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Abstract

An analytical model for droplet impact onto a porous substrate is presented,
based on Wagner theory. An idealised substrate boundary condition is introduced,
mimicking the effect of fluid entry into a genuinely porous substrate. The asymp-
totic analysis yields a solution for a small porous correction with free-surfaces
and pressures compared with the impermeable case. On a global scale, it is found
that the impact region on the substrate grows more slowly with porosity included
due to loss of mass into the substrate. Locally near the turn-over regions, the
expected jetting along the surface is still observed but the jet is found to be
slower and thicker than for an impermeable substrate.
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1 Introduction

Droplet impacts onto porous surfaces form a key part of many processes, ranging from
the control of accurate ink-jet printing [1–3], to the erosion of porous soils [4, 5], the
penetration or removal of liquid contaminent ingress into concrete [6] and spreading on
natural porous stone [7]. Experimental droplet impact studies have shown that porous
substrates can significantly reduce splashing during impact [8–10]. Complex substrates
designed with micro-pillars have been engineered, recreating the repellant properties
of lotus leaves [11, 12], and shown to have hydrophobic properties potentially suitable
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for preventing icing on aircraft during flight through clouds [13, 14]. Micro-structured
surfaces are increasingly used to control liquid behaviour by introducing hydropho-
bic or hydrophillic properties [15–17], and while such surface effects can be retained
with low-speed impacts, the behaviour for higher-speed impacts when water can pen-
etrate significantly into the substrate is still not fully understood. A fuller insight into
impacts onto porous surfaces will allow further design progress towards controlling
impacts, either supressing splashing completely or enhancing ejection of material from
the surface, depending on the application.

Droplet impacts onto solids and subsequent splashing have been widely studied
experimentally, analytically and numerically; thorough reviews of the area have been
provided by [18–20]. The main theoretical approach to modelling liquid-solid impacts
is the standard Wagner model of post impact dynamics which was originally devel-
oped to predict pressures on landing aircraft [21]. It uses inviscid potential flow to
study the entry of a solid body into a water layer, coupled with the Wagner condition
that the liquid free-surface meets the solid body at turnover points at the edge of a
wetted region. This approach was subsequently applied to ship slamming [22, 23], and
the asymptotic structure was shown to formally hold by Oliver [24]. On the largest
outer scale, a boundary value problem is obtained subject to mixed boundary condi-
tions where the transition points between the wetted and dry parts of the solid are
unknown in advance. Singular pressures are found at these turnover points, and these
are resolved by a local jet-root region which predicts the formation of a fast moving
splash jet. The same theoretical framework extends to modelling droplet impacts, and
investigations have included droplet impacts onto thin liquid layers [25], onto flat sub-
strates with isolated roughness [26], onto non-flat surfaces [27], onto elastic substrates
[28, 29] and freezing during supercooled droplet impacts onto ice [30]. However, little
investigation has been reported for Wagner impact onto porous substrates, although
there has been study of the penetration into a porous surface by impacting fluid [31–33]
in other regimes.

This current work looks to extend Wagner theory to include the presence of a
porous substrate (see also [34]). As a first step towards a fully-coupled description
combining the inviscid Wagner approach with a (for example) Darcy flow in a porous
substrate, the current work adopts an imposed boundary condition on the substrate
intended to closely mimic a full porous model. In particular, our desire is to both
understand how flow into the substrate affects the overall splashing behaviour, but
also to understand if the asymptotic structure of the Wagner solution is maintained
for porous substrates. Section 2 below outlines our approach in detail, before the
full resulting analytical problem is derived and solved, with results and a detailed
discussion of the influence on the splash jets provided.

2 Modelling approach and overview

In this section we describe the strategy for the rest of the paper. Our aim here is to
describe the physical setting from which we derive our mathematical model. Section
3 sets out the model in detail, and presents a method for the solution of the model.
Results are presented in section 4. To do this we first carry out scalings to identify
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dimensionless small-valued parameters in the problem. The first small parameter, ε,
underlies Wagner theory of liquid impact [24]. Its small value comes from the brief
time of impact being small compared with the longer time R/V , where R is the size
of the droplet and V is the closing speed just before impact. Secondly, the principal
parameter of our analysis for flow into a porous substrate is k. If k = 0, then this
corresponds to impermeable substrate – a special case which we solve first in section
3.2. The results of section 3.2 are used to inform the subsequent asymptotic analysis
for small positive k, in section 3.3. (In the course of the asymptotic analysis at first
order in k, we neglect terms of size O(k2) because they are relatively small compared
with retained terms of size O(k).)

At the start of this study the authors wanted to answer the following questions
about how porosity influences the flow: How much of the droplet fluid can enter the
substrate under the brief and high-pressure conditions of a sudden impact? Does the
substrate slow down or speed up the spreading of the impact region? In the impact
region, is the pressure reduced or increased by porosity? What happens to the splash
jet: is it thicker or thinner? In this work these qualitative questions are answered
quantitatively, and we hope our theoretical results will bear comparison with future
experimental measurements.

We treat the flow as a two-dimensional, left-right symmetric, inviscid fluid in irro-
tational flow. The y∗ axis points vertically up, where starred variables are at physical
scale in section 3. Figure 1 shows the curved surface of the drop meeting the horizon-
tal top of the substrate in a contact region [impact region] which is a finite interval of
the x∗ axis. The contact interval, −d∗(t∗) ≤ x∗ ≤ d∗(t∗) on y∗ = 0, lies between the
two turnover points, at x∗ = ±d∗(t). A turnover point is so called because on the right
side of the drop the free surface turns around a tight bend, or turnover, to join a thin
jet that flows along the positive x∗ axis. In Wagner theory the jet has negligible O(ε2)
thickness, so that at O(ε) the drop’s free surface is supposed to meet the solid surface
at y∗ = 0, with negligible error in position. We return to model the consequent flow
in the jet-root region and the changes to it due to porosity, in section 5.

Returning to the impact region, the important function d∗(t∗) increases monoton-
ically from zero at the instant of initial contact, t∗ = 0, as the fluid spreads over the
substrate. Since the curved droplet is locally of parabolic initial shape, Wagner the-
ory tells us that d∗ increases proportional to

√
t∗. The impact region spreads fast at

early times and later slows down. Understanding the dependences of d∗ on time and
on porosity k are important for all our analysis. The free-boundary problem that we
solve depends sensitively on a precise description of d∗, as it defines the central region
of impact and the innermost points of the drop’s free surface. The fact that d∗ depends
on k means that the O(k) problem is posed with a different impact region from the
k = 0 impermeable case. We find that every part of the solution depends on d∗ via
integral expressions, with ±d∗ the limits of integration, and where the integrands have
singularities at these end points. It has been a job of work for the authors to show how
the results depend on d∗, and to find the correct form of expansion of d∗ as a func-
tion of k, in order to reach mathematically consistent results. This is not a classical
asymptotic analysis. One of our strategies has been to retain d∗ as a general quantity
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until as late as possible in the analysis, delaying expressing it until we show it must
have a particular form to be consistent in the model.

Wagner theory allows us to linearise the equations and throw the boundary con-
ditions onto the x∗ axis (even in the presence of porosity). The fluid domain is then
approximated by the upper half-plane, in which Laplace’s equation is the governing
relation for the drop’s inviscid fluid in irrotational flow. See Figure 1(c). The impor-
tance of d∗ is central because we must impose different types of boundary condition
in the impact zone [−d∗, d∗] from that on the sections of free surface (−∞,−d∗] and
[d∗,∞). Mathematically, the model is a mixed boundary value problem. Physically, the
boundary conditions come from distinct constraints on the flow: the liquid must have
zero pressure on the segments of free surface, whereas in the impact region the nor-
mal velocity component is either zero (k = 0, impermeable) or modified by the porous
substrate (k > 0, permeable) at the solid-liquid boundary. In section 3.2 we derive a
condition on the normal derivative of the velocity potential which accommodates the
idea of fluid being forced into the substrate by the high-pressure impacting liquid.

We neglect surface tension because impact pressures greatly exceed the magnitude
of the capillary-pressure jump across a droplet’s free surface. We can justify an inviscid
fluid model as the Reynolds number, Re, is large. For a water drop of kinematic
viscosity ν = 10−6 m2/s, an impact speed V = 0.5 m/s, and a droplet radius R =
2× 10−3 m, we have Re = V R/ν = 1000.

In the next section we lay out our model equations for a theory up to O(k). In
section 3.2 we solve the special impermeable case (k = 0), following classical Wagner
theory. In section 3.3 we address the O(k) problem, with help from the results of
section 3.2. After the results are presented in section 4, we examine in section 5 one
consequence of the results. We show a thickening and slowing of the horizontal left-
and right- projected jets that emerge from the turnover points at the edges of the
impact region.

3 Wagner problem for impact onto a porous
substrate

3.1 Governing equations

We now consider a droplet impact with a flat-topped substrate in two dimensions.
The starred variables are physical and have S.I. units, and we rescale them below. We
choose for simplicity a stationary droplet, with radius R, and the substrate rising at
velocity V ; the substrate’s top is at y∗ = 0 at the time of initial impact t∗ = 0. After
impact starts at t∗ = 0+, Wagner Theory is used to describe the impact behaviour;
see figure 1 for details and a schematic of the flow structure. The y∗ axis increases
vertically up into the fluid with x∗ = 0 being a line of symmetry for the problem.
The liquid free-surface is given by y∗ = η∗(x∗, t∗), but we are only interested in the
impact region, the lowest part of the droplet. The free surface deforms from the start
of impact onwards in time, and the substrate has a wetted region and a dry region as
the droplet spreads after impact. On y∗ = 0, the interval −d∗(t) ≤ x ≤ d∗(t) describes
the region of impact of the liquid and the substrate. On the right half of the symmetric
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domain x∗ = d∗(t) is a turnover point at the root of a splash jet. Within the O (ε)
Wagner asymptotics the turnover point is so close to the substrate that it is placed
on the surface of the substrate, and the small height of the splash (O

(
ε2
)
)is neglected

(see also [24, 35]). The turnover points are symmetrically arranged on the plate at
x∗ = ±d∗(t) on y∗ = t∗V (due to the plate moving vertically) where d∗(t) increases
from d∗ = 0 at t∗ = 0, as time progresses. We expect if the drop is initially stationary
then the disturbance of the free surface tends to zero as we pass into the far field.

Figure 1 shows the basic scales in the problem and the different local regions. First
we have the outer problem which considers the shape of the free surface. At a more
local view we have the jet-root region where the free-surface turns over and forms the
base of the jet. This leads into the long jet region of negligible height, here we have a
very thin jet along the surface of the substrate.

Our governing equations are:

∇2φ∗(x∗, y∗, t∗) = 0 in fluid domain y∗ > η∗, (1)

D

Dt
(y∗ − η∗) = 0 on y∗ = η∗(x∗, t∗) from the kinematic condition , (2)

p∗(x∗, y∗, t∗) = 0 on y∗ = η∗ from zero stress on the free-surface, (3)

∂φ∗

∂y∗
= v∗ on the plate y∗ = V t when |x∗| < d(t∗), (4)

where D/Dt is the material derivative. In (4), we introduce a general substrate velocity
v∗(x∗, y∗, t∗, k∗, p∗l , p

∗
s) to enable inclusion of porous effects into the Wagner model,

where k∗ is a measure of the permeability of the substrate and where p∗l and p∗s
correspond to pressures in the liquid and substrate, respectively. For the standard
Wagner impact of a droplet with an impermeable substrate, we have simply a zero
penetration condition v∗ = V (see below).

For initial conditions, we have an undisturbed lower portion circular droplet given
by:

η∗(x∗, 0) = R−
(
R2 − x∗2

) 1
2 (5)

or

η∗(x∗, 0) =
x∗2

2R
+O

(
x∗4

2R3

)
, (6)

which is a form we use later for matching the initial conditions in the far-field.
We non-dimensionalise by scaling spatial coordinates with R, taking our velocity

scale to be V , and hence a time scale of R
V . The free-surface shape is scaled in the

same way as our spatial coordinates, ρV 2 gives the appropriate inviscid pressure scale
(where ρ is the constant density of the fluid) and we scale velocity potential as RV .
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(a) Diagram showing the basic scales at t∗ = 0.

(b) Diagram showing the multiple regions of the problem near the right-hand turnover point.

Fig. 1: Diagrams showing (a) the initial situation, and (b) the different asymptotic
regions.

Thus we define new barred variables in terms of the physical variables by

[x∗, y∗, t∗, φ∗, η∗, p∗, v∗] =

[
Rx̄,Rȳ,

R

V
t̄, RV φ̄,Rη̄, ρV 2p̄, V v̄

]
. (7)
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Hence our problem becomes in nondimensional terms

∇2φ̄(x̄, ȳ, t̄) = 0 in fluid domain ȳ > η̄, (8)

D

Dt
(ȳ − η̄) = 0 on ȳ = η̄(x̄, t̄), (9)

p̄ = 0 on ȳ = η̄(x̄, t̄) (10)

∂φ̄

∂ȳ
= v̄ on plate, ȳ = t̄ and |x̄| < d(t̄). (11)

We make further simplifications by considering only small times after impact, and
focussing on the outer region sketched in figure 1. In particular, and in keeping with
Wagner theory, we rescale and define new (undecorated) variables by

[x̄, ȳ, t̄, φ̄, η̄, p̄] =
[
εx, εy, ε2t, εφ, ε2η, ε−1p

]
. (12)

where ε is a small parameter, associated with the small slope of the liquid free surface
near the turnover points. With the plate rising into the droplet the displacement of
each turnover point is proportional to

√
t̄ ∼ O(ε) (originally observed by Wagner [21],

and formalised mathematically by [24]) , therefore the horizontal length scale is O(εR),
and is comparable via the continuity equation to the vertical scale of the region of
influence of impact. The pressure scale follows from Bernoulli’s equation.

For convenience we define a function h(x, t) which is the perturbation from the
initial shape of the droplet, so the position of the free surface is

η(x, t) =
x2

2
− h(x, t). (13)

Since η ∼ x2/2 from (6) as x → ∞, this gives desirable behaviour as h(x, t) → 0 as
|x| → ∞.

Applying the scales (12) to the boundary conditions, the free-surface conditions
linearise to be evaluated on y = 0, and our problem reduces to the following mixed
boundary value problem in the upper half plane:

∇2φ(x, y, t) = 0 in the droplet y > 0, (14)

∂φ(x, 0, t)

∂y
= v(x, t) on |x| < d, (15)

φ(x, 0, t) = 0 on |x| > d, (16)

We note that from the linearised Bernouilli equation, the liquid pressure in the impact
zone can be found from

pl(x, 0, t) = −φt(x, 0, t) for |x| < d(t).

The time integral of this relation on the free surface where pl = 0 supplies the boundary
condition (16). We also require this for the boundary condition in the impact zone
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when the substrate is porous.

∂φ(x, 0, t)

∂y
=
∂η(x, t)

∂t
on |x| > d, (17)

η(x, t)→ x2

2
as |x| → ∞, (18)

φ→ 0 as y →∞, (19)

φ(x, 0, t) = 0 on |x| > d, (20)

where φ(x, y, t), η(x, t) and d(t) are all unknown functions with v(x, t) in (15) chang-
ing depending on the substrate. For the standard Wagner impact problem with an
impermeable substrate v = 1 here; we present an alternative relation for v(x, t) below
to model the case when the substrate is porous.

On the scales of the outer problem described here, Wagner theory determines the
position of the unknown turnover points d(t) by ensuring that the free-surface height
at the turnover points matches the vertical position of the plate. At O(ε) this is

η(d(t), t)− t =
d(t)2

2
− h(d(t), t)− t = 0, (21)

where y = η(d(t), t) is the free-surface position and y = t is the position of the plate.

Fig. 2: Summary of the boundary conditions for the dimensionless problem.

As discussed above, our focus in the current paper is to investigate how porosity
of the substrate can be incorporated into Wagner theory. As a first step towards a
full coupling of (for example) Darcy flow in a porous substrate with potential flow in
the droplet, we introduce here a simplified model for the contribution to φy on the
boundary between the droplet and the supposed porous substrate. The impermeable
case forces us to include the condition that the normal velocity component (in the
droplet’s frame of reference) is φy = 1. When the boundary is permeable (k > 0), we
expect a change directly proportional to both k and the pressure driving the fluid into
the substrate. In view of Darcy’s law we do not know the normal component of the
gradient in pressure but we do expect it to be proportional to the pressure at the top
boundary of the substrate. Another consideration is that the liquid pressure pl(x, 0, t)
is mildly singular at x = ±d and singular in time at t = 0. In order to keep the forcing
finite within the impact interval, we include another factor d. We recognise d.pl is the
substrate’s upward force on the drop that brings about a change in momentum in the
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droplet. Putting these factors together we have:

φy = 1− kd(t)pl(x, 0, t). (22)

The minus sign is chosen to ensure that a positive liquid pressure corresponds to fluid
penetrating the substrate. From the linearised version of Bernoulli’s equation we also
have pl = −φt. Hence we impose

φy = 1 + kd(t)φt(x, 0, t). (23)

We also need to relate k to physical constants. Rescaling back to the physical
variables the dimensionless constant k = CV/R, where the porosity, C, is a material
constant with dimensions of time. (Constant C is the same as that present in Darcy’s
law when expressing the fluid velocity in the substrate as: v = −Cρ−1∇p.) We are
interested in a regime in which k = CV/R is small. For example, a depth of fluid
penetration, CV , much less than the droplet radius R. (The previous scaling by powers
of ε affects neither the definition of k nor the discussion of k as a ratio of distinct
physical times, or physical fluid speeds.) We are extending the substrate condition
used in Hicks et al. [6] where a constant penetration velocity was assumed across a
wetted region based on the pressure at x = 0.

Although strictly we could impose (23) as an approximation for any k, we restrict
ourselves here to the case of small porosity and assume that k � 1. Of course, a
full realistic condition would require resolving a fully coupled Darcy problem in the
substrate. The current work looks to investigate how such porous effects might be
incorporated into the framework of the Wagner solution as a first step towards under-
standing the full problem. Given our assumption of small k, we look to develop an
asymptotic solution. Hence, assuming a regular asymptotic expansion in powers of the
small parameter k exists, we expand the unknown functions as:

φ(x, y, t) = φI(x, y, t) + kφp(x, y, t) +O(k2), (24)

h(x, t) = hI(x, t) + khp(x, t) +O(k2), (25)

d(t) = dI(t) + kdp(t) +O(k2), (26)

where subscripts I and P mark inpermeable and porous, respectively. Note that, in
the analysis that follows, we find that for mathematical balance the correct expansion
for the contact points is in the form

dI(t) = 2t
1
2 and d(t) = dI(t) + kat

1
2 , (27)

for some constant a. Our problem now decouples into a leading order problem that
excludes porosity (and is the standard Wagner problem for droplet impact onto an
impermeable base), and a correction that will provide the initial changes to the flow
due to flow into the substrate. A difficulty is that the size of the contact region defines
the limits on integral expressions for the unknowns. We persist with our analysis using
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the general form of d(t) until as late as possible before expanding it as (27), otherwise
the integrals become unmanageable.

3.2 Leading Order Wagner Solution

For completeness, and as we need these results later in the porous correction section
3.3, we present here the k = 0 solution for φI , hI and the unknown turnover points dI .
We look to solve the system (14) - (21), with v = 1. The mixed boundary value problem
we have for φI(x, y, t) is harmonic and together with the stream function ψI(x, y, t)
this pair of functions satisfy the Cauchy-Riemann equations. Letting z = x+ iy, and
defining on the real axis and in the upper half plane D, the characteristic function

∆(z) =
√
z2 − d2

I ,

we introduce a complex valued function which is analytic on the real axis and in the
upper half plane D,

w(z, t) = ∆(z)(φI(x, y, t) + iψI(x, y, t)). (28)

The presence of the factor ∆(z) regularizes singular behaviour in the complex velocity
potential. Using Cauchy’s integral formula in principal value form for w, for z inside
D, we obtain

φI,x − iφI,y =
1

2iπ∆(z)

∮
Γ

∆(γ)(φI,α(α, β, t)− iφI,β(α, β, t))

γ − z
dγ, (29)

with γ = α+iβ, and where the Cauchy-Riemann equations have been used to eliminate
ψI . Taking real and imaginary parts, and evaluating over a simple closed contour Γ in
the upper half plane running along y = 0 and then returning anticlockwise through a
semicircular arc through the droplet, and allowing for the singular behaviour on β = 0
at α = x, (29) becomes the pair of relations:

φI,x(x, 0, t) =
1

π
√
dI(t)2 − x2

[∫ ∞
dI

√
α2 − dI(t)2φI,α

α− x
dα

+P.V.

∫ dI

−dI

√
dI(t)2 − α2φI,β

α− x
dα

+

∫ −dI
−∞

√
α2 − dI(t)2φI,α

α− x
dα

]
for |x| < dI(t), (30)

and

−φI,y(x, 0, t) =
1

π
√
x2 − dI(t)2

[
P.V.

∫ ∞
dI

√
α2 − dI(t)2φI,α

α− x
dα
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+

∫ dI

−dI

√
dI(t)2 − α2v

α− x
dα

+ P.V.

∫ −dI
−∞

√
α2 − dI(t)2φI,α

α− x
dα

]
for |x| > dI(t).

(31)

These relations simplify by imposing boundary conditions (15)-(17) becoming

φI,x(x, 0, t) =
1

π
√
dI(t)2 − x2

P.V.

∫ dI

−dI

√
dI(t)2 − α2

α− x
dα for |x| < dI(t) (32)

and

−φI,y(x, 0, t) = −ηt = hI,t =
1

π
√
x2 − dI(t)2

∫ dI

−dI

√
dI(t)2 − α2

α− x
dα. for |x| > d(t)

(33)
where we are imposing v = 1, for the moment. Evaluating the integral in (33) yields

hI,t = −1 +
x√

x2 − d2
I

, (34)

agreeing with the results in Oliver [24]. Integrating with respect to time, and assuming
the initial droplet is undisturbed in the far-field (18), we find

hI(x, t) = −t+

∫ t

0

x√
x2 − dI(τ)2

dτ, (35)

and from the Wagner condition (21) we then have:

d2
I

2
=

∫ t

0

dI(t)√
dI(t)2 − dI(τ)2

dτ. (36)

This is an integral equation for dI(t) and has unique positive solution dI(t) = 2t
1
2

(again in line with [24]). Hence from (35) we now know

hI(x, t) = −t+
x2

2
− |x|

2

(
x2 − 4t

) 1
2 . (37)

Consequently from (13) the unknown free-surface shape is:

ηI(x, t) =
x2

2
− hI(x, t) = t+

|x|
2

√
x2 − 4t, |x| ≥ dI(t). (38)

11



As |x| → ∞, ηI ∼ x2

2 + 4x
2

t2 , and the velocity potential follows from (32)

φI,x(x, 0, t) =
x√

dI(t)2 − x2
, (39)

Integrating from x = dI to x (where |x| < dI), we have

φI(x, 0, t) = −
√
dI(t)2 − x2. (40)

From (37), hI ∼ − 4x2

t2 as |x| → ∞. From (38), we conclude that the liquid surface
rises owing to the substrate striking it upwards from below. The partial t-derivative
of (40) gives an expression for plI = −φI,t, the pressure on the substrate surface. The
pressure

plI(x, 0, t) =
dI ḋI

(d2
I − x2)

1
2

|x| < dI (41)

which is singular at x = ±dI , and where ḋI denotes the time derivative. Note that
dI ḋI = 2 is independent of t so that plI is singular at x = 0, at t = 0, but that dI · plI
is non-singular.

3.3 Porous Contribution

We now look for the first order (O (k)) correction to the leading order Wagner solution
(k = 0) for the model described in §3.1. We now allow the liquid in the droplet to
penetrate into the substrate such that the velocity on the wetted boundary of the
substrate is subject to condition (23) as discussed in §3.1. Under the assumption that
k � 1, we introduce the asymptotic expansions (24)-(26). The expansion for d(t) is not
trivial. If we keep a general expansion of the form d(t) = 2t

1
2 +kdp(t)+O(k2), in keeping

with the other unknowns, then the proposed balance is found to be mathematically
consistent only when the power is one-half in dp(t) = at

1
2 for some constant a. Finding

the value of a and the functions hp and φp remains our challenge.
Following the same complex analysis approach from above, governing equation (33)

becomes:

(hI + khp)t =
1

π
√
x2 − d(t)2

∫ d

−d

√
d(t)2 − α2(1 + kdφ(α, t)t)

α− x
dα (42)

=
1

π
√
x2 − d(t)2

∫ d

−d

√
d(t)2 − α2(1 + kdφI(α, t)t)

α− x
dα (43)

=
1

π
√
x2 − d(t)2

(∫ d

−d

√
d(t)2 − α2

α− x
dα+ k

∫ d

−d

d
√
d(t)2 − α2φI(α, t)t

α− x
dα

)
(44)

where we neglect higher order terms in k.
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The first integral is similar to the impermeable case, except that d is no longer dI .
Using the t-derivative of the known φI from (40) the second integral becomes

kd2ḋ

π
√
x2 − d(t)2

∫ d

−d

√
d(t)2 − α2√

d(t)2 − α2(α− x)
dα =

kd2ḋ

π
√
x2 − d(t)2

∫ d

−d

1

α− x
dα, (45)

=
kd2ḋ

π
√
x2 − d2

log

(
d− x
d+ x

)
, (46)

which is valid for |x| > d. Thus (44) can be written

hI,t + khp,t = −1 +
x√

x2 − d2
+

kd2ḋ

π
√
x2 − d2

log

(
d− x
d+ x

)
, (47)

for x > d and neglecting higher order terms.
Thus far we have kept the form of the asymptotic expansion of d as general as

possible. It is possible to continue the analysis further with arbitrary d, however the
required application of the Wagner condition (21) at some stage then enforces dI(t) ∼
t
1
2 and thus d(t) = (2+ka)t

1
2 for mathematical consistency. We adopt this requirement

from this point onwards to simplify the workings below.
To obtain h(x, t) we integrate (47) with respect to t′ from 0 to t. For convenience,

we use a change of integration variable on the log term by writing

t′ =
d′2

(2 + ka)2
, (48)

obtaining

h(x, t) = h(x, 0)− t+
2x2

(2 +Ka)2
− 2x

√
x2 − d2

(2 + ka)2
+
k

π

∫ d

0

d′2√
x2 − d′2

log

(
d′ − x
d′ + x

)
dd′,

(49)

where h(x, 0) = 0. We rewrite the final term in the integral in a compact form:

hI + khp = −t+
2x2

(2 + ka)2
− 2x

√
x2 − d2

(2 + ka)2
+
k

π
x2F

(
d

x

)
, (50)

where the final term is a function of d/x only.

By making the substitution d = Sx, and defining f(S) = (1−S2)
1
2 log

(
1−S
1+S

)
and

integrating by parts, some algebra (see appendix A for the details) leads to

F

(
d

x

)
= −d

x

(
1− d2

x2

) 1
2

log

(
x− d
x+ d

)
+

(
1− d2

x2

) 1
2

− 2 +

∫ d
x

0

f(S)dS. (51)
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We can now apply the Wagner condition (21) , namely

d2

2
− t = h(d, t). (52)

Evaluating (51) and (49) at x = d, condition (52) becomes

d2

2
− t = −t+

2d2

(2 + ka)2
− d2k

π

(
2−

∫ 1

0

f(S)ds

)
. (53)

Evaluation of the integral is a numerical task, and we find that c =
∫ 1

0
f(S)ds = −0.832

to three significant digits using the trapezium rule. The expressions give us

d2

2
=

2d2

(2 + ka)2
− d2k

π
(2− c) +O(k2) (54)

in which by design of d, every term is directly proportional to t. After cancelling factor
d2, we have

(2 + ka)2

2
= 2− k

π
(2− c)(2 + ka)2 +O(k2) (55)

a = − 2

π
(2− c) +O(k). (56)

Neglecting the O(k) contribution leaves a = −1.803, an O(1) coefficient. In summary,
we have shown that

d(t) = (2− 1.803k) t
1
2 . (57)

Since a is negative, the porous contact region is smaller and spreads more slowly than
for the impermeable substrate. This is intuitive since the incompressible fluid can enter
the substrate leaving less liquid to spread across the surface.

Returning to (13), the free-surface position is

η(x, t) =
x2

2
+ t− 2x2

(2 + ka)2
+

2x
√
x2 − d2

(2 + ka)2
− k

π
x2F

(
d

x

)
. (58)

valid at first order in k, for x ≥ d. Setting k = 0 returns this to the impermeable
result (38) with d = 2t

1
2 . Here F (d/x) is defined by (51) The velocity potential in the

wetted region |x| ≤ d follows in a similar manner yielding

−φI(x, 0, t)− kφp =
√
d2 − x2 − kd(2 + ka)2

2π

∫ d

x

(d2 − x′2)−
1
2 log

(
d− x′

d+ x′

)
dx′,

(59)
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where φI(x, 0, t) is given by (40), and d(t) is given by (57). The integral can be sim-
plified and approximated numerically (see appendix B for details). The t derivative of
(59) gives us the liquid pressure present in the boundary condition (23) from which we
determine the fluid velocity into the substrate - again see appendix B for the complete
expression. In appendix A and B the integral is re-expressed with an approximation
which can be diffentiated with respect to x or t.

4 Results

We present and discuss our results for the free surface and the turnover position, the
velocity potential, pressure distribution and liquid injection into the porous substrate.
In each case we show the quantity as a function of position, x ∈ [0, d], and selected
times t > 0. The results are symmetric in x so we only report the right half of the
domain. Our aim is to compare and contrast the results for a porous substrate with
those for an impermeable surface. In each case we highlight the influences of porosity
on the flow, compared with the impermeable case. Throughout, every porous-substrate
calculation is done with the same value for the porosity parameter, k = 0.1, and
impermeable results correspond to k = 0.

4.1 Free surface motion, turnover position

Figure 3 shows the free-surface shape and pressure distribution for x ∈ [0, d) at selected
times for k = 0.1. The model is symmetric in x, so we show the right-half alone. In
figure 3a, as y →∞ the surface is at rest. As t increases the surface moves towards the
right. On the horizontal substrate, the turnover point accelerates to the right along
the boundary, with position x = d(t), y = 0, on the substrate.

In figure ??, there is a mild square-root singularity at x = dI , along with an even
milder, logarithmic singularity at x = d for the porous-substrate results. At x = 0
the pressure, p(0, 0, t is singular at the instant of first contact, t = 0. Thereafter the
pressure at x = 0, p(0, 0, t), decreases monotonically in time towards zero. Elsewhere,
at any fixed station x, there is a time-delay before the fluid arrives, at time t∗, where
d(t∗) = x. At any fixed time, the spatial distribution of impermeable-substrate pres-
sure, pI(x, 0, t), has a global minimum at the origin, and pI increases monotonically
towards a positive singularity at x = d. In figure 3 new features in the porous-substrate
results are: (a) a local maximum at the origin; (b) a local minimum in pressure at
x/d ≈ 0.7. The value of the minimum is only about 1.5% lower than the maximum
at the origin. Therefore the central 70% of the spatial region of impact onto a porous
substrate is characterised by a nearly uniform pressure. Nearer the turnover point,
for the region x ∈ (0.7d, d), the pressure tends to plus infinity, due to the square-root
factor in the leading order term for pressure, dḋ/

√
d2 − x2, as x increases to d. See

Appendix B. What we do not see in figure ?? is the milder logarithmic singularity at
x = d, present in the O(k) porous-contribution term. This term describes a marked
lowering in pressure near the edge of the domain.

Figure 4 compares the standard impermeable Wagner solution, with the porous
model developed here. For the times shown, the porous-case free surface moves more
slowly than the impermeable case. Note that at any instant, 0 < d < dI and
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(a) Free-surface shapes at increasing times.

(b) Pressure profiles at inceasing times

Fig. 3: Figures showing the solution to the Wagner problem with the porous boundary
conditions with k = 0.1 with (a) the free-surface, and (b) the pressure.
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Fig. 4: A free-surface comparisson between the impermeable solution (dashed) and
the porous solution (solid) for k = 0.1.

0 < ḋ < ḋI , where subscript I denotes the impermeable case. Comparing results for
impermeable and porous cases is awkward owing to the difference between the turnover
positions x = dI(t) and x = d(t). For k = 0.1, we find dI exceeds d by about 9%, at
all times plotted in figure 4.

There are visible differences in the shape of the free surface too, especially near
the turnover point. For impermeable substrate the droplet’s surface meets the solid
orthogonally – the contact angle, evaluated inside the fluid, is exactly 900. For the
porous-substrate, the droplet’s surface meets the plate with an obtuse contact angle,
more than 90o. By the last time plotted, the angle has increased to about 96 ± 20.
This increase in angle is related to a loss of fluid from the drop into the substrate.

Having shown the kinematics of the flow, we next explore the evolution in time of
the associated velocity potential distribution that underlies all our results.

4.2 Velocity potential

Focussing on the substrate surface y = 0, figure 5 shows minus velocity potential,
−φ(x, 0, t), as a distribution in space at selected times t = 0.2, 0.6, 1.0, and for shared
values of d = 0.4, 1.2, 2 (corresponding to differing times). Every curve has one global
maximum, at x = 0. Also, in keeping with a boundary condition, −φ is zero at x = d.
At the edge of the impact region, x = d, the curve always has a vertical tangent,
indicating the high velocity associated with the outer region matched to the inner
jet-root region in Wagner theory.
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(a) −φ compared at equal times.

(b) −φ compared at equal contact line position d(t).

Fig. 5: Comparisson of the velocity potential φ between porous (solid) and imperme-
able (dashed).
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Fig. 6: Plot showing the fluid velocity into the substrate at (a) fixed times (left) and
(b) fixed x locations (right).

The dashed curves in figure 5 are the impermeable results, and the solid curves
mark the corresponding porous results. [correction needed to fig. 5(b) swapped-
over line-types!] The figure shows that porosity acts to reduce the value of −φ; the
liquid impact is less violent. This is to be expected on physical grounds, because the
liquid pressure is relieved by its work of injecting fluid into the substrate. For k = 0.1,
the reduction in −φ is about 27%. The reduction in −φ is proportional to k, but in a
complicated way, as shown in equation (B5) (B5).

The velocity potential is central to any discussion of the fluid mechanics of our
results because its partial x− and t− derivatives give the horizontal velocity component
and the pressure at the substrate’s surface, respectively. Incidentally, −φ(x, 0, t) is
directly proportional to the pressure-impulse for the droplet impact over the time
interval [0, t], and can be read as a local measure of impulsive force per unit length of
substrate (see [36]).

4.3 Liquid penetration of the substrate

At y = 0 the porous boundary condition (23) models the upward vertical veloc-
ity component, relative to the substrate. So the downward velocity is v(x, 0, t) =
k d(t)φt(x, 0, t). This positive quantity is shown in figure 6. Panel (a) shows the dis-
tribution of v in space, at five instants in time. A singularity at x = d highlights
the transient influence of high-pressure liquid being injected into the substrate dur-
ing impact. Figure 6 (b) shows v as a function of time at two fixed stations x. Each
plotted curve includes a waiting-time interval, [0, tw], until the fluid arrives, where
tw is defined by d(tw) = x. First, the singularity (in pressure and hence v) arrives
and quickly sweeps past the x-station. Afterwards the penetration velocity decreases
rapidly towards zero, but over the theory’s limited O(1) time, the plot shows only a
modest decline.

We are interested in the accumulated effect of the highly transient behaviour of
v. We represent this by a flux q(x, t) of fluid that passes through the boundary up to
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current time t. Here we define q as

q(x, t) =

∫ t

tw

−v(x, 0, t′) dt′ = −k
∫ d

x

d′p
1

ḋ′
dd′. (60)

The integral’s lower limit in (60) marks the end of the waiting-time tw before the
arrival of fluid. To O(k), the pressure has only one term and the factor ḋ in the integral
cancels with the same factor in p – see Appendix B expression (??). So this leaves us
with

q(x, t) = k

∫ d

x

d′2

(d′2 − x2)1/2
dd′. (61)

A substitution d′ = x cosh(s) enables conversion to a straightforward s-integral, which
we evaluate in terms of variable ξ = x/d. Hence

q(x, t) =
1

2
k d2

(
ξ2arccosh(|ξ|−1) + [1− ξ2]1/2

)
− 1 ≤ ξ ≤ 1, (62)

where ξ = x/d. The time dependence comprises a compound of two increasing parts
in (62). First, the factor d2 = (2 + ka)2t increases linearly. Secondly, for each fixed x,
the value of ξ = x/d decreases in time, and we find the factor in round brackets in
(62) increases monotonically towards one. The net effect is a monotonic increase in q
with time.

In terms of spatial distribution of q(x, t) in (62), the term in large round brackets
defines the following function

E(ξ) = ξ2arccosh(|ξ|−1) + (1− ξ2)1/2 − 1 ≤ ξ ≤ 1. (63)

Note that E → 1 as ξ → 0. Also E(ξ) is universal and independent of k.
A plot of E(ξ) = q/( 1

2 k d
2) is shown in figure 7. The net flux q has a single

maximum at x = 0, and declines in space towards the edge of the domain. This kind of
behaviour accords with our expectations on physical grounds: the penetration of fluid
is most intense, and endures longest, at the centre of the impact zone. An important
observation is an absence of singularities in the plot or expression (62). The time-
integration carried out above, annuls the singularity in pressure at x = d. Indeed q is
zero at x = d. The flux tails off towards the edge of the impact zone in figure 7. The
physical consequence of our theory, on what might be measured, is significant. Near
the edge of the impact zone, and despite a passing singular pressure, there has been
too little time yet to force into the substrate a significant amount of liquid. We have
shown that, at all times, q = 0 at x = d.

We take this analysis one stage further and (numerically) integrate q(x, t) with
respect to x from −d to d, to obtain the total area Q(t) of fluid injected into the whole
substrate, by the impact up to time t. This is

Q(t) =

∫ d

−d
q(x, t) dx = 2

1

2
k d3

∫ 1

0

E(ξ) dξ = 0.5236 k d3, (64)
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Fig. 7: Spatial distribution of liquid injected into the substrate up to current time t.
Plotted is E(ξ) = q(x, t)/( 1

2 k d
2) from (63), where ξ = x/d(t).

where the dimensionless coefficient is evaluated to high precision, and quoted to 4
significant digits.

The area (volume per unit width in third dimension) of fluid, Q, increases directly
proportional to k t3/2. If we set an O(1) upper limit on time, then (64) supplies an
expected total area of fluid, that can end up inside the substrate (cut?: after the
impact has finished?). From our expression d(t) = (2+ka)t1/2, and for a range of small
values of k ∈ [0, 0.1], we expect Q(t) to lie in the interval [0, 0.3155 t3/2]. Consistent
with our asymptotic analysis, the coefficient is O(1); it is evaluated to 4 significant
digits.

Having presented our main results, the next section models a consequence of our
solution in the main outer region, for the flow in the inner region at the edge of the
impact zone, consisting of the splash jet and its root.

5 Jet region

The solution for the porous model exhibits the same singular behaviour in the pres-
sure at the turnover points as the impermeable case. This singularity is resolved by
rescaling, considering an O(ε2) region in the neighbourhood of the turnover point,
usually referred to as the jet-root region. In Wagner theory this reveals a fast-moving
thin jet that flows horizontally across the surface of the substrate far quicker than the
spreading turnover point. The neighbourhood of x = d is examined using variables
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with subscript j (for ”jet”). The rescaling is as follows:

x = d(t) + ε2xj , (65)

y = ε2yj , (66)

t = tj , (67)

φ = ε
(
φj + ḋxj

)
, (68)

where the subscript j refers to jet variables, and ḋ denotes the time derivative. The free
surface position yj = ηj is O(1) in this rescaled region and so our boundary conditions
are no longer linearised onto y = 0. We consider the solution for the velocity potential
(59) and we substitute our new scaled variables into this equation to obtain a far-field
matching condition for the local jet solution. With some effort (see Appendix C for
details), it can be demonstrated that the contributions of the integral in the expression
for φ in (59) will never appear at leading order even without our additional restriction
of k being small. In fact, we require

φj(xj , 0, t)→
√
−2dxj − ḋxj , (69)

in the far-field to match with φ. We also have our substrate boundary condition given
by (23) which after substituting in our new scaled variables leaves simply

φjyj = 0 +O(ε), (70)

meaning the substrate condition has zero direct influence on the problem on this
smaller length scale, and it collapses back to being unchanged from impact onto an
impermeable substrate. The influence of porosity is still felt through the far-field
matching condition on the velocity potential φj to ensure it matches with the outer
solution, where the global influence of porosity is recovered via changes in d. A similar
effect is seen in this jet root region during impact onto elastic substrates, where the
influence of the flexible substrate behaviour is again only passively felt via the far-field
matching (see [28]).

On the free surface the boundary condition becomes

φjn = εηjt = 0 +O(ε), (71)

where n is the coordinate normal to the free-surface.
The jet model governing equations in xj , yj coordinates are

∇2φj = 0 in the droplet, (72)

φj,yj = 0 on flow boundaries, (73)

|∇φj | = ḋ on the free surface. (74)

See also figure 8. To solve this system we use a hodograph plane method in which the
coordiantes are the velocity components. We define a complex potential W = φj + iψj
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(a) Geometry of the local jet-root region

(b) Hodograph plane

Fig. 8: Local jet root region, and mapped domain in the hodograph plane.

and the complex velocity U = dW
dζ = φj,xj

− iφj,yj with ζ = xj + iyj . The complex

velocity plane corresponds to the semi-circle φj,xj

2 + φj,yj
2 = ḋ2 with −φj,yj > 0.

In the far field as x2
j + y2

j → ∞, we require U = −ḋ as, since we are in a frame of
reference moving with the turnover point, the far-field is steady. We assume the jet
approaches a uniform thickness in space, Hj as xj → ∞, which grows in time. From

the dynamic boundary condition (74) we have φj,yj → 0 and φj,xj
→ ḋ as xj → ∞.

The kinematic condition (73) requires that the stream function is independent of xj
and yj on the fluid interface. We take ψj(xj , yj , t) = 0 on the substrate-liquid interface
and ψj(xj , yj , t) = f(t) on the free surface, where f(t) is unknown.
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In this quasi-steady flow, velocity is tangent to the jet free-surface and of magnitude
ḋ. Since the jet free surface is horizontal in the far field, this requires,

φj,x = ψj,y = ḋ, (75)

valid in the far-field. Integrating with respect to y yields the value of ψj on the free
surface:

f(t) = ḋHj , (76)

where Hj = Hj(t) only.
From the matching condition (69), and replacing xj by the complex variable ζ we

have as xj → −∞:

W (ζ) ∼
√
−2dζ − ḋζ, (77)

and, the complex velocity is therefore

U(ζ) =
dW

dζ
∼ −ḋ− d(−2dζ)−

1
2 . (78)

Rearranging, we have

ζ ∼ −1

2d

(
ḋ+ U

d

)−2

. (79)

Substituting this into (77) to eliminate ζ we have:

W =
ḋd

2

(
ḋ+ U

)−2

+
d

ḋ+ U
∼ ḋd

2

(
ḋ+ U

)−2

, (80)

as U → −ḋ. This is a condition on W = W (U), still to be found.
Next we construct W . Consider:

U =
dW

dζ
=
dW

dU

dU

dζ
. (81)

At the stagnation point U = 0, (81) tells us that dW/DU is zero there, because dU/dζ
cannot vanish for a conformal mapping from the physical ζ plane to the hodograph U
plane. We split W into a sum of two parts, let W (U) = W1(U) +W2(U), with:

W1 = −dU(U + ḋ)−2

2
, (82)

W2 = −2f(t)

π
log

(
ḋ− U
ḋ+ U

)
, (83)
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with W1 having a strong singularity in order to match with the correct behaviour
in (80) as U → −ḋ on the in-flowing part of the domain, and W2 describes a sink
as U → ḋ and a source as U → −ḋ. We have the condition at the stagnation point
dW
dU = 0, so we have:

dW1

dU
+
dW2

dU
= 0. (84)

From (82) and (83), at U = 0, we find exactly that

f(t) =
πd

8ḋ
. (85)

From (76) we deduce that the jet thickness depends on d(t) as follows:

Hj(t) =
πd(t)

8ḋ(t)
2 . (86)

With (57),we expand Hj(t) in powers of k:

Hj(t) =
πt

3
2

2

1

2− 1.803k
, (87)

Hj =
π

4
t
3
2

(
1 +

1.803

2
k +O(k2)

)
. (88)

Note that in terms of the outer variables the top of the jet lies at y = ε2Hj(t). We
have shown that the effect of the porous substrate is to thicken the splash jet, and
slow it down.

Since the jet is thicker and slower, the question remains as to whether the porosity
changes the volume flux of fluid entering the jet? The volume flux of the jet can be
calculated by integrating the velocity of the jet over its thickness giving the value of
the stream function on the upper surface of the jet:

ψj =

∫ Hj

0

ḋ(t)dy = ḋHj =
πt

4
. (89)

Also ψ = 0 on y = 0. So the flux into the jet is independent of k, equal to the
flux of the jet on a impermeable substrate, and hence unchanged by the porosity. An
examination of this jetting region reveals that, for a porous substrate the splash jet is
thicker, and the fluid has a lower velocity.

For completeness, we also mention that there is a further asymptotic jet region.
As the flow leaves the jet-root region described above, it enters a long thin jet with
thickness remaining O(ε2), but with a longer horizontal scale. A suitable scaling of
the coordinates leads to governing shallow water equations, with boundary conditions
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given by

û(d, t) = 2ḋ(t) ĥ(d, t) = Hj(t) (90)

for the horizontal jet velocity û(x, t), and thickness ĥ(x, t). Full details can be found
in [23]. It is found that this jet region is entirely passive, and is of infinite horizontal
extent for the impact of liquid and solid bodies bounded by a smooth surface before
impact where ḋ → ∞ as t → 0. Complications can occur for impact of non-smooth
bodies (for example a cone where the jet is found to be of finite extent, see [24]),
and also for impact onto flexible elastic substrates (where large oscillations in d(t)
can lead to unbounded growth in the thickness h(x, t) in the jet region and hence the
subsequent breakdown of the shallow water model, see [28]). Details for the current
porous model are omitted as the solution in this region remains largely unchanged
from the impermeable case, except for the correction to the thickness and speed at
the turnover point.

6 Discussions

We have introduced porousity to the standard Wagner problem for droplet impact
onto an impermeable substrate, via a boundary condition designed to closely mimic a
full Darcy theory model of a porous substrate. An analytical solution to the problem
in the limit of small porosity has been derived and results have been presented for
the outer problem showing how the inclusion of porosity slows the spreading of the
droplet, changes the free-surface shapes, reduces the maximum pressure, and drives
fluid into the substrate. A local analysis of the jet-root region reveals that, compared
to impermeable impact, the fast moving jet travelling along the substrate is thicker
and slower. This last result is perhaps the most counter-intuitive or surprising finding
from the study; there is no (to us) obvious physical reason for this. While results
have been presented for just one k value, and the asymptotic approach in section 3.3
restricts the solution to small k, the boundary condition is applicable for arbitrary k.
Solution in this arbitrary case is likely a numerical task, but it would be interesting
to see how the small k features identified here persist for larger k.

One main purpose of this study was as a first step towards a fully coupled Wagner-
Darcy model for droplet impact onto a porous substrate. Such a model is relatively easy
to formulate within the flow structure described here. The porous boundary condition
(23) is replaced by a coupling condition for the fluid pressure with a suitable porous
model in the substrate. Various limiting cases exist depending on whether the depth
of the substrate is comparable to the outer or local length scales in the Wagner region.
It is reassuring for potential progress towards a solution in this more complicated
actively coupled case that the standard structure appears to still hold, in particular
in the local jet root region.

Experimental validation is hard to find. Many studies into impact onto porous beds
focus on erosion or powders. Our prediction of a slower and thicker jet is something
that could be tested by comparision with experiments. Need to actually reference
something - not sure what to say
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Appendix A Re-expression of F (d/x)

Here we focus on the integral in (49). To transform this integral into something more

tractable, we let d = Sx, f(S) = (1 − S2)
1
2 log

(
1−S
1+S

)
and G(S) = log

(
1−S
1+S

)
so we

have:

x2F

(
d

x

)
=

∫ d

0

d′2√
x2 − d′2

log

(
x− d′

x+ d′

)
dd′ for |x| > d

=

∫ d
x

0

x2S2

√
1− S2

G(S)dS (A1)

Dividing both sides by x2 and integrating by parts gives:

F

(
d

x

)
= x2

(
[−Sf(S)]

d
x
0 −

∫ d
x

0

−(1− S2)
1
2

(
G(S)− S

1− S
− S

1 + S

)
dS

)

= −
(

1− d2

x2

) 1
2 d

x
log

(
x− d
x+ d

)
+

∫ d
x

0

f(S)− (1− S2)
1
2

2S

1− S2
dS (A2)

= −d
x

(1− d2

x2
)

1
2 log

(
x− d
x+ d

)
+
[
2(1− S2)

1
2

] d
x

0
+

∫ d
x

0

f(S)dS

F = −d
x

(1− d2

x2
)

1
2 log

(
x− d
x+ d

)
+ 2

(
1− d2

x2

) 1
2

− 2 +

∫ d
x

0

f(S)dS. (A3)

For all t, as x→∞, it can be shown with care that F → 0 as expected, as x increases
the log term vanishes and the limits of the integration tend to zero.

Appendix B Evaluation of the velocity potential

To approximate (59) we can write

−φ(x, 0, t) =
√
d2 − x2 +

kd(2 + ka)2

2π

∫ d

x

(d2 − x′2)−
1
2 log

(
d− x′

d+ x′

)
dx′. (B4)

Substitution of x′ = d cos(θ) simplifies the integrand, and leaves:

−φ(x, t) =
√
d2 − x2 − kd(2 + ka)2

2π

∫ 0

arccos( x
d )

2 log

(
tan

(
θ

2

))
dθ. (B5)
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The form of (B5) allows us to differentiate with respect to x or t. We find an
approximation of the integral

I = 2

∫ 0

arccos( x
d )

log

(
tan

(
θ

2

))
dθ, (B6)

Writing tan(θ/2) as a rational approximation from Weierstrass’s infinite products for
sin(θ/2) and cos(θ/2) we have

log

(∣∣∣∣tan

(
θ

2

)∣∣∣∣) ≈ log
(
π2
(
1− C2θ2

))
+ log

(
θ

2

)
− log(π − θ)− log(π + θ), (B7)

with C = 0.1341187916 and the coefficient of the O(θ4) term being negligible. The
integral is best approximated near θ = 0, and near the closest singularities at θ = ±π.

We can now integrate (B6) by using standard methods. Comparison between the
approximation of the integral (B6) using the expansion (B7), and a direct numerical
integration method shows the difference is very small (less than 1%). Hence, (B7) is
used throughout the calculations presented in this paper.

The fluid pressure on the substrate, given by the time derivative of the velocity
potential, can be similarly expressed in the form:

p(x, 0, t) =
dḋ

(d2 − x2)
1
2

{
1− k

π
(2 + ka)

2 x

d
log

(
d+ x

d− x

)}
− kḋ

2π
(2 + ka)

2
I

or

p = ḋ

(
1

(1− ξ2)
1
2

{
1− k

π
(2 + ka)

2
ξ log

(
1 + ξ

1− ξ

)}
− kḋ

2π
(2 + ka)

2
I(ξ)

)
(B8)

Appendix C Justification of the matching
condition (69)

Here we detail the far-field contribution of the potential φ to the jet root region. The
lower limit in (B5) is arccos

(
x
d

)
. Let x

d = 1 + ε2xj and s = −ε2xj , where xj < 0 in

the region of interest. We also have, for small s ≥ 0, arccos(1− s) ≈
√

2s.
So we let S =

√
2s be the limit in the integral:∫ 0

arccos( x
d )

log

(
tan2

(
θ

2

))
dθ =

∫ 0

S

log

(
1− cos(θ)

1 + cos(θ)

)
dθ. (C9)

Since S is small, θ is small over the integration range, and we can approximate using

the truncated Maclaurin series cos(θ) = 1− θ2

2 , thus we have:∫ 0

S

log

(
1− cos(θ)

1 + cos(θ)

)
dθ =

∫ 0

S

log

(
θ2

4 + θ2

)
dθ (C10)
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We neglect the θ2 in the denominator in (C10) as it is small compared to 4. Hence∫ 0

S

log

(
1− cos(θ)

1 + cos(θ)

)
dθ ≈

∫ 0

S

log

(
θ2

4

)
dθ = 2S log(S)− 2S − 2S log(2). (C11)

In (C11) 2S log(S) is non-singular, and is the dominant term as S → 0. Since S = O(ε)
the integral is O(ε log(ε)).

Taking the factor multiplying this integral into account in (59) the leading order
of this factor is O(k). So for small k this term will never be present at leading order,
leaving only the term corresponding to the impermeable solution present.

The remaining part of this expression for φ in (59) is:√
d2 − x2 =

√
d2 − (d+ ε2xj)2 (C12)

=ε
(√
−2dxj +O(ε2)

)
, (C13)

valid for xj < 0, with d = O(1) we have the leading order to be O(ε). Thus our
matching condition for φj at leading order is:

ε
(
φj + ḋxj

)
= ε
√
−2dxj (C14)

φj(xj , 0, t) =
√
−2dxj − ḋxj , (C15)

which is (69).
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[4] Mazur, R., Ryżak, M., Sochan, A., Beczek, M., Polakowski, C., Przysucha, B., Bie-
ganowski, A.: Soil deformation after one water-drop impact–the effect of texture
and soil moisture content. Geoderma 417, 115838 (2022)

[5] Zhang, S., Hu, X., Lourenço, S.D.: Modelling of water droplet dynamics on
hydrophobic soils: a review. In: E3S Web of Conferences, vol. 382, p. 18005 (2023).
EDP Sciences

29

https://doi.org/10.1063/1.1773551
https://doi.org/10.1063/1.1773551
https://doi.org/10.1088/1742-6596/105/1/012001


[6] Hicks, P.D., Crosby, A., Hewitt, D., Hennessy, M., Herterich, J., Moyles, I.: Liquid
interactions with porous media and the fate of toxic materials. European Study
Group with Industry (ESGI) report (2012)

[7] Lee, J., Derome, D., Carmeliet, J.: Drop impact on natural porous stones. Journal
of colloid and interface science 469, 147–156 (2016)

[8] Srikar, R., Gambaryan-Roisman, T., Steffes, C., Stephan, P., Tropea, C., Yarin,
A.L.: Nanofiber coating of surfaces for intensification of drop or spray impact
cooling. Int. J. Heat Mass Trans. 52(25–26), 5814–5826 (2009) https://doi.org/
10.1016/j.ijheatmasstransfer.2009.07.021

[9] Han, D., Steckl, A.J.: Superhydrophobic and oleophobic fibers by coaxial electro-
spinning. Langmuir 25(16), 9454–9462 (2009) https://doi.org/10.1021/la900660v
http://dx.doi.org/10.1021/la900660v

[10] Marston, J.O., Thoroddsen, S.T., Ng, W.K., Tan, R.B.H.: Experimental study
of liquid drop impact onto a powder surface. Powder Technology 203, 223–236
(2010)

[11] Gilet, T., Bourouiba, L.: Rain-induced ejection of pathogens from leaves: revisit-
ing the hypothesis of splash-on-film using high-speed visualization. The Society
for Integrative and Comparative Biology (2014)

[12] Gart, S., Mates, J.E., Megaridis, C.M., Jung, S.: Droplet impacting a cantilever:
A leaf-raindrop system. Physical Review Applied 3(4), 044019 (2015)

[13] Maitra, T., Antonini, C., Tiwari, M.K., Mularczyk, A., Imeri, Z., Schoch, P.,
Poulikakos, D.: Supercooled water drops impacting superhydrophobic textures.
Langmuir 30(36), 10855–10861 (2014)

[14] Maitra, T., Tiwari, M.K., Antonini, C., Schoch, P., Jung, S., Eberle, P.,
Poulikakos, D.: On the nanoengineering of superhydrophobic and impalement
resistant surface textures below the freezing temperature. Nano letters 14(1),
172–182 (2014)

[15] Tran, T., Staat, H.J.J., Susarrey-Arce, A., Foertsch, T.C., Houselt, A., Gar-
deniers, H.J.G.E., Prosperetti, A., Lohse, D., Sun, C.: Droplet impact on
superheated micro-structured surfaces. Soft Matter 9, 3272–3282 (2013) https:
//doi.org/10.1039/C3SM27643K

[16] Tsai, P., Veen, R.C.A., Raa, M., Lohse, D.: How micropatterns and air pressure
affect splashing on surfaces. Langmuir 26(20), 16090–16095 (2010) https://doi.
org/10.1021/la102330e

[17] Raza, M.A., Swigchem, J., Jansen, H.P., Zandvliet, H.J.W., Poelsema, B., Kooij,
E.S.: Droplet impact on hydrophobic surfaces with hierarchical roughness. Surf.

30

https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.021
https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.021
https://doi.org/10.1021/la900660v
https://arxiv.org/abs/http://dx.doi.org/10.1021/la900660v
https://doi.org/10.1039/C3SM27643K
https://doi.org/10.1039/C3SM27643K
https://doi.org/10.1021/la102330e
https://doi.org/10.1021/la102330e


Topogr. Metrol. Prop. 2(3), 035002 (2014) https://doi.org/10.1088/2051-672X/
2/3/035002

[18] Yarin, A.L.: Drop impact dynamics: Splashing, spreading, receding, bouncing. . . .
Annu. Rev. Fluid Mech. 38, 159–192 (2006)

[19] Josserand, C., Thoroddsen, S.T.: Drop impact on a solid surface. Annual review
of fluid mechanics 48, 365–391 (2016)

[20] Wang, X., Xu, B., Guo, S., Zhao, Y., Chen, Z.: Droplet impacting dynamics:
Recent progress and future aspects. Advances in Colloid and Interface Science,
102919 (2023)

[21] Wagner, H.: Phenomena associated with impacts and sliding on liquid surfaces.
In German: Z. Angew. Math. Mech. NACA Translation 1366 12, 193–215 (1932)

[22] Wilson, S.K.: The mathematics of ship slamming. DPhil thesis, Oxford University
(1989)

[23] Howison, S.D., Ockendon, J.R., Wilson, S.K.: Incompressible water-entry prob-
lems at small deadrise angles. J. Fluid Mech. 222, 215–230 (1991)

[24] Oliver, J.M.: Water entry and related problems. DPhil thesis, Oxford University
(2002)

[25] Howison, S.D., Ockendon, J.R., Oliver, J.M., Purvis, R., Smith, F.T.: Droplet
impact on a thin fluid layer. J. Fluid Mech. 542, 1–23 (2005)

[26] Ellis, A.S., Smith, F.T., White, A.H.: Droplet impact onto a rough surface. Q.
J. Mech. Appl. Math. 64(2), 107–139 (2011) https://doi.org/10.1093/qjmam/
hbq026

[27] Hicks, P.D.: Violent droplet impacts with non-flat surfaces. Journal of Fluid
Mechanics 939, 31 (2022)

[28] Pegg, M., Purvis, R., Korobkin, A.: Droplet impact onto an elastic plate: a new
mechanism for splashing. J. Fluid Mech. 839, 561–593 (2018)

[29] Khabakhpasheva, T., Korobkin, A.: Splashing of liquid droplet on a vibrating
substrate. Physics of Fluids 32(12), 122109 (2020)

[30] Elliott, J., Smith, F.: Ice formation on a smooth or rough cold surface due to the
impact of a supercooled water droplet. Journal of Engineering Mathematics 102,
35–64 (2017)

[31] Clarke, A., Blake, T., Carruthers, K., Woodward, A.: Spreading and imbibition
of liquid droplets on porous surfaces. Langmuir 18(8), 2980–2984 (2002)

31

https://doi.org/10.1088/2051-672X/2/3/035002
https://doi.org/10.1088/2051-672X/2/3/035002
https://doi.org/10.1093/qjmam/hbq026
https://doi.org/10.1093/qjmam/hbq026


[32] Reis Jr, N.C., Griffiths, R.F., Santos, J.M.: Parametric study of liquid droplets
impinging on porous surfaces. Applied Mathematical Modelling 32(3), 341–361
(2008)

[33] Cooker, M.J.: A theory for the impact of a wave breaking onto a permeable barrier
with jet generation. Journal of Engineering Mathematics 79, 1–12 (2013)

[34] Moreton, G.: Droplet impacts onto porous substrates: pre-and post-impact
dynamics. PhD thesis, University of East Anglia (2022)

[35] Oliver, J.M.: Second-order wagner theory for two-dimensional water-entry prob-
lems at small deadrise angles. J. Fluid Mech. 572, 59–85 (2007)

[36] Lamb, H.: Hydrodynamics. University Press, ??? (1924)

32


	Introduction
	Modelling approach and overview
	Wagner problem for impact onto a porous substrate
	Governing equations
	Leading Order Wagner Solution
	Porous Contribution

	Results
	Free surface motion, turnover position 
	Velocity potential 
	Liquid penetration of the substrate 

	Jet region
	Discussions
	Acknowledgments

	Re-expression of F(d/x)
	Evaluation of the velocity potential
	Justification of the matching condition (69)

