝐶1(𝜔)

]

= 0
𝜔
𝜏1
(𝛼4 + 𝛽3 + 1) + 𝛽1

[

𝜔
𝜏1
𝐶1(𝜔) − (𝛽3 + 1)𝑆1(𝜔)

]

= 0
(18)

with
𝐶1(𝜔) = ℜ[𝐾1(𝑖𝜔)]

and
𝑆1(𝜔) = −ℑ[𝐾1(𝑖𝜔)].

Eliminating 𝜏1 from system (18), we deduce:
𝛽21𝑆

2
1 (𝜔)(𝛽3 + 1)[𝛼4 + 𝛽1𝐶1(𝜔)] + [𝛽1(𝛽3 + 1)𝐶1(𝜔) + 𝛼4𝛽3][𝛼4 + 𝛽3 + 1 + 𝛽1𝐶1(𝜔)]2 = 0. (19)

Therefore, the following result is easily obtained:
Proposition 1. Let us assume that 𝑅0 < 1 and the inequality (17) is not satisfied.

a. If for the delay kernel 𝐾1(𝜆), the equation (19) does not have any solution in (0,∞), the equilibrium point 𝑆0 is
asymptotically stable, for any average delay 𝜏1 ≥ 0.

b. If for the delay kernel 𝐾1(𝜆) the equation (19) has positive solutions 𝜔𝑗 , 𝑗 ∈ 𝐽 ⊂ ℤ+, Hopf bifurcations occur in a
neighborhood of the equilibrium point 𝑆0 at the critical values of the average delay

𝜏𝑗1 = 𝜔𝑗 ⋅
𝛼4 + 𝛽3 + 1 + 𝛽1𝐶1(𝜔𝑗)

𝛽1(𝛽3 + 1)𝑆1(𝜔𝑗)
, 𝑗 ∈ 𝐽 ,

provided that the above expressions are positive.

6.1 Weak Gamma kernel
Corollary 1. If 𝑅0 < 1 and the inequality (17) is not satisfied and if the weak Gamma kernel 𝑘1(𝑡) = 𝜏−11 𝑒−𝑡∕𝜏1 (with average
delay 𝜏1) is considered, the equilibrium point 𝑆0 is asymptotically stable, for any 𝜏1 ≥ 0.
Proof. Since for the weak Gamma kernel we have 𝐶1(𝜔) =

1
1+𝜔2 > 0, it is easy to see that equation (19) does not have any

positive solutions. Hence, based on Proposition 1, the equilibrium 𝑆0 remains asymptotically stable, for any positive value of
the average delay 𝜏1.

6.2 Dirac kernel
Proposition 2. Assume that 𝑅0 < 1 and the inequality (17) is not satisfied. If the Dirac kernel 𝑘1(𝑡) = 𝛿(𝑡 − 𝜏1) is considered,
the critical values of the time delay 𝜏1 are:

𝜏𝑗1 = 𝜔𝑗 ⋅
𝛼4 + 𝛽3 + 1 + 𝛽1 cos(𝜔𝑗)

𝛽1(𝛽3 + 1) sin(𝜔𝑗)
, 𝑗 ∈ ℤ+,

where 𝜔𝑗 = sign(𝛼4 + 𝛽3 + 1 − 𝛽1) arccos(𝑢0) + 2𝑗𝜋, and 𝑢0 is the unique root in the interval [−1, 0] of the quadratic equation
𝑐2𝑢

2 + 𝑐1𝑢 + 𝑐0 = 0, (20)
where the coefficients are:

𝑐2 = 𝛽21 [𝛼4 + 2𝛼4𝛽3 + 2(1 + 𝛽3)
2],

𝑐1 = 𝛽1[2𝛼4(1 + 𝛽3)(1 + 2𝛽3) + 𝛼2
4(1 + 3𝛽3) + (1 + 𝛽3)[𝛽21 + (1 + 𝛽3)2]},

𝑐0 = 𝛼4[𝛽21 (1 + 𝛽3) + 𝛽3(1 + 𝛼4 + 𝛽3)
2].
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The equilibrium 𝑆0 is asymptotically stable if and only if 𝜏1 ∈ [0, 𝜏01 ). At the critical values 𝜏𝑗1 , Hopf bifurcations occur in a
neighborhood of the equilibrium 𝑆0.
Proof. When a Dirac kernel is considered, i.e. 𝐶1(𝜔) = cos𝜔 and 𝑆1(𝜔) = sin𝜔, the equation (19) reduces to the quadratic
equation (20) for 𝑢 = cos𝜔. As inequality (17) is not satisfied, it is easy to see that the quadratic equation (20) has a unique root
in the interval [−1, 0], denoted by 𝑢0, and another root in the interval (−∞,−1). Hence, by means of Proposition 1, we obtain
the positive critical values of the time delay 𝜏1.

Let us denote by 𝜆(𝜏1) the root of the characteristic equation 𝑄1(𝜆) = 0 such that 𝜆(𝜏𝑗1) = 𝑖𝜔𝑗 , where 𝑗 ∈ ℤ+. Hence, 𝜆(𝜏)
satisfies the equation:

𝑅(𝜆) = 𝛽1𝑒
−𝜏1𝜆

where
𝑅(𝜆) =

𝛼4
𝜆 + 𝛽3 + 1

− (𝜆 + 𝛼4).

It can be easily verified that the function 𝜔 → |𝑅(𝑖𝜔)| is strictly increasing on (0,∞), and consequently, based on16 , we deduce
that the following transversality condition holds:

𝑠 = sign
(

𝑑ℜ(𝜆)
𝑑𝜏1

|

|

|

|𝜏1=𝜏
𝑗
1

)

= sign
(

𝑑
𝑑𝜔

|𝑅(𝑖𝜔)|
|

|

|

|𝜔=𝜔𝑗

)

= 1.

Therefore, at each critical value 𝜏𝑗1 of the time delay, a pair of complex conjugated roots of the characteristic equation cross
the imaginary axis, from the left half-plane to the right half-plane. Hence, Hopf bifurcations occur in a neighborhood of 𝑆0 at
the critical values 𝜏𝑗1 , and no stability switching is encountered. Based on Theorem 2, it follows that 𝑆0 is asymptotically stable
if and only if 𝜏1 ∈ [0, 𝜏01 ).

7 LOCAL STABILITY ANALYSIS FOR 𝑆+

We study the local stability behaviour of the positive equilibrium point 𝑆+ by analysing the roots of the characteristic equation
of (1):

det

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝛼4 − 𝛽1𝐾1(𝜆) − 𝑥5 − 𝜆 0 1 𝛼3 −𝑥1
0 −𝛽2 − 𝛼2𝑥5 − 𝜆 0 0 −𝛼2𝑥2
𝛼4 0 −1 − 𝛽3 − 𝛼1𝑥5 − 𝜆 0 𝛼1𝑥3
𝑥5 𝛼2𝑥5 𝛼1𝑥5 −𝛼3 − 𝛽4 − 𝜆 (𝛼3 + 𝛽4)𝛽5
0 0 0 𝐾2(𝜆) −𝛽5 − 𝜆

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 0,

The characteristic equation is:
𝑃0(𝜆) + 𝑃1(𝜆)𝐾1(𝜆) + 𝑃2(𝜆)𝐾2(𝜆) + 𝑃12(𝜆)𝐾1(𝜆)𝐾2(𝜆) = 0, (21)

where
𝑃0(𝜆) = −(𝛽5 + 𝜆)(𝛽2 + 𝛼2𝑥5 + 𝜆){(𝛽4 + 𝜆)[𝑥5 + 𝜆 + (𝛼4 + 𝑥5 + 𝜆)(𝛽3 + 𝛼1𝑥5 + 𝜆)]+

+ 𝛼3[𝛼4(𝛽3 + 𝜆) + 𝜆(1 + 𝛽3 + 𝛼1𝑥5 + 𝜆)]},
𝑃1(𝜆) = −𝛽1(𝛼3 + 𝛽4 + 𝜆)(𝛽5 + 𝜆)(1 + 𝛽3 + 𝛼1𝑥5 + 𝜆)(𝛽2 + 𝛼2𝑥5 + 𝜆),
𝑃2(𝜆) = 𝛼2

2𝛼4𝑥2𝑥5(𝛽3 + 𝛼1𝑥5 + 𝜆) − 𝛼2
2𝑥2𝑥5(1 + 𝛽3 + 𝛼1𝑥5 + 𝜆)(𝜆 + 𝑥5)−

− 𝛼4𝛽5(𝛼3 + 𝛽4)(𝛽2 + 𝛼2𝑥5 + 𝜆) − 𝛼1𝛼4(𝛽2 + 𝛼2𝑥5 + 𝜆)(𝑥1𝑥5 + 𝛼1𝑥3𝑥5)+
+ 𝛽5(𝛼3 + 𝛽4)(1 + 𝛽3 + 𝛼1𝑥5 + 𝜆)(𝛽2 + 𝛼2𝑥5 + 𝜆)(𝛼4 + 𝑥5 + 𝜆)−
− 𝑥5(𝛽2 + 𝛼2𝑥5 + 𝜆)[𝛼1𝑥3 + 𝑥1(1 + 𝛽3 + 𝛼1𝑥5 + 𝜆)]−
− 𝛼2

1𝑥3𝑥5(𝛽2 + 𝛼2𝑥5 + 𝜆)(𝑥5 + 𝜆),
𝑃12(𝜆) = 𝛽1[−𝛼2

2𝑥2𝑥5(1 + 𝛽3 + 𝛼1𝑥5 + 𝜆) − 𝛼2
1𝑥3𝑥5(𝛽2 + 𝛼2𝑥5 + 𝜆)+

+ 𝛽5(𝛼3 + 𝛽4)(1 + 𝛽3 + 𝛼1𝑥5 + 𝜆)(𝛽2 + 𝛼2𝑥5 + 𝜆)]
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and 𝐾1(𝜆) and 𝐾2(𝜆) are the Laplace transforms of the delays kernel 𝑘1(𝑠) and 𝑘2(𝑠).
A full theoretical analysis of this characteristic equation involving many parameters and both Laplace transforms of the delay

kernels is a very tedious task, and hence, it will be omitted in this paper. However, the necessary bifurcation results can be
obtained by numerical means, as described in the next section.

We add that if only the delay kernel 𝑘2(𝑠) is considered, i.e. 𝑘1(𝑠) = 𝛿(𝑠), it has been shown in12, that the positive equilibrium
point is globally asymptotically stable, regardless of the delay kernel, if the rate of firing 𝑎3 is zero.

8 NUMERICAL SIMULATIONS

In order to exemplify the theoretical results of the model (1) we present two scenarios, the first one with basic reproduction
number 𝑅0 < 1, and the second one with 𝑅0 > 1. It is important to note that while in the first scenario, there is only one
equilibrium point 𝑆0, in the second scenario, a regular employment-free equilibrium 𝑆0 coexists with a positive equilibrium 𝑆+.

For the first scenario, we consider the system parameters: 𝑎1 = 687.5, 𝑎2 = 0.0000152588, 𝑎3 = 1, 𝑎4 = 0.9375, 𝑎5 = 0.125,
𝑏1 = 0.5, 𝑏2 = 0.51, 𝑏3 = 0.03125, 𝑏4 = 0.5, 𝑏5 = 0.5, 𝑐1 = 0.000015258, 𝑐2 = 0.5, 𝑚1 = 25.5, 𝑚2 = 0.0078125. For this set of
parameters, the only equilibrium point of system (1) is 𝑆0 = (1000, 50, 6000, 0, 0) and the computed value of the reproduction
number is 𝑅0 = 0.331624 < 1, and hence, based on Theorem 2 (i), the equilibrium is asymptotically stable in the non-delayed
case. However, as inequality (17) does not hold, Theorem 2 does not guarantee the local asymptotic stability of the equilibrium
point for any choice of the delay kernels. Indeed, in the case of Dirac kernels, the critical value for the Hopf bifurcation of the
discrete-time delay 𝜏1 is given by Proposition 1, and is computed to be 𝜏01 = 29.5. In Figure 1 , we observe the convergence of
the trajectories to the asymptotically stable equilibrium point 𝑆0 when 𝜏1 < 𝜏01 and the appearance of sustained oscillations for
values of 𝜏1 exceeding the critical value.

For the second scenario, the system parameters are chosen as: 𝑎1 = 300, 𝑎2 = 0.0589286, 𝑎3 = 0.108203, 𝑎4 = 0.5,
𝑎5 = 0.035, 𝑏1 = 0.9375, 𝑏2 = 0.5, 𝑏3 = 0.02625, 𝑏4 = 0.003125, 𝑏5 = 0.5, 𝑐1 = 0.00021875, 𝑐2 = 0.003125, 𝑚1 = 60,
𝑚2 = 0.0175. For these parameters, the regular employment-free equilibrium 𝑆0 = (260.465, 120, 2126.25, 0, 0) is unstable,
regardless of the delay kernels considered in system (1), as 𝑅0 = 1.0057 > 1 (based on Theorem 2). However, there is a positive
equilibrium point of system (1), namely 𝑆+ = (𝑈+,𝑀+, 𝑇 +, 𝑅+, 𝑉 +) = (280, 50, 2000, 6400, 40).

Considering discrete time delays, Figure 2 shows the stability region of the 𝑆+ equilibrium in the (𝜏1, 𝜏2)-plane. The blue
region under the bold blue line describes the stability region for 𝑆+, while the region above the bold blue line represents the
instability region.

For the numerical simulations from Figure 3 , the following initial condition has been considered: 𝑈 (0) = 280, 𝑀(0) = 50,
𝑇 (0) = 2000, 𝑅(0) = 6400, 𝑉 (0) = 40. If we considered Dirac delay kernels and we fix 𝜏1 = 50, the critical value of 𝜏2 for
the Hopf bifurcation is 𝜏∗2 = 39.6905. Figure 3 displays the trajectories of the system for several values of 𝜏2 ∈ [0, 50]. For
lower values of the average delay 𝜏2, the positive equilibrium is locally asymptotically stable. On the other hand, for 𝜏2 > 𝜏∗2 ,
the positive equilibrium becomes unstable and sustained periodic oscillations appear in its neighborhood.

9 CONCLUSIONS

The paper has developed and analysed a model for unemployment reduction where underemployment is providing an easily
available internal pool of resources for employers to temporarily draw on. Furthermore, migrant labour allows employers to fill
in any shortages during a period of recovery. This model is described by a nonlinear differential system with two distributed time
delays. At any time t, we have taken into account the following variables: the number of unemployed individuals, the number of
regularly employed individuals, the number of underemployed individuals with limited-time jobs, the number of newly arrived
immigrants, the number of total jobs on the market, and the number of vacancies created. One distributed delay relates to past
exit from the labour market, reducing current unemployment due to various factors. The second distributed delay relates to past
levels of regular employment that influence current vacancies.

Firstly, we used variables transformation to reduce the number of parameters and generated the non-dimensional system. We
have analyzed the existence of equilibria and established two points. The first is a vacancies and regular employment free point
𝑆0 and the second is a strictly positive one 𝑆+.



12 Liliana Harding ET AL

Secondly, we have shown that the solutions of the system are positive and bounded. Then, we have undertaken the local
stability analysis for 𝑆0 and analyzed the existence of the Hopf bifurcation for various delay kernels. In the absence of delay, the
equilibrium point is locally asymptotically stable under some conditions of the parameters. Additionally, we have attempted to
perform a local stability analysis for 𝑆+, however, due to the complexity of the problem, theoretical results cannot be formulated
concisely. Nonetheless, we have employed computational tools in this context.

We have tested the significance of taking underemployment and migration into account when formulating policies to address
unemployment. We thus have observed the evolution of unemployment, underemployment, regular employment, migration, and
vacancies related to average time delays, through numerical simulations. We have established values of the average time delays
by which the system becomes unstable.

In a further paper, we would consider new challenges of the labour market emerging in the economic environment following
the pandemic.
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FIGURE 1 Evolution of the state variables 𝑈 (𝑡), 𝑀(𝑡), 𝑇 (𝑡), 𝑅(𝑡), 𝑉 (𝑡) with fixed initial conditions, for fixed discrete time
delays 𝜏2 = 10 and 𝜏1 = 𝜏 ∈ [0, 30].
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FIGURE 2 Stability region for the positive equilibrium point 𝑆+

of system (1).
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FIGURE 3 Evolution of the state variables 𝑈 (𝑡), 𝑀(𝑡), 𝑇 (𝑡), 𝑅(𝑡), 𝑉 (𝑡) with fixed initial conditions, for fixed discrete time
delays 𝜏1 = 50 and 𝜏2 = 𝜏 ∈ [0, 50].
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