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The fluid-structure interaction arising from the flow through collapsible tubes

plays an important biological role in the transportation and delivery of nutri-

ents to tissues and organs. In this thesis, we focus on developing mathemat-

ical models for the wall deformation and fluid-structure interaction arising

from the flow through an elastic-walled tube.

Whittaker et al. (2010; Q. J. Mech. Appl. Math. 63(4): 465-496) devel-

oped a mathematical model for the wall deformations of an initially elliptical

elastic-walled tube, which are induced by an azimuthally uniform transmural

pressure. In Chapter 2, we expand on this model to allow arbitrary initial

cross-sectional shapes and azimuthally non-uniform pressures.

In Chapter 3, we re-visit the problem for the deformations of an initially
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elliptical tube and produce the first formal solution for the wall motion using

an eigenfunction expansion method, which overcomes the need to invoke ad-

hoc assumptions made by Whittaker et al. (2010; Q. J. Mech. Appl. Math.

63(4): 465-496) in order to obtain their solution. In Chapter 4, we couple

our results for the wall deformation from Chapter 3 to the asymptotic model

for the flow through a rapidly oscillating elastic tube derived by Whittaker

et al. (2010, J. Fluid. Mech. 648, 83–121). Our results provide a three-

dimensional description of the fluid-structure interaction that arises from the

flow through an initially elliptical elastic tube.

In Chapter 5, we produce a formal solution for the wall deformation of an

elastic-walled tube with an arbitrary initial cross-sectional shape. We then

use this model to compute a family of initial cross-sectional shapes with the

property that an azimuthally uniform transmural pressure will excite only a

single deformation mode.
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Chapter 1

Introduction

1.1 Background

1.1.1 Biological motivation

The fluid-structure interaction between elastic-walled tubes and biological

fluids can be observed throughout the biological and medicinal sciences. Ex-

amples include the circulatory, respiratory, lymphatic and central nervous

systems. Of the most important is the transportation and delivery of nu-

trients to tissues and organs, which is facilitated by blood flow through the

blood vessels. These vessels are deformable, and will often experience forces

both internally and externally. Consequently, the mathematical modelling

of the wall deformation and fluid-structure interaction is vital in gaining a

better understanding of the mechanisms that lead to various physiological

phenomena.

In the circulatory system, the deformability of the vasculature has a signif-

icant impact on pulse-wave propagation (Pedley, 1980), which allows for the

transportation of nutrients to tissues and organs within the body. Further-

more, flow-induced deformations are a mechanism for the rupture of choles-

terol deposits (plaques) inside of the arteries, which can lead to potentially

fatal vessel occlusion (Binns and Ku, 1989; Ku, 1997). For veins located above

the heart and outside of the skull, the reduction in hydrostatic pressure can

1



Chapter 1. Introduction 2

be sufficient to induce the blood vessel to collapse (Lokossou et al., 2020;

Moreno et al., 1970; Wild et al., 1977). Fluid-filled elastic-walled tubes play

a key role in maintaining a constant flux of blood to systemic organs, known

as blood-flow autoregulation (Rodbard and Takacs, 1966; Rodbard, 1966).

In the medical industry, a device known as a sphygmomanometer can be

used to measure blood pressure. Sphygmomanometry is then the process of

measuring the pressure. This involves controlling the collapse of the brachial

artery by wrapping the cuff of the device around the arm of the patient and

inflating/deflating. This collapse generates Korotkoff sounds (Bertram et al.,

1989; Ur and Gordon, 1970), from which a medical professional can obtain

the measurements non-invasively. To aid blood-flow circulation, intra-aortic

balloon counter pulsation has been used on critically ill patients with cardiac

disease for several decades (Trost and Hillis, 2006). This process involves

a thin-walled flexible tube known as a catheter, which has had one end at-

tached to a long balloon (known as the intra-aortic balloon), and the other

end attached to a console. The console has a mechanism to inflate and de-

flate the balloon in phase with the heart’s contractions. The device is inserted

into the body (usually in the leg) and then guided to the aorta to aid blood

pumping.

In the respiratory system, there is a strong interaction between air flow

and the elasticity of the airway walls. For example, forced expiration of air

from the lungs can cause the airways to collapse (Macklem, 1971; Skalak

et al., 1989), which results in a reduction in the air flow-rate (Grotberg and

Gavriely, 1989). This phenomena is known as flow-rate limitation. Airway

collapse can also be attributed to certain pulmonary diseases (Pride and
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Milic-Emili, 1995; Macklem et al., 1970), which again can result in airway

collapse, as well as occlusion with viscous fluid. If persistent, this occlusion

can be fatal (Rafieian-Kopaei et al., 2014). The re-opening of the airways

has also been of scientific interest, and can be modelled by assuming that

the opening occurs via the propagation of an air finger into the collapsed

fluid-filled part of the airway (Heil, 2000; Baroud et al., 2006; White and

Heil, 2005).

In relatively recent history, considerable research has been focused on

flow-induced instabilities associated with the fluid-structure interaction of

fluid-conveying elastic-walled tubes (Grotberg and Jensen, 2004; Heil and

Hazel, 2011). Many physiological phenomena can be attributed to such in-

stabilities. Examples include: wheezing during forced expiration, Korotkoff

sounds during sphygmomanometry, and cervical venous hum (Danahy and

Ronan Jr, 1974). For more details associated with the biological applications

see the reviews by Pedley and Luo (1998), Grotberg and Jensen (2004), Heil

and Jensen (2003) and Heil and Hazel (2011).

1.1.2 Experimental investigations: The Starling resis-

tor

Many theoretical models that describe the relationship between the defor-

mation of elastic-walled tubes and the fluid conveyed within them are based

on experimental investigations (see, e.g. the review Bertram, 2003). Such

experimental investigations are typically performed in a ‘Starling resistor’

(Knowlton and Starling, 1912). As shown in figure 1.1, the set-up consists of

a thin-walled finite-length (but not necessarily axially uniform) elastic tube.
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pextpup pdn

Pressure chamber

Rigid tubeRigid tube

Elastic tube

Figure 1.1: The typical set-up of the Starling resistor comprising a thin-
walled elastic tube section pinned between two rigid tubes. The elastic sec-
tion is placed inside a pressure chamber and fluid is driven through the system
by either imposing a pressure difference between the ends of the tube or by
imposing a flow rate at one end using a volumetric pump.

The tube is pre-stretched and clamped (at both ends) to two rigid tubes.

Fluid is driven through the system by either imposing a pressure difference

between the ends of the tube, or by imposing a flow rate at one end through

a volumetric pump. By enclosing the collapsible section of the tube inside

a pressure chamber, we are given the freedom to subject the exterior of the

tube to an external pressure pext (Bertram, 1986; Bertram et al., 1990). De-

formations in the tube wall then occur due to the combined effect of the

fluid traction (i.e., the internal hydrodynamic pressure pint and viscous shear

forces) and the applied external pressure pext. For large Reynolds number

flows, contributions from the viscous shear stresses are dominated by inertial

effects, and are often neglected. Deformations are then said to occur due

to the transmural pressure ptm = pint − pext, which is the pressure difference

between the inside and outside of the tube.

Depending on both the sign and magnitude of the transmural pressure,

the tube will deform in different ways. For sufficiently large and positive



Chapter 1. Introduction 5

transmural pressures, the tube will inflate, and adopt an almost axisym-

metric configuration. In this state, the transmural pressure will mainly be

balanced by an azimuthal hoop stress, and the dominant physical mechanism

associated with the deformations is that of azimuthal stretching. For small

values of the transmural pressure (either positive or negative), the tube will

be approximately axisymmetric. Once the transmural pressure becomes suf-

ficiently negative, (i.e., the external pressure pext becomes larger than the

interior fluid pressure pint by a suitable amount), the tube will buckle into

an elliptical-like configuration, in which the primary mode of deformation

is that of azimuthal bending. Decreasing the transmural pressure further

causes the tube’s cross-section to adopt a ‘two lobed’ state (see figure 1.2),

before the opposite sides finally come into contact (Shapiro, 1977).

In its deformed and compliant state, small changes in the transmural

pressure yield large changes in the cross-sectional area of the tube. Pro-

vided that the mean axial flow rate is sufficient to over come viscous losses,

the system can exhibit high and low frequency self-excited oscillations (of

large and small amplitude) associated with a number of different instability

mechanisms.

1.1.3 Modelling fluid-structure interaction

In the last 50 years significant efforts have been made in producing accu-

rate theoretical descriptions of the fluid-structure interaction observed ex-

perimentally within a Starling resistor. In this thesis, we will concentrate

our attention on theoretical models that can be used to predict the onset of

self-excited oscillations. In order to produce such a theoretical description,
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A

Ptm

Figure 1.2: Illustration of the typical relationship between the transmural
pressure Ptm and cross-sectional area A of a collapsible tube. Sketches of the
corresponding cross-sectional shapes are included.

independent mechanistic models for the wall and internal fluid are typically

established, and then coupled via the hydrodynamic pressure. In a gen-

eral three-dimensional set-up, the model for the wall mechanics will involve

a system of three equations relating four dependent variables, namely the

transmural pressure (involving the unknown fluid pressure and imposed ex-

ternal pressure) and three unknown displacement functions measuring the

deformations of the tube in the normal, azimuthal and axial directions. The

model for the fluid mechanics provides an additional four equations, relat-

ing four unknown dependent variables, namely the fluid pressure as well as
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two transverse fluid velocity components and an axial fluid velocity compo-

nent. In total this yields a system of seven equations, relating seven distinct

unknowns. In principle, a solution of this fully coupled system can be ob-

tained. However, this is beyond analytical treatment, and would require vast

amounts of computational power. As an alternative approach, many authors

have used a variety of techniques such as cross-sectional averaging, asymp-

totic analysis and/or shell theory to simplify this system (Heil and Hazel,

2011). We will discuss some of these approaches in the following sections.

1.1.4 One-dimensional models and the tube law

Some of the simplest theoretical descriptions of physiological flows in elastic

vessels are based on spatially one-dimensional models (Conrad, 1969; Katz

et al., 1969; Bertram and Pedley, 1982). Within these models, the system

is represented by three variables, namely the cross-sectionally averaged fluid

pressure, p and velocity, w, as well as the cross-sectional area, A, which each

depend on the axial co-ordinate z and time t. Cross-sectionally averaged

conservation of mass and axial momentum provides two equations, e.g.,

∂A

∂t
+

∂

∂z
(wA) = 0, (1.1)

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂p

∂z
, (1.2)

where ρ is fluid density. To close the system, a third equation — known as a

tube law — is required to capture the wall mechanics. The tube law, which

usually takes the form

p− pext = P (A), (1.3)
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for some function P , is often chosen to fit experimental results (see Shapiro,

1977; Kececioglu et al., 1981).

Flaherty et al. (1972) was one of the first to propose a theoretical tube law,

based on the post-buckling behaviour of an inextensible elastic ring. However,

this local analysis fails to capture axial tension and axial bending effects that

are induced by the interaction between neighbouring cross-sections (Heil and

Pedley, 1996).

In an attempt to improve the tube law of Flaherty et al. (1972), Mcclurken

et al. (1981) assumed that effects due to axial tension and bending contribute

additively to the tube law, so that

p− pext = P (A) + PT + PB. (1.4)

Expressions for PT and PB were then derived in terms of the respective sec-

ond and fourth axial derivatives of the tube’s cross-sectional area, A. How-

ever, these derivations were based on the assumption that the deformed tube

would adopt an idealised geometry, which is a significant limitation. Many

other authors have proposed ways of incorporating contributions from axial

forces and bending moments. We refer the reader to the studies of Reyn

(1987), Jensen and Pedley (1989) and Whittaker et al. (2010b) as additional

examples.

The canonical example of a one-dimensional model of the fluid-structure

interaction observed in a Starling resistor takes the form (Pedley, 1980)

∂A

∂t
+

∂

∂z
(wA) = 0, (1.5)
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ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂p

∂z
− F, (1.6)

p− pext = P (A)− T ∂
2A

∂z2
. (1.7)

Here z is the axial co-ordinate of the tube, t is time, A(z, t) is the tube’s cross-

sectional area, pext is an applied external pressure, and w(z, t) and p(z, t) are

the respective cross-sectionally integrated axial fluid velocity and pressure.

The function P measures the local relationship between the tube’s cross-

sectional area and the transmural pressure p − pext in the absence of axial

effects. The function F (which typically depends on the model variables)

represents viscous losses and T approximates an axial tension force applied at

the tube ends. The inclusion of the final term in (1.7) is therefore an attempt

to include axial tension-curvature effects between neighbouring cross-sections

into the model. Many authors have had success in demonstrating that the

system (1.5)–(1.7) exhibits some of the physiological phenomena observed in

experiments. Examples include: full vessel occlusion in finite time, (Cancelli

and Pedley, 1985), pulse wave propagation (Pedley, 1980), and self-excited

oscillations (Cancelli and Pedley, 1985; Hayashi et al., 1998; Matsuzaki et al.,

1994).

1.1.5 Two-dimensional models

Fully three-dimensional models capturing the fluid-structure interaction aris-

ing from flow through collapsible vessels are both difficult to produce the-

oretically and computationally expensive to simulate numerically. Instead,

two-dimensional models have been produced. Developments have been made

in producing theoretical and numerical models of the Starling resistor that
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Rigid

Elastic
section

pup pdnpint

pext

Rigid Rigid

Figure 1.3: Visual representation of the Pedley (1992) model, which involves
a finite length two-dimensional channel with one section of the upper wall
replaced with a collapsible section of elastic membrane held under longitu-
dinal tension. Fluid is driven through the system by an imposed pressure
difference pup − pdn > 0 between the upstream and downstream ends of the
channel.

predict self-excited oscillations. The first model that gathered considerable

traction was that of Pedley (1992), who formulated the problem of fluid flow

(driven by an imposed pressure drop) through a two-dimensional planar chan-

nel in which one wall has a section replaced by an elastic membrane under

longitudinal tension (see figure 1.3). This problem is the two-dimensional

analogue of the problem considered throughout this thesis. Provided that

the mean-flow Reynolds number is large, it is well known that this system

exhibits a rich variety of flow-induced instabilities (see numerical studies by

Rast, 1994; Luo and Pedley, 1995, 1996, 2000). The frequency and amplitude

of the resulting self-excited oscillations is heavily dependent on the magni-

tude of the membrane tension. For a low membrane tension regime, the

viscous pressure drop along the length of the tube induces large-amplitude
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steady wall deformations. Numerical simulations conducted (for the case

of flux-driven flow) by Luo et al. (2008) and Liu et al. (2009) reveal that

these steady states are susceptible to relatively low-frequency oscillations.

However, capturing this behaviour from a theoretical standpoint remains a

significant challenge, due to the large-amplitude nature of the oscillations.

Conversely, in the large membrane tension regime, the steady viscous pres-

sure drop induces only small-amplitude wall deflections, and the system is

susceptible to small-amplitude high-frequency self-excited oscillations. For

the case of pressure-driven flow, Jensen and Heil (2003) were the first to pro-

duce a theoretical description of these oscillations. For a regime in which the

membrane tension, mean-flow Reynolds number and axial lengthscales were

all large, Jensen and Heil (2003) formally identified a ‘sloshing’ mechanism

that drives self-excited oscillations, and deduced a stability threshold which

can be used to predict their onset. It is this regime and mechanism that we

focus on in this thesis.

1.1.6 The sloshing mechanism

We now give a brief description of how the sloshing mechanism identified

by Jensen and Heil (2003) can result in the onset of self-excited oscillations.

Owing to the large longitudinal tension within the membrane, the deflections

in the compliant wall are small, and large elastic restoring forces are exerted

on the internal fluid. The small-amplitude displacements in the flexible wall

change the volume of the channel and displace fluid particles (periodically)

towards the upstream and downstream ends of the tube, resulting in oscil-

latory ‘axial sloshing’ flows in the rigid sections. By virtue of a non-zero
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time-mean-square, any oscillatory flow at the upstream end increases the ki-

netic energy influx and any oscillatory flow at the downstream end increases

the kinetic energy outflux. Hence, if the amplitude of the oscillations is

greater in the upstream section of the tube, then there will be a net influx

of kinetic energy into the system. Provided that this input exceeds addi-

tional losses (e.g., the dissipation due to the viscosity in the fluid and work

done by the pressure at the tube ends), then this additional kinetic energy

can be sufficient to drive the instability (Jensen and Heil, 2003; Heil and

Waters, 2008). Typical ways of achieving larger amplitude sloshing flows in

the upstream region include having a shorter upstream rigid section than

downstream section, or to prescribe the volume flux at the downstream end.

Alternative instability mechanisms, which do not necessarily rely on an in-

crease in kinetic energy flux over time, also exist. For instance, Stewart et al.

(2009) developed a spatially one-dimensional long-wavelength model, based

on integrating the Jensen and Heil (2003) model over the channel width.

This work determined fundamentally different instability mechanisms that

rely on either a minimisation of viscous losses or alternatively a reduction of

the work done by the pressure at the tube ends.

1.1.7 Three-dimensional models

Whittaker et al. (2010c) showed that the sloshing mechanism identified by

Jensen and Heil (2003) in two dimensions can also exist in a three-dimensional

set up. They considered oscillations about a non-axisymmetric base config-

uration. This is because area changes associated with the small-amplitude

deformations of a circular cross-section are an order of magnitude smaller
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than for the case of a non-axisymmetric cross-section. Since the axial slosh-

ing flows are driven by the area changes, a non-axisymmetric base-state is

significantly more likely to become unstable. To obtain a model that predicts

the oscillations, independent asymptotic descriptions of the wall mechanics

(Whittaker et al., 2010b) and fluid mechanics (Whittaker et al., 2010d) were

first established. For the wall mechanics, Whittaker et al. (2010b) system-

atically derived a tube law using Kirchhoff–Love shell theory, which is valid

within a small-amplitude long-wavelength, thin-walled regime and takes the

form

P̃ = k0α− k2F̃
d2α

dz2
, (1.8)

where α is the relative area change of the tube’s cross-section and k0 and k2

are constants. For the fluid mechanics, they used the Navier–Stokes equa-

tions, which were shown to simplify significantly due to the high-frequency

small-amplitude nature of the oscillations (Whittaker et al., 2010d). Whit-

taker et al. (2010c) then combined these models and determined the normal

modes of the resulting system. After an assessment of the systems energy

budget, they used these normal mode solutions to demonstrate that their

model exhibits self-excited oscillations, induced by the sloshing instability.

On computing the growth rates, frequencies and mode shapes of the oscil-

lations, they compared their work directly with numerical simulations and

obtained good agreement. The model of Whittaker et al. (2010c) was then

extended by Walters et al. (2018) to include effects due to the inertia of the

tube wall. It was found that the addition of wall inertia has a stabilising

effect on the system.

Other three-dimensional studies involving collapsible tube flow have also
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been conducted. Both Hazel and Heil (2003) and Heil and Boyle (2010) com-

puted full numerical simulations of a model similar to that of Whittaker et al.

(2010c) in the large-amplitude regime, while Zhang et al. (2018) considered

the three-dimensional deformations of a hyperelastic cylindrical tube.

1.2 Overview

In this thesis, we will focus on the mechanistic modelling of the wall defor-

mations of fluid-filled elastic-walled tubes, and also how these results can be

coupled to the mechanics of the internal fluid. In Chapter 2, we re-examine

the model used by Whittaker et al. (2010b) to derive a tube law for an ini-

tially elliptical elastic-walled tube. We extend the modelling to allow for

arbitrary initial cross-sectional shapes and azimuthally varying transmural

pressures. These formulations will then be used in the following chapters.

In Chapter 3, we use an eigenfunction expansion method to derive the first

formal solution for the small-amplitude deformations of a long thin-walled

elastic tube having an initially elliptical cross-section. In Chapter 4, we cou-

ple this new model for the wall mechanics to the mechanics of an internal

fluid. We compute the normal modes of the system, and use these solutions

to compute a stability threshold for the onset of self-excited oscillations. In

Chapter 5, we derive a model for the wall deformations of a tube with an

arbitrary initial cross-sectional shape. We then use this model to compute a

family of initial cross-sectional shapes with the property that an azimuthally

uniform transmural pressure will excite only a single azimuthal deformation

mode, resulting in a semi-analytical solution of the solid mechanics problem.

Finally in Chapter 6, we present our final discussions and conclusions.



Chapter 2

Problem formulation

Synopsis

In this chapter, we formally present the problem that is to

be considered throughout this thesis by generalising the initial

set-up of Whittaker et al. (2010b) to include elastic-walled tubes

with arbitrary initial cross-sections. We begin by re-formulating

the physical set-up of Whittaker et al. (2010b) in terms of an arbi-

trary azimuthal co-ordinate system and introduce notation used

to describe the tube wall and its deformation. We then derive a

revised set of governing equations measuring the wall deforma-

tion, which now permit arbitrary initial cross-sections and allow

the transmural pressure to be azimuthally non-uniform. Finally,

we express the system using two specific co-ordinate systems that

will be used in later chapters.

2.1 Introduction

Whittaker et al. (2010b) investigated the small-amplitude deformations of

a long thin-walled elastic tube having an initially axially uniform elliptical

cross-section. The deformations of the tube were assumed to be induced by

an applied transmural pressure, and contributions from the inertia of the

15
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tube wall were ignored. Whittaker et al. (2010b) formally derived governing

equations using Kirchhoff–Love shell theory within a long wavelength thin-

walled regime, and then used these to obtain a tube law.

By considering the equilibrium of forces in the normal, azimuthal and ax-

ial directions, together with linear constitutive laws, Whittaker et al. (2010b)

derived a system of equilibrium equations that measure the small-amplitude

deformations of the tube. The deformations are expressed in terms of four

deformation functions: ξ(τ, z), η(τ, z), ζ(τ, z) and ζa(z), which describe the

normal, azimuthal, averaged axial, and residual axial displacements respec-

tively. The displacements are functions of τ and z, which are dimensionless

azimuthal and axial co-ordinates respectively. The equilibrium equations

obtained are leading order in the deformation magnitude ε � 1, the recip-

rocal of the dimensionless tube length `−1 � 1, and the dimensionless wall

thickness δ � 1.

By exploiting the fact that for a long thin-walled tube there is negli-

gible azimuthal extension and in-plane shear at leading order, Whittaker

et al. (2010b) obtained relationships between the deformation functions which

meant that the entire problem could be formulated in terms of only the az-

imuthal displacement, η(τ, z). The governing partial differential equation

(PDE) for η was shown to be of the form

L (K (η))− F̃ ∂2

∂z2
J (η) = −P̃ (z)

d

dτ

(
1

B̄(τ)

)
, (2.1)

where L ,K and J are linear differential operators in τ , F̃ is the dimen-

sionless axial tension, B̄ is the (known) base-state azimuthal curvature and

P̃ (z) is the dimensionless (azimuthally uniform) transmural pressure.
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Walters et al. (2018) expanded on the work of Whittaker et al. (2010b)

by including effects due to the inertia of the tube wall. Walters et al. (2018)

showed that the size of the inertial effects could be captured by a single

dimensionless parameter, M . It was found that wall inertia contributed

additively to the governing PDE (2.1) through a new term proportional to

M . The governing equation becomes

L (K (η))− F̃ ∂2

∂z2
J (η) +M

∂2

∂t2
J (η) = −P̃ (z, t)

d

dτ

(
1

B̄(τ)

)
. (2.2)

In this chapter, we generalise the model described above for the case in

which the tube has an arbitrary initial cross-sectional shape and the trans-

mural pressure is azimuthally non-uniform. In §2.2, we describe the initial

geometry of the tube and its subsequent deformation in terms of an arbitrary

azimuthal co-ordinate system. In §2.3, the parameter regime in which the

model is valid is presented, and a system of force-balance equations are de-

rived measuring the deformations in the tube wall. By following the method-

ology set out in Whittaker et al. (2010b), the entire problem is formulated in

terms of the azimuthal displacement function, η. The governing equation for

η takes a similar form to (2.2), but differs in that B̄ is now arbitrary, and the

forcing term takes a different form due to the pressure no longer being az-

imuthally uniform. In §2.4 we recover the set-up of Whittaker et al. (2010b)

for the case of an elliptical tube, and also consider the case in which the

tube’s initial cross-sectional shape is described using intrinsic co-ordinates.
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F

F

L

d
P ∗tm

O(a)

Figure 2.1: The typical set-up showing the initial configuration of a long
thin-walled tube of dimensional length L and wall thickness d. The tube
has an initially axially uniform arbitrary cross-sectional shape of O(a) radial
scale, and is subject to a dimensional axial tension force F at both ends.
The tube will undergo deformations about this pre-stressed state due to an
applied dimensional transmural pressure P ∗tm.

2.2 Set-up

2.2.1 Physical set-up

We adopt a similar set-up to Whittaker et al. (2010b) and Walters et al.

(2018) by considering a long thin-walled elastic tube of dimensional length

L, with mass per unit area m and dimensional wall thickness d (see figure

2.1). In what we shall term the undeformed configuration, the tube is subject

to a dimensional axial pre-stress of magnitude F/(2πad) at both ends and

is axially uniform with an arbitrary cross-sectional shape of perimeter 2πa.

Hence F is the extensional force applied at the ends of the undeformed tube,

and a is the length scale of the tube’s cross-section. The tube is aligned with

dimensional Cartesian coordinates (ax, ay, Lz), where z is aligned with the

tube’s central axis. We assume that at the dimensionless endpoints z = 0, 1

the tube is pinned to rigid extensions. We introduce τ ∈ (0, π/2) as an

arbitrary dimensionless Lagrangian azimuthal co-ordinate around the tube
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midplane.

Assuming that the tube wall is linearly elastic with Young’s modulus

E and Poisson ratio ν, we define the extensional stiffness D and bending

stiffness K respectively as

D =
Ed

1− ν2
, K =

Ed3

12(1− ν2)
. (2.3)

We suppose that changes to the deformation of the tube wall occur over

a typical time scale T , and are induced by an applied transmural pressure

P ∗tm(τ, z, t), with dimensional scale P, where t is dimensionless time. We

note that in contrast to previous work we allow for azimuthal variation in

P ∗tm. For simplicity, we assume that P ∗tm is even and π-periodic in τ . This

corresponds to mirror symmetry in the x and y axes.

2.2.2 Dimensionless parameters and asymptotic regime

We will work within an asymptotic regime in which the tube is long and the

wall is thin. Defining dimensionless parameters ` and δ for the respective

aspect ratios, we have

` =
L

a
� 1 and δ =

d

a
� 1. (2.4)

We introduce the dimensionless transmural pressure as

P̃ (τ, z, t) =
P ∗tm(τ, z, t)

P
. (2.5)

Whittaker et al. (2010b) showed that the dominant mechanisms that bal-
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ance the transmural pressure (at leading order) within this regime are those

of azimuthal bending and/or the action of axial tension through axial curva-

ture. For the case of Walters et al. (2018) the pressure may also be balanced

by contributions due to wall inertia. To describe the relative magnitudes of

the transmural pressure scale P, the bending stiffness K, the axial tension

F , and the mass m, we introduce the dimensionless parameters:

F̃ =
aF

2πK`2
= O(1), M =

ma4

KT 2
. 1, ε =

a3P

K
� 1. (2.6)

The parameter F̃ gives the ratio between axial tension–curvature effects and

azimuthal bending, and can be thought of as a dimensionless axial tension.

The parameter M gives the ratio between wall inertia and azimuthal bending

and can be thought of as a dimensionless mass. Taking F̃ = O(1) and

M . O(1) enables effects due to axial tension–curvature, wall inertia and

azimuthal bending all to be present at leading order. The parameter ε is

the ratio of the pressure forcing to the resistance from azimuthal bending.

It gives an estimate of the dimensionless amplitude of the deformations (εa

in dimensional terms). Taking ε � 1 ensures that we have small-amplitude

deformations, and that we can linearise the problem about the base state.

2.2.3 Description of the shape of the undeformed tube

The tube wall’s midplane is parametrised by the dimensionless co-ordinates

τ ∈ (0, 2π) and z ∈ (0, 1). As depicted in figure 2.2, the co-ordinate τ varies

along the midplane of the tube and z is the distance along the tube’s central

axis. In its undeformed configuration, the Cartesian position vector of the
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τ

z

x

y

1

Figure 2.2: Schematic of a shell segment illustrating the dimensionless co-
ordinate system (τ, z). Here, τ is the azimuthal co-ordinate oriented around
the circumference of the tube’s cross-section. The co-ordinate z represents
the distance along the tube’s central axis.

tube wall is written as

r̄(τ, z) = a


x̄(τ)

ȳ(τ)

`z

 , (2.7)

where (x, y) = (x̄(τ), ȳ(τ)) gives a dimensionless parametric representation

of the tube’s initial cross-section.

For simplicity, we assume that the initial cross-sectional shape exhibits

two-fold symmetry in the x and y axis, and that the domain τ ∈ (0, π/2)

covers precisely the first quadrant of the tube’s midplane. This symmetry

can be imposed by requiring x̄ to be even about τ = 0, odd about τ = π/2,

and 2π-periodic, as well as ȳ being odd about τ = 0, even about τ = π/2,

and 2π-periodic. Overall, these symmetries mean that we can restrict the

azimuthal domain to the first quadrant τ ∈ (0, π/2).
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We define unit vectors t̂, ẑ and n̂, which are oriented in the azimuthal,

axial and normal directions respectively. They are given by

t̂ =
1

h


x̄′(τ)

ȳ′(τ)

0

 , ẑ =


0

0

1

 , n̂ =
1

h


ȳ′(τ)

−x̄′(τ)

0

 , (2.8)

where the dash represents a derivative with respect to τ , and the scale factor

h(τ) is given by

h(τ) =

√(
dx̄

dτ

)2

+

(
dȳ

dτ

)2

> 0. (2.9)

The imposed symmetry on x̄ and ȳ then results in h(τ) being both even

and π-periodic. We introduce a dimensional arclength parameter as that

is measured around the tube’s midplane, and let A and B be points corre-

sponding to τ = 0 and τ = π/2 respectively. Using figure 2.3 for reference,

the dimensional circumference C̄ of the tube is given by

C̄ = 4a

∫ B

A

ds,

= 4a

∫ π/2

0

h(τ) dτ, (2.10)

Since the perimeter of the tube’s cross-section is fixed as 2πa, we require

∫ π/2

0

h(τ) dτ =
π

2
. (2.11)

The dimensional base-state cross-sectional area Ā of the tube is given by

Ā = 4a2

∫ A

B

ȳ dx,
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x

y

τ = π/2

τ = 0

B

A

ds

dx

(x̄, ȳ)ds = h dτ

dx = x̄′ dτ

Figure 2.3: One quarter of an initial cross-sectional shape that is
parametrised by (x, y) = (x̄, ȳ). The grey shaded region is a thin area element
with an approximate area of ȳ dx. The schematic illustrates the relationship
between the Cartesian co-ordinate x and the dimensionless arclength param-
eter s to the azimuthal co-ordinate τ .

= 4a2

∫ 0

π/2

ȳ(τ)x̄′(τ) dτ. (2.12)

The base-state azimuthal curvature B̄(τ) of the undeformed tube is given by

B̄(τ) = n̂ · dt̂

ds
,

= n̂ · 1

h

dt̂

dτ
,

=
ȳ′

h2

(
x̄′

h

)′
− x̄′

h2

(
ȳ′

h

)′
. (2.13)

The symmetries of x̄, ȳ and h result in B̄ being both even and π-periodic.
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2.2.4 Description of the deformations

We now introduce variables to describe the deformation of the tube from

its undeformed configuration. We follow Whittaker et al. (2010b) who used

the four deformation functions: ξ(τ, z, t), η(τ, z, t), ζ(τ, z, t) and ζa(z, t). The

function ξ(τ, z, t) describes the component of displacement normal to the

tube wall, η(τ, z, t) describes the displacement in the azimuthal direction,

and the functions ζ(τ, z, t) and ζa(z, t) represent the axial displacements.

The two functions are used here to distinguish between the azimuthal-mean

axial displacement ζa(z, t), and the azimuthally varying component ζ(τ, z, t),

which have different scales. The deformed position of the part of the tube

wall which was at r̄(τ, z) in the undeformed configuration is then written as

r(τ, z, t) = r̄(τ, z) +
εa

h(τ)

(
ξ(τ, z, t)n̂ + η(τ, z, t)t̂

)
+ εa`

(
1

`2
ζ(τ, z, t) + δ2ζa(z, t)

)
ẑ, (2.14)

where ∫ 2π

0

ζ(τ, z, t)h(τ) dτ = 0. (2.15)

The pre-factors present in (2.14) ensure that the dimensional scales are con-

sistent whilst rendering the deformation functions ξ, η, ζ, ζa all O(1).

2.3 Asymptotic model for the deformations

Using the set-up of Whittaker et al. (2010b), we consider an asymptotic

model in the multiple limits δ � 1, ` � 1 and ε � 1, that is zeroth order

in δ, and `−1, and first order in ε. There is one constraint on the relative
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magnitudes of δ and `−1, which ensures that boundary layers in the axial

co-ordinate (containing unwanted shear effects) are passive, and have a neg-

ligible effect on the bulk solution:

δ`2 � 1. (2.16)

We refer readers to Whittaker (2015) and Walters et al. (2018) for a compre-

hensive discussion on this topic. But briefly, Whittaker (2015) and Walters

et al. (2018) introduce the dimensionless parameter

F =
F̃ δ2`2

12(1− ν2)
(2.17)

to characterize boundary layer thickness for the asymptotic regimes consid-

ered here. For F � 1, an axial boundary layer of dimensional thickness

O(aδ`) is present, which is necessarily passive when δ � 1. On the other

hand, when F � 1, an outer shear layer of dimensional thickness O(aF−1/2)

is present. For this layer to have negligible affect on the bulk solution, we

require aF−1/2 � L. Overall, this leads to the constraint (2.16).

2.3.1 Leading-order force balance

For the case of an initially elliptical tube, Whittaker et al. (2010b) and Wal-

ters et al. (2018) derived a system of equations of motion measuring the

deformations in the tube wall. The derivation starts with linear constitutive

laws (Flügge, 1972) for the elastic wall and the Kirchhoff–Love shell equa-

tions (Love, 1888). On substituting the deformation (2.14) for the case of

an ellipse into these equations and neglecting terms of O(ε, `−1, δ), a set of
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three equations of motion in the normal, azimuthal and axial directions is

obtained. The unknowns in these equations are the displacement functions

ξ, η, ζ, ζa and a hoop stress Ñ (the latter is effectively a Lagrange multiplier

for the constraint of no azimuthal stretching).

We now replicate the methodology set out in Whittaker et al. (2010b)

and Walters et al. (2018) for the more general set-up stated above. Omitting

the detailed calculations for brevity, we obtain the following leading-order

system of three force-balance equations that describe the deformations of a

tube with an arbitrary initial cross-sectional shape

B̄Ñ +
F̃

h

∂2ξ

∂z2
− 1

h

∂

∂τ

(
1

h

∂

∂τ

(
β

h

))
+
M

h

∂2ξ

∂t2
+ P̃ (τ, z, t) = 0,

(2.18)

∂Ñ

∂τ
+

12(1− ν)

δ2`2

d

dz

(
∂η

∂z
+
∂ζ

∂τ

)
+ F̃

∂2η

∂z2
+ B̄

∂

∂τ

(
β

h

)
+M

∂2η

∂t2
= 0,

(2.19)

1

`

∂

∂z

(
νÑ + 12(1− ν2)

(
1

δ2`2

∂ζ

∂z
+
∂ζa
∂z

))
+
F̃ `δ2

12

∂Ñ

∂z

F̃ `(2− ν)

(
1

`2

∂2ζ

∂z2
+ δ2∂

2ζa
∂z2

)
+M`

(
1

`2

∂2ζ

∂t2
+ δ2∂

2ζa
∂t2

)
= 0,

(2.20)

where

β =
∂

∂τ

[
ηB̄

h
+

1

h

∂

∂τ

(
ξ

h

)]
(2.21)

and Ñ is the azimuthal hoop stress. We choose not to give an explicit

expression for Ñ as it will later be eliminated. Equations (2.18)–(2.21) are

identical to those presented in Walters et al. (2018), with the exceptions

that h and B̄ are now arbitrary, β is no longer defined in terms of elliptical
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co-ordinates, and P̃ can vary in τ .1

2.3.2 Asymptotic constraints

For the thin-walled regime considered here, the tube is much more suscepti-

ble to bending than it is to stretching and shearing. Whittaker et al. (2010b)

argued that at leading order in ε there is negligible azimuthal stretching and

that the in-plane shear is uniform within each cross-section. They showed

that these physical constraints result in the following leading-order relation-

ships

−ξB̄ +
∂

∂τ

(η
h

)
= 0, (2.22)

∂η

∂z
+
∂ζ

∂τ
=
h(τ)

2π

d

dz

∫ 2π

0

η dτ. (2.23)

Equations (2.22)–(2.23) provide useful relationships between the deformation

functions ξ, η and ζ. In the following section, they will be used to eliminate

ξ and ζ, in favour of η. The remaining displacement function ζa decouples

automatically, and can be obtained by averaging (2.20) over the azimuthal

co-ordinate τ and applying appropriate boundary conditions at z = 0, 1 (see

§2.3.4). Overall, this means the entire problem can be formulated in terms

of the azimuthal deformation, η.

1Note: there is an erroneous factor of h in the second term of eq. (2.51) in Walters
et al. (2018).
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2.3.3 The governing equation for the azimuthal dis-

placements

Eliminating Ñ between equations (2.18) and (2.19) and using (2.22)–(2.23)

to write the resulting equation in terms of only η, we arrive at the following

partial integro-differential equation for η

L (K (η))− h ∂
2

∂z2
R(η)− F̃ ∂2

∂z2
J (η) +M

∂2

∂t2
J (η) = − ∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
,

(2.24)

where the linear differential operators L ,K and J , are given explicitly by

L (η) = −B̄ ∂

∂τ

(η
h

)
− ∂

∂τ

(
1

B̄h

∂

∂τ

(
1

h

∂

∂τ

(η
h

)))
, (2.25)

J (η) = η − ∂

∂τ

(
1

B̄2h

∂

∂τ

(η
h

))
, (2.26)

K (η) =
∂

∂τ

(
B̄η

h
+

1

h

∂

∂τ

(
1

B̄h

∂

∂τ

(η
h

)))
, (2.27)

and the integral operator R(η) is defined as

R(η) =
12(1− ν)

δ2`2

1

2π

∫ 2π

0

η dτ. (2.28)

The transmural pressure P̃ , the base-state curvature B̄, and the scale

factor h are all assumed to be even and π-periodic in τ . Noting the even

symmetry of the operators L K and J in (2.24) we can see that the only

component of η that is forced by the transmural pressure will be both odd

and π-periodic. For the case in which wall inertia is neglected (M = 0),

Whittaker et al. (2010b) showed that solutions for η must be both odd and

π-periodic. We note that for the general set-up considered here this result still



Chapter 2. Problem formulation 29

holds true. For the case in which wall inertia is present (M 6= 0), solutions

for η exist involving free oscillatory modes that do not exhibit this symmetry.

Since these are unforced, we neglect these components and proceed by seeking

solutions for η that are odd and π-periodic. This results in R̂(η) ≡ 0, and

the governing equation (2.24) becomes a PDE

L (K (η))− F̃ ∂2

∂z2
J (η) +M

∂2

∂t2
J (η) = − ∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
. (2.29)

Equation (2.29) is a generalisation of the governing PDE derived by Wal-

ters et al. (2018), and differs in that the base-state curvature B̄, and the

azimuthal co-ordinate τ are both arbitrary. The form of the pressure term

also differs and now involves an azimuthal derivative, which is present be-

cause the pressure is no longer assumed to be azimuthally uniform.

2.3.4 Boundary conditions

There are two sets of boundary conditions that accompany (2.29). The first

applies at τ = 0, π/2, and arise due to the symmetries of the problem. Since

we are assuming that η is both odd and π periodic in τ we can restrict

our attention to the quarter domain τ ∈ (0, π/2) and reconstruct the global

solution for η using symmetry. To ensure that this global solution is smooth

everywhere, we need to impose

η =
∂2η

∂τ 2
=
∂4η

∂τ 4
= 0 on τ = 0,

π

2
. (2.30)

The second set of boundary conditions apply at the dimensionless tube

ends z = 0 and z = 1, and encapsulate the requirement that the elastic tube
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is pinned to rigid supports. The conditions are given explicitly by

η = 0 on z = 0, 1. (2.31)

As discussed by Whittaker et al. (2010b), the pinned-end boundary condi-

tions (2.31) combined with the inextensibility constraints (2.22)–(2.23) imply

that we require ξ = 0 at z = 0, 1, however that we shall not, in general, obtain

either ζ = 0 or ∂ξ/∂z = 0 at z = 0, 1. The inability to fix the axial displace-

ments and normal gradient at the tube ends is a result of losing degrees of

freedom by neglecting in-plane shear and axial bending effects. These effects

are contained within boundary layers adjacent to the tube ends, which are

passive for the asymptotic regime considered here. For a detailed discussion

on this topic see Whittaker (2015) and Walters et al. (2023).

Equations (2.29)–(3.20) define a sixth-order linear boundary value prob-

lem for the azimuthal displacement function, η. Once a solution for η has

been obtained, the inextensibility conditions (2.22)–(2.23) can then be used

to determine ξ and ζ. The final displacement function ζa can be obtained by

averaging (2.20) over the cross-section and imposing ζa = 0 at z = 0, 1.

2.4 Specific co-ordinate systems

We now consider two special cases of the above system, which we shall use

in later chapters of this thesis: First, the case of an elliptical cross-section

(previously used by Whittaker et al. (2010b) and Walters et al. (2018)) and

secondly the case where the cross-sectional shape is defined using intrinsic

co-ordinates.
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2.4.1 Elliptical co-ordinates

For the case of an initially elliptical tube, we introduce the constant ellipticity

parameter σ0 such that the tube’s initial cross-section is parametrised by

x̄(τ) = c cosh(σ0) cos(τ), ȳ(τ) = c sinh(σ0) sin(τ). (2.32)

Here, the constant c(σ0) is a normalisation factor that is chosen to set the

initial circumference of the tube’s cross-section to be 2πa. The dimensional

Cartesian position vector of the tube in its undeformed configuration is given

by

r̄(τ, z) = a


c cosh(σ0) cos(τ)

c sinh(σ0) sin(τ)

`z

 . (2.33)

From (2.9), the scale factor h(τ) is given by

h(τ) = c

(
1

2
cosh(2σ0)− 1

2
cos(2τ)

) 1
2

> 0. (2.34)

Using (2.10) the circumference of the tube is then given by

C̄ = 2πa
2cE(sech(σ0))

π sech(σ0)
, (2.35)

where E(k) =
∫ π/2

0

√
1− k2 sin2(θ)dθ is the complete elliptic integral of the

second kind. Hence, to obtain C̄ = 2πa, we require

c =
π sech(σ0)

2E(sech(σ0))
. (2.36)
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Using (2.12) and (2.13), expressions for the undisturbed area Ā and the

base-state azimuthal curvature are then given by

Ā = πa2 c
2 sinh(2σ0)

2
, B̄(τ) = −c

2 sinh(2σ0)

2h3
. (2.37)

Finally, from (2.8), the unit vectors t̂, ẑ and n̂ are given by

t̂ =
c

h


− cosh(σ0) sin(τ)

sinh(σ0) cos(τ)

0

 , ẑ =


0

0

1

 , n̂ =
c

h


sinh(σ0) cos(τ)

cosh(σ0) sin(τ)

0

 .

(2.38)

These results match those obtained by Whittaker et al. (2010b).

2.4.2 Intrinsic arclength co-ordinates

For the case where the tube’s initial cross-section is arbitrary, we can parametrise

the tube’s cross-section using a dimensionless arclength co-ordinate, s, which

is measured around the tube’s midplane. To describe the cross-sectional

shape, we can introduce θ(s), which represents the angle made between the

y axis and the tangent to the tube midplane (see figure 2.4).

The components x̄ and ȳ of the Cartesian position vector of the tube in

its undeformed configuration are then given by:

x̄ = −
∫ π/2

s

sin θ(s′) ds′, ȳ =

∫ s

0

cos θ(s′) ds′. (2.39)

The scale factor for the arclength co-ordinate system is given by h = 1.

Using (2.8)–(2.13), we obtain the following expressions for the unit vectors
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x

y

s = π/2

s = 0

θ

δy

−δx

δs

Figure 2.4: Schematic of a shell segment illustrating the relationship between
the dimensionless intrinsic co-ordinate, θ(s) and the co-ordinates x, y and s.
Here s is a measure of arclength around the tube’s midplane.

and base-state curvature

n̂ =


cos θ(s)

sin θ(s)

0

 , t̂ =


− sin θ(s)

cos θ(s)

0

 , ẑ =


0

0

1

 , (2.40)

and

B̄(s) = − dθ

ds
. (2.41)

By symmetry in the cross-sectional shape, we require θ to satisfy

θ(0) = 0, θ(π/2) =
π

2
. (2.42)
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2.5 Conclusions

In this chapter, we have generalised the set-up and initial modelling of Whit-

taker et al. (2010b) to permit arbitrary initial cross-sectional shapes and

azimuthally varying transmural pressures. To do this, we re-formulated the

physical set-up outlined by Whittaker et al. (2010b) in terms of an arbitrary

azimuthal co-ordinate system. Following the methodology set out by Whit-

taker et al. (2010b), we then derived a generalised governing equation for

the azimuthal displacement function η, which now permits arbitrary initial

cross-sections and an azimuthally non-uniform transmural pressure.

The problem formulated in this chapter will be considered throughout

the remainder of this thesis. In Chapter 3, we consider the case of an ini-

tially elliptical tube by adopting the set-up here in terms of the elliptical

co-ordinates set out in §2.4.1. In Chapter 5, we investigate the deformations

of tubes with different initial cross-sectional shapes by adopting the set up

here in terms of the intrinsic arclength co-ordinate system set-out in §2.4.2.



Chapter 3

Formal series solution for the

deformations of an initially

elliptical elastic-walled tube

Synopsis

We derive a formal series solution to the PDE obtained in

Chapter 2 that models the deformations of an initially elliptical

elastic-walled tube. The tube is deformed by a (possibly non-

uniform) transmural pressure. To obtain the solution, we write

the azimuthal displacement as a sum over the azimuthal eigen-

functions of a generalised eigenvalue problem, and show that we

are able to derive an uncoupled system of linear PDEs with con-

stant coefficients for the amplitude of the azimuthal modes as

a function of the axial co-ordinate and time. This results in a

formal solution of the whole system being found as a sum over

the azimuthal modes. We show that the nth mode’s contribu-

tion to the tube’s relative area change is governed by a simplified

second-order PDE, and examine the case in which the tube’s de-

formations are driven by a uniform transmural pressure. The

relative errors induced by truncating the series solution after the

35
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first and second term are then evaluated as a function of both the

ellipticity and pre-stress of the tube. After comparing our results

with Whittaker et al. (2010b), we find that this new method leads

to a significant simplification when calculating contributions from

the higher-order azimuthal modes, which in turn makes a more

accurate solution easier to obtain.

3.1 Introduction

When modelling fluid-structure interaction in elastic-walled tubes, the wall

mechanics are often captured using a so-called ‘tube law’ — a relationship

between the transmural pressure and the cross-sectional area. As part of a

series of papers developing a model for self-excited oscillations in a Starling

resistor set up, Whittaker et al. (2010c) needed to obtain a tube law for an

initially elliptical elastic-walled tube under axial tension. Whittaker et al.

(2010b) used the modelling described here in Chapter 2 to obtain the PDE

L (K (η))− F̃ ∂2

∂z2
J (η) = −P̃ (z)

d

dτ

(
1

B̄(τ)

)
, (3.1)

which governs the leading-order azimuthal displacements of a long thin-

walled initially elliptical elastic-walled tube, with dimensionless axial tension

F̃ under dimensionless axially varying transmural pressure P̃ . (Here τ and

z are the azimuthal and axial co-ordinates, B̄ is the base-state azimuthal

curvature, and L ,K and J are linear differential operators in τ . )
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Whittaker et al. (2010b) opted to solve the governing equation (3.1) via

Fourier decomposition, by seeking a solution of the form

η(τ, z) =
∞∑
n=1

en(z) sin(2nτ). (3.2)

Whittaker et al. (2010b) argued that just the first term in (3.2) would provide

a good approximation to η. After truncating (3.2) after mode n = 1 and

introducing α(z), the relative change in cross-sectional area, Whittaker et al.

(2010b) deduced the tube law

P̃ = k0α− k2F̃
d2α

dz2
, (3.3)

where k0 and k2 are constants, which are computed using numerical solutions

for the leading Fourier modes of the particular integral and complementary

function of (3.1).

By adopting the same solution method as Whittaker et al. (2010b), Wal-

ters et al. (2018) extended the work of Whittaker et al. (2010b) by including

contributions due to the inertia of the tube wall. Walters et al. (2018) showed

that such contributions could be captured via an additional term in the PDE

containing a new dimensionless parameter, M , which is a dimensionless mea-

sure of the inertia in the tube wall. The governing PDE becomes

L (K (η))− F̃ ∂2

∂z2
J (η) +M

∂2

∂t2
J (η) = −P̃ (z, t)

d

dτ

(
1

B̄(τ)

)
. (3.4)
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and the corresponding tube law is

P̃ = k0α− k2F̃
∂2α

∂z2
+ k2M

∂2α

∂t2
. (3.5)

Whilst the approach of Whittaker et al. (2010b) and Walters et al. (2018)

appeared to give good results, an ad hoc approximation was used to truncate

the Fourier series (3.2). The correction to the first mode, which is induced

by the (coupled) higher-order modes is then difficult to calculate. In partic-

ular, higher-order modes in the expansion (3.2) will affect the system for e1,

meaning it has to be re-solved when additional terms are added.

In the present work, we will instead use an eigenfunction expansion

method that allows the equations for the modes to fully decouple. We derive

a formal solution of the whole system, which allows us to calculate the order

of magnitude of the error induced after truncation at any mode.

We begin by adopting the setup and governing equations from Chapter 2

in terms of the elliptical azimuthal co-ordinates system introduced in §2.4.1.

In §3.3 we then introduce a generalised eigenvalue problem, which will later

be used to decouple the governing equation for the azimuthal deformation.

The generalised eigenvalue problem is solved numerically using a collocation

method (bvp4c) and solutions for a variety of elliptical cross-sections are

presented. In §3.4 we show that the relative area change α can be decom-

posed as α(z, t) =
∑∞

n=1 αn(z, t), where each αn(z, t) satisfies a tube-law like

equation

F̃
∂2αn
∂z2

−M∂2αn
∂t2

− λnαn = −Qn(z, t)tn. (3.6)

Here αn is the component of the relative area change corresponding to the
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F̃

F̃

`

δ

P̃

O(1)

Figure 3.1: The typical setup showing a long thin-walled tube of dimension-
less length `, dimensionless mass M , and dimensionless wall thickness δ, with
an initially axially uniform elliptical cross-section. The tube is subject to a
dimensionless axial tension F̃ at both ends and is exhibiting deformations in
response to an applied dimensionless transmural pressure P̃ .

nth azimuthal deformation eigenmode, λn and tn are positive constants that

arise from the solutions of the generalised eigenvalue problem, and Qn(z, t)

measures forcing from the transmural pressure on the nth eigenmode. In §3.5

we examine the case where the deformations of the tube wall are induced by

a steady uniform transmural pressure. In this case, the components αn(z) are

governed by a system of ordinary differential equations (ODEs). We present

results for the first four modes of the relative area change, comparing directly

with the work of Whittaker et al. (2010b), and evaluate the relative error

after truncation after n = 1 and n = 2. Finally, in §3.6 we present our final

discussions and conclusions, whilst also commenting on future work.

3.2 Setup

3.2.1 Physical setup

We adopt the setup of Chapter 2 in dimensionless form and consider a long

thin-walled elastic tube of dimensionless length ` � 1, dimensionless wall
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thickness δ � 1 and dimensionless mass M . 1 (see figure 3.1). In its

initial configuration, the tube is subject to a dimensionless axial tension

force F̃ = O(1) at both ends and is axially uniform with an elliptical cross-

section. The elliptical cross-section has circumference 2π, and an ellipticity

σ0 defined so the major and minor axis ratio is cothσ0.

We consider deformations in the tube induced by a dimensionless trans-

mural pressure P̃ . We restrict attention to pressures that are even and π-

periodic, and deformations that are odd and π-periodic. To describe the tube

wall and its deformation, we adopt the elliptical co-ordinate system (τ, z) set

out in Chapter 2, where τ is a dimensionless azimuthal co-ordinate, and z

is an axial co-ordinate aligned with the tube’s central axis. We introduce t

as dimensionless time. From Chapter 2, the Cartesian position vector of the

tube in its initial position is given by

r̄(τ, z) = a


c cosh(σ0) cos(τ)

c sinh(σ0) sin(τ)

`z

 . (3.7)

We also have the unit vectors t̂, ẑ and n̂ in the normal, azimuthal and axial

directions respectively:

t̂ =
c

h


− cosh(σ0) sin(τ)

sinh(σ0) cos(τ)

0

 , ẑ =


0

0

1

 , n̂ =
c

h


sinh(σ0) cos(τ)

cosh(σ0) sin(τ)

0

 .

(3.8)
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j
√
Ā(sj)− Ā(s0) sj

0 0 ∞
1 γ 0.9540
2 2γ 0.6
3 3γ 0.3840
4 4γ 0.2194
5 5γ 0.0755

Table 3.1: The representative eccentricity parameter values sj of σ0. The

values were chosen such that
√
Ā(sj)− Ā(s0) = γj is linear in j, where

γ = 1
2

√
Ā(0.6)− Ā(s0) is chosen such that s2 = 0.6 for a comparison with

the study of Whittaker et al. (2010b). The resulting elliptical cross-sections
are shown in figure 3.2. The sj values were deduced numerically using the
built in Matlab function fzero.

Here the constant normalisation factor c(σ0) is given by

c =
π sech(σ0)

2E(sech(σ0))
, (3.9)

and the scale factor h(τ) is given by

h(τ) = c

(
1

2
cosh(2σ0)− 1

2
cos(2τ)

) 1
2

> 0. (3.10)

The cross-sectional area Ā and the base-state azimuthal curvature B̄(τ)

of the undeformed tube are given respectively by

Ā = πa2 c
2 sinh(2σ0)

2
, B̄(τ) = −c

2 sinh(2σ0)

2h3
. (3.11)

Throughout this Chapter we shall refer to a set of six representative values

of σ0, (s0, s1, s2, s3, s4, s5), which are presented in table 3.1. Figure 3.2 shows

the corresponding elliptical cross-sections.
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Figure 3.2: The elliptical cross-sections for σ0 ∈ {s0, s1, s2, . . . , s5} as given
in table 3.1. The curves are plotted using (3.9) and (3.7) with a = 1.

To describe the deformation of the tube, we adopt the four deformation

functions: ξ(τ, z, t), η(τ, z, t), ζ(τ, z, t) and ζa(z, t) that were introduced in

Chapter 2. In terms of time t, the deformed position vector of the tube is

given by

r(τ, z, t) = r̄(τ, z) +
εa

h(τ)

(
ξ(τ, z, t)n̂ + η(τ, z, t)t̂

)
+ εa`

(
1

`2
ζ(τ, z, t) + δ2ζa(z, t)

)
ẑ. (3.12)

Finally, using the inextensibility constraints from Chapter 2 and substi-

tuting the expression (3.11) for B̄, we have the revised inextensibility con-

straints

ξ sinh(2σ0) +
2h2

c2

∂η

∂τ
− η sin(2τ) = 0, (3.13)

∂η

∂z
+
∂ζ

∂τ
=
h(τ)

2π

d

dz

∫ 2π

0

η dτ. (3.14)
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3.2.2 Governing equations for the azimuthal displace-

ment η

In Chapter 2 it was shown that the azimuthal displacement η is governed by

the PDE

L̂ (K̂ (η))− F̃ ∂2

∂z2
Ĵ (η) +M

∂2

∂t2
Ĵ (η) = − tanh2 2σ0

∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
,

(3.15)

where the linear differential operators L̂ , K̂ and Ĵ , are given explicitly by

L̂ (η) = tanh(2σ0)

[
−B̄ ∂

∂τ

(η
h

)
− ∂

∂τ

(
1

B̄h

∂

∂τ

(
1

h

∂

∂τ

(η
h

)))]
, (3.16)

Ĵ (η) = tanh2(2σ0)

[
η − ∂

∂τ

(
1

B̄2h

∂

∂τ

(η
h

))]
, (3.17)

K̂ (η) = tanh(2σ0)
∂

∂τ

[
B̄η

h
+

1

h

∂

∂τ

(
1

B̄h

∂

∂τ

(η
h

))]
. (3.18)

These operators differ slightly from when they were originally presented in

Chapter 2 due to the inclusion of the linear scaling tanh2 2σ0. This scaling is

introduced to prevent unbounded behaviour in both Ĵ (η) and the forcing of

(3.15) as σ0 → 0, which arises due to the small σ0 behaviour of the azimuthal

curvature (B̄ = O(σ0) as σ0 → 0).

As explained in Chapter 2, the symmetries of the problem mean that we

can restrict the azimuthal domain to τ ∈ (0, π/2).

The boundary conditions on η are given by

η = 0 on z = 0, 1, (3.19)

η =
∂2η

∂τ 2
=
∂4η

∂τ 4
= 0 on τ = 0,

π

2
. (3.20)



Chapter 3. Deformations of elastic-walled tubes 44

In this Chapter we seek a solution of (3.15)–(3.20) using an eigenfunc-

tion expansion method. Once a solution for η has been found, the remaining

displacement functions can be determined by using the inextensibility con-

straints (3.13)–(3.14).

3.3 A generalised eigenvalue problem

In this section we introduce a generalised eigenvalue problem whose eigen-

functions will be used to construct a solution to (3.15)–(3.20). We will show

that the operators L̂ K̂ and Ĵ are self-adjoint, as well as present the fun-

damental result that the eigenfunctions form a complete set. We compute

numerical solutions to the eigenvalue problem at each σ0 ∈ {s1, s2, s3, s4, s5},

and also obtain an analytical solution in the limit σ0 →∞.

3.3.1 The eigenvalue problem

The generalised eigenvalue problem for y(τ) that we need to consider in order

to construct solutions to (3.15)–(3.20) is:

L̂ K̂ (y)− λĴ (y) = 0 for τ ∈ (0, π/2), (3.21)

subject to

y =
d2y

dτ 2
=

d4y

dτ 4
= 0 on τ = 0,

π

2
. (3.22)

We observe that (3.21) is a 6th-order ODE for y(τ), with one parameter λ

(the eigenvalue) and six boundary conditions. Since the system is linear and

homogeneous, the remaining degree of freedom is the normalisation (linear
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scaling) of the solutions (see below). Let y = Yn(τ) be the eigenfunctions of

(3.21) with corresponding eigenvalues λn, ordered such that λ1 < λ2 < ....

3.3.2 Self-adjointness of the operators and eigenfunc-

tion orthogonality

We define the inner product

〈u, v〉 =

∫ π/2

0

1

h
uvdτ. (3.23)

In Appendix 3.A.2 we show that the operators L̂ K̂ and Ĵ are symmet-

ric (with respect to the above inner product) on the space of functions that

satisfy the boundary conditions (3.22).

In Appendix 3.B we use the self-adjointness of the operators to deduce

the orthogonality relationship

〈Yn, Ĵ (Ym)〉 = 0 for n 6= m. (3.24)

The individual eigenfunctions Yn are not orthogonal to one another. More-

over, it was also shown that the bilinear form 〈u, Ĵ (v)〉 is positive definite

on (0, π/2). We therefore define the normalisation condition

〈Yn, Ĵ (Yn)〉 ≡
∫ π/2

0

1

h
YnĴ (Yn)dτ = 1, (3.25)

which sets the amplitude of the eigenfunctions. This condition, together with
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the orthogonality result (3.24) yields the property

〈Yn, Ĵ (Ym)〉 = δnm, (3.26)

where δnm is the Kronecker delta.

In Appendix A we prove that the set of eigenfunctions Yn form a complete

set, in the sense that any smooth function satisfying the boundary conditions

(3.22) can be represented as a linear combination of the eigenfunctions Yn.

3.3.3 The circular limit σ0 →∞

For general σ0, the system (3.21), (3.22) and (3.25) can only be solved numer-

ically. However, analytic results can be obtained in the limit σ0 →∞, which

corresponds to the tube’s initial cross-section becoming circular. These re-

sults are then used to formulate an initial guess when solving the problem

numerically for general σ0 in §3.3.4. The analytical results can also be used

as a check of the numerical solutions.

It is simple to show that in the limit as σ0 → ∞, we have B̄ → −1 and

h → 1. It follows that in this circular limit, the eigenvalue problem (3.21)

reduces to

d6Yn
dτ 6

+ 2
d4Yn
dτ 4

+ (1− λn)
d2Yn
dτ 2

+ λnYn = 0, (3.27)

subject to

Yn =
d2Yn
dτ 2

=
d4Yn
dτ 4

= 0 on τ = 0,
π

2
. (3.28)
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The normalisation condition (3.25) becomes

∫ π/2

0

Y 2
n +

(
dYn
dτ

)2

dτ = 1, (3.29)

after applying integration by parts.

The ODE (3.27) has constant coefficients and contains only even deriva-

tives of τ . This observation, together with the periodicity implied by the

boundary conditions (3.22), suggests we should seek solutions of the form

Yn = Dn sin(2nτ) for n ∈ N, (3.30)

where the constants Dn are set by the normalisation (3.29). By substituting

(3.30) into (3.27) and arranging for λn we find that

λn =
64n6 − 32n4 + 4n2

1 + 4n2
. (3.31)

Finally, the normalisation condition (3.29) yields Dn, and hence the solution

Yn(τ) =
2√

π(1 + 4n2)
sin(2nτ). (3.32)

Plots of the eigenfunctions (3.32) are shown in figure 3.3.

3.3.4 Numerical method for general σ0

The eigenvalue problem (3.21)–(3.22) and (3.25) with y = Yn(τ) was solved

numerically by using the built in Matlab solver bvp4c. The solver requires

that we write the governing equation as a first-order coupled system of ODEs.
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Figure 3.3: Plots of the eigenfunctions Yn for modes n = 1, 2, ..., 6 in the
limit as σ0 → ∞, corresponding to analytically obtained solutions (3.32) of
the system (3.27)–(3.29).

We do this in the standard way by using Yn and its first five derivatives as

the variables.

For the normalisation, the eigenfunctions were initially normalised subject

to Y ′n(0) = 1, since this was numerically more convenient than using the

integral condition (3.25) when calling the solver. Once a numerical solution of

(3.21)–(3.22) has been found, it is scaled to satisfy the required normalisation

(3.25).

The solver bvp4c requires an initial guess for the solution and any pa-

rameters (the eigenvalue in this case). Initially, when considering an approx-

imation for the eigenfunctions of (3.21)–(3.22), it seemed that the analytical

results for σ0 →∞ studied in §3.3.3 would provide a sufficient approximation

for all σ0. However, using one of these eigenfunctions as our initial guess, the

solver would sometimes (and unpredictably) converge to a different solution

(corresponding to a different mode number n), particularly at smaller σ0.
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Therefore, in order to obtain a reliable solution for the nth mode at each σ0,

we iterated through descending values of σ0 and used each preceding solution

as the initial approximation ỹ of the eigenfunction at the next value of σ0.

In order to provide an initial estimate λ̃n of the eigenvalue, we calculated the

Rayleigh quotient for each σ0 using our eigenfunction estimate:

λ̃n =
〈ỹ, L̂ K̂ (ỹ)〉
〈ỹ, Ĵ (ỹ)〉

. (3.33)

For each n and σ0, once the approximations ỹn and λ̃n had been de-

termined, we called bvp4c on an initial mesh of 500 points on the interval

τ ∈ (0, π/2), which found a numerical approximation of the system. Each

solution yn from bvp4c then needed to be scaled to satisfy the normalisation

condition (3.25). The inner product

γn = 〈yn, Ĵ (yn)〉,

=

∫ π/2

0

1

h
ynĴ (yn) dτ, (3.34)

was evaluated numerically. Once γn had been found, the normalised eigen-

function was computed as

Yn(τ) =
1
√
γn
yn(τ). (3.35)

3.3.5 Numerical results for the eigenvalue problem

In figure 3.4 we plot the normalised eigenfunctions Yn(τ) for modes n =

1, 2, ..., 6 that satisfy (3.21), (3.22) and (3.25) for ellipticity parameter σ0 ∈
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σ0 λ1 λ2 λ3 λ4 λ5 λ6

s0 =∞ 7.20000 211.765 1191.89 3907.94 9703.96 20308.0
s1 = 0.9540 6.97182 207.340 1180.73 3887.93 9672.74 20263.1
s2 = 0.6 6.42638 194.436 1140.73 3811.43 9552.18 20090.5
s3 = 0.3840 5.83285 176.578 1066.20 3636.83 9240.97 19614.3
s4 = 0.2194 5.38682 160.336 979.575 3384.11 8695.61 18631.7
s5 = 0.0755 5.16604 151.227 922.705 3191.48 8217.27 17647.5

Table 3.2: Numerical results for the eigenvalues λn of (3.21)–(3.22). The
eigenvalues are shown for the first six modes and are calculated numerically
at each σ0 ∈ {s0, s1, s2, s3, s4, s5}. The row corresponding to s0 =∞ contains
values for the eigenvalues in the limit σ0 →∞ from (3.31).

{s0, s1, s2, ..., s5} (see table 3.1). It can be seen that the number of half-

oscillations of each eigenfunction present on the interval (0, π/2) is equal to

the mode number n. Moreover, we observe that for decreasing values of σ0

relative to the σ0 =∞ case, the corresponding eigenfunctions are increasingly

out of phase (to the right) with the analytic limits Yn ∝ sin(2nτ). The

amplitude of the eigenfunctions is found to be larger towards the τ = 0 end

of the azimuthal domain.

Figure 3.5 shows the eigenvalues λn (scaled by their circular limit be-

haviour (3.31)) plotted against σ0 for modes n = 1, 2, ..., 6. We observe that,

for each n, the plots maintain a similar-shaped profile. However, there are

large differences in the magnitude of λn (see table 3.2) as we change the mode

number, n. Figure 3.5 also shows that the numerically obtained eigenvalues

λn converge to the analytically obtained limits (3.31) as σ0 →∞.

3.4 Solution by series expansions

In this section we seek a full series solution to (3.15)–(3.20). We represent

the solution as a sum over the eigenfunctions studied in §3.3.1, and show
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Figure 3.4: Numerical solutions to the system (3.21), (3.22) and (3.25)
for y = Yn(τ) (the eigenfunctions) for modes n = 1, 2, . . . , 6 with σ0 ∈
{s0, s1, s2, s3, s4, s5}. The dashed curves represent the analytic solution (3.32)
obtained in the limit σ0 →∞.
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Figure 3.5: Numerical solutions for the eigenvalues λn, plotted against eccen-
tricity parameter σ0 for modes n = 1, 2, ..., 6. Each eigenvalue λn has been
scaled by its value λn∞ in the circular limit (σ → ∞), as given analytically
in (3.31). In the inset we plot the circular limit eigenvalues λn∞ against n
to give an indication of the relative sizes of the eigenvalues corresponding to
different azimuthal modes.

that this allows us to fully decompose the governing equation (3.15) into a

system of uncoupled linear PDEs with constant coefficients.

3.4.1 Decomposition of η(τ, z, t)

Let η(τ, z, t) be the solution of (3.15)–(3.20). We assume on physical grounds

that such a solution will exist. Recall the inner product (3.23) and define

an(z, t) = 〈η, Ĵ (Yn)〉 =

∫ π/2

0

1

h
ηĴ (Yn(τ)) dτ. (3.36)
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Owing to the completeness of the eigenfunctions Yn (see §3.3.2) and the

orthogonality relation (3.26), we can express η(τ, z, t) as

η(τ, z, t) =
∞∑
n=1

an(z, t)Yn(τ). (3.37)

The boundary conditions on an(z, t) can then be derived from the pinned-end

conditions (3.19), we find that

an = 0 on z = 0, 1. (3.38)

We now take the inner product of (3.15) with Yn to obtain

〈L̂ K̂ (η), Yn〉 − F̃
∂2

∂z2
〈Ĵ (η), Yn〉+M

∂2

∂t2
〈Ĵ (η), Yn〉 = Qn(z, t), (3.39)

where

Qn(z, t) = − tanh2(2σ0)

∫ π/2

0

1

h

∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
Yn(τ) dτ. (3.40)

For the case in which the pressure is azimuthally uniform1, we can write

Qn(z, t) = P̃ (z, t)qn, (3.41)

where

qn = tanh2(2σ0)

∫ π/2

0

CP (τ)Yn(τ) dτ, (3.42)

1This case is applicable for the models derived by Whittaker et al. (2010d), Whittaker
et al. (2010a) and Whittaker et al. (2010c)
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and

CP (τ) =
3 sin(2τ)

sinh(2σ0)
. (3.43)

Since L̂ K̂ is self-adjoint with respect to (3.23) on the space of functions

that satisfy (3.22), and because Yn is an eigenfunction of (3.21), we have

〈L̂ K̂ (η), Yn〉 = 〈η, L̂ K̂ (Yn)〉 = λn〈η, Ĵ (Yn)〉. (3.44)

Since Ĵ is also self-adjoint, (3.39) becomes

λn〈η, Ĵ (Yn)〉 − F̃ ∂2

∂z2
〈η, Ĵ (Yn)〉+M

∂2

∂t2
〈η, Ĵ (Yn)〉 = Qn(z, t) (3.45)

Recalling the definition of an(z, t) in (3.36), we obtain:

λnan − F̃
∂2an
∂z2

+M
∂2an
∂t2

= Qn(z, t), for n = 1, 2, 3, · · · . (3.46)

Equation (3.46) is an uncoupled system of PDEs for the axial modes an(z, t),

forced by Qn(z, t). We interpret Qn as the contribution from the pressure to

the nth eigenmode. For a given transmural pressure P̃ , we can obtain Qn (via

(3.40)) using the numerical solutions for the eigenfunctions Yn(τ). Equation

(3.46) can then be solved for an(z, t) for each n subject to the boundary

conditions given by (3.38). Once the modes an(z, t) are known, the solution

for η is then given by (3.37).

3.4.2 Contribution to the area change

A tube law provides a relation between the transmural pressure and the

tubes cross-sectional area. In place of a single such equation here, we instead
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obtain a set of equations for the contribution to the area change from each

of the azimuthal eigenmodes.

Whittaker et al. (2010b) showed that at leading order, the area change

of the tube’s cross-section is given by

A− Ā = εa2

∫ 2π

0

ξ(τ, z, t)dτ +O(ε2). (3.47)

By using (3.13) we can eliminate ξ from (3.47) to obtain

A− Ā = εa2

∫ 2π

0

(
sin(2τ)

sinh(2σ0)
η − 2h2

c2 sinh(2σ0)

∂η

∂τ

)
dτ +O(ε2). (3.48)

Using the symmetry of η, we can restrict the range of integration to (0, π/2)

and multiply the result by 4. Noting that 2h2/c2 = cosh(2σ0)− cos(2τ), and

that η = 0 at τ = 0, π/2, we can use integration by parts to simplify the

second term in the integrand. We obtain:

A− Ā =
12εa2

sinh(2σ0)

∫ π
2

0

sin(2τ) η(τ, z, t) dτ +O(ε2). (3.49)

Decomposing η(τ, z, t) as in (3.37) provides

A− Ā =
12εa2

sinh(2σ0)

∞∑
n=1

an(z, t)

∫ π
2

0

sin(2τ)Yn(τ)dτ +O(ε2). (3.50)

We define the fractional area change εα(z, t), such that

εα =
A− Ā
Ā

. (3.51)
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Substituting (3.50) into (3.51) and using the expression for Ā in (2.37), we

obtain

α =
24

πc2 sinh2(2σ0)

∞∑
n=1

an(z, t)

∫ π/2

0

sin(2τ)Yn(τ)dτ +O(ε). (3.52)

We define αn(z, t) = an(z, t)tn, where tn is given by

tn =
24

πc2 sinh2(2σ0)

∫ π/2

0

sin(2τ)Yn(τ)dτ. (3.53)

Then it follows that

α(z, t) =
∞∑
n=1

αn(z, t), (3.54)

and

η(τ, z, t) =
∞∑
n=1

1

tn
αn(z, t)Yn(τ). (3.55)

We therefore interpret αn(z, t) as the component of the relative area change

corresponding to the nth azimuthal eigenmode. By (3.46) and (3.38), each

αn satisfies the PDE

F̃
∂2αn
∂z2

−M∂2αn
∂t2

− λnαn = −Qntn, (3.56)

subject to

αn = 0 on z = 0, 1. (3.57)

Equation (3.56) governs the components αn, which when summed together,

provide the change in cross-sectional area of an initially elliptical elastic-

walled tube subject to a given transmural pressure P̃ (τ, z, t). For simple

analytic functions P̃ (τ, z, t), the system (3.56)–(3.57) can be solved analyti-
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Figure 3.6: Numerical results for (a) qn as defined in (3.42), and (b) tn, as
defined in (3.53), plotted as functions of σ0 for n = 1, 2, . . . , 6. Both plots
demonstrate a dominant contribution from the fundamental mode n = 1.

cally for each n, though the evaluation of Qn, tn and λn will require numerical

attention.

For P̃ uniform in τ , recall that Qn = P̃ qn, where qn is given by (3.42).

In figure 3.6 we plot qn and tn numerically against σ0 for n = 1, 2, . . . , 6 and

observe that in both cases there is a dominant contribution from the first

(n = 1) mode. We shall term this the fundamental mode. The values for

qn and tn are also tabulated for the representative ellipticity parameters in

tables 3.3 and 3.4. The results demonstrate that a good approximation of

the system could be obtained after truncating (3.54) after n = 1.
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σ0 q1 q2 q3 q4 q5 q6

s1 = 0.9540 0.326229 0.053729 0.012425 0.003104 0.000797 0.000207
s2 = 0.6 0.523926 0.153981 0.065155 0.030600 0.014980 0.007480
s3 = 0.3840 0.540936 0.202923 0.111130 0.069308 0.045950 0.031499
s4 = 0.2194 0.399920 0.167120 0.101920 0.071523 0.053940 0.042484
s5 = 0.0755 0.154760 0.067428 0.042727 0.031198 0.024523 0.020169

Table 3.3: Results for the numerical constants qn, as defined in (3.42), which
measure the contribution from the (azimuthally uniform) pressure to the
nth eigenmode. The values are given for the representative values σ0 ∈
{s1, s2, s3, s4, s5}. The circular limit case (σ0 = s0) has been omitted since
qn → 0 when σ0 →∞ for all n as is observed in figure 3.6.

σ0 t1 t2 t3 t4 t5 t6
s1 = 0.9540 0.468950 0.077235 0.017861 0.004462 0.001146 0.000299
s2 = 0.6 1.104332 0.324563 0.137336 0.064500 0.031576 0.015767
s3 = 0.3840 2.340500 0.878035 0.480852 0.299891 0.198821 0.136295
s4 = 0.2194 6.272272 2.621097 1.598410 1.121761 0.845988 0.6663216
s5 = 0.0755 48.12290 20.9690 13.2861 9.701156 7.62547 6.27148

Table 3.4: Results for the numerical constants tn, as defined in (3.53), which
measure the effect of the nth modes amplitude on the area change. The
values are given for the representative values σ0 ∈ {s1, s2, s3, s4, s5}.

3.4.3 Comparison with Whittaker et al. (2010b)

In the present notation, the ‘tube law’ derived by Whittaker et al. (2010b)

— which applies when the transmural pressure is steady and azimuthally

uniform — is given by

k0α− k2F̃
d2α

dz2
= P̃ (z), (3.58)

where k0 and k2 are numerically determined constants. If we truncate ex-

pansion (3.54) after n = 1, and assume a steady deformation in response

to a steady azimuthally uniform transmural pressure, then equation (3.56)
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reduces to

λ1

q1t1
α1 −

F̃

q1t1

d2α1

dz2
= P̃ (z). (3.59)

This is the same form as (3.58), but with differently computed coefficients.

In figure 3.7, we plot the results of Whittaker et al. (2010b) for k0 and k2

together with the expressions λ1/q1t1 and 1/q1t1 (scaled by their circular limit

behaviour) appropriate for a comparison. We find that better agreement is

found for the comparisons involving k0, although in both cases, we observe

that the two solutions converge towards agreement in the limit as σ0 → ∞.

The reason for the agreement at large σ0 is because the eigenfunction expan-

sion (3.37) of η becomes exactly the Fourier expansion used by Whittaker

et al. (2010b) in this circular limit (see §3.3.3). Moreover, for both models,

the amplitude of the higher-order azimuthal modes become asymptotically

smaller than the amplitude of the fundamental mode. This can be justified

by considering the ratio

qntn
q1t1

=

(∫ π/2
0

sin(2τ)Yn(τ) dτ∫ π/2
0

sin(2τ)Y1(τ) dτ

)2

. (3.60)

Hence, using the analytical solution (3.32) for Yn as σ0 → ∞, it follows (by

orthogonality) that

lim
σ0→∞

qntn
q1t1

= 0 for n ≥ 2. (3.61)
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Figure 3.7: Comparison of the coefficients in the tube-law equations (3.58)
and (3.59), as the ellipticity σ0 is varied. The dot-dashed lines show the
values of k0 and k2 from Whittaker et al. (2010b). The continuous lines show
the values of λ1/q1t1 and 1/q1t1 from the present work. In the main figure
the values have been scaled by their respective asymptotic forms e4σ0 and
5/36e4σ0 as σ0 →∞. The raw values are shown in the inset.

3.5 Application and truncation error estimates

In this section we shall consider the errors incurred by truncating the expan-

sion (3.54); first by constructing general estimates for the magnitude of each

αn, and secondly by considering the specific case of a uniform transmural

pressure (for which analytical solutions can be obtained).

3.5.1 Estimates of relative area change for steady prob-

lems

We can use (3.56) to obtain estimates for the magnitude of each αn, which

contributes to the relative area change through (3.54). We consider a steady

problem in which P̃ = P̃ (z) and αn = αn(z). Equation (3.56) then reduces



Chapter 3. Deformations of elastic-walled tubes 61

to the ODE

F̃
d2αn
dz2
− λnαn = −qntnP̃ (z). (3.62)

Recall that z ∈ (0, 1) and P̃ (z) = O(1).

When F̃ � λn, the second term in (3.62) does not contribute at leading

order. An estimate α̂n for the magnitude of the relative area change when

F̃ � λn is then

|αn(z)| ∼ α̂n =
qntn

F̃
. (3.63)

Conversely, for F̃ � λn, we neglect the first term in (3.62) at leading order.

The estimate ᾰn for the relative area change is then

|αn(z)|∼ α̌n =
qntn
λn

. (3.64)

Figure 3.8 shows the ratios α̂n/α̂1 and α̌n/α̌1 between the higher mode

estimates for αn and the first mode estimate, plotted against σ0. In both

(a) and (b) we see that for smaller σ0, the higher-order modes provide a

more substantial contribution to the relative area change, and become less

important as σ0 becomes larger. Physically, the increase in σ0 corresponds

to the tubes initial cross-section becoming circular. This means that the

accuracy in approximating the relative area change of the tube by truncating

(3.54) at n = 1 depends on the ellipticity of the tubes initial cross-section.

For tubes that initially have highly elliptical cross-sections (see figure 3.2),

contributions from the higher-order terms in (3.54) may be required.
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Figure 3.8: (a) Numerical results for the ratio between the estimates α̂n for
n = 2, 3, ..., 6 and the estimate α̂1 from (3.63). (b) Numerical results for the
ratio between the estimates α̌n for n = 2, 3, ..., 6 and the estimate α̌1 from
(3.64).

3.5.2 Analytic solution for a steady uniform pressure

For a steady uniform transmural pressure say P̃ = −1, we can solve (3.56)–

(3.57) analytically. By using standard methods for solving linear ODEs with

constant coefficients, we find the steady solution

αn(z) = −qntn
λn

[
1−

cosh[µn(z − 1
2
)]

cosh
(
µn
2

) ]
, (3.65)

where µ2
n = λn/F̃ .

In figure 3.9 we plot the initial and deformed cross-sectional shapes of

the tube located at z = 0.5, and in figure 3.10, we plot the solutions (3.65)

with P̃ = −1 for F̃ = 1 and F̃ = 3. Comparing with the work of Whittaker
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et al. (2010b) (plotted in figure 3.10) we see that for n = 1 and σ0 = 0.6 our

results are in good agreement.

The solutions (3.65) for αn have a maximum amplitude at z = 1/2, given

by

αn
(

1
2

)
= −qntn

λn

[
1− sech

(µn
2

)]
. (3.66)

When µn is large (corresponding to F̃ � λn), we see that

|αn(1
2
)|∼ qntn

λn
for µn � 1, (3.67)

in agreement with the estimate (3.64).

Conversely, for small µn (F̃ � λn), by making use of the Taylor expansion

of sech(µn), we find that

|αn
(

1
2

)
| ∼ qntn

8λn
µ2
n for µn � 1. (3.68)

Since µ2
n = λn/F̃ , this is consistent with the estimate (3.63).

Figures 3.11 and 3.12 show contour plots of the ratios α2/α1 and α3/(α1+

α2) evaluated at z = 0.5 in (F̃ , σ0) parameter space. The plots provide an

understanding of the relative error induced by truncating (3.54) after the

first and second modes respectively. Whilst the features of both Figs 3.11

and 3.12 are similar, we find that the retention of the second mode provides

an improvement in the error by a factor of between 10−1 and 10−4.5.

The contour plots 3.11 and 3.12 show that the relative error induced

by truncation decreases monotonically as the ellipticity parameter σ0 is in-

creased. This observation is in agreement with our analysis in §3.4.3, where

it was shown that the higher order azimuthal modes vanish in the circular
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Figure 3.9: Cross-sectional deformations of an initially elliptical elastic-
walled tube induced by a steady uniform transmural pressure for different
initial ellipticities. The figure shows the midpoint z = 1/2, with the dashed
line showing the undeformed and the solid lines showing the deformed wall.
All the figures use the same transmural pressure P̃ ≡ −1 with ε = 0.6, a = 1
and have the same dimensionless tension F̃ = 1. The area changes αn were
calculated using (3.65) and then η was computed from (3.55) and ξ from
(3.13). The deformation is then found using (3.12). The expansion (3.54)
was truncated after n = 2 since adding further modes produced indistin-
guishable results.

limit σ0 → ∞. In both plots we see that smaller values of the axial tension

result in a smaller relative error, with the added feature that the error seems

to tend towards being independent of F̃ when F̃ is either large or small. To

explain these features we consider the dominant contribution αn+1/α1 to the

relative error in truncating (3.54) after the nth mode. Using the estimates
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Figure 3.10: Plots of (3.65) corresponding to solutions of (3.56) for a given
transmural pressure P̃ = −1 where σ0 = 0.6 and F̃ = 1, 3. We also plot the
results of Whittaker et al. (2010b) with the first mode solution using open
circles.

(3.63) and (3.64) we find that

αn+1

α1

∼ qn+1tn+1

q1t1
for F̃ � λn, (3.69)

αn+1

α1

∼ λ1

λn+1

qn+1tn+1

q1t1
for F̃ � λn. (3.70)

Examining (3.69)–(3.70) we see that both are independent of F̃ . Moreover,

the presence of the factor λ1/λn+1 in (3.70) justifies mathematically why

the error decreases with an increase in dimensionless axial tension, since

λn+1 � λ1 for every n.
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Figure 3.11: Contour plots of the ratio α2(1/2)/α1(1/2) computed using
(3.65) for a uniform transmural pressure. This illustrates how changes in F̃
and σ0 affect the error when truncating the expansion (3.54) after the first
mode.

Figure 3.12: Contour plots of the ratio α3(1/2)/(α1(1/2)+α2(1/2)) computed
using (3.65) for a uniform transmural pressure. This illustrates how changes
in F̃ and σ0 affect the error when truncating the expansion (3.54) after the
second mode.
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3.5.3 Solution for free oscillatory modes of the tube

wall

In the absence of any transmural pressure (P̃ ≡ 0), we can solve for the free

oscillatory modes of the tube. Using (3.56)–(3.57), the unsteady contribu-

tions αn(z, t) of α satisfy

∂2αn
∂z2

− M

F̃

∂2αn
∂t2

− λn

F̃
αn = 0, (3.71)

subject to

αn = 0 on z = 0, 1. (3.72)

Motivated by the form of the boundary conditions (3.72), we seek solutions

for α̂n(z, t) of the form

αn(z, t) = Re

( ∞∑
m=1

An sin(mπz)eiωmnt
)

for m = 1, 2, · · · (3.73)

Substituting (3.73) into (3.71), we obtain the dispersion relation for the free

oscillatory modes

ω2
mn =

F̃ π2m2 + λn
M

. (3.74)

In figure 3.13 we plot the oscillation frequencies ωmn corresponding to the

first four axial modes (m = 1, 2, 3, 4) for n = 1, 2, 3. The plots demonstrate

that an increase in azimuthal mode number n results in a higher frequency.

This is because of the rate at which λn increases with n (see figure 3.5).
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Figure 3.13: The oscillation frequencies ωm corresponding to the first four
axial modes (m = 1, 2, 3, 4) plotted against the inertia coefficient M for the
first three azimuthal modes (n = 1, 2, 3).

3.6 Conclusions

In this Chapter we have produced the first formal solution of the problem

initially formulated by Whittaker et al. (2010b) of the small-amplitude defor-

mations of a long thin-walled elastic tube that has an initially axially uniform

elliptical cross-section.

To obtain the solution, we used an eigenfunction expansion method, which

involved writing the azimuthal displacement η(τ, z, t) as a sum over the az-

imuthal eigenfunctions Yn(τ) of a generalised eigenvalue problem. This al-

lowed us to derive a series expansion for the tube’s dimensionless relative area

change α in terms of the dimensionless functions αn(z, t), which correspond

to the area change associated with each azimuthal eigenmode. We showed

that the equations for the αn decouple completely, with each satisfying a
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PDE

F̃
∂2αn
∂z2

−M∂2αn
∂t2

− λnαn = −Qntn, (3.75)

where the forcing Qn from the dimensionless transmural pressure P̃ is given

by

Qn(z, t) = − tanh2 2σ0

∫ π/2

0

1

h

∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
dτ. (3.76)

The coefficients involve the following quantities. In (3.75), F̃ is the dimen-

sionless axial tension, M is the dimensionless inertia coefficient of the tube,

λn is the eigenvalue of the eigenfunction Yn(τ), and tn is an integral of Yn(τ)

defined in (3.53). In (3.76), σ0 defines the initial ellipticity of the tube, h(τ)

is the dimensionless scale factor for the elliptical co-ordinates system and

B̄(τ) is the base-state azimuthal curvature. We interpret the terms present

on the left-hand side of (3.75) as contributions to the amplitude of the nth

azimuthal pressure mode owing to different physical effects. The first term

represents axial tension–curvature effects, the second is wall inertia, and the

third term arises due to azimuthal bending. The sum of these three terms

matches the overall amplitude of the nth mode pressure forcing Qn.

This model represents a substantial improvement of previous studies. In

the solution method of Whittaker et al. (2010b) and Walters et al. (2018),

there are two significant limitations that we draw attention to. Firstly, the

ad hoc truncation results in the corrections to the fundamental mode being

difficult to calculate, which means that an understanding of the relative error

induced by truncating the expansion cannot easily be obtained. Secondly,

the pressure is assumed to be azimuthally uniform, which places limitations

on future investigation. In the current work, we overcome both of these limi-
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tations. The eigenfunction expansion method used here allows the azimuthal

modes to completely decouple, meaning that a formal series solution can be

obtained, and that an analysis of the error induced after any truncation can

be constructed trivially. This significant result has allowed us to justify that

the leading azimuthal mode provides a dominant contribution to the change

in cross-sectional area of the tube. This observation was first made by Whit-

taker et al. (2010b); however, they were unable to comprehensively justify

such an argument quantitatively due their invoked ad-hoc assumption.

The ‘tube law’ like equations (3.75) derived here can be used in a variety

of contexts. In this Chapter we have shown that we can obtain an analytical

solution for the case in which the deformations are induced by a steady

uniform transmural pressure. We verified that the fundamental azimuthal

mode yields the dominant contribution to the change in cross-sectional area,

and produced contour plots demonstrating the accuracy of the respective

solutions after truncating at the first and second modes throughout different

regions of (σ0, F̃ ) space. As we shall see in Chapter 4, it is often convenient to

write (3.75) in terms of the tube’s cross-sectional area. For the specific case

of coupling the results here to the leading-order fluid mechanics (in which

the hydrodynamic pressure is azimuthally uniform), we can write (3.75) in

dimensional variables as follows

ma
∂2

∂t∗2

(
A∗n
A∗0

)
− F

2π

∂2

∂z∗2

(
A∗n
A∗0

)
+
λnK

a3

(
A∗n
A∗0

)
= Q∗n(z, t)tn, (3.77)

where starred variables represent dimensional quantities. Here, F is the

dimensional axial tension, K is the bending stiffness, Q∗n is the forcing from

the transmural pressure which can be calculated via (3.76) with P̃ = p∗tm,
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and we have defined A∗n as the dimensional perturbation to the cross-sectional

area associated with the nth azimuthal eigenmode. The total area change is

then given by

A∗(z, t)− A∗0 =
∞∑
n=1

A∗n(z, t). (3.78)

Equation (3.77) will be used to couple the fluid and solid mechanics via the

transmural pressure p∗tm in Chapter 4. However, at least for the oscillatory

problem, the azimuthal modes no longer decouple. Area displacements that

are associated with the first azimuthal eigenmode create a pressure distribu-

tion in the fluid that forces all of the azimuthal eigenmodes. We can address

this limitation by calling on the analysis in the present work that justified

a dominant fundamental azimuthal mode. This result means that the domi-

nant contribution to the pressure in the fluid is forced by the n = 1 azimuthal

mode, and that the response from this pressure is to excite predominantly

the first azimuthal mode. Consequently, the coupling with higher-order az-

imuthal modes is weak. The result of this simplification is the ability to

compute a series solution.

The ability to permit azimuthal variation into the transmural pressure is

significant for future study. In Chapter 4 we consider a model (applicable for

the parameter regimes considered here) that couples the wall motion to an

internally conveyed viscous fluid. For a regime in which oscillations in the

tube wall are of high-frequency and long-wavelength, the tube-law derived by

Whittaker et al. (2010b) was adequate, since the hydrodynamic pressure was

azimuthally uniform at leading order. To incorporate higher-order effects

from the fluid mechanics, we would need to allow azimuthal variation in the

transmural pressure, which the results in this Chapter permit.
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Whilst the results presented in this chapter are developments on previous

theoretical and rational descriptions of the Starling resistor, the model is not

without its limitations. The action of retaining only leading-order contribu-

tions in (3.15) linearises the problem, and therefore non-linear affects (such

as instability saturation) are not captured. There are two main drawbacks

when considering the initial geometry of the tube. In various biomedical

contexts we might expect to find axially non-uniform tubes, whose initial

cross-sectional shapes are not necessarily elliptical.

The limitations discussed here provide the foundations for future study.

In Chapter 5 we will consider the case of different initial cross-sectional

shapes. When trying to introduce initially axially non-uniform features

(which applies to blood vessels that are partially collapsed) in the tube,

more work is required in deriving new governing equations that measure the

deformations. One potential avenue might be to capture all of the axial

dependence within the ellipticity parameter σ0.

Appendices

3.A The differential operators L̂ , K̂ , Ĵ

3.A.1 Expressions for the operators

When considering the numerical solution of (3.21)–(3.22), it was convenient

to use alternative definitions for the operators L̂ K̂ and Ĵ . The definitions
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we used are given by:

L̂ (η) =
2

c2 cosh(2σ0)

(
∂3

∂τ 3
+ L2

∂2

∂τ 2
+ L1

∂

∂τ
+ L0

)
η, (3.79)

K̂ (η) =
−2

c2 cosh(2σ0)

∂

∂τ

(
1 +

∂2

∂τ 2

)
η, (3.80)

Ĵ (η) =

(
− (cosh(2σ0)− cos(2τ))2

cosh2(2σ0)

∂2η

∂τ 2

− 3(cosh(2σ0)− cos(2τ)) sin(2τ)

cosh2(2σ0)

∂η

∂τ

+
2 sinh2(2σ0) + 3 sin2(2τ)− (cosh(2σ0)− cos(2τ))2

cosh2(2σ0)
η

)
.

(3.81)

The azimuthally varying coefficients L2, L1 and L0 present in (3.79) are given

explicitly by:

L2 = − 3 sin(2τ)

cosh(2σ0)− cos(2τ)
, (3.82)

L1 = −(2 cos2(2τ) + 8 cosh(2σ0) cos(2τ)− 9− cosh2(2σ0))

(cosh(2σ0)− cos(2τ))2
, (3.83)

L0 =
3 sin(2τ)(cosh2(2σ0)− 5 + 4 cosh(2σ0) cos(2τ))

(cosh(2σ0)− cos(2τ))3
. (3.84)

The expressions for L̂ K̂ and Ĵ convenient for proving symmetry (see

3.A.2) are given by:

L̂ (η) = tanh(2σ0)

[
−B̄ ∂

∂τ

(η
h

)
− ∂

∂τ

(
1

B̄h

∂

∂τ

(
1

h

∂

∂τ

(η
h

)))]
. (3.85)

Ĵ (η) = tanh2(2σ0)

[
η − ∂

∂τ

(
1

B̄h

1

B̄

∂

∂τ

(η
h

))]
. (3.86)

K̂ (η) = tanh(2σ0)
∂

∂τ

[
B̄η

h
+

1

h

∂

∂τ

(
1

B̄h

∂

∂τ

(η
h

))]
. (3.87)
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3.A.2 Proof that the operators L̂ K̂ and Ĵ are self-

adjoint

We present now the proof that the operators L̂ K̂ and Ĵ are both self-

adjoint operators with respect to the inner product 〈u, v〉 (3.23), namely

〈u, v〉 =

∫ π
2

0

1

h
uvdτ, (3.88)

for u and v smooth functions which satisfy the boundary conditions

u =
d2u

dτ 2
=

d4u

dτ 4
= 0 on τ = 0,

π

2
. (3.89)

The operator Ĵ

Consider the inner product 〈u, Ĵ (v)〉 using the definition of Ĵ in (3.86).

Integrating by parts twice, it can be shown that:

〈u, Ĵ (v)〉 = 〈Ĵ (u), v〉 − tanh2 2σ0

([
1

B2h

∂

∂τ

(
u

h

)
v

h

]π/2
0

−
[

1

B2h

∂

∂τ

(
v

h

)
u

h

]π/2
0

)
. (3.90)

Hence the operator Ĵ is self-adjoint.

Furthermore, our analysis also requires that 〈u, Ĵ (v)〉 is positive definite

on [0, π/2]. Using integration by parts, with Ĵ again in the form of (3.17),

it can be shown that:

〈u, Ĵ (u)〉 = tanh2(2σ0)

∫ π/2

0

(
1

h
|u|2+

1

(B̄)2h

∣∣∣∣ ∂∂τ (uh)
∣∣∣∣2
)

dτ. (3.91)
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Since h > 0 on [0, π/2], the inner product 〈Ĵ (u), v〉 is positive definite.

The operator L̂ K̂

Consider the inner product 〈L̂ K̂ (u), v〉, where L̂ and K̂ are as defined in

(3.16)–(3.18). Integrating by parts recursively, it can be shown that:

〈L̂ K̂ (u), v〉 = 〈u, L̂ K̂ (v)〉 − 2

c2 cosh 2σ0

(
−
[
v̄

h
K̂ (u)

]π/2
0

−
[
∂2

∂τ 2

(
1

h
K̂ (u)

)
v̄

]π/2
0

+

[
∂

∂τ

(
1

h
K̂ (u)

)
∂v̄

∂τ

]π/2
0

−[
1

h
K̂ (u)

∂2v̄

∂τ 2

]π/2
0

)
+

2

c2 cosh 2σ0

(
−
[
u

h
K̂ (v̄)

]π/2
0

−
[
∂2

∂τ 2

(
1

h
K̂ (v̄)

)
u

]π/2
0

+

[
∂

∂τ

(
1

h
K̂ (v̄)

)
∂u

∂τ

]π/2
0

−
[
∂2

∂τ 2

(
1

h
K̂ (v̄)

)
u

]π/2
0

)
. (3.92)

Hence, when u and v satisfy (3.89), the boundary terms vanish and the

operator is shown to be self-adjoint.

3.B Orthogonality relation for the eigenfunc-

tions Yn(τ )

Let Yn and Ym be the eigenfunctions of (3.21), with corresponding eigenvalues

λn and λm, defined on (0, π/2). Using the linearity of the inner product 〈·, ·〉,

and the symmetry of the operators L̂ K̂ and Ĵ , we find that

λm〈Yn, Ĵ (Ym)〉 = 〈Yn, λmĴ (Ym)〉,
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= 〈Yn, L̂ K̂ (Ym)〉,

= 〈L̂ K̂ (Yn), Ym〉,

= 〈λnĴ (Yn), Ym〉,

= λn〈Ĵ (Yn), Ym〉,

= λn〈Yn, Ĵ (Ym)〉. (3.93)

Hence

(λm − λn)〈Yn, Ĵ (Ym)〉 = 0. (3.94)

Thus, for n 6= m, assuming that there are no repeated eigenvalues, we have

the orthogonality relationship

〈Yn, Ĵ (Ym)〉 = 0. (3.95)



Chapter 4

Modelling the fluid-structure

interaction in a Starling resistor

Synopsis

We present a theoretical description of the fluid-structure in-

teraction observed within the Starling resistor. The typical setup

consists of a pre-stretched finite length thin-walled elastic tube

mounted between two rigid tubes. The collapsible section is en-

closed within a pressure chamber and a viscous fluid is driven

through the system by imposing an axial volume flux. Valid

within a long-wavelength thin-walled regime, we use our own

results to model the wall motion. These results arise from the

solution of a generalised eigenvalue problem, and avoid the need

to invoke the ad-hoc assumptions made in previous studies. The

wall mechanics are then coupled to the fluid mechanics using the

Navier–Stokes equations, under the assumption that the oscilla-

tions in the tube wall are of small amplitude, long-wavelength

and high-frequency. We derive the respective steady and oscilla-

tory problems for this fluid-structure interaction. In both cases,

we compute series solutions, which allow us to estimate the errors

incurred after truncation.

77
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4.1 Introduction

Whittaker et al. (2010c) were the first to construct a three-dimensional the-

oretical model of the high-frequency self-excited oscillations observed in a

Starling resistor. They investigated the problem of an elastic-walled tube

with an initially axially uniform elliptical cross-section conveying an incom-

pressible viscous fluid. To derive the model, Whittaker et al. (2010c) com-

bined their own asymptotic descriptions for the fluid mechanics (Whittaker

et al., 2010d) and wall mechanics (Whittaker et al., 2010b).

We now summarise the methodology set out in Whittaker et al. (2010c).

Whittaker et al. (2010d) considered the motion of the fluid in response to a

rapidly oscillating elastic-walled tube. They showed that the conservation of

mass and axial momentum provided a system of two differential equations re-

lating the axial fluid velocity, w, the fluid pressure p, and the cross-sectional

area of the tube A. As reviewed in detail in Chapter 3, Whittaker et al.

(2010b) derived a tube law systematically from shell theory, which takes the

form of a differential equation relating A with p − pext, where pext is the

(known) steady external pressure. In total this means that their asymp-

totic model of the full coupled problem involves a system of three equations

relating three dependent variables w, p and A. Whittaker et al. (2010c) ma-

nipulated this system to eliminate w and A in favour of the pressure, p. This

problem was solved to find the normal modes of the system. After an assess-

ment of the systems energy budget, they used these normal mode solutions

to demonstrate that their model exhibits self-excited oscillations, induced by

the sloshing instability (see §1.1.7 of Chapter 1). On computing the growth

rates, frequencies and mode shapes of the oscillations, they compared their
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work directly with numerical simulations and obtained good agreement. The

model of Whittaker et al. (2010c) was then extended by Walters et al. (2018)

to include effects due to the inertia of the tube wall. It was found that the

addition of wall inertia has a stabilising effect on the system.

Whilst the work of both Whittaker et al. (2010c) and Walters et al. (2018)

are significant improvements on previous attempts to accurately model the

Starling resistor, the method used to derive the tube law — which couples the

fluid and wall mechanics — has its limitations. By projecting the azimuthal

displacement onto a basis of azimuthal Fourier modes, an adhoc approxima-

tion based on the relative sizes of each azimuthal mode was used to decouple

the modes (essentially truncating at n = 1), allowing for the derivation of

the tube law. The main problem with this approach is the difficulty in calcu-

lating the relative error after neglecting contributions to the series solution.

In Chapter 3, we overcame these limitations by instead projecting the solu-

tion onto a basis of eigenfunctions, resulting from a generalised eigenvalue

problem. This new method resulted in a formal series solution for the whole

system, whilst significantly simplifying the calculations required to compute

the relative error incurred by truncating the solution after any azimuthal

mode.

In this chapter, we consider the fluid-structure interaction problem of a

viscous fluid conveyed within a long thin-walled elastic tube which has an

initially axially uniform elliptical cross-section. We model the wall mechanics

using our own results from Chapter 3, and then adapt the methodology of

Whittaker et al. (2010c) and Walters et al. (2018) to couple this to the fluid

mechanics. We consider the steady and oscillatory problems in turn, deriving
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series expansions in both cases.

We organise this chapter as follows. In §4.2 we provide a full description

of the physical setup. The problem is decomposed into steady and oscilla-

tory parts and then non-dimensionalised. The various parameter regimes in

which our model is considered are then presented. In §4.3 we introduce the

models used to describe the fluid and wall mechanics respectively. In §4.4

we consider the steady problem, and show that the component of the change

in cross-sectional area corresponding to the nth azimuthal eigenmode is gov-

erned by a simple second-order linear ordinary differential equation, forced

by the steady component of the transmural pressure. In §4.5 we consider

the unsteady problem. We show that the governing equation is much more

complicated than for the steady case, since the azimuthal modes no longer

decouple at leading order. Area displacements that are associated with the

first azimuthal eigenmode create a pressure distribution in the fluid that

forces all of the azimuthal eigenmodes. We show that we can overcome this

limitation by observing that the fundamental azimuthal mode dominates the

area displacements. This means that the dominant contribution to the pres-

sure in the fluid is forced by the n = 1 azimuthal mode, and that the response

from this pressure is to excite predominantly the first azimuthal mode. This

analysis results in weak coupling between the higher-order azimuthal modes.

We show that this simplification enables us to adopt a series expansion for

the normal modes and oscillation frequencies of the system. In §4.6, we use

our normal mode solutions to compute a stability threshold for the onset of

self-excited oscillations in the tube wall by determining the critical Reynolds

number beyond which an instability will grow. Finally, in §4.7, we discuss
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Figure 4.1: The setup of an idealised Starling resistor. An initially elliptical
elastic-walled tube is pinned between two rigid extensions. Fluid is driven
through the system by imposing a steady dimensional axial volume flux of
size A∗0U at the downstream end z∗ = 1.

our results and comment on potential future work.

4.2 Setup

4.2.1 Problem description

We adopt the setup of Chapter 2 by considering a thin-walled tube of di-

mensional length L and circumference 2πa (see figure 4.1). The tube has

an initially axially uniform elliptical cross-section, which is aligned with the

dimensional Cartesian co-ordinates (x∗, y∗, z∗) such that the tube’s centre

line lies along the z∗ axis. We also introduce t∗ as dimensional time. The

major and minor axes of the tube’s cross-section are aligned with the x∗ and

y∗ axis respectively. The ellipticity of the tube’s cross-section is set by the

parameter σ0 such that the major and minor axis of the cross-section are
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given explicitly by ac coshσ0 and ac sinhσ0 respectively, where

c(σ0) =
π sech(σ0)

2E(sech(σ0))
(4.1)

is a normalisation factor, which is introduced to set the tube’s initial circum-

ference to be 2πa. Here

E(k) =

∫ π/2

0

(1− k2 sin2(φ))1/2 dφ (4.2)

is the complete elliptic integral of the second kind. The tube’s initial dimen-

sional cross-sectional area A∗0 can then be calculated as

A∗0 = πa2c2 sinh(σ0) cosh(σ0) = πa2 π2 tanh(σ0)

4[E(sech(σ0))]2
. (4.3)

Throughout this chapter we shall refer to a set of six representative values

of σ0, (s0, s1, s2, s3, s4, s5) which are presented in table 3.1 in Chapter 3. The

corresponding elliptical cross-sections are given in figure 3.2.

In accordance with the experimental setup of the Starling resistor, the

tube is made up of an elastic section of material having dimensional mass

per unit area m and wall thickness d occupying z1L < z∗ < z2L, which is

pinned between two rigid sections occupying 0 < z∗ < z1L and z2L < z∗ < L

respectively. In the elastic section, the tube is able to deform in response to

the combined effect of the steady dimensional external pressure p∗ext as well as

the fluid traction. Since the elastic section of the tube is pinned between two

rigid sections, a dimensional axial tension force, F , can be imposed at the

two ends of the tube, which results in a uniform axial pre-stress of magnitude
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F/(2πad). The elliptical cross-section seen in figure 4.1 is in this pre-stressed

state. We assume that the elastic section of the tube is linearly elastic and

behaves isotropically with incremental Young’s modulus E and Poisson ratio

ν. The bending stiffness is defined as

K =
Ed3

12(1− ν2)
. (4.4)

In this chapter, we investigate the case in which the tube conveys an

incompressible, viscous fluid of density ρ and dynamic viscosity µ. The fluid

is driven through the system by imposing a steady dimensional axial volume

flux of size A∗0U at the downstream end. At the upstream end, we fix the

dimensional pressure p∗ = p∗up. We note that these boundary conditions are

chosen so that the amplitude of the resulting oscillatory axial sloshing flow

at the downstream end is zero, which significantly increases the likelihood

that an instability will occur. We denote the dimensional axial fluid velocity

component as w∗ and the dimensional transverse fluid velocity vector as u∗⊥.

4.2.2 Oscillatory time scale

We consider the case of periodic oscillations in the tube wall, with typical

(normal) amplitude b� a, and time scale T . Hence, the scale for the normal

velocity of the wall is b/T . It is then natural to take b/T as the scale for the

transverse oscillatory velocity in the fluid. The scale for the axial oscillatory

velocity of the fluid is then estimated as bL/(aT ) through continuity.

We can formulate an explicit expression for the expected time scale T

of the oscillations by assuming that the oscillations arise due to a balance
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between axial fluid inertia and restoring forces from azimuthal bending of the

tube wall 1. The pressure scale associated with the forces due to azimuthal

bending is Kb/a4. Equating this with the unsteady axial inertial pressure

scale ρL2b/(aT 2), we find that

T =

(
ρa3L2

K

)1/2

. (4.5)

4.2.3 Dimensionless quantities and parameter regimes

The setup described above gives rise to seven dimensionless quantities. There

are three quantities associated with the geometry of the tube, which corre-

spond to wall thickness, tube length and oscillation amplitude:

δ =
d

a
` =

L

a
, ∆ =

b(t∗)

a
. (4.6)

There are two independent dimensionless groups associated with the fluid

mechanics. We follow Whittaker et al. (2010c) and define the Womersley

number α and the Strouhal number St as:

α2 ≡ ρa2

µT
=

(
ρK

a`2µ2

)1/2

and St ≡ a

U T
=

(
K

ρa3U 2

)1/2

. (4.7)

The Womersley number α measures the relative importance of unsteady in-

ertia to viscous effects. The Strouhal number St measures the relative im-

portance of unsteady to convective inertia. The steady Reynolds number,

1In the regime specified in §4.2, there are two principal restoring forces to deformations
of the tube wall: azimuthal bending and axial tension-curvature. By the assumption
F̃ = O(1) in (2.6), their magnitudes are comparable, so either could be used here to
estimate the timescale.
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with its usual definition, can be expressed in terms of α and St, thus

Re =
ρU a

µ
=
α2

St
. (4.8)

There are two dimensionless groups associated with the solid mechanics of the

tube wall. We define the dimensionless axial tension F̃ and inertia coefficient

(or dimensionless mass) M as follows:

F̃ =
aF

2πK`2
, M =

ma4

KT 2
≡ m

ρa`2
. (4.9)

The dimensionless axial tension measures the ratio of the restoring forces

due to axial curvature/tension effects Fb/(2πaL2) and azimuthal bending

(Kb/a4) respectively. The inertia coefficient was introduced by Walters et al.

(2018) and is defined as the ratio between forces due to wall inertia (mb/T 2)

and azimuthal bending or equivalently, the forces due to axial fluid inertia

(ρa`2b/T 2).

Following the formulation of Whittaker et al. (2010c), we work within a

parameter regime in which the tube is long and thin, subject to a large axial

tension such that the tube exhibits small-amplitude, high-frequency defor-

mations of long wavelength. Mathematically, these assumptions correspond

to:

`� 1, δ � 1, ∆� 1, α� 1, `St� 1. (4.10)

We also adopt a regime in which tension/curvature, inertial effects from the

tube wall and azimuthal bending effects can be present at leading order. This
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means

F̃ = O(1), and M . 1. (4.11)

We assume that the time scale for the growth/decay of the oscillations is

large in comparison with the time scale of the oscillations T . This multiple

scales analysis was verified by Whittaker et al. (2011).

4.2.4 Non-dimensionalisation and scaling

We follow the non-dimensionalisation of Whittaker et al. (2010c). Axial

lengths are scaled with the tube length L, transverse lengths with the radial

scale a, and time with T . We write

(x∗, y∗, z∗) = (ax, ay, Lz), A∗0 = a2A0, A∗ = a2A, t∗ = Tt, (4.12)

where the unstarred variables are the non-dimensional counterparts of the

starred variants.

The velocity and pressure of the fluid are decomposed into their respective

steady and oscillatory components. For the steady component, the axial scale

is the mean flow U , and the transverse scale U a/L arises from continuity

and the tube’s aspect ratio. For the oscillatory component, the transverse

scale is the normal velocity scale b/T of the wall motion, and the axial scale

bL/aT arises from continuity. When non-dimensionalising the pressure, the

viscous scale is used for the steady component, and the oscillatory component

is scaled with unsteady axial inertia. We therefore write:

u∗⊥ =
U a

L
ū⊥ +

b

T
û⊥ =

U

`
(ū⊥ + `St∆û⊥) , (4.13)
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w∗ = U w̄ +
Lb

aT
ŵ = U (w̄ + `St∆ŵ) , (4.14)

p∗ − p∗up =
µLU

a2
p̄+

ρL2b

aT 2
p̂ =

µLU

a2

(
p̄+ α2`St∆p̂

)
, (4.15)

where overbars denote the steady components and hats the unsteady com-

ponents. The dimensional external pressure p∗ext (assumed to be steady) is

non-dimensionalised on the steady viscous scale as

p∗ext − p∗up =
µLU

a2
p̄ext. (4.16)

Using this expression, together with (4.15), we find that the dimensional

transmural pressure p∗tm can be written as

p∗tm = p∗ − p∗ext = (p∗ − p∗up)− (p∗ext − p∗up),

=
µLU

a2
(p̄− p̄ext) +

ρL2b

aT 2
p̂, (4.17)

=
K

a3

(
1

α2`St
(p̄− p̄ext) + ∆(t)p̂

)
, (4.18)

where p̄ and p̂ are evaluated at the tube wall.

The tube wall deforms in response to the transmural pressure, which in

turn leads to changes in the cross-sectional area. The area is non-dimensionalised

as

A∗(z, t) = a2

(
A0 +

1

α2`St
Ā(z) + ∆(t)Â(z, t)

)
, (4.19)

in terms of steady and oscillatory perturbations. The oscillatory perturbation

has been scaled using the natural scale (ab) from wall motion, whilst the

steady perturbation is set to ensure that the ratio between the scales for

steady and unsteady perturbations is the same as for the transmural pressure
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in (4.18).

4.3 Mathematical modelling

We now present a description of the models used to describe the fluid and

solid mechanics present in the problem described above. For the fluid me-

chanics, the internal fluid is described by the Navier–Stokes equations, which

are simplified due to the small-amplitude, high-frequency and long-wavelength

nature of the oscillations. For the solid mechanics, we model the wall motion

using our results from Chapter 3, where we derived an expression for the

relative change of the tube’s cross-sectional area A∗ − A∗0 in terms of the

transmural pressure p∗tm. The fluid and solid mechanics are then coupled via

A∗ and p∗tm.

4.3.1 Fluid mechanics

The fluid inside of the tube is governed by the Navier–Stokes equations

(Batchelor, 1967)

∇ · u∗ = 0, (4.20)

ρ

(
∂u∗

∂t∗
+ (u∗ · ∇)u∗

)
= −∇p∗ + µ∇2u∗, (4.21)

subject to:

p∗ = p∗up at z∗ = 0, (4.22)∫∫
A ∗(z∗,t∗)

w∗ dS∗ = U A∗0 at z∗ = L. (4.23)
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and

u∗ = U ∗W on the wall, (4.24)

where u∗ is the total dimensional fluid velocity and UW is the velocity of

the wall. In Appendix 4.A we also derive the dimensional cross-sectionally

integrated mass conservation statement

∂A∗

∂t∗
+

∂

∂z∗

∫∫
A ∗(z∗,t∗)

w∗ dS∗ = 0, (4.25)

where A ∗ ⊂ R2 is the dimensional space enclosed by the tube cross-section.

Following Whittaker et al. (2010c), we substitute the representations

(4.12)–(4.15) into (4.20)–(4.25) and apply standard long-wavelength approx-

imations. The calculations are the same as those presented in Walters et al.

(2018), so we omit the details for brevity. For the steady component, it is

found that p̄ is uniform within each cross-section at leading order. The ax-

ial component of the conservation of axial momentum equation (4.21) then

yields the following leading-order balance between axial pressure gradient

and viscosity:

∇2w̄ =
dp̄

dz
. (4.26)

(Nonlinear inertia and contributions from the oscillatory flow only enter at

higher orders.)

We also have the leading-order steady component of the cross-sectionally

integrated continuity equation (4.25)

d

dz

∫∫
Ā (z)

w̄ dS = 0, (4.27)
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where Ā is the space enclosed by the dimensionless mean position of the

wall.

For the oscillatory component, the long wavelength and high-frequency

nature of the oscillations (α, ` � 1) result in both the axial velocity and

pressure being cross-sectionally uniform (outside of viscous boundary layers)

at leading order. The axial component of the conservation of momentum

equation (4.21) reduces to an inertial balance between axial fluid velocity

and axial pressure gradient:

∂ŵ

∂t
= −∂p̂

∂ẑ
. (4.28)

(Nonlinear inertia and viscous terms only enter at higher orders.)

The oscillatory component of the averaged continuity equation (4.25)

yields

∂Â

∂t
+ A0

∂ŵ

∂z
= 0. (4.29)

(Here we have neglected steady area contributions of O(1/α2`St) � 1 in

(4.19) and used the property that ŵ is uniform within the cross-section.)

At the upstream end (z = 0), the fluid pressure is fixed as p∗ = p∗up, which

(by (4.15)) corresponds to the following boundary conditions on p̄ and p̂:

p̄ = p̂ = 0 at z = 0. (4.30)

At the downstream end (z = 1), the axial volume flux is fixed. Using (4.28),

and the fact that ŵ is uniform in each cross-section, we have the boundary
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conditions:

∫∫
Ā (z)

w̄ dS = A0 and
∂p̂

∂z
= 0 at z = 1. (4.31)

We also have the boundary condition

w̄ = 0 on the tube wall. (4.32)

Due to the presence of Stokes layers located adjacent to the tube wall (which

have been neglected) there is no corresponding condition on ŵ.

Since the flexible section of the tube is pinned to two rigid sections, we

have matching conditions located at the tube joins z = z1, z2. These con-

ditions arise from the requirement that both axial volume flux and fluid

pressure are continuous across the joins. For the steady component, we re-

quire:

[w̄]+− = [p̄]+− = 0, at z = z1, z2. (4.33)

For the oscillatory component, we require

[ŵ]+− = [p̂]+− = 0, at z = z1, z2. (4.34)

On eliminating the oscillatory component of axial fluid velocity ŵ be-

tween (4.28) and (4.29), we obtain the following oscillatory pressure-area

relationship

∂2p̂

∂z2
=

1

A0

∂2Â

∂t2
. (4.35)

Equation (4.35) provides a relationship between the oscillatory components of
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the fluid pressure and the tube’s cross-sectional area at leading order. In §4.5

we will use this result to couple the fluid and solid mechanics, formulating

the problem in terms of only the pressure.

Using (4.28), the unsteady matching conditions (4.34) can be written as

[
∂p̂

∂z

]+

−
= [p̂]+− = 0 at z = z1, z2. (4.36)

4.3.2 Wall mechanics

We model the elastic section of the tube described in §4.2 using our results

from Chapter 3. The exterior pressure p∗ext is assumed to be uniform and the

fluid mechanics in §4.3.1 tells us that the internal pressure pint is uniform in

each cross-section at leading order. Hence, at leading order, the tube is forced

by an azimuthally uniform transmural pressure p∗tm. In response, it undergoes

small-amplitude deformations about its initial elliptical configuration.

In Chapter 3, we decomposed the area perturbation A∗(z, t)− A∗0 into a

series of contributions indexed by the azimuthal mode number, n:

A∗(z, t)− A∗0 =
∞∑
n=1

A∗n(z, t). (4.37)

We showed that each component A∗n is governed by the ordinary differential

equation

ma
∂2

∂t∗2

(
A∗n
A∗0

)
− F

2π

∂2

∂z∗2

(
A∗n
A∗0

)
+
λnK

a3

(
A∗n
A∗0

)
= qntnp

∗
tm (4.38)
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subject to the pinned-end boundary conditions

A∗n = 0 at z∗ = z1L, z2L. (4.39)

The positive constants λn and qntn depend only on the ellipticity of the

tube. They are determined numerically through the solution of an eigenvalue

problem and are tabulated for the representative σ0 values as well as plotted

as continuous curves in table 3.4 and figures 3.5–3.6 in Chapter 3.

We decompose each component A∗n into its respective steady and oscilla-

tory parts using the same scales present in (4.19) for A∗:

A∗n(z, t) = a2

(
1

α2`St
Ān(z) + ∆(t)Ân(z, t)

)
. (4.40)

Hence

Ā(z) =
∞∑
n=1

Ān(z) and Â(z, t) =
∞∑
n=1

Ân(z, t). (4.41)

Substituting expressions (4.18) and (4.40) for p∗tm and A∗n into (4.38)–

(4.39) and making use of the other scalings in §4.2, we find that the non-

dimensional governing equations for the steady and oscillatory wall defor-

mations in the flexible part of the tube z1 < z < z2 are given respectively

by:

F̃
d2Ān
dz2

− λnĀn = −A0qntn (p̄− p̄ext) , (4.42)

subject to

Ān = 0 at z = z1, z2, (4.43)
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and

F̃
∂2Ân
∂z2

−M∂2Ân
∂t2

− λnÂn = −A0qntnp̂(z, t), (4.44)

subject to

Ân = 0 at z = z1, z2. (4.45)

In the rigid sections of the tube occupying 0 < z < z1 and z2 < z < 1, we

must ensure that the tube’s cross-section remains fixed. We therefore impose

Ā = Â = 0 for z ∈ (0, z1) and z ∈ (z2, 1). (4.46)

4.4 The steady coupled problem

We now seek leading-order solutions of the steady component of the problem

described in §4.2–§4.3. We find that, for the parameter regimes considered

here, the fluid and solid mechanics decouple at leading order, resulting in

explicit expressions being obtained for the steady component of the pressure

p̄ and the axial fluid velocity w̄. We show that the perturbation to the

tube’s cross-sectional area obeys a simple second-order ordinary differential

equation with constant coefficients and linear forcing, which can be solved

analytically.
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4.4.1 Steady governing equations and boundary con-

ditions

For the fluid mechanics, the pressure p̄ and axial fluid velocity w̄ satisfy (4.26)

and (4.27):

∇2w̄ =
dp̄

dz
,

d

dz

∫∫
Ā (z)

w̄ dS = 0, (4.47)

subject to the boundary conditions (4.30), (4.31) and (4.32):

p̄ = 0 at z = 0, (4.48)∫∫
Ā (z)

w̄ dS = A0 at z = 1, (4.49)

w̄ = 0 on the tube wall. (4.50)

For the wall motion, the perturbation Ā to the tube’s cross-section is

given by

Ā(z) =
∞∑
n=1

Ān(z) for z ∈ (z1, z2), (4.51)

where each Ān is governed by (4.42)–(4.43):

F̃
d2Ān
dz2

− λnĀn = −A0qntn (p̄− p̄ext) , (4.52)

subject to

Ān = 0 at z = z1, z2. (4.53)

For the rigid sections, we have from (4.46) that

An ≡ 0 for z ∈ (0, z1) and z ∈ (z2, 1). (4.54)
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Finally, we have the matching conditions (4.33)

[w̄]+− = [p̄]+− = 0, at z = z1, z2. (4.55)

4.4.2 Solution for w̄ and p̄

From (4.40)–(4.41), the steady perturbation to the tube’s cross-sectional area

is O(1/α2`St), which is small when working within the parameter regime

considered here. Hence, at leading order we seek a solution of the fluids

problem (4.47)–(4.50) in the axially uniform undeformed tube.

Since the steady pressure p̄ is uniform within each cross-section, and the

tube is axially uniform, the base-state axial fluid velocity takes the form

w̄ = f(x, y)
dp̄

dz
. (4.56)

Using the steady mass conservation statement in (4.47), it follows that p̄

is linear in z. Hence, the steady axial fluid velocity w̄ and pressure p̄ are

solutions of a classical two-dimensional Poiseuille problem in the elliptical

geometry. Following Batchelor (1967), we have

w̄(x, y) = 2

(
1− x2

c2 cosh2(σ0)
− y2

c2 sinh2(σ0)

)
, (4.57)

p̄(z) = −Ḡz, (4.58)

where Ḡ = 16 cosh(2σ0)/(c2 sinh2 2(σ0)).
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4.4.3 Solution for Ān

Using the expression (4.58) for p̄, the governing equation for the components

Ān for z ∈ (z1, z2) is given by

F̃
d2Ān
dz2

− λnĀn = A0qntn
(
Ḡz + p̄ext

)
, (4.59)

subject to

Ān = 0 at z = z1, z = z2. (4.60)

We observe that (4.59) is a linear second-order ordinary differential equation

with constant coefficients, which can be solved using standard methods.

We find that the solution for each component is given by

Ān = −
(
A0qntn
λn

){
p̄ext

(
1−

cosh
[
µn(ξ − 1

2)
]

cosh
(

1
2µn

) )
− Ḡ

(
z1 + (z2 − z1)ξ

−
sinh

[
µn(ξ − 1

2)
]

(z2 − z1)

2 sinh
(

1
2µn

) −
cosh

[
µn(ξ − 1

2)
]

(z1 + z2)

2 cosh
(

1
2µn

) )}
, (4.61)

where

ξ =
z − z1

z2 − z1

, and µ2
n =

λn

F̃
(z1 − z2)2 . (4.62)

In figure 4.2, we plot the solutions (4.61) for An corresponding to the

first four azimuthal modes. We observe the presence of boundary layers

of thickness F̃ 1/2 ∝ µ−1
n located adjacent to the joins at z = z1, z2. The

deformations vary rapidly in space near the ends of the flexible section when

F̃ is small. In the limit as F̃ → 0, we see that the solution in the interior

becomes linear in z. From (4.61), the linear behaviour is given explicitly by

Ān
A0

= −qntn
λn

(
Ḡz + p̄ext

)
, as F̃ → 0. (4.63)
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As pext is increased, we find that the solution (4.61) becomes symmetric

(see figure 4.64) about the midpoint of the tube z = 0.5. This result is as

expected, since an increase in the external pressure would result in a less

significant contribution from the viscous pressure drop in the fluid. The

solution in this instance would become

Ān
A0

∼ −p̄ext

(
qntn
λn

)(
1−

cosh
[
µn(ξ − 1

2
)
]

cosh
(

1
2
µn
) )

for pext � G, (4.64)

which is symmetric about the midpoint of the tube. We note here that the

presence of a large external pressure means that the solution (4.64) is of the

same form as that derived in Chapter 3, where we solved the problem for the

case of a uniform external pressure whilst neglecting contributions from the

internal fluid.

Figure 4.4 demonstrates the effect of a large uniform external pressure

on the deformation of the tube as a function of the axial co-ordinate, z.

As predicted, the large external pressure means that contributions to wall

displacement from the viscous pressure drop are small, and hence we see

maximal displacement near the midpoint z = 0.5.

Figure 4.3 provides insight into how varying the ellipticity of the tube’s

initial cross-sectional area affects the fundamental contribution Ā1 to the

change in cross-sectional area. As expected, we find that tubes with larger

initial ellipticity are more compliant, and therefore are susceptible to larger

changes in area.

In figure 4.5 we plot the ratio Ā2/Ā1, evaluated at z = 0.7, in order to gain

an understanding of the errors incurred by truncating the expansion (4.51)

after the first azimuthal mode. The results indicate that tubes with larger
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Figure 4.2: Solutions for the components Ān, plotted for the first four az-
imuthal modes n = 1, 2, 3, 4. The curves were plotted using the analytical
solution (4.61), with pext = 1, F̃ = 0.01, 0.1, 1, 10 and σ0 = 0.6. The data for
qntn and λn can be found in Chapter 3. The dashed straight line is the limit
(4.63) of the bulk solution as F̃ → 0.

Figure 4.3: Solutions for the steady area change Ā1 associated with the first
(n = 1) azimuthal mode, plotted against z for σ0 = s1, s2, s3, s4, pext = 1 and
F̃ = 1. The solutions were obtained using the analytical solution (4.61).
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Figure 4.4: Solutions for the steady area change Ān from (4.61), plotted
against z for the first two azimuthal modes with F̃ = 0.01, 0.1, 1, 10. The
tube is subject to a large uniform external pressure pext = 100

initial ellipticity result in a substantially larger relative contribution from the

second azimuthal mode. In agreement with our results from Chapter 3, we

find that an increase in the tension amounts to a larger error (up to O(10−1)

when F̃ = O(104)).

4.5 The unsteady coupled problem

In this section we consider the unsteady component of the coupled problem

described in §4.2–§4.3. We begin by first eliminating the oscillatory per-

turbation to the tube’s area change Ân in favour of the pressure p̂. After

obtaining a solution within the rigid sections of the tube, we then derive

the governing problem for motion within the flexible section. Unlike for the

steady problem, the fluid and solid mechanics no longer decouple at leading

order. To overcome this, we exploit a dominant contribution from the fun-

damental (n = 1) solid azimuthal mode, which means that the coupling is

weak between the higher modes. Consequently, we derive a series solution of
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Figure 4.5: The values Ā2/Ā1, evaluated at z = 0.7, plotted throughout re-
gions of (σ0, F̃ ) parameter space with pext = 1. The values were computed
using the analytical solution (4.61) for Ān. The results give an indication
of the errors incurred by approximating the steady system using the con-
tribution to the chnage in area associated with the fundamental azimuthal
mode.

the unsteady system.

4.5.1 Solution in the rigid sections

In the rigid sections, the tube’s cross-section is fixed. Using (4.46) together

with (4.35), we derive the governing equation

∂2p̂

∂z2
= 0, (4.65)

valid for 0 < z < z1 and z2 < z < 1.



Chapter 4. Fluid-structure interaction in a Starling resistor 102

The boundary conditions on (4.65) are given by (4.30)–(4.31):

p̂ = 0 at z = 0 and
∂p̂

∂z
= 0 at z = 1. (4.66)

Solving (4.65) subject to (4.66), we find that

p̂(z, t) =


G(t)z, for z ∈ (0, z1),

H(t), for z ∈ (z2, 1),

(4.67)

where G(t) and H(t) are arbitrary functions of time t, which will be de-

termined later during the process of matching solutions between rigid and

flexible sections.

We also have the matching conditions (4.36):

[p̂]+− =

[
∂p̂

∂z

]+

−
= 0, at z = z1, z2. (4.68)

Substituting the solution (4.67) into the matching conditions (4.68), we ob-

tain the following explicit boundary conditions on p̂ for z1 < z < z2:

z1
∂p̂

∂z
− p̂ = 0, at z = z1, (4.69)

∂p̂

∂z
= 0, at z = z2. (4.70)

4.5.2 Governing equations in the flexible sections

We now derive equations that govern motion within the flexible section of

the tube, z1 < z < z2. After eliminating the area variables Â and Ân, we

present the governing equations for the coupled problem in terms of only the
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pressure p̂.

From §4.3.1–§4.3.2, the equations governing the fluid and wall motion

z1 < z < z2 within the flexible section of the tube are given by (4.35),(4.41),

(4.44)

∂2p̂

∂z2
=

1

A0

∂2Â

∂t2
, (4.71)

Â(z, t) =
∞∑
n=1

Ân(z, t), (4.72)

and

F̃
∂2Ân
∂z2
−M∂2Ân

∂t2
− λnÂn = −A0qntnp̂(z, t). (4.73)

The conditions on p̂ at the joins z = z1, z2 are given by (4.69)–(4.70). We

also have the constraint (4.45) on the cross-sectional area at the joins

Ân = 0 at z = z1, z2. (4.74)

Motivated by (4.71) and the boundary conditions (4.69)–(4.70), we define

p̂n(z, t) as the solution of

∂2p̂n
∂z2

=
1

A0

∂Ân
∂t2

, (4.75)

subject to:

z1
∂p̂n
∂z
− p̂n = 0 at z = z1, (4.76)

∂p̂n
∂z

= 0 at z = z2. (4.77)

With this definition,
∑∞

n=1 p̂n satisfies equation (4.71) for p̂, and the boundary
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conditions (4.69)–(4.70) for p̂. Therefore, we can deduce that

p̂(z, t) =
∞∑
n=1

p̂n(z, t). (4.78)

Hence, we interpret p̂n as the component of the transmural pressure corre-

sponding to the nth azimuthal mode.

Using (4.75), we can write condition (4.74) in terms of only p̂n

∂2p̂n
∂z2

= 0 at z = z1, z2. (4.79)

Eliminating Ân between (4.73) and (4.75), the boundary-value problem

for p̂n in the flexible section of the tube is

F̃
∂4p̂n
∂z4

−M ∂4p̂n
∂t2∂z2

− λn
∂2p̂n
∂z2

= −qntn
∞∑
i=1

∂2p̂i
∂t2

, (4.80)

subject to (4.76)–(4.77) and (4.79).

We can recognise that the governing equation (4.80) and its boundary

conditions are linear and homogeneous. The pressure will therefore have

arbitrary amplitude, which we shall set by imposing the normalisation

∫ 1

0

(
∂

∂z

∞∑
n=1

p̂n

)2

dz = 1. (4.81)

The boundary-value problem for p̂n consists of a coupled set of linear homo-

geneous fourth-order partial differential equations, together with two sets of

boundary conditions at each join z = z1 and z = z2. There is also a global

normalisation condition. We wish to find normal mode solutions.
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Seeking a separable solution

We introduce the scaled axial co-ordinate

ζ =
z2 − z
z2 − z1

, (4.82)

and seek solutions in which p̂n varies harmonically in time with dimensionless

frequency ω. We therefore write

p̂n(z, t) = Re
(
p̃n(ζ)eiωt

)
. (4.83)

Substituting (4.83) into (4.76)–(4.81), the problem for p̃n is given by

d4p̃n
dζ4

+
1

F̃

(
Mω2 − λn

)
(z2 − z1)2 d2p̃n

dζ2
=
ω2qntn

F̃
(z2 − z1)4

∞∑
i=1

p̃i(ζ), (4.84)

subject to the boundary conditions:

dp̃n
dζ

= 0 at ζ = 0, (4.85)

z1

z2 − z1

dp̃n
dζ

+ p̃n = 0 at ζ = 1, (4.86)

d2p̃n
dζ2

= 0 at ζ = 0, 1, (4.87)

and the normalisation

z1

(z2 − z1)2

(
∞∑
n=1

dp̃n
dζ

∣∣∣∣
ζ=1

)2

+
1

z2 − z1

∫ 1

0

(
∞∑
n=1

dp̃n
dζ

)2

dζ = 1. (4.88)
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σ0 = s1 σ0 = s2 σ0 = s3 σ0 = s4

Q̂ 0.0298 0.0801 0.0873 0.0734
ε̂ 0.0714 0.2652 0.5261 0.7581

Q̃ 0.0245 0.0675 0.0726 0.0383
ε̃ 0.0722 0.2678 0.5321 0.7873

Table 4.1: Estimates of the numerical parameters Q and ε for the represen-
tative values of σ0. The first pair (Q̂, ε̂) are the estimates obtained by fitting
the straight line (4.168) to the numerical data for log(qntn). The second pair
(Q̃, ε̃) are improved estimates obtained by fitting the curve (4.170) to the
numerical data for log(qntn). Details of the fitting can be found in Appendix
4.B.

4.5.3 Behaviour of qntn for large n

In Chapter 3, we saw that qntn decays rapidly as n is increased. From (4.84),

we see that the forcing for p̃1 will be larger than p̃2, and larger still than p̃3,

etc. Hence, we expect that p̃1 will provide the dominant contribution to the

global solution for the pressure, with each successive mode p̃i being smaller

as the mode number i increases. In Appendix 4.B we study the numerical

data obtained in Chapter 3 for qntn.

4.5.4 Series solution for p̃ in the flexible section

Our analysis suggests the asymptotic behaviour

qntn ∼ Qεn−1 as n→∞ (4.89)

with 0 < ε < 1. Both Q and ε depend on the ellipticity parameter σ0. They

are estimated from the data for n = 1, 2, . . . 14 (see Appendix 4.B), and the

results are given in table (4.1).
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Having found ε, we introduce Qn such that

qntn = Qnε
n−1. (4.90)

(Hence, Qn → Q as n → ∞). The Qn are found to decrease monotonically

with increasing n. We therefore consider a formal power series expansion in

ε, assuming qntn = O(εn−1).

We expand ω and p̃n in powers of ε

ω = ω0 + εω1 + ε2ω2 +O(ε3), (4.91)

p̃n = εn−1(pn0 + εpn1 + ε2pn2 +O(ε3), (4.92)

where the pre-factor εn−1 present in (4.92) has been chosen after observing

(4.84) together with (4.90). Substituting (4.91)–(4.92) into (4.84)–(4.87), we

obtain

d4

dζ4
(pn0 + εpn1) +

1

F̃
(z2 − z1)2

[
M(ω0 + εω1)2 − λn

]
d2

dζ2
(pn0 + εpn1)

=
1

F̃
(ω0 + εω1)2 (z2 − z1)4Qn(p10 + εp11 + εp20) +O(ε2),

(4.93)

subject to

d

dζ
(pn0 + εpn1) +O(ε2) = 0 at ζ = 0, (4.94)

z1

z2 − z1

d

dζ
(pn0 + εpn1) + pn0 + εpn1 +O(ε2) = 0 at ζ = 1, (4.95)

d2

dζ2
(pn0 + εpn1) +O(ε2) = 0 at ζ = 0, 1. (4.96)
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Finally, the normalisation condition (4.88) becomes

z1

(z2 − z1)2

[(
dp10

dζ

)2

+ 2ε
dp10

dζ

( dp20

dζ
+

dp11

dζ

)] ∣∣∣∣
ζ=1

+
1

z2 − z1

∫ 1

0

(
dp10

dζ

)2

+ 2ε
dp10

dζ

(
dp20

dζ
+

dp11

dζ

)
dζ +O(ε2) = 1.

(4.97)

We now equate (4.93)–(4.97) at increasing powers of ε. Observing (4.93)–

(4.96), the problem at O(ε0) involves only the first azimuthal mode (n = 1),

and defines an eigenvalue problem for p10 and ω0. At O(ε) only n = 1 and

n = 2 will contribute towards the problem, which yields a problem for p20,

and a separate (coupled) problem for p11 and ω1. The system for p20 is forced

by p10 and ω0, and the system for p11 is forced by p20. A series solution can

therefore be found by computing the relevant components iteratively, starting

with the p10 problem. Writing p̂(z, t) = Re(p̃(z) exp iωt) in (4.78) and using

equations (4.83) and (4.92), the full axial mode for the pressure p̃ is then

given by

p̃ =
∞∑
n=1

p̃n,

= p10 + ε(p11 + p20) +O(ε2). (4.98)

The series solution for the oscillation frequency is given by (4.91).
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4.5.5 The O(ε0) problem for ω0 and p10

Equating (4.93)–(4.97) at O(ε0) with n = 1, we find that p10(ζ) and ω0 satisfy

the following eigenvalue problem:

d4p10

dζ4
+

1

F̃

(
(Mω2

0 − λ1)(z2− z1)2

)
d2p10

dζ2
− 1

F̃
Q1ω

2
0(z2− z1)4p10 = 0, (4.99)

subject to:

dp10

dζ
= 0 at ζ = 0, (4.100)

z1

z2 − z1

dp10

dζ
+ p10 = 0 at ζ = 1, (4.101)

d2p10

dζ2
= 0 at ζ = 0, 1, (4.102)

and the normalisation

z1

(z2 − z1)2

(
dp10

dζ

)2 ∣∣∣∣
ζ=1

+
1

z2 − z1

∫ 1

0

(
dp10

dζ

)2

dζ = 1. (4.103)

The eigenvalue problem (4.99)–(4.103) is of the same form as the problem

derived by Walters et al. (2018) (and Whittaker et al. (2010c) for the case

M = 0). However, it differs through the values of the numerical constants

λ1 and Q1 = q1t1. We proceed using the same solution method, although we

omit some of the detailed calculations since they are covered comprehensively

by Walters et al. (2018) and Whittaker et al. (2010c).
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The general solution to (4.99) for p10 can be written as2

p10(ζ) = A
sinh(gζ)

sinh(g)
+B

sinh(g(1− ζ))

sinh(g)
+ C cos(hζ) +D sin(hζ), (4.104)

where A,B,C and D are arbitrary constants, and g and h are real positive

constants given by

g2 = (z2 − z1)2

−(Mω2
0 − λ1)

2F̃
+

√
(Mω2

0 − λ1)2

4F̃ 2
+

1

F̃
Q1ω2

0

 , (4.105)

and

h2 = (z2 − z1)2

Mω2
0 − λ1

2F̃
+

√
(Mω2

0 − λ1)2

4F̃ 2
+

1

F̃
Q1ω2

0

 . (4.106)

Solution for ω0

Substituting the general solution (4.104) into the boundary conditions (4.100)–

(4.102) and seeking only non-trivial solutions, the following eigenvalue equa-

tion for ω0 is obtained

z1[2gh(1− cosh(g) cos(h)) + (g2 − h2) sinh(g) sin(h)]

− (z2 − z1)
g2 + h2

gh
(g sinh(g) cos(h) + h cosh(g) sin(h)] = 0. (4.107)

In total there are three equations (4.105)–(4.107) relating g, h and ω0.

Following Walters et al. (2018), we take the difference and product of (4.105)–

2The factors of 1/sinh(g) present in (4.104) have been introduced to overcome numerical
difficulties that occur when finding solutions when F̃ � 1.



Chapter 4. Fluid-structure interaction in a Starling resistor 111

Figure 4.6: The left hand side of (4.107), plotted as a function of h after
eliminating g using (4.109). The results indicate that there are countable
many solutions for h, and hence g and ω.

(4.106) in turn, yielding

ω2
0 =

F̃ g2h2

Q1(z2 − z1)4
, (4.108)

and

g =

[
λ1
F̃

(z2 − z1)2 + h2

1 + Mh2

Q1(z2−z1)2

]1/2

. (4.109)

Observe that (4.109) allows for the elimination of g from (4.106). The

resulting equation for h can then be solved numerically. Having obtained

solutions for h, corresponding values of g and ω0 can be recovered using

(4.105) and (4.108) in turn.

Consistent with the results of Walters et al. (2018), we find countably

many solutions (see figure 4.6) for h (and hence g and ω), which we shall
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Figure 4.7: Values of ω
(1)
0 plotted throughout (M, F̃ ) parameter space, for

σ0 = s1, s2, s3, s4. The values were calculated by substituting the numerical
solutions for g and h into (4.108), with z1 = 0.1, z2 = 0.9. The values for
Q1 = q1t1 were obtained from the numerical data for qntn, which can be
found in Chapter 3.

index with an oscillatory mode number j. We denote ω
(1)
0 as the fundamental

oscillation frequency.

In figure 4.7 we provide contour plots of the values for ω
(1)
0 . In general

we find that the oscillation frequency increases with F̃ , however decreases

with the dimensionless mass M . As we vary σ0, we find that tubes with an

initially almost circular cross-section (larger σ0) typically have larger natural

eigenfrequencies than those with initially larger ellipticities, particularly for

large F̃ .
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F̃ M ω
(1)
0 ω

(2)
0 ω

(3)
0 ω

(4)
0 ω

(5)
0

0 6.119 19.104 33.881 51.012 70.921
0.001 6.102 18.637 31.660 44.876 58.056

0.01 0.01 5.956 15.549 21.584 25.679 29.076
0.1 4.908 7.697 8.528 9.239 9.999

1 2.379 2.626 2.779 2.974 3.199
0 7.010 25.73 54.591 94.925 147.457

0.001 6.989 25.176 50.901 83.313 120.488
0.1 0.01 6.811 20.854 34.449 47.566 60.397

0.1 5.545 10.224 13.620 17.220 20.852
1 2.629 3.504 4.474 5.559 6.689
0 11.865 59.792 145.235 269.936 434.357

0.001 11.828 58.238 135.356 236.860 354.879
1 0.01 11.509 48.152 91.528 135.323 178.012

0.1 9.284 23.641 36.295 49.092 61.520
1 4.357 8.145 11.961 15.859 19.745

Table 4.2: Values for the oscillation frequencies ω
(j)
0 , tabulated for j =

1, 2, · · · , 5 using σ0 = 0.6, z1 = 0.1, z2 = 0.9, and a range of (M, F̃ ). To
obtain the values we substituted the numerical solutions for g and h, as well
the numerical data for Q1 into the formula (4.108). he values for Q1 = q1t1
were obtained from the numerical data for qntn, which can be found in Chap-
ter 3.

For a comparison with Walters et al. (2018), in table 4.2 we tabulate the

first five modes of the leading-order oscillation frequency ω
(j)
0 for different

values of M and F̃ , with σ0 = 0.6. We find that our results are in good

agreement, with typical absolute errors of O(10−2).

Solution for p10

Substituting the general solution (4.104) into the boundary conditions (4.100)

and (4.102), we can derive analytical expressions for the constants A,B and

C in terms of g, h and the final constant, D. The final boundary condi-

tion (4.101) is satisfied automatically due to ω0 being chosen to satisfy the
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eigenvalue equation (4.107). We find that

A =

[
−h (cos(h) sinh(g) g + sin(h)h cosh(g))

g2 (cos(h)− cosh(g))

]
D, (4.110)

B =

[
−h (sin(h)h+ sinh(g) g)

g2 (cos(h)− cosh(g))

]
D, (4.111)

C =

[
sin(h)h+ sinh(g) g

h (cos(h)− cosh(g))

]
D, (4.112)

where the parameters g and h are given by (4.105) and (4.106) respectively.

The final constant, D, is set using the normalisation condition (4.103). In

principle, an analytical expression can be obtained for D in terms of g, h

and ω0. However, this expression is prohibitively complex, so we choose not

to present it here. We define p
(j)
10 as being the solution of (4.99)–(4.103)

corresponding to the jth oscillatory mode.

We plot our solutions for p
(j)
10 in figure 4.8. In agreement with the results

of Whittaker et al. (2010c) and Walters et al. (2018), for the parameters

considered here we find that the number of extrema present in the solution

for p
(j)
10 is equal to the mode number, j. For j = 1, increasing the inertia

parameter M from 0 to 1 has only a small effect on p
(j)
10 . However, for j ≥ 2

there are noticeable changes in the curves with p
(j)
10 becoming more positive

for odd j and more negative for even j.

4.5.6 The O(ε) problem for p20

For every oscillatory mode j, there is an associated solution of the full cou-

pled problem. Whittaker et al. (2010c) deduced that unsteady perturbations

to the steady problem oscillating with a fundamental (j = 1) oscillation fre-

quency were most unstable. Since our interests lie in predicting the onset of
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Figure 4.8: Solutions for p
(j)
10 (z) with z1 = 0.1, z2 = 0.9, σ0 = 0.6, F̃ = 1,

and different values of the inertia parameter M and mode number j. The
solutions were obtained by substituting the numerical data for g and h into
the analytical solution (4.104) with (4.110)–(4.112) for p

(j)
10 .

self-excited oscillations, for the remainder of this chapter we present normal-

mode solutions corresponding to the fundamental (j = 1) mode. We proceed

by dropping the superscript (j) notation with j = 1 assumed.

The O(ε) contributions to (4.93)–(4.96) with n = 2 yield the following

system for p20:

d4p20

dζ4
− ψ2 d2p20

dζ2
=

1

F̃
ω2

0Q2(z2 − z1)4p10(ζ), (4.113)
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Figure 4.9: The values log|ψ2 − g2| plotted throughout (M, F̃ ) parameter
space, for σ0 = s2. The values were calculated using the expression (4.117) for
ψ2 and the numerical solutions (4.105) and (4.108) for g and ω0 respectively.
We have chosen not to present results for varying σ0 since this did not amount
to an observable change in the plots.

subject to:

dp20

dζ
= 0 at ζ = 0, (4.114)

z1

z2 − z1

dp20

dζ
+ p20 = 0 at ζ = 1, (4.115)

d2p20

dζ2
= 0 at ζ = 0, 1, (4.116)

where

ψ2 =
1

F̃

(
λ2 −Mω2

0

)
(z2 − z1)2 . (4.117)

We observe that the governing equation (4.113) for p20 is a linear ordinary

differential equation with constant coefficients. The forcing on the right hand

side is known, since p10(ζ) has already been found.
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Solution for p20

The system (4.113)–(4.116) can be solved for p20 using the standard approach

of summing a complimentary function and particular integral.

In order to construct the particular intefgral for p20, we must first de-

termine whether the system is resonant, i.e whether the forcing from p10

coincides with the complementary function for the homogeneous problem.

Given the form (4.8) of p10 and the sign of ψ2, such resonance will occur

precisely when g2 = ψ2. Figure 4.9 shows a contour plot of log|ψ2 − g2|

in (M, F̃ ) parameter space. The plot demonstrates that there is a single

line in the parameter space on which (4.113)–(4.116) becomes resonant. For

this special case, a general solution can be obtained by assuming that the

particular integral for p20, takes the form

F1ζ
sinh(gζ)

sinh(g)
+ F2ζ

sinh(g(1− ζ))

sinh(g)
+ F3 cos(hζ) + F4 sin(hζ), (4.118)

where F1, F2, F3 and F4 are constants.

For convenience, we proceed under the assumption that ψ2 6= g2. In this

case, we find that the general solution of (4.113)–(4.116) is given by

p20(ζ) = Â+ B̂ζ + Ĉ
sinh(ψζ)

sinh(ψ)
+ D̂

sinh(ψ(1− ζ))

sinh(ψ)

+ C1
sinh(gζ)

sinh(g)
+ C2

sinh(g(1− ζ))

sinh(g)
+ C3 cos(hζ) + C4 sin(hζ),

(4.119)

where Â, B̂, Ĉ, D̂ are arbitrary constants in the complementary function, and
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the constants in the particular integral are given by:

C1 = −(z2 − z1)4 h (sin(h)h+ sinh(g) g)DQ2ω
2
0

g4 (cos(h)− cosh(g)) (g2 − ψ2) F̃
, (4.120)

C2 = −ω
2
0Q2 (z2 − z1)4Dh (2e2g cos (h)− e3g − 2 cos(h) + e−g)

2g3F̃ (e2g − 1) (cos(h)− cosh(g)) (g2 − ψ2)
, (4.121)

C3 =
(z2 − z1)4Cω2

0Q2D

F̃h2 (h2 + ψ2)
, (4.122)

C4 =
ω2

0Q2D (z2 − z1)4

F̃ h2 (h2 + ψ2)
(4.123)

and D is the (known) normalisation constant in p10.

To determine Â, B̂, Ĉ and D̂ we substitute (4.119)–(4.123) into the four

boundary conditions (4.114)–(4.116) and solve the resulting linear system

using Maple. Analytical expressions were obtained for Â, B̂, Ĉ and D̂ in

terms of z1, z2,M, F̃ and the numerically determined constants h, g, ω0, Q1

and Q2. However, due to the length of the symbolic expressions, we choose

to omit the expressions here.

In figure 4.10 we plot solutions for εp20, which is independent of ε, using

(4.119). Unlike the solutions for p10, we find that changes in the inertia

coefficient result in an observable difference in the corresponding profiles

for p20. It can be observed that M = 0 results in a solution for p20 with

maximal amplitude, with the amplitude of the solution then monotonically

decreasing as M is increased. As we vary the ellipticity parameter, our results

demonstrate that smaller σ0 results in a larger amplitude of the solution.
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Figure 4.10: Solutions for εp20, plotted for M = 0, 0.01, 0.1, 1 with F̃ = 1, and
σ0 = s1, s2, s3, s4 with z1 = 0.1 and z2 = 0.9. The solutions were calculated
using the expression (4.119). The coefficients present in the solutions were
determined analytically in terms of the numerical constants h, g and ω within
Maple. The second panel corresponds to σ0 = 0.6 and allows for a comparison
with Walters et al. (2018) and Whittaker et al. (2010c). The values for
εQ2 = q2t2 were obtained from the numerical data for qntn, which can be
found in Chapter 3

4.5.7 The O(ε) problem for p11 and ω1

Considering the O(ε) terms in (4.93)–(4.97) with n = 1, we derive the fol-

lowing problem for p11:

L (p11) = S, (4.124)

where

L (y) =
d4y

dζ4
+ P

d2y

dζ2
−Ry, (4.125)
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and

P ≡ 1

F̃

(
Mω2

0 − λ1

)
(z2 − z1)2 , (4.126)

R ≡ 1

F̃
Q1ω

2
0(z2 − z1)4 > 0, (4.127)

S ≡ Q1ω0

F̃
(z2 − z1)4(ω0p20 + 2ω1p10)− 1

F̃
(2ω0ω1M) (z2 − z1)2 d2p10

dζ2
,

(4.128)

subject to:

dp11

dζ
= 0 at ζ = 0, (4.129)

z1

z2 − z1

dp11

dζ
+ p11 = 0 at ζ = 1, (4.130)

d2p11

dζ2
= 0 at ζ = 0, 1. (4.131)

At O(ε), the normalisation condition (4.97) becomes

z1

z2 − z1

p′10(1) (p′20(1) + p′11(1)) +

∫ 1

0

dp10

dζ

(
dp20

dζ
+

dp11

dζ

)
dζ = 0. (4.132)

The operator L here is the same as in equation (4.99), where ω0 is set

so that the associated homogeneous problem permits non-trivial solutions.

By the Fredholm Alternative Kress et al. (1989), this means that a solu-

tion of (4.124)–(4.132) will exist only when the solutions of the adjoint of

the associated homogeneous problem to (4.124)–(4.131) are orthogonal to

the inhomogeneous part of (4.124). This condition is known as a secularity

condition. In this case, it sets the oscillation frequency correction, ω1.
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The adjoint problem

The associated homogeneous problem of (4.124)–(4.132) is then given by

L (p11) = 0, (4.133)

subject to the boundary conditions (4.129)–(4.132).

We define the inner product

〈u, v〉 =

∫ 1

0

uv dζ. (4.134)

Using integration by parts three times and applying the boundary conditions

(4.129)–(4.131) on p11, we can show that

〈L p11, v〉 = 〈p11,L v〉+

[
d3p11

dζ3
v

]1

0

+

(
P

d2v

dζ2
+

d3v

dζ3

)
p11

∣∣∣∣
ζ=0

+

[
d2v

dζ2
+

z1

z2 − z1

(
P

dv

dζ
+

d3v

dζ3

)]
dp11

dζ

∣∣∣∣
ζ=1

,

(4.135)

for some sufficiently differentiable function v. In order to derive the adjoint

problem, we require the boundary terms present in (4.135) to vanish. This

requirement sets the adjoint boundary conditions.

We find that the adjoint problem for v is then given by

L (v) = 0, (4.136)
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subject to:

v = 0 at ζ = 0, 1, (4.137)

P
dv

dζ
+

d3v

dζ3
= 0 at ζ = 0, (4.138)

d2v

dζ2
+

z1

z2 − z1

(
P

dv

dζ
+

d3v

dζ3

)
= 0 at ζ = 1. (4.139)

The solution for v is sought in the same way as for p10 (see §4.5.5) and

so we omit the detailed calculations here. We find that the solution is given

by

v(ζ) = A†
sinh(gζ)

sinh(g)
+B†

sinh(g(1− ζ))

sinh(g)
+ C† cos(hζ) +D† sin(hζ), (4.140)

where:

A† =

(
g cosh(g) sin(h) (P + g2) + h sinh(g) cos(h) (P − h2)

h sinh(g) (P − h2) + g3 sin(h)

)
B†, (4.141)

C† = −B†, (4.142)

D† =

(
h sinh(g) cot(h) (h2 − P )− g cosh(g) (P + g2)

h sinh(g) (P − h2) + g3 sin(h)
− cot(h)

)
B†.

(4.143)

The final constant B† sets the amplitude of the solution. This is arbitrary

here, so we can simply choose B† = 1.



Chapter 4. Fluid-structure interaction in a Starling resistor 123

Expression for ω1

Taking the inner product of the inhomogeneous part of (4.124) with v, equat-

ing the result with zero and arranging for ω1, we find that

ω1 =
(z2 − z1)2 ω0Q1 〈p20, v〉

2
(
M
〈

d2p10
dζ2

, v
〉
−Q1 (z2 − z1)2 〈p10, v〉

) . (4.144)

Equation (4.144) is an expression for the oscillation frequency correction, ω1,

which ensures that a solution of (4.124)–(4.131) exists.

In figure 4.11 we plot the solutions (4.144) for εω1. The plots maintain

a similar profile to the leading-order component of the oscillation frequency,

ω0, but with significantly smaller magnitudes observed throughout parameter

space. Much like in figure 4.7, an increase in M results in a lower frequency,

however the solutions for the correction |εω1| decay much faster and to smaller

values. Examining the effect of different initial ellipticities, we again retain

the feature observed in figure 4.7, where we see an increase in the frequency

with a decrease in σ0. In table 4.3 we tabulate our results for a range of

values of M , F̃ and σ0.

Solution for p11

Recall that p11 is the solution of L (p11) = S as defined in (4.124)–(4.128)

subject to the boundary conditions (4.129)–(4.131) and normalisation (4.132).

Note that L with these conditions is singular (i.e., permits non-trivial solu-

tions to the homogeneous problem) due to the choice of ω0 and that S is in

the image of L due to the choice of ω1.

Since L (p10) = 0 and p10 satisfies the boundary conditions (4.129)–
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Figure 4.11: The values εω1, plotted throughout (M, F̃ ) parameter space, for
σ0 = s1, s2, s3, s4. The values were calculated using the expression (4.144)
with z1 = 0.1, z2 = 0.9 and the values for Q1 were obtained from the numer-
ical data for qntn, which can be found in Chapter 3.

(4.131), we can write the solution for p11 as

p11(ζ) = αp10(ζ) + p?(ζ), (4.145)

where p? is a particular solution, of L (p11) = S subject to (4.129)–(4.131),

and α is chosen to ensure that the normalisation condition (4.132) is satisfied.

Obtaining a solution for p? is complicated due to the singular nature of

the system, and the fact that ω0 and ω1 have been determined numerically.

The numerical error in ω0 means that, in practice, the system is not quite

singular. The numerical error in ω1 means that the right hand side S is not

quite in the true image of L . These issues combine to give significant errors
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F̃\M 0 0.1 1 10
0.1 -0.00863 -0.000441 -2.879×10−6 -9.836×10−9

σ0 = s1 1 -0.0345 -0.00169 -1.139×10−5 -3.934×10−8

10 -0.389 -0.0254 -0.000199 -7.021×10−7

100 -2.349 -0.283 -0.004584 -1.983×10−5

0.1 -0.01367 -0.00427 -9.957×10−5 -4.215×10−7

σ0 = s2 1 -0.0578 -0.0176 -0.000411 -1.786×10−6

10 -0.656 -0.231 -0.00694 -3.267×10−5

100 -3.872 -1.716 -0.108 -0.000861
0.1 -0.0148 -0.00814 -0.000530 -3.092×10−6

σ0 = s3 1 -0.0666 -0.0361 -0.00233 -1.403×10−5

10 -0.756 -0.447 -0.0374 -0.000263
100 -4.306 -2.846 -0.417 -0.00617
0.1 -0.0131 -0.00951 -0.00148 -1.404×10−5

σ0 = s4 1 -0.0619 -0.0447 -0.00685 -6.721×10−5

10 -0.697 -0.529 -0.101 -0.00126
100 -3.829 -3.075 -0.853 -0.025

Table 4.3: The values εω1, tabulated for a variety of M, F̃ and σ0. The values
were obtained by substituting the solutions (4.108), (4.104) and (4.119) for
ω0, p10 and p20 into the analytical expression (4.144) for ω1, with z1 = 0.1
and z2 = 0.9. The values for Q1 = q1t1 were obtained from the numerical
data for qntn, which can be found in Chapter 3.

in the solution for p? obtained by solving this system.

In order to avoid these difficulties, we can instead consider an equivalent

non-singular and well-posed problem for p?. First, the singular nature of

the problem is removed by removing the mixed boundary condition (4.130).

Since S is in the image of L , the solution obtained for p? will still satisfy

this final boundary condition. Secondly, we ensure a well-posed problem for

p? by adding a new homogeneous boundary condition at ζ = 0, which is not

satisfied by p10. The revised problem for p? is thus:

L (p?) =
1

F̃
Q1ω0(z2 − z1)4(ω0p20 + 2ω1p10)− 1

F̃
(2ω0ω1M) (z2 − z1)2 d2p10

dζ2
,

(4.146)
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subject to:

p? = 0 at ζ = 0, (4.147)

dp?

dζ
= 0 at ζ = 0, (4.148)

d2p?

dζ2
= 0 at ζ = 0, 1. (4.149)

The formal solution to (4.146)–(4.149) still satisfies the original problem for

p?, however, the practical solution is now much less sensitive to the small

numerical errors in ω0 and ω1.

The system (4.146)–(4.149) is solved analytically by writing the general

solution for p? in the form

p?(ζ) = A?
sinh(gζ)

sinh(g)
+B? sinh(g(1− ζ))

sinh(g)
+ C? cos(hζ) +D? sin(hζ)

+ C?
1 + C?

2ζ + C?
3

sinh(ψζ)

sinh(ψ)
+ C?

4

sinh(ψ(1− ζ))

sinh(ψ)
+ C?

5

ζ sinh(gζ)

sinh(g)

+ C?
6

ζ sinh(g(1− ζ))

sinh(g)
+ C?

7ζ cos(hζ) + C?
8ζ sin(hζ), (4.150)

where A?, B?, C?, D? are arbitrary constants in the complimentary function

and C?
1 , C

?
2 , . . . C

?
8 are constants present in the particular integral. On substi-

tuting the particular integral into the governing equation (4.146) and using

Maple to equate coefficients, we obtain analytical expressions for the con-

stants C?
1 , C

?
2 , . . . C

?
8 in terms of z1, z2,M, F̃ and the numerically determined

constants h, g, ω0, Q1 and Q2.

With the particular integral known, we can apply the boundary conditions

(4.147)–(4.149) to the solution (4.150). Explicit expressions for the constants

A?, B?, C? and D? can then be obtained using in terms of z1, z2,M, F̃ and
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the numerically determined constants h, g, ω0, Q1 and Q2 using Maple.

Having determined p? uniquely, we use (4.150), together with the nor-

malisation (4.97) at O(ε) to fix the constant, α. We find that α is given

by

α =
1

z1 − z2

∫ 1

0

dp10

dζ

(
dp20

dζ
+

dp?

dζ

)
dζ

− z1

(z2 − z1)2

[
dp10

dζ

(
dp20

dζ
+

dp11

dζ

)] ∣∣∣∣
ζ=1

. (4.151)

We choose not to present the full analytical solution for p11 due to the ex-

pressions for the coefficients being prohibitively complex.

Solutions for εp11 are plotted in figure 4.12. The features of the plots are

similar to those observed in figure 4.10. We find that changes in the inertia

coefficient amount to an observable difference in the profiles for εp11. The

solution with maximal amplitude correspond to M = 0. In figure 4.13 we plot

ε(p20 + p11) against z for σ0 = s1, s2, s3, s4, which is the full O(ε) component

of the expansion (4.98) for p̃. The plots demonstrate that varying both

the inertia coefficient and ellipticity parameter has significant impact on the

amplitude of the correction.

4.5.8 Truncation error estimates

With solutions for p10, p20, p11, ω0 and ω1 known for general σ0,M and F̃ , we

can now investigate the error incurred by truncating the series expansions

p̃(z) = p10 + ε (p11 + p20) +O(ε2), (4.152)

ω = ω0 + εω1 +O(ε2), (4.153)
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Figure 4.12: Solutions for εp11, plotted for M = 0, 0.1, 1, 10, F̃ = 1,
z1 = 0.1, z2 = 0.9 and σ0 = s1, s2, s3, s4. The plots were obtained using
the analytical expressions (4.145) and (4.150), with analytical solutions for
the coeffients determined using Maple. The amplitude of the solutions is set
via the normalisation α, which is given explicitly by (4.151).

after O(ε0). In figures 4.14 and 4.15 we plot the values |εω1/ω0| in (M, F̃ )

and (F̃ , σ0) parameter space respectively, in order to gain an understanding

of the errors incurred by truncating the expansion (4.153) for the oscillation

frequency after O(ε0). The results show that changes in M, F̃ and σ0 have a

significant impact on the magnitude of the relative error.

Figure 4.14 shows that an increase in M results in a decrease in the

relative error, whilst increases in F̃ amount to an increase in the relative

error. Examining variations in σ0 in figure 4.15, we see that for fixed M , the

error decreases monotonically with increasing σ0 and/or decreasing F̃ . As

σ0 →∞ (i.e., as the tube’s initial cross-section becomes circular) the relative

error approaches zero. In the large and small F̃ limits, we observe that the
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Figure 4.13: Solutions for ε(p20 + p11), plotted for M = 0, 0.1, 1, 10, F̃ = 1,
z1 = 0.1, z2 = 0.9 and σ0 = s1, s4. The solution for p20 was obtained using
(4.119)–(4.123), and for p11 we use (4.145) together with (4.150). Each of
the constants involved are known in terms of z1, z2,M, F̃ and the numerically
determined constants h, g, ω0, Q1 and Q2.

relative error becomes independent of F̃ .

In figure 4.16 we plot the values ε (p11 + p20) /p10, evaluated at z = 0.7,

throughout (M, F̃ ) parameter space. The results give an understanding of

the error incurred by truncating the expansion (4.152) for p̃ after O(ε0).

Much like for the frequency, our results show that larger values of the inertia

coefficient, M , result in a smaller relative error. We also observe that in this

limit the error becomes independent of F̃ , whilst for M . O(1), we observe

that the error becomes independent of M . In agreement with Chapter 3,

we find that smaller values of σ0, which correspond to more non-circular

initial cross-sectional shapes, result in larger magnitudes of the relative error.

Examining variations in the axial tension, we see that for fixed M . O(1)
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Figure 4.14: The values |εω1/ω0|, plotted throughout regions of (M, F̃ ) pa-
rameter space. The values were computed using the analytical expressions
(4.108) and (4.144). The results illustrate the error after truncating (4.153)
after O(ε0).

Figure 4.15: The values |εω1/ω0|, plotted throughout regions of (F̃ , σ0) pa-
rameter space, with M = 0, 1. The values were computed using the ana-
lytical expressions (4.108) and (4.144). The results illustrate the error after
truncating (4.153) after O(ε0).
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Figure 4.16: The values |ε (p11 + p20) /p10| evaluated at z = 0.7, plotted
throughout regions of (M, F̃ ) parameter space. The values were computed
using the analytical expressions (4.104), (4.119) and (4.145) for p10, p11 and
p20 respectively. The results give an indication of the error incurred by trun-
cating (4.152) after O(ε0).

the relative error is maximal at around F̃ = O(1) with M = 0, and decays

in the large and small F̃ limits. Considering larger values of F̃ , our results

demonstrate that the behaviour of the error depends on the order of M .

In figure 4.17 we again plot values of |ε (p11 + p20) /p10|, evaluated at

z = 0.7, however this time we fix M whilst varying F̃ and σ0. The results

show very different behaviour of the error, depending on whether M = 0

or M 6= 0. When M = 0, we see that the error will decrease for both
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Figure 4.17: The values |ε (p11 + p20) /p10| evaluated at z = 0.7, throughout
regions of (F̃ , σ0) parameter space, with M = 0 (top) and M = 1 (bot-
tom). The values were computed using the analytical expressions (4.104),
(4.119) and (4.145) for p10, p11 and p20. The results illustrate the error after
truncating (4.152) after O(ε0).

large and small F̃ . However, when M = 1, the error only decreases as

F̃ → 0, and tends towards being independent of F̃ as F̃ → ∞. In either

case, we see that an increase in σ0 result in a smaller relative error. This

result is consistent our analysis in Chapter 3 when considering the case of a

uniform transmural pressure, where it was argued that the corrections to the

fundamental azimuthal mode vanish in the limit as σ0 →∞.
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4.6 Stability threshold for self-excited oscil-

lations

In order for an instability to occur via the sloshing mechanism, there needs

to be a sufficient influx of kinetic energy into the system to overcome losses

due to the work done by the pressure at the tube ends as well as viscous

dissipation. In this section, we compute the critical Reynolds number Rec

beyond which an instability will grow.

We adopt the results of Whittaker et al. (2010c) who obtained an ex-

pression for the tube’s energy budget, which has been averaged over the

length of the tube as well as one oscillation period. The energy budget of

the oscillatory perturbation was found to be

dE

dt
=

1

`St
(T −P −D) . (4.154)

Here E is the mean dimensionless energy of the oscillatory perturbation, T

is the mean flux of kinetic energy through the tube ends due to the oscillatory

flow, P is the mean rate of working by the pressure at the tube ends due to

the oscillatory flow, and D is the mean rate of dissipation by the oscillatory

flow. Energy fluxes due to the mean flow were found to cancel out.

Whittaker et al. (2010c) obtained expressions for T , P, and D , initially

in terms of the axial fluid velocity, before re-arranging (using (4.28)) to obtain

equivalent expressions in terms of the pressure. The explicit expressions are

given by:

T =
3

4ω2
π`2St2∆2|p̃′(0)|2, (4.155)
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P =
1

4
π`2St2∆2|p̃′(0)|2, (4.156)

D =
π`3St3∆2(2ω)1/2

2αω2

∫ 1

0

|p̃′(z)|2 dz. (4.157)

Observing (4.154), we can see that the growth or decay of the oscillations

will depend on the sign of dE/ dt, or equivalently T −P − D . Setting

T −P − D = 0 and recalling α2/St = Re, the expression for the critical

Reynolds number Rec is given as

Rec =
α`(2ω)1/2

|p̃′(0)|2

∫ 1

0

|p̃′(z)|2 dz. (4.158)

For Re < Rec, we have dE/ dt < 0 and hence the flow is stable. For

Re > Rec we have dE/ dt > 0 and hence the flow is unstable.

In figure 4.18, we plot solutions for the critical Reynolds number (4.158)

against the inertia coefficient M by substituting the expansions (4.152) and

(4.153) for p̃ and ω into (4.158). We include both the leading order and O(ε)

approximations for p̃ and ω to give an indication of the impact the correction

to the fundamental azimuthal mode has on the solution. Our results are in

good agreement with Walters et al. (2018) and Whittaker et al. (2010c) (for

the case M = 0), which verifies the assertion that solutions corresponding

to the fundamental azimuthal mode provide a good approximation for the

critical Reynolds number. Our results demonstrate that for physically realis-

tic parameter values, the contributions from the high-order azimuthal modes

can be neglected.
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Figure 4.18: The critical Reynolds number Rec/(α`) plotted against M with
z1 = 0.1, z2 = 0.9, F̃ = 1, 10, 100, and σ0 = 0.6. These solutions were ob-
tained by substituting the expansions (4.152) and (4.153) for the pressure
and oscillation frequency truncated after O(1) (dashed-dotted curves) and
O(ε) (solid curves) into the expression (4.158) for the critical Reynolds num-
ber. All of the solutions correspond to the fundamental oscillatory mode,
which is the most unstable.

4.7 Conclusions

In this chapter, we have derived series representations for the steady contribu-

tions and oscillatory normal modes for the problem formulated by Whittaker

et al. (2010c) of the fluid–structure interaction of an initially elliptical thin-

walled elastic tube conveying an incompressible viscous fluid. Valid when

the oscillations in the tube wall are of small amplitude and high frequency,

our solutions enable the first formal analysis of the errors incurred by writing

the solution as a function of only the first azimuthal eigenmode.

In order to obtain the solutions, we coupled the fluid and solid mechanics
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by combining the model from Chapter 3 measuring the wall deformations

with the fluids model of Whittaker et al. (2010c), which uses the Navier–

Stokes equations. The problem was then decomposed into steady and oscil-

latory parts.

For the steady component, the leading-order fluid and solid mechanics

problems fully decouple, and the perturbation to the tube’s cross-sectional

area associated with the nth azimuthal solid eigenmode is shown to satisfy a

simple second-order ordinary differential equation (4.59), with linear forcing.

For every azimuthal mode number, n, an analytical solution is obtained for

the corresponding component measuring the change in cross-sectional area.

For the unsteady case, we formulated the entire problem in terms of

pressure modes p̂n, which give the pressure associated with the axial sloshing

flow induced by the nth azimuthal solid deformation mode. The full internal

pressure can then be obtained by summing each p̂n. Unlike for the steady

problem, we found that the azimuthal modes do not decouple at leading

order. The governing equation for the component of the pressure associated

with each individual eigenmode was forced by a pressure distribution made

up of the sum of each of the modes, and was shown to be of the form

L (p̂n) = qntn

∞∑
n=1

p̂n. (4.159)

To overcome difficulties induced by the coupling, we exploited the fact that

the product qntn, which multiplies the forcing in (4.159) decays rapidly with

an increase in mode number, n. This enabled us to adopt a series expansion

for the pressure and oscillation frequency.

With respect to a parameter, ε, which is the limiting decay rate of qntn as
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n→∞, the series representations for the oscillation frequency and pressure

take the forms

p̃(z) = p10 + ε (p11 + p20) +O(ε2), (4.160)

ω = ω0 + εω1 +O(ε2). (4.161)

Here ω0 is the fundamental oscillation frequency, with first correction ω1; p10

is the component of the pressure associated with the first azimuthal mode,

with correction p11; and p20 is the leading component of the pressure associ-

ated with the second azimuthal mode. Our results demonstrate that errors

associated with truncating (4.152)–(4.161) after O(ε0) are typically small,

and hence throughout most of (M, F̃ , σ0) parameter space, the system is well

approximated by only p10 and ω0. For certain limiting cases (F̃ � 1 and

M � 1), we found that errors associated with the oscillation frequency can

grow to be as large as O(1). However, this parameter regime is not particu-

larly relevant for the modelling of self-excited oscillations based on physical

grounds, since large F̃ corresponds to a stiff tube with negligible azimuthal

bending, and small M represents negligible mass. We used our normal mode

solutions to compute the critical Reynolds number Rec such that Re > Rec

will result in the onset of self-excited oscillations in the tube wall. Our results

indicated that the higher-order azimuthal modes provide a negligible contri-

bution to the critical Reynolds number, which formally justifies the adhoc

assumption invoked by Whittaker et al. (2010b) and Walters et al. (2018).

The long-wavelength high-frequency oscillations assumed for this model

result in the tube’s transmural pressure (at leading–order) being cross-sectionally
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uniform (i.e p̃ = p̃(z)). A reasonable extension to the work presented in this

chapter would be to include higher–order effects from the fluid mechanics, in

which the pressure varies within the cross-section. It would be simple to in-

clude such dependence when modelling the wall motion, since our results from

Chapter 3 permit azimuthal variation in the transmural pressure. Another

way in which we could build upon the current work is by considering tubes

with different initial cross-sectional shapes. One way of doing this would be

to develop a model for the wall motion of a tube with arbitrary cross-section

(see Chapter 5) and then follow a similar procedure to that outlined in this

chapter. Other extensions and improvements include considering an initially

axially non-uniform elliptical cross-section, which would apply in the context

of a tube that has a partially collapsed initial configuration.

Appendices

4.A Cross-sectionally averaged continuity equa-

tion

In this Appendix we will derive the cross-sectionally integrated continuity

equation that is used in §4.3.1. The result can either be derived using the

Navier–Stokes equations together with boundary conditions, or from first

principles. We have chosen to use the latter approach.

Consider the dimensional setup depicted in figure 4.19 involving a small

section of collapsible tube of dimensional cross-sectional area A∗(z, t) with a

dimensional axial domain occupying (z∗, z∗ + δz∗), where δz∗ � 1. Fluid is
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δz∗

w∗(z∗ + δz∗, t∗)

w∗(z∗, t∗)

A∗(z∗, t∗)

A(z∗ + δz∗, t∗)

z∗ z∗ + δz∗

Figure 4.19: A small section of elastic-walled tube of dimensional length
δz∗ � 1 conveying an axial fluid flow. The cross-sectionally averaged di-
mensional axial fluid velocity is given by w∗ and the varying dimensional
cross-sectional area is denoted A∗.

driven through the tube. We denote the space enclosed by the cross-sectional

area of the tube as A ∗(z∗, t∗) and define

q∗ =

∫∫
A ∗(z∗,t∗)

w∗ dS∗ (4.162)

as the dimensional volume flux through each cross-section, where w∗ is the

dimensional axial component of fluid velocity. Since δz∗ � 1, the tube

remains approximately axially uniform over the small spatio-temporal scale

in which changes in cross-sectional area occur. Physically we require that

a difference in volume flux between the two ends of the tube over a given

time period δt must be accommodated by an appropriate change in volume.

Re-arranging (4.163) to give

[q∗(z∗, t∗)− q∗(z∗ + δz∗, t∗)] δt∗ = [A∗(z∗, t∗ + δt∗)− A∗(z∗, t∗)] δz∗ (4.163)
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Re-arranging (4.163),

q∗(z∗, t∗)− q∗(z∗ + δz∗, t∗)

δz
=

[A∗(z∗, t∗ + δt∗)− A∗(z∗, t∗)]
δt∗

(4.164)

and taking the dual limit as δz∗, δt∗ → 0, it follows that

∂A∗

∂t∗
+
∂q∗

∂z∗
= 0. (4.165)

Finally, recalling (4.162), we arrive at the cross-sectionally averaged continu-

ity equation

∂A∗

∂t∗
+

∂

∂z∗

∫∫
A ∗(z∗,t∗)

w∗ dS∗ = 0. (4.166)

4.B Fitting a curve to numerical data for qntn

In §4.5.3 we assumed that the numerical data for qntn, which was determined

in Chapter 3 obeys the relationship

qntn ∼ Qεn−1 as n→∞. (4.167)

In this Appendix we obtain estimates for the parameters Q and ε by

fitting a curve to the numerical data obtained in Chapter 3 for qntn. In

figure 4.20, we plot log(qntn) against n for σ0 ∈ {s1, s2, s3, s4}. The plots

strongly suggest that there is a linear relationship between log (qntn) and

mode number n, for large n. The obvious first candidate function to fit to

the numerical data is therefore the straight line

log(qntn) = log Q̂+ (n− 1) log ε̂ for n� 1, (4.168)
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where Q̂ and ε̂ are constants. Since we are investigating the decay of qntn for

large n, the values for Q̂ and ε̂ were chosen so that the straight line passes

through the final two data points q13t13 and q14t14. For σ0 = 0.6, which is

the typical representative value used by Walters et al. (2018) and Whittaker

et al. (2010c), the resulting straight line is then plotted together with the

data for log(qntn) against n in figure 4.21.

With first estimates Q̂, ε̂ of Q and ε obtained, we plot the error in (4.168)

against n and again observe an approximately linear profile in logarithmic

space (see the inset of figure 4.21). We therefore improve our estimates of ε

and Q by fitting the log of the error to a straight line. Hence, we want to fit

log

(
log(qntn)−

[
log Q̃+ (n− 1) log ε̃

])
= log c+ (1− n) log d, (4.169)

for some constants Q̃, ε̃, c and d. Re-arranging (4.169), we find that an

improved fit for the numerical data qntn is given by

log (qntn) = log Q̃+ (n− 1) log ε̃+ cd1−n. (4.170)

The constants ε̃, Q̃, c and d are fixed by choosing the curve (4.170) to pass

through the final four data points of log(qntn). This defines a system of four

non-linear algebraic equations, which was solved using the built in Matlab

function fsolve. In figure 4.21 we plot the improved fit together with its

associated linearised form against n. The results of this fitting procedure for

the representative values of σ0 can be found in table 4.1 in §4.5.3.
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Figure 4.20: The points log(qntn), plotted against azimuthal mode number
n = 1, 2, . . . 12, for ellipticity parameters σ0 = s1, s2, s3, s4. Representative
values for qntn and λn are given in Chapter 3.

Figure 4.21: Approximations (4.168) and (4.170) of the numerical data for
log(qntn) with fitted coefficients. The inset shows the error in (4.168).



Chapter 5

Cross-sectional shapes exciting

monomode deformations

Synopsis

In this chapter, we will derive a model for the wall deformation

of an elastic-walled tube of arbitrary initial cross-sectional shape,

and seek a family of initial shapes with the property that an

azimuthally uniform transmural pressure will excite only a single

azimuthal deformation mode.

5.1 Introduction

In Chapter 3, we saw, for the case of an initially elliptical tube, that an ap-

plied azimuthally uniform transmural pressure will excite an infinite number

of azimuthal deformation modes. The azimuthal displacement η, which can

be used to determine the remaining displacements in the tube wall, was then

determined in the form of a series expansion

η(τ, z, t) =
∞∑
n=1

an(z, t)Yn(τ), (5.1)

143
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where (τ, z) is the elliptical-azimuthal co-ordinate system set out in Chapter

2. Here Yn(τ) is the eigenfunction corresponding to the nth deformation

eigenmode and an(z, t) is its amplitude. Whilst this approach gave excellent

results, in general truncating (5.1) after a given azimuthal mode will result

in a small error from the higher-order azimuthal modes. In this chapter,

we generalise our results from Chapter 3 to the case of an elastic tube of

arbitrary cross-section. We then use this revised model to seek a family of

initial cross-sectional shapes with the property that an azimuthally uniform

transmural pressure will excite only a single azimuthal deformation mode,

resulting in a finite semi-analytical solution of the solid mechanics problem.

To derive the model, we will first adopt the arclength version of the phys-

ical setup and governing equations introduced in Chapter 2. The eigenfunc-

tion expansion method used throughout Chapter 3 will then be replicated to

obtain a system of generalised tube laws that collectively measure the rela-

tionship between the transmural pressure — which deforms the tube — and

the corresponding changes in cross-sectional area.

To obtain the family of initial shapes, we treat the base-state azimuthal

curvature — which defines the cross-sectional shape — as an additional un-

known. We utilise this additional degree of freedom by imposing an extra

condition on the system that ensures that contributions from only a single

azimuthal mode are present in the expansion for η. The required condition is

that a certain function of the base-state azimuthal curvature is orthogonal to

all but one of the azimuthal eigenmodes, Yn. This means that this function

must be proportional to J (Yn). The constant of proportionality, which we

are free to specify, is denoted γ. It turns out that for a fixed mode, n, varying
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γ allows us to find initial cross-sectional shapes with varying aspect ratios.

We find that numerical solutions of the revised eigenvalue problem exist

on the domain γ ∈ [−γcrit, γcrit], where γcrit is the value of γ where the

governing equations encounter a singularity, corresponding to the curvature

becoming zero at a pair of isolated points in each cross section. We validate

our solutions by computing asymptotic solutions of the eigenvalue problem,

which are found to be in excellent agreement with the numerical results.

5.2 Problem description

We adopt the setup of Chapter 2 in dimensionless form and consider a long,

thin-walled elastic tube of dimensionless length ` � 1, dimensionless wall

thickness δ � 1 and dimensionless mass M (see figure 5.1). In its initial

configuration, the tube is axially uniform with an arbitrary cross-sectional

shape of circumference 2π and is subject to a dimensionless axial tension force

F̃ = O(1) at both ends. The tube is aligned with dimensionless Cartesian

co-ordinates (x, y, z), where z is aligned with the tubes central axis.

We adopt the arclength co-ordinate system (s, z) set out in Chapter 2,

where s ∈ (0, 2π) is a dimensionless arclength co-ordinate measured around

the tube’s midplane, and z is an axial co-ordinate aligned with the tube’s

central axis. We introduce t as dimensionless time.

The tube’s initial cross-sectional shape is defined by the dimensionless

base-state curvature B̄(s). As shown in Chapter 2, this is related to the

angle θ of the wall in the x–y plane by

dθ

ds
= −B̄(s). (5.2)
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F̃

F̃

O(`)

O(δ)P̃

O(1)

Figure 5.1: The typical setup showing the initial configuration of a long
thin-walled tube of dimensionless length ` and wall thickness δ. The tube
has an initially axially uniform arbitrary cross-sectional shape of O(1) radial
scale, and is subject to a dimensionless axial tension F̃ . The tube will un-
dergo deformations about this pre-stressed state in response to an applied
dimensionless transmural pressure P̃ .

We restrict our attention to shapes with symmetry in the x and y axes.

Thus, given the total circumference 2π, we can restrict the arclength domain

to s ∈ (0, π/2). To ensure a smooth cross-section, θ must increase from 0 to

π/2, while s increases from 0 to π/2. This requires

∫ π/2

0

B̄(s) ds = −π
2
. (5.3)

We consider deformations in the tube induced by a dimensionless trans-

mural pressure P̃ , which is assumed to be both even and π-periodic. As

explained in Chapter 2, this results in odd and π-periodic displacements in

the tube wall, which from Chapter 2 are described using the displacement

functions ξ(s, z, t), η(s, z, t), ζ(s, z, t) and ζa(z, t). The position vector of the

tube in its deformed configuration is given by

r = r̄(s, z) + aε
(
ξ(s, z, t)n̂ + η(s, z, t)t̂

)
+ aε`

(
1

`2
ζ(s, z, t)ẑ + δ2ζa(z, t)ẑ

)
,

(5.4)
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where the unit vectors n̂, t̂ and ẑ are measured in the normal, azimuthal

and axial directions respectively and are given explicitly in Chapter 2.

5.2.1 Governing equations for the azimuthal displace-

ment η

From Chapter 2, it was shown that with this setup the azimuthal displace-

ment, η, is governed by the PDE

L K (η)− F̃ ∂2

∂z2
J (η) +M

∂2

∂t2
J (η) = − ∂

∂s

(
P̃ (s, z, t)

B̄(s)

)
, (5.5)

where operators L , K and J are:

L (η) = −B̄ ∂η
∂s
− ∂

∂s

(
1

B̄

∂2η

∂s2

)
, (5.6)

K (η) =
∂

∂s

[
B̄η +

∂

∂s

(
1

B̄

∂η

∂s

)]
, (5.7)

J (η) = η − ∂

∂s

(
1

B̄2

∂η

∂s

)
. (5.8)

The boundary conditions on η are given by:

η = 0 on z = 0, 1, (5.9)

η =
∂2η

∂s2
=
∂4η

∂s4
= 0 on s = 0, π/2. (5.10)

If required, the other displacement functions can be recovered using the in-

extensibility constraints from Chapter 2, which relate the deformation func-
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tions. In terms of arclength, they are given by:

−ξB̄ +
∂η

∂s
= 0, (5.11)

∂η

∂z
+
∂ζ

∂s
= 0. (5.12)

(Note that the integral expression that occupied the right hand side of (5.12)

when it was originally presented Chapter 2 has vanished by symmetry in η.)

5.2.2 Solution by eigenfunction expansion

As in Chapter 3, the problem (5.5)–(5.10) can be solved by seeking a solution

of the form

η(s, z, t) =
∞∑
n=1

an(z, t)Yn(s), (5.13)

where Yn(s) is the nth arclength eigenfunction with corresponding eigenvalue

λn satisfying the following generalised eigenvalue problem

L K (Yn)− λnJ (Yn) = 0, for n = 1, 2, . . . (5.14)

subject to

Yn =
d2Yn
ds2

=
d4Yn
ds4

= 0 at s = 0, π/2. (5.15)

The properties of operator symmetry and eigenfunction orthogonality

proven in Chapter 3 for the azimuthal co-ordinate system remain true for

the arclength system. With respect to the standard inner product,

〈u, v〉 =

∫ π/2

0

uv ds, (5.16)
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we have that the eigenfunctions satisfy

〈Yn,J (Ym)〉 = 0 for n 6= m. (5.17)

The amplitude of each eigenfunction is then set via the normalisation

〈Yn,J (Yn)〉 = 1. (5.18)

The eigenfunctions satisfying (5.14)–(5.15) form a complete set. This result

can be proven by re-producing the calculations in Appendix A, with h = 1

and τ = s.

Following the method outlined in Chapter 3, the solution of (5.5)–(5.10)

for the azimuthal displacement η is given by (5.13), where each an(z, t) sat-

isfies the boundary value problem

F̃
∂2an
∂z2

−M∂2an
∂t2
− λnan = −Qn, (5.19)

subject to

an = 0 on z = 0, 1. (5.20)

Where

Qn(z, t) = −
∫ π/2

0

∂

∂s

(
P̃ (s, z, t)

B̄(s)

)
Yn(s) ds. (5.21)

The total fractional area change, α, is then given by

α(z, t) =
∞∑
n=1

αn(z, t)., (5.22)
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where αn = antn, and tn is given by the integral

tn = −4a2

Ā

∫ π/2

0

d

ds

(
1

B̄(s)

)
Yn(s) ds. (5.23)

Here Ā is the initial cross-sectional area of the tube, given explicitly by

equation (2.12) in Chapter 2.

5.2.3 A family of cross-sectional shapes that excite

monomode deformations

We now seek initial cross-sectional shapes, such that an azimuthally uniform

transmural pressure excites only the nth azimuthal deformation mode in

the expansion (5.13), for some fixed n. The initial cross-sectional shape is

characterised by the base-state curvature B̄. Henceforth, we treat B̄(s) as

an additional unknown and seek solutions of the system with am ≡ 0 for all

m 6= n.

From (5.19), we require Qm = 0 for all m 6= n. The coefficients Qn are

defined in (5.21). Since the pressure is azimuthally uniform, we need

∫ π/2

0

d

ds

(
1

B̄(s)

)
Ym(s) ds = 0 for all m 6= n. (5.24)

This means d(B̄−1)/ ds must be orthogonal to all but one of the eigen-

functions Yn(s). Hence, by the orthogonality relation, (5.17), we require

d(B̄−1)/ ds to be proportional to J (Yn), i.e.

d

ds

(
1

B̄(s)

)
= γJ (Yn), (5.25)
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for some constant γ. Observing (5.25), we can see that γ = 0 represents the

case of an initially circular cross-sectional shape (since the curvature B̄(s)

must be uniform). It will turn out to be the case that as |γ| is increased from

zero the aspect ratio of the corresponding cross-sectional shape moves away

from one. Thus, γ can be thought of as a parametrisation of the aspect ratio

of the tube’s initial cross section.

Therefore, the revised eigenvalue problem for Y (s), B̄(s) and λ we need

to consider is given by

L K (Y )− λJ (Y ) = 0, (5.26)

d

ds

(
1

B̄

)
= γJ (Y ), (5.27)

where the differential operators L K and J are as defined in (5.6)–(5.8).

The boundary conditions on Y are given by:

Y =
d2Y

ds2
=

d4Y

ds4
= 0 at s = 0, π/2. (5.28)

We also have the integral condition (5.3) on B̄

∫ π/2

0

B̄(s) ds = −π
2
. (5.29)

The normalisation on Y is given by

〈Y,J (Y )〉 =

∫ π/2

0

YJ (Y ) ds = 1. (5.30)

For each γ, the system (5.26)–(5.29) is sixth-order in Y (the eigenfunc-
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γ > 0γ < 0

s = 0

s = π/2

s = π/2

s = 0

Figure 5.2: The two possible configurations of the ellipsoidal cross-sectional
shapes arising from the solution of (5.26)–(5.30).

tion), first-order in B̄ (the base-state curvature) and involves an unknown

parameter λ (the eigenvalue). In total this means there are eight degrees of

freedom, which when combined with the eight conditions (5.28)–(5.30) should

result in a well-posed problem. We therefore proceed by seeking solutions of

(5.26)–(5.30) with γ prescribed.

Observing the symmetry of the operators L K and J , we note that the

system (5.26)–(5.29) is invariant under the transformation

γ 7→ −γ, and s 7→ π

2
− s. (5.31)

This invariance can be associated with the two possible configurations of the

ellipsoidal cross-sectional shapes arising from the solution of (5.26)–(5.30).

That is, by switching the major and minor axis between the x and y axis.

We can therefore restrict our attention to γ > 0 without loss of generality.
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Henceforth, we seek solutions in which only the first (n = 1) eigenmode

is excited by an azimuthally uniform transmural pressure.

5.3 Analytical progress

For general γ, solutions of the full non-linear problem formulated in §5.2.3

have to be determined numerically. However, analytical progress can be made

for γ � 1 by perturbing about a circular base-state.

5.3.1 Asymptotic expansions for γ � 1

Setting γ = 0 in (5.27) results in B̄ being constant, and therefore corresponds

to a circular base-state cross-sectional shape. Consequently, as shown in

Chapter 3, the curvature B̄ and eigenfunction Y decouple, and an analytical

solution for the first eigenmode of (5.26)–(5.30) is given by:

Y = y0(s) =
2√
5π

sin(2s), B̄ ≡ −1, and λ = λ0 =
36

5
. (5.32)

Hence, for γ � 1 we seek an expansion of the form

Y (s) =
2√
5π

sin(2s) + γy1(s) + γ2y2(s) + γ3y3(s) +O(γ4), (5.33)

B̄(s) = −1 + γb1(s) + γ2b2(s) + γ3b3(s) +O(γ4), (5.34)

λ = λ0 + γλ1 + γ2λ2 + γ3λ3 +O(γ4), (5.35)

where λ0 = 36/5. Substituting (5.33)–(5.34) into (5.6)–(5.8) and using prop-

erties of the geometric series (1− x)−1, we obtain asymptotic expressions for



Chapter 5. Cross-sectional shapes exciting monomode deformations 154

J (Y ) and L K (Y ). To O(γ3) we find that

J (Y ) =
10√
5π

sin(2s) + γJ1(s) + γ2J2(s) + γ3J3(s) +O(γ4), (5.36)

and

L K (Y ) =
72√
5π

sin(2s) + γLK1(s) + γ2LK2(s) + γ3LK3(s) +O(γ4),

(5.37)

where the components J1(s), J2(s), J3(s),LK1(s),LK2(s) and LK3(s) are given

explicitly in Appendix 5.A.

Since the system is invariant under the transformation (5.31), for odd i,

we expect λi = 0 and bi and yi to be odd about s = π/4, whilst for even i

we expect bi and yi to be even about s = π/4.

5.3.2 The O(γ) problem for b1

Substituting the expansion (5.36) into (5.27) and (5.29) and equating at

O(γ), we find that b1 satisfies

db1

ds
= − 10√

5π
sin(2s), (5.38)

subject to ∫ π/2

0

b1(s) ds = 0. (5.39)

Solving (5.38)–(5.39) we obtain

b1(s) =
1

π

√
5π cos(2s). (5.40)
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5.3.3 The O(γ) problem for λ1 and y1(s)

Substituting the expansions (5.35)–(5.37) into (5.26)–(5.30) with b1 known

via (5.40) and then equating at O(γ), we find that y1 is governed by the

following linear inhomogeneous ordinary differential equation with constant

coefficients:

d6y1

ds6
+2

d4y1

ds4
+(1−λ0)

d2y1

ds2
+λ0y1 =

10764

5π
sin(4s)−

√
5π

π
λ1 sin(2s), (5.41)

subject to:

y1 =
d2y1

ds2
=

d4y1

ds4
= 0 at s = 0, π/2, (5.42)

and the normalisation

∫ π/2

0

(
6y1 −

d2y1

ds2

)
sin(2s) ds = 0. (5.43)

In Chapter 3, we showed (through the setting of λ0) that the correspond-

ing homogeneous problem associated with (5.41)–(5.42) permits the non-

trivial solution

y(s) = sin(2s). (5.44)

Hence, by the Fredholm alternative, it follows that a solution of the inho-

mogeneous problem will exist only when the solutions of the adjoint of the

associated homogeneous problem to (5.41)–(5.42) are orthogonal to the in-

homogeneous part of (5.41). This solvability condition sets λ1.

By taking the standard inner product of (5.41) with some sufficiently

differentiable function, v (the adjoint eigenfunction), and integrating by parts

recursively, it can be shown that the associated homogeneous problem of
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(5.41)–(5.42) is formally self-adjoint. Hence, the adjoint eigenfunction is

given by

v(s) = y(s) = sin(2s). (5.45)

Taking the inner product of the right hand side of (5.41) with v(s) and

equating the result with zero, we find that a solution of (5.41)–(5.43) will

exist only when λ1 = 0.

Setting λ1 = 0 in (5.41) and using standard methods, the solution to

(5.41)–(5.42) for y1 is found to be

y1(s) = − 13

21π
sin(4s). (5.46)

5.3.4 The O(γ2) problem for b2

Substituting the expansion (5.36) into (5.27) and (5.29) using the expressions

(5.40) and (5.46) for b1(s) and y1(s) and then equating at O(γ2), we find that

b2 satisfies

− d

ds

(
5

π
cos2(2s) + b2

)
=

115

21π
sin(4s), (5.47)

subject to ∫ π/2

0

b2(s) ds = 0. (5.48)

Solving (5.47)–(5.48), we obtain

b2(s) = − 95

84π
cos(4s). (5.49)
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5.3.5 The O(γ2) problem for λ2 and y2

Substituting the expansions (5.35)–(5.37) into (5.26)–(5.30) with b1, b2, λ1

and y1 all known, we equate at O(γ2) and find that y2 satisfies

d6y2

ds6
+ 2

d4y2

ds4
+ (1− λ0)

d2y2

ds2
+ λ0y2

= − 2
√

5

35π3/2

[
(35πλ2 + 126) sin(2s) + 103232 sin(6s)

]
. (5.50)

subject to

y2 =
d2y2

ds2
=

d4y2

ds4
= 0 at s = 0, π/2, (5.51)

and the normalisation

∫ π/2

0

(
6y2 −

d2y2

ds2

)
sin(2s) ds+

8417

3528

√
5

π
= 0. (5.52)

We note that the homogeneous part of (5.50) is identical to that of (5.41).

Imposing the same solvability condition as in §5.3.3, we find that a solution

of (5.50)–(5.52) will exist only when

λ2 = − 18

5π
. (5.53)

With λ2 determined, we again use standard methods to obtain

y2(s) =

√
5

π3/2

(
6452

47943
sin(6s)− 8417

8820
sin(2s)

)
. (5.54)
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5.3.6 The O(γ3) problem for b3

Substituting the expansion (5.36) into (5.27) and (5.29) with b1, b2, y1 and y2

known and then equating at O(γ3), we find that b3 satisfies

− d

ds

[
5
√

5

42π3/2
(cos 6s+ 22 cos 2s) + b3

]
=

√
5( sin(6s) + 8680727 sin(2s))

1342404π3/2
,

(5.55)

subject to ∫ π/2

0

b3(s) ds = 0. (5.56)

The solution of (5.55)–(5.56) is given by

b3(s) =

√
5 (4947261 cos(2s) + 2657060 cos(6s))

8054424π3/2
. (5.57)

5.3.7 The O(γ3) problem for λ3 and y3

Substituting the expansions (5.36)–(5.37) as well as (5.35) into (5.26)–(5.30)

using the previously determined expressions for y1, y2, b1, b2, b3, λ1, λ2 and

then equating at O(γ3), we find that the problem for y3 is given by

d6y3

ds6
+ 2

d4y3

ds4
+ (1− λ0)

d2y3

ds2
+ λ0y3

=
29204572075

671202π2
sin(8s)− 1262156634

671202π2
sin(4s)− 1342404

√
5

671202
√
π
λ3 sin(2s),

(5.58)

subject to

y3 =
d2y3

ds2
=

d4y3

ds4
= 0 at s = 0, π/2, (5.59)
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and the normalisation

∫ π/2

0

(
6y3 −

d3y3

ds3

)
sin(2s) ds = 0. (5.60)

Again the homogeneous part of (5.58) is the same as that of (5.41), so we

have a solvability condition that the right hand side of (5.58) is orthogonal

to sin(2s), which sets λ3 = 0. The solution for y3 is then found to be

y3(s) =
1

π2

(
116866355

216127044
sin(4s)− 596011675

3473100504
sin(8s)

)
. (5.61)

Substituting the expressions for b1, b2, b3, y1, y2, y3, λ1, λ2 and λ3 into the ex-

pansions (5.33)–(5.35) yields asymptotic approximations for Y , B̄ and λ ac-

curate to O(γ3). These asymptotic solutions will later be compared with the

full numerical solutions that will be computed in the following section.

5.4 Numerical solution of the full problem

In this section, we describe the numerical method used to obtain a numerical

solution of (5.26)–(5.30). We find that distinct numerical solutions of (5.26)–

(5.30) exist on the domain γ ∈ [0, γcrit], where γcrit is a limiting value of γ

corresponding to a singularity appearing in the governing equations at s = 0.

The limiting solution of (5.26)–(5.30) when γ = γcrit is investigated in §5.5

below. In this section we concentrate on numerical solutions for γ ∈ [0, γcrit).

For numerical convenience, we chose to initially replace the integral nor-

malisation (5.30) with an inhomogeneous boundary condition at s = 0. Once

a solution has been found it can be re-normalised to satisfy (5.30). We also
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want to avoid the other integral constraint (5.29). We therefore seek a solu-

tion for Ỹ , B̄, θ to a revised problem:

L K (Ỹ )− λJ (Ỹ ) = 0, (5.62)

d

ds

(
1

B̄

)
= γ̃J (Ỹ ), (5.63)

dθ

ds
= −B̄, (5.64)

where γ̃ is prescribed and we have introduced θ as a new independent vari-

able. This avoids the need to impose the numerically inconvenient integral

condition (5.29) on the curvature.

The boundary conditions on Ỹ are given by

Ỹ =
d2Y

ds2
=

d4Y

ds4
= 0 at s = 0, π/2. (5.65)

The conditions on θ are given by

θ = 0 at s = 0 and θ = π/2 at s = π/2.

(5.66)

The simplified normalisation is chosen as

dỸ

ds
= −B̄ at s = 0. (5.67)

(The choice of normalisation (5.67) was found to be convenient when imple-

menting the numerical method detailed in §5.4.1.)

For each γ̃, the solutions Ỹ , B̄ and λ of the revised system (5.62)–(5.67)

satisfy the system (5.26)–(5.30) with the exception of the integral normal-
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isation (5.30). Consequently, we note that the system (5.62)–(5.67) is not

invariant under the transformation (5.31). The required solution that also

satisfies (5.30) can then be obtained by scaling both Ỹ and γ̃ as follows

Y (s) = DỸ (s), and γ =
1

D
γ̃, (5.68)

where

D =
1√∫ π/2

0
ỸJ (Ỹ ) ds

. (5.69)

The first of these scalings ensures that Y satisfies the required normalisation

(5.30), whilst the second is a consequence of the first, and is required so Y (s)

satisfies (5.27).

5.4.1 Numerical method

The eigenvalue problem (5.26)–(5.30) was solved numerically using the built

in Matlab solver bvp4c. The solver requires that we write the governing

equation as a first-order coupled system of ordinary differential equations.

We do this by introducing variables u1, u2, . . . , u8, defined as

u1 = Ỹ , (5.70)

u2 = − 1

B̄

dỸ

ds
, (5.71)

u3 = − d

ds

(
1

B̄

dỸ

ds
,

)
, (5.72)

u4 = −K (Ỹ ), (5.73)

u5 = − d

ds

[
K (Ỹ )

]
, (5.74)
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u6 = − d2

ds2

[
K (Ỹ )

]
, (5.75)

u7 = θ, (5.76)

u8 = B̄. (5.77)

The precise form for the variables u1, u2 . . . , u8 were chosen to simplify the

term in (5.26) involving the complicated operator L K , and overcomes hav-

ing to use (5.27) to compute higher-order derivatives of B̄. Overall, this

results in a significantly simplified first-order system, which is given by

du1

ds
= −u2u8, (5.78)

du2

ds
= u3, (5.79)

du3

ds
= u4 +

γ̃u1u8 (u1u8 + u3)

γ̃u2 − 1
− u2u

2
8, (5.80)

du4

ds
= u5, (5.81)

du5

ds
= u6, (5.82)

du6

ds
= λ

[
u1u8 +

γ̃u2 (u1u8 + u3)

1− γ̃u2

+ u3

]
− γ̃u6 (u1u8 + u3)

1− γ̃u2

− u5u
2
8, (5.83)

du7

ds
= u8, (5.84)

du8

ds
=
γ̃u8 (u1u8 + u3)

γ̃u2 − 1
. (5.85)

From (5.65)–(5.67), the boundary conditions on u1, u2 . . . u8 that were

passed through the solver are given by:

u1 = u3 = u5 = 0, u2 = 1, u7 = 0 on s = 0, (5.86)
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and

u2 = u4 = u6 = 0, u8 = π/2 on s = π/2. (5.87)

The solver bvp4c requires an initial guess for the solution and any parameters

(the eigenvalue λ in this case). For general γ̃, a solution was obtained by

starting from the analytical solution (5.32) for γ̃ = 0 and using parameter

continuation.

Once numerical solutions for Ỹ ,B̄ and λ satisfying (5.62)–(5.67) were

obtained for a given γ̃, we scaled Ỹ and γ̃ using (5.69) to yield a solution of

(5.26)–(5.30). To compute solutions for a prescribed value of γ (rather than

γ̃), we implemented an iterative numerical scheme that executes a binary

search algorithm to determine the value of γ̃ required to achieve a prescribed

value of γ accurate to 10−5.

Using this numerical method, we were able to compute numerical solu-

tions of (5.26)–(5.30) for prescribed values of γ > 0 up to around γ ≈ 0.78.

Beyond this value, the solver produced unreliable results, or failed completely.

This numerical difficulty can be associated with a singularity in the govern-

ing equations (5.62)–(5.63), which arises due to the curvature becoming zero.

We consider this case independently in §5.5.

5.4.2 Results for γ ∈ [0, γcrit)

In figure 5.3 we plot numerical and asymptotic solutions for the base-state

curvature B̄ as a function of arclength for fixed values of γ. For each γ,

both functions have a global maximum at s = 0 and decrease monotonically
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Figure 5.3: Numerical and asymptotic solutions for the base-state curva-
ture B̄(s) with γ = 0, 0.2, 0.4, 0.6, 0.78, γcrit, all plotted as a function of
s ∈ (0, π/2). Numerical solutions are plotted using a variety of line-styles,
whereas asymptotic solutions are plotted as solid grey curves. Details of the
solution corresponding to γ = γcrit can be found in §5.5.

until reaching a global minimum at s = π/2. Our results demonstrate that

our asymptotic predictions are in excellent agreement with our numerical

solutions, even for reasonably large values of γ.

In figure 5.4 we plot the corresponding cross-sectional shape that arises

from the numerical solution of (5.26)–(5.30) for fixed values of γ. The plots

were obtained by substituting the numerical solutions for θ(s) into the expres-

sions (2.12) given in Chapter 2 for the Cartesian position vector of the tube’s

initial cross-section. The solutions indicate that the resulting cross-sectional

shape is elliptical-like, and becomes more non-circular as γ is increased. We

have included the circular (γ = 0) solution for reference.

In figure 5.5 we plot numerical and asymptotic solutions for the first mode
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Figure 5.4: The cross-sectional shapes arising from the numerical solution of
(5.26)–(5.30) when γ = 0, 0.2, 0.4, 0.6, 0.78, γcrit. For γ 6= γcrit, the plots were
obtained by substituting the numerical solutions for B̄(s) into the expressions
given in Chapter 2 for the Cartesian position vector of the tube’s initial cross-
section. Details of the solution corresponding to γ = γcrit can be found in
§5.5.

eigenfunction Y (s) of (5.26)–(5.30) as a function of arclength for fixed values

of γ. The results indicate that increasing γ from zero results in a phase-

shift (to the right) of the maximum value of Y as well as a reduction in its

amplitude. The final value γ = 0.78 was included as a representative value

indicating the behaviour of the solution close to where the solver fails to find

a solution due to the reasons discussed in §5.5. The results show excellent

agreement between the numerical and asymptotic predictions.

In figure 5.6 we plot numerical and asymptotic solutions for the eigen-



Chapter 5. Cross-sectional shapes exciting monomode deformations 166

Figure 5.5: Numerical and asymptotic solutions of (5.26)–(5.30) for the
eigenfunction Y at γ = 0, 0.2, 0.4, 0.6, 0.78, γcrit, plotted as a function of
s ∈ (0, π/2). Numerical solutions are plotted using a variety of line-styles,
whereas asymptotic solutions are plotted as solid grey curves. Details of the
solution corresponding to γ = γcrit can be found in §5.5.

value λ, the base-state curvature B̄ at s = 0 and the first derivative of the

eigenfunction Y at s = 0 as functions of γ. For the eigenvalue, our results

demonstrate that an increase in γ amounts to a reduction in λ. As before,

we observe excellent agreement between the asymptotic and numerical so-

lutions. For the curvature, we observe that the magnitude of B̄(0) reduces

with an increase in γ and is approximately linear. For Y ′(0), we observe

that an increase in γ amounts to a reduction in the magnitude of Y ′(0), and

that the profile is approximately linear at smaller values of γ. We observe

that these numerical results indicate that there exists some γcrit such that

B̄(0) → 0 and Y ′(0) → 0 as γ → γcrit ≈ 0.78. In the following section, we

argue that the dual limit B̄(0) → 0 and Y ′(0) → 0 as γ → γcrit results in
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Figure 5.6: Numerical and asymptotic solutions for (top) the eigenvalue λ,
(middle) the base-state curvature B̄ evaluated at s = 0 and (bottom) the
eigenfunction derivative Y ′ evaluated at zero, all plotted as functions of γ ∈
[0, γcrit]. The solution at γ = γcrit is plotted using an open circle. Details of
the solution corresponding to γ = γcrit can be found in §5.5.

the governing equations of (5.26)–(5.30) becoming singular, which explains

the numerical issues encountered in this section. We investigate this further

below, and also solve for the limiting form of the solution at γ = γcrit.
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5.5 The critical value γ = γcrit

We now investigate the cause of the numerical solvers failure to find solutions

for larger γ. Re-arranging equation (5.27), we find that an expression for

B̄′(s) is given by

dB̄

ds
= −

γB̄
[
Y B̄ − d

ds

(
1
B̄

dY
ds

)]
1 + γ

B̄
dY
ds

. (5.88)

Hence, if the denominator of (5.88) ever becomes zero within the domain,

then there is a singularity in the system (5.26)–(5.30). We hypothesise that

the appearance of this singularity is the cause of the apparent termination

of the branch of solutions ending at γ = γcrit.

5.5.1 Numerical evidence for the singularity formation

In figure 5.7 we plot numerical solutions for the denominator 1+γY ′(s)/B̄(s)

of (5.88) as a function of arclength as well as numerical and asymptotic

predictions for the endpoint 1 + γY ′(0)/B̄(0) as a function of γ. The plots

indicate that as γ is increased to some critical value, the denominator of

(5.88) approaches zero at s = 0. We can associate this behaviour with the

dual limit B̄, Y ′ → 0 as γ → γcrit, (see the numerical results presented in

§5.4.2) resulting in a distinguished limit for Y ′/B̄. This analysis indicates the

possibility of a limiting solution, valid as γ → γcrit. We explore this solution

in §5.5.3.

Observing figure 5.3, we see that for every γ > 0, the base-state curvature

B̄(s) < 0 has a negative global maximum occurring at s = 0. The profile

for B̄ then decays monotonically until it reaches its global minimum, which

occurs at s = π/2. The profile for Y ′(s) is similar to this, however differs in
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Figure 5.7: Numerical solutions for the denominator B̄(s) + γY ′(s) of (5.88)
as a function of arclength. The inset shows numerical and asymptotic pre-
dictions for the endpoint B̄(0) + γY ′(0) as a function of γ.

that its global maximum is fixed by the normalisation at a positive value. The

profile for Y ′ then decays monotonically until it reaches its global minimum,

which is negative. Consequently, we expect that if γ = γcrit does indeed

correspond to the first occasion in which (5.88) becomes singular, then this

singularity will occur at s = 0.

5.5.2 Possibility of a singularity in the interior of the

domain

If solutions were to exist with γ > γcrit, it seems likely that a zero of 1+γY ′/B̄

would lie inside the domain s ∈ (0, π/2). We now consider the possibility of

this singularity in (5.88) occurring at a point s = s0 ∈ (0, π/2). Unless the

numerator of (5.88) also vanishes at this point, there will be singularity in
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B̄′ at s = s0. After observing the governing equation (5.5) for the case in

which the pressure is azimuthally uniform, we can see that the forcing term

f (η) on the right hand side can be written as

f (η) = P̃ (z, t)
1

B(s)2

dB̄

ds
. (5.89)

Hence, for an imposed non-zero transmural pressure P̃ , if B̄′ is to contain

a singularity at some point in the domain, then either the curvature must

become infinite at that point, or f (η) will also contain a singularity there.

For the former, it could be possible to construct a solution of (5.26)–(5.30)

where the curvature becomes infinite at a point. This would result in a cross-

sectional shape with sharp corners. However, this is physically unrealistic in

the biological contexts considered here, so we proceed under the assumption

that the global solution for the curvature remains finite. For the latter,

since f (η) balances a combination of three forces, it should not contain a

singularity. Hence, we arrive at the conclusion that if the problem (5.26)–

(5.30) contains a non-removable singularity in B̄′, then the resulting solution

will be unphysical.

In order for the singularity to be removable in (5.88), we require either

B̄ = 0 or B̄Y −
(
Y ′/B̄

)′
= 0 at s = s0. Both of these situations are possible,

however, we note that if B̄(s0) = 0, then in order to avoid f (η) becoming

singular, we require an additional condition, namely that B̄′(s0) = 0.

At an interior point in the domain, neither of the conditions B̄Y −(
Y ′/B̄

)′
= 0 or B̄ = 0 at s = s0 are satisfied (in general) automatically,

so to have a removable singularity in (5.88) we are required to impose one of

them as an extra condition on the system. In figure 5.8 we provide a visual
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0 s0
π/2

s

L K (Y )− λJ (Y ) = 0 L K (Y )− λJ (Y ) = 0

Y = Y ′′ = Y ′′′′ = 0
Y = Y ′′ = Y ′′′′ = 0

B̄Y −
(
Y ′/B̄

)′
= 0

1 + γY ′/B̄ = 0

(B̄−1)′ = γJ (Y ) (B̄−1)′ = γJ (Y )

∫ π/2
0

YJ (Y ) ds = 1,
∫ π/2

0
B̄ ds = −π/2

[Y = [Y ′] = [Y ′′] = [Y ′′′]

= [Y ′′′′] = [Y ′′′′′] = [B̄]

parameters: λ, s0

Unknown

(7 × d.o.f) (7 × d.o.f)

(2 × d.o.f)

(3 × conditions)

(9 × conditions)

(3 × conditions)

(2 × constraints)

Figure 5.8: Visual description of the system (5.26)–(5.30) together with the
additional conditions 1 + γY ′/B̄ = 0 and B̄Y −

(
Y ′/B̄

)′
= 0 at s = s0. The

degrees of freedom (d.o.f) are labelled in blue, the integral constraints are
labelled in orange, and the conditions at the boundaries and s = s0 interface
are labelled in magenta. In total the system comprises of 16 degrees of
freedom, 15 boundary/interface conditions and 2 integral constraints.

description of the system (5.26)–(5.30) together with the extra conditions

1 + γY ′/B̄ = 0 and B̄Y −
(
Y ′/B̄

)′
= 0 at s = s0. (The same argument can

be made by choosing to impose B̄ = 0 rather than B̄Y −
(
Y ′/B̄

)′
= 0 at

s = s0.) The figure shows that in total the system involves 16 degrees of

freedom, and 17 conditions/constraints (15 boundary conditions + 2 integral
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constraints). Hence, imposing either B̄Y −
(
Y ′/B̄

)′
= 0 or B̄ = 0 at s = s0

results in the system becoming over-determined. We therefore conclude that

a physical solution of (5.26)–(5.30) for γ > γcrit can exist (at most) discrete

values of γ.

5.5.3 Computing γcrit and the limiting solution at γ =

γcrit

On the assumption that 1 + γY ′/B̄ = 0, and B̄ = Y ′ = 0 at s = 0 when

γ = γcrit, we now seek a limiting solution of the system (5.26)–(5.30) and

at the same time obtain a precise numerical value for γcrit. As before, we

will initially seek a numerical solution of the revised system (5.62)–(5.67)

(written as the first-order system specified in §5.4.1) and then rescale the

solutions to satisfy the required integral normalisations.

Examining (5.88), we see that the denominator in the expression for

dB̄(s)/ ds will vanish at s = 0. However, owing to the boundary condi-

tions Y = Y ′′ = 0 at s = 0 the numerator will vanish there also. Hence,

the singularity should be removable, although it may still cause numerical

difficulties.

We therefore propose to solve the system (5.62)–(5.67) for Ỹ (s), B̄(s) and

λ, with the additional condition

1 +
γ̃

B̄

dỸ

ds
= 0, at s = 0, (5.90)

while treating γ̃ as an additional unknown. By the revised normalisation

condition (5.67), we can immediately use (5.90) to deduce that γ̃ = 1.
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Due to the singularity at s = 0, we restrict the numerical domain to

(ε, π/2) for some small ε, and instead determine a series solution on the

domain (0, ε) in order to determine the correct boundary conditions to apply

in the numerical scheme at s = ε.

To obtain the series solutions, we wrote down general expansions for

each of the variables u1, u2, . . . , u8, in powers of s. The coefficients in the

expansions of the different variables are related by the need for the expansions

to satisfy the differential equations (5.78)–(5.85). Some of the coefficients will

be set by the boundary conditions at s = 0, but some will be functions of

unknown constants to be determined as part of the global solution. Since we

require four boundary conditions to be satisfied at s = π/2, our expansions

need to involve precisely four unknown constants, which we shall denote

{a, b, c, d}.

The boundary conditions (5.87) together with the assumptions B̄ = Y ′ =

0 at s = 0 specify seven of the coefficients. We also assume that the leading-

order component of u8 is O(s2) based on the numerical results obtained in

§5.4 (see figure 5.3).

The values of the two variables with no conditions imposed at s = 0 are

natural to set as two of the four unknown constants. Thus, we set u4(0) = b

and u6(0) = c. We also set the leading-order component of the curvature

as another unknown constant: u′′8(0) = −a. The expansions are then substi-

tuted into equations (5.78)–(5.85) to obtain expressions coupling the remain-

ing coefficients. We found that in order to avoid a singularity in (5.83), we

were required to set λ = c. The remaining coefficients were found to be cou-

pled, and could all be written in terms of u′′6(0) and the unknown constants
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{a, b, c}. We therefore set u′′6(0) = d, our final unknown constant. The final

expressions take the form:

u1(s) =
a

6
s3 +O(s4), (5.91)

u2(s) = 1 +
b

2
s2 +O(s4), (5.92)

u3(s) = bs+
c

6
s3 +O(s4), (5.93)

u4(s) = b+
c

2
s2 +O(s4), (5.94)

u5(s) = cs+
d

6
s3 +O(s4), (5.95)

u6(s) = c+
d

2
s2 +O(s4), (5.96)

u7(s) =
a

6
s3 +O(s4), (5.97)

u8(s) = −a
2
s2 +O(s4). (5.98)

Using the expansions (5.91)–(5.98), we can determine the boundary condi-

tions to be applied at s = ε. The numerical scheme implemented in §5.4.1 was

then replicated, where the chosen initial guess was the solution at γ = 0.78

(γ̃ = 0.990), which was interpolated on the domain (ε, π/2). The solution

of (5.26)–(5.30) at γ = γcrit has been included in all of the figures shown in

§5.4.2. Notably, we observe that in all cases as γ increases through the inter-

val γ ∈ [0, γcrit), the corresponding numerical solutions appear to converge

to the solution at the critical γ = γcrit = 0.7815.
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5.6 Conclusions

In this chapter, we have derived a model for the wall deformation of an elastic-

walled tube of arbitrary initial cross-sectional shape, and sought a family

of initial shapes with the property that an azimuthally uniform transmural

pressure will excite only a single azimuthal deformation mode.

To generalise the model set out in Chapter 3, we first adopted the setup

and governing equations of Chapter 2 in terms of an arclength co-ordinate,

s. The eigenfunction expansion method used throughout Chapter 3 was

then replicated to obtain a system of generalised tube-laws that measure the

change in cross-sectional area of the tube.

Once a generalised model for an arbitrary initial cross-section had been

established, we sought a family of initial cross-sectional shapes with the prop-

erty that an azimuthally uniform transmural pressure would excite only the

first azimuthal deformation mode. In order to achieve this, we sought a so-

lution to a revised eigenvalue problem, in which we treated the base-state

curvature B̄ — which defines the cross-sectional shape — as an unknown

dependent variable. To ensure that only the first azimuthal mode was ex-

cited by the pressure, we found that the curvature B̄ needed to satisfy the

additional equation

d

ds

(
1

B̄(s)

)
= γY1, (5.99)

for some constant γ. (Given the orthogonality relation (5.17) and the ex-

pression (5.21), this ensures the modes with n ≥ 2 have zero forcing. )

The constant γ is a measure of the non-circularity of the initial cross-

sectional shape. For different prescribed values of γ, the revised eigenvalue



Chapter 5. Cross-sectional shapes exciting monomode deformations 176

problem was solved numerically for the eigenfunction Y , with corresponding

eigenvalue λ and the base-state curvature B̄. We found that we were able to

obtain distinct solution on the domain γ ∈ [0, γcrit), where γcrit corresponds

to the first value of γ in which the first derivative of the base-state curvature

encounters a singularity. After investigating the appearance of this singular-

ity, we argued that in order for the corresponding solution to be physical,

then the singularity must be removable. In general, we found that the action

of removing the singularity places an additional condition on the system,

which results in it becoming overdetermined. This led us to the conclusion

that physical solutions of the revised eigenvalue problem with γ > γcrit can

only exist at discrete values of γ.

We obtained a solution of the revised eigenvalue problem when γ = γcrit,

in which the boundary conditions on the eigenfunction result in the singular-

ity being removable automatically. An extension to this work is to investigate

the possibility that there are other locations at interior points in the domain

such that the singularity is removable automatically, and whether a corre-

sponding solution exists there.

An application of the work considered in this chapter is to re-visit the

fluid-structure interaction problem considered in Chapter 4, but instead con-

sider a tube with one of the unique cross-sectional shapes obtained above.

Since the fluid pressure is azimuthally uniform at leading order for the pa-

rameter regimes considered here, we anticipate that using the cross-sectional

shapes obtained above as a base-state configuration will provide simplifica-

tion in the coupling between the modes at leading order.

Additional future work stemming from this chapter is to seek a family of
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initial cross-sectional shapes with the property that a single n ≥ 2 azimuthal

mode is excited by an azimuthally uniform transmural pressure. This should

be a relatively straight forward extension, since it would only require modify-

ing the numerical method in §5.4 to use the analytical solutions from Chapter

3 for n ≥ 2 as an initial guess when γ = 0. Solutions for γ 6= 0 can then be

obtained using parameter continuation in γ.

Appendices

5.A Asymptotic expressions for the differen-

tial operators J (Y ) and L K (Y ) when

γ � 1

Substituting (5.33)–(5.34) into (5.8) and using properties of the geometric

series (1− x)−1, we obtain asymptotic expressions for J (Y ) and L K (Y ).

To O(γ3) we find that

J (Y ) =
10√
5π

sin(2s) + γJ1(s) + γ2J2(s) + γ3J3(s) +O(γ4), (5.100)

where J1, J2 and J3 are given explicitly by:

J1(s) =
16√
5π
b1 sin(2s)− 8√

5π
b′1 cos(2s) + y1 − y′′1 , (5.101)

J2(s) =
16√
5π

(
3

2
b2

1 + b2

)
sin(2s)− 8√

5π
(3b1b

′
1 + b′2) cos(2s)

− 2y′1b
′
1 − 2b1y

′′
1 + y2 − y′′2 , (5.102)
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J3(s) =
16√
5π

(
2b3

1 + 3b1b2 + b3

)
sin(2s)− 8√

5π
(3b′1b2 + 3b1b

′
2 + b′3) cos(2s)

− 48√
5π
b2

1b
′
1 − 6y′1b1b

′
1 − 3y′′1b

2
1 − 2y′2b

′
1 − 2b2y

′′
1 − 2y′1b

′
2 − 2b1y

′′
2

+ y3 − y′′3 . (5.103)

Similarly, we find that L K (Y ) is given by

L K (Y ) =
72√
5π

sin(2s) + γLK1 + γ2LK2 + γ3LK3 +O(γ4), (5.104)

where:

LK1(s) = −2y′′′′1 − y
(6)
1 − y′′1 − 171Ab′′1 sin(2s) + 86Ab′′′1 cos(2s) + 21Ab′′′′1 sin(2s)

− 2Ab
(5)
1 cos(2s)− 188Ab′1 cos(2s) + 120Ab1 sin(2s),

LK2(s) = −2b1y
(6)
1 − y

(6)
2 − (6Ab1 cos(2s) + y′1)b

(5)
1 − 2Ab

(5)
2 cos(2s)− 6b′1y

(5)
1

+ (61Ab1 sin(2s)− 22A cos(2s)b′1 − 5y′′1 + y1)b′′′′1 + 21Ab′′′′2 sin(2s)

− 10b′′1y
′′′′
1 − 2y′′′′2 − 2y′′′′2 + (177Ab′1 sin(2s)− 40Ab′′1 cos(2s)

+ 246Ab1 cos(2s) + 3y′1 − 10y′′′1 )b′′′1 + 86Ab′′′2 cos(2s)

+ 120A(b′′1)2 sin(2s) + (522Ab′1 cos(2s)− 493Ab1 sin(2s) + 3y′′1

+ y1)b′′1 + 2b1y
′′
1 − 171Ab′′2 sin(2s)− y′′2 − (580Ab1b

′
1

+ 188Ab′2) cos(2s) + (196Ab2
1 − 372A(B′1)2 + 120Ab2) sin(2s)

+ 2b′1y
′
1, (5.105)

LK3(s) = −66y′′′1 b
′
1b
′′
1 − y′′3 + 2y′′2b1 + 2y′1b

′
2 − ((12b2

1A+ 6Ab2) cos(2s) + 3y′1b1

+ y′2)b
(5)
1 − (6Ab1 cos(2s) + y′1)b

(5)
2 + (564A(b′1)3 − (1152Ab2

1

+ 580Ab2)b′1 − 580Ab1b
′
2 − 188Ab′3) cos(2s) + (256Ab3

1
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− 1512Ab1(b′1)2 − 744Ab′2b
′
1 + 392Ab1b2 + 120b3A) sin(2s) + 2(y′2

− y′1b1)b′1 − y
(6)
3 − 10y′′′′2 b′′1 − 2y

(6)
2 b1 − 6y

(5)
2 b′1 − 2y′′′′3 − 6(3b1b

′
1

+ b′2)y
(5)
1 − (3b2

1 + 2b2)y
(6)
1 + (177Ab′1 sin(2s)− 40Ab′′1 cos(2s)

+ 246Ab1 cos(2s) + 3y′1 − 10y′′′1 )b′′′2 + (480Ab1 sin(2s)

− 192Ab′1 cos(2s)− 30y′′1)(b′′1)2 + (3b1y
′′
1 + 240Ab′′2 sin(2s)

+ 3y′′2 + (2100Ab1b
′
1 + 522Ab′2) cos(2s) + (816A(b′1)2

− 972Ab2
1 − 493Ab2) sin(2s)− 3y′1b

′
1 − y1b1 + y2)b′′1 + (3b′′2 − 3(b′1)2

− b2
1 + 2b2)y′′1 + (522A cos(2s)b′1 − 493Ab1 sin(2s) + y1)b′′2

− (30b1y
′′′
1 + 10y′′′2 + (160Ab1 cos(2s) + 20y′1)b′′1 + 44b′1y

′′
1

+ 40Ab′′2 cos(2s)− (486Ab2
1 − 136A(b′1)2 + 246Ab2) cos(2s)

− (706Ab1b
′
1 + 177Ab′2) sin(2s)− y1b

′
1 − 3b1y

′
1 − 3y′2)b′′′1 + (y2

− 15b1y
′′
1 − 5y′′2 − (88Ab1b

′
1 + 22Ab′2) cos(2s) + (121Ab2

1

+ 61Ab2) sin(2s)− 11y′1b
′
1 + y1b1)b′′′′1 + (61Ab1 sin(2s)

− 22Ab′1 cos(2s)− 5y′′1 + y1)b′′′′2 − (24(b′1)2 + 30b1b
′′
1 + 10b′′2)y′′′′1

+ 21Ab′′′′3 sin(2s)− 2Ab
(5)
3 cos(2s)− 171Ab′′3 sin(2s)

+ 86Ab′′′3 cos(2s), (5.106)

where A = 2/(
√

5π).



Chapter 6

Summary and conclusions

In this thesis, we have generalised the models of Whittaker et al. (2010b) and

Walters et al. (2018) for the deformations of a long thin-walled initially ellipti-

cal elastic-walled tube to allow for arbitrary initial cross-sectional shapes and

azimuthally varying transmural pressures. The first formal solution for the

wall deformation of an initially elliptical tube was derived using an eigenfunc-

tion expansion method. This result was later generalised to produce a model

for the wall mechanics of an elastic tube of arbitrary cross-sectional shape.

This mechanistic model for the tube-wall deformation of an initially ellip-

tical tube was then combined with the fluid mechanics model of Whittaker

et al. (2010d) to produce an asymptotic description of the fluid-structure

interaction arising from flow through a collapsible tube.

The physical problem that has been considered throughout this thesis

was presented in Chapter 2. The set-up involved providing a description

of the tube wall in its initial configuration, as well as the notation used to

describe the displacements in the tube wall induced by an applied transmural

pressure. The long thin-walled asymptotic regime used throughout this thesis

was then introduced. The resulting physical set-up was similar to the set-up

in Whittaker et al. (2010b), but differed due to modifications being required

to accommodate the fact that the tube’s base-state cross-sectional shape is

arbitrary. By following the methodology set out by Whittaker et al. (2010b),

180
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the governing problem for the tube-wall deformation was formulated in terms

of the following PDE

L (K (η))− F̃ ∂2

∂z2
J (η) +M

∂2

∂t2
J (η) = − ∂

∂τ

(
P̃ (τ, z, t)

B̄(τ)

)
, (6.1)

for the dimensionless azimuthal displacement function η, with respect to an

arbitrary dimensionless azimuthal co-ordinate τ , a dimensionless axial co-

ordinate z, and dimensionless time, t. Here L , K and J are differential

operators in τ , F̃ and M are the dimensionless axial tension and mass re-

spectively, and B̄ is the base-state azimuthal curvature. After providing a

general framework, we defined two specific co-ordinates system in prepara-

tion for the analysis of future chapters. To facilitate the analysis of chapters

3 and 4, in which the wall deformation and subsequent fluid-structure inter-

action of flow through an initially elliptical tube is considered, we introduced

the elliptical azimuthal co-ordinate system used by Whittaker et al. (2010b).

To facilitate the analysis of Chapter 5, we introduced an intrinsic arclength

co-ordinate system, which is a convenient co-ordinate system to use when

the initial cross-sectional shape is unknown in advance.

In Chapter 3 we adopted the physical set-up from Chapter 2 for the case

of an initially elliptical tube, and derived a formal series solution for the

small-amplitude deformations of the tube that are induced by an applied

transmural pressure. To obtain the solution, an eigenfunction expansion

method was employed that resulted in the governing problem for η simpli-

fying to a remarkably simple system (3.46) of uncoupled partial differential

equations for the amplitude an(z, t) of each azimuthal mode as a function

of the axial co-ordinate z and time t. The main benefit of this approach is



Chapter 6. Summary and conclusions 182

that it alleviates the need to invoke ad hoc assumptions made by Whittaker

et al. (2010b) and Walters et al. (2018) in order to decouple the modes. By

relating each axial mode to an associated contribution to the change in area

αn, the following system of tube law like equations were derived

F̃
∂2αn
∂z2

−M∂2αn
∂t2

− λnαn = −Qn(z, t)tn, (6.2)

which collectively describe the relationship between the tube’s cross-sectional

area and the transmural pressure via the sum α(z, t) =
∑∞

n=1 αn(z, t). Here

λn is the eigenvalue of the eigenfunction Yn(τ) of a generalised eigenvalue

problem, Qn measures the contribution from the pressure to the nth az-

imuthal eigenmode, and tn is the component of the area change associated

with the nth azimuthal eigenmode. The simplicity of the system of equations

(6.2) is striking, and results in contributions from the higher-order azimuthal

modes — which previous models were unable to obtain without major effort

— being very easy to compute. We demonstrated a simple application of our

new model for the wall deformation by considering the case of an imposed

uniform transmural pressure. We showed than a solution for each area change

contribution αn could be determined analytically, and formally verified the

hypothesis of Whittaker et al. (2010b) that the fundamental azimuthal mode

provides the dominant contribution to the solution.

In Chapter 4, we produced an asymptotic description of the high-frequency

fluid-structure interaction arising from the flow through an initially elliptical

long thin-walled elastic-walled tube. To produce the model, we combined

our own results for the wall deformation set out in Chapter 3 with the flu-

ids model of Whittaker et al. (2010d). By decomposing the problem into
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steady and oscillatory parts, we obtained series solutions for the steady con-

tributions and oscillatory normal modes of the resulting system. The main

advantage of using our results from Chapter 3 to model the wall deforma-

tion is the ability to include contributions from the higher-order azimuthal

modes. Whilst for the oscillatory problem this did induce additional mathe-

matical complexity (the azimuthal modes did not decouple at leading order),

we leveraged the fact that contributions to the solution from each azimuthal

mode decay rapidly with increasing mode number. This enabled us to ob-

tain series expansions for the pressure and wall/fluid oscillation frequency,

which resulted in the relatively simple computation of the errors incurred by

truncating the expansions after a given azimuthal mode.

In Chapter 5, we derived a model for the wall deformation of an elastic

tube with an arbitrary initial cross-sectional shape, and then used this model

to compute a family of initial cross-sections such that an azimuthally uniform

transmural pressure will excite only a single azimuthal deformation mode.

This generalised model was derived by adopting the set-up of Chapter 2

in terms of the intrinsic arclength co-ordinate system, and replicating the

eigenfunction expansion method set out in Chapter 3. The resulting model is

the first three-dimensional model for the wall deformation of an elastic tube

having an arbitrary cross-sectional shape. Having established a model for

the deformations of a tube with arbitrary cross-section, as an application we

treated the base-state curvature B̄ — which defines the initial cross-section —

as an additional unknown. The new dependent variable B̄ was then required

to satisfy an additional equation that ensures only a single azimuthal mode

is excited by an azimuthally uniform transmural pressure. The system was
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solved numerically. A one-parameter family of cross-sectional shapes was

found where an azimuthally uniform transmural pressure only excites the

first azimuthal mode. An asymptotic solution of the system was also found,

and were in excellent agreement with the numerical results along the entire

solution branch. The solution branch terminated unexpectedly at a moderate

aspect ratio. Further investigation is needed in order to fully understand this.

The results obtained in this thesis have provided valuable insight into

some of the unanswered questions that have arisen from the initial analysis

of Whittaker et al. (2010c). In their work, an error of up to eight percent in

the asymptotic prediction for the critical Reynolds number was found after

comparing with direct numerical simulations. Possible primary sources of

this error included azimuthal truncation in the solid mechanics, the neglect of

Womersley layers in the fluid mechanics, and also the neglect of azimuthally

non-uniform corrections in the fluid pressure. In this thesis, we have formally

ruled out the possibility of azimuthal truncation as being a primary source

of this error. Unlike in previous studies, the mathematical models produced

here are also capable of including corrections from the fluid pressure. Since

these corrections are azimuthally varying, the models for the wall mechanics

derived in Chapter 3 and Chapter 5 that permit azimuthal variation in the

transmural pressure are adequate for the analysis.



Appendix A

Completeness of the azimuthal

eigenfunctions Yn(τ )

A.1 Introduction

In this Appendix we prove that the eigenfunctions of the generalised eigen-

value problem introduced in Chapter 3

L̂ K̂ (u)− λĴ (u) = 0, (A.1)

subject to the boundary conditions,

u =
d2u

dτ 2
= 0 on τ = 0, π/2 (A.2)

and

d4u

dτ 4
= 0 on τ = 0, π/2, (A.3)

form a basis for the underlying Hilbert space. This result will enable us to

expand a general function as a sum over the eigenfunctions of this system.

To prove the result, we make use of theorem 6.3.1 of Blanchard and

Brüning (2012):

Theorem A.1.1 (The Discrete Spectral Theorem) Let H and K be two

185
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real Hilbert spaces with scalar products 〈·, ·〉H and 〈·, ·〉K, dim(K) =∞, and

assume the following:

(i) K is dense in H;

(ii) the identical embedding i : K ↪→ H is (continuous and) compact.

Then for every symmetric bilinear form a on K which satisfies

(iii) a is continuous,

(iv) a is coercive, i.e

a(u, u) ≥ c ‖u‖2 , c > 0, ∀u ∈ K, (A.4)

there is a monotone increasing sequence (λm) of eigenvalues,

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm → +∞ (A.5)

and an orthonormal basis {em}m∈N ⊂ K of H such that

a(em, v) = λm〈em, v〉H , ∀v ∈ K, ∀m ∈ N. (A.6)

{vm} = {λ−1/2
m em} is an orthonormal basis of K with respect to the scalar

product 〈·, ·〉 = a(·, ·) on K.

The proof is organised as follows: in §A.2 we introduce the Sobolev spaces

H1 and H3, and define the corresponding inner products for which they

form Hilbert spaces. The spaces H1 and H3 are not directly applicable to

Theorem A.1.1, since their elements are not required to satisfy the boundary

conditions (A.2)–(A.3). Instead, we define the spaces H and K, which are
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subspaces of H1 and H3 respectively, and allow the appropriate boundary

conditions on the zeroth and second derivatives to be included within the

definition. The conditions on the fourth derivative are shown to be satisfied

later. The function spaces H and K are then equipped with carefully chosen

inner products 〈·, ·〉H and 〈·, ·〉K . In §A.3, we prove that the spaces H and

K form Hilbert spaces with respect to 〈·, ·〉H and 〈·, ·〉K — as required in the

hypothesis of theorem A.1.1 — by exploiting the fact that they are closed

subspaces of the Sobolev spaces H1 and H3. In §A.4, we define the coercive,

continuous, and symmetric bilinear form a = 〈·, ·〉K , such that Theorem A.1.1

yields a basis of eigenfunctions, uj of a, satisfying:

〈uj, v〉K = γj〈uj, v〉H ∀v ∈ K. (A.7)

Equation (A.7) highlights the delicacy in defining the inner products 〈·, ·〉H

and 〈·, ·〉K , since they must be chosen such that (A.7) can be re-written as

the weak form (see §A.2.3) of (A.1). Finally, in §A.5 we call on results from

one-dimensional regularity theory to show that the weak eigenfunctions uj

of (A.1)–(A.2) are in fact classical eigenfunctions. We then use this result to

deduce that the condition on the fourth derivative of (A.1)–(A.2) is satisfied

automatically. Hence, the uj are a basis of eigenfunctions of the system

(A.1)–(A.3).

A.2 Setup

In this section we define the various function spaces and inner products we

shall need in the later sections.
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A.2.1 The eigenvalue problem

In the eigenvalue problem (A.1)–(A.3), the linear differential operators L̂ , K̂

and Ĵ are given by:

L̂ (y) =
2h

c2 cosh 2σ0

d

dτ

(
1 +

d2

dτ 2

)(
y

h

)
, (A.8)

K̂ (y) =
−2

c2 cosh 2σ0

d

dτ

(
1 +

d2

dτ 2

)
y, (A.9)

Ĵ (y) = tanh2(2σ0)

(
1− d

dτ

(
1

B̄2h

d

dτ

))(
y

h

)
. (A.10)

and the functions h(τ) and B̄(τ) are:

h(τ) = c

(
1

2
cosh 2σ0 −

1

2
cos 2τ

)1/2

> 0, B̄(τ) =
c2

2h3
sinh 2σ0, (A.11)

where c > 0 is a constant. We note that the operators (A.8)–(A.10) have

been manipulated into a different form to what was initially presented in

chapter 3. This new form was found to be more convenient for the work in

this Appendix.

A.2.2 Function spaces H and K

In order to make sense of the derivatives present in (A.1), we introduce the

Sobolev spaces H1([0, π/2]) and H3([0, π/2]), which are defined in the usual

way as:

H1 = {u(τ) ∈ W 1,2 | τ ∈ (0, π/2)}, (A.12)

H3 = {u(τ) ∈ W 3,2 | τ ∈ (0, π/2)}, (A.13)
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whereW k,2 represents the Sobolev space of functions in L2([a, b]) that permits

weak derivatives up to order k (Gilbarg et al., 1977).

The function spaces H1 and H3 are important because they form Hilbert

spaces when equipped with an appropriate inner product (see §A.2.4). How-

ever, with respect to (A.1)–(A.3) they do not capture the desired behaviour

at the end-points of (0, π/2). We therefore define the spaces H and K:

H = {u(τ) ∈ H1 | u = 0 on τ = 0, π/2}, (A.14)

K = {u(τ) ∈ H3 | u = u′′ = 0 on τ = 0, π/2}. (A.15)

If the spaces H and K are equipped with equivalent inner products to those

placed on H1 and H3 respectively, then they become closed subspaces of H1

and H3. This is important when proving that both H and K form Hilbert

spaces when equipped with an appropriate inner product (see §A.3).

The spaces H and K do not directly capture the the necessary behaviour

that the fourth derivative of u vanishes at the end-points τ = 0, π/2. This

is due to the fact that we were unable to include the extra condition into

the definition of K above, since functions in W 3,2 and hence H3 are not

guaranteed to have a fourth derivative. We will show later (see §A.5) that

the condition (A.3) on the fourth derivative is satisfied naturally by the

eigenfunction solutions.
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A.2.3 Weak formulation

On multiplying both sides of (A.1) by v/h, where v ∈ K, and integrating by

parts, we obtain

4

(c2 cosh 2σ0)2

∫ π/2

0

1

h
(u′ + u′′′)(v + v′′′) dτ

= λ tanh2 2σ0

∫ π/2

0

1

h
uv +

1

hB̄2

(
u

h

)′(
v

h

)′
dτ.

(A.16)

This is known as the weak formulation of (A.1). Weak eigenfunctions u = uj

of (A.1)–(A.3) are defined as functions u ∈ K that satisfy (A.16) for all v ∈

K. We note that by this definition weak eigenfunctions are not guaranteed to

satisfy boundary condition (A.3) on the fourth derivative. These conditions

will turn out to be satisfied naturally in §A.5.

A.2.4 Inner products on H and K

We now equip the function spaces H and K with inner products that will

be convenient when we call on the Discrete Spectral Theorem. First, we

consider the canonical inner products for which H1 and H3 form Hilbert

spaces (Adams and Fournier, 2003):

〈u, v〉H1 =

∫ π/2

0

uv + u′v′ dτ, (A.17)

〈u, v〉H3 =

∫ π/2

0

uv + u′v′ + u′′v′′ + u′′′v′′′ dτ. (A.18)
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The induced norms ‖u‖H1 and ‖u‖H3 are then defined in the usual way:

‖u‖2
H1 = 〈u, u〉H1 =

∫ π/2

0

u2 + (u′)2 dτ, (A.19)

‖u‖2
H3 = 〈u, u〉H3 =

∫ π/2

0

u2 + (u′)2 + (u′′)2 + (u′′′)2 dτ. (A.20)

To allow the basis provided by Theorem A.1.1 to comprise the eigenfunctions

of (A.1)–(A.3), we define functions 〈·, ·〉H and 〈·, ·〉K , motivated by the weak

formulation (A.16) of the eigenvalue problem. Specifically, we define:

〈u, v〉H = tanh2 2σ0

∫ π/2

0

1

h
uv +

1

B̄2h

(
u

h

)′(
v

h

)′
dτ, (A.21)

〈u, v〉K =
4

(c2 cosh 2σ0)2

∫ π/2

0

1

h
(u′ + u′′′)(v′ + v′′′) dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
uv +

1

B̄2h

(
u

h

)′(
v

h

)′
dτ. (A.22)

Then the weak formulation (A.16) can then be written as

〈u, v〉K = γ〈u, v〉H , (A.23)

where

γ = λ− 4 tanh2 2σ0

(c2 cosh 2σ0)2
. (A.24)

In our definition of 〈u, v〉K , we had the freedom to add any constant

multiple of 〈u, v〉H because this is just a translation of the eigenvalue. The

constant multiple we chose simplifies the algebra in §A.3.

The associated induced norms for H and K are then defined in the usual
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way:

‖u‖2
H = tanh2 2σ0

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ, (A.25)

‖u‖2
K =

4

(c2 cosh 2σ0)2

∫ π/2

0

(u′ + u′′′)2 dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ. (A.26)

It is important that the relationships (A.21)–(A.22) do indeed define inner

products on the spaces H and K. That is, they are real-valued, positive-

definite symmetric bilinear forms on each space (Axler, 1997).

Clearly (A.21)–(A.22) show that both 〈u, v〉H and 〈u, v〉K define sym-

metric bilinear forms, that is, they are linear in u and v, and satisfy the

symmetry property:

〈u, v〉H = 〈v, u〉H , 〈u, v〉K = 〈u, v〉K . (A.27)

To show that 〈u, v〉H and 〈u, v〉K are positive-definite we consider the cor-

responding norms as defined in (A.25)–(A.26). Equation (A.25) shows that

if ‖u‖H = 0 then |u|2≡ 0. Similarly, equation (A.26) also shows that when

‖u‖K = 0 then |u|2≡ 0. Hence, both (A.21)–(A.22) define positive definite

symmetric bilinear forms, that is, they are inner products on the spaces H

and K respectively.
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A.3 H and K as Hilbert spaces

We now argue that the spaces H and K form Hilbert spaces when equipped

with the inner products (A.21)–(A.22).

The function spaces H1 and H3 equipped respectively with the inner

products 〈·, ·〉H1 and 〈·, ·〉H3 given in (A.17)–(A.18) are Hilbert spaces. The

spaces H and K equipped respectively with the inner products 〈·, ·〉H and

〈·, ·〉K given in (A.21)–(A.22) are closed subspaces of H1 and H3 respectively.

Since every closed subspace of a Hilbert space is itself a Hilbert space (Hislop

and Sigal, 2012), the spaces H and K equipped respectively with 〈·, ·〉H and

〈·, ·〉K are also Hilbert spaces. A Hilbert space is a complete inner product

space. Hence, H and K are complete with respect to the inner products

(A.17)–(A.18). This means that every Cauchy sequence in the space H will

converge, with respect to the norm ‖·‖H1 (given by (A.19)) induced by 〈·, ·〉H1

to a limit inside of H. The same argument can be made about the space K

with the inner product 〈·, ·〉H and the associated induced norm ‖·‖H3 .

Provided that H and K are equipped with inner products that respec-

tively induce equivalent norms to ‖·‖H1 and ‖·‖H3 , then they will have equiv-

alent convergence properties, and hence will be Hilbert spaces also. In other

words, if we can show that the norms ‖·‖H and ‖·‖K are equivalent to ‖·‖H1

and ‖·‖H3 , then it follows that H and K form Hilbert spaces when equipped

with the inner products (A.21)–(A.22). We dedicate the remainder of this

section to proving these results.
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A.3.1 Equivalence of the norms ‖u‖H and ‖u‖H1

The norms ‖u‖H and ‖u‖H1 are equivalent if and only if there exist positive

constants C1, C2 such that

C1 ‖u‖H1 ≤ ‖u‖H ≤ C2 ‖u‖H1 , ∀u ∈ H. (A.28)

Recall the norms for H and H1:

‖u‖2
H = tanh2 2σ0

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ, (A.29)

‖u‖2
H1 =

∫ π/2

0

u2 + (u′)2 dτ. (A.30)

We will prove the two inequalities in (A.28) separately.

Lower bound: C1 ‖u‖H1 ≤ ‖u‖H ∀u ∈ H

We shall start with the norm ‖u‖H1 and show that it is bounded above by a

multiple of ‖u‖H . We let u ∈ H, and define v(τ) = u/h. Substituting u = vh

in (A.30) and expanding the second term using the product rule, we obtain

‖u‖2
H1 =

∫ π/2

0

h2v2 +

[
(h′)2v2 +

1

2

(
h2
)′ (

v2
)′

+ h2 (v′)
2

]
dτ (A.31)

Integrating the second term by parts, noting that v vanishes at the end-points

of (0, π/2) since u ∈ H, we obtain:

‖u‖2
H1 =

∫ π/2

0

[
h2 + (h′)2 − 1

2
(h2)′′

]
v2 + h2(v′)2 dτ, (A.32)

=

∫ π/2

0

(h− h′′) 1

h
u2 + h2

[(
u

h

)′]2

dτ, (A.33)



Appendix A. Completeness of the azimuthal eigenfunctions Yn(τ) 195

= tanh2 2σ0

∫ π/2

0

f1(τ)
1

h
u2 + g1(τ)

1

hB̄2

[(
u

h

)′]2

dτ, (A.34)

where:

f1(τ) =
h

tanh2 2σ0

(
1− 1

h
h′′
)
, g1(τ) =

h3B̄2

tanh2 2σ0

. (A.35)

Now f1 and g1 are clearly bounded above on (0, π/2]. Let M1 be a positive

upper bound, given by

M1 = max
τ∈[0,π/2]

(f1(τ), g1(τ), 1). (A.36)

We then have

‖u‖2
H1 ≤M1 tanh2 2σ0

∫ π/2

0

1

h
|u|2+

1

B̄2h

[(
u

h

)′]2

dτ = M1 ‖u‖2
H . (A.37)

Hence, by setting C1 ≡M
−1/2
1 , it follows that C1 ‖u‖H1 ≤ ‖u‖H1 .

Upper bound: ‖u‖H ≤ C2 ‖u‖H1 ∀u ∈ H

Let u ∈ H. By expanding the derivative of u/h present in (A.29) using the

product rule, we find that

[(
u

h

)′]2

=
h′

h2
u2 +

(
1

h

)2

(u′)2 − 2h′

h3
uu′ (A.38)
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Substituting (A.38) into (A.29), we obtain

‖u‖2
H = tanh2 2σ0

∫ π/2

0

1

h

(
1 +

(h′)2

h4B̄2

)
u2 +

1

h3B̄2
(u′)2 − h′

h4B̄2
(u2)′ dτ.

(A.39)

Using integration by parts on the final term of (A.39), noting that u vanishes

at the end-points of (0, π/2), we find that

‖u‖2
H = tanh2 2σ0

∫ π/2

0

1

h

[
1 +

(h′)2

h4B̄2
+ h

(
h′

h4B̄2

)′]
u2 +

1

h3B̄2
(u′)2 dτ,

(A.40)

=

∫ π/2

0

f2(τ)u2 + g2(τ)(u′)2 dτ, (A.41)

where

f2(τ) =
tanh2 2σ0

h

[
1 +

(h′)2

h4B̄2
+ h

(
h′

h4B̄2

)′]
, (A.42)

g2(τ) =
tanh2 2σ0

h3B̄2
. (A.43)

Clearly we can construct (positive) upper bounds for f1(τ) and g1(τ). Let

M1 > 0 such an upper bound, e.g. we might take

M2 = max
τ∈[0,π/2]

(f2(τ), g2(τ), 1). (A.44)

Hence we have

‖u‖2
H ≤M2

∫ π/2

0

u2 + (u′)2 dτ = M2 ‖u‖2
H1 . (A.45)
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Hence by setting C2 ≡M
1/2
2 , it follows that ‖u‖H ≤ C2 ‖u‖H1 .

A.3.2 Equivalence of the norms ‖u‖K and ‖u‖H3

The norms ‖u‖K and ‖u‖H3 are equivalent if and only if there exist positive

constants C3, C4 such that

C3 ‖u‖H3 ≤ ‖u‖K ≤ C4 ‖u‖H3 , ∀u ∈ K. (A.46)

Recall the norms for K and H3:

‖u‖2
K =

4

(c2 cosh 2σ0)2

∫ π/2

0

1

h
(u′ + u′′′)2 dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ, (A.47)

‖u‖2
H3 =

∫ π/2

0

u2 + (u′)2 + (u′′)2 + (u′′′)2 dτ. (A.48)

To prove (A.46) we adopt a similar approach to that of §A.3.1, and consider

each inequality in turn.

Lower bound: C3 ‖u‖H3 ≤ ‖u‖K ∀u ∈ K

It is convenient to start with the norm ‖u‖H3 and show that it is bounded

above by a multiple of ‖u‖K . Due to the presence of (u′′′ + u′)2 in ‖u‖K , we

introduce w = u′′ + u, with the aim of writing ‖u‖2
K in terms of w2, (w′)2, u2

and (u′)2. To this end, we find that

‖u‖2
H3 =

∫ π/2

0

u2 + (u′)2 + (u′′)2 + (u′′′)2 dτ,
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=

∫ π/2

0

[
(u′′′)2 + 2(u′′′u′) + (u′)2

]
+ 3

[
(u′′)2 + 2(u′′u) + u2

]
+ 6(u′)2 − 2(u)2 − 2

[
(u′′′u′) + (u′′)2

]
− 6

[
(u′′u) + (u′)2

]
dτ,

=

∫ π/2

0

(w′)2 + 3w2 + 6(u′)2 − 2u2 − 2

[
(u′′u′)′ − 6(u′u)′

]
dτ, (A.49)

The boundary conditions on the space K mean that terms in square brackets

in the final line vanish. Thus, we obtain

‖u‖2
H3 =

∫ π/2

0

(w′)2 + 3w2 + 6(u′)2 − 2u2 dτ. (A.50)

To deal with the w2 term, we require an additional lemma.

Lemma A.3.1 Let w ∈ H, then there exists positive constant C such that

∫ π/2

0

w2 dτ ≤ C

∫ π/2

0

(w′)2 dτ. (A.51)

Proof A.3.1 Let w ∈ H and consider the following:

∫ π/2

0

1× w2 dτ =

[
τw2

]π/2
0

−
∫ π/2

0

τ(w2)′ dτ, (A.52)

= 0− 2

∫ π/2

0

τww′ dτ, (A.53)

≤ 2

∣∣∣∣ ∫ π/2

0

τww′ dτ

∣∣∣∣, (A.54)

≤ max
τ∈[0,π/2]

(|2τ |)
∫ π/2

0

|ww′| dτ, (A.55)

≤ π

∫ π/2

0

|ww′| dτ. (A.56)
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The Cauchy-Schwartz inequality gives the following:

∫ π/2

0

|ww′| dτ ≤
(∫ π/2

0

w2 dτ

)1/2(∫ π/2

0

(w′)2 dτ

)1/2

, (A.57)

Hence, we find that

∫ π/2

0

w2 dτ ≤ π

(∫ π/2

0

w2 dτ

)1/2(∫ π/2

0

(w′)2 dτ

)1/2

, (A.58)

which yields the result

∫ π/2

0

w2 dτ ≤ π2

∫ π/2

0

(w′)2 dτ. (A.59)

Hence, the lemma is proved.

Using lemma (A.3.1) and recalling the definition of the operator K̂ (u)

in (A.9), we find that:

‖u‖2
H3 ≤

∫ π/2

0

(C + 3)(w′)2 + 6(u′)2 − 2u2 dτ, (A.60)

≤
∫ π/2

0

Ĉ
1

h
(u′′′ + u′)2 + 6(u′)2 − 2u2 dτ, (A.61)

where we have defined Ĉ > 0, given explicitly by

Ĉ = (C + 3) max
τ∈[0,π/2]

(h). (A.62)

We now define v(τ) = u/h as before. Substituting u = vh in the second

term of (A.61) and expanding the derivative using the product rule; we find
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that

‖u‖2
H3 ≤

∫ π/2

0

Ĉ
1

h
(u′′′ + u′)2 + 6h′v2 + 6h2(v′)2 + 6hh′(v2)′ − 2u2 dτ.

(A.63)

Integrating the fourth term of (A.63) directly and writing the result in terms

of u; we find that:

‖u‖2
H3 ≤

∫ π/2

0

Ĉ
1

h
(u′′′ + u′)2 − 2

(
3h′′

h
+ 1

)
u2 + 6h2

[(
u

h

)′]2

dτ, (A.64)

=

∫ π/2

0

Ĉ
1

h
(u′′′ + u′)2 +

f3(τ) tanh2 2σ0

h
u2 +

g3(τ) tanh2 2σ0

B̄2h

[(
u

h

)′]2

dτ,

(A.65)

where we have defined f3(τ) and g3(τ), given explicitly by:

f3(τ) = − 2h

tanh2 2σ0

(
3h′′

h
+ 1

)
, (A.66)

g3(τ) =
B̄2h3

tanh2 2σ0

. (A.67)

Clearly Ĉ, f3(τ) and g3(τ) are bounded above by positive constants. Let

M3 > 0 be such an upper bound. We might take

M3 = max
τ∈[0,π/2]

(
Ĉ, f4(τ), g4(τ), 1

)
. (A.68)

Hence we have

‖u‖2
H3 ≤M3

∫ π/2

0

1

h
(u′′′ + u′)2 + tanh2 2σ0

(
1

h
u2 +

1

B̄2h

[(
u

h

)′]2
)

dτ,

(A.69)
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= M3
(c2 cosh 2σ0)2

4
‖u‖2

K . (A.70)

Hence setting C3 ≡M
−1/2
3

2
(c2 cosh 2σ0)

, it follows that C3 ‖u‖H3 ≤ ‖u‖K .

Upper bound: ‖u‖K ≤ C4 ‖u‖H3 ∀u ∈ K

Expanding the first term in (A.47), we find that

‖u‖2
K =

4

(c2 cosh 2σ0)2

∫ π/2

0

1

h

[
(u′)2 + 2(uu′′′) + (u′′′)2

]
dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ. (A.71)

Integrating the second term of (A.71) by parts and noting that the second

derivatives of functions in K vanish at the end-points of (0, π/2); we obtain

‖u‖2
K =

4

(c2 cosh 2σ0)2

∫ π/2

0

1

h
(u′)2 − 2u′′

(
1

h
u′
)′

+
1

h
(u′′′)2 dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ. (A.72)

Expanding the second term of (A.72) using the product rule, noting that

ū′′
(

1

h
u′
)′

=
1

h
(u′′)2 − h′

h2
u′′u′, (A.73)

we then obtain the following:

‖u‖2
K =

4

(c2 cosh 2σ0)2

∫ π/2

0

1

h
(u′)2 − 2

h
(u′′)2 +

2h′

h2
u′′u′ +

1

h
(u′′′)2 dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ. (A.74)
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Integrating the third term of (A.74) by parts noting that h′ vanishes at the

end-points of the interval (0, π/2), we arrive at a convenient form for ‖u‖2
K ,

for which we can construct an upper bound.

‖u‖2
K =

4

(c2 cosh 2σ0)2

∫ π/2

0

[
1

h
−
(
h′

h2

)′]
(u′)2 − 2

h
(u′′)2 +

1

h
(u′′′)2 dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
u2 +

1

B̄2h

[(
u

h

)′]2

dτ. (A.75)

Since the second integral in (A.75) is just a constant multiple of ‖u‖2
H , we

recall equation (A.45):

‖u‖2
H ≤M1

∫ π/2

0

(u)2 + (u′)2 dτ, M1 > 0. (A.76)

Using (A.76) we obtain:

‖u‖2
K ≤

4

(c2 cosh 2σ0)2

∫ π/2

0

[
1

h
−
(
h′

h2

)′]
(u′)2 − 2

h
(u′′)2 +

1

h
(u′′′)2 dτ

+
4M1

(c2 cosh 2σ0)2

∫ π/2

0

u2 + (u′)2 dτ, (A.77)

=
4

(c2 cosh 2σ0)2

∫ π/2

0

M1u
2 +

[
1

h
−
(
h′

h2

)′
+M1

]
(u′)2

− 2

h
(u′′)2 +

1

h
(u′′′)2 dτ, (A.78)

=

∫ π/2

0

M1u
2 + f4(τ)(u′)2 − 2g4(τ)(u′′)2 + g4(τ)(u′′′)2 dτ, (A.79)

where we have defined

f4(τ) =
4

(c2 cosh 2σ0)2

(
1

h
−
(
h′

h2

)′
+M1

)
, (A.80)

g4(τ) =
4

(c2 cosh 2σ0)2

1

h
. (A.81)
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Now defining

M4 = max
τ∈[0,π/2]

(m1, f4(τ), g4(τ), 1) > 0, (A.82)

we obtain

‖u‖2
K ≤M4

∫ π/2

0

u2 + (u′)2 + (u′′)2 + (u′′′)2 dτ = M4 ‖u‖2
H3 . (A.83)

Hence setting C4 ≡M
1/2
4 , it follows that ‖u‖K ≤ C4 ‖u‖H3 .

A.4 Application of the discrete spectral the-

orem

We now use Theorem A.1.1 to show that there exists a basis for the Hilbert

spaces H and K consisting only of the eigenfunctions of (A.1)–(A.2).

Let H and K be the spaces as defined in §A.2.2. In section §A.3 we

showed that H and K are Hilbert spaces with respect to the inner products

(A.21)–(A.22).

The space K is dense in H since C∞0 (the set of infinitely differentiable

coefficients with compact support in R2) is dense in H, and C∞0 ⊂ K ⊂ H.

The embedding

K ↪→ H (A.84)

is continuous if and only if there exists C5 > 0 such that

‖u‖H ≤ C5 ‖u‖K . (A.85)
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Recall the norms for H and K and consider the following:

‖u‖H =
c2 cosh 2σ0

2

(
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
|u|2+

1

B̄2h

∣∣∣∣(uh
)′∣∣∣∣2 dτ

)1/2

,

(A.86)

≤ c2 cosh 2σ0

2

(
4

(c2 cosh 2σ0)2

∫ π/2

0

1

h
|u′ + u′′′|2 dτ

+
4 tanh2 2σ0

(c2 cosh 2σ0)2

∫ π/2

0

1

h
|u|2+

1

B̄2h

∣∣∣∣(uh
)′∣∣∣∣2 dτ

)1/2

, (A.87)

= C5 ‖u‖K , (A.88)

where

C5 =
c2 cosh 2σ0

2
> 0. (A.89)

Hence the embedding K ↪→ H is continuous. By the Kondrachov embedding

theorem (Adams and Fournier, 2003), the embedding is compact.

Thus, defining the bilinear form

a = 〈·, ·〉K , (A.90)

the discrete spectral theorem gives two orthonormal bases, {uj} and {uj/
√
γj}

for the function spaces H and K respectively, such that the vectors uj ∈ K

are the eigenfunctions satisfying

〈uj, v〉K = γj〈uj, v〉H , ∀v ∈ K. (A.91)
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Substituting the inner products 〈·, ·〉K and 〈·, ·〉H into (A.91) and writing

γj = λj +
4

(c2 cosh 2σ0)2
, (A.92)

we find that

∫ π/2

0

1

h
K̂ (uj)K̂ (v) dτ

= λj tanh2 σ0

∫ π/2

0

1

h
ujv +

1

B̄2h

(
uj
h

)′(
v

h

)′
dτ, ∀v ∈ K. (A.93)

This is the weak formulation from §A.2.3. Hence, uj is an eigenfunction of

(A.1)–(A.3) in the weak sense. That is, it satisfies (A.93) and (A.2), but is

not guaranteed (at this point) to satisfy (A.3).

A.5 Regularity theory and natural boundary

conditions

In this section we use results from one-dimensional regularity theory to show

that the weak eigenfunctions of (A.1)–(A.2) (i.e functions uj ∈ K such that

(A.93) holds) are in fact classical eigenfunctions. We will then use this result

to prove that the final boundary condition on the fourth derivative in (A.3)

is satisfied naturally.

A.5.1 Regularity of the eigenfunctions

We begin by referring the reader to chapter 8 of Halperin and Schwartz

(2019), where it is proven that every distributional solution for a linear ODE
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with smooth coefficients is automatically a classical, smooth solution. This

result can also be found in Donoghue (2014).

We now define what it means for a distribution to be identifiable with

a point (classical) function, and prove that for every weak solution of an

nth order linear ODE, there is a corresponding distributional solution. This

means that the weak solutions uj of (A.1)–(A.3) are classical solutions of

(A.1)–(A.2).

Results for distributions

Definition A.5.1 A distribution F (φ) on an interval I is said to be iden-

tified with a point function f(τ) if for every closed finite interval (a, b) ∈ I,

f(τ) is summable on (a, b) and

F (φ) =

∫ b

a

f(τ)φ(τ) dτ ∀φ(τ) ∈ S(a,b). (A.94)

Here S(a,b) is the set of continuous functions possessing derivatives φ(n)(τ)

for any n, which, along with its self, vanish at τ = a, b.

Definition A.5.2 For any interval I, the derivative distribution, F ′(φ), is

defined by

F ′(φ) = −F (φ′) ∀φ(τ) ∈ S(a,b). (A.95)

Definition A.5.3 Let a(τ) be a point function possessing continuous point

function derivatives of all orders. Let F (φ) be the distribution restricted to

test functions φ ∈ S(a,b). Then the product a(τ)F (φ) is defined as

a(τ)F (φ(τ)) = F (a(τ)φ(τ)) ∀φ(τ) ∈ S(a,b). (A.96)
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Lemma A.5.1 For each weak (point) solution, f(τ), of the ODE

n∑
k=0

ak(τ)f (k)(τ) = 0, (A.97)

we can identify an associated distributional solution.

Proof A.5.1 To prove this result, we firstly multiply (A.97) by the test func-

tion φ ∈ S(a,b) and integrate over (a, b)

n∑
k=0

∫ b

a

f (k)(τ)ak(τ)φ(τ) dτ = 0. (A.98)

Integrating the kth term by parts αk times, noting that φ ∈ S(a,b), we obtain

the weak form for the ODE

n∑
k=0

∫ b

a

(−1)αkf
(k−αk)(τ)(ak(τ)φ(τ))(αk) dτ = 0. (A.99)

We say that functions φ that satisfy (A.99) are weak solutions of (A.97).

Using definition A.5.1, we identify the weak solution f with the distribution

F defined by

F (φ) =

∫ b

a

f(τ)φ(τ) dτ. (A.100)

Integrating each term a further k − αk times, we find that

n∑
k=0

∫ b

a

(−1)αkf(τ)(ak(τ)φ(τ))(k) dτ = 0. (A.101)

Applying definition A.5.2 k times, it follows that

F (k)(φ(τ)) = (−1)kF (φ(k)(τ)), (A.102)
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hence, equation (A.101) can be written as follows

n∑
k=0

F (k)(ak(τ)φ(τ)) dτ = 0. (A.103)

Finally, using the multiplication law for distributions (definition A.5.3), we

obtain
n∑
k=0

ak(τ)F (k)(φ(τ)) dτ = 0 ∀φ(τ) ∈ S(a.b). (A.104)

Therefore F is a distributional solution of the ODE (A.97), and hence the

lemma is proved.

Equation (A.104) verifies the assertion that every weak solution to (A.97)

(i.e. any point function f that satisfies (A.99)) can be identified with a cor-

responding distributional solution. Hence, by Halperin and Schwartz (2019),

the weak eigenfunctions (i.e functions uj that satisfy (A.93)) of (A.1)–(A.2)

are in fact classical eigenfunctions.

A.5.2 Boundary condition on the fourth derivative

We now wish to show that the eigenfunctions uj obtained above satisfy

u′′′′j = 0 on τ = 0, π/2. (A.105)

Suppose that v ∈ K and uj is a weak solution to (A.1)–(A.3). Then from

above, uj is also a classical solution of (A.1)–(A.2) and hence

uj ∈ {C∞ | uj = u′′j = 0 on τ = 0, π/2}, (A.106)
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where C∞ is the set of infinitely differentiable (smooth) functions. We can

now use integration by parts and the definitions of the operators L̂ , K̂ and

Ĵ to show that equation (A.93) can be written as

∫ π/2

0

1

h

(
L̂ K̂ (uj)− Ĵ (uj)

)
v dτ −

[
2

hc2 cosh2 2σ0

u′′′′j v
′
]π/2

0

= 0. (A.107)

Since, uj is a classical eigenfunction of (A.1) it follows that the boundary

condition on the fourth derivative is satisfied naturally.

A.6 Summary

It has been shown that the eigenfunctions of the generalised eigenvalue prob-

lem (A.1)–(A.3) form a basis for the space of smooth differentiable func-

tions whose even derivatives (up to order four) vanish at the end points of

τ ∈ (0, π/2). The result was derived by defining function spacesH andK (see

§A.2.2) in such a way that they form Hilbert spaces when equipped with in-

ner products found in §A.2.4. The result that these spaces are indeed Hilbert

spaces is proven in §A.3. The fact that H and K form Hilbert spaces allows

for the application of the Discrete Spectral Theorem A.1.1, which proves the

existence of a basis of functions uj to the weak formulation. The problem

was then to show that these eigenfunctions are in fact the eigenfunctions of

the original problem. To show this, we showed that the eigenfunctions were

in fact sufficiently more differentiable than when first defined and that the

eigenfunctions have a fourth derivative that vanishes at the end-points of

(0, π/2). The details of these two results can be found in §A.5. With these

final results proven, the main result follows.
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Since the eigenfunctions of (A.1)–(A.3) form a basis for the Hilbert space

H, for every u ∈ H, there exists a sequence of constants aj ∈ R such that

u =
∞∑
j=0

ajuj(τ). (A.108)

Using orthogonality with respect to the inner product 〈·, ·〉H , let uj and uk

be eigenfunctions of (A.1)–(A.3) and define the following normalisation

〈uj, uk〉 = δjk. (A.109)

Taking the H inner product of (A.108) with uk and using the normalisation

(A.109) it follows that

aj = 〈u, uj〉H , (A.110)

= 〈u, Ĵ (uj)〉L2 . (A.111)
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