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Abstract

Non-perturbative methods are a powerful way of modelling open quantum

systems (OQS). One such approach employed in chemical physics is the

hierarchical equations of motion (HEOM). The flagship result of this thesis is the

derivation of a new form of HEOM termed the Lorentz-Drude Undamped

Oscillator HEOM (LDUO-HEOM), which is presented in the penultimate chapter.

Preceding this is an analysis of historical methods of OQS (chapter 2) and the

studies that have led to the realisation of the need for the LDUO-HEOM

approach (chapters 3 and 4). Two different models are developed to establish

the impact of keeping a molecular vibration in the Hamiltonian or moving it to

the bath by modelling a simple molecular system. This is quantified through

quantum information and quantum correlation metrics. Here 2D spectral

lineshape is linked to non-Markovian memory effects. It is shown that the

ellipticity of the peaks and the degree of non-Markovianity increase sharply

when coupled to overdamped environments, or more gradually in underdamped

environments, but with underdamped environments giving rise to greater

non-Markovianity overall. We show that auxiliary density operators (ADOs)

contain fundamental physical information that can offer new insight for

terminating the HEOM, by reshaping the hierarchy volume to minimise the

number of ADOs. Furthermore, second order quantum correlations are

analysed. It is shown that phonon transitions modulate photon correlations at

the vibrational mode frequency for continuously driven systems. If instead, the

system is driven by a femtosecond pulsed laser we can see regions of intense

vibrational stimulation within the correlations. The above methodologies are

then applied to more complex systems such as molecular dimers. Finally, we

present an analysis of the derived LDUO-HEOM through benchmark calculations

of 2D electronic spectra and show it is a useful tool for modelling vibronic

effects in ultrafast 2D spectroscopy.

2



Access Condition and Agreement 
 
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, 
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material 
may be duplicated by you for your research use or for educational purposes in electronic or print form. 
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions 
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative 
Commons licence or Open Government licence. 
 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly 
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or 
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder 
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright 
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in 
this database has been supplied on the understanding that it is copyright material and that no quotation 
from the material may be published without proper acknowledgement. 
 



Contents

Abstract 2

List of Figures 8

List of Tables 27

Acknowledgements 28

Publications 29

1 Introduction 30

2 Theoretical Methods 41

Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 Model Systems and Open Quantum Theory . . . . . . . . . . . . . 42

2.1.1 Closed Systems . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.2 Open Quantum Systems . . . . . . . . . . . . . . . . . . . . 44

2.1.3 Quantum Dynamical Maps . . . . . . . . . . . . . . . . . . . 46

2.1.4 The Environment . . . . . . . . . . . . . . . . . . . . . . . . 47

2.1.5 Markovianity . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1.6 Field Interactions . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.1 System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . 55

2.2.1.1 Vibronic Monomer . . . . . . . . . . . . . . . . . . 55

2.2.1.2 Electronically Coupled Aggregates . . . . . . . . . 62

2.2.1.3 Vibronic Dimer . . . . . . . . . . . . . . . . . . . . 64

2.2.1.3.1 Strong Coupling Limit . . . . . . . . . . 68

2.2.1.3.2 Weak Coupling Limit . . . . . . . . . . . 69

2.2.2 Bath Interaction Hamiltonian . . . . . . . . . . . . . . . . . 70

2.2.2.1 Bath Coupling Operators . . . . . . . . . . . . . . 72

2.2.2.2 Spectral Density . . . . . . . . . . . . . . . . . . . 73

2.2.2.2.1 Cumulant Expansion . . . . . . . . . . . 80

2.2.3 Field Interaction Hamiltonian . . . . . . . . . . . . . . . . . 81

2.2.3.1 Optical Spectroscopy . . . . . . . . . . . . . . . . 81

2.2.3.2 Quantum Correlations . . . . . . . . . . . . . . . 82

2.2.3.3 Dipole Moment Operator . . . . . . . . . . . . . . 82

2.3 Two-time Bosonic Correlation Functions . . . . . . . . . . . . . . . 84

3



Contents

2.3.1 Non-normalised Correlation . . . . . . . . . . . . . . . . . . 86

2.3.1.1 Applications of Correlation . . . . . . . . . . . . . 87

2.3.1.1.1 Interferometry . . . . . . . . . . . . . . . 87

2.3.1.1.2 Correlation in Molecular Systems . . . . . 88

2.4 Theory of Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 89

2.4.1 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.4.2 First Order Linear Spectroscopy . . . . . . . . . . . . . . . . 91

2.4.3 Third Order Photon Echo Spectroscopy . . . . . . . . . . . . 94

2.4.3.1 Polarisation and Response Function . . . . . . . . 94

2.4.3.2 2D Spectra . . . . . . . . . . . . . . . . . . . . . . 99

2.5 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.5.1 Exact Approaches . . . . . . . . . . . . . . . . . . . . . . . . 102

2.5.2 Perturbative Approaches . . . . . . . . . . . . . . . . . . . . 103

2.5.3 Non-Perturbative Approaches . . . . . . . . . . . . . . . . . 105

2.5.4 Hierarchical Equations of Motion . . . . . . . . . . . . . . . 109

2.5.4.1 Overdamped HEOM . . . . . . . . . . . . . . . . . 109

2.5.4.1.1 System-bath Model . . . . . . . . . . . . 109

2.5.4.1.2 Feynman and Vernon Influence Functional110

2.5.4.2 Underdamped HEOM . . . . . . . . . . . . . . . . 115

2.5.4.3 Arbitrary Spectral Density (ASD) HEOM . . . . . . 118

2.5.4.4 Generalised HEOM . . . . . . . . . . . . . . . . . . 122

2.5.4.5 Lorentz-Drude Undamped Oscillator (LDUO)

HEOM . . . . . . . . . . . . . . . . . . . . . . . . 123

2.5.5 Matsubara Frequencies and Hierarchy Dimensions . . . . . 125

2.5.5.1 Dimensions . . . . . . . . . . . . . . . . . . . . . . 125

2.5.6 Computational Implementation . . . . . . . . . . . . . . . . 128

2.5.6.1 Computational Initial Conditions . . . . . . . . . . 128

2.5.6.2 Hamming Apodisation Function . . . . . . . . . . 129

3 Measuring Quantum Information 131

3.1 Analysis of Quantum Information and Spectral Lineshape . . . . . 131

3.1.1 Limits of the Lineshape . . . . . . . . . . . . . . . . . . . . . 136

3.1.2 Quantifying Non-Markovianity and Its Effect on Spectral

Lineshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.2 Hamiltonian versus Bath/Spectral Vibration for a Homodimer . . . 149

3.2.1 The Canonical Transform, Examined Close to the Zero

Canonical Damping Limit . . . . . . . . . . . . . . . . . . . 158

3.3 Auxiliary Density Operators and Virtual Quantum Information . . . 162

3.3.1 Virtual Information in the HVM and BVM . . . . . . . . . . 165

3.3.2 Integer Phonon Contributions to Virtual Information in the

BVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.3.3 Impact of Additional, Volume Reducing, Termination . . . . 174

4



Contents

4 Measuring Quantum Correlations 180

4.1 Phonon Signatures in Photon Correlations . . . . . . . . . . . . . . 180

4.1.1 Simultaneous Time Correlation . . . . . . . . . . . . . . . . 182

4.1.2 Two-time Second-Order Correlation . . . . . . . . . . . . . 184

4.2 Correlations Induced by a Laser with a Gaussian Width . . . . . . . 191

4.2.1 Continuous or Pulse-like Driving Fields . . . . . . . . . . . . 191

4.2.2 First and Second Order Correlations . . . . . . . . . . . . . 194

4.3 Enhanced Phonon Signatures within the Virtual Correlation

Functions of Auxiliary Density Operators . . . . . . . . . . . . . . . 200

4.3.1 Hamiltonian Versus Spectral Model . . . . . . . . . . . . . . 201

4.3.2 Virtual Correlation . . . . . . . . . . . . . . . . . . . . . . . 203

4.3.3 HVM and BVM Virtual Correlation . . . . . . . . . . . . . . 203

4.3.4 Zero Environment Reorganisation Energy . . . . . . . . . . 206

4.4 Phonon Signatures in Photon Correlations of Electronically

Coupled Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

4.4.1 HVM Model of Electronically Coupled Species . . . . . . . . 209

4.4.2 First and Second Order Correlations . . . . . . . . . . . . . 211

4.4.2.1 Limits of Electronic Coupling . . . . . . . . . . . . 211

4.4.2.2 Analysis of Electronic Coupling in Dimer Species . 222

5 Spectral Vibrations in the Limit of Zero Canonical Damping 232

5.1 Realising Equivalence of the HVM and BVM . . . . . . . . . . . . . 232

5.1.1 Deriving the Lorentz-Drude Undamped Oscillator HEOM . . 233

5.1.2 Test Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 239

5.1.3 LDUO Linear and 2D Nonlinear Optical Spectroscopy . . . . 240

6 Conclusions 249

6.1 Response to Proposed Hypotheses . . . . . . . . . . . . . . . . . . . 252

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Appendix A: Mathematical Notation and Physical Interpretation 256

Appendix B: Integration by Numerical Quadrature 277

B.1 Fourth Order Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . 277

B.1.1 Forward Euler . . . . . . . . . . . . . . . . . . . . . . . . . . 277

B.1.2 RK4 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . 279

Appendix C: Calculation of a Feynman Path Integral 281

C.1 Free Particle Propagator . . . . . . . . . . . . . . . . . . . . . . . . 281

Appendix D: Derivations from first principles 282

D.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 282

D.1.1 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . 282

D.1.1.1 Particles Like Classical Waves . . . . . . . . . . . . 282

5



Contents

D.1.1.2 Quantum Mechanics . . . . . . . . . . . . . . . . . 283

D.1.2 The Liouville-von Neumann Equation . . . . . . . . . . . . . 284

D.1.3 The Nakajima-Zwanzig Equation . . . . . . . . . . . . . . . 289

D.1.4 Master Equations . . . . . . . . . . . . . . . . . . . . . . . . 292

D.1.5 The Bloch-Redfield Master Equation . . . . . . . . . . . . . 293

D.1.6 The Lindblad Master Equation . . . . . . . . . . . . . . . . . 295

D.1.7 The Quantum Langevin Equation . . . . . . . . . . . . . . . 297

D.1.7.1 Kubo’s Stochastic Liouville Equation . . . . . . . . 299

D.1.7.2 Relation to the Forward-Backward Path Integral . 301

D.1.8 The Stochastic Schrödinger Equation . . . . . . . . . . . . . 301

D.1.9 The Fokker-Planck Equation . . . . . . . . . . . . . . . . . . 305

D.1.9.1 Kolmogorov-Fokker-Planck Equation . . . . . . . . 305

D.1.9.2 Kramers-Moyal Expansion . . . . . . . . . . . . . . 307

D.1.10 The Hierarchical Equations of Motion . . . . . . . . . . . . 309

D.1.10.1 Overdamped HEOM . . . . . . . . . . . . . . . . . 309

D.1.10.1.1 System-bath Model . . . . . . . . . . . . 310

D.1.10.1.2 Feynman and Vernon Influence Functional310

D.1.10.1.3 High Temperature Hierarchies . . . . . . 321

D.1.10.1.4 Low Temperature Hierarchies . . . . . . . 321

D.1.10.2 Underdamped HEOM . . . . . . . . . . . . . . . . 329

D.1.10.3 Arbitrary Spectral Density (ASD) HEOM . . . . . . 332

D.1.10.4 Generalised HEOM . . . . . . . . . . . . . . . . . . 336

D.1.10.5 Lorentz-Drude Undamped Oscillator (LDUO)

HEOM . . . . . . . . . . . . . . . . . . . . . . . . 337

Appendix E: Imaginary Time and Resultant Frequencies 358

E.1 Imaginary Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

E.2 Frequencies Arising from Imaginary Time . . . . . . . . . . . . . . 359

Appendix F: Application of Highly Structured Spectral Densities 360

F.1 Intermediate Homogeneities as a Voigt Profile . . . . . . . . . . . . 360

F.2 Delta Function Spectral Densities . . . . . . . . . . . . . . . . . . . 362

Appendix G: Supplement to Quantum Information 366

G.1 Analysis of Virtual Information Flux . . . . . . . . . . . . . . . . . . 366

G.1.1 HVM Vibronic Monomers . . . . . . . . . . . . . . . . . . . 366

G.1.2 Multiple Phonon Contributions to the Hierarchy . . . . . . . 367

Appendix H: Supplement to Lasers with a Gaussian Width 373

H.1 Analysis of Pulse Widths . . . . . . . . . . . . . . . . . . . . . . . . 373

Appendix I: Supplement to Quantum Correlations 379

I.1 Additional Analysis of Quantum Correlations in Electronically

Coupled Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

6



Contents

I.1.1 Truncation of Dimer Hamiltonians . . . . . . . . . . . . . . 379

I.1.2 Correlation from harshly truncated Hamiltonians . . . . . . 382

Appendix J: Supplement to LDUO-HEOM Spectra 384

J.1 Phase Shifting in the LDUO-HEOM . . . . . . . . . . . . . . . . . . 384

Appendix K: Acronyms 387

Bibliography 389

7



List of Figures

1.0.1 Schematic of a closed system. a) Physical interpretation: the

outer wall is impermeable and all contained particles are

modelled with a continuous positional coordinate, X. b)

Mathematical interpretation: a closed system in coordinate X. . 31

1.0.2 Schematic of an open system. a) Physical interpretation: the

outer wall is impermeable and all system particles are

modelled with a continuous positional coordinate, X,

environment particles are modelled with a linearly

independent continuous positional coordinate, Q. The two

systems can interact through collision. b) Mathematical

interpretation: a pair of individually closed systems in linearly

independent coordinates, X and Q. The two components are

coupled via V (X,Q), resulting in an open total system. . . . . . 32

2.1.1 a) Schematic of Markovianity depicting history dependence as

a function of ‘number of previous state dependencies’ and

time. Blue is maximally non-Markovian, and red fully

Markovian. b) Schematic of Markovianity additionally

including the independent spatial coordinate. . . . . . . . . . . . 50

2.1.2 Schematic depicting the bounds of distinguishability. 1)

Evolution from an ordered lattice structure at t0 into the

condensed phase at t. 2) Evolution from the condensed phase

at t0 to an ordered lattice at t. The two graphs depict the

corresponding bounds of the Von Neumann entropy, S, and the

trace distance metric, D. . . . . . . . . . . . . . . . . . . . . . . 51

2.1.3 A schematic of the model system applied in this thesis: an

open quantum system with a phononic bath allowing for

non-Markovian memory effects. The green Hamiltonian of the

system can be substituted for any of the vibronic molecules

discussed in this section. . . . . . . . . . . . . . . . . . . . . . . 55

2.2.1 Potential energy surface of a vibronic monomer where the pair

of electronic states are each coupled to the jth vibrational

mode. Diabatic levels are coloured and have the appropriate

bound quantum harmonic oscillator eigenstates overlaid. . . . . 57

8



List of Figures

2.2.2 Transformation of the vibronic monomer Hamiltonian from the

site to vibronic basis alters the wavefunction coefficients while

maintaining the state energy unless the energy of

reorganisation is omitted. . . . . . . . . . . . . . . . . . . . . . . 61

2.2.3 Energy level diagram for J-aggregate formation. The electronic

coupling of monomers, M, forms two exciton states, |e+⟩ and

|e−⟩, separated by 2J and a doubly excited state, |f⟩. Allowed

transitions are shown by solid blue arrows and forbidden

transitions by dashed red arrows. . . . . . . . . . . . . . . . . . 64

2.2.4 Two monomer transition dipole moments placed R apart and

at an angle ∈ [0◦, 90◦]. For fixed R and parallel transition

dipole moments, increasing from 0◦ (collinear) to 90◦ results in

a transition from a J- to an H-aggregate, with the boundary at

the magic angle, 54.7◦. . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.5 A schematic of a) a vibronic homodimer, and b) a vibronic

heterodimer. In both cases the dipoles are oriented so that a

J-aggregate is formed. The purple levels depict vibrational

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2.6 Energy level diagram of the composite site basis states for the

jth mode of a vibronic homodimer. The ground and singly

excited states, with zero or one quanta of vibrational energy in

the excited state, and with no vibrational excitation in the

electronic ground state are highlighted and assigned the

aforementioned shorthand. . . . . . . . . . . . . . . . . . . . . . 67

2.2.7 Formation of exciton states in an H-aggregate in the strong

coupling limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.2.8 Formation of exciton states in an H-aggregate in the weak

coupling limit. Red and blue basis states have equivalent

energy to those in figure 2.2.7, demonstrating the difference in

coupling strength. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.2.9 Spectral densities for a range of s values, while ηn is set to unity,

ranging from sub-Ohmic in blue to Ohmic in gray, and super-

Ohmic in red. In this depiction, ηn = 1 cm−1, ωc = 2 cm−1,

and s is between 0 and 4, increasing in increments of 0.2. The

mutual point of intersection for all the spectral densities is at ωc. 75

2.2.10 Modulation of the fundamental transition frequency of the

system, ωeg, as a result of coupling to the bath. The amplitude

of the fluctuations is measured by ∆n for the nth bath, with

the associated correlation time τ (n)c = Λ−1n . . . . . . . . . . . . . 77

9



List of Figures

2.2.11 A depiction of homogeneous and inhomogeneous broadening

of an arbitrary peak within a linear spectrum, dependent on

the dephasing T ∗2 and the range of transition frequencies of the

ensemble, respectively. . . . . . . . . . . . . . . . . . . . . . . . 77

2.2.12 a) correlation function L
(α)
U (t) and the corresponding spectral

density b) Underdamped spectral density, JU(ω). c) Voigt

profile correlation function, Lα
VP(t), and the associated d)

intermediate damping spectral density, γ ∼ ω0, termed JVP(ω).

e) Overdamped correlation function, L
(α)
O (t), and the

associated spectral density, f) overdamped spectral density,

JO(ω). Within d) VP denotes Voigt Profile, Lor Lorentzian, and

Gau Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.1 Schematic depicting, a) A beam of antibunched bosons, b) A

coherent/random boson beam, c) A bunched boson beam. . . . 84

2.3.2 Schematic of a Michelson Interferometer, containing a laser

source, detector, and three mirrors. The arrows show the

direction of travel of the laser beam. . . . . . . . . . . . . . . . . 88

2.4.1 Schematic depicting the three pulses generating the third order

polarisation. The associated waiting times between field

envelopes and emission of the third order polarisation, P (3)(t),

in the rephasing direction are shown in black and blue

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.4.2 The third order polarisation and 2D spectra in the impulsive

limit for a two-level-system with significant inhomogeneous

broadening. The non-rephasing polarisation and spectrum are

normalised to the maximum of the equivalent rephasing signal

to demonstrate how the elongation of the rephasing spectrum

persists when the components are summed producing the

absorptive spectrum. a) rephasing polarisation, b) the

non-rephasing polarisation, c) the rephasing spectrum, d) the

non-rephasing spectrum, and e) the absorptive spectrum, all at

T = 0 fs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.5.1 A flow chart depicting the relationship between a range of

equations of motion which are either exact, perturbative, or

non-perturbative. These equations are discussed in detail in

appendix D. Full acronyms can be found in appendix K. . . . . . 108

2.5.2 Complex Semicircle, CΓ, with an imaginary, temperature

independent, pole at iγ and then poles at integer multiples of
2π
βℏ on the imaginary axis which correspond to Matsubara

(thermal) frequencies. . . . . . . . . . . . . . . . . . . . . . . . . 112

10



List of Figures

2.5.3 Hierarchy diagram for a single overdamped bath, such that

there are three Matsubara dimensions. The longest axis is the

temperature independent Matsubara frequency associated with

an overdamped bath. Each sphere represents a density

operator where the reduced density matrix of the system is

blue, normal ADOs are white and terminating ADOs are grey.

Each ADO is connected by a coloured line which matches

terms in equation (2.5.41) corresponding to their origin. . . . . 115

2.5.4 Hierarchy diagram for a single underdamped bath, such that

there are three Matsubara dimensions. The longest two axes

(ν0, ν1) are the temperature independent Matsubara frequency

associated with an underdamped bath. Each sphere represents

a density operator where the reduced density matrix of the

system is blue, normal ADOs are white and terminating ADOs

are grey. Each ADO is connected by a coloured line which

matches terms in equation (2.5.55) corresponding to their origin.119

2.5.5 Non-Markovian vs. Markovian evolution demonstrating global

or local behaviour for the ASD-HEOM. The colours in the figure

match those in the EOMs. . . . . . . . . . . . . . . . . . . . . . . 121

2.5.6 Hierarchy diagram for the gHEOM. Each sphere represents a

density operator where the reduced density matrix of the

system is blue, normal ADOs are white and terminating ADOs

are grey. Each ADO is connected by a coloured line which

matches terms in equation (2.5.69) corresponding to their origin.124

2.5.7 A flow diagram showing the general concepts behind the

derivation of the LDUO hierarchical equations of motion,

starting from the OQS Hamiltonian, and incorporating

memory effects and direct particle couplings. . . . . . . . . . . 126

2.5.8 a) Rephasing third order polarisation signal before application

of the Hamming window, and b) rephasing third order

polarisation signal after application of the Hamming window.

c) 2DES spectrum of a single peak at ω(ν)
eg = 3000 cm−1 for a

vibronic monomer, before apodisation, demonstrating artifact

satellite peaks, and d) 2DES spectrum of a single peak at

ω
(ν)
eg = 3000 cm−1 for a vibronic monomer after apodisation. . . 130

11



List of Figures

3.1.1 The limits of damping in terms of the system-bath boundary in

what later becomes known as the Hamiltonian versus Spectral

vibration models. a) The absence of any bath interaction

results in a closed system which is undamped. In b), the

vibrational levels are contained within the system

Hamiltonian, and then coupled to an overdamped bath with a

Lorentz-Drude spectral density. In c), a canonical

transformation moves the vibrational mode into the bath

degrees of freedom such that the system Hamiltonian contains

the electronic states only. Bath interaction with this system is

then modelled as an underdamped Brownian Oscillator. . . . . . 132

3.1.2 Linear absorption spectra for a vibronic monomer where a)

Hamiltonian vibrational degrees of freedom result in peaks

broadened by an overdamped bath and b) system vibrational

structure within the bath degrees of freedom generate a

vibronic progression which is broadened by an underdamped

bath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.1.3 2D electronic spectra for a vibronic monomer where, in a) – c),

Hamiltonian vibrational degrees of freedom result in peaks

broadened by an overdamped bath and, in d) – f), system

vibrational structure within the bath degrees of freedom

generate a vibronic progression which is broadened by an

underdamped bath. . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.1.4 a) For an overdamped bath, η(ν) = 20 cm−1, T = 300 K are

held fixed while the homogeneity is varied and measured by d̃τc.

Values include: 0.2, 0.4, 2, 4, 10 and 20. b) For an overdamped

bath, η(ν) = 20 cm−1, and Λ(ν) = 45.7 cm−1 are held fixed while

the temperature is varied. Values include: 220, 240, 260, 280,

and 300K. This is considered a Hamiltonian vibration. c) For

an underdamped bath, η(ν) = 500 cm−1, ω(ν)
0 = 500 cm−1, and

T = 300 K are held fixed while the bath dissipation rate, γ(ν)

is varied. Values include: 50, 100, 150, 200, and 250 cm−1. d)

For an underdamped bath, η(ν) = 500 cm−1, ω(ν)
0 = 500 cm−1,

and γ(ν) = 100 cm−1 are held fixed while the temperature is

varied. Values include: 220, 240, 260, 280 and 300 K. This is

considered a spectral vibration. e) For an overdamped bath,

η(ν) = 20 cm−1, T = 300 K are held fixed while the homogeneity

is varied and measured by d̃τc. Values include: 0.2, 0.4, 2, 4,

10 and 20. f) For an overdamped bath, η(ν) = 20 cm−1, and

Λ(ν) = 45.7 cm−1 are held fixed while the temperature is varied.

Values include: 220, 240, 260, 280, and 300 K. In this instance

vibrational structure is removed. . . . . . . . . . . . . . . . . . . 137

12



List of Figures

3.1.5 a) Trace distance, D(ρ1, ρ2). b) Cumulative integration of the

positive flux, with maximum equal to N , for each of the

damping strengths in table 3.1. c) and d) depict the trace

distance and cumulative flux, respectively, for a greater range

demonstrating the divergence at close to critical damping.

These results are based on similar considerations in Green et.

al.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.1.6 Positive flux of the trace distance shown in figure 3.1.5, for

each of the damping strengths in table 3.1, demonstrating the

periodic recurrence. These results are based on similar

considerations in Green et. al.1. . . . . . . . . . . . . . . . . . . 142

3.1.7 Calculated linear absorption spectra for each of the damping

strengths in table 3.1. The black data shows an unnatural

broadening away from the mutual intersection of other spectra

due to the EOM failure at critical damping. These results are

based on similar considerations in Green et. al.1. . . . . . . . . . 145

3.1.8 Absorptive 2D spectra for population times T = 0 − 500 fs for

the γ(ν) = 275 cm−1 underdamped bath, labelled γ(ν) < ω
(ν)
0 ,

and the three overdamped baths, identified by their d̃τc values

from table 3.1, normalised to the maximum of d̃τc = 0.55 at

T = 0 fs. These results are based on similar considerations in

Green et. al.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.1.9 Spectral slices of the absorptive 2D spectra at a population time

of T = 0 fs shown for each of the overdamped homogeneities,

d̃τc values shown in table 3.1, which are used to generate the

ellipticity in figure 3.1.10. . . . . . . . . . . . . . . . . . . . . . 148

3.1.10 Ellipticity, Eω, of the absorptive 2DES against the measured

maximum non-Markovianity, N , for the three overdamped

baths, identified by their d̃τc values, for a) T = 0, 50 and 100 fs

and b) T = 0− 500 fs, sampled at 10 fs intervals. These results

are generated from the spectral slices in figure 3.1.9. These

results are based on similar considerations in Green et. al1. . . . 148

3.2.1 A schematic of the HVM and BVM schemes, equivalent to cases

b) and c) from figure 3.1.1. An arbitrary system of interest is

highlighted in green, with or without its fundamental

intramolecular vibration, and the bath is either over, a), or

underdamped, b), dependent on whether the system vibration

has been canonically subsumed. Quantum information

channels, depicted as tubes, transfer information between the

system and bath which impacts the spectral lineshape,

quantified in section 3.1. Reproduced from ref. 2, with the

permission of AIP Publishing. . . . . . . . . . . . . . . . . . . . . 150

13



List of Figures

3.2.2 The total HVM spectral density, JO. The environmental

contributions are a redshifted Gaussian profile of low

frequency modes with an intensity equal to the bath

reorganisation energy, η(ν)O = 50 cm−1. Reproduced from ref.

2, with the permission of AIP Publishing. . . . . . . . . . . . . . 151

3.2.3 The total BVM spectral density, JU, the purely environmental

component, J2, and the intramolecular vibration component,

J1 = JO. The intense Lorentzian peak at the vibrational mode

frequency, ω0, is shown alongside the weakly intense redshifted

Gaussian of environment modes with a reorganisation energy

of 50 cm−1. Reproduced from ref. 2, with the permission of AIP

Publishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.2.4 Absorptive 2D spectra for the HVM monomer a) – c) and BVM

monomer d) – f) at T = 0, 50 and 100 fs, normalised to the

maximum at T = 0 fs. Reproduced from ref. 2, with the

permission of AIP Publishing. . . . . . . . . . . . . . . . . . . . . 154

3.2.5 Absorptive 2D spectra for the HVM dimer a) – c) and BVM dimer

d) – f) at T = 0, 50 and 100 fs, normalised to the maximum at

T = 0 fs. Reproduced from ref. 2, with the permission of AIP

Publishing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.2.6 Spectral densities and correlation functions, with exponential

fits, for an overdamped, Λ(ν)
O = 100, and three underdamped

spectral densities with damping strengths γ(ν)a = 120 cm−1,

γ
(ν)
b = 80 cm−1, and γ

(ν)
c = 40 cm−1. Reproduced from ref. 2,

with the permission of AIP Publishing. . . . . . . . . . . . . . . . 157

3.2.7 Absorptive 2D spectra for the BVM monomer at T = 0 fs,

normalised to the maximum at T = 0 fs, with damping

strengths γ(ν)a = 120 cm−1, γ(ν)b = 80 cm−1, γ(ν)c = 40 cm−1.

Reproduced from ref. 2, with the permission of AIP Publishing. . 160

3.3.1 An idealised underdamped hierarchy structure. The freedom

of information to flow away from the density matrix a)

(increasing tier) or towards the density matrix b) (decreasing

tier) is depicted in blue and red, respectively. The auxiliaries

are labelled based on their Matsubara vector, j. In contrast to

the hierarchy diagrams in section 2.5, these diagrams show

that virtual information content in the ADOs on each edge is

different to other ADOs. This is because it is a strictly

Markovian information based on the termination criterion.

Such Markovian information is governed by termination EOMs

which are marked with cross-hatching. . . . . . . . . . . . . . . 164

14



List of Figures

3.3.2 Total normalised flux, positive flux, and BLP for the HVM

model, a) – c), and the equivalent standard dissipation rate

BVM model, d) – f). . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.3.3 2DES spectra for each of the four models at T = 0 fs. a) HVM,

b) fast dissipation rate BVM, c) standard dissipation rate BVM,

and d) slow dissipation rate BVM. Specific parameters are

discussed in section 3.3. . . . . . . . . . . . . . . . . . . . . . . 166

3.3.4 Contour plot for the HVM where red dashed lines denote

terminators, and 2D electronic spectra for population times

T = 0, 50, 100 fs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.3.5 Slow dissipation BVM model with γ(ν)1 = 100 cm−1, and γ(ν)1 =

300 cm−1 showing normalised trace distance, flux, positive flux,

and BLP measure for 1{·} showing relative size of Markovian

and non-Markovian feedback. The ADO number and associated

Matsubara shorthand are shown. . . . . . . . . . . . . . . . . . . 169

3.3.6 Slow dissipation BVM model with γ(ν)2 = 100 cm−1, and γ(ν)1 =

300 cm−1 showing normalised trace distance, flux, positive flux,

and BLP measure for n1, n = {1, 2, 3, 4}, showing relative size

of Markovian and non-Markovian feedback. The ADO number

and associated Matsubara shorthand are shown. . . . . . . . . . 170

3.3.7 Normalised and non-normalised contour plots for the HVM,

column a), and fast dissipation BVM model, column b) for

ADO number against time and BLP measure. These figures are

the corresponding contours for 2DES in equivalently named

panels of figure 3.3.3. . . . . . . . . . . . . . . . . . . . . . . . . 171

3.3.8 Normalised and non-normalised contour plots for the standard

dissipation BVM model, column a), and slow dissipation BVM

model, column b) for ADO number against time and BLP

measure. Vertical red dashed lines indicate a terminating

auxiliary. These figures are the corresponding contours for

2DES in equivalently named panels of figure 3.3.3. . . . . . . . . 172

3.3.9 2D electronic spectra for the fast and slow dissipation rate limits

of the BVM model system at T = 0, 100 and 200 fs. . . . . . . . . 173

3.3.10 Contour plot for the HVM showing the additional termination

of auxiliaries 21-24, and 2D electronic spectra for the HVM

including the volume reducing terminator. T = 0, 50, 100 fs. . . 174

3.3.11 Contour plot of time, ADO number, and BLP metric for the

standard dissipation rate BVM model, a) before and b) after

volume reducing termination. Red dashed lines denote

terminators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

15



List of Figures

3.3.12 2D electronic spectra for the standard dissipation BVM model

system before, a) – c), and after, d) – f), volume reducing

termination at T = 0, 50, and 100 fs. . . . . . . . . . . . . . . . . 177

3.3.13 Schematic showing the closed hierarchy volume. a) and c) An

arbitrary value of Γ
(1)
max. b) For Γ

(2)
max < Γ

(1)
max. d) First Γ

(1)
max,

and then the volume reducing termination scheme. Movement

from a) to b) demonstrates a self-similar volume, whereas c) to

d) demonstrates a regime without this restriction. . . . . . . . . 178

4.1.1 a) Schematic of the molecule coupled to bath modes and

driven by laser field EI, resulting in the scattered field Ēsc.
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1 Introduction

Our current understanding of the natural world stems from simplified models of

underlying physical processes. Whether it is macroscopic descriptions of fluid

flow, or the microscopic dynamics of molecules, a reduction of the total degrees

of freedom is a necessary compromise in nearly every model. For example,

consider computing the dynamics of an N particle system. If we have initial

positions and velocities for each particle and an equation of motion, derived

from continuous microscopic variables, then moving one discrete time step

forwards could be achieved. However, if it takes 1 byte of memory for each

particle, then at the scale of even one mole (6.02× 1023) of molecules we would

need 602 zettabytes (270 bytes) of memory. Clearly this is not feasible. It would

be tempting, therefore, to work in extremely simplified systems with a very

small number of relevant variables. This could be achieved by isolating our N

particles of interest so that there are no external particles, like air, and by

making N very small. This kind of simplifying approximation clearly comes at

the cost of realism, but perhaps the model still provides valuable physical insight

about the system of interest. The fine balance between full physical complexity
and a reduction due to computational necessity is one of the intrinsic motivations
for this thesis.

The analogy which was used initially to describe a reduction in the number of

relevant variables can be defined more rigorously as a closed system. If there is

a particle (or particles) of interest within an impermeable box, modelled with a

spatial coordinate X for the molecular/atomic position, and it is isolated from

the wider universe then there will be a fixed magnitude of energy contained in

the box. This energy may disperse throughout the constituent particles in any

manner - perhaps as a Boltzmann distribution - but cannot dissipate. Figure

1.0.1 presents a schematic of the formally defined closed system.

The work in this thesis involves systems which relax this simplification,

through reintroduction of environment degrees of freedom, by opening the

quantum system. Open quantum system (OQS) models consist of two (or more)

components, each in an independent coordinate, linked by a function which

shares all coordinates. Typically, for a two component OQS there is a system of

interest in a coordinate X, and an environment of molecules in a linearly

independent coordinate Q 4. Both constituents are individually closed, and are
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a)

X

b)

X

Figure 1.0.1: Schematic of a closed system. a) Physical interpretation: the outer
wall is impermeable and all contained particles are modelled with a continuous

positional coordinate, X. b) Mathematical interpretation: a closed system in
coordinate X.

linked by an interaction term which depends on both molecular/atomic

coordinates X and Q. Figure 1.0.2 presents a schematic of the formally defined

OQS. In this way, a degree of physical realism is reintroduced as the primary

system is now influenced by its surrounding environment and is free to dissipate

energy out of the boundary encapsulating it. Generally, opening a model system

comes at the expense of computational time, or a high memory requirement,

unless other simplifications are introduced. An example of one such

simplification is the introduction of a single continuous spectral density function

which describes the summation of every environment particle. This function,

J(ω), maps out the profile of an infinite number of weighted delta functions,

and physically represents the overall behaviour of the environment ensemble at

the cost of individual environment particle resolution. Such simplifications shift

the computational bottleneck within simulations from the large Hamiltonians

into mathematically challenging spectral distributions. This exemplifies the

second intrinsic motivation of this thesis: derivation and physical justification of
further simplifying approximations or equations which allow computational
simulation of memory intensive open systems.

As modern experimental chemical physics and physical chemistry reach

deeper and deeper into the microscopic, quantum, world it becomes

increasingly important to be able to make use of OQS models. Genuine

quantum behaviours are often very sensitive to perturbations of energy, or

length scales of the system and as such stochastic degrees of freedom can not be

easily omitted as in closed systems. OQS models lend themselves effectively to

the modelling of quantum behaviour in Bose-Einstein condensates5 formed

through boson bunching, which are sensitive to the healing length (an intrinsic
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a)

X

Q

b)

X

Q

V (X,Q)

Figure 1.0.2: Schematic of an open system. a) Physical interpretation: the outer
wall is impermeable and all system particles are modelled with a continuous
positional coordinate, X, environment particles are modelled with a linearly

independent continuous positional coordinate, Q. The two systems can interact
through collision. b) Mathematical interpretation: a pair of individually closed

systems in linearly independent coordinates, X and Q. The two components are
coupled via V (X,Q), resulting in an open total system.

length scale) of the system, and to models of antibunching effects in coherent

boson beams, which are dependent on energy dissipation due to surrounding

environment ensembles. In many physical regimes, which are typically

inconsistent with closed system approximations, quantum observations can be

entirely destroyed or obscured by environment modes. This leads to the final

intrinsic motivation for this work: application of OQS models to predict genuine
quantum effects while using a set of equations and approximations which closely
correlate to experimental physical parameters.

But for what purpose do such models exist, and why are they relevant? Light

and light-matter interactions are incredibly versatile tools for the transmission

of information and energy, and for use as probes at scales ranging from

microscopic to cosmic due6,7, in part, to its quantum nature. Light moves

rapidly, is easily generated, and has both wave and particle character. All such

applications exploit the nature of quantum interference and entanglement to

extract information regarding either the scattering body or the coherent source

of radiation.

At the microscopic scale, the generation of light and the behaviour of light

beams are routinely applied in the context of information transfer in fibre optic

cables8,9. In order to maximise the efficiency and speed with which signals can

be sent and received it is crucial to understand the process used to generate
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coherent beams of light, and to understand how light interacts with materials

and other coherent beams. These microscopic interactions can result in

quantum effects emerging. Among the most striking examples is the

experimental discovery of antibunching in the photon emission of fluorescing

atoms which provided the first direct demonstration of the quantum properties

of light10. This type of correlation measurement, which can be observed

experimentally and calculated theoretically, is a reduction in the detection

probability of a second photon immediately after the detection of a first. The

second order correlation function, which is used to measure this probability, is a

powerful statistical tool and is not limited to photons. It has been used to study

a broad range of boson interactions, and light-matter interactions such as

bunching and antibunching in transmission through waveguides11 and in

emission from plasmonic nanojunctions12, pattern formation in photoinduced

nucleation13, photon-blockade effects in optical cavities14–19 (including

modified response at strong coupling)20, atomic arrays, as well as super- atom

behaviour in ensembles of quantum emitters21–23. Indeed, this correlation

metric extends to correlation in phonons24 including phonon blockade in

opto-mechanical and spin-mechanical systems, magnons25 including

magnon-atom entanglement and photon-magnon blockade in a ferrimagnetic

material coupled to a microcavity, and photon-phonon bunching and

antibunching in a qubit-phonon-plasmon system under strong coupling. Higher

order blockade effects and other complex dynamic behaviours are accessible

through higher order correlation functions26, and can be exploited for

high-precision imaging27.

On a cosmic scale, interferometry can be used to probe distances and the radii

of celestial bodies through the disappearance of fringe patterns28,29 as a

consequence of quantum interference. In optical correlation experiments of

either a single split beam of photons or a pair of beams, information regarding

either the body scattering the coherent sources, or the distance between the

sources, is extracted from the level of interference of the superimposed waves. If

there is a phase difference between the beams of less than π during the period

of observation, then clear fringe patterns emerge as a result of constructive and

destructive interference. If this phase difference is greater than the critical value

then no interference pattern will be observed upon interaction of these beams.

By tuning the distance over which each beam travels, or the distance between

slits inducing interference, the phase difference between the two beams can be

controlled. This has lead to studies of celestial bodies through Michelson type

interferometry and radio astronomy6,30,31, cosmic background radiation32,33

and gravity waves34.

Excitation of molecules and the subsequent emission of light is regularly used

for probing or tagging molecules in the condensed phase35. While both linear
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and nonlinear spectroscopies are capable of differentiating vibrational and

electronic transitions36, two-dimensional optical spectroscopy (2DOS) is

additionally able to separate homogeneous and inhomogeneous broadening.

These processes, which are often depicted with Liouville pathways37, have

broadening which is dependent on the memory effects induced by the

environment of the open quantum system. A third order signal, induced by

interaction with three laser pulses, can be used to generate these Liouville

pathways which describe changes in system population and coherence

dynamically. 2DOS peaks which are static, or decay towards lower detection

frequencies, exist in population pathways whereas oscillatory signals, which

beat as a consequence of excited state superpositions, exist in coherence

pathways. In a linear spectrum all environmental and system induced

broadening is projected onto a single axis, and isolation of these components is

difficult. In contrast 2DOS separates inhomogeneous, environmental,

broadening onto the diagonal and homogeneous broadening, due to system

transition uncertainty, onto the anti-diagonal axes through rephasing in photon

echo techniques. Such an approach allows full resolution of each source of

broadening so that diagonal static disorder and anti-diagonal electronic

dephasing are independent. In this way, subtle movement of the OQS boundary

which impacts quantum effects, and the structure of individual OQS models, can

be observed through changes in diagonal and anti-diagonal lineshape.

Modern experimental and theoretical 2DOS methods can be performed over a

full range of energies from low energy 2D infrared spectroscopy (2DIR) able to

probe vibrational structure38, through mid-energy 2D electronic spectroscopy

(2DES) which offers insight into electronic and vibrational coupling known as

vibronic coupling and purely electronic structure39,40, to the highest energy 2D

x-ray spectroscopy (2DXS) which probes fine structure41 and dynamic

modelling of conical intersections through transient redistribution of ultrafast

electronic coherences in attosecond Raman signals (TRUECARS)42–44. In

addition, further coupling regimes can be achieved through combinations such

as: the combination of UV/vis and IR frequencies which leads to 2D

electronic-vibrational (2DEV) and 2D vibrational-electronic (2DVE)

spectroscopies which, similar to 2DES, considers explicit coupling of vibrational

and electronic degrees of freedom45–48. The acute resolution of these combined

approaches is particularly relevant in light harvesting complexes45,49,

dimers50–52, exciton states in quantum wells53–57, and quantum dots58–63.

Resonance energy transfer (RET) is a nonradiative method of energy

transmission between donor and acceptor sites in light-sensitive molecules.

Such transfer is essential in light harvesting complexes and is common in

pigment molecules, leading to a host of dye-derived, aggregate, models52,64–74.

The strong dependence on the separation distance of the two sites in this
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transfer makes electronically coupled excitonic species, termed dimers, ideal

model molecules.

Historically, the modelling of aggregate systems was achieved through purely

independent vibrational and electronic degrees of freedom, with the

Born-Oppenheimer (adiabatic) approximation of quantum mechanics. However,

more recent models account for these degrees of freedom and simultaneously

include electronic-vibrational coupling in the system Hamiltonian resulting in a

quenching of the electronic, J , coupling75–77. Such approaches, which are

termed nonadiabatic, of modelling vibronic dimers additionally exhibit

enhancement of vibrational coherences on the ground electronic state, and

driven anticorrelated vibrations in excitation energy transfer (EET)78–80.

Application of equivalent models has revealed a strong dependence on

vibrational degrees of freedom of long-lived coherences in 2DES moreso than

dependence on electronic degrees of freedom81. Furthermore, the importance

of vibrational contributions are emphasised by the splitting of exciton states in

heterodimers which leads to a rate enhancement of EET82–86. Work by Policht et

al. has also demonstrated weak exciton transitions accessible through specific

vibronic coherence processes87. More recently, nonadiabatic models have been

further extended to include both weak and strong coupling regimes88, and

coupling with a full continuum of vibrational modes through path integrals89.

Such quantum-classical methodologies transform the dimer coordinates into

those of a simplified two level spin-Boson Hamiltonian90 in the presence of a

single bath which captures full vibrational complexity which is absent in weaker

nonadiabatic, or adiabatic models. This demonstrates the oscillatory electronic

cycle at the excitation energy between the monomer units of the dimer at

physiological temperatures and that static disorder, introduced directly by the

environment, results in asymmetric two-level-system configurations which

suppress quantum behaviours such as tunnelling89. These findings are

supported by loss of quantum effects at physiological temperatures, due to the

rapid destruction of exciton-vibrational coherences by electronic dephasing91–93.

In addition, rather than being a purely destructive influence, it has been

suggested that environmental, static, disorder and inhomogeneous broadening

contribute to prolonging the lifetime of observed coherences94. Another

experimentally relevant parameter of importance is the pulse width. It has been

shown that the finite width of the laser spectrum can lead to distortion of 2D

spectra and significant changes in coherences69,95–97. However, it is shown that

in the limit of long population time that the impulsive limit is sufficient.

Despite current emphasis on coherent mechanisms, it is worth noting the

equal, if not greater, importance of incoherent mechanisms in EET which have

been demonstrated for a series of photosynthetic molecules and generalised to a

broad set of electronically coupled species98–100. It is demonstrated that
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coherent beatings are delocalised vibrations on the ground state, interpreted as

vibrational coherences and mixed electronic-vibrational coherences on the

excited state, rather than long-lived electronic signals97,98,101–106. Irrespective of

these effects, there is still broad interest in quantum coherent effects in EET and

light-harvesting complexes for their potential applications in green energy.

The necessary complexity of a model OQS is dependent on the desired

system, but can range from low complexity in exact models with few degrees of

freedom, to highly technical approximations with many degrees of freedom.

One such exact approach is the multimode Brownian oscillator (MBO) model,

where the system-bath interaction is calculated using the perturbative cumulant

expansion37,107–111. The cumulant expansion, in analogy with the spectral

density112–114, maps system variables onto harmonic oscillators and in this

instance results in addition of non-Markovian memory effects which are usually

inconsistent with perturbative theories115. An approximation of these dynamics,

which constitute a thermodynamic composite with thermal

bathentanglement116–118, can be obtained via stochastic methods introducing

random forcing due to the environment ensemble. Despite being less accurate

than exact approaches, these approximations remain in good agreement with

experimental results119,120.

Perturbative theories involve generating approximate solutions to non-trivial

problems through relation to solutions of a simpler, or more tractable, problem.

Typically a solution is written as a power series of a small parameter, where the

order zero component corresponds to the solution of the tractable problem, such

that higher order additions of the expansion parameter introduce corrections

which, when truncated, form the approximate solution. The benefit of this is

that it increases the number of applicable systems which can be modelled, while

also keeping the method of modelling simplistic and easily solvable. Such

perturbative, approximate, methods generally make use of the Markov and Born

approximations to guarantee solvability. The Markov approximation ensures

that the equations of motion are time-local, numerically explicit, and

subsequently have no memory effects. The Born approximation enforces a weak

system-bath coupling in order to ensure system and environment components

are separable, and can be written as a power series in terms of the system-bath

interaction. Many forms of Markovian master equation, including Lindblad, and

Redfield master equations121–123 have been used to model multi-level electronic

systems, closed systems, and OQSs with Markovian environment interactions

such as for weakly coupled environments124–127. Based on the Markovian

approximation, which is fundamental to these derivations, these methods are

numerically explicit and therefore are necessarily time local equations. However,

time locality is not explicitly intrinsic to perturbative equations, subsequently

there have been works on non-local perturbative approaches128,129.
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Additionally, perturbative equations need not be Markovian as demonstrated by

non-Markovian corrections to the standard Redfield equation126.

In contrast, functions or variables which cannot be expanded as a power

series through a perturbative theory are known as non-perturbative. The cost of

removing the perturbation is that additional complexity is returned to the

system and methods being solvable is not guaranteed, often leading to complex

high order partial differential equations (PDEs). While this might seem

counterproductive when our goal is simplification, this can often be mitigated by

further more restrictive assumptions, in order to introduce strongly

non-Markovian, quantum characteristics to OQS. This generally manifests itself

as time non-locality in the equations of motion, meaning that the Markov

approximation is invalidated. One approach to reaching solvable equations of

motion is, in a manner analogous to the Born approximation, splitting the

dynamics into fast and slow ‘irrelevant’ and ‘relevant’ parts. Through the

Nakajima-Zwanzig projection operator130,131 a pair of coupled equations of

motion can be produced, which can be simplified to a time non-local,

integro-differential master equation under the assumption that the system and

environment are fully factorisable. Another approach involves the application of

Itô calculus. By moving into a non-perturbative regime, significantly more

sophisticated methodologies are required in order to generate useful equations

of motion due to the intrinsic interdependence of historical states in numerically

implicit schemes. Under similar simplifying assumptions as the

Nakajima-Zwanzig master equation, it is possible to generate Kubo’s stochastic

Liouville equation132,133, and the Fokker-Planck equation, or through

introduction of friction incurred by a forcing operator one can generate a

Langevin equation134,135. Each approach introduces non-Markovianity into the

dynamics of the system of interest through stochastic variables, where

subsequent modulation of the quantum system is regulated by the

fluctuation-dissipation theorem136,137. Stochastic Gaussian processes introduce

a drift and diffusion term into the equations of motion, which act as forcing

variables and corrections to the dynamics. In such cases thermal, white noise,

fluctuations (often characterised by successive weak interaction) are introduced

which influences the system probability distribution resulting in Brownian

motion and non-Markovianity. Application of these approaches has allowed for

a mix of analytical and approximate OQS models with coloured noise baths,

simplified correlations through Gaussian-Markovian noise, and strongly

non-Markovian dynamics138–141. Additionally, nonadiabatic processes in the low

temperature limit are accessible through quantum corrections to the

Fokker-Planck equation142.

Many non-perturbative equations of motion can also be generated through

path integral approaches based on work by both Calderia and Leggett and
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Feynman and Vernon4,143,144. The path integral generalises classical action and

proposes that the most probable trajectory is a sum over an infinite number of

quantum trajectories resulting in a quantum amplitude. The benefit of this

formalism in OQSs is twofold: phase-like additions of trajectories can be

extended to non-Markovian sums over an infinite number of historical

trajectories, and the dynamics of stochastic processes, which model Brownian

type motion, can be effectively computed and visualised through sums of infinite

trajectories. Similar to the Fokker-Planck equation and Kubo’s stochastic

Liouville equation, derivation of these equations of motion takes considerably

more effort because of the large complexity. Consequently, a range of additional

assumptions are required, depending on the form of the equation of motion, to

reach solvable equations of motion. Appendix D, considers the relationship

between a series of Stochastic equations and their path integral counterparts.

Path integral derived equations of motion, similar to other non-perturbative

approaches, are often time non-local, and can take the form of high order

integro-differential equations of motion with a non-Markovian memory kernel,

which is the source of numerical implicit character, dependent on the form of

the spectral density function113,145,146. However, this does not mean that all

path integral derived methods are numerically implicit. Through simplifying

approximations such as the Markovian, rotating wave, or Born approximations

these methods reduce to being time-local equations of motion147.

Kubo and Tanimura first derived the time-local hierarchical equations of

motion in 1989147 using the Feynman and Vernon path integral, for a

Gaussian-Markovian bath138,146,148. The earliest derivations of this equation of

motion employed restrictive assumptions including, weak coupling, high

temperature, and uncorrelated initial conditions to ensure no

bathentanglement117,147. Shortly after this the derivation was extended to allow

for arbitrary spectral densities, correlated initial conditions, coloured

non-Markovian noise, and strong system-bath coupling at low temperatures

resulting in exact solutions for a full range of bath coupling strengths,

timescales, and system temperatures with the exception of at the critical

damping limit118,149–152. The HEOM was fully generalised through a derivation

involving a cumulant expansion in 2020139. The treatment of the spectral

density, and the subsequent nature of interactions between vibrational and

electronic degrees of freedom, have been treated in two different ways:

standard direct coupling as in the overdamped Hierarchical equation of motion

(HEOM)147, or through a canonical transform as in the underdamped

HEOM153. These are two cases from the full limiting cases of the damping

strength, which ranges from undamped methods where the vibration is in the

system154, overdamped for weakly coupled bath vibrations155,156, through to

underdamped for strongly coupled bath vibrations153, including linear

combinations of each approach157. In the former two cases the system-bath
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boundary separates the electronic and vibrational degrees of freedom and

system-bath coupling has to be introduced explicitly, whereas in the latter EOM

the system-bath boundary is contained within the spectral density and coupling

between the degrees of freedom arises naturally from the canonically

transformed variables.

The broad appeal of the HEOM has led it to be applied in linear, and

higher-order optical spectroscopies, including 2DIR, where multiple vibrational

modes are coupled to the same or different thermal baths with the potential for

correlated bath interactions138,150,158,159, in the 2DES of pure Ehrenfest

states160, and 2DEV161. Additionally, HEOM methods have been employed in

the studies of quasiparticles such as dissipatons162, phonons through the

phonon fluctuation spectrum163, electron transfer164, entanglement of

qubits116,117, and in models of excitonic aggregates for light

harvesting156,165–168. In such models it is typical for electronic dephasing and

vibrational relaxation processes to be separated into individually evolved baths

which are coupled to nonadiabatic vibronic dimer Hamiltonians169.

However, non-perturbative approaches, which make use of canonical

transforms, are not the only way of introducing complex memory effects into

OQSs. In direct contrast to the canonical transform, reaction coordinate

approaches which incorporate a collective coordinate of the environment into

the system Hamiltonian, allow access to important environmental properties.

Such models have been employed by Iles-smith et al.170 and demonstrate

behaviour not present within standard perturbative approaches. In addition,

Maguire et al.171 have applied this model to the Franck-Condon physics of a

two-level system, and McConnell et al.172 in modelling electron counting

experiments.

Each of the aforementioned intrinsic motivations are summarised through the

hypotheses addressed in this work. In chapter 2, and appendix D, a broad

review of contemporary theory and EOMs is considered in order to generate a

sound understanding of the necessary approximations and assumptions used in

the generation of fully non-Markovian equations of motion, derived through the

path integral formalism. Hypothesis 1: Through non-perturbative, modern,
formalisms can model complexity be maximised in conjunction with a minimisation
of computational effort? Based on this, chapters 3 and 4 consider the impact on

2DES and quantum correlations of movement of the system-bath boundary

using the HEOM. Hypothesis 2: Are genuine quantum effects strongly impacted by
system-bath boundary placement, and can these impacts be controlled by
approximations and advanced formalisms? This is achieved by implementation of

the vibronic Hamiltonian for monomer and dimer systems into quantum

dynamical simulations followed by calculation of necessary quantum metrics.
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Finally, in chapter 5, the previous hypotheses are developed through the

derivation of a new HEOM, the Lorentz-Drude Undamped Oscillator (LDUO)

HEOM. This is proposed in order to confirm the equivalence between systems

modelled with explicit vibrational structure versus canonically subsumed

vibrations in the limit of zero vibrational mode damping. Hypothesis 3: Through
reduction to an undamped vibrational mode, can models with canonically
subsumed vibrations become equivalent to those with explicit vibrational structure?
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2 Theoretical Methods

Mathematical Notation

Within this thesis there has been a considerable effort to maintain a consistent

style of notation and nomenclature both within itself and as part of the wider

work of the Jones group. A summary of rules regarding cases, fonts, and brackets

is as follows:

1. Mathematical variables are written in italic font, for example x, including

when they appear as a super/sub-script, such as Qt.

2. Mathematical operators and names are written in roman font, for example

dt, including when they appear in super/sub-scripts, such as HV
A.

3. Bold font is reserved for vectors, for example R. These are not usually given

italic font as they are treated as a matrix (operator) of lower dimensions.

4. Hats and tildes are reserved for special cases of vectors, operators, and

functions. For example a unit vector is denoted with a hat, and the Fourier

transform of a function is denoted with a tilde. R̂, f(t) → f̃(ω).

5. Round brackets (, ) are termed parentheses, when applicable. Square

brackets [, ] are termed brackets when applicable. Curly brackets {, } are

termed braces when applicable.

6. Brackets are reserved for functionals - functions of functions - with the

exception of commutation relations, or bounds. Examples are f [g(x)],

[H, ρ] = Hρ − ρH, and [−∞,∞] totally inclusive, or [−∞,∞) partially

inclusive.

7. Braces can be sorted into three cases. Firstly, they will be used for sets of

vectors or functions, such as {x}. Secondly, they may be used as a

placeholder, alongside a dot, for variables or functions within a definition,

for example d{·}
dt . Finally, they may rarely be used as a second kind of

standard bracket in equations which are particularly long in order to

differentiate a large number of parentheses.
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Finally, the superscript (ν) is applied to computational parameters which have

been converted to the units of wavenumbers via the multiplication by (2πc)−1

for angular frequencies or c−1 for linear frequencies. This is in contrast to the

notation traditionally adopted in the Jones group, such as in Green173, of {̃·}
which in this thesis is reserved for transformations of mathematical functions

and variables such as through the Fourier transform.

2.1 Model Systems and Open Quantum Theory

Details of the theoretical methods used in this thesis are presented in this chapter.

A general description of open quantum system methods and (non-)Markovianity

is followed by details of the total Hamiltonian, separated into the system, bath

and field components.

2.1.1 Closed Systems

Closed systems, in the Feynman and Vernon4 sense as depicted in figure 1.0.1,

are completely defined by a time-dependent wavefunction, ψ(t). This function

is a formal solution of the Schrödinger equation, (D.1.1.2), or when written in

vector form it is a formal solution of equation (2.1.1). The vectorised equation is

a generalisation which transforms the wavefunction into a column vector, |ψ(t)⟩,
such that physical observables for the system are operators which act on the

constituent Hilbert space.

iℏ
d
dt

|ψ(t)⟩ = H |ψ(t)⟩ , (2.1.1)

is an equation of motion (EOM) for the dynamics of the wavefunction where

ℏ = h
2π , h is Planck’s constant, i =

√
−1, and H(t) is the Hamiltonian for the

closed system. EOMs are models designed to predict the behaviour of physical

systems, and can range from exact equations such as the Schrödinger equation

for a single hydrogen atom to complex approximations of ensembles of molecules

like the Hierarchical equations of motion (HEOM), see section 2.5.4. In all cases,

EOMs are generated from intrinsic theories, approximations, and assumptions

about the physical properties which they aim to replicate. This thesis aims to

explore these factors in detail in section, 2.5, in order to thoroughly understand

model behaviour and their regimes of applicability.

Computational models generated from continuous EOMs are more amenable

when constructed in a discrete, vectorised, framework consisting of operators and

matrices. As such, the wavefunction for a state at a time t, can be constructed in a
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numerically explicit fashion from an initial condition and an evolution operator:

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (2.1.2)

A numerically explicit operator, such as U, processes an evolution in a step-wise

fashion where each step depends solely on previously determined steps. As a

consequence of this the evolution operator is defined as an integral over a

continuous time variable, s,

U(t, t0) = T← exp
(
− i

ℏ

∫ t

t0

H(s) ds
)
, (2.1.3)

and a chronological time ordering operator, T←.

Even within a closed system it is important to be able to model a number of

molecules simultaneously. This leads to the introduction of the density operator

for mixed states, which is addressed fully in appendix D.1.2,

ρ(t) =
∑
i

pi |ψi(t)⟩ ⟨ψi(t)| . (2.1.4)

Here, each molecule in a state |ψi(t)⟩ has an occupation probability pi, such that

the total probability is
∑

i pi = 1. If any of {pi} is equal to unity then the state

being described is pure. In contrast, the superposition of a number of pure states

is a mixed state, with purity defined as Tr(ρ2). It is also possible to write a mixture

of mixed states in the form of a density matrix:

ρ(t) =
∑
ij

pipij |ψij(t)⟩ ⟨ψij(t)| , (2.1.5)

where introduction of the density matrix of a mixed state yields

ρ(t) =
∑
i

piρi. (2.1.6)

This powerful mathematical construction is already a dramatic improvement on

computing an ensemble particle by particle as the density matrix is now able to

describe a statistical ensemble of many moles. This is a consequence of the

Hilbert space of the Hamiltonian containing the energy levels of individual

molecules within the ensemble.

This results in the standard form of the density operator, which is used

throughout this thesis. The diagonal elements of this matrix are the ensemble

populations, and correspond to the proportion of the ensemble which is in a

given state. Consequently, diagonal elements ∈ R+ such that the trace of the

density matrix is one. The off-diagonal elements of the density matrix, ∈ C , are

termed coherences and define the interferences between different basis states of
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the system. When the coherences are non-zero the system is in a superposition of

the constituent basis states. The evolution of the density matrix can be

generated through application of a pair of evolution operators, resulting in the

Liouville-von Neumann equation (discussed in full detail in section D.1.2),

through an analogous, numerically explicit, process to state evolution (2.1.2):

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0), (2.1.7)

= T← exp
(
− i

ℏ

∫ t

t0

LLVN(s) ds
)
ρ(t0), (2.1.8)

where LLVN is the Liouville evolution superoperator.

This closed system has a total Hamiltonian H(t) dependent only on the basis

state energies and time. However, in the theory of Open Quantum Systems (OQS)

Hamiltonian operators are typically constructed in the interaction picture such

that there is an interaction between the system variables and variables of an

environment,

H(t) = H0 +HI(t). (2.1.9)

This splits the system into a time-independent contribution describing the system

in the absence of interaction, and a time-dependent contribution describing the

effect of the interaction.

2.1.2 Open Quantum Systems

Open systems, in the Feynman and Vernon sense as depicted in figure 1.0.2,

consist of two or more formally closed systems in independent coordinates

which are linked through an interaction term dependent on the coordinates of

all coupled systems. A wide range of EOMs exist for modelling the equally broad

array of open systems, and the dynamics can be approximate or exact. For

simple systems, such as the Jaynes-Cummings Hamiltonian174,175 for a two-level

atom interacting with an optical cavity, there is an analytical solution, however

many other treatments involve making simplifying assumptions to produce

complex memory effects from large systems. Generally, all degrees of freedom

within an open system cannot be treated explicitly, therefore it is usual to

construct the total system as a composite of constituent Hilbert spaces where the

environment degrees of freedom are simplified113. The total Hamiltonian for an

open system is an extension of equation (2.1.9) and takes the form

H(t) = HS ⊗ IB + IS ⊗HB +HSB(t), (2.1.10)

Hi, Ii ∈ {S,B}, where Ii is the identity operator for the component i. Here, the

time-independent component is split into system and environment

contributions, each in their own coordinates, and tensored with the dimensions
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of the other component. In this way the full Hilbert space is a composite of the

constituent degrees of freedom, HSB = HS ⊗ HB. A reduced density matrix in

terms of individual degrees of freedom can be obtained by computing a partial

trace over the density matrix. In the case of a partial environmental trace, the

system reduced density operator is

ρS(t) = TrB

(
U(t0, t)ρ(t0)U

†(t0, t)
)
. (2.1.11)

In an open system with a Hamiltonian in the form of equation (2.1.10), the full

dynamics are intrinsically altered by the behaviour of the time-dependent

interaction contribution. Depending on the form of this interaction the

dynamics can be a small deviation from thermal equilibrium, or fundamentally

altered by a complex entanglementa of the system and environment. The vast

difference in behaviour between these cases makes considering the full range of

choices in full generality almost impossible, hence, it is usual to apply

simplifying approximations or assumptions about the nature of the interaction

Hamiltonian. If the system-bath interaction is very small, then we can apply the

weak coupling approximation, often called the Born approximation. This

assumes that the environment interaction is a small perturbation to the overall

dynamics such that it can be treated as time independent. This corresponds to

qubits, or two-level-systems (TLSs) subjected to relatively weak dissipation176.

This assumption is often used in conjunction with an, approximate, perturbative

expansion technique of the interaction coupling strength in which it is natural to

assume that high order couplings can be neglected leading to EOMs like the

Redfield Master equation121 - D.1.5. Alternatively, if the coupling between the

system and bath is strong then the bath contributions must be fully time

dependent and cannot be simplified with the Born approximation. Instead,

simplifications based on the scale of the reduced density operator are considered

which leads to sets of coupled EOMs as in the Nakajima-Zwanzig equation130,131

D.1.3. Finally, it is possible to consider the full degrees of freedom, with fully

time-dependent interactions, using non-perturbative methods such as the

Fokker-Planck equation177,178 D.1.9, or via stochastic forcing D.1.8. The

drawbacks of such an approach, discussed in detail in appendix D.1, are that

advanced calculus is required to generate the EOM.

In all cases, it can be beneficial to make an additional choice regarding the

separability of the degrees of freedom of the initial state of the system and bath.

A standard approximation is to use uncorrelated (factorisable) initial conditions,

ρ(t0) = ρS(t0)⊗ ρB(t0), (2.1.12)

aThis is an entanglement of system and bath variables, analogous to entanglement that
is the interdependence of a pair of (or many) particle states. Later this is referred to as
‘bathentanglement’ to differentiate it. This concept is equivalent to that which is discussed in
Dijkstra et al.117
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which corresponds to systems that are initially separated from the environment.

Again, the alternative is a fully correlated initial condition where the system and

environment have mixed degrees of freedom, which corresponds to an

equilibrium state. This requires an alteration to non-perturbative techniques

through the resolvent149 such as in the arbitrary spectral density HEOM

(ASD-HEOM) 2.5.4.3.

2.1.3 Quantum Dynamical Maps

When considering systems with a strongly correlated system and environment

it is useful to consider an operator, analogous to the unitary evolution operator,

but which acts solely on system degrees of freedom. This operator is known

as a quantum dynamical map, ϕM(t). For a weakly interacting system which is

simplified by application of the Born approximation, the dynamical map is

ρS(t) = ϕM(t)ρS(t0) = TrB

(
U(t0, t)(ρS(t0)⊗ ρB)U†(t0, t)

)
, (2.1.13)

fully incorporating the impact of the environment on the system of interest. In

order to rigorously define evolution of the reduced density operator through

dynamical maps, we must establish when it can be effectively applied. We have

already considered a generalisation of theory from continuous microscopic

variables to matrices in which physical observables correspond to operating on

the system Hilbert space. Similarly, we can consider a generalisation of classical

observables in phase space to quantum observables in a C∗-algebra. In

Quantum Mechanics the state of a physical system, |ϕ(t)⟩, is a linear functional

which is acting on an abstract C∗-algebra, and physical observables are

hermitian elements of the same algebra. Since states define probabilities of

occupation every eigenvalue must be non-negative, and additionally we require

that operating on these states with a linear functional must not alter the trace.

We can rationalise this by considering the probabilities within the density

matrix: it is required that the total probability is unchanged and positive during

the course of an evolution. It is because of these properties that quantum

dynamical maps are said to be Hermiticity, trace, and positivity preserving. This

leads to the definition of positivity: if the density matrix elements, ρnn > 0 ∀ n
and ϕM(ρnn) are also > 0 ∀ n then ρ is positive and the dynamical map, ϕM, is

positivity preserving. Unfortunately, this definition is not enough to describe all

physical evolutions. For example, the eigenvalues of a quantum entangledb

qubit under the influence of the partial transpose operation, are negative179. To

rectify this, the definition is extended to complete-positivity, whereby dynamical

maps must not only be positive in the degrees of freedom of the system, but also

systems where these degrees of freedom are a subset. For our purposes this

bThe usual definition of entanglement, as opposed to the specific case of bathentanglement.
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asserts that the dynamical map transforms physical states, with positive

probabilities, to other physical states for the total degrees of freedom not just for

the reduced degrees of freedom of ρS . When a dynamical map is completely

positive it is called a quantum channel, and it is through these channels that the

system and environment interact.

2.1.4 The Environment

The work in this thesis considers a total ensemble with a very small system and

an environment contribution which is many orders of magnitude larger. This is

typical in condensed phase spectroscopy and quantum optics where the system

of interest may consist of a small number of molecules or particles relative to an

environment which is effectively infinite, such as the solvent of a dilute solution.

To model this we construct the environment as a continuum of modes, such that

the degrees of freedom are infinite, called a reservoir. This reservoir is then

initialised to a thermal equilibrium distribution, as would be typical in

experiments, which is known as a bath. Throughout this thesis the environment

is assumed to be infinite with respect to the system of interest, and initially in a

thermal equilibrium meaning that the terms bath and environment can be used

interchangeably. This highlights the benefit of the theory of open quantum

systems: the evolution of the reduced density operator may be computed, taking

into account the interaction with the infinite bath degrees of freedom, without

the need to propagate the continuum of bath modes.

When a system of interest is coupled to a bath, the once closed system is now

free to dissipate energy between the constituent parts, resulting in a damping of

the reduced density operator. This system damping lends itself readily to

modelling with a classical stochastic forcing, therefore Langevin or Stochastic

EOMs, which are discussed fully in D.1.7 and D.1.8, are natural choices for

modelling these systems. Within this thesis, we aim to discuss quantum

information and quantum correlations, and both are impacted directly by this

source of damping. In models of Nuclear Magnetic Resonance (NMR)

spectroscopy this damping refers to both T1 type dissipation and T ∗2 type

dephasing, and in models of boson counting experiments the damping refers to

a loss of quantum correlation in time resulting in a classical correlation at

thermal equilibrium. T1 dissipation and the loss of quantum correlation occur as

a consequence of the transfer of energy from the system of interest into the bath

resulting in system relaxation and can be considered as longitudinal

relaxation138. In contrast, T ∗2 dephasing is a consequence of transverse

relaxation which manifests as a modulation of the potential energy surface

along the coordinate without a vertical translation (transition)138. In addition,

dephasing and the loss of quantum correlation are linked through coherence.
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Excitation typically occurs over a range of frequencies, through the application

of a broadband laser pulse, resulting in a number of simultaneous excited states

moving as a wavepacket within the potential180,181. Loss of coherence within

the superposition leads to uncertainty of the associated transition frequency and

an increased spectral broadening as the signal decays. Similarly, in boson

counting experiments continuous driving by a laser field results in a loss of

coherence which emerges as quantum antibunching.

The magnitude of damping introduced within these models is of particular

importance as it is a crucial indicator for quantum behaviour. Within

spectroscopy, damping, and the associated lineshape broadening, is attributed to

memory effects arising from the OQS dynamics. Within models of optical

coherence the level of damping, and relative level of vibrational relaxation, is

intrinsically linked to the level of quantum antibunching. Therefore, the amount

of damping is quantified through the correlation function, which is discussed in

detail in section 2.2.2.2. Low order correlation functions31 can be used to track

system and bath timescales, and in particular the bath relaxation timescale has a

profound impact on the level of damping. This quantity defines the length of

time required for the bath to return to its equilibrium distribution after a

perturbation, and physically represents a solvent stabilisation effect. When the

timescale of the bath reorganisation is very fast with respect to the system

relaxation, the system-bath interaction behaves as a thermally averaged,

time-independent constant. However, if the timescales of the system and the

bath are of equivalent order, the system-bath interaction is fully time-dependent.

This can lead to complex dynamics as the bath may be at any stage through the

equilibration process when the system relaxation occurs. In this instance, a

finite history of the state of the system will have been imprinted into the

partially equilibrated bath. The history, which is free to recur at a later point in

the evolution of the system, is known to impact the dynamics and is termed a

memory effect.

Memory effects can be formally extended using the definitions of dynamical

maps. In a system completely devoid of memory effects, corresponding to an

instantaneous return to equilibrium with respect to the system, the dynamical

map for the evolution can be divided into time increments. This results in an

additive property analogous to numerically explicit calculations

ϕM(t0)ϕM(t1) = ϕM(t0 + t1), t0, t1 > 0, (2.1.14)

and means that the map is invertible182. Under these circumstances we can call

this map strictly divisible such that

ϕM(t, t0) = ϕM(t, t1)ϕM(t1, t0), t > t1 > t0, (2.1.15)
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as long as ϕM is completely-positive and trace preserving (CPTP, discussed in

2.1.3)183. This dynamical map is equivalently known as a semigroup and may be

converted into exponential form as in Breuer113

ϕM(t) = exp(Lgt). (2.1.16)

Here Lg is the generator analogous to an evolution superoperator. This particular

generator is in a form suitable for an OQS with a time-independent interaction,

such as in the Lindblad master equation discussed fully in D.1.6. If the generator

is time-dependent then the dynamical map can be written as

V(t, t0) = T← exp
(∫ t

t0

Lg(s) ds
)
, (2.1.17)

with

V(t, t1)V(t1, t0) = V(t, t0). (2.1.18)

The addition of propagators in this manner is another statement of the

definition of a fully divisible dynamical map as in equation (2.1.15). This

property is sufficient for it to be a numerically explicit operation. Additionally,

divisible dynamical maps imply that the underlying process is Markovian,

obeying the Markov property, and have no memory effects.

2.1.5 Markovianity

The memory of a system is formalised through the Markov property which itself

is a statement that a stochastic process is memoryless if its evolution is

independent of its history. When considering an arbitrary discretised evolution,

the classical Markov property is equivalent to being numerically explicit: each

state depends solely on the previous state in time. This means that any process

which evolves following a scheme such that successive steps depend on more

than one previous time step are termed non-Markovian and do not satisfy the

Markov property. Markovianity is summarised in figure 2.1.1, which shows a

maximally non-Markovian process.

This form of Markovianity, based on classical probability theory, bestows the

property of time-locality to EOMs for Markovian processes. This is because the

Markov property behaves in a numerically explicit manner such that Markovian

governing equations have no memory. In contrast, this implies that

non-Markovian EOMs or EOMs suitable of dealing with complex system-bath

interactions must have time non-local governing equations.

As a consequence of the fragile nature of quantum measurements, the

definition of Markovianity from classical probability must be extended.
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Figure 2.1.1: a) Schematic of Markovianity depicting history dependence as a
function of ‘number of previous state dependencies’ and time. Blue is maximally

non-Markovian, and red fully Markovian. b) Schematic of Markovianity
additionally including the independent spatial coordinate.

Classically, it is possible to generate accurate probabilities for every individual

time-step in an evolution. However, under the formulation of quantum

mechanics, the same is not true for a wavefunction based theory, which

collapses upon observation. In order to generalise the concept of Markovianity

to quantum Markovianity, first it is worth noting the ambiguity surrounding

both classical and quantum forms of Markovianity. While a rigorous

re-definition of every form of classical and quantum Markovianity is beyond the

scope of this thesis, it is worth highlighting the findings of Li et al.183 who

discuss a wide array of definitions of Markovianity. The definition used within

this thesis most closely matches the definitions of Divisibility, (2.1.15), and

Dynamical Semigroups, (2.1.14), despite similarities to the definition based on

the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation, section

D.1.6. The definition of quantum Markovianity used in this thesis maintains the

spirit of formal, classical, Markovianity but is applied to the reduced system of

interest rather than the full system. Instead of strict consideration of CPTP

maps, this form relies more heavily on the transfer of information along

quantum channels with specific emphasis on the direction of transfer184. Such a

procedure can be verified experimentally by periodically assessing the state of

an initial condition throughout system evolution by the application of

tomography185.

Information can be understood as the complement of the entropy of a system:

it is a statement of the total uncertainty and disorder. In a perfectly ordered

crystal structure it will be possible to have maximum information about the

system as a consequence of minimal entropy. Conversely, the observer has

minimum information about a thermal mixture of completely indistinguishable,

degenerate, molecules. As the level of disorder in a system decreases, such as
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Figure 2.1.2: Schematic depicting the bounds of distinguishability. 1) Evolution
from an ordered lattice structure at t0 into the condensed phase at t. 2)

Evolution from the condensed phase at t0 to an ordered lattice at t. The two
graphs depict the corresponding bounds of the Von Neumann entropy, S, and

the trace distance metric, D.

during a chemical phase transition, the quantum uncertainty of physical

observables decreases in proportion to the increase of quantum information.

The Von Neumann entropy, a generalisation of classical Shannon entropy, is

measured as

S(ρ) = −kBTr
(
ρlnρ

)
. (2.1.19)

As such, the entropy of a pure state (discussed in D.1.2) is zero, corresponding

to the occupation of a single distinguishable state. Whereas, a completely mixed

state has an even distribution of occupations among many states, which are

indistinguishable from one another, such that the entropy is greater than zero.

Information and distinguishability are summarised as a schematic is figure 2.1.2.

In OQSs, the structure of the Hilbert space leads to an additional restriction on

the magnitude of Von Neumann entropy. Since the system and bath are correlated

during evolution and the Hilbert space takes the form H(1)(2) = H(1) ⊗H(2), the
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entropy exhibits a subadditivity condition185,186

|S(ρ(1))− S(ρ(2))| ≤ S(ρ(1)(2)) ≤ S(ρ(1)) + S(ρ(2)), (2.1.20)

which is sometimes referred to as a triangle inequality in analogy with the side

lengths of a triangle in euclidean geometry. This is a demonstration of the fact

that a positive correlation between component parts of a composite system results

in an increase of information and a loss of entropy. In addition to subadditivity,

quantum entropy exhibits strong subadditivity186 when the composite system

consists of three parts:

S(ρ(1)(2)(3)) + S(ρ(2)) ≤ S(ρ(1)(2)) + S(ρ(2)(3)). (2.1.21)

The entropy is also characterised by the fact that it is concave, which means that

the entropy of a mixture serves as an upper bound for the sum of the entropies

of its constituent parts,

S

(∑
j

pjρj

)
≥
∑
j

pjS(ρj), (2.1.22)

with non-equal ρj . In practice this means that the entropy of a mixture of states

is higher, and the total system more disordered, than for the sum of the entropy

of its parts.

From the foundation of information a metric on the space of density matrices is

constructed which considers the statistical distance between states corresponding

to a quantification of the distinguishability. For a pair of classical probability

distributions, compared at an initial time, this metric is known as the Kolmogorov

distance. This metric can be generalised for application on quantum states, ρ1
and ρ2, with probabilities, p1 and p2, to the Helstrom (Bures) metric187

∆H(ρ1, ρ2) = Tr|p1ρ1 − p2ρ2|, (2.1.23)

where |A| = +
√
A†A. Within this thesis we consider a simplified version of

the Helstrom metric, the trace distance metric, which applies to quantum states

which are equally probable, p1 = p2 =
1
2 :

D(ρ1, ρ2) =
1

2
Tr|ρ1 − ρ2|. (2.1.24)

This metric is bounded by [0, 1] such that identical, indistinguishable states

with parallel supports have D(ρ1, ρ2) = 0, and completely distinguishable,

orthogonal states have D(ρ1, ρ2) = 1. States are said to be orthogonal when

their support, or subspace of eigenvectors with non-trivial eigenvalues, are also

orthogonal. A depiction of the bounding cases of D(ρ1, ρ2) are shown in
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schematic 2.1.2.

The action of a CPTP-map on the trace distance causes a contraction, meaning

that system states become less distinguishable during the course of an evolution,

D(ρ1(t), ρ2(t)) ≤ D(ρ1(t0), ρ2(t0)), when t > t0. (2.1.25)

A decrease in quantifiable distinguishability through the course of an evolution

is a necessary and sufficient condition for the loss of quantum information and

an increase in the system entropy. The information which is gained by the bath

results in imprinting of system states on the bath degrees of freedom, or as a

change of state185. If the loss of information through the course of an evolution

is strictly monotonic, then the quantum channel must be a divisible semigroup

which obeys the Markov property. This is the formal definition of a Markovian

process as defined by authors including Breuer et al.113,185. Subsequently, any

process which does not have a strictly monotonic loss of information must incur

a transfer of information from the bath to the system. This transfer, which

invalidates the divisibility condition, facilitates a build-up of correlation over a

finite history which manifest as memory effects. Such processes are termed

non-Markovian.

Breuer, Laine, and Piilo188 further develop this concept into a quantification

of the non-Markovianity of an open quantum system. The total magnitude and

direction of information travel is ascertained through the information flux

σ =
d

dt
D(ρ1(t), ρ2(t)). (2.1.26)

Next, the Markovian contributions, which have negative flux due to the

monotonic loss of information, are discarded leaving the non-Markovian flux.

Integration of this quantity over time produces a measure of the total

information which is returned to the system from the bath,

N = max
ρ1,2

∫
σ(t) dt. (2.1.27)

Based on this construction, any system which is purely Markovian will have N =

0, while any process with a degree of non-Markovianity will have N > 0. This

measure is used in chapter 3 to measure the impact on quantum information

metrics (and their respective physical processes) of the movement of the system-

bath boundary within a hierarchical model.
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2.1.6 Field Interactions

Applications such as quantum optical coherence measurements and

spectroscopy involve the excitation of the open quantum system by the external

electric field of an incident laser. To correctly account for the interaction of the

system degrees of freedom with the laser field, an external field Hamiltonian

must be added to the models. In section 4.1 we consider quantum correlations

generated by a laser with a single frequency, and this is extended in section 4.2

to a Gaussian bandwidth. Similar to the Hamiltonian structure (2.1.10) of the

theory of open quantum systems, quantum electrodynamics (QED) postulates

that the time-independent field energy will be introduced through HF, and the

time dependent system-field interaction will be introduced through HSF(t).

Ideally, we would employ a fully QED theory which combines a quantum EOM,

such as the Schrödginer equation (D.1.1.2), with a quantum treatment of

radiation in terms of quantised photons. In the weak-coupling limit between the

radiation and the system, perturbative expansions of the coupling strength are

particularly useful as higher order interaction terms can be safely neglected with

minimal impact on the model. However, when the coupling strength is large, as

in many boson counting experiments which use resonant field

frequencies189,190, perturbative approaches fail. Rather than employing a full

quantum mechanical treatment, which requires a large Hilbert space, we

employ an approximate method of modelling the system-field interaction. If the

size of the electromagnetic subspace is limited such that there are few photon

modes then a floquet model could be introduced191. This theory is analogous to

the Nakajima-Zwanzig projection operator (discussed in D.1.3) where

fundamental components of the solution are factorised based on their timescale

or magnitude. However, rather than limit the photon subspace, we propose the

application of semi-classical theory where the system of interest is computed

fully quantum mechanically and the radiation is modelled as a classical field

through Maxwell’s equations191. Under this approximation the Hamiltonian of

the reduced system is supplemented by the time-dependent system-field

interaction Hamiltonian, HSF(t), within the generator Lg (2.1.17). This leads to

a general master EOM of the form

dρS
dt

= LgρS(t) = − i

ℏ
[HS +HSF(t), ρS(t)] + D[ρS(t)], (2.1.28)

where the first set of square brackets denote the commutator, and where D[ρS(t)]

is an arbitrary relaxation superoperator defining the interaction with the bath.

The form of D is discussed fully in appendix D.1.6.

Accordingly, the models in this thesis are built from fundamental theory and

its necessary approximations such that they follow a scheme as depicted in

figure 2.1.3. There is an open quantum system, which consists of a bath
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Figure 2.1.3: A schematic of the model system applied in this thesis: an open
quantum system with a phononic bath allowing for non-Markovian memory

effects. The green Hamiltonian of the system can be substituted for any of the
vibronic molecules discussed in this section.

(solvent) and system of interest (solute) which are free to interact. This system

is free to behave in a Markovian or non-Markovian manner. Interacting with this

is a classically modelled incident laser field which places the system in a

superposition of excited states. The influence of the bath then acts to damp the

excited state wavepacket leading to dephasing and a dissipation of energy back

into the bath. Dependent on the timescales of these fundamental processes the

system is free to exhibit non-Markovian memory effects. This model is adequate

for modelling time-resolved spectroscopic methods which currently are of the

order of attoseconds, and for probing vibrational correlations in optical

coherence experiments which are of the order of 100 wavenumbers.

2.2 The Hamiltonian

2.2.1 System Hamiltonian

2.2.1.1 Vibronic Monomer

Consider a two electronic energy level system, or monomer, with a ground state,

S0, and an excited state, S1. The lower energy state vector is denoted |g⟩ and the

excited state vector, |e⟩, found at an energy ℏωeg above the ground state allowing
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for the construction of a Hamiltonian,

HS
M = |g⟩hg ⟨g|+ |e⟩he ⟨e| , (2.2.1)

with hi, i ∈ {g, e} being the nuclear Hamiltonian for the vibrational contribution,

hg =
∑
j

(
p2j
2mj

+
1

2
mjω

2
jq

2
j

)
, (2.2.2)

he = ℏωeg +
∑
j

(
p2j
2mj

+
1

2
mjω

2
j (qj − dj)

2

)
, (2.2.3)

and where {mj}, {pj}, and {qj} are respectively the mass, momentum and

coordinate of the jth vibrational mode, with an associated frequency of {ωj}.

The total Hamiltonian is denoted M to indicate that it is for a monomer, and the

fact that it incorporates the coupling between the fundamental electronic

degrees of freedom and the local vibrations, excluding rotational and

translational contributions, makes it vibronic192. Each independent vibrational

mode is modelled as a harmonic oscillator coupled to the electronic degrees of

freedom. Each state has a respective potential energy surface, Vi, i ∈ {g, e}, and

the excited state potential energy minimum is displaced relative to the ground

state minimum by dj along the coordinate qj . Similarly, ℏωeg, is the energy of

transition between the lowest vibrational levels of the two states, and ℏωj is the

energy of transition to the first vibrational excited state within each potential.

The potential energy surface can be non-dimensionalised by substituting the

quantum harmonic oscillator into the Schrödinger equation (D.1.1.2) resulting

in an intrinsic energy scale of ℏωj , an intrinsic lengthscale of
√

ℏ
mjωj

and the

ground state energy of the oscillator, ℏωj

2 . Hence the dimensionless coordinates

are,

p̃j =
(√

ℏmjωj

)−1
pj , (2.2.4)

q̃j =
(√mjωj

ℏ

)
qj , (2.2.5)

d̃j =
(√mjωj

ℏ

)
dj , (2.2.6)

and the nuclear Hamiltonians are expressed in the occupation number

representation, via the intrinsic energy scale and ground state energy, as

hg =
∑
j

ℏωj

(
b†jbj +

1

2

)
, (2.2.7)

he = ℏ(ωeg + λ) +
∑
j

ℏωj

(
b†jbj −

d̃j√
2
(bj + b†j) +

1

2

)
, (2.2.8)
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Figure 2.2.1: Potential energy surface of a vibronic monomer where the pair of
electronic states are each coupled to the jth vibrational mode. Diabatic levels
are coloured and have the appropriate bound quantum harmonic oscillator

eigenstates overlaid.

where the second quantised form vibrational creation and annihilation operators,

b†j and bj , are,

b†j =

√
mjωj

2ℏ

(
qj −

i

mjωj
pj

)
=

1√
2
(q̃j − p̃j), (2.2.9)

bj =

√
mjωj

2ℏ

(
qj +

i

mjωj
pj

)
=

1√
2
(q̃j + p̃j), (2.2.10)

and obey the boson commutation relation

[bj ,b
†
k] = δjk, (2.2.11)

where δjk is the Kronecker delta. Consequently, this expresses the value of the
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matrix element of the commutator for the indices j and k, and is a scalar.

The excited state displacement, d̃j induces a reorganisation energy of ℏλj in

the fundamental electronic transition of the system and corresponds to the

additional energy required to reach the equilibrium geometry of the product

state. The potential energy surface (PES) for a vibronic monomer is shown in

figure 2.2.1. Each vibrational mode couples to the electronic degrees of freedom

linearly upon excitation, which is most evident in second quantised form

(equation (2.2.8)) through terms proportional to the non-dimensional

displacement, and is strongly dependent on the system basis. The system basis is

a set of orthonormal eigenvectors (kets) which lead to a spectrum of energy

levels dependent on the system Hilbert space. Upon linear coupling there is no

change in either the reduced mass or frequency of the mode193.

For an arbitrary number, N , of vibrational modes, the nuclear contribution to

the system Hamiltonian is

|n⟩ = |ν0ν1 . . . νN−1⟩ , (2.2.12)

which corresponds to the extension of the vibrational subspace via a tensor

product for each mode. |νj⟩, are the eigenstates of the vibrational number

operator for the jth mode, such that,

b†jbj |νj⟩ = νj |νj⟩ , (2.2.13)

and

bj |n⟩ =
√
νj |ν0, . . . , νj − 1, . . . , νN−1⟩ , (2.2.14)

b†j |n⟩ =
√
νj + 1 |ν0, . . . , νj + 1, . . . , νN−1⟩ . (2.2.15)

In this basis the ground state nuclear Hamiltonian, hg, is diagonal containing

no off-diagonal elements, such that hg |n⟩ = En |n⟩, with energies

En =

N∑
j

ℏωj(νj +
1

2
). (2.2.16)

In contrast, the nuclear excited state Hamiltonian, he, is coupling dependent,

and contains off-diagonal elements. Subsequent physical manifestations of the

coupling are unique to the choice of basis.

This vibrational basis taken in conjunction with the electronic degrees of

freedom through a tensor product constitutes the full monomer wavefunction
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and represents the localisation of energy in a particular electronic state194,195

ψM(t) = ψ
(ele)
M (t) · ψ(vib)

M (t), (2.2.17)

which is equivalent to

|ψS
M⟩ = |α⟩ ⊗ |n⟩ = |α, n⟩ , (2.2.18)

where α ∈ {g, e}. This is denoted, S, for site basis, which gets its name from the

non-stationary superposition of vibrational states, forming a wavepacket,

localised within the excited electronic potential. Additionally, this is an

expression of the approximation that electronic charge redistribution can occur

instantaneously relative to the motion of the nuclear degrees of freedom. This is

often known as the first-order Herzberg-Teller expansion196,197, or the

Born-Oppenheiemer approximation. Consequently, there is no coupling between

the electronic and vibrational degrees of freedom beyond that which is explicitly

induced by the displacement of the excited state potential.

The vibronic coupling present in this model induces a total reorganisation

energy dependent on the strength of the coupling, which is often quoted in

terms of the Huang-Rhys parameter, SHR
j , so that it takes the form

ℏλ =
∑
j

λj =
∑
j

SHR
j ωj , (2.2.19)

with

SHR
j = 1

2 d̃
2
j =

mjωjd
2
j

2ℏ
. (2.2.20)

Physically this parameter, sometimes also called the electron nuclear coupling

strength, represents the mean number of phonons in a coherent state that has

been displaced by the reorganisation energy from that of the the vacuum

distribution198. The Huang-Rhys parameter can additionally be generated

directly from the overlap integrals of the quantum harmonic oscillator

eigenstates of the ground and excited vibrational states77

SHR
j =

| ⟨e, 1j |g, 0j⟩ |2

| ⟨e, 0j |g, 0j⟩ |2
, (2.2.21)

where the shorthand |n⟩ = |00, 01, . . . , νj , . . . , 0N−1⟩ = |νj⟩ denotes the

vibrational quantum number where all modes are in the ground state except for

the jth mode. These brakets, referred to as overlap integrals, are the

Frank-Condon factors.

If we consider a monomer with the electronic singlet states,

S0 = |g⟩ =

(
1

0

)
, S1 = |e⟩ =

(
0

1

)
, (2.2.22)
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coupled to a vibrational mode with a pair of vibrational levels, the monomer

Hamiltonian is,

HS
M =

ℏω0

2


1 0 0 0

0 3 0 0

0 0 2
ω0
(ωeg + λ) + 1 −

√
2d0

0 0 −
√
2d0

2
ω0
(ωeg + λ) + 3

 . (2.2.23)

The choice of basis is fundamental to the nature of the off-diagonal elements

within the Hamiltonian. In the site basis, the focus is on a localisation of states

onto a particular potential energy surface. As a result, the states exist as a

superposition. This can result in stationary states when d0 > 0 because the

linearly independent states depend on the system coupling, or non-stationary

states. When d0 = 0 the linearly independent solutions are the pure states and

coupled combinations are non-stationary. As this description involves explicit

forms for the off-diagonal coupling elements it is equivalent to a diabatic basis

description. We could, however, consider a basis in which the focus is on

stabilisation of the states such that these states are eigenstates of the molecular

Hamiltonian, equation (2.2.25). This basis is known as the vibronic basis, for a

monomer, and is considered as a delocalised basis of adiabatic eigenstates. The

vibronic basis is the basis of eigenvalues and therefore is stationary when the

states are pure. This means that the vibronic (adiabatic) basis is stationary, and

the diabatic basis may be stationary if the eigenstates are a superposition of

many levels. From this construction it is possible to generate both a diagonal

Hamiltonian, and energy levels which are molecular state experimental

observables, which exist in delocalised combinations of diabatic levels. This

means that the energy levels behave as a hybridisation of diabatic states. If we

allow the monomer excited state to be displaced by a non-zero value of d0 then

this basis of eigenstates is still equally valid, but is shifted to a new position of

lowest energy and will have correspondingly altered eigenstates. Given this, a

general site basis Hamiltonian can be written in terms of the eigenvalues of the

basis of stationary states, ϵk, as

HS
M =

∑
k

ϵk |ψV
M,k⟩ ⟨ψV

M,k| . (2.2.24)

The vibronic basis Hamiltonian, identified by a superscript V, is achieved

through diagonalisation of the site basis Hamiltonian via the unitary

transformation matrix, UVS
M ,

HV
M = (UVS

M )†HS
MUVS

M , (2.2.25)
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Figure 2.2.2: Transformation of the vibronic monomer Hamiltonian from the
site to vibronic basis alters the wavefunction coefficients while maintaining the

state energy unless the energy of reorganisation is omitted.

where

UVS
M =

∑
k

|ψV
M,k⟩ ⟨ψS

M,k| . (2.2.26)

It is possible to change basis in this manner for any operator through an

equivalent transformation, substituting the Hamiltonian for the required

operator within equation (2.2.25).

Transformation of the Hamiltonian into the vibronic basis from the site basis

alters the wavefunction coefficients but, unless the reorganisation is omitted in

the nuclear Hamiltonian of the excited state (2.2.8), the state energy is

maintained76,77. This means that site and vibronic basis energy levels for a

vibronic monomer have equivalent energies.

In order to employ this scheme computationally, it is required to numerically

diagonalise the Hamiltonian. To avoid significant truncation errors in the matrix

elements, which manifest as a divergence of higher energy levels, a large number

of vibrational levels must be included. Within this thesis diagonalisation of a

vibronic monomer is achieved by including vibrational levels up to νj = 9 before
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a reduced number are extracted for use in any further computation or analysis.

This construction of a self-contained molecular system with electronic and

vibrational degrees of freedom such that it can act as a chromophore, is termed

a vibronic monomer and is the fundamental constituent of a vibronic dimer.

2.2.1.2 Electronically Coupled Aggregates

In order to explore the impact of electronic coupling on the quantum correlations

in a pair of models with differing system-bath boundary placement in chapter 4,

as a test of hypotheses 1 and 2, vibronic theory is extended to include aggregate

species.

In the condensed phase, where molecules interact readily, the features of

localisation and delocalisation in model bases are exacerbated as a consequence

of additional electronic coupling. The result of this is that molecules are able to

transfer electronic energy from a donor site to an acceptor site over a range of

distances. At the longest range the coupling is expressed as a radiative transfer

via emission and absorption of a photon of light, whereas at the shortest range,

radiationless mechanisms dominate which lead to excitonic structures199–202.

The radiationless energy transfer involves a Coulombic dipole-dipole

interaction, modelled with Förster theory, whereby a semi-classical first order

perturbation approximation induces instantaneous coupling. Despite these

necessary approximations, the semi-classical model still fundamentally depicts a

quantum process as discussed in Jones et al.203. At a shorter range still, there is

a quantum mechanical exchange interaction as a consequence of direct overlap

of the wavefunctions of the donor and acceptor sites, described by Dexter

theory201,204,205.

In direct analogy to the localisation of non-stationary states onto a particular

PES within vibronic monomers, localisation occurs within dimer species. The

electronic coupling between constituent monomer units within the aggregate

allows a localisation of non-stationary states across both monomers on specific

donor and acceptor sites on either monomer unit within the aggregate. In

equivalence with the delocalised, vibronic, basis for monomers, the states of a

vibronic dimer can be transformed into delocalised hybridisations of diabatic

energy levels in the exciton basis. In this basis the focus is on the electronically

delocalised exciton states of the aggregate as opposed to localised sites within

the molecule. This makes these models particularly useful for addressing the

controversy surrounding oscillating features within 2DES which suggest a

coherent mechanism may be amplifying the rate of EET quantum

mechanically98,206–208.
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The formation of an electronically coupled aggregate, whether it be through

spatial separation or direct covalent bonding, has electronic coupling typically

modelled following the work of Michael Kasha209. In this model, the molecular

dipoles are approximated as infinitesimal points with a coupling, J , given by the

Förster coupling equation, in order to describe the formation of Frenkel

excitons205,209. For monomers A and B with associated transition dipole

moments µA and µB, the electronic coupling is

J =
κAB|µA||µB|
4πεrε0R3

, (2.2.27)

where the orientation factor of the two molecules is

κAB = µ̂A · µ̂B − 3(µ̂A · R̂)(µ̂B · R̂), (2.2.28)

with µ{·} = |µ{·}|µ̂{·}, and where the displacement separating the monomers is

R = RR̂, ε0 is the vacuum permittivity, and εr is the permittivity of the

solvent200,205. Additional discussion about the transition dipole moments can be

found in section 2.2.3.3.

The localised exciton states, are generated as a consequence of positive and

negative perturbations of the energy of the combined monomer excited state by

the electronic coupling, leading to an energy separation of 2J . The exciton basis

is particularly powerful for dimers as it is able to describe the adiabatic hybrid

states, which are otherwise described as diabatic states on spatially distinct

locations in the aggregate. When the combination of local monomer excited

states results in a positive, symmetric, combination (as a result of matching

phase) an optically bright |e+⟩ state is generated. Whereas, when the monomer

excited states are out-of-phase, contributions from the respective transition

dipole are anti-symmetric and cancel resulting in a dark |e−⟩ exciton state.

Figure 2.2.3 shows the splitting of the exciton states alongside the doubly

excited, |f⟩, state where the exciton-exciton interaction which causes a minor

shift in the transition frequencies is neglected210.

Based on the relative orientation of the two monomer transition dipole

moments two different types of aggregate can form, as shown in figure 2.2.4: J-

and H-aggregates. When the transition dipole moments are arranged

‘head-to-tail’ the electronic coupling is negative, J < 0, and the lower energy

configuration corresponds to the bright, symmetric exciton. Correspondingly,

the dark exciton is the higher energy state, with an antisymmetric arrangement.

J-aggregates, as a consequence of their strengthened transition dipole moment,

are characterised by a red shift of the linear absorption spectrum and an

increased radiative decay rate compared to the monomer species as the

fluorescing population is enhanced by rapid relaxation mediated by the exciton

state. In large aggregate systems the amplified fluorescing population
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E

|g⟩
M

|e⟩

|g⟩
D

|e−⟩

|e+⟩

|f⟩

2J

Figure 2.2.3: Energy level diagram for J-aggregate formation. The electronic
coupling of monomers, M, forms two exciton states, |e+⟩ and |e−⟩, separated by
2J and a doubly excited state, |f⟩. Allowed transitions are shown by solid blue

arrows and forbidden transitions by dashed red arrows.

accumulates enough for the phenomenon of superradiance to occur205. In

contrast, when the transition dipole moments are arranged in a ‘side-by-side’

configuration, the electronic coupling is positive, J > 0, resulting in the

symmetric, bright, exciton state being at higher energy than the antisymmetric,

dark, state. Subsequently, H-aggregates are characterised by a blue shift of the

linear absorption spectrum and a decrease in fluorescence, as the dominant

pathways for relaxation are via internal conversion and intersystem crossing

mechanisms201,205,211,212.

This model is not limited to standard aggregates. Recent adaptations of the

Kasha model, involving non-standard aggregate geometries, have reproduced

conventional behaviour from purely the charge transfer states and Dexter

exchange interactions201,205. Despite these strengths, invalidation of the

approximation that system conditions change slowly enough for the final

Hamiltonian to be in its corresponding eigenstate, makes it impossible to

account for molecular vibrations. As interest in molecular vibrations within

open systems continues, advances beyond the traditional adiabatic

approximation of Förster theory will be necessary78,80.

2.2.1.3 Vibronic Dimer

In order to extend the framework of a vibronic monomer to allow for the study of

a vibronic dimer, the Hilbert space must be expanded to accommodate vibrational
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Figure 2.2.4: Two monomer transition dipole moments placed R apart and at an
angle ∈ [0◦, 90◦]. For fixed R and parallel transition dipole moments, increasing

from 0◦ (collinear) to 90◦ results in a transition from a J- to an H-aggregate,
with the boundary at the magic angle, 54.7◦.

degrees of freedom from both monomer units. From equation (2.2.1), the site

basis monomer Hamiltonian, the composite Hilbert space is further extended as

a tensor product of monomer states,

|ψS
D⟩ = |αA, nA⟩ ⊗ |αB, nB⟩ , (2.2.29)

with α denoting the electronic state, and n the state of the N vibrational modes.

As for the vibronic monomer denoted M, here D denotes the dimer subspace

and A and B identify the constituent monomers. The total site basis dimer

Hamiltonian is then,

HS
D = HS

MA ⊗ IMB + IMA ⊗HS
MB

+ J
∑

nA,nB

(
|e, nA, g, nB⟩ ⟨g, nA, e, nB|+ |g, nA, e, nB⟩ ⟨e, nA, g, nB|

)
, (2.2.30)
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Figure 2.2.5: A schematic of a) a vibronic homodimer, and b) a vibronic
heterodimer. In both cases the dipoles are oriented so that a J-aggregate is

formed. The purple levels depict vibrational levels.

where IM{·} is the identity operator over the full monomer degrees of

freedom68,78,81,102. This results in a summation of the two monomer

Hamiltonians with the addition of an electronic coupling between states with

equivalent vibrational quanta81,205 and electronic excitation is transferred

between monomers. As such, the dimer Hamiltonian in the site basis is a

composite Hilbert space spanning the doubly ground, |g, nA, g, nB⟩, singly

excited, |e, nA, g, nB⟩ and |g, nA, e, nB⟩, and doubly excited, |e, nA, e, nB⟩, states

of the total dimer, and contains coherence terms which are a combination of

vibrational and electronic coupling. Figure 2.2.5 depicts a homo- and

hetero-dimer constructed from these equations.

The site basis Hamiltonian is diagonalised in a manner equivalent to that of

the vibronic monomer, resulting in a delocalised superposition of adiabatic

eigenstates in the exciton basis. This transformation applies the unitary

transformation matrix

HE
D = (UES

D )†HS
DU

ES
D , (2.2.31)

where

UES
D =

∑
k

|ψE
D,k⟩ ⟨ψS

D,k| , (2.2.32)

and where |ψE
D,k⟩ are the eigenstates of the site basis dimer Hamiltonian which

can be written in terms of energies, ϵk, as

HS
D =

∑
k

ϵk |ψE
D,k⟩ ⟨ψE

D,k| . (2.2.33)

This theory is constructed in full generality so that it is suitable for both

homo- and hetero-dimers with all possible couplings. Application to

homodimers is considered in section 3.2 and a range of homo, and hetero,

dimers and monomer-lattices are studied in section 4.4. The composite site basis
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|g, 0j , g, 0j⟩ = |ψ0⟩

|g, 1j , g, 1j⟩

|g, 1j , g, 0j⟩ |g, 0j , g, 1j⟩

=

|e, 0j , g, 0j⟩ = |ψA
0 ⟩

|e, 1j , g, 1j⟩

|e, 1j , g, 0j⟩ = |ψA
1 ⟩ |e, 0j , g, 1j⟩

|e, 0j , g, 0j⟩ = |ψB
0 ⟩

|g, 1j , e, 1j⟩

|g, 1j , e, 0j⟩ |g, 0j , e, 1j⟩ = |ψB
1 ⟩

=

|e, 0j , e, 0j⟩

|e, 1j , e, 1j⟩

|e, 1j , e, 0j⟩ |e, 0j , e, 1j⟩

Figure 2.2.6: Energy level diagram of the composite site basis states for the jth
mode of a vibronic homodimer. The ground and singly excited states, with zero
or one quanta of vibrational energy in the excited state, and with no vibrational

excitation in the electronic ground state are highlighted and assigned the
aforementioned shorthand.

Hamiltonian is shown in figure 2.2.6 for a homodimer, and the shorthand

discussed in the text is applied in order to highlight the doubly ground state,

singly excited zero vibration states and singly excited single vibrational states.

The already large site basis Hamiltonian for a vibronic monomer

dim

((
2(ν + 1)N

)1
×
(
2(ν + 1)N

)1)
, (2.2.34)

is considerably increased to

dim

((
2(ν + 1)N

)2
×
(
2(ν + 1)N

)2)
, (2.2.35)

whereN is the number of vibrational modes and the highest vibrational quantum

number of the mode is ν, when applied to a vibronic dimer. This results in a

significant increase in computational cost when attempting to diagonalise the

Hamiltonian. To counteract this, it is standard to neglect states in which the

electronic ground state has an associated quanta of vibrational energy, reducing

the composite site basis states to a single doubly ground state, |ψ0⟩, and vibronic

states in which each monomer is vibrationally excited in isolation, |ψA/B
ν ⟩ , ν ∈

{0, 1}, as shown in figure 2.2.6.

Despite the reduction in number of basis states, the full range of electronic

and vibrational coupling can still be achieved within the model as would be

expected of the full composite basis. Through application of the shorthand in

figure 2.2.6, linear, symmetric (+) and antisymmetric (−) combinations of the
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site basis wavefunctions result in exciton states76,

|ψ±ν ⟩ =
|ψA

ν ⟩ ± |ψB
ν ⟩√

2
. (2.2.36)

As is explained by Ottiger et al.76 the influence of the vibrational modes on the

electronic coupling leads to a quenching effect proportional to the Frank-Condon

factors for the two monomers,

JVib = J ⟨ψA
ν |ψ0⟩ ⟨ψA

ν |ψ0⟩ . (2.2.37)

Subsequently, the limits of the overlap integrals minimise or maximise the

electronic coupling leading to strong and weak coupling regimes. When

vibrational coupling is minimal, synonymous with d̃j ∼ 0, there is a limited

quenching effect and a minimised reduction in J known as the strong coupling
limit. Alternatively, when vibrational coupling is maximised, synonymous with

d̃j > 0 such that ℏλj > J , there is a strong quenching effect which reduces the

electronic coupling. This regime is known as the weak coupling limit. These

regimes represent a movement from strongly delocalised exciton states over

both monomer units (coherent) to weakly delocalised (incoherent) dominated

by nonadiabatic coupling213.

2.2.1.3.1 Strong Coupling Limit

When the magnitude of vibrational coupling is small, or d̃j → 0, the ground and

excited state PESs will tend towards perfect alignment, resulting in the

Frank-Condon factors for purely electronic transitions being maximised,

⟨ψA
0 |ψ0⟩ → 1. Contrastingly, because of the large number of nodes centred

around the origin within the bound eigenstates of the quantum harmonic

oscillator for ν > 0, the overlap integrals relative to the ground state are

minimised, ⟨ψA
ν |ψ0⟩ → 0. This coupling regime is characterised by an electronic

coupling strength which is greater than the magnitude of vibrational coupling,

ℏλj < J , which allows the predicted Davydov splitting of 2J between the

exciton states to manifest, as in figure 2.2.3.

An example energy level diagram for a generalised H-aggregate, in the strong

coupling limit, is considered in figure 2.2.7. As discussed in section 2.2.1.2,

there is a bright symmetric exciton state which is higher in energy than the

associated dark state. Additionally, the large positive coupling results in a band

structure where exciton states are grouped with their corresponding vibronic

levels. Evidence for this grouping has been presented by Ottiger et al.76, where

the forbidden transition into the lower, antisymmetric, exciton was accessed

through breaking the inversion symmetry with an isotopic substitution.
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Figure 2.2.7: Formation of exciton states in an H-aggregate in the strong
coupling limit.

2.2.1.3.2 Weak Coupling Limit

When the vibrational coupling is larger than zero, away from the strong coupling

limit such that d̃j > 0, the overlap integrals for the quantum harmonic oscillator

eigenstates when ν > 0 become non-zero resulting in fractional Frank-Condon

factors. The weak coupling limit is characterised by vibrational coupling greater

than the electronic coupling strength, ℏλj > J and a significant quenching76,77.

As shown in figure 2.2.8, rather than forming a band structure, because of the

reduced electronic coupling, Jvib, the splitting of twice the quenched coupling

strength produces a vibronic progression of the monomer into pairs of exciton

states. Again, this effect is demonstrated by the work of Ottiger et al.76.

As the structure of excitonic systems depends so heavily on the placement of

the vibrational levels within the model systems, and the strength of the

electronic and vibrational couplings, it stands to reason that they should be very

sensitive to the movement of vibrational levels - as occurs during the movement

of the system-bath boundary. For this reason, in sections 3.2 and 4.4 we

consider models of homodimers and a range of electronically coupled molecules

during the course of moving the system-bath boundary through the canonical

transform.
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Figure 2.2.8: Formation of exciton states in an H-aggregate in the weak
coupling limit. Red and blue basis states have equivalent energy to those in

figure 2.2.7, demonstrating the difference in coupling strength.

2.2.2 Bath Interaction Hamiltonian

As discussed in chapter 1, an open system introduces a coupling to a wider

environment through the introduction of environment degrees of freedom.

However, when the scale of the bath is orders of magnitude larger than the

system of interest, such as in systems of interest embedded within a solvent or

wider protein structure, the question becomes, how best to model this vast

number of degrees of freedom? As discussed in section D.1.8, and D.1.6,

Stochastic EOMs are a powerful way of describing Brownian motion subject to a

stochastic forcing which is useful in the application of OQS. The bath interaction

Hamiltonian is developed by extending the classical Langevin equation, for

application in a quantum regime, through the Caldeira-Leggett model. In this

description it is assumed that the system-bath interaction is weak which allows

the bath to be modelled as an infinite assembly of harmonic oscillators,

assuming a continuous spectrum of noise143,214. Returning to a form of the total

Hamiltonian, equivalent to equation (2.1.10), we note that the Hamiltonian is

split into three contributions: the system, the bath, and their interaction,

H = HS +HB +HSB. (2.2.38)

The system-bath interaction Hamiltonian, following Feynman and Vernon

formalism from chapter 14, is a bilinear coupling between the system and bath
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coordinates,

HSB = −
∑
n,ν

gn,νxn,νBn, (2.2.39)

where n denotes the number of independent baths each containing a continuum

of harmonic modes, ν, Bn is the system coordinate, xn,ν is the bath coordinate,

and gn,ν is the associated bath coupling strength. The corresponding bath

Hamiltonian is

HB =
∑
n,ν

( p2n,ν
2mn,ν

+
1

2
mn,νω

2
n,νx

2
n,ν

)
, (2.2.40)

where the mass, momentum, and mode frequency are mn,ν , pn,ν , and ωn,ν ,

respectively. It is common to group the bath interaction Hamiltonian with the

bath Hamiltonian109,112,113,148, as they share dependence in the secondary

coordinate of interest, the bath, through

HS(Bn) + HB(xn,ν) + HSB(Bn, xn,ν) = HS(Bn) + HI(Bn, xn,ν), (2.2.41)

where

HI =
∑
n,ν

(
p2n,ν
2mn,ν

+
1

2
mn,νω

2
n,ν

(
xn,ν −

gn,νBn

mn,νω2
n,ν

)2)
, (2.2.42)

=
∑
n,ν

(
p2n,ν
2mn,ν

+
1

2
mn,νω

2
n,νx

2
n,ν − gn,νxn,νBn +

g2n,νB
2
n

2mn,νω2
n,ν

)
. (2.2.43)

The combination of the two Hamiltonians in this way introduces a third

component, a correction of the system potential, which is equivalent to the

reorganisation energy of the vibrational modes included in the system

Hamiltonian in section 2.2.1.1. This Hamiltonian correction is denoted HSc,

HSc =
∑
n,ν

g2n,ν
2mn,νω2

n,ν

B2
n =

∑
n,ν

ηnB
2
n, (2.2.44)

where ηn is the reorganisation energy of bath n. The distribution of coupling

strengths, associated with the bath modes, corresponds to a spectral distribution,

known as the spectral density function when a continuous function is used to map

the continuum profile, for each bath109,112,113

Jn(ω) = π
∑
ν

g2n,ν
2mn,νωn,ν

δ(ω − ωn,ν), (2.2.45)

where δ is the delta function. From this spectral distribution, it is possible to
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calculate the total reorganisation energy for each bath, as215

ηn =
1

π

∫ ∞
0

Jn(ω)

ω
dω. (2.2.46)

2.2.2.1 Bath Coupling Operators

The nature of the system-bath coupling introduced by the vibrational and

electronic degrees of freedom are significantly different, and correspond to

different physical processes, such that it is logical to separate their interactions

into a pair of independent baths, indexed n. When n = 1 the bath accounts for

electronic coupling and corresponds to electrostatic interactions between the

system molecules and fluctuating charges in the surrounding bath structure, for

example in protein or solvent structures91. This affects the electronic excited

states of the system such that the bath coupling operators, in the site basis, for

the electronic environment are

BS
1,M =

∑
n

|e, n⟩ ⟨e, n| , (2.2.47)

for a monomer and,

BS
1,D =

∑
nA,nB

(
|g, nA, e, nB⟩⟨g, nA, e, nB|+ |e, nA, g, nB⟩⟨e, nA, g, nB|

+ 2 |e, nA, e, nB⟩⟨e, nA, e, nB|
)
, (2.2.48)

for a dimer. These couplings contain no off-diagonal elements and subsequently

describe the impact of stochastic bath motion on the transition frequencies

between electronic states, which leads to T ∗2 pure dephasing, as discussed in

section 2.1.2.

Vibrational environment coupling, induced by a bath of phonons with an

index of 2, describes the impact of a continuum of bath modes on the system

vibrational motion. The vibrational perturbation of the system vibrational states

in this way, as would be present for a solvent environment or a large protein

molecule, leads to both dissipation and dephasing. It is important to note,

however, that within this thesis the standard form of IVR, where energy is

redistributed amongst system degrees of freedom, is more specific and is termed

vibrational relaxation to distinguish it from the specific case of loss to the bath.

Consequently, the most general case, where the phonon bath mediates energy

loss into the bath degrees of freedom is IVR. The phonon environment does

acquiesce vibrational relaxation, but the degrees of freedom to which the energy

is lost are deemed to be specifically part of the bath, not the system degrees of

freedom.
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The coupling operators for the vibrational bath, in the site basis, are

BS
2,M = Iel ⊗

∑
j

q̃j = Iel ⊗
∑
j

(
bj + b†j√

2

)
, (2.2.49)

for a monomer, where the identity operator over the electronic degrees of

freedom is Iel =
∑

α |α⟩⟨α| , α ∈ {g, e}, and

BS
2,D = BS

2,MA ⊗ IMB + IMA ⊗ BS
2,MB, (2.2.50)

for a dimer91,112,113. This introduces a bilinear coupling between the system

vibrational modes, q̃j , and the bath vibrational modes, x2,ν , as in equation

(2.2.39) and physically corresponds to longitudinal and transverse, T1 and T2

respectively, vibrational relaxation138,216. It is possible to add additional T ∗2
pure dephasing as a consequence of the phononic bath modes, but it would

require the inclusion of a square-linear coupling ∝ g2,νx2,ν q̃
2
j which is neglected

in most models. As we do not need any additional pure dephasing to be added

to our model, we neglect the square-linear coupling in equation (2.2.49).

As in section 2.2.1.1, the bath coupling operators for the phonon environment

are transformed into their respective vibronic/exciton bases through unitary

transformations,

BV
2,M = (UVS

M )†BS
2,MUVS

M , (2.2.51)

BE
2,D = (UES

D )†BS
2,DU

ES
D , (2.2.52)

where the bath coupling operators for the electronic environment, B1, are

positive diagonal operators and do not change under this transformation.

Further avenues of relaxation, such as relaxation of electronic levels, can be

incorporated through additional bath coupling operators. This example, which

corresponds to fluorescence and phosphorescence due to spontaneous photon

emission would require its own index, 3, and coupling operators193. However, as

the timescale of such luminescence is at least an order of magnitude slower than

dephasing and vibrational relaxation processes (∼ ns versus ∼ fs), which are of

particular significance to the work in this thesis, it is omitted.

2.2.2.2 Spectral Density

A spectral distribution, which contains the coupling strength and frequency

associated with each bath mode in the environment ensemble, is the discrete

form of the continuum of harmonic modes. This is approximated as a

continuous, analytical, function by tracing the maxima of each delta function

within equation (2.2.45). There is not one general form for the spectral density
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function, as bath behaviour varies dramatically with a number of parameters

such as temperature and viscosity/friction. However, it is possible for this

function to be measured experimentally114,217, and for a range of analytical

forms to be constructed, which match the physical observables, based upon a

phenomenological damping parameter, γ, which controls the friction of the

bath.

The profile of the harmonic modes control the time-dependence of the system-

bath interaction through the correlation function37,138,149,153,

L(α)
n (t) =

ℏ
π

∫ ∞
0

Jn(ω)

(
coth

(βℏω
2

)
cosωt− i sinωt

)
dω. (2.2.53)

The correlation function of system-bath interaction, which is fundamental to the

fluctuation-dissipation theorem, models the rate of decay of bath correlations

subject to dissipation and thermal fluctuation218,219. The timescale for this

decay, τc, is equivalent to the time taken for the bath to return to equilibrium

after being perturbed. As discussed in section 2.1.5 the Markovian limit is

synonymous with disparate correlation times between the system and bath,

particularly when the bath correlation time is very short, and the non-Markovian

limit is when the correlation times are of the same order and allow the

formation of memory effects. When the number of bath modes is low and the

spectral density is effectively discretised, the regular oscillation of the bath acts

to restore the coherence of the reduced system which is associated with the

time, τR. When the spectral density is smooth and continuous, due to an infinite

limit of modes within the ensemble, the recurrence time increases until it is

significantly larger than the system relaxation timescale. In such a limit, the

restoration timescale can be safely neglected unless the spectral density features

non-standard coupling between specific modes, such as for highly structured

spectral densities, resulting in the persistence of periodic motion148.

Highly structured spectral densities are often found in non-standard

experimental parameter regimes such as systems at high temperatures or

strongly coupled to external fields220–222, but typically, at room temperature the

spectral density for biological and chemical systems is Ohmic:

Jn(ω) = ηnω exp
(
− ω

ωc

)
, (2.2.54)

dependent on the coupling strength, ηn, and the cutoff frequency, ωc
91,148,223.

This can be written more generally as,

Jn(ω) = ηn
ωs

ωs−1
c

exp
(
− ω

ωc

)
, (2.2.55)

where s is a unitless parameter ∈ R+ which shifts the focus of the bosonic mode
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Figure 2.2.9: Spectral densities for a range of s values, while ηn is set to unity,
ranging from sub-Ohmic in blue to Ohmic in gray, and super-Ohmic in red. In
this depiction, ηn = 1 cm−1, ωc = 2 cm−1, and s is between 0 and 4, increasing

in increments of 0.2. The mutual point of intersection for all the spectral
densities is at ωc.

coupling. When s = 1 this is the Ohmic spectral density, which is linear for low

frequencies and decays exponentially for high frequencies. When s < 1 or s > 1

this is termed sub- or super-Ohmic respectively, and they focus heavily on either

low or high frequencies relative to ωc. A range of spectral densities for different

values of s are depicted in figure 2.2.9. Sub-Ohmic spectral densities are applied

in solid-state dynamics and super-Ohmic spectral densities find application in

supersensitive quantum sensors112,185,215,224–226. Ohmic spectral densities are so

commonplace because, while they are predominantly Markovian, for large

couplings, non-constant correlation decay rate and associated non-Markovian

behaviour become evident138,227.

A spectral function which is linear for low frequencies and decays rapidly for

higher frequencies is not restricted to this form of analytical expression. It is

possible to further generalise the Ohmic form of the spectral density to

Jn(ω) = ηnωjc(ω), (2.2.56)

where

lim
ω→0

jc(ω) = 1, (2.2.57)

lim
ω→∞

jc(ω) = 0, (2.2.58)
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because open quantum system dynamics tend to be characterised by low

frequency environment mode interactions. The Lorentz-Drude form of the

Ohmic spectral density, which is also particularly commonly used, satisfies these

criteria and takes the form

Jn(ω) = 2ηn
ωΛn

ω2 + Λ2
n

. (2.2.59)

This form of the spectral density focuses coupling strength at lower frequency

modes, with a peak at ω = Λn, where Λ−1n = τ
(n)
c

113,219,228. The system bath

coupling strength is temperature dependent and takes the form37,

ηn =
ℏ∆2

n

2kBT
, (2.2.60)

where kB is the Boltzmann constant, and T is the temperature, but is constant

across all n within this thesis. This is because all baths are part of a total system

at a given temperaturec. As discussed in section 2.2.2.1, electrostatic

interactions between the system and environment result in perturbation of the

electronic excited state PES, termed dephasing. This manifests as a fluctuation

of the transition frequency by ∆n, around its equilibrium value, over time,

ωeg(t) = ωeg + δω(t), (2.2.61)

shown in figure 2.2.10.

The autocorrelation function of the perturbed transition frequency, which is

equivalent to the correlation function for system-bath interaction, can be

calculated through

L(α)
n (t) = ⟨δωn(t)δωn(0)⟩ = ∆2

n exp
(
− t

τ
(n)
c

)
, (2.2.62)

assuming Gaussian-Markov statistics, involving a normal distribution of

frequencies and a short correlation time37,138,147. Additional discussion of this

form of the correlation function is found in section 2.2.2.2.1. These

approximations result in the formation of an overdamped bath where the relative

sizes of ∆n and τ (n)c produce the homogeneous and inhomogeneous limits, which

represent the thermally averaged and static limits of the environment. When the

correlation time of the environment is very short with respect to the system

timescale then the system-bath interaction will be constant leading to

homogeneous broadening on 2DES proportional to T ∗2 . In contrast, when the

environment timescale is a similar order of magnitude to that of the system,

then individual sub-environments, or localised inhomogeneities, will appear and

the 2DES will broaden into a normal distribution corresponding to delta
cIt is possible to construct models with individual baths at differing temperatures, but these

would constitute separate closed sections of the system with respect to each other.
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Figure 2.2.10: Modulation of the fundamental transition frequency of the
system, ωeg, as a result of coupling to the bath. The amplitude of the

fluctuations is measured by ∆n for the nth bath, with the associated correlation
time τ (n)c = Λ−1n .

Figure 2.2.11: A depiction of homogeneous and inhomogeneous broadening of
an arbitrary peak within a linear spectrum, dependent on the dephasing T ∗2 and

the range of transition frequencies of the ensemble, respectively.
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functions at each transition frequency present in the ensemble229. These

concepts are depicted in figures 2.2.10 and 2.2.11 and discussed at length in the

context of the results in chapter 3.1. Application of an overdamped spectral

density to a system is typically used to introduce an inhomogeneity in the

system-bath interactions across the total system138,157,230.

Alternatively, the spectral density can be highly structured and contain

explicit dependence on certain bath modes, which are particularly strongly

coupled, and which are weakly damped. This kind of spectral density is referred

to as underdamped, in reference to the weakly damped modes, and are modelled

by underdamped Brownian oscillators of the form37,153,

Jn(ω) =
2ηnγnω

2
0nω

(ω2
0n − ω2)2 + (γnω)2

. (2.2.63)

This involves a change of variables, termed a canonical transformation, which

subsumes a minor oscillatory mode in coordinates independent of the

environment into the environment degrees of freedom. In this instance the

mode is a strongly coupled system mode, ω0, which is itself coupled to a

Lorentz-Drude bath, and is subsumed into the spectral density138,164,219. The

relevance of such a transformation is that it preserves the form of Hamilton’s

equations, and by extension the Euler-Lagrange equation, during the change of

coordinates. The Euler-Lagrange equations are fundamental to variational

calculus and EOMs for systems where the aim is to minimise or maximise a

functional, such as in open quantum systems. This type of invariance is also

discussed in section D.1 and 2.5.4.1.2. The canonical transform, which is the

fundamental mediator of system-bath boundary movement, is explored in depth

in the analysis of spectral lineshape, 3.1, the detailed analysis of quantum

information 3.2, 3.3, and quantum correlations 4.3 during the course of

boundary movement.

An underdamped spectral density has a sharp peak at the subsumed mode

frequency, ω0, which has a small magnitude of broadening due to the damping

parameter, γ. An example underdamped spectral density, and its associated

correlation function, are shown in figure 2.2.12 b) and a). In the limit of zero

damping the full-width-at-half-maximum (FWHM) parameter, 2
√
2ln2 · σω,

tends to zero and b) becomes a delta function for an entirely undamped
oscillator. In this limit, the decay of the correlation function also vanishes,

leaving a pure oscillation in a).

The formal definition of underdamped bath motion is that the bath friction be

much smaller than the subsumed mode frequency, γ ≪ ω0, producing prominent

oscillations in the correlation function. On increasing the damping parameter

there is a hybrid regime in which the spectral density behaves as neither limiting
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Figure 2.2.12: a) correlation function L(α)
U (t) and the corresponding spectral

density b) Underdamped spectral density, JU(ω). c) Voigt profile correlation
function, Lα

VP(t), and the associated d) intermediate damping spectral density,
γ ∼ ω0, termed JVP(ω). e) Overdamped correlation function, L(α)

O (t), and the
associated spectral density, f) overdamped spectral density, JO(ω). Within d) VP

denotes Voigt Profile, Lor Lorentzian, and Gau Gaussian.

case, but rather as a convolution of the two, γ ∼ ω0. The spectral density,

therefore, becomes the convolution of a Gaussian and Lorentzian which is

known as a Voigt profile and the correlation function both decays and oscillates.

This non-limiting regime is depicted in figure 2.2.12 c) and d), and discussed

again in section F. When the damping is significantly larger, so that it is in the

overdamped limit, then γ ≫ ω0 and the oscillating component of the correlation

function vanishes returning the system to Lorentz-Drude form where,

Λn =
ω2
n0

γn
= (τ (n)c )−1, (2.2.64)

for the nth bath and where ωn0 is the subsumed mode for this bath. The

overdamped limit is shown in figure 2.2.12 e) and f) and presents the decay

from equation (2.2.62).

The power of the canonical transform, and the reason it is so useful in an OQS

setting, is that it offers a way of simplifying the Hamiltonian complexity without

introducing further approximations or assumptionsd. Subsuming a fundamental

dStrictly, dimer systems may need to have a corrected energy to account for vibronic quenching.
However, this is neither an approximation or assumption, but a choice which is corrected for.
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vibration reduces the system degrees of freedom as underdamped modes

maintain a description of the damped vibrational motion without the need to

include the vibrational degrees of freedom explicitly in the Hamiltonian.

However, in a computational setting where the total underdamped spectral

density, Jtot, is split into a pair of components, JO (equivalent to equation

(2.2.59)) to control the system-bath inhomogeneity and bath mediated

dephasing, and JU (equivalent to equation (2.2.63)) to introduce the strongly

coupled mode, additional damping is unavoidable. This is as a consequence of

the phenomenological damping parameter, which is strictly non-zero to ensure

convergence of standard hierarchies, for two baths being intrinsically larger

than that of a single bath. It is currently unclear whether the mathematical

equivalence of the underlying theory extends to computational models under

the influence of many other approximations and assumptions, especially in the

presence of a canonical source of damping2,231. In section 3.2 we perform a

detailed study of the system-bath boundary movement and qualitatively

ascertain the level of equivalence. Subsequently, we study highly sensitive

quantum behaviours, of coherence and memory effects, under the influence of a

movable system bath boundary in sections 3.2, 3.3 and 4.3. Finally, we quantify

the mathematical equivalence through a study of the canonical damping in the

zero limiting case, in chapter 5.

2.2.2.2.1 Cumulant Expansion

Typically, the system-bath interaction correlation function, (2.2.53), is generated

through the cumulant expansion technique. This is an expansion, similar to a

perturbative expansion, which applies to statistical descriptions of random

variables, making it particularly useful when dealing with an equilibrium value

perturbed by thermal fluctuation37,232,233. Physically, this corresponds to a

mapping of the system of interest onto a collection of oscillatory modes,

modelled as harmonic oscillators37. For a statistical variable, xst, the average of

its exponential can be written as an expansion in terms of moments, i.e. physical

observables multiplied by a distance raised to a power,

⟨exp(ikxst)⟩ =
∞∑
j

(ik)j

j!
⟨xjst⟩ . (2.2.65)

Which is equivalent to an expression in terms of cumulants,

⟨exp(ikxst)⟩ = exp

( ∞∑
j

(ik)j

j!
cj(xst)

)
, (2.2.66)

where cj(xst) is the jth cumulant function. Cumulants are equivalent to moments

such that the first three cumulants represent the mean, variance, and skewness
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of the random variable:

c1(xst) = ⟨xst⟩ , (2.2.67)

c2(xst) = ⟨x2st⟩ − ⟨xst⟩2 , (2.2.68)

c3(xst) = ⟨x3st⟩ − 3 ⟨xst⟩ ⟨x2st⟩+ 2 ⟨xst⟩3 . (2.2.69)

The reason behind using this approach is that, for random variables which obey

Gaussian statistics (a normal distribution), all cumulants with an index n > 2

vanish, and this technique converges particularly rapidly. This makes this

technique especially useful for open systems with an exponential function basis

in which convergence is paramount.

In particular, for the time-ordered correlation function, which is an average

over a fluctuating trajectory,

L(α)
n (t) =

〈
exp←

(
− i

∫ t

0
δωn(t

′) dt′
)〉

, (2.2.70)

≈ exp(c1,n(t) + c2,n(t)), (2.2.71)

with

c1,n(t) = −i
∫ t

0
⟨ωn(t

′)⟩ dt′, (2.2.72)

c2,n(t) = −
∫ t

0

∫ τ

0
⟨δωn(τ)δωn(τ

′)⟩ dτ ′ dτ. (2.2.73)

This allows the correlation function to be expressed in terms of both the spectral

density function, and the kernels of fluctuation and dissipation.

2.2.3 Field Interaction Hamiltonian

2.2.3.1 Optical Spectroscopy

Introduction of a laser field into the OQS is achieved via a semi-classical

approximation. The external electromagnetic field is described by a time

dependent system-field interaction Hamiltonian 37,40,

HSF(t) = −µ · EI(r, t), (2.2.74)

which produces a coupling between the incident electric field and the transition

dipole moment operator, µ, of the system. The electric field for m pulses is
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dependent on space, r, and time, t, through

EI(r, t) =
∑
m

êmχmE
′(t− τm)

(
exp(−iωmt+ ikm · r) + exp(iωmt− ikm · r)

)
,

(2.2.75)

with circular frequency, ωm = 2πνm, wavevector, km, of magnitude |km| = ω
c ,

and field strength χm, in V m−1 234–236. The unit vector, êm, defines the

polarisation of each pulse237–239. The field envelope, E′(t − τm), is assumed to

be Gaussian and centred at τm,

E′(t− τm) = exp
(
− (t− τm)2

2ς2

)
, (2.2.76)

with a full-width-at-half-maximum (FWHM) τ1/2 = 2
√
2 ln 2 · ς in the time

domain, which is equivalent to τ (ν)1/2 = 4 ln 2
πcτ1/2

in the frequency domain. When the

length of the temporal pulse is shorter, the spectrum of frequencies becomes

broader. Therefore, in the limit of instantaneous pulses, known as the impulsive

limit, the field envelope is a delta function and the laser spectrum is flat, and

white, incorporating all frequencies240,241.

2.2.3.2 Quantum Correlations

In section 4.1, a study of the fundamentals of optical correlation within a

molecular environment3, a simplified form of the field interaction Hamiltonian

was chosen in order to restrict excitation to fundamental transitions only. This

was achieved by driving with a continuous laser field at a single frequency, i.e.

in the limit of infinitesimal laser breadth, denoted (CW),

E(CW)
I = ê

(
χE′0 exp(−iωegt+ ik · r) + χE′0 exp(iωegt− ik · r)

)
, (2.2.77)

which is resonant with the fundamental electronic transition of the system, ωeg,

and where the envelope function, E′(t− τ) = E′0, is a constant.

2.2.3.3 Dipole Moment Operator

Transitions between electronic states of the system occur due to interaction

between the transition dipole moment242 and the electric field orientation

vector. The transition electric dipole moment, which depends on the initial and

final separation of the eigenstates, d̂fi, i and f denote initial and final, and the

magnitude, µ, is

µfi = µfid̂fi. (2.2.78)

The operator form of the dipole moment, µ, is a combination of the vector

dipole moment, µfi, and a matrix component of the Hilbert space of the system,
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which is determined by the selection rules. This operator contains both diagonal

and off-diagonal elements which correspond to descriptions of permanent

dipoles associated with the system states, caused by an uneven distribution of

electron density, and associated transition dipole moments, respectively. In this

work we enforce the dipole approximation, which assumes that each dipole is of

infinitesimal width: a point dipole, valid when the wavelength of the

electromagnetic radiation is larger than the size of the quantum system, such

that it is perceived as spatially uniform, subject to an oscillating field37,243. The

models within this thesis only consider the impact of transition dipoles, there

are no permanent dipoles introduced. Considering only electronic states, a

monomer with an allowed transition between the ground and excited states has

the dipole moment operator,

µSel,M = µeg

(
|g⟩⟨e|+ |e⟩⟨g|

)
. (2.2.79)

For a vibronic monomer, which also contains vibrational levels, this must be

expanded using the completeness relation for the vibrational degrees of

freedom, Ivib =
∑

n |n⟩⟨n|, such that, in the site basis68,

µSM = µeg

(
|g⟩⟨e| ⊗

∑
n

|n⟩⟨n|+ |e⟩⟨g| ⊗
∑
n

|n⟩⟨n|

)
, (2.2.80)

= µeg

∑
n

(
|g, n⟩⟨e, n|+ |e, n⟩⟨g, n|

)
. (2.2.81)

Equivalent vibrational levels of the electronic states are connected through non-

zero off-diagonal elements which describe purely electronic transitions.

This operator is transformed into the vibronic basis in a fashion identical to

that proposed in section 2.2.1.1, via

µVM = (UVS
M )†µSMUVS

M . (2.2.82)

The vibronic transition dipole moment operator contains an increased number

of non-zero off-diagonal elements, the number of which is further increased by

larger displacement of the excited state potential energy surface which leads to

non-zero wavefunction overlap for a greater range of transitions, including

vibronic overtones and hot bands. The dipole moment operator for a vibronic

dimer is created by extending the Hilbert space to include two monomer units

as,

µSD = µSMA ⊗ IMB + IMA ⊗ µSMB, (2.2.83)

and can subsequently be transformed into the exciton basis via,

µED = (UES
D )†µSDU

ES
D . (2.2.84)
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Figure 2.3.1: Schematic depicting, a) A beam of antibunched bosons, b) A
coherent/random boson beam, c) A bunched boson beam.

The electronic coupling is determined by a combination of the displacement and

relative orientation of the two monomer dipole moments, as discussed in section

2.2.1.2, and can be exploited by application of polarised pulses in order to

isolate specific vibronic signatures244–246. However, the formation of aggregates

discussed in section 4.4 is restricted to a collinear arrangement of monomer

dipole moments.

2.3 Two-time Bosonic Correlation Functions

It is possible to construct a measure of the level of mutual similarity between

system observables, based on physical system and field parameters, known as

correlation. Functions of the correlation for beams of bosons, in analogy with

expansions, pertain to physical properties based on their order. First order

correlation functions correspond to measurement of bosonic field amplitude,

and second order correspond to field intensity. Correlation is of interest in OQSs

because it allows quantum effects to be probed dynamically247,248. The classical

behaviour of boson bunching is defined as the detection probability being more

closely bunched in time than that of a coherent/random beam. This occurs

when thermal effects are dominant, and detection events constructively

interfere resulting in an amplified variance and super-Poissonian statistics
249,250. The quantum behaviour of boson antibunching is the contrasting

definition where the detection probability is more separated than in a

coherent/random beam in time. This behaviour is an expression of

sub-Poissonian statistics, and by definition, this process is quantum because

sub-Poissonian statistics invalidate the Cauchy-Schwarz inequality - which is

possible only for non-classical probability distributions249,250. An idealised

schematic of this is shown in figure 2.3.1 where the detection probability for a

beam of arbitrary particles is presented 10,251.

In this thesis we consider correlating two photon emission events, or pairs of
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emission events, at two times. Upon interaction with an incident field of the

form, EI (2.2.77), the system will scatter the radiation resulting in Esc which has

left and right moving components22,252,

E± =
a†(t) exp(±ik · r)

ϵ0
ê. (2.3.1)

Transition probabilities, such as a ground to excited state transition, can then be

described in terms of the field through a braket,

P = | ⟨g|E+ |e⟩ |2. (2.3.2)

For mixed states, this probability is written in terms of the ensemble via the

density matrix,

P = Tr
[
ρE−(r, t)E+(r, t)

]
. (2.3.3)

In direct analogy, a similar statistical correlation of operators at different times

and positional coordinates can be created in order to obtain the correlations

between pairs of amplitudes, or intensities.

G(1)(t, τ) = ⟨E−(t)E+(t+ τ)⟩ , (2.3.4)

= I0 ⟨c(t)c†(t+ τ)⟩ , (2.3.5)

G(2)(t, τ) = ⟨E−(t)E−(t+ τ)E+(t+ τ)E+(t)⟩ , (2.3.6)

= I20 ⟨c1(t)c2(t+ τ)c†2(t+ τ)c†1(t)⟩ , (2.3.7)

where I0 and I20 are the amplitude and intensity of the radiation respectively, and

c(†), c(†)1 , and c
(†)
2 are the annihilation(creation) operators for arbitrary bosons.

These forms of the correlation are normalised in order to generate conditional

probabilities,

g(1)(t, τ) =
⟨c(t)c†(t+ τ)⟩
⟨c(t)c†(t)⟩

, (2.3.8)

g(2)(t, τ) =
⟨c1(t)c2(t+ τ)c†2(t+ τ)c†1(t)⟩

⟨c1(t)c2(t)c†2(t)c
†
1(t)⟩

. (2.3.9)

When the operators are chosen such that c1,2 = a = µeg |g⟩⟨e|, the photon

annihilation operator, we obtain the photon-photon correlation function g
(2)
aa ,

which reflects the joint probability of a photon being emitted at time t+ τ given

that a photon was emitted at time t. By appropriately choosing c1,2 from the

photon and phonon operators a and b, respectively, we can correspondingly

construct the phonon-phonon correlation function g
(2)
bb and, notably, the

photon-phonon and phonon-photon cross-correlation functions g(2)ab and g(2)ba in a

manner similar to refs. 248,253–256. Hence, the formal definitions of bunching
and antibunching are 257: g

(2)
c1c2(t, τ = 0) < g

(2)
c1c2(t, τ > 0) and
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g
(2)
c1c2(t, τ = 0) > g

(2)
c1c2(t, τ > 0), respectively. The former implies that the

probability of a second emission event immediately following a first is

suppressed. In contrast, the latter occurs when the probability of simultaneous

emission is enhanced. Note that this definition encompasses not only

photon-photon or phonon-phonon correlation, but is also generalised253,254 to

include cross-correlations where the two emission events consist of one photon

and one phonon.

Computational calculation of products of operators at two times is non-trivial

and requires the application of the quantum regression theorem. This assumption

dictates that a description of evolution as a single-point function can be used to

define the evolution of two-point or multi-point correlations258. Additionally,

a practical physical assumption relating to the magnitude of normalisation is

introduced, such that all emitted photons and phonons are detected, regardless

of scattering directions, e.g., by imagining the system enclosed by a detector
10,259–262. Subsequently, correlations are computed as,

g(1)c (t, τ) =
Tr
(
c exp(Lτ)(c†)

)
Tr(cρc†)

, (2.3.10)

g(2)c1c2(t, τ) =
Tr
(
c†1c1 exp(Lτ)(c2ρc

†
2)
)

Tr(c1ρc
†
1)Tr(c2ρc

†
2)

, (2.3.11)

where ρ = ρ(t) is the density matrix at time t, L is the Liouvillian operator

for the time evolution of the system and c = {c1, c2}. Care must be taken to

preserve continuity of the driving field during this calculation, or a rotating wave

approximation (RWA) must be employed so that the frame of reference is tied to

the driving field262. All the models in this thesis neglect the RWA and continuity

of the driving field is maintained manually.

2.3.1 Non-normalised Correlation

In systems with a particularly small mean boson number, the denominator of the

mth order correlation function can tend towards zero faster than the numerator.

Such a scenario demonstrates that the variance is changing slower than the mean.

When this happens normalising the correlation function will lead the amplitude

to diverge. Therefore, in cases where the mean boson number is particularly low

it can make more sense to present the non-normalised correlation function. The

associated second order non-normalised correlation function is defined as

G(2)
c1c2(t, τ) = Tr

(
c†1c2 exp(Lτ)(c1ρc

†
2)
)
, (2.3.12)

where ρ = ρ(t) and c1 and c2 are arbitrary bosonic creation operators.
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2.3.1.1 Applications of Correlation

2.3.1.1.1 Interferometry

Intensity, g(2) and amplitude, g(1), measurements are crucial in interferometry

devices. The seminal study of optical correlation by Hanbury, Brown and Twiss6

in which intensity interferometry was employed to measure the radius of a star

has lead to a broad interest in statistical correlation. Applications arose in

high-precision imaging, calculation of stellar distances, information processing,

boson bunching leading to Bose-Einstein condensation, and in open quantum

system dynamics, due to its phase sensitivity which allows for measurements

across a number of spatial orders of magnitude. All such applications exploit the

nature of quantum interference to extract information regarding either the body

scattering the coherent sources, or the distance between the sources, from the

level of interference of the superimposed waves.

By correlating a pair of beams, which are allowed to interfere, a measure of

fringe visibility can be generated. If there is a phase difference between the

beams of less than π during the period of observation, then clear fringe patterns

emerge as a result of constructive and destructive interference. If this phase

difference is greater than the critical value then no interference pattern will be

observed upon interaction of these beams. By tuning the distance over which

each beam travels, or the distance between slits inducing interference, the phase

difference between the two beams can be controlled. This allows for prediction

of physical properties based on the disappearance of fringe patterns28.

A modern example of these principles is present in a Michelson type

interferometer. This consists of a single coherent source of photons, a beam

splitter, a pair of mirrors and a photoelectric detector. The coherent source is

emitted and split into a pair of beams, equivalent to a g(1) correlation at a pair

of times t and τ , which are reflected by a pair of mirrors. The reflected beams

recombine at the photoelectric detector, behind the splitter, and produce an

interference based on their relative phase difference due to the differing path

lengths travelled to their respective mirrors. Implementation of different length

paths for the light, or intermediate materials to generate light-matter

interactions lead to a range of applications. Figure 2.3.2, shows a simple

schematic of a Michelson type interferometer which utilises splitting of a single

photon beam.

A model of a beam splitting experiment, for application in interferometry, is

considered in section 4.3, and the influence of system-bath boundary on these

correlations is considered.
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Laser source

Detector

Mirrors

Figure 2.3.2: Schematic of a Michelson Interferometer, containing a laser
source, detector, and three mirrors. The arrows show the direction of travel of

the laser beam.

2.3.1.1.2 Correlation in Molecular Systems

Molecular systems which continuously emit bosons, for example the emission of

photons during fluorescence, demonstrate quantum behaviour in a manner

similar to quantum information. In an experiment, or model, this is measured

through the probability of bosonic emission whereby antibunching leads to a

suppression of secondary emission immediately after a first257. As discussed in

section 2.3, an mth order correlation function corresponds to the correlation of

m bosons at a given time leading to g(1) measures of excited state population,

g(2) measures of quantum correlation, and g(m) measures of mth order

coherence. Second order correlation functions are a powerful statistical tool

which have been applied to a range of bosonic systems including: photons in

optical cavities15–19, photons in quantum emitters which behave as

superatoms22,23, phonons in opto-mechanical263,264 and spin-mechanical62,265

systems, and magnons introducing photon-magnon blockade in ferrimagnetic

materials253. Higher order blockade effects and other complex dynamic

behaviours are accessible through higher order correlation functions26, and can

be exploited for high-precision imaging27, however the work in this thesis

focuses on first and second order correlations with m = {1, 2}.
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2.4 Theory of Spectroscopy

In addition to correlation measurements of quantum behaviour, it is possible to

create two-dimensional spectra which demonstrate changes related to quantum

information which was discussed in section 2.1.5. Starting from a description of

the macroscopic polarisation, this section describes the response function

formalism for linear and 2D photon echo spectroscopy.

2.4.1 Polarisation

The oscillating electric field of the incident laser, is coupled to the transition

dipole moment of the system of interest following the system-field interaction

Hamiltonian in equation (2.2.74). During the course of an energy conserving

absorption of a photon from the laser field by the system, the molecule is

transferred from its ground state to an excited state as the photon is annihilated.

For a specific electronic transition, this occurs when the frequency of the

oscillating field resonates with the transition frequency between the two

quantised levels of the electronic structure which are connected with a non-zero

transition moment. When the field is detuned from the resonant frequency the

transition-dipole moment tends to zero as the transition becomes forbidden. As

the laser spectrum has a finite width, several resonant transitions occur

simultaneously across an ensemble, creating a wavepacket involving the

superposition of multiple such exited states, each with a distribution of

frequencies due to the stochastic bath interactions. When each of the molecules

within an ensemble are oscillating there is the possibility for them to be in or

out of phase with each other. In-phase oscillations create a non-equilibrium

charge distribution which persists even after the laser field is deactivated, which

is termed the macroscopic polarisation38. In contrast, out-of-phase contributions

do not generate a charge distribution and correspond to the equilibrium state of

the system. The macroscopic polarisation produced during a light-matter

interaction is the physical observable which this model aims to replicate230. Due

to the stochastic interactions with the environment, each molecule within the

ensemble experiences a different local environment. The impact of this is that,

after interaction with the electric field, the induced polarisation rapidly

dephases to the equilibrium distribution38.

As a consequence of the semi-classical approximation which governs the

electric field, the macroscopic polarisation is calculated as the expectation value

of the dipole moment operator and density matrix as a reflection of Maxwell’s

equations37,38,266,

P = Tr(µρ) = ⟨µ⟩ . (2.4.1)
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This is then expanded as a power series in terms of the field interactions which,

after neglecting higher order coupling terms, results in a first order perturbative

calculation of the polarisation,

P = P (1) + P (2) + P (3) + . . . , (2.4.2)

where P (1) is the linear polarisation. In order for this perturbation to be valid, the

electric field must be sufficiently strong that it can be assumed to be classical, but

simultaneously weak enough that the eigenstates of the system are unaffected by

the interaction. This requires that HSF(t) ≪ HS.

By temporarily neglecting the spatial dependence of the electric field, which

additionally transforms each component into a scalar, (where the spatial

dependence corresponds to the orientation of the m input fields267) the

polarisation after the interaction can be written as40,111,241

P (m)(t) =

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

EI(t− tm)EI(t− tm − tm−1) · . . .

× EI(t− tm − . . .− t1)R
(m)(tm, . . . , t1) dt1 . . . dtm−1 dtm, (2.4.3)

the convolution of each pulse with the molecular response function38

R(m)(tm, . . . , t1) =

−
(
− i

ℏ

)m
⟨µ(tm + . . .+ t1)[µ(tm−1 + . . .+ t1), . . . [µ(0), ρS(−∞)] . . .]⟩ ,

(2.4.4)

which contains information about the system structure and its interaction with

the environment. Additionally, ρS(−∞) corresponds to the reduced density

matrix of the system at its equilibrium configuration before interaction with the

electric fields and tm are time intervals between the field interactions.

Physically, the molecular response function represents free system evolution in

the absence of a field interaction, such as between pulses, which corresponds to

a commutator of the interaction picture dipole moment operator,

µ(t) = V(t, t0)µ, (2.4.5)

which can be written explicitly as

µ(t) = exp
( i
ℏ
HS(t− t0)

)
µ exp

(
− i

ℏ
HS(t− t0)

)
, (2.4.6)

when system-bath interactions are negligible. Therefore, the interaction picture

dipole moment operator for a vibronic monomer in the site basis, equation
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(2.2.80), is,

µSM(t) = µeg

(
exp(−iωegt) |g⟩⟨e|+ exp(iωegt) |e⟩⟨g|

)
⊗ Ivib, (2.4.7)

where ωeg = (Ee − Eg)/ℏ is the transition frequency between the ground and

excited electronic state and Ivib is the identity operator over the nuclear degrees

of freedom of the system.

Based on symmetry only odd numbers of interaction, with a corresponding odd

power, result in a non-zero polarisation for isotropic media. For m = 1, and 3

the result is first and third order response functions corresponding to linear and

2D photon echo spectroscopy37,38. Fifth and higher order response functions are

presented in the literature, but are not discussed within this thesis40,138.

2.4.2 First Order Linear Spectroscopy

First order perturbations of the field interactions within the polarisation, when

m = 1, result in linear spectroscopy. This spectroscopy is the convolution of a

single electric field with the first order molecular response function,

corresponding to the interaction of the system with a single laser pulse,

P (1)(t) =

∫ ∞
0

EI(t− t1)R
(1)(t1) dt1, (2.4.8)

where

R(1)(t1) =
i

ℏ
⟨µ(t1)[µ(0), ρS(−∞)]⟩ , (2.4.9)

and ρS(−∞) corresponds to the equilibrium state of the system, accounting for

correlated initial conditions. This is one of many simplifying approximations

described in section 2.5, in particular this assumes the system is initially

factorisable. However, it is important to note that correlation and factorisability

are not mutually exclusive because the two are not necessary and sufficient

statements. e The series of events leading to an emission event can be gleaned

from the first order response function by reading it from right to left. First, there

is an initial interaction between the system and the electric field at t0, followed

by a waiting period of evolution before emission of light through equation

(2.4.1) at t1 138. The single commutator, denoting an interaction, within the first

order response function means that it contains two terms

R(1)(t) =
i

ℏ

(
⟨µ(t1)µ(0)ρS(−∞)⟩ − ⟨ρS(−∞)µ(0)µ(t1)⟩

)
, (2.4.10)

where, in each term, the invariance of the trace results in the two dipole

moment operators acting on different sides of the density matrix38. Each term
eCorrelation ≠⇒ not factorisable, but uncorrelated =⇒ factorisable.
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corresponds to a Liouville pathway, which describes the change in state of the

system during the course of the interaction37. This pair of orderings correspond

to two different possible intermediate coherences, which lead to the same

excitation event, during the interaction.

If only the electronic degrees of freedom are considered, in order to simplify

considerations, and starting from a purely ground state population,

ρS(−∞) = |g⟩⟨g|, then operation of the dipole moment operator with the ket

side of the density matrix generates the coherence µ(0)ρS(−∞) ∝ |e⟩⟨g|,
whereas operation from the opposite side results in ρS(−∞)µ(0) ∝ |g⟩⟨e|. Each

variation corresponds to a superposition of system states which is associated

with a particular off-diagonal element within the density matrix. In the absence

of any system-bath interactions, if this system is left to relax due to the second

operation of the dipole moment, it will return to the ground state following

⟨µ(t1)µ(0)ρS(−∞)⟩ = µ2eg exp(−iωegt1), (2.4.11)

⟨ρS(−∞)µ(0)µ(t1)⟩ = µ2eg exp(iωegt1). (2.4.12)

From equation (2.2.75) we can introduce the electric field as two complex

valued components, where we propagate the assumption that the field is

spatially independentf ,

EI = χ1E
′(t) exp(−iω1t) + χ1E

′(t) exp(iω1t), (2.4.13)

which can be simplified to38

EI = E(t) + E∗(t), (2.4.14)

where ∗ denotes the complex conjugate. Both Liouville pathways interact with

each complex part of the field such that the first order polarisation has four terms,

P (1)(t) =

∫ ∞
0

(
E(t− t1) + E∗(t− t1)

)
R(1)(t1) dt1, (2.4.15)

P (1)(t) =

∫ ∞
0

i

ℏ

(
⟨µ(t1)µ(0)ρS(−∞)⟩E(t− t1) + ⟨µ(t1)µ(0)ρS(−∞)⟩E∗(t− t1)

− ⟨ρS(−∞)µ(0)µ(t1)⟩E(t− t1)− ⟨ρS(−∞)µ(0)µ(t1)⟩E∗(t− t1)
)

dt1, (2.4.16)

f Note that the envelope function is now centred on zero.
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which upon inserting the trace gives,

P (1)(t) =
i

ℏ
µ2eg exp(−iω1t)

∫ ∞
0

E′(t− t1)×(
exp

(
i(ω1 − ωeg)t1

)
− exp

(
i(ω1 + ωeg)t1

))
dt1

+
i

ℏ
µ2eg exp(iω1t)

∫ ∞
0

E′(t− t1)×(
exp

(
− i(ω1 − ωeg)t1

)
− exp

(
− i(ω1 + ωeg)t1

))
dt1. (2.4.17)

When the laser frequency, ω1, is set so that it is in resonance with the electronic

transition of the system two of the four contributions vanish leaving two highly

oscillatory components. Application of the rotating wave approximation, which

is discussed further in appendix D, means that these contributions can be

neglected on the basis that integrating over highly oscillatory functions largely

generates components which cancel268. Subsequently, the two remaining

resonant pathways result from ⟨µ(t1)µ(0)ρS(−∞)⟩E(t − t1) and its complex

conjugate, ⟨ρS(−∞)µ(0)µ(t1)⟩E∗(t− t1), which correspond to the same physical

process38.

In an equivalent fashion, when the system-bath interaction is not discounted,

the first order response function in the Schrödinger picture takes the form

R(1)(t1) =
i

ℏ
Tr
(
µV(t1, t0)[µ, ρS(−∞)]

)
, (2.4.18)

where V(t1, t0) is the propagator of an associated EOM which defines the

evolution of the system during the period t ∈ [t0, t1].

In order to obtain a spectrum for this system the time-dependent signal of the

response function is Fourier transformed into the frequency domain. Such a

procedure results in a signal which is phase shifted by π
2
c when compared to the

macroscopic polarisation, and consequently, the signal is found on the imaginary

axis, ∝ iP (t). g This signal is reduced by the action of destructive interference,

and as such is termed absorption, consistent with the quantum mechanical

interpretation38. As discussed, the required physical information is contained

within the response function, which here is convoluted with the electric field.

This signal either needs to be deconvoluted or assumed to be in the impulsive
limit such that the envelope function is infinitesimally thin. Under such an

assumption the envelope function becomes a delta function, such that

convolution results purely in the sifting property, and the polarisation is
gAngles in radians are denoted {·}c.
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equivalent to the molecular response function given by

R̃(1)(ω) = σA(ω) =

∫ ∞
0

exp(iωt)iR(1)(t) dt. (2.4.19)

Note that restricting the trace in equation (2.4.18) to the ground electronic state

avoids duplication of the spectrum at negative frequencies. All linear spectra in

this thesis are calculated in the impulsive limit to show all allowed transitions.

2.4.3 Third Order Photon Echo Spectroscopy

2.4.3.1 Polarisation and Response Function

The next lowest order of polarisation in isotropic media is the third order

contribution which corresponds to a series of three laser pulses. In practice this

technique is a four-wave-mixing process, with the fourth wave being detection,

in which there are three phase-locked ultrafast laser pulses. It is standard for

these constituent pules to be presented to the sample in a square BOXCARS

geometry with controllable delay times such that the fourth signal is emitted in

the phase-matched direction38,39,111,269. Detection of the real and imaginary

components of the photon echo signal, which correspond to absorptive and

dispersive response, is achieved through mixing with a strong oscillating field.

This detection method, known as heterodyne detection, introduces phase

sensitivity because the product of electric field waveforms results in a pair of

new signals at the sum and difference of the waveform frequencies. This

additional waveform, which is also propagated in the phase-matched direction,

is known as the local oscillator (LO)241,242,246. The benefit of this approach over

standard homodyne detection, which measures photon echo signals directly, is

the vastly improved signal to noise ratio, coupled with the phase sensitivity37.

The third order polarisation is expressed as the convolution of three electric

fields with the third order molecular response function, R(3)(t1, t2, t3), dependent

on three waiting times t1, t2, and t3 111,270,

P
(3)
ks

(τ, T, t) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

EI(t− t1 − t2 − t3)

× EI(t− t2 − t3)EI(t− t3)R
(3)(t1, t2, t3) dt3 dt2 dt1. (2.4.20)

For a set of successive pulses, the polarisation produced is non-zero when

each of the waiting times are greater than or equal to zero111. Each of the

pulses is modelled as having a Gaussian envelope, as in equation (2.2.76),

centred on τm, m ∈ {1, 2, 3} resulting in a third order polarisation signal. Pulses

are separated by: the coherence time, ∝ |e⟩⟨g|, for the first and second pulses,
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Figure 2.4.1: Schematic depicting the three pulses generating the third order
polarisation. The associated waiting times between field envelopes and emission
of the third order polarisation, P (3)(t), in the rephasing direction are shown in

black and blue respectively.

and the population time ∝ |e⟩⟨e|, for the second and third pulses, where an echo

signal occurs for t ≥ 0 where τ3, the centre of the final pulse, is set to be zero.

Due to the breadth of each pulse the order of interaction is not fixed,

system-field interaction events can occur at any point within the envelope unless

each pulse is infinitesimally thin. In the impulsive limit, as the width of the

Gaussian pulses tends towards zero and the peak separation becomes large, the

coherence times tend towards the peak centres such that τ = t1, T = t2 and

t = t3. In this limit, the pulse order becomes fixed such that pulses occur in

ascending order, t1 < t2 < t3. All combinations of pulse interaction orders are

possible and consequently, a range of non-linear polarisation vectors are emitted

in directions dependent on the constituent wavevectors38. Subsequent isolation

of the desired component is achieved via heterodyne methods which focus the

LO along the phase-matched direction amplifying emissions from the system in

an equivalent direction.

A single interaction with each pulse where the order is t1, followed by t2 and

finally t3, results in a non-linear polarisation vector in the rephasing

ks = −k1 + k2 + k3, (2.4.21)

and non-rephasing
ks = k1 − k2 + k3, (2.4.22)

directions39,93. Permuting the first two wavevectors in either of the rephasing or

non-rephasing wavevectors allows the total waveform to be aligned with the

complementary polarisation vector237,271. Physically, this corresponds to a

negative coherence time, τ , which swaps the arrival order of the pulses, and

allows both resultant polarisations to be measured in a single experiment by
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simply swapping the pulse order.

The total third order molecular response function38

R(3)(t3, t2, t1) = − i

ℏ3
⟨µ(t3 + t2 + t1)[µ(t2 + t1), [µ(t1), [µ(t0), ρS(−∞)]]]⟩ ,

(2.4.23)

= − i

ℏ3
⟨µ3[µ2, [µ1, [µ0, ρS(−∞)]]]⟩ , (2.4.24)

is also read from right to left, just like equation (2.4.9). The corresponding

series of interactions are an instantaneous interaction of the first field with the

equilibrium state, follow by a period of free evolution, followed by the second

and then third pulse interactions and their respective periods of free evolution,

before the non-linear polarisation is emitted as the macroscopic polarisation

signal following equation (2.4.1). An additional notational shorthand has been

employed in (2.4.23) whereby the subscript of each transition dipole moment

operator denotes the final interval involved in that pulse interaction:

µ3 =⇒ t3 + t2 + t1, etc. Just as for the linear polarisation, the commutator can

be expanded to determine Liouville pathway contributions. In this instance the

commutators simplify to four complex conjugate pairs,

R(3)(t3, t2, t1) = − i

ℏ3

(
⟨µ3µ0ρS(−∞)µ1µ2⟩ − ⟨µ2µ1ρS(−∞)µ0µ3⟩

+ ⟨µ3µ1ρS(−∞)µ0µ2⟩ − ⟨µ2µ0ρS(−∞)µ1µ3⟩

+ ⟨µ3µ2ρS(−∞)µ0µ1⟩ − ⟨µ1µ0ρS(−∞)µ2µ3⟩

+ ⟨µ3µ2µ1µ0ρS(−∞)⟩ − ⟨ρS(−∞)⟩µ0µ1µ2µ3

)
, (2.4.25)

Under the assumption that the final pulse, µ3, operates on the ket (left) side of

the density matrix, this process corresponds to four Liouville pathways which,

when labelled with 2DES convention, are

R(3)(t3, t2, t1) = R1 +R∗1 +R2 +R∗2 +R3 +R∗3 +R4 +R∗4, (2.4.26)

where

R1 = ⟨µ3µ0ρS(−∞)µ1µ2⟩ , R∗1 = ⟨µ2µ1ρS(−∞)µ0µ3⟩ , (2.4.27)

R2 = ⟨µ3µ1ρS(−∞)µ0µ2⟩ , R∗2 = ⟨µ2µ0ρS(−∞)µ1µ3⟩ , (2.4.28)

R3 = ⟨µ3µ2ρS(−∞)µ0µ1⟩ , R∗3 = ⟨µ1µ0ρS(−∞)µ2µ3⟩ , (2.4.29)

R4 = ⟨µ3µ2µ1µ0ρS(−∞)⟩ , R∗4 = ⟨ρS(−∞)µ0µ1µ2µ3⟩ . (2.4.30)

Analogously the total electric field, after factorisation of the vector and spatial

components, can be expanded into three complex pairs of the time dependent
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envelope function from equation (2.4.14), resulting in

EI = E1(t) + E∗1(t) + E2(t) + E∗2(t) + E3(t) + E∗3(t). (2.4.31)

There are Nm
E NLP possible permutations of Feynman diagrams which depict

these Liouville pathways, where NE is the number of electric field contributions,

m the number of pulses, and NLP is the number of Liouville pathways. With six

components contained within the electric field and four Liouville pathways,

NE = 6, m = 3, NLP = 4, such that the total number of permutations is 864.

This number can be reduced by assuming non-overlapping pulses such that the

time-ordering is fixed with interactions occurring in ascending order: µ0 due to

E1, µ1 due to E2, and µ2 due to E3. This reduces NE to 2 and the total number

of permutations to 32272. Additionally, the rotating wave approximation can be

applied to the highly oscillatory components which further reduces the total

number of pathways to four. Each pathway describes resonant interactions due

to one component, Rx with x ∈ {1, 2, . . . , NLP}, of the total response function,

R(3) 37,38.

Each of the Liouville pathways can be classified as rephasing or

non-rephasing, subject to equations (2.4.21) and (2.4.22), based on the

sequence of field interactions. The order of the pulses, and whether the

intermediate state at time t2 before emission of the final signal is a ground or

excited state population, dictates the physical process each Feynman pathway

depicts. Ground state populations are present during the waiting time t2 and

correspond to a ground state bleach. Excited state populations present at t2,

correspond to stimulated emission.

Pathways which are termed rephasing exist in oppposite coherence states

during the first and final waiting times such that an inhomogeneous distribution

of frequencies which becomes out of phase over some period in the coherence,

will return to being in phase when placed into the opposite coherence for the

same duration. This results in a revival of the polarisation at τ = t due to a

photon echo, and is hence named rephasing. Those pathways which are labelled

as non-rephasing exist in the same, |e⟩⟨g|, coherence during both t1 and t3

waiting times such that the inhomogeneous distribution moves further out of

phase.

Systems which have additional excited states, beyond those of a simple two

level electronic system, introduce extra terms which survive the rotating wave

approximation. These extra states, due to a second excited state |f⟩, are

regularly utilised in 2D infrared spectroscopy (2DIR) because they are able to

induce transitions between vibrational levels with infrared frequencies rather

than between electronic states with UV/visible frequencies. These processes,

termed excited state absorption, start from the first excited state population
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during the t2 waiting time, but then enter a coherence in the t1 waiting time.

The rephasing pathway exists as |g⟩⟨e| at t1 followed by double excitation to the

coherence |f⟩⟨e| in the waiting time t3. In contrast, the non-rephasing pathway

exists in the coherence |e⟩⟨g| at t1 and is impacted by a pair of excitation events

resulting in |f⟩⟨e| at t3. Importantly, vibrational states always have an accessible

f state, whereas electronic states do not, so ESA is essential in 2DIR. A full

description of the Liouville pathways and their corresponding Feynman

diagrams can be found in the work of D. Green173, but is beyond the scope of

this thesis.

The current classifications exist in closed and open quantum systems, but the

system-bath interaction plays an important role during each interaction. When

the system is placed into a coherence, such that an excited state wavepacket

exists within the system PES, thermal jostling by the environment degrees of

freedom leads the wavepacket to dephase and the polarisation to decay. During

waiting times when the system is evolving freely, dissipation of energy to the

environment corresponding to vibrational relaxation and luminescence, leads to

additional decay of the polarisation. Resolution of these processes, in a dynamic

fashion, is one of the crucial measurements applied within this thesis through

changes to 2DES spectra.

In the Schrödinger picture, the third order response function can be written in

terms of the propagator of an EOM, as138,273

R(3)(t3, t2, t1) = − i

ℏ3
Tr

(
µV(t(3), t(2))µ×V(t(2), t(1))µ×V(t(1), t0)µ

×ρS(−∞)

)
,

(2.4.32)

with t(m) =
∑m

i=1 ti.

If the transition dipole moment operator is instead split into absorption and

emission components due to raising and lowering operators, µ+ and µ−,

respectively, then rephasing and non-rephasing contributions of the response

function can be expressed as155,159

R
(3)
R (t3, t2, t1) = −Tr

(
µV(t(3), t(2))

i

ℏ
µ×+V(t

(2), t(1))
i

ℏ
µ×+V(t

(1), t0)
i

ℏ
µ×−ρS(−∞)

)
,

(2.4.33)

and

R
(3)
NR(t3, t2, t1) = −Tr

(
µV(t(3), t(2))

i

ℏ
µ×+V(t

(2), t(1))
i

ℏ
µ×−V(t

(1), t0)
i

ℏ
µ×+ρS(−∞)

)
,

(2.4.34)

respectively. All 2DES in this thesis is calculated in the impulsive limit and

produced from solutions of the response function when the EOM propagator is

chosen to use HEOM dynamics, described in sections 2.5.4.1 and 2.5.6.
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System-field interactions are accounted for by applying the commutators to

every auxiliary within the hierarchy, to allow uniform interaction across all

HEOM auxiliary density operators, equation (2.5.40), before propagation is

continued. The impact of this is that system-bath correlations are maintained

throughout the calculation such that all necessary non-Markovian memory

effects are present in the resultant spectra150,155,157.

When the crucial feature of interest is the system-bath coupling, as in 3.1, 4.3,

and, 3.3, the 2D spectra are calculated in the impulsive limit, which focuses on

these effects. However, finite pulse effects significantly impact spectral features,

including through distortion of the lineshape due to significant overlap of pulses

at early times. This is mitigated by moving away from the perturbative

expansion of the polarisation as employed in equation (2.4.3) and instead using

the equation-of-motion phase-matching approach.

2.4.3.2 2D Spectra

2DES are calculated as the double Fourier transform of the third order

polarisation with respect to τ and t as

P̃
(3)
R = SR(ωτ , T, ωt) =

∫ ∞
0

∫ ∞
0

exp(−iωττ) exp(iωtt)iP
(3)
R (τ, T, t) dτ dt,

(2.4.35)

for the rephasing and

P̃
(3)
NR = SNR(ωτ , T, ωt) =

∫ ∞
0

∫ ∞
0

exp(iωττ) exp(iωtt)iP
(3)
R (τ, T, t) dτ dt,

(2.4.36)

for the non-rephasing contributions36,84,238,274. The different signs within each

of the Fourier transforms reflect the change in time orderings of the pulses when

generating a rephasing versus non-rephasing signal. Performing a forward

transform of the third order polarisation in both the τ and t axes, results in

signal in the (∓ωτ ,±ωt) quadrants, whereas the non-rephasing is found in the

(±ωτ ,±ωt) quadrants38,242. The Jones group follows the convention of an

inverse transform performed in τ in order to generate rephasing and

non-rephasing signals in the same quadrant173.

These Fourier transformed variables correspond to the excitation and

detection frequencies in 2DES experiments, presented for a fixed population

time T . The excitation ωτ is the frequency associated with the first system-field

interaction event, and ωt is the frequency associated with the final emitted

signal. The rephasing and non-rephasing spectra each contain absorptive and

dispersive components, which are real and imaginary contributions respectively,

which are typically summed to generate the total, purely absorptive,
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spectrum38,155,157,238

SA = R(SR + SNR). (2.4.37)

The resultant 2D spectra contain a mix of both diagonal and off-diagonal

peaks corresponding to transitions which would be identified by linear

absorption spectroscopy, and those which are a result of coherences,

respectively. Off-diagonal peaks have unequal excitation and emission

frequencies due to changes in the state of the system caused by intermediate

field interactions. The expression of populations within a spectrum, which is

equivalent to states that have the same ket and bra constituents, are known as

population pathways and decay exponentially as a consequence of dephasing

and relaxation. In contrast, the expression of coherences during the population

time T is through oscillations at the frequency of the energy gap between the

respective states within the coherence275 as a consequence of a coherent

superposition. This is the spectral manifestation of quantum beating236,276.

The location and oscillation of peaks provides information of the structure of

the system, whilst the lineshape gives details of the bath, in terms of

homogeneous and inhomogeneous broadening269,277. In contrast to linear

spectroscopy, in which both types of broadening are projected onto their

underlying axis, in 2D spectroscopy, homogeneous and inhomogeneous

contributions are separated onto their own axes. The anti-diagonal broadening,

which contains exclusively homogeneous contributions, are the result of a decay

in the excited state which introduces uncertainty regarding the exact transition

frequency of the system110,242. This kind of lifetime broadening results in a

Lorentzian lineshape230,278. Consequently homogeneous broadening affects all

system molecules equally. In contrast, a combination of homogeneous and

inhomogeneous broadening is found on the diagonalh, and is a result of

ensemble effects. An example of one such environmental effect is diagonal

elongation due to a Gaussian distribution of different transition frequencies

within an ensemble resulting from conformational freedom or differing solvent

environments138,268. The degree of elongation along the diagonal due to

environmental effects is exploited in conjunction with measures of quantum

information in section 3.1 to quantify non-Markovian effects.

The aforementioned differences, in section 2.4.3.1, between rephasing and

non-rephasing Liouville pathways are further differentiated through the spectral

lineshape. Rephasing pathways, which initially dephase before being

encouraged to re-phase by a change to the complementary coherence state at

τ = t, present elongated peaks due to an inhomogeneous distributions which

persists into the absorptive spectrum274. This elongation persists into the purely

absorptive spectrum after summation of the non-rephasing and rephasing

hThis is the reason for asymmetry for 2DES with low spectral diffusion as in appendix F.
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Figure 2.4.2: The third order polarisation and 2D spectra in the impulsive limit
for a two-level-system with significant inhomogeneous broadening. The

non-rephasing polarisation and spectrum are normalised to the maximum of the
equivalent rephasing signal to demonstrate how the elongation of the rephasing
spectrum persists when the components are summed producing the absorptive
spectrum. a) rephasing polarisation, b) the non-rephasing polarisation, c) the

rephasing spectrum, d) the non-rephasing spectrum, and e) the absorptive
spectrum, all at T = 0 fs.
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components. An example two-level system with significant inhomogeneous

broadening, calculated in the impulsive limit, is presented in figure 2.4.2. The

inhomogeneous and homogeneous broadening is labelled on this figure along

with a demonstration of the rephasing and non-rephasing contributions.

However, this elongation along the diagonal is not significant for all population

times, T . When T is close to zero the elongation is large, but as the population

time increases, spectral diffusion as a consequence of the decay of system-bath

correlations diminishes the revival of polarisation leading to rephasing and

non-rephasing signals of almost equal intensity38,279,280. This is evident in the

purely absorptive spectrum too, as the population time is increased the level of

diagonal elongation decreases until the peak is symmetrical and rounded. This

process is discussed in detail in section 3.1.

2.5 Equations of Motion

As discussed in chapter 1, an equation of motion is the fundamental method of

describing a physical system, and can be exact or approximate. If a closed form

solution cannot be generated then an approximate solution can be generated

through perturbative or non-perturbative means. Derivations from first

principles are contained in appendix D, increasing in complexity and with a

range of simplifying approximations, as a way of intimately understanding the

behaviour of dynamics associated with each model.

2.5.1 Exact Approaches

Under certain conditions, which are usually restrictive (examples being closed,

factorisable dynamics, or the Markovian approximation), an EOM may generate

a closed-form, analytical, solution for the dynamics of an OQS. However, many

of these approximations prohibit the appearance of memory effects, and an

increase in the number of degrees of freedom is necessary in order to introduce

non-Markovian memory effects. Exact and approximate approaches are often

unable to model systems with very large numbers of degrees of freedom, or with

large system molecules, because an increase in the total degrees of freedom

increases the complexity of the system-bath interactions, and the size of the

composite Hilbert space. This can be rationalised by considering the

Markovianity of the EOMs: numerically explicit equations which are fully time

local can be easily solved and may have analytic solutions. In contrast, strongly

non-Markovian dynamics entanglei the system and bath dynamics in a strongly

time dependent fashion resulting in time non-local dynamics which are not

iEntanglement of system and bath states through interaction. This is later referred to as
bathentanglement.

102



Chapter 2: Theoretical Methods

numerically explicit. The only way to generate solutions from such systems is to

employ approximations regarding the nature of the system-bath interaction.

The list of exact EOMs is very limited based on the stringent requirements

for dynamics to produce analytical solutions. A number of closed-form solutions

exist for the time-dependent non-relativistic Schrödinger equation including for a

two-state quantum system, quantum harmonic oscillator, and Morse potential281.

The Schrödinger equation with a non-zero trapping potential, V , is shown below

iℏ
∂

∂t
ψ(r, t) =

(
− ℏ2

2m
∇2 + V (r)

)
ψ(r, t). (2.5.1)

It is clear from this equation, further details can be found in appendix D.1.1.2,

that we are considering a single non-relativistic particle, in microscopic

continuous coordinates. In addition, since the energy is conserved we are

dealing with a system of conservation laws for a closed system. In order to

model dissipative open systems many of these assumptions need to be relaxed.

2.5.2 Perturbative Approaches

Perturbative theories involve generating approximate solutions to non-trivial

problems through relation to solutions of a simpler, or more tractable, problem.

One way to achieve this is by addressing the source of system complexity as a

power series in a small parameter, ϵ, and then neglecting terms within the EOM

which are of higher order than O(ϵ). This approach is effective when the true

dynamics of the system can be expressed in terms of some small deviation from

the solution, an example being a particle trajectory. This method of generating

solutions will fail when problems are ill-conditioned, meaning that a small error

in data will produce a large error in solution, or when small perturbations may

fundamentally alter the nature of the dynamics, such as in some quantum

phenomena. The benefit of this is that it increases the number of applicable

systems which can be modelled, while also keeping the method of modelling

simplistic and easily solvable. One such approach is the Bloch-Redfield Master

Equation (BRME)121,

∂

∂t
ρS(t) = −iϵ[H, ρS(t)]− ϵ2

∑
m

[Sm, ϖmρS(t)− ρS(t)ϖ†m], (2.5.2)

where ϖm is the bath correlation function written as a power spectrum

(discussed further in appendix D.1.5), which simplifies full dynamics through

the Born-approximation, the weak coupling limit, and through a Markovian

assumption about the system-bath interaction. The Born-approximation

stipulates that there is never any bathentanglement resulting in factorisable

system-bath states. The weak coupling limit requires that the strength of
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interactions is small relative to the scale of intrinsic system modes, and the

Markovian approximation simplifies the system-bath interaction so that the bath

has no time-dependence resulting in phonons dissipating without recurrence,

resulting in time locality of the EOM. This approach has been used in models of

weakly driven open, and multi-level systems122,123. However, the BRME does

not necessarily need to be Markovian as demonstrated by non-Markovian

corrections to the standard Redfield equation126,282.

A similar perturbative approach to the BRME is the Lindblad Master Equation

(LME) in which the dynamics are are assumed to be Markovian, and in the weak-

coupling limit, along with the Born-approximation to separate bathentanglement.

In addition, the rotating wave approximation, which separates oscillations based

on their scale is applied and neglects fast scales.

∂

∂t
ρS(t) = −i[H + HL, ρS(t)] +

∑
ω,l

(
Ll(ω)ρS(t)L

†
l (ω)−

1

2

{
L†lLl(ω), ρS(t)

})
,

(2.5.3)

where L is the Lindbladian (jump) operator, and S is the component of the

interaction Hamiltonian which acts purely on system degrees of freedom. This

can be related to the BRME directly through application of the secular

approximation which restricts the environment to resonant frequencies, valid

for long times. Applications include electronic TLSs coupled weakly to an

environment, and qubits124,125,127,282.

Finally, the general Markovian Master equation is considered. As discussed in

section 2.1.2, the evolution of the reduced density operator can be generated

from the propagator of the dynamics, V(t, t0), which accounts for the interaction

with the bath through the generator Lg(t), (2.1.17). The master equation of the

reduced system has the general form115,283

∂ρS
∂t

= Lg(t)ρS(t) = − i

ℏ
[HS +HSF(t), ρS] + D[ρS(t)], (2.5.4)

where the first square brackets denote the commutator, and D[ρS(t)] is an

arbitrary relaxation superoperator defining the interaction with the bath. This

EOM is generated from a second order perturbation of the Liouville

Von-Neumann equation with a time dependent Hamiltonian:

iℏ
∂ρS
∂t

= [H(t), ρS], (2.5.5)

= [H0 + ϵH1(t), ρS], (2.5.6)

such that the equation can be rewritten as284

∂ρS
∂t

= − i

ℏ
[H0, ρS] + Γg

(
ρS(t)− ρS(0)

)
, (2.5.7)
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where Γg is a, less general, form of the relaxation superoperator due to the

generator Lg. If the time independent component of the total Hamiltonian is

written as the system contribution, HS, and the relaxation superoperator is

written in its most general form, D[ρS(t)], this is equivalent to the most general

master equation (ME). When the Markovian approximation is applied to this

EOM the relaxation superoperator can be converted to either

D[ρS(t)] = −ϵ2
∑
m

[Sm, ϖmρS(t)− ρS(t)ϖ†m], or (2.5.8)

D[ρS(t)] =
∑
ω,l

(
Ll(ω)ρS(t)L

†
l (ω)−

1

2

{
L†lLl(ω), ρS(t)

})
, (2.5.9)

generating the aforementioned BRME and LME.

2.5.3 Non-Perturbative Approaches

In contrast, functions or variables which cannot be expanded as a power series

through a perturbative theory are known as non-perturbative. The cost of

removing the perturbation is that additional complexity is returned to the

system and EOMs being solvable is not guaranteed, often leading to complex

high order partial differential equations (PDEs). The purpose of this is to

introduce strongly non-Markovian, quantum characteristics to OQS. This

generally manifests itself as time non-locality in the equations of motion,

meaning that the Markov approximation is invalidated. One approach to

reaching solvable equations of motion is, in a manner analogous to the Born

approximation, splitting the dynamics into fast and slow ‘irrelevant’ and

‘relevant’ parts respectively. The Nakajima-Zwanzig equation (NZE)130,131,

∂

∂t
ρS = ϵPL(t)ρS + ϵ2

∫ t

t0

KρS dt′, (2.5.10)

K(t, t′) = PL(t)G(t, t′)QL(t′), (2.5.11)

splits the dynamics into a relevant, ρS, and irrelevant ρB, contribution based

on the scale of oscillations within each component. This is achieved through

the Zwanzig projection operators P and Q which result in the non-Markovian

propagator for the dynamics, K(t, t′), and transform the density matrix Pρ = ρS,

Qρ = ρB. This equation is still completely exact, but is often no easier to solve

than the full problem because of the inseparable, time non-local integral over the

kernel K. An ideal EOM would have almost completely exact dynamics while

also reducing complexity. Through an introduction of the superoperator

D[ρS(t)] = −ϵ2
∫ t

t0

[HI(t), [HI(t
′), ρS(t)]] dt′, (2.5.12)
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a general quantum Master equation of the form equation (2.5.4) can be

transformed into the Nakajima-Zwanzig equation. This is because the integral

form of the superoperator introduces explicit time non-locality and high orders

of the interaction Hamiltonian coupling through the double commutator.

An alternative is to employ stochastic variables and Itô calculus which

introduces random variables and forcing. This allows the influence of Brownian

oscillator environments to be introduced into the EOM statistically. The

quantum Langevin equation (QLE)285,

m
d2x

dt2
+ ζ

dx
dt

+
dV (x)

dx
= F (t), (2.5.13)

contains ζ, a friction constant associated with the random forcing applied by the

environment ensemble, where the forcing operator is defined by its symmetric

correlation and commutator relation:

1

2
⟨F (t)F (0) + F (0)F (t)⟩ = ζ

π

∫ ∞
0

ℏω coth(ℏωβ̃−1) cos(ωt) dω, (2.5.14)

[F (t), F (0)] = −2iℏζ
π

∫ ∞
0

ω sin(ωt) = 2iℏζδ′(t). (2.5.15)

This equation is simpler to solve than the NZE, in general, but additionally

requires assumptions about the nature of the environment distribution such as

the approximation of canonical distribution. Stochastic Gaussian processes with

a direct forcing and a friction term introduce white noisej, fluctuations (often

characterised by successive weak interaction) which influences the system

probability distribution resulting in Brownian motion and non-Markovianity.

This model has been used in models of condensed phase spectroscopic

experiments and for modelling molecular polaritons134,135.

Many non-perturbative equations of motion can also be generated through

path integral approaches based on work by both Calderia and Leggett, and

Feynman and Vernon4,143,144,214. The path integral generalises classical action

and proposes that the most probable trajectory is a sum over an infinite number

of quantum trajectories resulting in a quantum amplitude. This process takes a

set of temperature dependent variables and performs a Wick rotation onto the

complex plane where they become imaginary times, as discussed in section E.1.

A quantum particle moving within a potential is subsequently described by a

path integral as a superposition of paths, each with an associated phase,

expressed as the exponential of an action, and follows a trajectory between the

initial and final states of the integral. Each trajectory varies based on quantum

uncertainty, which manifests as paths which are less or more likely, where the

jWhile white noise is often associated with Markovianity, in this context, as a consequence
of the pair of time dependent commutators in the kernel, this is equivalent to a time-locality
assumption rather than strict Markovianity. This is similar to the simplification used in NZE.
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- NLS LVN BRME LME NZE QLE KSLE SSE FPE HEOM

Closed ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

Open ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Stochastic ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✢

Projection ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘

Weak-Coupling ✢ ✢ ✔ ✔ ✢ ✢ ✢ ✢ ✢ ✢

Rotating-wave ✢ ✢ ✘ ✘ ✘ ✘ ✘ ✢ ✘ ✘

Secular ✢ ✢ ✢ ✔ ✘ ✢ ✘ ✢ ✢ ✢

Born ✢ ✢ ✔ ✔ ✢ ✢ ✢ ✢ ✘ ✘

Markovian ✢ ✢ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Factorisable ✢ ✢ ✔ ✔ ✔ ✘ ✢ ✔ ✢ ✢

Infinite Bath ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✘

Canonical Dist. ✢ ✢ ✢ ✢ ✢ ✔ ✘ ✢ ✢ ✢

High Temp ✘ ✘ ✢ ✢ ✢ ✘ ✢ ✘ ✢ ✢

Cond. Moment ✢ ✢ ✢ ✢ ✢ ✘ ✢ ✢ ✔ ✢

Table 2.1: ✔ denotes essential approximations. ✘ denotes incompatible
approximations. ✢ is a weaker statement, it is used to denote approximations
which could be applied (but may result in excessive simplification) i.e. those

approximations which are not inconsistent with essential approximations. Full
acronyms can be found in appendix K.

classical action defines the most likely trajectory. This is analogous to the

statistical equivalent: an ensemble of particles, which varies as a consequence of

temperature, leading to a state corresponding to the least energy. In the interest

of brevity, full relationships between non-perturbative approaches are discussed

only in appendix D. Additionally, a full calculation of a path integral (for a

simple free particle) is presented in appendix C.

Figure 2.5.1 and table 2.1 summarise the full set of approximations and

assumptions which are used to generate all the EOMs discussed, and those

which are discussed in appendix D. In addition, the flow chart, figure 2.5.1,

depicts the interrelation of different forms of exact, perturbative, and

non-perturbative models, demonstrating the advancement of models to more

complex non-Markovian EOMs.
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2.5.4 Hierarchical Equations of Motion

2.5.4.1 Overdamped HEOM

It is clear from these assumptions and approximations that the hierarchical

equations of motion are one of the most general techniques which can be

employed to model OQSs. Additionally, it is particularly suited to the aim of this

project as it facilitates movement of the system-bath boundary in two essential

ways. The first is that the Born approximation is unnecessary for HEOM

construction: the nature of bathentanglement is crucial to the dynamics upon

movement of the system-bath boundary and needs to be accounted for.

Secondly, it is not necessary to employ a Markovian approximation which means

a full range of non-Markovian feedback can occur during the movement of the

system-bath boundary, allowing quantum behaviours dependent on

non-Markovianity to emerge. As a result of this, a simplified derivation of the

HEOM is performed, with full details in section D, starting from overdamped

environments.

The key component of each HEOM derivation is its constituent spectral

density and the expansion used to decompose this into individual contributions.

The full derivation is considered for the overdamped case and the differences

are highlighted in other cases but their full derivation will be omitted and their

original source noted. The overdamped hierarchy is derived from an

exponential expansion of an overdamped spectral density,

J (O)
n (ω) =

2ηnωΛn

Λ2
n + ω2

, (2.5.16)

which is computed through a contour integral.

2.5.4.1.1 System-bath Model

We consider a one-dimensional system coupled to a single bath, with n = 1.

Consequently, B operators, and η,Λ parameters in the following derivation have

no subscript. Any other n subscripts denote Matsubara dimensions. The system

of interest is defined by a potential VS(q) - where q is the position operator as

in the non-linear Schrödinger equation - and its mass m. The oscillators in the

ensemble have masses {mj}, frequencies {ωj} and coupling constants {cj}. The

total Hamiltonian,

Htot = HS +HB +HSB, (2.5.17)

where,

HS =
p2

2m
+ V (q), (2.5.18)
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HB =
∑
j

(
p2j
2mj

+
mjωjx

2
j

2

)
, (2.5.19)

HSB = −
∑
j

cjxjq, (2.5.20)

and p, q, {pj}, {xj} are the respective momentum and position operators for the

system and the bath.

Given this description of the system and bath we can construct the density

matrix. For a set of states {|qi, xi⟩} with corresponding transition probabilities

{Pi} the density matrix is equivalent to the outer product,

ρ(q, x) =
∑
i

Pi |qi, xi⟩ ⟨qi, xi| . (2.5.21)

2.5.4.1.2 Feynman and Vernon Influence Functional

To derive the equations of motion we define the evolution of the density matrix

from time zero to a time t using the path integral formalism4,143. Introducing the

time propagation operators we can find the density matrix at an arbitrary, time, t

given the form of the density matrix at time zero,

ρt(q, x) = exp

(
iH(q, x)t

ℏ

)
ρ0(q, x) exp

(
−iH(q, x)t

ℏ

)
. (2.5.22)

Next we apply the initial condition assumption that the system is, initially, in a

factorisable state and that the bath is in thermal equilibrium - but not in

equilibrium with the system of interest.

ρ0(q, x) = ρS(q)ρB(x). (2.5.23)

Additionally, we transform into a coherent state basis which is dependent on

the creation and annihilation operators for the system modes, a†i and ai, rather

than operators xj and pj for environment modes {j}. This transforms q{·} →
Q{·}(ϕ,ϕ

∗), where

|ϕ⟩ = exp
(∑

i

ϕia
†
)
|0⟩ , (2.5.24)

with |0⟩ the system vacuum sate, ϕi are complex numbers, and ϕ∗i their complex

conjugates such that

ai |ϕ⟩ = ϕi |ϕ⟩ , (2.5.25)

⟨ϕ| a†i = ⟨ϕ|ϕ∗i . (2.5.26)
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Given this, the reduced density matrix element in path integral form is143

ρ(Qt,Q
′
t, t) =

∫∫ ∫ Qt

Q0

∫ Q′
t

Q′
0

exp(iSS[Qt]/ℏ) exp(−iSS[Q′t]/ℏ)F [Qt,Q
′
t]×

ρS(Q0,Q
′
0, 0) D[Qt]D[Q′t]dQ0dQ′0, (2.5.27)

where
∫
D[Q] denotes a Feynman path integral. Here the classical action - in

terms of the Lagrangian - for an isolated system is used. Bath effects are

contained within the Feynman and Vernon influence functional, F , which is

dependent on the overdamped spectral density, (2.2.59). When the influence

functional is cast in terms of the thermal fluctuation and dissipation of energy of

the system it can be written as,

F = exp

(
− i

ℏ

∫ t

0

∫ τ

0
B×(Qt,Q

′
t; τ)

×
{
iL

(α)
I (τ − τ ′)B◦(Qt,Q

′
t; τ) + L

(α)
R (τ − τ ′)B×(Qt,Q

′
t; τ)

}
dτ ′ dτ

)
, (2.5.28)

where

B×(Qt,Q
′
t; τ) = B(Qt; τ)− B(Q′t; τ), and (2.5.29)

B◦(Qt,Q
′
t; τ) = B(Qt; τ) + B(Q′t; τ). (2.5.30)

These kernels, L
(α)
R (t) and L

(α)
I (t) , which correspond to fluctuations and

dissipation respectively, can be expressed in terms of the spectral distribution as,

L
(α)
R (t) =

∫ ∞
0

J(ω) cos(ωt)coth
(
βℏω
2

)
dω, (2.5.31)

L
(α)
I (t) = −

∫ ∞
0

J(ω) sin(ωt) dω. (2.5.32)

Substitution of the overdamped spectral density generates an integral which can

be solved through contour integration. A semicircle in the upper-half plane is

chosen and the residue is calculated through the application of Jordan’s lemma∮
f(z) dz = 2πi

∑
Res =

∫ ∞
−∞

f(z)eizT dz + 0

Where Res are the residues of the poles inside the semi-circle CΓ.

For the complex plane ω + iσ a semicircular contour in the upper half plane

CΓ = Γ1 + Γ2 is used such that the integral along the real axis can be computed∫
Γ1

f(ω)eiωtdω = 2πi
∑
j

Res(j).
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ω
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2πi
βℏ

4πi
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6πi
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2nπi
βℏ ...

CΓ

Γ1

Γ2

Figure 2.5.2: Complex Semicircle, CΓ, with an imaginary, temperature
independent, pole at iγ and then poles at integer multiples of 2π

βℏ on the
imaginary axis which correspond to Matsubara (thermal) frequencies.

This results in the Matsubara decomposition of the spectral density in terms of

an exponential basisk:

d0 = ηΛ(cot

(
βℏΛ
2

)
− i), ν0 = Λ, (2.5.33)

dn =
4ηΛνnβℏ

(νnβℏ)2 − (Λβℏ)2
, νn =

2nπ

βℏ
, (2.5.34)

such that

L(α)
corr(t) =

∞∑
n=0

dn exp(−νnt). (2.5.35)

The resulting form of the correlation function represents a memory-frequency

decomposition of the bath correlation. The exponential expansion of bath

correlation function dictates the structure of the HEOM being derived286–288.

These forms of the correlation functions, under the assumption that

νn exp(−νn(τ − τ ′)) ≈ δ(τ − τ ′) when n ≥ K + 1, (2.5.36)

kFor overdamped baths with n = 1, Λ1 is simplified to Λ.
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allow the influence functional to be written as

F [Qt,Q
′
t] ≈ exp

(
1

ℏ2

∫ t

0
B× exp(−Λτ ′)

∫ τ ′

0
Λθ(O) exp(Λτ) dτ dτ ′

)
×

K∏
n=1

exp

(
+

1

ℏ2

∫ t

0
B× exp(−νnτ ′)

∫ τ ′

0
νnψ

(O)
n exp(νnτ) dτ dτ ′

)
×

∞∏
n=K+1

exp

(∫ t

0

1

ℏ2
B×ψ(O)

n dτ

)
, (2.5.37)

where

θ(O) =
(
ηΛcot

(βℏΛ
2

)
B× − iηΛB◦

)
, (2.5.38)

ψ(O)
n = B×

4ηΛνnβℏ
(νnβℏ)2 − (Λβℏ)2

. (2.5.39)

In order to derive the equation of motion, we additionally introduce the

equation for the auxiliary density operators (ADOs) as,

ρj(ϕ,ϕ
∗; t) =

∫∫ {(
− i

ℏ

∫ t

0
exp(−Λ(t− τ))θ(O) dτ

)}j0

×

K∏
n=1

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn

×

exp
( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
D[Q′t] D[Qt], (2.5.40)

then we can construct the equation of motion by differentiating this equation and

substituting for the influence functional. This can be extended to a general case

of NB baths, as shown for underdamped hierarchies. l

∂ρj
∂t

= −

{
i

ℏ
H× +

K∑
n=0

jnνn − 1

ℏ2
∞∑

n=K+1

exp
(
B×ψ(O)

n

)
−

Ξ(O)

ℏ2

}
ρj

− i

ℏ

{
dnBρ

−
jn

− d∗nBρ
−
jn

}
− i

ℏ
B×ρ+jn , (2.5.41)

where

Ξ(O) =
η

β

{
1− βΛcot

(βℏΛ
2

)}
B×B×, (2.5.42)

and the associated terminator is

∂ρj
∂t

≈ −

{
i

ℏ
H× − 1

ℏ2
∞∑

n=K+1

exp
(
B×ψ(O)

n

)
−

Ξ(O)

ℏ2

}
ρj, (2.5.43)

lReintroduction of the number of baths means subscripts n denote bath number and Matsubara
dimensions move to l. Additionally, each term will be additionally summed from 1 to NB meaning
that the bounds for the termination criterion becomes max(wn0)

min(νnl)
.
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valid for integers j = (j0, . . . , jK), with

K∑
n=0

jn ≫ ω0

min(νn)
, =⇒ Γmax = 10 Λ. (2.5.44)

This criterion terminates each Matsubara axis in an identical manner resulting

in hierarchies of self-similar volumes. These volumes are discussed further in

section 3.3. Dependent on the necessary level of termination this equation can

be simplified down to purely the Markovian free propagation of the system

(red), but here is shown in full generality. Throughout this thesis, unless stated

otherwise, the convergence criterion is set to Γmax = 10 max(Λ), which in this

instance with n = 1 is 10Λ. The first term (red) within the generated HEOM,

equation (2.5.41), describes the Markovian free propagation of the system, and

the second term (blue) introduces the impact on this propagation of integer

multiples of Matsubara frequencies corresponding to interaction with bath

phonons. The final two terms (blue) proportional to ρj are the low temperature

correction of the free propagation and a double commutator of the bath

operator which introduce higher order bath interactions, a square coupling, to

account for the introduction of the cutoff K. This term was derived by Ishizaki

and Tanimura in order to reduce the number of Matsubara frequencies required

under strong coupling to reach convergence150. By propagating a series of

ADOs, representing different arrangements of bath phonons, the HEOM

accounts for a history of interactions such that non-Markovian effects are

automatically included. The ADOs are interconnected via ADO raising and

lowering terms which are denoted by j± = (j0, . . . , jk ± 1, . . . , jK) vectors. The

first ρ−{·} dependent term (term five - cyan) in the HEOM, equation (2.5.41), is

the first raising term. The action of i
ℏdnB, and its conjugate, is to destroy bath

phonons, of coupling amplitude dn, as they are absorbed by the system. This

corresponds to an increase of ADO tier resulting in a ‘raising’ of the ADO.

Subsequently, this process is associated with thermal fluctuations and the real

part of the correlation function because of its temperature dependence. The

final term (orange), dependent on ρ+{·}, is the corresponding lowering term. The

action of i
ℏB
× is to demolish the system states corresponding to the creation of

bath phonons as they are emitted from the system into the bath. Destruction of

system states in this manner are a consequence of the imaginary part of the

correlation function associated with system dissipation.

An example overdamped hierarchy is presented in figure 2.5.3, where ADOs

are depicted as spheres in a lattice structure, with each Matsubara frequency

given its own dimension. The full structure of such hierarchies is discussed

further in section 2.5.5.1. The first ADO beyond Γmax in each axis is assigned as

a terminator such that the overall hierarchy defines a sealed volume, within

which non-Markovian memory effects are fully accounted for. Each information
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Figure 2.5.3: Hierarchy diagram for a single overdamped bath, such that there
are three Matsubara dimensions. The longest axis is the temperature

independent Matsubara frequency associated with an overdamped bath. Each
sphere represents a density operator where the reduced density matrix of the
system is blue, normal ADOs are white and terminating ADOs are grey. Each

ADO is connected by a coloured line which matches terms in equation (2.5.41)
corresponding to their origin.

channel, or raising/lowering event, is colour coded to match the terms in the

overdamped HEOM, (2.5.41), to depict bath phonon creation and annihilation.

2.5.4.2 Underdamped HEOM

Similarly it is possible to generate an EOM from underdamped spectral densities

J (U)
n (ω) =

2ηnγnω
2
0nω

(ω2
0n − ω2)2 − (γnω)2

. (2.5.45)

The exponential expansion for this spectral density can be constructed in a

manner analogous to the method performed for the overdamped spectral

density, with the caveat that the Matsubara poles are now complex rather than

purely imaginary. This results in a translation of the contour. In addition, this

form of spectral density is associated with the canonical transform, discussed in

detail in section 2.2.2.2, resulting in the system mode, ω0n, being subsumed into
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the environment degrees of freedom. As discussed, this is the primary method of

moving the system-bath boundary which is discussed in detail in this thesis, and

it involves obscuring the distinction between the bath and system degrees of

freedom. This has a profound impact on quantum information and correlations,

discussed in chapters 3, and 4.

The associated underdamped fluctuation and dissipation kernels are,

L
(α)
R,n =

ℏηnω2
0n

2iζn

{
exp

(
−
(γ
2
− iζn

)
t
)
− exp

(
−
(γ
2
+ iζn

)
t
)}

, (2.5.46)

L
(α)
I,n =

ℏηnω2
0n

2ζn
exp

(
−
(γ
2
− iζn

)
t
)
coth

(
ℏβ
2

(
ζn + i

γn
2

))

− ℏηnω2
0n

2ζn
exp

(
−
(γ
2
+ iζn

)
t
)
coth

(
ℏβ
2

(
− ζn + i

γn
2

))

− 4ηnγnω
2
0n

ℏβ

∞∑
k=1

νk exp(−νkt)
(ω2

0n + ν2k)
2 − (γnνk)2

, (2.5.47)

where ζn =

√
ω2
n0 −

(
γn
2

)2
when γn < 2ω0n and νk = 2πk

ℏβ are the Matsubara

frequencies. The derivation for the underdamped kernels is equivalent to that of

the overdamped spectral density, however, introduction of the system mode splits

the single temperature independent Matsubara frequency into two: positive and

negative combinations of the intrinsic damping parameter, γn
2 , and iζn. This

means that following the same derivation leads to two terms in L(α)
R,n rather than

one, and three in L(α)
I,n rather than two, due to the split temperature independent

cases.

This is then written as an expansion in the exponential basis with Matsubara
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frequencies and coefficients, νnl and dnl,

νn0 =
γn
2

− iζn, (2.5.48)

νn1 =
γn
2

+ iζn, (2.5.49)

νnl =
2π(l − 1)

ℏβ
, (2.5.50)

dn0 =
ℏηnω2

0n

2ζn

{
coth

(
ℏβ
2

(
ζn + i

γn
2

))
− 1

}
, (2.5.51)

dn1 = −ℏηnω2
0n

2ζn

{
coth

(
ℏβ
2

(
− ζn + i

γn
2

))
− 1

}
, (2.5.52)

dnl = −4ηnγnω
2
0n

ℏβ
νnl

(ω2
0n + ν2nl)

2 − (γnνnl)2
, (2.5.53)

such that

L(α)
corr,n(t) =

∞∑
l=0

dnl exp(−νnlt). (2.5.54)

The EOM for the ADOs of this expansion is then1,

∂ρj
∂t

= −

(
i

ℏ
H× +

NB∑
n=1

K∑
l=0

jnlνnl −
NB∑
n=1

∞∑
l=K+1

B×nψ
(U)
nl

)
ρj

+

NB∑
n=1

K∑
l=0

B×n ρ
+
jnl

+

NB∑
n=1

jn0Θ
−
n ρ
−
jn0

+

NB∑
n=1

jn1Θ
+
n ρ
−
jn1

+

NB∑
n=1

K∑
l=2

jnlνnlψ
(U)
nl ρ

−
jnl
, (2.5.55)

where

ψ
(U)
nl =

4ηn
ℏβ

γnω
2
0n

(ω2
0n + ν2nl)

2 − (γnνnl)2
B×n , (2.5.56)

Θ±n =
ηnω

2
0n

2ζn

{
∓ B◦n ± coth

(
ℏβ
2

(
∓ ζn + i

γn
2

))
Bn

}
, (2.5.57)

and B×n ρ = [Bn, ρ] denotes the commutator of the bath coupling operator and

the density matrix and B◦nρ = {Bn, ρ} the corresponding anti-commutator. The

associated terminator for this hierarchy is164

∂ρj
∂t

≈ −

(
i

ℏ
H× + i

NB∑
n=1

(jn0 − jn1)ζn −
NB∑
n=1

∞∑
l=K+1

B×nψ
(U)
nl

)
ρj, (2.5.58)

valid for integers j = (jn0, . . . , jNBK), with

NB∑
n=1

M∑
l=0

jnl >
max(ωn0)

R(min(νnl))
, =⇒ Γmax = 10 max(γn). (2.5.59)
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In addition, computationally the sum to infinity is truncated with a sufficiently

high value with respect to the criterion Γmax.

Equivalent to the overdamped hierarchy, the ADOs are characterised by the

NB(K + 1)-dimensional vectors j and j±, with the terms of equation (2.5.55)

interpreted in terms of the creation and annihilation of bath phonons, but where

the complex Matsubara frequencies have split the temperature independent term

in two such that there are now additional terms involving Θ±n .

An example underdamped hierarchy is presented in figure 2.5.4, again

demonstrating a sealed volume and showing annihilation and creation with

colours matching equation (2.5.55). The full structure of such hierarchies is

discussed further in section 2.5.5.1. It is worth noting, the splitting of the

temperature independent Matsubara frequency into νn0 and νn1 results in the

first two axes having equal depth, such that the underdamped HEOM involves

many more ADOs than the overdamped case, increasing computational

complexity.

The underdamped spectral density, equation (2.5.45), reproduces the Drude

form on increasing the damping to the overdamped limit, when γn ≫ ω0n, also

requiring ζn = i

√(
γn
2

)2
− ω2

0n. However, due to a singularity in the exponential

basis which is the foundation of these derivations, ω0n ≈ γn, this HEOM is

insufficiently stable and the additional computational requirements of the

underdamped HEOM means the overdamped HEOM, equation (2.5.41), is

preferable for overdamped environments. This weakness in basis is most evident

from the divergent limit of vanishing ζn in the temperature independent

Matsubara terms, limζn→0 dn0 = limζn→0 dn1 = ∞. This flaw is addressed by

Ikeda and Scholes139 through the generalised HEOM discussed in section

2.5.4.4.

2.5.4.3 Arbitrary Spectral Density (ASD) HEOM

As discussed in section 2.2.2.2, the power of structured spectral densities is that

they can be used to model processes which are strongly non-Markovian, or

which have had system modes subsumed into them by the canonical transform.

Therefore, it stands to reason that a hierarchy which is derived from a purely

general spectral density would allow for modelling a broad range of physical

regimes. Tanimura considers this possibility is one of his original articles149,

where the HEOM becomes a more general integro-differential equation of
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Figure 2.5.4: Hierarchy diagram for a single underdamped bath, such that there
are three Matsubara dimensions. The longest two axes (ν0, ν1) are the

temperature independent Matsubara frequency associated with an
underdamped bath. Each sphere represents a density operator where the
reduced density matrix of the system is blue, normal ADOs are white and

terminating ADOs are grey. Each ADO is connected by a coloured line which
matches terms in equation (2.5.55) corresponding to their origin.

motion,

∂

∂t
ρS(t;ω1, ω2, . . . , ωm) = −

(
i

ℏ
H× + i

M∑
j=1

ωj

)
ρS(t;ω1, ω2, . . . , ωm)

− i

∫ ∞
−∞

B×ρS(t;ω1, ω2, . . . , ωm+1) dωm+1

− i

m−1∑
k=1

Θ(ωk)ρS(t;ω1, ω2, . . . , ωk−1, ωk+1, . . . , ωm)

− iΘ(ωm)ρS(t;ω1, ω2, . . . , ωm−1), (2.5.60)
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where,

Θ(ω) = J(ω)

(
coth

(βℏω
2

)
B× +B◦

)
, (2.5.61)

written in terms of the total spectral density, J(ω) =
∑NB

n=1 Jn(ω), and bath

coupling operator, B =
∑NB

n=1Bn. The auxiliary equations for

ρS(t;ω1, ω2, . . . , ωm) represent simultaneous evolution of the system in the

presence of m bath phonons with associated frequencies ωm. Just as in the

previous HEOMs there are cyan lowering terms, and an orange ADO raising

term, but here because of the generality of the spectral density the raising term

involves an integral over the phonon frequency ωm+1.

While it is possible to reach this equation using a derivation analogous to the

method presented in appendix D.1.10, the general spectral density makes it

impossible to calculate a specific contour integral to expand the Matsubara

components. For this reason Tanimura149 presents an elegant alternative

involving multiplication of continued fraction forms of the Laplace transform.

The Laplace transform, discussed in appendix A, is very similar to the Fourier

transform and the equation used for the contour integration. It takes a function

of time and moves it into the complex frequency domain with the added effect

of transforming ordinary differential equations into algebraic equations and

convolutions of functions into products. Within the ASD-HEOM this allows the

system-bath entanglement, due to the arbitrary spectral density, to be expressed

in resolvent form through products of operators as part of a continued fraction:

ρS[s] =
1

s+ i
ℏH
× +

∫
B× Θ(ν1)

s+iν1+
i
ℏH

×+
∫
B× Θ(ν2)

s+iν2+... dν2
dν1

ρS(t0), (2.5.62)

where LLap{t} = s, is the Laplace (Lap) transform of t.

This generalisation of spectral influence on the HEOM evolution nicely

demonstrates the incorporation of non-Markovian effects. Interaction of the

system and bath, through i
∫∞
−∞B×{·}dωm+1, creates bath phonons which are

propagated alongside the reduced system within the ADOs. This accounts for

the transfer of information, along a quantum channel, from the system to the

bath where it is stored within the environment degrees of freedom. Then,

dependent on the timescales of bath relaxation relative to the system, the

behaviour is either a local or global evolution. When the environment relaxation

timescale is rapid compared to the system, the phonons will dissipate

throughout the bath degrees of freedom and will not influence the system

dynamics again, resulting in local, Markovian, evolution. Alternatively, if the

timescales are commensurate, the phonons can be reabsorbed by the system,

through the action of iΘ(ω), creating a feedback of information and linking the

current state with past auxiliaries. This produces a global, non-Markovian,
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Figure 2.5.5: Non-Markovian vs. Markovian evolution demonstrating global or
local behaviour for the ASD-HEOM. The colours in the figure match those in the

EOMs.

evolution. Both Markovian and non-Markovian evolutions are depicted in figure

2.5.5. In this way, the HEOM accounts for all possible sequences of interactions

and the creation and annihilation of bath phonons of any frequency in any

order, accurately modelling the dynamics of the system in a broad range of

conditions.

However, despite the power of being able to create models which require

highly structured, non-Markovian, environments this method suffers a pair of

drawbacks. The first is that it is incredibly costly to implement computationally

because of the large dependence on phonon frequencies. Discretising the

spectral density to W frequencies, the mth layer involves Wm auxiliaries, each

with dimensions of the reduced density operator, which itself is large in the case

of the vibronic dimers discussed in section 2.2.1.3. The other drawback is that,

despite the increased number of physical regimes accessible with an arbitrary

spectral density, it does not circumvent flaws in the basis functions. As discussed

in the section on the underdamped HEOM, 2.5.4.2, the exponential basis is

highly sensitive to the bath damping strength relative to the system mode

frequency especially in the region of critical damping. The divergence of the

Matsubara frequencies in these cases have not been addressed by the arbitrary

choice of spectral density which means that it addresses niche, highly

structured, regimes within the strongly underdamped limit. This is

demonstrated in the work in appendix F, where the ASD-HEOM is employed,

and this flaw is rectified by Ikeda and Scholes139.
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2.5.4.4 Generalised HEOM

The generalised HEOM, denoted gHEOM139, addresses the flaw with the basis

functions, crucial to previous HEOM derivations, by including treatment of

non-exponential correlation functions. This addition means that a full range of

damping strengths, including critical damping, can be modelled. This derivation

makes use of the cumulant expansion technique, which was discussed in section

2.2.2.2.1, and as such does not directly follow the steps discussed in appendix

D.1.10. A full description of the current derivation is beyond the scope of this

thesis, but it is summarised for completeness.

A set of K time dependent basis functions ϕ(g) are generated in order to

produce symmetrised and anti-symmetrised correlation functions from linear

combinations of this basis and the delta function:

S(t) =
∑
lk

σlslkϕ
(g)
k (t) + Sδ · 2δ(t), (2.5.63)

A(t) =
∑
lk

σlajkϕ
(g)
k (t), (2.5.64)

where σl, slk, and alk are constants dependent on the system parameters. These

correlation functions are equivalent to the fluctuation and dissipation kernels,

S(t) = L
(α)
R (t), and A(t) = L

(α)
I (t), equation (2.2.53). With these substitutions

the influence functional, equivalent to (D.1.206), can be expressed in terms of

cumulants as,

F = exp

(∫ t

t0

iB×
∫ s

t0

( i
ℏ
S(s− u)B×(u)− 1

ℏ
A(s− u)B◦(u)

)
du ds

)
, (2.5.65)

= exp

(∫ t

t0

−Ξ(g)(s) +
∑
j

ϕ
(g)
l (s

∫ s

t0

Θ
(g)
l )(s, u) du ds

)
, (2.5.66)

where

Ξ(g)(s) = −Sδ
( iσl

ℏ
B×(s)

)2
, (2.5.67)

Θ
(g)
l (t, s) =

∑
k

i

ℏ
σlslkϕ

(g)
k (t− s)B×(s)− 1

ℏ
alkϕ

(g)
k (t− s)B◦(s). (2.5.68)

Introduction of additional terms into Θ
(g)
l (t, s), which act as the ADO lowering

operator, correspond to additional non-Markovian corrections which link

auxiliaries with the same number of phonon interactions. Differentiation of the

subsequent equation for the auxiliary density matrix elements results in,

∂ρj
∂t

= −
( i
ℏ
H×+Ξ(g)

)
ρj−

∑
l,k

nlγlkρjl−1,k+1
−
∑
k

iσk
ℏ

B×k ρjk+1
−
∑
k

nkΘ
(g)
k ρjk−1

,

(2.5.69)
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in the Schrödinger picture. This equation is terminated in a similar fashion to

previous EOMs through,

∂ρj
∂t

≈ −
( i
ℏ
H× + Ξ(g)

)
ρj, (2.5.70)

but with a considerably simplified Markovianity criterion139

∑
k

nk > Γmax. (2.5.71)

As before, the red term is the Markovian free propagation of the system, the

first blue term is a Markovian correction containing a double commutator, the

second blue term is the introduction of bath phonons as a consequence of the

basis set ϕ(g), the orange term is the associated ADO raising, and the cyan term

is the associated ADO lowering term.

As mentioned, because of the extension of the basis to include a full range

of damping strengths, the coupling between the ADOs is more complex than

for previous cases. There are additional links between processes involving one

phonon from different Matsubara dimensions, referred to as tier one in each axis

which is discussed in section 3.3, which accounts for all sources of non-Markovian

feedback. This is shown in figure 2.5.6 with a general gHEOM hierarchy diagram,

the structure of which is discussed further in section 2.5.5.1.

2.5.4.5 Lorentz-Drude Undamped Oscillator (LDUO) HEOM

Finally, a new derivation specific to the aims of this thesis is considered. In order

to demonstrate the changes to the open quantum system during the movement

of the system-bath boundary a hierarchy with two components must be

generated in a manner equivalent to the work of Tanimura157. Here, as

discussed in Humphries et al.2, the addition of the overdamped and

underdamped spectral densities as part of the canonical transform results in

intrinsic canonical damping from the underdamped modes which are not

present in the vibration when in positional coordinates. This originates from the

canonical transform which moves a pure vibrational system mode into the

environment degrees of freedom as an underdamped mode.

As outlined in chapter 5, we consider a one-dimensional system coupled to a

bath of NB harmonic oscillators, with microscopic continuous position

coordinate operator q with particle mass m, ensemble oscillator operator x,

masses {mj}, frequencies {ωj} and coupling constants {cj}, in a manner

equivalent to the overdamped HEOM. We also continue by applying the

approximation that the system is initially uncorrelated, however, from here the
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Figure 2.5.6: Hierarchy diagram for the gHEOM. Each sphere represents a
density operator where the reduced density matrix of the system is blue, normal

ADOs are white and terminating ADOs are grey. Each ADO is connected by a
coloured line which matches terms in equation (2.5.69) corresponding to their

origin.

treatments diverge. The reduced density matrix element expressed in path

integral form, for an EOM which has multiple baths and multiple spectral

densities143 such that the total spectral density takes the form Jn. The

environment modes are treated as overdamped through the Lorentz-Drude

spectral density,

JLD(ω) =
2ηLDωΛLD

ω2 + Λ2
LD

, (2.5.72)

and the subsumed intramolecular vibration is treated as a pure, undamped

oscillation through

JUO =
1

2
SHR
UOω (δ(ω − ωUO) + δ(ω + ωUO)) , or JUO = SHR

UOωUOδ(ω − ωUO),

(2.5.73)

with SHR
UO = λUO/ωUO, and the Huang-Rhys factor which is a measure of the

strength of the electronic and vibrational coupling289. The omission of the

factor ωUO relative to Seibt and Mancal ensures that the spectral density is

coupled to the system with a magnitude equivalent to only the undamped

coupling strength rather than being simultaneously dependent on the

magnitude of vibrational mode. The individual bath contributions are
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decomposed through contour integration which leads to poles at the Matsubara

frequencies, discussed in section 2.5.5.1. The process of deriving this hierarchy

is summarised graphically in figure 2.5.7, and shown in full in appendix D.

Following the process outlined in figure 2.5.7 results in the LDUO-HEOM,

equation (5.1.27) which is repeated here,

∂

∂t
ρ
(m,lk)
j1...jK

=

(
− i

ℏ
H×S −

∑
k

(lkγk +mΛLD)−
K∑

n=1

jnνn+

∞∑
n=K+1

B×Ψn

)
ρ
(m,lk)
j1...jK

−

∑
k

lkΘkρ
(m,lk−1)
j1...jK

−mΛLDϑρ
(m−1,lk)
j1...jK

−
K∑

n=1

jnνnΨnρ
(m,lk)
j1...jn−1...jK

−(
B×ρ

(m+1,lk)
j1...jK

+
∑
k

B×k ρ
(m,lk+1)
j1...jK

)
−

K∑
n=1

B×ρ
(m,lk)
j1...jn+1...jK

. (2.5.74)

This HEOM, by the nature of the undamped mode, is capable of generating

vibronic progressions from a pure vibrational mode interacting with an

overdamped environment. Consequently, canonical damping of the BVM will be

avoided.

2.5.5 Matsubara Frequencies and Hierarchy Dimensions

Matsubara frequencies arise from poles in the spectral distribution function in the

complex plane, and therefore are closely related to imaginary time. Imaginary

times, which often are used in EOMs to minimise energy, are discussed in further

detail in appendix E before being used to describe hierarchy dimensions.

2.5.5.1 Dimensions

As discussed in detail within the HEOM derivation, 2.5.4, the hierarchical

equations of motion is comprised of a number of terms, each of which operates

on an order of auxiliary density operator (ADO). These auxiliaries are

sub-equations which define contributions to the full density matrix at different

positions within the infinite hierarchy structure. The first term operates on

ADOs of order n and contains Markovian dynamics for the free propagation of

the system and also the dynamics of integer multiples of phonons corresponding

to non-Markovian free propagation of the environment. Then there are

non-Markovian and low temperature correction terms (depending on the

hierarchy variant) which are at orders n+, and n− and correspond to raising and

lowering between different auxiliary density operators. This creates a hierarchy

structure where each level couples above and below. In this way, non-Markovian
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feedback can occur throughout the system and bath stemming from different

ADOs. Finally, the infinite volume of ADOs created is terminated through a

constraint which is determined by physical system characteristics such as the

frequency, strength of bath coupling, or Markovianity. This constraint is

enforced at every level of the hierarchy through an inequality which results

either in the full equations of motion, or a terminator variant being applied

which seals the hierarchy volume. It is the entire hierarchy structure that

defines the nature of the system-bath interaction, but only one level of the

hierarchy has physical meaning: the zeroth layer - density matrix.

The aforementioned hierarchy structure of auxiliary density operators exists

within a coordinate space dependent on the number of Matsubara frequencies.

The Matsubara dimension space is a purely mathematical construction, but each

dimension relates to both the physical system properties and the magnitude of

the Markovian constraint applied. In an overdamped hierarchy we require the

sum of an infinite number of Matsubara frequencies in order to write the spectral

density, and we decompose in this fashion in order to resolve time dependent

bath contributions. In such a hierarchy this results in the first frequency being

real and related to the bath speed, and subsequent integer multiples of 2π
βℏ are

thermal frequencies arising as a consequence of poles in the spectral function.

ν0 = Λ, (2.5.75)

νk =
2πk

βℏ
. (2.5.76)

As such, the Markovian constraint, Γmax, applied on each ADO determines the

number of auxiliaries and the total number of Matsubara dimensions where each

frequency becomes its own independent axis.

#axes = K, (2.5.77)

2πK

βℏ
> Γmax. (2.5.78)

Along each axis will exist auxiliaries which contain interactions with integer

multiples of the Matsubara frequency of the given dimension. This corresponds

to the interaction of multiples of thermal phonons within the total system,

leading to non-Markovian feedback. At some point, the interactions are deemed

to be sufficiently small and fast relative to the system of interest, that they can

be neglected as Markovian dynamics by the action of Γmax. The full dimensions

of each HEOM depend on the number of Matsubara terms that are included in

the hierarchy. For example, the overdamped HEOM has a single temperature

independent contribution, at Λ, whereas the underdamped HEOM has two,

dependent on the sign of ζn. This depends on the type of spectral density used

to generate the full EOM, and is discussed alongside each respective HEOM
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along with an example of a sealed hierarchy.

2.5.6 Computational Implementation

From these EOMs, termination conditions, and hierarchy structures, python

functions which call efficient FORTRAN algorithms to step in a numerically

explicit fashion through the hierarchy have been developed. In particular, a new

FORTRAN script for the LDUO-HEOM has been generated and added to the

wider suite of over and underdamped codes which have been developed from

foundations established by D. Green173. Integration of the EOMs is achieved by

application of Fourth Order Runge-Kutta (RK4), detailed in appendix B, with a

step size of fifty attoseconds. This quadrature has been chosen for its

sophisticated weighted average of increments, when compared to other simpler

quadratures, which result in an improved numerical accuracy.

2.5.6.1 Computational Initial Conditions

Taking system Hamiltonian and bath coupling operators defined in the fashion

of section 2.2, it is possible to prepare the initial density matrix for a molecular

system, for example a vibronic dimer in the exciton basis,

ρED =
∑
k

Pk |ψS
D,k⟩ ⟨ψS

D,k| , (2.5.79)

where the initial population of each state is Boltzmann weighted,

Pk =
exp

(
− ϵk

kBT

)
Z

, (2.5.80)

and the canonical partition function, Z, is

Z =
∑
k

exp
(
− ϵk
kBT

)
= Tr

(
exp

(
−

HE
D

kBT

))
. (2.5.81)

Construction in this manner corresponds to employing an uncorrelated initial

conditions approximation, which is discussed in detail in section 2.5 and

appendix D, such that the initial state of the system and bath can be factorised.

As described by Tanimura the initial system-bath correlations, regardless of

whether they are factorised or correlated, must be established by propagation of

the HEOM for a few picoseconds prior to main simulations to allow introduction

and evolution of bathentanglement151. Simulations can be performed in the

site, vibronic, or exciton bases as long as this choice is consistent across all

operators.
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2.5.6.2 Hamming Apodisation Function

When the system-bath interaction is probed closely through the canonical

transform it can be easy to generate strongly underdamped signals which are

not conducive to application in the theories of spectroscopy and quantum

correlations. Overdamped hierarchies which exhibit particularly static

environments or underdamped hierarchies which contain very strong system

vibrational modes are examples of such systems. In these circumstances the

third order polarisation, discussed in section 2.4, persists indefinitely as a result

of strongly oscillating correlations between the system and bath. When this is

Fourier transformed to produce a 2DES spectrum, the strong oscillations are

translated into a poorly resolved peak with additional satellite peaks. Satellite

peaks of this kind can also be generated in experimental setups as a result of a

poor signal to noise ratio, and subsequently are typically removed through an

apodisation function. These functions are applied to the third order polarisation

to introduce a stronger level of, artificial, damping which reduces noise in

experimental signals and increases peak definition in models290–294. Within this

thesis, this is achieved by implementation of a Hamming function to force decay.

The Hamming apodisation function,

wHam(n) = a0

(
1− cos

(2πn
N

))
, (2.5.82)

for a domain [0, N ] and where a0 = 0.54, limits the oscillating component of

the system-bath correlation. Figure 2.5.8 shows the Hamming window, and an

underdamped third order polarisation signal and 2DES spectrum before and after

apodisation with a Hamming function.

As demonstrated in the polarisation signal in a), b) figure 2.5.8, the Hamming

function is similar to a two dimensional Gaussian in t and τ , acting to diminish

the rephasing signal within the 200 square femtosecond window of the

computation. a) results in a poorly defined 2DES peak, c), with artefact, satellite

peaks, emerging horizontally and vertically from the central peak as a result of

Fourier transforming a polarisation signal which has not sufficiently decayed

within the time window. b) corresponds to the more sharply defined 2DES peak

in d), which is equivalent to the peak in c) but when the oscillating polarisation

signal is made to decay within the time window.

The following chapters contain results derived from computational

implementation of the EOMs from section 2.5.4 and appendix D, as well as the

systems described in section 2.2, to measure the impact of a thermal bath and

moving the system-bath boundary on quantum information and quantum

correlations.
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Figure 2.5.8: a) Rephasing third order polarisation signal before application of
the Hamming window, and b) rephasing third order polarisation signal after
application of the Hamming window. c) 2DES spectrum of a single peak at

ω
(ν)
eg = 3000 cm−1 for a vibronic monomer, before apodisation, demonstrating

artifact satellite peaks, and d) 2DES spectrum of a single peak at
ω
(ν)
eg = 3000 cm−1 for a vibronic monomer after apodisation.
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3 Measuring Quantum
Information

3.1 Analysis of Quantum Information and Spectral

Lineshape

Based on the theory outlined in section 2.2, it is possible to generate models for

a range of vibronic molecules which can then be evolved through EOMs

constructed in section 2.5.4 in the presence of a thermal bath with a range of

possible damping strengths. To begin addressing Hypothesis 2a, we consider the

broad range of possible scenarios and how these are impacted by the location of

different degrees of freedom within the system. The differences in location of

the vibrational mode relative to the system-bath boundary for the undamped,

overdamped and underdamped scenarios are shown in figure 3.1.1.

The first of these cases, figure 3.1.1 a), is when the total system is undamped.

This corresponds to a model where the electronic degrees of freedom of the

system are coupled purely to a single vibrational mode, which can then be

evolved in the absence of a bath. When the system is undamped, oscillations

within the correlation functions persist indefinitely and subsequently the

macroscopic polarisation decays very slowly due to dephasing, over a period of

nanoseconds, as the electronic excited state relaxes. This leads to spectral

lineshapes which are dominated by the slow dephasing interaction, with a

vibronic progression of sharp Lorentzian peaks with breadths proportional to

the electronic excited state lifetime. This collection of peaks in the linear

spectrum are generated as the result of the Franck-Condon principle, whereby

electronic transitions occur without changes to the nuclear degrees of freedom.

The intensity of each of the peaks within the progression are determined by the

overlap integrals of the respective quantum harmonic oscillator bound

eigenstates, described by Franck-Condon factors as discussed in section

2.2.1.1295–297.

When this model is opened through the addition of an overdamped bath,

capable of inducing electronic dephasing, the correlation function begins to

decay rather than purely oscillating. This results in a more rapid decay of the
aAre genuine quantum effects strongly impacted by system-bath boundary placement, and can

these impacts be controlled by approximations and advanced formalisms?
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Figure 3.1.1: The limits of damping in terms of the system-bath boundary in
what later becomes known as the Hamiltonian versus Spectral vibration models.

a) The absence of any bath interaction results in a closed system which is
undamped. In b), the vibrational levels are contained within the system

Hamiltonian, and then coupled to an overdamped bath with a Lorentz-Drude
spectral density. In c), a canonical transformation moves the vibrational mode

into the bath degrees of freedom such that the system Hamiltonian contains the
electronic states only. Bath interaction with this system is then modelled as an

underdamped Brownian Oscillator.

macroscopic polarisation, of the order of hundreds of femtoseconds, which leads

to considerable peak broadening. This scenario, known as the Hamiltonian

vibration model in section 3.2, is depicted in figure 3.1.1 b). Additionally, the

vibration is introduced through hot vibrational states in the Hamiltonian. In

such a model, the broadening is applied uniformly to each vibronic peak, rather

than peak specific broadening which is applied by structured spectral densities.

In contrast, as in c), the fundamental system vibration can be subsumed into the

bath through the canonical transform, leaving only electronic states coupled to a

bath modelled by an underdamped Brownian oscillator. This construction,

known as the bath (or spectral) vibration model in section 3.2, has only explicit

electronic levels within the Hamiltonian and the interaction with an external

laser field is only able to induce electronic transitions. However, as a

consequence of the mathematical equivalence between canonically transformed

models and those models without a canonical transform, a vibronic progression

may still emerge in the linear spectrum as a consequence of the oscillations

within the system-bath correlation function caused by strong coupling to the

underdamped mode. Through combinations of these scenarios it is possible to

construct models which consist of electronic states coupled to multiple

vibrational modes, which each could be damped by separate under or

overdamped baths154,157. A detailed analysis of these additional scenarios is

considered throughout sections 3.2, 4.3, and 5.
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Figure 3.1.2: Linear absorption spectra for a vibronic monomer where a)
Hamiltonian vibrational degrees of freedom result in peaks broadened by an

overdamped bath and b) system vibrational structure within the bath degrees of
freedom generate a vibronic progression which is broadened by an

underdamped bath.

A comparison of linear absorption spectra for the HVM and BVM systems is

considered for a vibronic monomer. The vibronic monomer system, defined in

2.2.1.1, has a fundamental electronic transition of ω(ν)
eg = 3000 cm−1, a mode

frequency of ω(ν)
0 = 500 cm−1, and a dimensionless excited state displacement

d̃0 = 1 such that the system reorganisation energy is λ(ν)0 = 300 cm−1. Here, the

superscript (ν) is applied to computational parameters which have been

converted to the units of wavenumbers via the multiplication by (2πc)−1 for

angular frequencies or c−1 for linear frequencies. This is in contrast to the

notation traditionally adopted in the Jones group, such as in Green173, of {̃·}
which in this thesis is reserved for transformations of mathematical functions

and variables such as through the Fourier transform.

Figure 3.1.2 presents this spectrum where, in a), the system vibrational

degrees of freedom for a single strongly coupled mode are contained within the

Hamiltonian, versus vibrational structure contained purely within the bath as in

b). The vibrational structure contained within the Hamiltonian, in a), is

generated through a truncation at ν0 = 5, where ν0 is the vibrational quantum

number for the 0th mode. Additionally, d̃0 results in a sufficiently small

Huang-Rhys factor for the most intense peak, which corresponds to the

fundamental transition, without loss of additional peaks within the vibronic

progression. Hot band transitions, at frequencies lower than the fundamental,

are due to the minimum in vibrationally excited states of the ground electronic

state. Additionally, each peak within the vibronic progression is uniformly

broadened by the action of coupling to the single overdamped bath. This is

achieved through the dephasing operator B1,M, from (2.2.47), which has an

associated bath reorganisation energy of η(ν)1 = 20 cm−1 and a bath speed of

Λ(ν) = 40 cm−1 at 300K. The Markovian truncation criterion for the HEOM is
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set at Γ(ν)
max = 2000 cm−1 such that there are 187 ADOs within the overdamped

hierarchy.

In contrast, when explicit vibrational structure is canonically transformed out

of the Hamiltonian as in figure 3.1.2 b), the remaining system structure is an

electronic two-level system with ground and excited states, |g⟩ and |e⟩. The

resulting Hamiltonian is of the form

HS = −ℏωeg

2
σz = ℏωeg |e⟩⟨e| , (3.1.1)

where ωeg is the fundamental electronic transition frequency, and σz is the

diagonal Pauli matrix capable of inducing pure dephasing. The bath is defined

as an underdamped Brownian oscillator with an equivalent coupling operator to

that which is used in a), B1 = |e⟩⟨e|. In addition the mode frequency and

temperature also remain the same at ω(ν)
0,1 = 500 cm−1 and 300 K, respectively.

In contrast, the bath damping parameter, Λ, is replaced by the underdamped

equivalent as discussed in section 2.2.2.2, γ1 = 100 cm−1, and the bath

reorganisation energy, which in the course of a canonical transformation tends

towards the system reorganisation energy λ0, is slightly increased to

η
(ν)
1 = 500 cm−1 in order to generate a vibronic progression of equivalent

intensity. The hierarchy is terminated with a Markovian criterion of

Γ
(ν)
max = 2000 cm−1 resulting in an underdamped hierarchy containing 95 658

ADOs. The two spectra are generated from correlated initial conditions,

discussed in section 2.4.2, where the monomer dipole moment µM from

equation (2.2.80) is used in figure 3.1.2 a) and µ = µegσx for b), with a

magnitude µeg = 11 D. Here σx is the off-diagonal Pauli matrix. As a

consequence of the canonical transform, generation of the similar vibronic

progression to that of figure 3.1.2 a) is a direct consequence of bath interactions

and each peak is individually broadened by the damping parameter γ1. Overall,

this highlights how an undamped vibronic progression is broadened uniformly

by the bath in figure 3.1.2 a), but that in figure 3.1.2 b) the vibronic progression

emerges from the spectral vibration and its interaction with the bath degrees of

freedom, in competition with the damping.

The differences between these two approaches become more apparent in the

2D spectra where the homogeneous and inhomogeneous broadening can be

observed as a function of the population time, T . 2DES corresponding to the

linear spectra in 3.1.2 are shown in figure 3.1.3 for population times T = 0, 80,

and 200 fs, calculated from the response function in the impulsive limit, as in

section 2.4.3.1. The peaks present within these spectra are each separated by

the system mode frequency, and each peak has dynamical intensity proportional

to the broadening, dependent on the population time T , which is controlled by

the level of coupling to the vibrational mode and its location. In figure 3.1.3 a),

134



Chapter 3: Measuring Quantum Information

Figure 3.1.3: 2D electronic spectra for a vibronic monomer where, in a) – c),
Hamiltonian vibrational degrees of freedom result in peaks broadened by an
overdamped bath and, in d) – f), system vibrational structure within the bath
degrees of freedom generate a vibronic progression which is broadened by an

underdamped bath.

the vibration is contained within the Hamiltonian, and as a result the peaks are

elongated along the diagonal. For early population times there is considerable

inhomogeneous broadening as a consequence of the strong overdamping which

is applied uniformly to the peaks. As the population time increases the

correlation between the excitation and emission frequencies decays resulting in

equivalent levels of homogeneous and inhomogeneous broadening and rounded

peaks: spectral diffusion. In direct contrast, spectra in figure 3.1.3 b) are

generated with system vibrations subsumed into the bath degrees of freedom.

The immediately complementary lineshape is characterised by its Lorentzian

shape which is as a consequence of the peak specific broadening induced by γ1.

Despite this, the peak locations, and emergence of any vibronic structure, are as

a direct consequence of bath interaction highlighting the difference in

information transfer between the system and bath. This is discussed further in

sections 3.2 and 3.3. It is worth noting that the regions of negative intensity in

the spectra, particularly for population times close to zero, are an artefact due to

the unequal intensities of the rephasing and non-rephasing components, and is

mentioned in section 2.4.3.2.

For systems which have more vibrational structure than a vibronic monomer,

such as dimers or lattices which are discussed further in section 2.2.1.2, a far

larger Hamiltonian is required and therefore a greater number of auxiliaries are

necessary for propagation. The dimensions of the Hamiltonian can be reduced

by truncating the required number of explicit energy levels, either by

introducing a hard limit to the α and n degrees of freedom, or by canonically
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extracting the vibrational component entirely. The number of auxiliary density

operators is dependent on the bath complexity and level of damping.

Underdamped environments introduce more Matsubara frequencies, and

non-Markovian dynamics induce larger integer multiples of phonon interactions

within the bath which requires many more ADOs to propagate. Both areas of

complexity have advantages and disadvantages such as issues concerning

truncation of energy levels and number of explicit modes, which are addressed

in sections 3.2, 3.3, and 4.3.

3.1.1 Limits of the Lineshape

As a first step in understanding the nature of the canonical transform we

consider the limits of lineshape under a range of physical and model conditions,

as first presented in Green173. A full range of damping strengths from over to

underdamped, excluding only critical damping, is performed and the linear

spectra are analysed. First, a set of linear absorption spectra are generated using

the same parameters as those for figure 3.1.2 and in turn, the temperature, bath

dissipation rate/homogeneity, are varied holding all other parameters fixed.

This is performed for both the overdamped and underdamped baths so that the

dependence of lineshape on all of the parameters involved in the simulations is

ascertained.

In a) and b) of figure 3.1.4 there is a clear vibronic progression with peaks at

integer multiples of the system mode frequency above the fundamental

transition. All peaks within these panels demonstrate a Lorentzian shape as a

consequence of the mode frequency being much greater than the bath damping

which limits the FWHM. In b) the vibronic progression is sharply defined due to

the decreased temperature for many of the runs. At lower temperatures bath

motion is reduced and the environment ensemble is limited to a small number

of frequencies, narrowing the Lorentzian peaks towards delta functions. In the

limit of zero temperature, with the exception of finite widths from the quantum

uncertainty principle, the correlation function for this model would become a

pure oscillation as the ensemble becomes a single frequency. In a), with a fixed

temperature of 300 K the peaks are less well defined due to increased

broadening. Peak area is preserved such that, as bath speed increases the peaks

broaden and decrease in intensity. This is as a consequence of the increased

dephasing associated with larger bath damping. Due to dephasing the

indistinguishable states of the system becomes increasingly distinguishable as

separate frequencies, which corresponds to a recurrence of information as the

distinguishability increases.

In e) and f) of figure 3.1.4, when the system is coupled to an overdamped
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Figure 3.1.4: a) For an overdamped bath, η(ν) = 20 cm−1, T = 300 K are held
fixed while the homogeneity is varied and measured by d̃τc. Values include: 0.2,

0.4, 2, 4, 10 and 20. b) For an overdamped bath, η(ν) = 20 cm−1, and
Λ(ν) = 45.7 cm−1 are held fixed while the temperature is varied. Values include:
220, 240, 260, 280, and 300K. This is considered a Hamiltonian vibration. c) For
an underdamped bath, η(ν) = 500 cm−1, ω(ν)

0 = 500 cm−1, and T = 300 K are
held fixed while the bath dissipation rate, γ(ν) is varied. Values include: 50, 100,

150, 200, and 250 cm−1. d) For an underdamped bath, η(ν) = 500 cm−1,
ω
(ν)
0 = 500 cm−1, and γ(ν) = 100 cm−1 are held fixed while the temperature is
varied. Values include: 220, 240, 260, 280 and 300 K. This is considered a

spectral vibration. e) For an overdamped bath, η(ν) = 20 cm−1, T = 300 K are
held fixed while the homogeneity is varied and measured by d̃τc. Values include:

0.2, 0.4, 2, 4, 10 and 20. f) For an overdamped bath, η(ν) = 20 cm−1, and
Λ(ν) = 45.7 cm−1 are held fixed while the temperature is varied. Values include:
220, 240, 260, 280, and 300 K. In this instance vibrational structure is removed.
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bath, the bath dephasing rate Λ(ν) leads to a range of environment

homogeneities. Physically, homogeneity is a description of how rapidly the

environment returns to equilibrium after perturbation. When the response time

is very slow the environment will separate into distinct sub-environments with

different properties, however when the response time is fast the bath will act as

a thermal reservoir, averaging out any perturbations. The homogeneity is

measured through the dimensionless quantity d̃τc, where d̃ is description of the

spread of transition frequencies across the ensemble due to stochastic

modulation, and τc is the lifetime of correlations within the system before it

returns to equilibrium. For fast correlation response times, relative to the

amplitude of the fluctuation, the environment is characterised as white noise.

This is the homogeneous limit which is defined as d̃τc ≪ 1. The bath response is

rapid enough that all perturbation of the excited state due to dephasing is

thermally averaged, producing a uniform interaction across the ensemble and a

sharply defined Lorentzian peak138. Contra-thermal narrowing is the spectrum

produced in the inhomogeneous limit, defined as d̃τc ≫ 1. In such a scenario the

distinct sub-environments lead to a Gaussian spread of frequencies, and a range

of different bath interactions, which decreases the intensity at the fundamental

frequency and broadens the peaks. This corresponds to a range of correlation

response times for the rate of return to equilibrium, characteristic of a static

environment ensemble. Subsequently, figure 3.1.4 e) demonstrates the full

range of homogeneities from sharp Lorentzian peaks when d̃τc ≪ 1 in the

thermally averaged regime, which broadens into a shallow Gaussian as the

homogeneity tends towards d̃τc ≫ 1 and the static limit. When in the

inhomogeneous limit there is also a Stokes Raman shift corresponding to an

increased emission wavelength as a photon is excited, but upon relaxation it

returns to a hot vibrational state37,120. Figure 3.1.4 f) demonstrates an

equivalent decrease of the FWHM of the Gaussian lineshape of an

inhomogeneous overdamped system, equivalent to that which is presented in b).

This change is linked directly the changing value of d̃ with temperature and is a

consequence of the spread of transition frequencies within the ensemble.

Finally, c) and d) show results in agreement with those in a), b) and e), f) but

with additional spectral broadening. This highlights the difference of moving

the system-boundary.

Distinguishable transition frequencies which lead to Gaussian peaks, versus

indistinguishable thermally averaged transitions which have motionally

narrowed peaks, indicate that quantum information is the mediator of the

additional damping. Non-Markovian recurrence of information along quantum

channels, discussed in 2.1.4, lead to changes in the information content of the

system of interest which manifests as measurable lineshape changes. We

quantify these changes and the relationship between non-Markovianity and

lineshape through 2DES in the next section.
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3.1.2 Quantifying Non-Markovianity and Its Effect on Spectral
Lineshape

Quantification of the impact of non-Markovianity on the spectral lineshape is

achieved through implementation of the BLP measure of quantum information,

detailed in section 2.1.5, on a model system under a range of bath conditions

spanning all damping limits, first presented in Green et. al.1. The degree of

Markovianity is then compared with linear and 2DES lineshape, calculated with

the same model and parameters as those use to generate 1DES in figure 3.1.4,

to link memory-effects and spectral features directly. This model is constructed

as an electronic two-level-system with a fundamental frequency of

ω
(ν)
eg = 3000 cm−1, associated dipole operator µ = σx, and with all vibrational

degrees of freedom canonically transferred to the bath. The bath is constructed

as having a single vibrational mode, ω(ν)
0 = 500 cm−1 so that the system is

coupled to an underdamped Brownian oscillator when γ ≪ ω0, or an

overdamped bath when γ ≫ ω0. The HEOM is used to compute the dynamics of

the system evolution through equations (2.5.55), or (2.5.41) in the under and

overdamped limits, respectively. Within this work, a single environment bath is

necessary such that n = 1 for EOMs in section 2.5. The bath is coupled to the

system through a pair of summed operators accounting for both dephasing and

dissipation,

B = σx +
σz
2
, (3.1.2)

where σ{·} are Pauli matrices. In addition, the bath reorganisation energy is

fixed at η(ν) = 20 cm−1 with an excited state displacement of d(ν) = 91.33 cm−1

at a temperature of 300 K. The resulting Huang-Rhys parameter of

SHR = η
ω0

= 0.04 corresponding to a small mean phonon modulation198. A full

spectrum of damping strengths are considered, presented in table 3.1 along with

the associated dissipation rates, Λ, correlation times, τc, and d̃τc for overdamped

baths. This range of values were chosen to facilitate observation of the

underdamped and overdamped limits, as well as homogeneous and

inhomogeneous limits in the latter case, through scanning only the selected

damping strengths.

The BLP metric of non-Markovianity, N , is generated for each set of

parameters through comparing the dynamics of the system from two different

initial conditions: after interaction with a single Gaussian laser pulse, and

without interaction. The initial condition for this system is the electronic ground

state,

ρS(t = 0) = |g⟩⟨g| =

(
1 0

0 0

)
. (3.1.3)

The system is then propagated for 2.05 ps to introduce bathentanglement, with

the Markovian truncation criterion set to Γ
(ν)
max = 5000 cm−1. Through
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γ(ν)/cm−1 Λ(2π)−1/fs−1 τc/fs d̃τc

50 0.1500 7 -

275 0.0273 37 -

500 0.0150 67 -

950 0.0079 127 0.35

1 500 0.0050 200 0.55

3 000 0.0035 400 1.10

9 000 0.0008 1 200 3.29

Table 3.1: Damping strengths, dissipation rates and correlation times used, for
η(ν) = 20 cm−1 such that d(ν) = 91.33 cm−1 at 300 K. d̃τc are given for

overdamped environments only. Results in red are those which are very close to
the critical damping value, 1 000 cm−1, and demonstrate a failure of this EOM.

Based on the study in Green et. al.1.

application of the semi-classical theory of system-field interactions, introduced

in section 2.2.3, the system-field interaction is added to the Hamiltonian and

evolved. The incident field has a Gaussian envelope centred at τm = 2 ps. After

the pulse has decayed, corresponding to a complete interaction, the ADOs are

propagated for an additional 2 ps, resulting in the states which are used for the

calculation of the BLP. Each of the lasers, applied to the sets of parameters, are

identical with a strength χ = 103 Vm−1, and a frequency chosen to be exactly on

resonance with the fundamental transition of the system, ω(ν)
eg . The system

which is propagated without interaction, denoted ρ1, is achieved by setting the

FWHM of the pulse to 0 fs, whereas the secondary setup (for ρ2) is generated

from a pulse with FWHM of 20 fs.

The following results, in a) and b) of figure 3.1.5, present the trace distance

D(ρ1, ρ2) and the cumulative integrated positive flux
∫
σ > 0 dt respectively, for

each of the sets of parameter sets listed in table 3.1. In particular, these results

demonstrate the effect described in figure 2.1.2, whereby a loss of

distinguishability of states ρ1 and ρ2 is mediated by losses of information and

energy to the bath resulting in a decreased trace distance. It is clear that, if the

minor oscillatory mode is temporarily discounted, the global trend is a

monotonic decrease of the trace distance synonymous with globally Markovian

dynamics. However, the minor oscillations within each curve demonstrate that,

particularly at early times, there are periodic recurrences of information due to

the positive flux. Figure 3.1.5 b) demonstrates that in all cases there is a positive

flux, σ > 0, of information which is a consequence of non-Markovian recurrence

of information from historic states imprinted on the bath. The maximum of each
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Figure 3.1.5: a) Trace distance, D(ρ1, ρ2). b) Cumulative integration of the
positive flux, with maximum equal to N , for each of the damping strengths in
table 3.1. c) and d) depict the trace distance and cumulative flux, respectively,
for a greater range demonstrating the divergence at close to critical damping.

These results are based on similar considerations in Green et. al.1.

line is the associated degree of non-Markovianity N .

One of the major trends from figure 3.1.5 is that baths with a lower damping

rate show a more prolonged increase in the integrated total flux. This is further

exemplified by figure 3.1.6 in which, for γ(ν) = 50 cm−1, γ(ν) = 275 cm−1, and

γ(ν) = 500 cm−1, the positive flux is characterised by low amplitude, long lived,

oscillations which provide a continuous recurrence of information from the bath

to the system. In b) of figure 3.1.5 the underdamped parameter regimes also

exhibit a much more gradual increase in integrated flux, as a consequence of the

continual feedback of information. Additionally, it is clear that after

approximately 2 ps the integrated flux for γ(ν) = 500 cm−1 is beginning to

plateau, similar to overdamped baths, but after the same time the flux for

γ(ν) = 50 cm−1 is still increasing. This suggests that the maximum measurable

non-Markovianity is achieved more gradually in baths with weaker damping. In

contrast to the persistent oscillations within the underdamped flux, overdamped

baths exhibit a rapid decay of all oscillations. When the bath damping strength

is increased into the overdamped limit, γ(ν) = 1500, 3 000, and 9 000 cm−1,

oscillations decay within the first hundred femtoseconds corresponding to an

immediate intense recurrence of information from the bath followed by

irreversible Markovian transfer of energy and information to the bath. This

profile of a small period of non-Markovianity followed by strong Markovianity is

equivalent to intense, short-lived, environment interaction inducing memory
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Figure 3.1.6: Positive flux of the trace distance shown in figure 3.1.5, for each of
the damping strengths in table 3.1, demonstrating the periodic recurrence.

These results are based on similar considerations in Green et. al.1.

effects, shortly followed by a Markovian process. This description is consistent

with a rapid reorganisation of solvent molecules upon system excitation,

followed by relaxation of the excited state, generating the globally Markovian

profile expected for a TLS. Furthermore, as the damping strength increases from

γ(ν) = 1500, to 9 000 cm−1, both the rate of reaching the maximum

non-Markovianity and the maximum non-Markovianity increase. This suggests

that inhomogeneous overdamped baths, which have more static environments,

present greater non-Markovian feedback than those which are homogeneous.

This highlights the importance of non-Markovian feedback in static,

inhomogeneous, environments but that underdamping is an even greater source
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γ(ν)/cm−1 d̃τc N FWHM (±1)/cm−1

50 - 0.512 7

275 - 0.107 19

500 - 0.124 32

950 0.35 1.74 51

1 500 0.55 0.048 99

3 000 1.10 0.076 150

9 000 3.29 0.096 198

Table 3.2: Measured N and linear absorption spectrum FWHM for each
damping strength in table 3.1, for η(ν) = 20 cm−1 such that d(ν) = 91.33 cm−1 at
300 K. d̃τc are given for overdamped environments only. Data in red is close to
the critical damping value, 1 000 cm−1. Based on the study in Green et. al.1.

of non-Markovianity despite it taking longer to develop. In addition this

presents the possibility that a minimum of non-Markovianity may exist in the

homogeneous thermally averaged, overdamped limit. The measured maximum

non-Markovianity after 2 ps is presented in table 3.2.

The patterns which emerge from the non-Markovianities are comparable to

those found within the spectral lineshape of the linear and 2D spectra. For each

set of parameters within table 3.1 the linear and 2D spectra were calculated

from the molecular response function in the impulsive limit, with correlated

initial conditions, as described in section 2.4. The expected behaviour, of

Lorentzian and Gaussian lineshapes, are presented in the linear spectra, figure

3.1.7. The sharpest peak is observed at the smallest damping rate,

γ(ν) = 50 cm−1, with an intense Lorentzian peak at the electronic transition

frequency, with a secondary vibronic peak at ω(ν)
eg + ω

(ν)
0 . The vibronic peak has

a dramatically lower intensity as a consequence of low mean phonon deviation,

even in the underdamped limit with SHR = 0.04. As the damping is increased,

signifying an increase in quantum information returned to the system, through

γ(ν) = 275 cm−1, to γ(ν) = 500 cm−1, the intensity of the peak at the

fundamental decreases and the broadening increases resulting in the vibronic

peak being obscured. However, the secondary peak is not just hidden by

increased broadening, but vanishes as the model moves from the underdamped

to the overdamped limit. This peak results from prolonged non-Markovianity,

which is synonymous with persistent oscillatory correlation such as in figure

3.1.6. This oscillation is able to exist beyond 2 ps because the vibrational mode

has been subsumed into the environment degrees of freedom by the canonical

transform which intrinsically links the system and bath degrees of freedom.
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Subsequently, spectroscopic measurements in underdamped models can probe

the combined canonically transformed environment degrees of freedom which

include both system and bath modes. Therefore, in the limit of weak damping,

reversible information exchange between the system and bath occurs which

leads to the secondary vibronic peak, but this peak vanishes in other damping

regimes.

In the overdamped limit the intensity of the fundamental continues to

decrease as the lineshape profile changes, dependent on the temperature and

environment. The FWHM of the fundamental peak for each of the parameter

regimes is listed is table 3.2. If the model is at high temperature, such that the

high temperature approximation kBT ≫ ℏΛ is valid, then the absorption

spectrum in the thermally averaged (homogeneous) limit has a Lorentzian

structure described by

I(ω) =
Γ

(ω − ωeg)2 + Γ2
, (3.1.4)

where the FWHM is defined as 2Γ = 2d̃2τc
37,120. This formula for the FWHM

predicts that, for a relatively overdamped bath γ(ν) = 1500 cm−1 with

homogeneity d̃τc = 0.55, the FWHM should be 100 cm−1. The predicted value is

in good agreement with the measured value, in table 3.2, where the difference

in the two values arises from d̃τc = 0.55 being too large with respect to that of

the perfectly thermally averaged limit, d̃τc ≪ 1. Similarly, a fully static bath in

the inhomogeneous limit, d̃τc ≫ 1, has a linear spectrum described by a

Gaussian profile,

I(ω) =
√
2πd̃2 exp

(
− (ω − ωeg)

2

2d̃2

)
, (3.1.5)

with a predicted FWHM of 2
√
2ln2 · d̃, which is directly proportional to the

amplitude of fluctuations37,120,298. Similar to the Lorentzian profile, the

predicted value of 215 cm−1 is close to the measured value in table 3.2 when in

the inhomogeneous regime, γ(ν) = 9000 cm−1. Again, the discrepancy between

the two values highlights that d̃τc = 3.29 does not represent a perfectly static

environment, but does highlight that 3.29 is sufficiently greater than 1 to

produce a closer approximation than its homogeneous counterpart.

As discussed, when in the inhomogeneous limit, the long response time to

perturbations causes bath motion to be effectively static with respect to the

timescale of system relaxation, leading to a Gaussian, normal, distribution of all

transition frequencies within the ensemble. This process demonstrates the

concept depicted in figure 2.1.2, whereby, in the static limit when localised

inhomogenities contribute to the lineshape, there is maximum distinguishability

and information within the system. Similarly, when in the homogeneous

thermally averaged limit, short correlation times result in an identical

system-bath interaction across the entire ensemble corresponding to a narrowed
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Figure 3.1.7: Calculated linear absorption spectra for each of the damping
strengths in table 3.1. The black data shows an unnatural broadening away

from the mutual intersection of other spectra due to the EOM failure at critical
damping. These results are based on similar considerations in Green et. al.1.

lineshape, and a minimum of information and distinguishability138. This is in

agreement with the results observed in the overdamped limit in figures 3.1.5

and 3.1.6 where the maximum N is larger and obtained through a large initial

information flux. As is demonstrated in figure 3.1.6 by the maximum flux

localised around the origin, in inhomogeneous systems non-Markovian feedback

is almost instantaneous. Whereas, in the homogeneous limit the

indistinguishable, constant, system-bath interaction leads to a delta function

correlation function after Fourier transform resulting in completely numerically

explicit, Markovian, dynamics138. This behaviour is the source of the dip in

maximum integrated flux in figure 3.1.5 on increasing the damping strength: N
decreases on moving from the underdamped limit to the homogeneous

overdamped limit, through the critical region, and then increases again as the

overdamped environment becomes more static. These observations demonstrate

how effective HEOM methods are at correctly accounting for non-Markovian

dynamics induced by coloured and structured spectral densities150,155.

The 2DES for each set of parameters are computed for population times

T = 0 − 300 fs for the γ(ν) = 275 cm−1 underdamped bath and for the three

overdamped baths and are presented in figure 3.1.8. Each of the four cases is

labelled with its homogeneity, d̃τc, with the exception of the underdamped bath

which is denoted γ < ω0. In the underdamped limit the spectra, irrespective of

the population time, exhibit a very intense narrow Lorentzian peak which does

not decay or oscillate. The overdamped spectra are significantly less intense,

and broader, demonstrating a loss of inhomogeneous elongation proportional to
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Figure 3.1.8: Absorptive 2D spectra for population times T = 0− 500 fs for the
γ(ν) = 275 cm−1 underdamped bath, labelled γ(ν) < ω

(ν)
0 , and the three

overdamped baths, identified by their d̃τc values from table 3.1, normalised to
the maximum of d̃τc = 0.55 at T = 0 fs. These results are based on similar

considerations in Green et. al.1.

the decay of the system-bath correlation. This process, termed spectral diffusion,

transforms peaks which are elongated along the diagonal for early population

times into evenly rounded peaks with equivalent diagonal and anti-diagonal

broadening. The ellipticity, denoted Eω, is a quantification of the level of

broadening along the diagonal, ςD, and the anti-diagonal, ςA, through an

analytical, fitted, Gaussian. This allows for the direct measurement of the

system-bath correlation function, and the quantification of ‘how elliptical’ a peak

in a 2D spectrum is280,299,300,

Eω =
ς2D − ς2A
ς2D + ς2A

. (3.1.6)

Alongside the 2DES, the ellipticities of the peaks at each population time are

considered and plotted in figure 3.1.10.

At zero population time, spectra generate peaks which are Lorentzian in the

underdamped limit, through to a strongly diagonally elongated Gaussian in the

case of d̃τc = 3.29. This is a consequence of the increased damping upon

movement from the homogenenous bath, d̃τc = 0.55, to the static limit, and

correctly generates a Lorentzian to Gaussian transition as was observed in the

linear spectra of figure 3.1.7. Additionally, the degree of diagonal elongation
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relative to the anti-diagonal homogeneous broadening suggests that, even in the

most homgeneous of the overdamped baths, the environment is not fully

thermally averaged. However, in contrast to the overdamped spectra, disparity

between the homogeneous and inhomogenenous broadening is entirely absent

in the underdamped spectrab. Inhomogeneous elongation is present within all

spectra with T < τc, as it is dependent on the decay of correlation between the

system and bath.

The ellipticity, in figure 3.1.10 further highlights the fact that there is an

exponential decay in the inhomogeneous broadening, but additionally that the

slower decay for static environments is accompanied by a corresponding

increase in the total non-Markovianity, N . Short correlation times, associated

with homogeneous conditions, produce the most rapid decrease in ellipticity as

demonstrated by the data for d̃τc = 0.55. Consequently, elongation present

within the 2DES, figure 3.1.8, for this parameter regime has decayed within 300

fs, however, elongation still persists in the most inhomogeneous d̃τc = 3.29 case.

In addition, increased correlation times result in significantly more spectral

diffusion which produces round peaks, with Gaussian diagonal and

anti-diagonal slices, for long times, whereas shorter correlation times produce

Lorentizan slices. This is further discussed in appendix F. The trends present

within figures 3.1.8, 3.1.5, and 3.1.7 confirm that 2D lineshape can be treated in

an equivalent fashion to one dimensional lineshape, and conclusions regarding

the broadening and total non-Markovianity will be consistent. In the

inhomogeneous limit when there is slow diffusion, and correlations induced by

stochastic perturbation persist, there will be considerably more non-Markovian

feedback leading to diagonal elongation of peaks, representing the increased

information which the system possesses about the distribution of ensemble

frequencies. As the damping is decreased, shifting the regime towards the

homogeneous limit, shorter correlation times prevent the same degree of peak

diagonal elongation. This corresponds to a reduced level of non-Markovian

feedback, in comparison with the inhomogenenous limit, increased diffusion

speed, and an increase in irreversible dissipation. The increased degree of

non-Markovianity in the case of d̃τc = 3.29 at zero population time is also

attributed to the greater elongation of the peak in the 2DES when compared to

that of the homogeneous parameters.

The black flux data-set in figures 3.1.5 – 3.1.10, which corresponds to the red

data within tables 3.2 and 3.1, with particular emphasis on 3.1.7, demonstrates

that the underdamped HEOM is insufficiently stable between the homogeneous

overdamped regime and the underdamped limit to further explore

non-Markovianity in this region. This is as a consequence of the basis failure

bUnderdamped spectra employ a Hamming apodisation function, in agreement with
experimental procedures, discussed in section 2.5.6.2.
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Figure 3.1.9: Spectral slices of the absorptive 2D spectra at a population time of
T = 0 fs shown for each of the overdamped homogeneities, d̃τc values shown in

table 3.1, which are used to generate the ellipticity in figure 3.1.10.

Figure 3.1.10: Ellipticity, Eω, of the absorptive 2DES against the measured
maximum non-Markovianity, N , for the three overdamped baths, identified by

their d̃τc values, for a) T = 0, 50 and 100 fs and b) T = 0− 500 fs, sampled at 10
fs intervals. These results are generated from the spectral slices in figure 3.1.9.

These results are based on similar considerations in Green et. al1.

present in the over, under, ASD-, and LDUO- HEOMs described in section 2.5

when in the region of critical damping. This failure is most obvious in the fluxes

in c) and d) of figure 3.1.5 in which there is a divergence. This divergence

results in a lifting of the positive flux away from the time axis for long time,

observed in figure 3.1.6, corresponding to Markovian dynamics vanishing. The

result of this is that there is significantly more relative non-Markovian

recurrence, and damping, which leads the one dimensional lineshape of figure

3.1.7 for γ(ν) = 500 cm−1 to broaden away from the shared intersection at

ω(ν) ∼ 2 800 and 3 300 cm−1. Further parameter regimes in the under and

overdamped limits, and a study involving the gHEOM, (2.5.69), would help

rectify this problem. However, a full analysis of damping strengths is beyond the

scope of this thesis, and is left as future work, dependent on the implementation

of the gHEOM.

In summary, this study has shown that a decrease in the damping strength for

a Brownian oscillator of fixed mode frequency and reorganisation energy results

in the maximum non-Markovianity being reached at a slower rate. Additionally
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it has been demonstrated that the largest values of N are generated for

underdamped baths in which there are persistent oscillations in the correlation

function as a consequence of static environments, leading to prolonged feedback

of information from the bath to the system. In contrast, as the damping is

increased and the system moves into the homogeneous overdamped regime the

total non-Markovianity reduces due to the shorter correlation times and

increased Markovian dissipation. These features have been corroborated by the

ellipticity of the 2D spectra for equivalent parameter regimes such that the

intrinsic link between non-Markovianity and inhomogeneous broadening is

confirmed. Any increase in non-Markovianity, N , leads to inhomogeneous

broadening which is proportional to the information gained by the system from

the bath, and in canonically transformed systems this impacts the bath and

system components of the total environment degrees of freedom.

Now that we have quantified the non-Markovianity within OQS and have

linked this to spectral lineshape it is possible to use this to address the remaining

question: what is the impact of canonically transforming a system vibration into
the bath, and are the two resulting models still completely equivalent?

3.2 Hamiltonian versus Bath/Spectral Vibration for a

Homodimer

Through the canonical transform the complexity of a model OQS can be shifted

from the Hamiltonian to the spectral density leading to mathematically

equivalent descriptions of the total system. A system containing a fundamental

intramolecular vibration can be constructed with vibrational degrees of freedom

expressed as explicit energy levels within the Hamiltonian, up to a point of

truncation in ν, or with vibrational degrees of freedom canonically subsumed

into the bath. The model with Hamiltonian vibrational structure is denoted the

Hamiltonian vibration model (HVM), whereas when the intramolecular vibration

is a component of the environment degrees of freedom the model is termed the

bath/spectral vibration model (BVM)2. In order to elucidate the impact on 2DES

lineshape of this system-bath boundary placement, a pair of mathematically

equivalent models are generated and their spectra calculated and compared.

The generated spectra are suitable for comparison as they correspond to

physical observables. The two schemes, which are equivalent to cases b) and c)

from figure 3.1.1, are considered in the context of a vibronic monomer and a

homodimer constructed following the theory in sections 2.2.1.1 and 2.2.1.3

which is better depicted in figure 3.2.1. However, computational application of

theory relies on assumptions, approximations, and truncations which will lead

to a breakdown of mathematical equivalence, the impact of which, we aim to
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Figure 3.2.1: A schematic of the HVM and BVM schemes, equivalent to cases b)
and c) from figure 3.1.1. An arbitrary system of interest is highlighted in green,
with or without its fundamental intramolecular vibration, and the bath is either
over, a), or underdamped, b), dependent on whether the system vibration has

been canonically subsumed. Quantum information channels, depicted as tubes,
transfer information between the system and bath which impacts the spectral

lineshape, quantified in section 3.1. Reproduced from ref. 2, with the
permission of AIP Publishing.

elucidate.

Within the following simulations, the ground and excited electronic states of

the monomer are separated by ω
(ν)
eg = 10 000 cm−1, which is coupled to a

vibrational mode of frequency ω
(ν)
0 = 500 cm−1, with a dimensionless excited

state displacement of d̃ = 1.09 inducing a system reorganisation energy of

λ(ν) = 300 cm−1. Formation of the corresponding J-aggregate homodimer

involves coupling the transition dipole moments for a pair of monomers through

equation (2.2.27), with a strength of J (ν) = −400 cm−1, in the strong coupling

limit. In the HVM models, explicit vibrational energy levels are present within

the Hamiltonian, but after diagonalisation following a unitary transformation,

equation (2.2.25), these levels are truncated leaving only νM = {0, 1, 2}.

The environment is constructed as an infinite ensemble of harmonic oscillators,

reduced to a spectral density function of the form (2.2.63), with n = 1 for the

HVM and n = 2 for the BVM. The open system is constructed by coupling the

system of interest to a phononic reservoir which is described by an overdamped

spectral density that is weakly inhomogeneous. This component, which is the

sole bath for the HVM and the first component of the BVM total bath, is denoted

JO(ω) =
2ηOωΛO

ω2 + Λ2
O

. (3.2.1)

This is equivalent to the Lorentz-Drude spectral density discussed in 2.2.2.2,

which is often referred to as an overdamped spectral density, and is depicted in

figure 3.2.2. The overdamped bath reorganisation energy is chosen to be

150



Chapter 3: Measuring Quantum Information

Figure 3.2.2: The total HVM spectral density, JO. The environmental
contributions are a redshifted Gaussian profile of low frequency modes with an
intensity equal to the bath reorganisation energy, η(ν)O = 50 cm−1. Reproduced

from ref. 2, with the permission of AIP Publishing.

η
(ν)
O = 50 cm−1, and damping rate Λ

(ν)
O = 100 cm−1 so that the environment is

dominated by moderately intense low frequency modes, as is typical for

condensed phase spectroscopy at 300 K. The damping rate is large, so that the

environment is classed as overdamped, with γ
(ν)
1 = 2500 cm−1 which is

equivalent to Λ
(ν)
O = 100 cm−1. Consequently the rate of decay of system-bath

correlation, τc = Λ−1O , is sufficiently slow to introduce visible inhomogeneous

broadening to the resultant 2DES.

In the BVM, the intramolecular vibrational mode is subsumed into the bath

degrees of freedom through a canonical transformation resulting in an n = 2

component. This reduces the size of the system Hamiltonian to the electronic

states only, which are then coupled to an underdamped Brownian oscillator. The

spectral density for the BVM has two components157,

JU(ω) =
2η1ω

2
1ω

(ω2
1 − ω2)2 + (γ1ω)2

+
2η2ω

2
2ω

(ω2
2 − ω2)2 + (γ2ω)2

, (3.2.2)

where the second component corresponds to the intramolecular vibrational mode

in the underdamped limit231, ω2 ≫ γ2, such that ω2 = ω0 the vibrational mode

frequency, and η2 = λ from equation (2.2.8). The first component corresponds to
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Figure 3.2.3: The total BVM spectral density, JU, the purely environmental
component, J2, and the intramolecular vibration component, J1 = JO. The

intense Lorentzian peak at the vibrational mode frequency, ω0, is shown
alongside the weakly intense redshifted Gaussian of environment modes with a
reorganisation energy of 50 cm−1. Reproduced from ref. 2, with the permission

of AIP Publishing.

the purely environmental degrees of freedom from the HVM model. As a result

of ω1 ≪ γ1 this reduces to the Debye form

JU(ω) =
2ηOωΛO

ω2 + Λ2
O

+
2η2ω

2
2ω

(ω2
2 − ω2)2 + (γ2ω)2

. (3.2.3)

The total spectral density for the BVM is shown in figure 3.2.3 as well as the

separate underdamped, and overdamped, components. In contrast to the broad

overdamped spectral density for the low frequency bath modes, the

underdamped spectral density features a sharp Lorentzian peak at the

intramolecular mode frequency with width determined by the damping

parameter γ2.

In the HVM model, the bath is coupled to the electronic excited states through

the coupling operators (2.2.47) which undergo the same unitary transformation

as the diagonalisation of the Hamiltonian. This operation induces a fluctuation

in the transition frequency of the excited state, due to stochastic motion, leading

to dephasing of excited state wavepackets and spectral broadening. The HVM
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model is simplified by assuming that vibrational relaxation and any associated

modulation of the electronic coupling are much slower processes than the

electronic dephasing, with negligible effect on the 2DES spectra at very early

population times T ≤ 100 fs such that dissipation processes are neglected.

Similarly, in the BVM model, the purely electronic system states couple to the

bath through the pure dephasing operators

BS
M = |e⟩⟨e| , (3.2.4)

for the monomer and

BS
D = |e+⟩⟨e+|+ |e−⟩⟨e−|+ 2 |f⟩⟨f | , (3.2.5)

for the dimer. In both cases the system Hamiltonians are renormalised to

counter the energy shift induced by the system-bath coupling. γ2 introduces

additional damping of the intramolecular mode in the BVM, absent in the HVM.

Approaching the limit γ2 → 0, the BVM becomes equivalent to the undamped

intramolecular vibrational mode in the HVM. However, zero damping

invalidates the HEOM termination criterion1 for this EOM construction,

resulting in an infinite hierarchy. By canonically subsuming a pure

intramolecular vibrational mode as an underamped vibration, additional

damping is added to the model. This is referred to as canonically derived
damping or canonical damping.

Figure 3.2.4, as shown below, presents 2DES for the vibronic monomer,

obtained using the HVM and BVM models, used to determine the efficacy of

these methods. Based on the theory of the canonical transform we expect a

strong agreement between the two models, but contrasting levels of broadening

as a consequence of the unavoidable canonical damping in the BVM. Figure

3.2.4 presents distinct peaks at the system fundamental transition frequency,

ωeg, and vibronic pathways at plus and minus integer multiples of the

vibrational mode frequency, ω0, in agreement with the theory outlined in

2.2.1.3. Peak positional information is explicit within the HVM as a consequence

of having three vibrational levels per electronic state, resulting in a Hilbert space

|α⟩ ⊗ |n⟩ of dim(H) = 6, such that peaks are particularly distinct. In contrast,

the BVM has a Hilbert space with dim(H) = 2, which accounts for explicit

electronic states only. Despite this, there is clear evidence of cross peaks

demonstrating that the system vibration is manifested through system

interaction with the bath degrees of freedom. Furthermore, oscillation of

vibrational coherence pathways272 over the waiting time, T , results in peak

amplitude changes within both spectra in figure 3.2.4. The similarity between

these peak intensities suggests that both models are able to capture all the

essential features for the monomer.
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Figure 3.2.4: Absorptive 2D spectra for the HVM monomer a) – c) and BVM
monomer d) – f) at T = 0, 50 and 100 fs, normalised to the maximum at T = 0 fs.

Reproduced from ref. 2, with the permission of AIP Publishing.

In contrast to these similarities, there are also a number of noteworthy

differences between the two models. At early waiting times within the HVM,

T < 50 fs, the uniform action of the overdamped bath elongates the vibronic

peaks along the diagonal, generating peak definition, however as the waiting

time increases this is lost. Additionally, the diagonal elongation, due to the

inhomogeneity introduced by the environment, causes a loss of definition due to

spectral diffusion. In contrast, the BVM is not restricted to three system

vibrational levels, canonically subsuming the vibrations introduces the full

continuum of vibrational levels into the bath. This allows expression of

additional vibronic peaks which are truncated as part of the HVM. The cost of

this additional vibronic detail is a greater degree of broadening, as a
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Figure 3.2.5: Absorptive 2D spectra for the HVM dimer a) – c) and BVM dimer
d) – f) at T = 0, 50 and 100 fs, normalised to the maximum at T = 0 fs.

Reproduced from ref. 2, with the permission of AIP Publishing.

consequence of the secondary bath, which obscures spectral diffusion and leads

to poor peak definition, and positional precision.

In all spectra in figure 3.2.4 there are significant regions of negative intensity

below the diagonal at T = 0 fs, which should not be mistaken for excited state

absorption peaks. The monomer has a single excited state, or pair of electronic

states, making excited state absorption impossible. These regions on the spectra

are the result of rephasing vibrational coherence pathways which oscillate with

opposite phase above and below the diagonal210,231. However, in the dimers the

any blue regions above the diagonal are excited state absorption peaks.
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The results for the strongly coupled J-aggregate homodimer are presented in

figures 3.2.5 and 3.2.5, and are in strong agreement with the analysis of the

monomer spectra. In both the HVM and BVM models, peak positions and

intensities are comparable, and the expected redshift by J of the fundamental

peak from ωeg to ωe+g is observed. Additionally, the theoretically predicted hot

band peaks resulting from vibrationally excited states69 are clearly present.

Since a secondary excited state is present within dimer systems, excited state

absorption (ESA) pathways become possible. Both models clearly depict this

region of strong ESA above the diagonal, corresponding to transitions from the

bright exciton state, |e+⟩ to the doubly excited state, |f⟩. The demonstration of

commensurate peak amplitudes in HVM and BVM spectra, for all waiting times,

is a clear indication that both models are able to generate vibronic pathways for

the extended excited state structure of a dimer. This is a consequence of the

oscillation of the vibrational coherence pathways82 present within the model. In

addition, the fundamental peak in each spectrum has an increased amplitude

relative to the associated vibronic peaks301 which is indicative of a J-aggregate.

Despite these similarities, just as for the monomer spectra, there are also a

number of differences between the two models. In agreement with the

monomer spectra, there is a uniform broadening along the diagonal as a

consequence of inhomogeneity introduced by the overdamped bath in the HVM

which is obscured by additional broadening in the BVM. The most fundamental

difference in these results, which was not relevant in the monomer case, is

whether the expected J-aggregate redshift is present. Based on the theory for

J-aggregates there will be a redshift of J (ν) = −400 cm−1 which is

quenched75–77 by the vibronic coupling of the system to a reduced magnitude.

The quenched dimer redshift is directly observable in the HVM spectra in figure

3.2.5 and matches the decrease in transition frequency relative to the monomer

shown by the Hamiltonian eigenvalues for the system of −316 cm−1. In striking

contrast, in both the eigenvalues and spectra in figure 3.2.5, there is a full

redshift of J (ν) = −400 cm−1 with a complete absence of vibronic quenching.

This demonstrates a fundamental difference between the two models: canonical
transformation of system vibrations into the bath results in the loss of vibronic
quenching within dimer models.

One of the most striking and fundamental differences between the HVM and

BVM models, predicted during construction and evident in the spectra, is the

significant change in broadening. In order to correctly attribute these

differences in spectral lineshape to the system-bath boundary placement, a

series of spectra are generated for a sequence of decreasing damping strengths

towards the limit of vanishing γ2. In the limit, γ2 → 0 the FWHM of the spectral

density describing the intramolecular vibration will also vanish, resulting in an

entirely undamped mode. Since the canonical transform maps an undamped,
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Figure 3.2.6: Spectral densities and correlation functions, with exponential fits,
for an overdamped, Λ(ν)

O = 100, and three underdamped spectral densities with
damping strengths γ(ν)a = 120 cm−1, γ(ν)b = 80 cm−1, and γ(ν)c = 40 cm−1.

Reproduced from ref. 2, with the permission of AIP Publishing.

pure, intramolecular vibrational mode onto harmonic modes of the

environment, it will have introduce a secondary source of quantum information

and damping. Subsequently, progressing to lower damping rates minimises the

decaying component of the correlation function, for the system vibration, which

reduces the additional electronic dephasing which is added to the total system,

and limits the additional lineshape broadening. With this choice of HEOM

reaching the limit of zero canonical damping is impossible, as it will invalidate

the termination criterion, so an entirely new EOM construction would be

necessary to confirm that the BVM and HVM become formally equivalent. A new

HEOM, for exactly this purpose, is considered in chapter 5.

It is clear from these results that canonical transformation of a system

intramolecular vibration, while theoretically equivalent, is not practically

equivalent to the explicit Hamiltonian models when applied to standard over

and underdamped HEOMs. Subsuming this fundamental vibration leads to

qualitatively similar 2DES lineshape but the change in Hamiltonian structure

has a considerable impact on the total dynamics. When the HVM is applied to a
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vibronic dimer the three vibrational levels per electronic state result in a Hilbert

space dim(H) = 36, whereas the corresponding BVM model has a Hilbert space

of dim(H) = 4 166. Consequently the HVM contains all relevant couplings

between the truncated set of explicit energy levels, giving rise to sharply defined

peaks. The broadening of these peaks is applied uniformly as a result of the

overdamped spectral density of environment modes leading to Lorentzian peaks

with precise positional information. In contrast, peak information and energy

transfer in the BVM occurs as a result of non-Markovian feedback from energy

fluctuations within the bath, and vibronic peaks arise naturally as a consequence

of the system-bath interaction. This means that broadening is peak specific, and

enhanced by the secondary source of damping, resulting in less positional

precision but broadening which is closer to that which would be observed in

experiments. In addition, canonical transformation of the system vibrational

mode into the environment degrees of freedom removes vibrational truncation,

which is present in the HVM, leading to vibronic peaks forming due to the full

vibrational continuum of states.

These features have implications for the computational cost of each model.

The truncation of the Hilbert space by removal of explicit vibrational states

reduces the computational cost of diagonalisation when compared to the HVM.

However, the increased computational cost of the BVM comes from the

increased complexity of the spectral density, and resulting HEOM, which will

have many more ADOs in order to generate the full dynamics. A balance should

be reached between the level of explicit Hamiltonian structure necessary, versus

the level of bath structure required in order to generate approximate dynamics

with a minimum of computational effort.

3.2.1 The Canonical Transform, Examined Close to the Zero
Canonical Damping Limit

In this model some degree of canonical damping is unavoidable, so a

demonstration of the minimisation of this added broadening in considered

through the correlation function. This is achieved by introducing three different

damping parameters which progress towards the limit of vanishing canonical

damping: γ
(ν)
a = 120 cm−1, γ(ν)b = 80 cm−1, and γ

(ν)
c = 40 cm−1. A formal

solution of the correlation function is computed from the fluctuation-dissipation

theorem, discussed in appendix 2.2.53, under the substitution of the

underdamped spectral density and with n = 1. The forms of the solution are the

aforementioned kernels of dissipation and thermal fluctuations (2.5.31):

L
(α)
U,corr(t) = L

(α)
U,R(t) + iL

(α)
U,I(t). (3.2.6)
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As previously discussed, in the overdamped regime the correlation function

has no imaginary component and reduces to an exponential decay, exp(− t
τc
).

This results in shallow, broadened, 2DES peaks. Figure 3.2.6 shows the spectral

density for the HVM, its calculated correlation function, and a fitted exponential

decay.

In contrast, all three of the additional underdamped regimes have correlation

functions which consist of both oscillations and decays as a consequence of the

highly specific frequency (peak) present within the structured spectral density,

when compared to the overdamped contribution. When correlations take this

form we expect the decaying component to have a rate proportional to the

associated damping rate
γ
(ν)
{·}
2 attributed to the added mode. This follows from

the simplification of the imaginary part of the correlation function37:

L
(α)
u,I(t) =

ℏη2ω2
0

2ζ
sin(ζt) exp

(
−
γ
(ν)
{·}

2
|t|
)
, (3.2.7)

where ζ =

√
ω2
0 −

(
γ
(ν)
{·}
2

)
. Figure 3.2.6, in addition to the overdamped

correlation, shows the negative exponential dephasing rates, calculated using
γ
(ν)
{·}
2 , for all three underdamped spectral densities. This demonstrates that

decreasing the damping and increasing the dephasing time results in a

sharpening of the spectral mode, and an increase in the amplitude of oscillations

in the correlation function.

These alterations to the underdamped spectral density are then applied to the

BVM monomer evolution, presented in 3.2.7. The successive reduction of γ2
shows a clear trend towards the lineshape of the HVM, in figure 3.2.4 a), with

peaks becoming more well defined and broadening diminishing. However, there

are computational implications to this. The number of ADOs increases

exponentially as the damping strength is reduced such that, for a reduction of

40 cm−1 as in γ
(ν)
b to γ

(ν)
c , an additional 115 620 auxiliaries are required.

Consequently, this is not a computationally tractable approach, and the limit of

vanishing damping must be reached with an alternate method. Furthermore,

the current termination scheme Γ
(ν)
max = 10γ

(ν)
{·} which is generated due to

max
(

max(ω0)
R(min(ν{·}))

)
from equation (2.5.59), is clearly singular in the limit:

lim
γ{·}→0

min(ν{·}) = lim
γ{·}→0

γ{·}

2
− iζn, (3.2.8)

= lim
γ{·}→0

γ{·}

2
− i

√
ω2
0 −

(
γ
(ν)
{·}
2

)
= ∓iω0, (3.2.9)

as there is no real contribution. This would require an infinite number of

auxiliaries due to the singularity in the termination criterion, which invalidates
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Figure 3.2.7: Absorptive 2D spectra for the BVM monomer at T = 0 fs,
normalised to the maximum at T = 0 fs, with damping strengths

γ
(ν)
a = 120 cm−1, γ(ν)b = 80 cm−1, γ(ν)c = 40 cm−1. Reproduced from ref. 2, with

the permission of AIP Publishing.

this termination scheme. Therefore, this model is sufficient as an approximation

of the true lineshape, but it is not equivalent to the HVM unless a new EOM is

constructed which is capable of reaching the limit of vanishing canonical

damping.

In summary, this study has shown that HVM and BVM models of vibronic

monomers and homodimers are qualitatively similar, based on the 2D spectral

lineshape, and would become formally equivalent in the limit of vanishing

canonical damping, γ(ν)2 → 0. Both sets of results, for the monomer and dimer,

successfully reproduce the expected spectral features, but the broadening varies

dependent on the structure of the spectral density. The HVM has uniform

broadening across all peaks as a result of system-bath interaction with the
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overdamped bath. However, due to the construction of the BVM, the uniform

broadening applied to each peak from the Hamiltonian is obscured as a

consequence of the unavoidable additional damping from the underdamped

mode. This means that there is a choice when attempting to model OQSs

between an HVM or BVM approach. The system-bath boundary placement in

these approaches alters the vibronic coupling effects, as is evidenced by the lack

of vibronic quenching relative to the Hamiltonian eigenvalues for the BVM.

Clearly, HVM versus BVM is a choice between energetic informational precision

(peak position) and greater dynamic broadening, respectively. This represents a

shift in focus from an accurate system Hamiltonian to a model that efficiently

includes a more complete system-bath interaction. Finally, we comment on the

relative computational effort of each approach. An HVM approach specifically

includes vibronic states in the Hamiltonian, capturing vibronic quenching of

dimers, but it is expensive because of the diagonalisation. In this case the

computational bottleneck is the system choice and the corresponding Hilbert

space dimension. In contrast, the BVM contains all vibrational detail within the

bath, as an underdamped spectral density, allowing the Hilbert space dimension

to be significantly reduced. Application of the BVM shifts the computational

bottleneck to the bath dynamics, exponentially increasing the number of

auxiliaries as a function of decreasing damping strength. However, this

introduces the risk of neglected vibronic quenching in electronically coupled

systems, and additional damping which results in greater peak broadening

across the spectrum.

The first two studies in this section have left three, major, open questions: ‘Can

the limit of vanishing canonical damping be reached?’, ‘Can highly structured

spectral densities, similar to the underdamped canonically transformed mode, be

leveraged to attain greater control over the system-bath boundary and canonical

damping?’, and finally, ‘Can explicit measurement of subsumed vibrational levels

still be observed after canonical transformation, with similar qualitative meaning

as physical observables?’. Chapter 5, appendix F, and section 3.3 each address

these respective problems.

While it is clear from the discussion of HEOM methods in section 2.5, and

appendix D, that the ASD-HEOM is a powerful tool for modelling

non-Markovian systems. The ability to introduce highly structured spectral

densities means that strongly non-Markovian system-bath interactions can be

generated allowing for considerable memory effects. However, as outlined in

appendix F, this EOM requires considerable computational effort and introduces

a number of computational artefacts as a consequence of the strongly

non-Markovian dynamics. For these reasons the ASD-HEOM is intractable and

unsuitable for generating spectra in the limit of vanishing canonical damping.

Consequently, a new form of HEOM, the LDUO-HEOM is generated for this
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purpose in chapter 5.

3.3 Auxiliary Density Operators and Virtual Quantum

Information

To investigate the canonically subsumed vibrations within the spectral density, a

set of models with similar parameters to those of the BVM in section 3.2 are

constructed. In these variations of the BVM model the direction of information

flow within the hierarchy is examined as well as the contents of the auxiliary

density operators. Within the hierarchy of the HEOM, only the density matrix

contains physical information about the system of interest. However, as

established in the theory of an underdamped spectral density section 2.2.2.2, it

is possible to subsume a system intramolecular vibrational mode into the

environment degrees of freedom. In this way the system-bath boundary

placement results in a spectral density containing a mixture of system and bath

degrees of freedom, meaning that bath operators no longer contain purely

environmental physical parameters. The nature of the auxiliaries, and their

intrinsic relation to the system parameters, are discussed within the work of Fay

et. al.302, and Yan et. al.303, but the level of insight that can be gained from the

auxiliaries is not discussed. In the absence of a quantitative interpretation of the

behaviours from the ADOs, the impact of the vibrational structure lost through

subsuming information into the spectral density is analysed through application

of the BLP metric, equation (2.1.27).

In all simulated 2D spectra we use a ground and excited state separation of

ω
(ν)
eg = 10 000 cm−1. The vibrational mode of the system is ω(ν)

0 = 500 cm−1,

where the non-dimensional displacement of the excited state potential is

d̃ = 1.09 in order to generate a physical system reorganisation energy of

λ(ν) = 300 cm−1. Computationally, after diagonalisation the Hamiltonians are

truncated to include only the νM = {0, 1, 2} vibrational levels. In this study three

BVM monomer regimes are chosen which span the limits of homogeneity

denoted as fast dissipation, standard dissipation, and slow dissipation models

based on the structure of the second (underdamped) bath contribution in

equation (3.2.2). This is compared to a single HVM monomer. The associated

bath coupling and vibrational mode frequency are η
(ν)
2 = λ(ν), ω(ν)

2 = ω
(ν)
0 ,

η
(ν)
1 = 50 cm−1, and ω

(ν)
1 = 500 cm−1. The corresponding bath damping

parameters are γ
(ν)
2 = 1750 cm−1, and γ

(ν)
1 = 2500 cm−1 such that

Λ(ν) = 100 cm−1 for the fast dissipation model. The standard dissipation model

has γ(ν)2 = 100 cm−1, and γ
(ν)
1 = 2500 cm−1 such that Λ(ν) = 100 cm−1 in

agreement with the BVM results from section 3.2. The slow dissipation model

has γ(ν)2 = 100 cm−1, and γ
(ν)
1 = 300 cm−1. The simulations are performed at
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300 K, within the bounds of the high temperature approximation, and the

Markovian limit is set to Γ
(ν)
max = 2000 cm−1. As in the BVM model, this system is

coupled to the bath through a purely diagonal operator, B = σz. The fast,

standard, and slow dissipation models are propagated using the HEOM and

contain 1 264, 39 149, and 98 513 ADOs respectively. 2D spectra are generated

with a coherence time up to τ = 200 fs in steps of 0.5 fs, for population times of

T = 0, 50, and 100 fs. Along with the 2DES, the BLP measure of

non-Markovianity is calculated for the density matrix and for the ADOs through

application of equation (2.1.27), upon substitution of an auxiliary state in place

of the density operator. In order to sufficiently distinguish physical quantum

information and that which is contained by ADOs, this is termed virtual
information.

The hierarchy structure associated with the BVM dynamics, discussed in section

2.5.5.1, is considered in detail and the direction of virtual information flow is

analysed. Each auxiliary has an associated vector which describes its location

within the Matsubara dimensions. For example, a three dimensional hierarchy

would have ADOs and associated vectors, j. An example being, j = (1, 0, 0),

which is the first ADO in the first Matsubara axis. Generally, writing out the full

Matsubara coordinate vector is feasible, however when the number of dimensions

increases beyond three, as is common for strongly non-Markovian dynamics, and

when the ADO number increases it becomes a hindrance. In order to discuss

individual ADOs (ρj) and axes, each Matsubara dimension is termed M{·} such

that the full vector can be simplified to n{·}, where n is the position along the

respective axis, or tier304–306, corresponding to the number of phonons involved

in the process. From this definition we could write an ADO which is tier 3 in M1

and tier 2 in M5 with a total of 8 Matsubara dimensions as (3, 0, 0, 0, 2, 0, 0, 0) =

3125. In this notation zeros in any position are omitted, with the exception of

the density matrix which is denoted 00. In addition, the total distance of a given

Matsubara vector from the density matrix can be calculated as
∑
n.

The direction of virtual information flow within the hierarchy can be

considered through a two dimensional hierarchy diagram, in contrast to three

dimensional node diagrams shown with each EOM derivation, which is coloured

to denote flux direction. In figure 3.3.1 each auxiliary has six quantum

channels, although some HEOMs have more, (which are depicted as faces/sides

of the cube/square) and their colour determines whether information is free to

flow through the respective channel. An example of this is ADO ρ1,1,0 which is

connected in every direction to another ADO. In the figure 3.3.1 a) information

moves upwards, increasing in tier, from 00. The blue faces indicate information

cannot move into the M1M2 plane at M3 tier 0 because a −1th tier does not

exist. Similarly, information cannot move out of 23 as within this idealisation it

is a terminator. In figure 3.3.1 b) information moves downwards, decreasing in
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Figure 3.3.1: An idealised underdamped hierarchy structure. The freedom of
information to flow away from the density matrix a) (increasing tier) or towards
the density matrix b) (decreasing tier) is depicted in blue and red, respectively.

The auxiliaries are labelled based on their Matsubara vector, j. In contrast to the
hierarchy diagrams in section 2.5, these diagrams show that virtual information
content in the ADOs on each edge is different to other ADOs. This is because it

is a strictly Markovian information based on the termination criterion. Such
Markovian information is governed by termination EOMs which are marked

with cross-hatching.

tier, towards 00. The red face in 23 denotes that it is a terminator and

information cannot move down from higher tiers, and the red plane M1M2 at

M3 tier 0 indicates information cannot move down beyond M3 tier 0.

The following figures show the resulting flux and BLP measures from the BVM

dynamics where each ADO is generated through a hierarchy generation

algorithm and given an associated index based on when it was generated,

between 0 (the density matrix) and NADO the total number of ADOs. The trace

distance, flux, positive flux, BLP measure, and 2DES are generated for each set

of results along with a contour in BLP, time, ADO number space, allowing for

analysis of the sequence of ADOs that are created (the order of auxiliary

generation). The trace distance, flux, positive flux, and BLP are additionally
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Figure 3.3.2: Total normalised flux, positive flux, and BLP for the HVM model,
a) – c), and the equivalent standard dissipation rate BVM model, d) – f).

normalised based on their maximum absolute value. This is achieved through
σ

−min(σ) where σ is the flux and min(σ) is the maximum Markovian flux.

Dividing the flux by −min(σ) ensures that both non-Markovian and Markovian

fluxes retain their original sign (positive and negative respectively) while also

being normalised relative to the maximum Markovian flux, which is usually the

larger flux. Hence, σ
−min(σ) > 0 is non-Markovian. The reason for this is so that

all ADOs can be compared directly to each other, and to distinguish the relative

scale of both Markovian and non-Markvoian dynamics within the system. Some

authors decide to introduce a scaling factor into the ADOs, of

ρn =
∏

k

∏
l(|dkl|nlknlk!)

−1
2ρn

289,307, to improve convergence, such that each

ADO shrinks proportional to the exponent of the matrix element n±lk, however in

this thesis no such convention is applied.

3.3.1 Virtual Information in the HVM and BVM

The models of the HVM, fast dissipation BVM, the standard dissipation BVM,

and slow dissipation BVM for monomers are compared against one another in

order to demonstrate the intrinsic difference in virtual information flow when

the system-bath boundary is shifted from the Hamiltonian and moved into the

bath. Additionally, the range of damping strengths in the BVM should present

a range of broadenings which demonstrate the difference in how broadening is

applied in BVM versus HVM models.

Figure 3.3.2 shows the normalised flux, positive flux, and BLP for the HVM

mononmer in a) – c), and the standard dissipation BVM in d) – f). a)
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Figure 3.3.3: 2DES spectra for each of the four models at T = 0 fs. a) HVM, b)
fast dissipation rate BVM, c) standard dissipation rate BVM, and d) slow
dissipation rate BVM. Specific parameters are discussed in section 3.3.

demonstrates a clean progression of flux through the first Matsubara dimension,

M1, where each ADO has the same flux profile but that is gradually translated

so that the maximum Markovian feedback occurs later in the evolution. As

discussed in section 2.5.5, higher tier ADOs involve larger integer multiples of

phonon interactions, and subsequently have a much shorter timescale of

information flow. This manifests as an instantaneous non-Markovian feedback,

equivalent to a solvent reorganisation, before the globally Markovian dynamics

of excited state relaxation occurs at a later time. Translation of the flux profile,

for ADOs 1 to 5 in a), is a consequence of this behaviour and results in a larger

maximum of instantaneous non-Markovian feedback. The data for ADOs 1 and 2

in a) – c) are consistent with this understanding, as it is strictly zero or negative.

This means these ADOs are purely Markovian, information moves strictly away

from the density matrix, and correspond to smaller numbers of phonons (lower

in the Matsubara axis) with longer timescales. This is the cause of the

apparently large non-Markovian feedback at ∼ 0.35 ps. As is evident in a) this

feedback is less than 1% of the magnitude of the Markovian feedback, but due

to normalisation has been amplified.

d) – f) of figure 3.3.2 show the associated BVM results in a) – c). In

agreement with the results in section 3.2 the global behaviour of the systems are
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similar, however there are a number of differences in virtual information flow

which lead to the differences in 2DES lineshape. Both models show strongly

Markovian dynamics, during the process of excited state relaxation, with some

non-Markovian feedback in deeper ADOs. This demonstrates that the bath is

capable of producing larger multiples of phonon interactions due to system

modes. However, the magnitude of non-Markovianity and the recurrence of

information from the bath are markedly different. The magnitude of initial

positive flux in d) is less than 1% of Markovian flux, whereas a) shows that high

tier ADOs have a positive flux that is 1.5 times the size of the equivalent

Markovian flux. Additionally, the incredibly small amount of non-Markovian

flux which is present is returning to the system in a non-monotonic, gradual

process, rather than in a sharp instantaneous feedback. This suggests that

blurring the distinction between system and bath degrees of freedom results in

oscillations as a consequence of system vibrational modes in the virtual

information flux. Subsequently, the BVM model presents a gradual increase up

to a maximum BLP in the density matrix, which is not present in the HVM. This

is a further demonstration of the canonical intrinsic damping in the BVM which

adds damping as a consequence of broadening the sharp underdamped

vibration within the spectral density. Since the broadening occurs on the

vibrational mode, and its impact on the overdamped contribution is minimal,

this damping leads to broadening of the 2DES lineshape, particularly through

inhomogeneous broadening.

These features of additional broadening are particularly evident when each of

the four models are compared against each other, as in figure 3.3.3. This figure

shows the 2DES spectra, at population time T = 0 fs, for a) the HVM monomer,

b) the fast dissipation BVM monomer, c) the standard dissipation BVM monomer,

and d) the slow dissipation BVM model. In agreement with 3.2, all of these

spectra are qualitatively similar, and successfully depict the monomer system. In

a) the peaks are uniformly broadened by a single overdamped bath with peak

position defined by explicit energy levels, which leads to positional precision.

When a BVM scenario is employed, in the overdamped limit, there are two baths

and both add additional virtual information. This leads to a spectrum where peak

locations have been obscured by the significant broadening associated with the

larger virtual information content. Finally, c) and d) demonstrate a movement

towards the limit of vanishing canonical damping, discussed partially in section

F.2. The peaks become more Lorentzian in shape with broadening applied in a

peak specific fashion from the spectral density.

Figure 3.3.4 demonstrates the change in broadening of the 2DES spectra for

the HVM model as the population time T is increased up to 100 fs, and a contour

depicting the changes in virtual information over the course of the evolution. It

is clear from the contour plot in figure 3.3.4 that, the virtual information content
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Figure 3.3.4: Contour plot for the HVM where red dashed lines denote
terminators, and 2D electronic spectra for population times T = 0, 50, 100 fs.

has a very small magnitude when the ADO number is greater than 5, equivalent

to the dynamics being dominated by ADOs close to the density matrix, but when

this is normalised auxiliaries up to ADO number 30 have significant contributions.

As a consequence of the Hamiltonian complexity and relative simplicity of the

bath, this hierarchy contains only 79 ADOs and ∼ 1
3 of them are terminators.

However, there are clearly some ADOs which contain virtual information that is

of relatively low importance, based on its normalised magnitude, that are not

terminated. Additional truncation of these auxiliaries could be used to improve

computation times for the HVM model.

3.3.2 Integer Phonon Contributions to Virtual Information in the
BVM

The previous results, in particular figure 3.3.2 e), show the increase in

oscillatory structure in the BVM as a consequence of the canonical transform.

This is analysed systematically by considering integer multiples of Matsubara
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Figure 3.3.5: Slow dissipation BVM model with γ(ν)1 = 100 cm−1, and γ(ν)1 = 300
cm−1 showing normalised trace distance, flux, positive flux, and BLP measure
for 1{·} showing relative size of Markovian and non-Markovian feedback. The

ADO number and associated Matsubara shorthand are shown.

frequencies and how they add to the total hierarchy.

Figure 3.3.5 presents a consideration of all the one phonon, tier-1 auxiliaries

within the underdamped hierarchy, for the slow dissipation BVM model. This

model contains eight Matsubara dimensions with ADOs from 1 up to 79 619 and

those which are the first ADO in each of these Matsubara axes are considered.

As the phonons associated with different axes have different Matsubara

frequencies, the associated virtual information content is similarly different,

resulting in dissimilar oscillating behaviour. The lower ADOs, 11 and 12 initially

have a maximum Markovian feedback of virtual information followed by a

recurrence of virtual information of approximately 40% the initial magnitude.

Whereas the ADOs in higher Matsubara dimensions, 17 and 18, have an initial

non-Markovian feedback before the Markovian virtual information flux occurs.

The fact that the total information flux, positive information flux, and resultant

BLP metric are so different for each case suggests that phonon contributions

from different Matsubara axes behave differently.

In direct contrast to this, figure 3.3.6 presents all the phonon and virtual

information contributions from a single Matsubara axis, M1. All four sections of

the figure show very uniform oscillating patterns with small changes in

amplitude based on the number of phonons. There is a linear decrease in the

equilibrium value of the trace distance and consequently an increase in relative

peak amplitude in the normalised positive virtual information flux. Based on the

uniformity of oscillations and peak locations in the positive flux it is clear that

phonons in the same axis behave very similarly to each other and have less in

common with ADOs of the same tier in different Matsubara axes. This can be

attributed to the different Matsubara frequencies, which themselves are a
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Figure 3.3.6: Slow dissipation BVM model with γ(ν)2 = 100 cm−1, and γ(ν)1 = 300
cm−1 showing normalised trace distance, flux, positive flux, and BLP measure
for n1, n = {1, 2, 3, 4}, showing relative size of Markovian and non-Markovian
feedback. The ADO number and associated Matsubara shorthand are shown.

consequence of periodic oscillations in imaginary time arising from the thermal

ensemble distribution. The linear increase in relative peak amplitude also

highlights that an increasing phonon number is accompanied by a

corresponding increase in relative virtual information recurrence. As a

consequence of the chosen normalisation this does not mean that higher tier

ADOs contribute more virtual information, but that relative to their size, each

peak contributes a larger proportion of the maximum virtual BLP.

From these findings, along with the discussion of multi-tier ADOs, and

independence of each temperature dependent Matsubara dimension, discussed

within Appendix G, we can conclude that multi-tier auxiliaries are most similar

to their constituent dimensions and most strongly resemble those of the highest

tier. Temperature dependent effects, which control the level of thermal

narrowing in 2DES, are strongly independent based on their differing timescales

unlike temperature independent poles.

These results, in addition to the supplemental analysis in appendix G, show

that ADOs which contain similar phonons (the same Matsubara frequency) are

more similar than compared to those with different phonons (different

Matsubara frequencies). This includes ADOs which have integer numbers of

specific phonons greater than one, n > 1, and these are most closely related to

those ADOs with single phonons, n = 1, at the same Matsubara frequency.

Finally, ADOs which are composites of multiple Matsubara frequencies behave

most like their constituent phonons, where they are most similar to other ADOs

which depend on their constituent Matsubara frequency with the lowest integer

number of phonons. For example, 1132 would be expected to behave most like

M1 phonons. The only exception to these conclusions is the temperature

independent ADOs, two frequencies for underdamped and one for overdamped
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Figure 3.3.7: Normalised and non-normalised contour plots for the HVM,
column a), and fast dissipation BVM model, column b) for ADO number against
time and BLP measure. These figures are the corresponding contours for 2DES

in equivalently named panels of figure 3.3.3.

hierarchies, discussed in section 2.5, which behave similarly to each other

because they do not depend on temperature.

Figure 3.3.7 shows contour plots of the BLP metric, ADO number, and time

for, column a) the HVM model, and column b) the fast dissipation rate BVM

model. Column a) has a maximum ADO number of 79 as it is overdamped,

whereas column b) has 98 513 ADOs, as it is underdamped, so the first 200 are

shown. Figure 3.3.8 shows contour plots of the BLP metric, ADO number, and

time for, column a) the standard dissipation BVM model, and column b) the

slow dissipation rate BVM model. In both figures red dashed lines indicate

terminating ADOs and correspond to the end of a Matsubara dimension within

the hierarchy. This highlights that in strongly underdamped calculations the

termination criterion is effective at minimising the virtual information that is

evolved. Additionally, each of the Matsubara axes depicted show a region of

depleting virtual information towards the density matrix, ADO 0. Those ADOs

which are lower tier, and closer to the density matrix, contribute a smaller

percentage of non-Markovian information flux and fewer of the phonon

interactions within this dimension are non-Markovian. This is supported by the

increasing breadth of the BLP depletion in successively more damped models

and suggests that as irreversible Markovian processes grow, due to

overdamping, the non-Markovianity is most prevalent closest to the density
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Figure 3.3.8: Normalised and non-normalised contour plots for the standard
dissipation BVM model, column a), and slow dissipation BVM model, column b)

for ADO number against time and BLP measure. Vertical red dashed lines
indicate a terminating auxiliary. These figures are the corresponding contours

for 2DES in equivalently named panels of figure 3.3.3.

matrix where the non-Markovian signatures of low integer Matsubara phonons

are present at frequencies below the Markovian criterion. Similarly, this region

is in agreement with the results in figure 3.1.5, section 3.1, where the area of

BLP depletion is equivalent to the sharp increase and plateau of cumulative

integrated flux. When the system is overdamped there is a sharp BLP increase

up to the maximum as a consequence of instantaneous non-Markovian feedback

from solvent reorganisation, whereas in underdamped environments with a

smaller proportion of temperature independent Matsubara axes, BLP builds up

gradually. Therefore, in the overdamped model, low tier ADOs present a sharp

increase in non-Markovianty up to the maximum, at which point no further BLP

is added leading to a depletion in successive ADOs. These findings confirm that

increasingly underdamped environments will have a Markovian cutoff criterion

which is found significantly deeper (at higher tier) within the hierarchy. The

results in figure 3.3.7 column a) are in agreement with these conclusions. The

overdamped environment, in the homogeneous limit, has fewer phonon modes

at high tier and subsequently has few ADOs, with some containing zero virtual

information and not being terminators. Larger hierarchies necessarily have a

larger number of terminators, but additionally have a much smaller number of

empty non-terminators.
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Figure 3.3.9: 2D electronic spectra for the fast and slow dissipation rate limits of
the BVM model system at T = 0, 100 and 200 fs.

Figure 3.3.9 presents the 2DES for the two limiting cases of the model: a), b),

and c) present the overdamped model in 100 fs increments up to 200 fs, and d),

e), and f) present the equivalent underdamped spectra. As anticipated from the

conclusions of section 3.2, peak position is obscured by the very large

inhomogeneous broadening introduced by the strongly overdamped vibrational

mode subsumed into the environment. This broadening results in what appears

to be a single large peak, although the intensity differences at ∼ 10 300 cm−1

along the excitation axis suggest that there is vibrational character and

population is relaxing into lower vibrational states up to two vibrational mode

frequencies below the fundamental. Clearly a large number of terminators

relative to the total ADO number results in a significant increase in

inhomogeneous broadening as a result of the limited non-Markovian phonon
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Figure 3.3.10: Contour plot for the HVM showing the additional termination of
auxiliaries 21-24, and 2D electronic spectra for the HVM including the volume

reducing terminator. T = 0, 50, 100 fs.

contributions. In contrast, in the underdamped limit, figure 3.3.9 d), e) and f)

the spectra have very precise positions and many cross-peaks are present. Even

at low time the peaks are Lorentzian in shape, reflecting a reduced intrinsic

canonical damping from section 3.2, with a balance between the

inhomogeneous and homogeneous broadening as a consequence of the

underdamping of the modes subsumed into the spectral density. This results in

high positional precision, low broadening accuracy, a low (relative) number of

terminators, and a more uniform spread of relative virtual BLP over all of the

ADOs. This supports the idea that underdamped systems require larger

hierarchies where each ADO contributes to the total non-Markovianity.

3.3.3 Impact of Additional, Volume Reducing, Termination

A new type of termination of the HVM model, in section 3.3.1, is considered

where those ADOs with a low virtual information content are additionally

terminated through a new, additional, criterion. This is used to reduce the

volume of the total hierarchy and is consequently termed volume reducing
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termination. Figure 3.3.10 shows an updated version of figure 3.3.4, after

volume reducing termination. The contour plot shows that the additional

termination has occurred for ADOs 21 − 24 which have negligible virtual

information, and the empty ADOs for ADO number greater than 50 are also

truncated. The spectra show the associated 2DES after both termination

schemes have been applied, and they show no change in broadening or peak

position relative to figure 3.3.4. This highlights that volume reducing

termination in this way has had minimal impact on the dynamics while

increasing computational efficiency. This is achieved through demonstration

that qualitatively equivalent spectra can be generated even when a proportion

of the total generated ADOs (∼ 40% of HVM ADOs) are additionally terminated.

By generating an algorithm to cut these dimensions from the hierarchy, the

dynamics will be considerably quicker. Such computations are of interest for

future studies.

Next a volume reducing termination scheme is considered for the more

complex BVM scenarios. This is propsed through discussion of the phonons

present within each ADO which was developed in the previous analysis in

section 3.3.2.

Based on the efficiency of the current termination criterion in the BVM contours

there is no saving to be made with empty ADOs, in contrast to the result for the

HVM. However, the behaviour of individual auxiliaries along a specific Matsubara

axis is being repeated. For example in figure 3.3.6, we observe that n1 behave

in an almost identical fashion such that this characteristic is being replicated

four times within the hierarchy. We propose an additional, new, termination

which reduces the number of auxiliaries based on the number of repetitions of

behaviour that are present. If multiple ‘copies’ of a behaviour are present within

any Matsubara vectors (multiply-tiered or otherwise) then we can additionally

terminate those with the smallest magnitude, which corresponds to truncating

the most Markovian ADOs. Continuing the example of n1 for n = {1, 2, 3, 4},

the volume reducing termination scheme would reduce this to n1 for n = {1, 2}
where n = {3, 4} become terminators. Additionally, we could consider altering

the volume reducing termination scheme to An1 for n = {1, 2} where n = {3, 4}
become terminators, and A is a constant addition to account for any repeated

character.

Figure 3.3.11 shows a contour plot of the standard dissipation BVM model

before, a), and after, b), volume reduced termination, where the volume

reduced termination involves removal of repeated behaviour of integer

multiples of phonon modes. Here, repeated behaviour is ADOs which

correspond to greater than two phonon processes, and these auxiliaries are

forced to become terminators. This will not remove these sections from the total
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Figure 3.3.11: Contour plot of time, ADO number, and BLP metric for the
standard dissipation rate BVM model, a) before and b) after volume reducing

termination. Red dashed lines denote terminators.

hierarchy volume, but it will prevent virtual information from being contributed

by these sections. a) of figure 3.3.11 is in agreement with the results in figures

3.3.7 and 3.3.8, demonstrating the increasing breadth of the BLP depletion for a

greater damping strength. The spectra are similar to the underdamped regime,

however the virtual information recurrence at early time is more pronounced

based on the reduced damping in the subsumed vibration. Additionally, b)

highlights the non-linear progression which the hierarchy algorithm takes

during generation of the model. The first 75 ADOs progress linearly along the

first two Matsubara dimensions, generating two signals followed by terminated

multiple phonon modes, and then the third block moves non-linearly through

the hierarchy. The next ∼ 50 ADOs are multi-tier, and therefore not terminated

by the second criterion, and contribute significantly to the new dynamics. It is

clear that many more ADOs are terminated, in a manner similar to the

overdamped regime, and exhibit reduced broadening due to the secondary

source of damping leading to greater peak positional precision. Consequently,

this could serve as a method of artificially correcting the canonical damping.

The spectra in figure 3.3.12 show the corresponding 2DES associated with the

respective ADO, time, BLP contours in figure 3.3.11. Both sets of spectra are in

increments of 50 fs, up to 100 fs. a) – c) are exactly those in section 3.2, and are

for the standard dissipation rate BVM model2. They show a reasonable level of

inhomogeneous broadening as a consequence of the subsumed vibrational mode,

but vibronic peaks are still clearly distinguishable. All peaks, including the cross-

peaks, are broadened individually by the coupling to the bath resulting in more

broadening than in the fully underdamped model, but significantly more peak

precision than in the overdamped regime.

In comparison, the spectra in figure 3.3.12 d) – f) show qualitatively similar

peak profiles. Despite all ADOs containing virtual information pertaining to
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Figure 3.3.12: 2D electronic spectra for the standard dissipation BVM model
system before, a) – c), and after, d) – f), volume reducing termination at T = 0,

50, and 100 fs.

greater than 2 phonon processes and a significantly increased percentage of the

total hierarchy being terminated, the individual peaks have well resolved

positions and have not been overbroadened. As demonstrated by 3.3.9 d) – f)

regimes which are far into the overdamped limit tend to produce hugely broad

peaks with very minimal positional resolution - but this is not evident after

volume reducing termination. In contrast, the peaks are fairly Lorentzian and

additional peaks have become apparent, examples being at approximately

(10 000, 11 750), (11 750, 10 000) and (11 750, 9 000) wavenumbers in figure

3.3.12 f), showing agreement with the HVM results in figure 3.2.4 of section

3.2. This demonstrates that high energy, multi-phonon processes contribute to

the overall broadening of the 2D spectra, and obscure weak overtone peaks.
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Figure 3.3.13: Schematic showing the closed hierarchy volume. a) and c) An
arbitrary value of Γ(1)

max. b) For Γ(2)
max < Γ

(1)
max. d) First Γ(1)

max, and then the volume
reducing termination scheme. Movement from a) to b) demonstrates a

self-similar volume, whereas c) to d) demonstrates a regime without this
restriction.

Therefore, the most significant virtual information is stored within the lowest

tier ADOs with the lowest phonon numbers. This confirms that it would be

feasible, and useful, to truncate the hierarchy volume by different amounts

along different axes. Currently, the hierarchy is a sealed volume which can only

be reduced by decreasing Γmax resulting is a self-similar shaped hierarchy of

smaller volume. However, it would be more efficient to reduce each axis to a

certain number of multiples of phonon interaction, corresponding to different

lengths for each Matsubara axis. This maximises the accuracy relative to the

experimental spectra of the model, while reducing the hierarchy volume

significantly by changing the volume to a different, non-self-similar shape. This

is demonstrated pictorially in figure 3.3.13.

In summary, these results show that the auxiliary density operators contain

virtual information which, while not completely physical, allows insight into

subsumed physical vibrations within the system of interest after canonical
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transformation. Qualitative understanding about the nature of the system-bath

interaction and the level of non-Markovian feedback this induces, mediated by

integer multiples of phonons in each Matsubara dimension, can be obtained

directly from the virtual information BLP metric when it is applied to the ADOs.

It is shown that, except for temperature independent axes, Matsubara axes are

independent of each other and the resulting integer multiples of phonons

behave more like each other than those from other axes, as a consequence of

their relative timescale. The 2DES spectra are in agreement with those in

sections 3.1, and 3.2, demonstrating increased inhomogeneous broadening in

systems with greater damping, which is directly related to non-Markovian

feedback of phonons. This study also introduces a, new, volume reducing

termination scheme based on the physical understanding afforded by analysis of

phonons within the auxiliary density operators. This scheme proposes a method

of reducing computational cost in large calculations by reducing the size of the

sealed hierarchy volume by allowing non-self-similar volumes.
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4 Measuring Quantum
Correlations

Quantum measurements in the context of information have been considered in

the previous chapter and linked to 2DES, but a second source of quantum

behaviour is considered: quantum correlations. The theory of vibronic

monomers and dimers, in sections 2.2.1.1 and 2.2.1.3, are combined with the

bosonic two-time correlation functions, section 2.3, to generate a measure of

quantum antibunching, and classical bunching, in systems continually driven by

a laser field.

4.1 Phonon Signatures in Photon Correlations

It is evident from the previous studies that environmental conditions have a

profound impact on the dynamics of an open quantum system. When the

environment is particularly thermally active an averaging effect occurs over the

ensemble system-bath interactions which leads to a narrowing of 2DES.

Additionally, in more static environments, when system and bath timescales are

closer, the system-bath interactions broaden into a normal distribution of

distinct frequencies leading to recurrence of information. The emergence of

quantum behaviour as a consequence of system-bath interaction is ubiquitous in

a broad range of phenomena. The following sections consider the impact of a

movable system-bath boundary on the bosonic two-time correlation function

which can model the purely quantum effect of antibunching, discussed in detail

in section 2.3.

Here an OQS model for a vibronic molecule, following section 2.2.1.1, is

generated and is continuously driven by a monochromatic laser field, as

described in section 2.2.3. As in the previous studies, this model incorporates

vibrational and electronic degrees of freedom and a coupling to a thermal

environment, the impact of which on the bosonic correlation functions is of

particular interest. Bosonic second-order correlation functions, following section

2.3, are generated for photons and phonons, with c1 = c2 = a or c1 = c2 = b,

and cross-correlations248,253–256, with c1 ̸= c2. The impact of this is that

electronic and vibrational modulation of the mutually dependent phonon and

photon dynamics and emission of light from the system of interest occurs. This
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system of interest is depicted within the total, open, system in figure 4.1.1.

Figure 4.1.1: a) Schematic of the molecule coupled to bath modes and driven by
laser field EI, resulting in the scattered field Ēsc. Phonon movement between
system and environment indicated by arrows. b) Diabatic energy levels, with
excited state displacement d̃, system reorganization energy λ, fundamental
transition frequency ωeg, and system mode frequency ω0. Corresponding

adiabatic levels on the far right. Reproduced from ref. 3, with the permission of
APS Publishing.

It is worth noting that the incident and scattered laser fields are treated as a

vector and an operatora respectively. The reason for this is that the incident field

is a semi-classical vector whereas all explicit use of the scattered field is in the

quantised operator form.

As discussed in section 2.3 the rotating wave approximation is not applied in

this model, and the driving field remains continuous throughout the evolution.

Similarly, it is assumed that the incident field is not detected as part of the

scattered field during the evolution. This can be achieved experimentally

through the addition of a thin wire as in the dark-ground imaging technique

employed by Andrews et. al.308. Additionally, all dynamics are generated from

models constructed in the adiabatic basis. This means that the energy levels

exist in a hybridised state of mixed character, this is depicted in figure 4.1.1 b).

Vibrational relaxation within this system occurs as a result of phonon dissipation

from the system to the environment which is modelled as an infinite ensemble

of harmonic oscillator modes, section 2.2.2.2, with an associated coupling,

section 2.2.2.1. The spectral distribution function is an overdamped Brownian

oscillator such that stochastic Gaussian fluctuations are introduced into the

nuclear dynamics, which correspond to low frequency interactions with the

solvent. System-bath coupling in this fashion leads to vibrational dephasing and

dissipation within the system38,155. As demonstrated in the previous chapter,

there are many different approaches for generating a computational solution to

the EOM for OQSs12,18,309–312. In this chapter the hierarchical equations of
aIn the absence of roman font for this operator with a calligraphic ‘E’ it is explicitly labelled as

{̄·} to accentuate the difference with respect to the incident field. All other instances of operators
remain labelled with roman font.
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motion (HEOM) method118,147 is employed in the overdamped limit, equivalent

to the HVM for a vibronic monomer in section 3.2.

Each of the model systems considered have, unless otherwise specified,

η(ν) = 5 cm−1, Λ(ν) = 200 cm−1, ω
(ν)
0 = 500 cm−1, d̃ = 1.2 such that

λ(ν) ≈ 360 cm−1, ω(ν)
eg = 104 cm−1, E0 = 107NC−1, and T = 298K. Such

parameters guarantee that the system can be simplified via the weak coupling

approximation and that resultant dynamics are sufficiently Markovian. As is

standard for the HVM, Hamiltonian vibration structure is truncated at N = 10,

chosen to be large enough so that system evolution is not impacted by the level

of truncation. These conditions are equivalent to molecules with electronic and

vibrational transition frequencies of ∼ 104 cm−1 and ∼ 102 cm−1,

respectively313,314 and environments equivalent to standard experimental

non-polar solvents1,2 with weak system-bath coupling. As discussed in section

2.5.6 the system is initialised in a Boltzmann distribution before further

propagation occurs.

4.1.1 Simultaneous Time Correlation

Figure 4.1.2 presents the normalised first order correlations of photons and

phonons at simultaneous time, τ = 0. a) – c), the photon g
(1)
a , show the

population of the monomer excited state for three different bath reorganisation

energies: 0, 5 cm−1, and 10 cm−1. The impact of phonon dissipation and energy

dissipation into the bath from the system is demonstrated by the damping of the

Rabi oscillations when the excited state displacement is non-zero. If the excited

state displacement is zero, and subsequently the system reorganisation energy is

zero, the ground state Boltzmann distribution is able to project perfectly to an

equivalent Boltzmann distribution in the excited state due to maximum

Franck-Condon overlap leading to a persistent Rabi oscillation for all bath

reorganisation energies. For displacements greater than zero the Rabi oscillation

is damped to a steady state which is formed in a time proportional to d̃.

Similarly, d) – f) in figure 4.1.2 show the corresponding phonon detection

probabilities. As a direct consequence of the zero excited state displacement,

and system reorganisation energy, there is a minimum detection probability

when no additional phonon movement is introduced. This corresponds to the

background level of phonon transfer within the system in the absence of excited

state displacement when the Franck-Condon overlap integral is maximised. An

increase in the system reorganisation energy, which pushes the system away

from equilibrium, results in increased vibrational relaxation and a linear

increase in the g
(1)
b . When λ > 0 the phonon detection probability exhibits a

beating pattern consistent with the electronic Rabi oscillation demonstrating the
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Figure 4.1.2: a), b), c): g(1)a (t, τ = 0) correlation function corresponding to
photon detection probability. d), e), f): g(1)b (t, τ = 0) correlation function

corresponding to phonon detection probability. Both include scanning over bath
and system reorganization energies η and λ. Reproduced from ref. 3, with the

permission of APS Publishing.

increased probability of phonon movement after electronic excitation.

Equivalent to a) – c), introduction of a non-zero bath reorganisation energy

leads to a dramatic reduction in the formation time of the steady state

probabilities.

Figure 4.1.3: a), b), c): G(2)
aa (t, τ = 0) second order non-normalised correlation

function. d), e), f): G(2)
bb (t, τ = 0) second order non-normalised correlation

function. Both include scanning over bath and system reorganization energies η
and λ. Reproduced from ref. 3, with the permission of APS Publishing.

Figure 4.1.3 presents a set of non-normalised second-order, simultaneous time,

correlation functions for photons and phonons. Based on the chosen vibronic

monomer structure of the system, when τ = 0 it is impossible to have a second

excitation and emission, as there is no electronic doubly excited state in this TLS.

Therefore, the photon correlation is zero for all values of time, t. In contrast, the

HVM system has a number of accessible vibrational levels, and a bath of phonons

which allow for vibrational dissipation. Subsequently, simultaneous detection

of two phonons is possible and, in a fashion similar to figure 4.1.2, the double

phonon correlation is modulated by the electronic Rabi oscillation.
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Figure 4.1.4: a), b), c): G(2)
ab (t, τ = 0) non-normalised cross-correlation function

at simultaneous time. d), e), f): G(2)
ba (t, τ = 0) non-normalised cross-correlation

function at simultaneous time. Both include scanning over bath and system
reorganization energies, η and λ, respectively. Reproduced from ref. 3, with the

permission of APS Publishing.

Similarly, figure 4.1.4 a) – f), presents the cross-correlations for this system,

which are strongly dependent on the number of accessible electronic and

vibrational levels. When τ = 0 the order of detection events is indistinguishable

and therefore g
(2)
ab = g

(2)
ba . Additionally, these correlations exhibit a

superimposition of photon Rabi oscillations on to the phonon correlations which

are linearly dependent on excited state displacement. Subsequently, when the

bath reorganisation energy is greater than zero, there is an increase (vertical

translation) of the correlation as a result of increased VR, and when

λ(ν) = 0 cm−1 the probability of second detection is strongly tied to the

electronic beating.

4.1.2 Two-time Second-Order Correlation

Second-order correlations are generated by evolving the total system again, for

another period of time τ after emission of the first boson, but in an independent

time coordinate. As depicted in figure 4.1.5, the first order correlations are

generated at simultaneous time at the end of the first cycle of evolution.

Correlation which reach the equilibrium within 8 ps will have a starting

amplitude that is independent of the time, however those which do not reach

equilibrium have variable amplitudes. The Rabi cycle within the correlation can

be at a maximum, a minimum, or somewhere in between, and this amplitude is

the starting point for the successive evolution. As the second evolution is in an

independent time axis, τ the time after the first bosonic emission, the starting

value of correlation will have a considerable impact on the probability of

secondary emission.

Figure 4.1.6 presents the two-time, second-order, normalised correlation

function for photons and phonons where tend has been chosen uniquely for each
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ρ0 ρeq ρ(t)

ρ(t3, τ)ρ(t2, τ)ρ(t1, τ)

t

τ τ τ

t1 t2 t3

Figure 4.1.5: Schematic depicting the order of evolution for a two-time
correlation measurement. The initial density matrix, ρ0, is equilibrated in time
to ρeq. The continuous laser field is then activated and the system is evolved

through time, t, up to t = tend, where tend = {t1, t2, t3}. Subsequent propagation
starts at tend and evolves the system through τ to the end state ρ(tend, τ).

Figure 4.1.6: a), b), c): g(2)aa (τ) second-order correlation function, d), e), f):
g
(2)
bb (τ) second-order correlation function, scanning over bath (η) and system (λ)
reorganization energies. Reproduced from ref. 3, with the permission of APS

Publishing.

reorganisation energy to maximise correlation in all cases. The endpoint of the t

evolution, denoted g(1/2)(t = tend), is considered in three cases: the correlation

g(1/2)(t = tend) is maximised for each value of λ(ν) resulting in unique values of

tend. Consequently, values are selected so that each oscillation is at a comparable

amplitude. Within further sections, tend = 4.7 is chosen for λ = 0 correlations,

tend = 3.5 ps is chosen for λ/2 correlations, tend = 4.3 is chosen for λ

correlations, and tend = 4.0 ps is chosen for the 2λ correlations. Unless specified

otherwise, the former case is the default setup for this HVM system. Due to the

initial Boltzmann distribution in the ground state, after excitation a wavepacket

moves within the harmonic potential75,85,196. If the system reorganisation

energy and excited state displacement are zero then the continual driving by the

laser field results in a Rabi oscillation. This beating is a consequence of

transitions |g, 0⟩ → |e, 0⟩ , |g, 1⟩ → |e, 1⟩ , ..., when the Franck-Condon overlap is

maximised, and is evident in the major oscillation in figure 4.1.6 a) – c), leading

to antibunching. In contrast, when the system reorganisation energy is greater

than zero, the system is able to undergo VR leading to a change in the excited

state wavepacket population distribution. This leads to modulation of the
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detection probability at the system vibrational mode frequency, demonstrated in

figure 4.1.6 as the minor oscillation. This implies that the experimentally

measurable second-order photon correlation function contains a measurable

phonon signature despite the fact that phonons are not directly detected. This

behaviour emerges as a direct consequence of the change in overlap of the

quantum harmonic bound eigenstates of the excited and ground states315. As

the system reorganisation energy increases, the Franck-Condon overlap integral

decreases proportionally, resulting in an increased Rabi oscillation period where

more population enters the vibronic |e, 0⟩ state via VR.

Figure 4.1.6 d) – f) present the second order phonon correlation, g(2)bb (τ) , for

the same parameters. In the absence of a system reorganisation energy,

population is free to move resonantly between the ground and excited electronic

states with no VR316, resulting in the background phonon transfer rate observed

in figure 4.1.2 a) with λ = 0. For system reorganisation energies (λ) which are

greater than zero, there is a non-stationary population out of thermal

equilibrium for all values of bath reorganisation energy. Similar to the photonic

correlations, the g
(2)
bb (τ) is strongly dependent on the electronic excited state

population, and tracks the electronic Rabi oscillation leading to a more classical

phonon bunching phenomenon. Introduction of a system-bath coupling which is

non-zero results in a rapid decay of correlation in τ to a steady state as a

consequence of the strong phonon dissipation.

b), c) and e), f), of figure 4.1.6 consider non-zero bath reorganisation energies.

Increasing η(ν) proportionally increases the rate of phonon dissipation into the

bath and the resultant damping of the Rabi oscillation forms a steady state.

Alternatively, a value of tend could be chosen which maximises a specific

contribution within the correltaion function. Figures 4.1.7 and 4.1.8 present

results which are analogous to figure 4.1.6 but with different choices of tend.

The chosen endpoints of the first evolution, t, differ by 0.5 ps which corresponds

to one half of the period of the non-displaced Rabi oscillation cycle.

Subsequently, moving from tend = 3.5 ps to tend = 4.0 ps shifts the final

amplitude of the correlations from a trough to a maximum. The other values of

non-zero system reorganisation energy will therefore be similarly translated but

at a starting point which is not perfectly at a trough. The choice of tend is crucial

for τ dependent results, as the starting point of the evolution dictates the

starting amplitudes for all of the subsequent correlations, which can tend to

favour or disfavour certain modes. Similar considerations would also be

necessary in experimental realisations of these experiments.

Through comparison with figure 4.1.2 panel a), it is clear that in figure 4.1.7,

with tend = 3.5 ps, λ
2 , and λ are the closest to their maximum value, whereas, 2λ,

and λ = 0 are closest to their minimum. As a consequence of this, the modulation
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Figure 4.1.7: a), b), c): G(2)
aa (t = 3.5, τ) non-normalised second order correlation

function. d), e), f): G(2)
bb (t = 3.5, τ) non-normalised second order correlation

function. Both include scanning over the bath and system reorganization
energies η and λ, and both start the τ evolution from t = 3.5 ps. Reproduced

from ref. 3, with the permission of APS Publishing.

Figure 4.1.8: a), b), c): G(2)
ab (t = 4.0, τ) non-normalised second order correlation

function. d), e), f): G(2)
ba (t = 4.0, τ) non-normalised second order correlation

function. Both include scanning over the bath and system reorganization
energies η and λ, and both start the τ evolution from t = 4.0 ps. Reproduced

from ref. 3, with the permission of APS Publishing.

due to electronic transitions is minimised for 2λ, and λ = 0 which improves

the resolution of the smaller vibrational contributions. This is particularly well

demonstrated through the minor oscillation in figure 4.1.7 panel d). In contrast,

vibrational contributions are obscured by an amplification of the electronic Rabi

oscillations within figure 4.1.8 with tend = 4.0 ps.

Despite changes in the amplitude of the correlations, all of these results share

the fact that there are two fundamental oscillatory modes: major electronic Rabi

oscillations, and minor vibrational contributions at the system mode frequency.

The major mode represents modulations in the detection probability dependent

on the excited state population. Minor oscillatory modes are a consequence of

changes in the excited state wavepacket population with respect to the ground

state Boltzmann distribution, corresponding to phonon transitions.

Both the g
(2)
aa and g

(2)
bb , by definition, have no dependence on the order of

detection events since τ separates the detection of identical particles. In both
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Figure 4.1.9: a), b), c): g(2)ab (τ) cross-correlation function, d), e), f): g(2)ba (τ)
cross-correlation function, scanning over bath (η) and system (λ) reorganization

energies. Reproduced from ref. 3, with the permission of APS Publishing.

cases there is a single source of vibrational character. For the g(2)aa this is indirect,

from the strong dependence of photons on the vibrational populations, whilst

for g(2)bb this is from direct measurement of the phonon number. In both cases,

vibrational character is observed as oscillations at the vibrational mode

frequency ω0. Cross-correlations, which do depend on detection order, can be

used to better illuminate these sources of vibrational character.

Figure 4.1.9 shows the two-time cross correlation of photons and phonons,

where the order of detection is altered between photon first, g(2)ab , to phonon

first, g(2)ba . This demonstrates that the second detection event determines the

dominant character of the cross-correlation as a function of τ . In a) – c) the

phonon detection is second, which defines the predominant character of this

cross-correlation, and onto this we observe a superimposition of photon

correlation. The first detection event is an instantaneous measurement of the

photon number and contains no vibrational information, imparting no minor

oscillation to the correlation. Similarly, phonon detection which occurs τ later,

also does not incur a minor oscillatory mode. This is because, despite the fact

that vibrational transitions occur during the period of time τ , the fast phonon

signatures are very small with respect to the electronic contributions and their

impact on the excited-state adiabatic population is minimal. Consequently,

neither detection event incurs vibrational character, as demonstrated in panels

a) – c). Additionally, these correlations demonstrate bunching whereby a photon

detection is likely to be immediately followed by a phonon which reflects the

non-equilibrium population distribution following photon emission.

In striking contrast to this is the phonon-photon cross-correlation function,

g
(2)
ba , which exhibits significant vibrational character. As the secondary boson

detection is a photon, the characteristics of the g(2)aa figure 4.1.6, dominate, with

phonon characteristics superimposed. The first boson detection event is of a

phonon and therefore is associated with intrinsic vibrational character at the

system mode frequency. However, unlike the g
(2)
ab , the second detection event

also introduces vibrational character. The secondary detection probability, of a

photon, is modulated by vibrational transitions due to the differing wavepacket
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Figure 4.1.10: a), b), c): G(2)
ab (t = 3.5, τ) non-normalised cross-correlation

function. d), e), f): G(2)
ba (t = 3.5, τ) non-normalised cross-correlation function.

Both include scanning over the bath and system reorganization energies η and
λ, and both start the τ evolution from t = 3.5ps. Reproduced from ref. 3, with

the permission of APS Publishing.

Figure 4.1.11: a), b), c): G(2)
ab (t = 4.0, τ) non-normalised cross-correlation

function. d), e), f): G(2)
ba (t = 4.0, τ) non-normalised cross-correlation function.

Both include scanning over the bath and system reorganization energies η and
λ, and both start the τ evolution from t = 4.0ps. Reproduced from ref. 3, with

the permission of APS Publishing.

populations. Consequently, there are two sources of vibrational character: 1)

intrinsically from the first detection event, and 2) from the phonon effects

during the optical beating of the photonic correlation.

These cross-correlations 4.1.9 are, like their g
(2)
bb counterpart, strongly

dependent on the system reorganisation energy and excited state displacement.

When there is no displacement, and ground state populations are projected

completely into the equivalent excited state distribution, there is a constant

minimum of phonon transfer. Upon increasing λ(ν) the two sources of

vibrational character introduce significant variation in the detection probability

leading to probabilities suppressed below the zero displacement value. This

corresponds to a large proportion of the excited state wavepacket undergoing

vibrational transitions within the excited state which moves population into

vibrational states which disfavour relaxation to the electronic ground state.

Even in the presence of phonon dissipation this effect persists at early τ , but
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additional damping prevents a reduction of probability below the probability of

λ(ν) = 0 cm−1 at later times. In agreement with the results in figure 4.1.3 a) –

c), these correlations exhibit antibunching behaviour as a consequence of poorer

Franck-Condon overlap of the bound quantum harmonic oscillator eigenstates,

suppressing transitions at ωeg as system reorganisation energy increases. This

means that phonon emission tends to inhibit subsequent photon emission when

τ ≈ 0.

Similar to figures 4.1.7 and 4.1.8, figures 4.1.10 and 4.1.11 present

cross-correlations for different values of tend which correspond to maxima and

minima in the initial correlation amplitudes. As a consequence of this, the

detection probabilities vary due to electronic transitions, minimising these

contributions for 2λ, and λ = 0 which improves the resolution of the smaller

vibrational contributions in 4.1.10. In contrast, vibrational contributions are

obscured by an amplification of the electronic Rabi oscillations within figure

4.1.11 with tend = 4.0 ps. This is demonstrated particularly well in figures

4.1.10 and 4.1.11 for the case of 2λ reorganisation energy, where almost all

vibrational contributions are removed for tend = 3.5 ps, but are maximised when

tend = 4 ps. Additionally, these figures demonstrate that the impact of changing

tend is reduced significantly when the environment reorganisation energy is

greater than zero as a consequence of all values being pushed heavily towards

the steady state.

In this section, we have demonstrated theoretically photon antibunching in

the fluorescence of a vibronic molecule under continuous laser drive and a

thermal environment and that the photon-photon correlations exhibit signatures

of the phonon interaction with the bath, suggesting that these are

experimentally directly measurable. These appear as oscillations at the

system-mode frequency on top of slower modulations associated with the

electronic Rabi-like oscillations. Theoretically also considering phonon detection

and photon-phonon cross-correlation functions, we have shown how vibrational

contributions are understood as arising either directly, through phonon

detection, or indirectly, through photon detection subsequent to phonon

emission. As such, the order of particle detection can dramatically impact the

behaviour of the correlation functions, which could in principle be exploited to

investigate the phonon impact on photon emission. More immediately, these

correlation functions present an opportunity to investigate phonon dynamics

indirectly using existing quantum-optical techniques to understand the impact

on quantum versus classical processes in molecular systems.
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Figure 4.2.1: Schematic of a two-level electronic system interacting with a pair
of continuous laser fields. a) a delta function pulse width which stimulates

excitation at only the fundamental electronic transition frequency. b) Gaussian
finite pulse width which stimulates excitation at the fundamental electronic

frequency and ± integer multiples of the vibrational mode frequency.

4.2 Correlations Induced by a Laser with a Gaussian

Width

In the previous section, an HVM system was considered under the influence of

continuous driving by a laser field and a phononic bath. However, experimental

setups generate finite pulse widths, discussed in part in section 2.4, resulting

in more accessible transitions than purely the fundamental electronic transition.

This HVM vibronic monomer model is extended by broadening the laser pulse

from a delta function to a narrow Gaussian with a range of FWHMs of 50, 250,

and 500 cm−1. This is depicted in figure 4.2.1.

4.2.1 Continuous or Pulse-like Driving Fields

The broader range of frequencies present within the finite width pulse results in

allowed transitions that are at integer multiples of the vibrational mode

frequency above and below the fundamental electronic transition frequency.

Subsequently, Stokes and anti-Stokes Raman scattering processes will be

accessible transitions317. The three choices of FWHM used accessible transitions

above and below the fundamental electronic transition frequency of one or two
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vibrational levels, and the lowest FWHM of 50 cm−1 represents a model of an

experimentally accurate finite laser width as an approximation of a delta

function.

Each of the model systems considered have parameters equivalent to those in

section 4.1 such that, unless otherwise specified, η(ν) = 5 cm−1, Λ(ν) = 200 cm−1,

ω
(ν)
0 = 500 cm−1, d̃ = 1.2 such that λ(ν) ≈ 360 cm−1, ω(ν)

eg = 104 cm−1, E0 =

107NC−1, and T = 298K. Such parameters guarantee that the system can be

simplified via the weak coupling approximation and that resultant dynamics are

sufficiently Markovian. In contrast to the previous models the laser field which

drives the system is given a finite width defined as a Gaussian envelope similar

to that which is defined in section 2.2.3.1. The laser field, equation (2.2.75) in

section 2.2.3, can be expressed explicitly as a temporal and spatial superposition

of waveforms such that,

EI(r, t) =
∑
m

êmχm

(
E(r, ωm, t) + E(r, ωm, t)

∗
)
E′(ωm). (4.2.1)

Here, instead of a temporal field envelope function, E′(t), the envelope is a

spatial function, E′(ω), describing the spectral bandwidth of the laser beam

applied to the system. If all field components are assumed to be parallel and

reflected contributions negligible then this can be written as

EI(t) =
∑
m

χmE(ωm, t)E
′(ωm), (4.2.2)

where

E(ωm, t) = exp(−iωmt), E′(ωm) = exp
(
− (ωm − ωeg)

2

2σ2g

)
. (4.2.3)

In the limit m → ∞ the range of frequencies contained in the spectrum of the

laser becomes a continuous frequency variable, and in the limit σg → 0 the

envelope function becomes a delta function centred on the fundamental

electronic transition frequency, equivalent to that which is used in section 4.1.

Each FWHM is calculated from the width parameter, σg, of the Gaussian profile

through FWHM = 2
√
2ln2 · σg. In addition to the three values of FWHM,

50, 250, 500 cm−1, three values of m are also considered: 41, 101, and 401.

These values demonstrate a range of frequencies within the continuous wave

resulting in a continuous oscillation when m = 41, but destructive interference

from the broad range of phases leads to a spatial wavepacketb when

m = {101, 401}. Figure 4.2.2 shows each of these waveforms as a function of

both time and space. Additionally, figure 4.2.3 depicts the resolution of the

spectral bandwidth which results in m = {41, 101, 401} discrete frequencies

bStrictly a spatial superposition of frequency modes, rather than the 2DES wavpacket of
eigenmodes within the PES.
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Figure 4.2.2: The envelope function for the continuous driving laser field. When
m is large, considerable destructive interference occurs between the constituent

waves leading to a spatial wavepacket of varying period. a) The spacial
Gaussian breadth of the laser for varying σg. b) The time domain incident field

for each value of σg and m resulting in a range of forms from a continuous wave
for low m to discrete wavepackets in time for large m. c) Plot of all FWHMs

with m = 40 demonstrating the range of continuous waves for differing
numbers of accessible vibrational excited states. d) Plot of all FWHMs with

m = 100 demonstrating the transition to a set of discrete wavepackets when σg
is large, such as 500 cm−1. e) Plot of all FWHMs with m = 400 demonstrating

that for the largest number of discrete frequencies within the laser the field only
remains a continuous wave for the smallest value of FWHM = 50 cm−1.

within the spatial superposition.

It is clear from figure 4.2.2 that increasing the number of discrete frequencies

present within the incident field results in a greater amount of destructive

interference and a temporal wavepacket with a greater time between pulse
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Figure 4.2.3: A schematic of the spectral bandwidth, showing how m
frequencies are contained within the spatial wavepacket. Within this schematic
m is 11 and m is 41. This demonstrates the change in frequency resolution,

∆ω(ν), from 2 000 to 500 cm−1. Simultaneously the spatial FWHM of the pulse
changes, with two examples shown in dashed and solid lines.

center. c) demonstrates that when the number of discrete frequencies within the

interval is low the incident field remains a continuous oscillation. The

magnitude of σg dictates whether there is any envelope, such as is evident for

FWHM = 500 cm−1. When at the vibrational mode frequency, despite the low

number of discrete constituent frequencies, transitions to low energy excited

vibrational levels are also possible resulting in a sinusoidal envelope. e) depicts

the opposite extreme: very large m such that the frequency is almost

continuous. This results in almost entirely temporal wavepacket (a single pulse)

behaviour with the exception of very small values of FWHM, such as 50 cm−1.

This is because low integer multiples of this FWHM are not sufficient to reach

any of the vibrational excited states within the system. d) depicts behaviour

between these two extremes, when m = 101, leading to a transition from a

continuous wave to wavepackets dependent on the FWHM.

4.2.2 First and Second Order Correlations

Figure 4.2.4 presents both orders of two-time photon correlation for

σg = 500 cm−1. Here the FWHM of the incident laser is set resonant with the

system mode which results in many of the transition frequencies having a

significant amplitude within the superposition. When m = 41 the discrete

energies are also at intervals (∆ω(ν)) of the vibrational mode frequency, and as a

consequence of the small sample of frequencies, the incident field is still a

continuous oscillation in time with minimal destructive interference. This case is

shown in c) of figure 4.2.2 where the large FWHM has made the oscillation

pulse-like with a sinusoidal envelope function. However, even with the largest

FWHM, the amplitudes of multiply excited vibrational states are still negligible

resulting in correlation which is qualitatively similar to the continuous wave

results in section 4.1. The results in column 1 show the same trend as for the

continuous wave: dissipation of phonons to the bath damps the electronic Rabi
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Figure 4.2.4: Order one and two photon correlations with a spatial pulse width
of FWHM = 500 cm−1 for a range of frequency distributions dictated by m.
Column 1, a) – e), m = 41. Column 2, f) – j), m = 101. Column 3, k) – o),
m = 401. Each results in a different temporal structure of the incident field,

depicted in figure 4.2.2.

cycle, and minor modes present the impact of phonons due to the formation of

excited state wavepacketsc. However, there are two contrasting features with

respect to the system driven by a continuous laser. The first is the amplitude of

correlations with λ = 0. Introduction of any finite width to the laser pulse

results in allowed transitions not at the fundamental electronic frequency which

act as a perturbation of the excited state Boltzmann distribution. Subsequently,

there will be an infinitesimal wavepacket population in the excited state when

λ = 0 leading to a divergence in the correlation signifying that the variance of

this photon distribution is becoming vanishingly small slower than the mean.

Consequently, the magnitude of correlation is massive when normalised.

Secondly, the increased amplitude of phonon oscillations, particularly evident in

c) for 2λ, as a consequence of excitation of hot states resulting in an excited

state wavepacket.

Column 2 presents equivalent results where the number of discrete
cA system wavepacket rather than a wavepacket in the field.
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frequencies within the temporal superposition is increased to m = 101. The

spatial FWHM remains at 500 cm−1 but the accessible transitions (due to the

spectral resolution ∆ω(ν)) are shifted to integer multiples of 200 cm−1. When

this number of frequencies exist within the temporal superposition the phase

difference is significant enough that the continuous field is reduced to a series of

pulses. Each pulse is separated from neighbouring peaks by ∼ 0.1 ps and the

laser field can no longer be considered continuous, demonstrated by the coral

data in d) of figure 4.2.2. Subsequently, there are sudden drops and spikes in

probability within the correlations corresponding to the pulsing of the laser

field. Additionally, because the spacing does not result in levels which are

exactly at additions of the vibrational mode frequency to the fundamental

electronic transition correlation due to these vibrational excited states cannot

occur. This results in correlations f) – j), in figure 4.2.4, which are globally in

agreement with the results for driving by a continuous laser field, but exhibit an

additional sinusoidal modulation due to temporal nodes in the laser frequency

from destructive interference. The lack of an increased minor oscillation

amplitude with respect to column 1, due to phonon modes, reflects the fact that

these contributions are not at the system vibrational mode frequency.

Column 3 presents the data for correlations with both the largest spatial

FWHM and number of discrete frequencies within the temporal superposition,

m = 400. These results, panels k) to o), are similar to those in the second

column. The large number of discrete frequencies in the temporal superposition

results in significant destructive interference and a pulse pattern with a

separation of ∼ 0.6 ps. This dramatic increase in pulse separation is

accompanied by an increase in pulse amplitude reflecting the larger number of

constituent frequencies within the superposition. Subsequently, the field is no

longer continuous and exists as a series of 6 pulses shown in b) and e) of figure

4.2.2. This means that there are significant time periods when there is no

driving field influencing the system of interest followed by regions of intense

stimulation by a broad range of different frequencies. This leads to the step

pattern in the electronic Rabi cycles in panels k) – o). Additionally, and in

contrast to column 2, because the number of discrete frequencies is 401 the

accessible transitions are at integer multiples of ∆ω(ν) = 50 cm−1 allowing

stimulation of vibrational excited states which are integer multiples of 500 cm−1.

It is for this reason that k), m), n) and o) exhibit a significantly larger amplitude

of the minor oscillation: more phonon modes at different frequencies are

excited simultaneously by the pulse. This is equivalent to the formation of a

complex wavepacket in the excited state which is further altered by the pulses of

driving. Despite this, the global behaviour is in agreement with the results in

section 4.1 with a continuous driving field.

Figure 4.2.5 presents the corresponding first and second order phonon
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Figure 4.2.5: Order one and two phonon correlations with a spatial pulse width
of σg = 500 cm−1 for a range of frequency distributions dictated by m. Column

1, a) - e), m = 41. Column 2, f) – j), m = 101. Column 3, k) – o), m = 401. Each
results in a different temporal structure of the incident field, depicted in figure

4.2.2.

correlations for this model system under the influence of each kind of driving

field. These results are in agreement with both figure 4.2.4, and the results in

section 4.1. Similar to the first column of the previous figure, column 1 of figure

4.2.5 depicts phonon correlations equivalent to those present during driving by

a continuous wave, however the minor oscillation amplitude is increased. This

demonstrates the increase in accessible vibrational levels even for the smallest

value of m. In contrast to figure 4.2.4, when the system reorganisation energy is

zero there is no divergence of the correlation. This is because, due to the large

number of phonons within the system, there will never be a vanishingly small

mean or variance. Similarly, integer multiples of the vibrational mode frequency

on either side of the fundamental electronic transition frequency,

ω
(ν)
eg ± ω

(ν)
0 = 10 000 ± 500 cm−1 (Stokes and anti-Stokes Raman transitions),

will have non-zero amplitudes. This means that modulation of electronic

correlation will be present due to the scale of the driving field’s spatial

superposition. However, for phonons, when the system reorganisation energy is

zero there can be no vibrational relaxation (VR), as equilibrium is maintained,

meaning that correlation will be equivalent to the mean number of phonons.
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Figure 4.2.6: Order two crossed photon and phonon correlations with a spatial
pulse width of 500 cm−1 for a range of frequency distributions dictated by m.

Column 1, a) – e), m = 41. Column 2, f) – j), m = 101. Column 3, k) – o),
m = 401. Each results in a different temporal structure of the incident field,

depicted in figure 4.2.2.

Since there are many vibrational levels the mean is not vanishingly small, and

subsequently, there is no divergence.

Column 2 of figure 4.2.5 is also in agreement with the previous results. The

global behaviour is equivalent and depicts major oscillations due to electronic

transitions with minor oscillations modulating these correlations further based

on the specific vibrational levels involved in the excitation. Similarly, the

damping of all the oscillatory modes within the correlation upon increasing the

bath reorganisation is also demonstrated. As discussed for the previous results,

when the number of discrete frequencies is increased to m = 101 the

superposition consists of integer multiples of 200 cm−1 rather than the

vibrational mode frequency. In phonon correlations this results in a reduction in

the minor oscillation, which is particularly evident for λ and λ/2, in contrast to

the minor oscillation in photon correlations. This is because the fundamental

electronic transition is a multiple of the vibrational spacing, but singly

vibrational excited states are not. The action of the laser field is to drive the

ground vibronic state population into the equivalent excited electronic state or

ω
(ν)
eg + 2ω

(ν)
0 , which is also a multiple of 200 cm−1. However, in contrast to the

electronic transitions, excitation to the first vibrational state is not promoted as

the spectral resolution is 200 cm−1, and |g, 0⟩ → |e, 1⟩ is not sampled. Therefore
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the relative amplitude of the minor oscillation is reduced for phonon

correlations.

Figure 4.2.5 k) – o) depict phonon correlations with the largest spatial FWHM

and for the largest number of discrete frequencies within the temporal

superposition. This data is also in agreement with the previous findings. The

large number of frequencies results in a laser field which is no longer continuous

and behaves as a series of pulses with a separation depicted in b) of figure 4.2.2.

Consequently the correlation exhibits sharp steps due to the nodes followed by

jumps consistent with electronic transitions and minor oscillations with a large

amplitude. This minor oscillation signature is due to the large number of

accessible hot states resulting in many phonon signatures consistent with a

number of phonon modes within the excited state wavepacket. Consequently,

dissipation of phonons into the bath leads to a minimal reduction of these

oscillations.

Figure 4.2.6 contains the corresponding crossed-correlations associated with

each of the driving fields. Equivalent to the results in section 4.1, these

correlations exhibit a superimposition of the nature of the former particle onto

the probability distribution of the latter. For example, the g(2)ab in a), e), and i),

present major oscillations due to the electronic Rabi beating and a minor

oscillation due to phonon contributions to the excited state wavepacket.

Similarly, a step-function mode is introduced which modulates the correlation

based on the time between pulses when the laser field is no longer continuous

and the minor mode oscillations increase significantly when the discrete

frequencies are integer multiples of the vibrational mode frequency. In

agreement with the previous results, and most evident in c), g), and k), as the

laser field transitions into a pulse definition of the electronic Rabi oscillations is

obscured by periods of zero field interaction. Additionally, in column 3 the

phonon signatures are amplified due to instantaneous excitation of a range of

frequencies upon interaction with the laser pulse.

These results are supplemented by a full analysis of each different spatial

FWHM, in appendix H. These results show that for smaller spatial FWHMs, such

as 50 cm−1, the weighting of allowed transitions is highly focused on the

fundamental electronic frequency and vibrational modulation away from the

results of driving by a continuous wave are largely absent. This is supported by

c) of figure 4.2.2 in which the field never becomes entirely separated pulses, no

matter the choice of m. Intermediate FWHMs, such as 250 cm−1, demonstrate a

subtle movement from continuous to pulse-like field structure, with small

modulations of the correlation arising due to temporal nodes in the laser field

for only the largest number of discrete frequencies.

To summarise, it has been shown that moving from a laser field which is a
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delta function spectrum to a field of finite width can modify both the electronic

and vibrational beatings within the correlation of photons and phonons. When

the spatial FWHM is small the driving field remains continuous for any number

of discrete constituent frequencies, up to m = 401, resulting in only minor

alterations to the correlation. However, when intermediate or larger FWHMs are

employed the driving field can move from being a continuous wave to a pulse

with a separation time proportional to the number of discrete frequencies. In

such a scenario the electronic Rabi oscillations tend towards step functions

where there are regions of constant correlation in the absence of the field. Upon

interaction with this pulse a number of transitions at different frequencies occur.

If the spacing of these frequencies is at the vibrational mode frequency of the

system, the resulting excited state wavepacket will contain a greater

contribution from higher levels and therefore has an increased amplitude of the

minor oscillation. However, if the spectral resolution (∆ω(ν)) is not at the

vibrational mode frequency, or does not generate frequencies which are

multiples of ω(ν)
0 , then the minor oscillation amplitude can be tuned. In figure

4.2.5 f), the resolution is set to 200 cm−1 resulting in transitions to the first

electronic excited state being accessible, but the first vibrational levels being

forbidden. Subsequently there is a reduction of the phonon contributions in the

excited state wavepacket relative to those in photon correlations.

This study demonstrates the efficacy of the HVM method for quantum

correlations in an equivalent fashion to that which has been shown for quantum

information in section 3.1. It remains to be seen whether the BVM is equally

suitable for correlation studies, and what qualitative correlation measures can

be obtained from the system after canonically subsuming the fundamental

system vibration. This is addressed in the next section, in analogy with sections

3.2 and 3.3.

4.3 Enhanced Phonon Signatures within the Virtual

Correlation Functions of Auxiliary Density

Operators

It has been demonstrated that the HVM OQS model is effective at modelling

quantum correlations and, in a manner equivalent to section 3.1, the impact of

these correlation functions has been analysed for a test system. Now the system-

bath boundary location is moved into the spectral density through the canonical

transform, resulting in a familiar BVM model, in order to ascertain the impact of

such a movement on quantum correlations.
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Figure 4.3.1: a) The HVM model with an overdamped environment and an
intramolecular vibrational mode contained in the system Hamiltonian. b) The

BVM model with an underdamped environment consisting of overdamped bath
modes and the canonically subsumed intramolecular vibrational mode. In both
cases the system of interest is continuously driven by a continuous laser field,

with a spatial delta function distribution of frequencies, shown by EI. This field
is scattered resulting in the quantised operator, Ēsc. System-bath interaction

allows dissipation and recurrence of information and phonons through quantum
information channels.

4.3.1 Hamiltonian Versus Spectral Model

Based on the theory discussed in section 3.2 and the structure of a vibronic

monomer from section 2.2.1.1, a pair of models are generated which differ only

in system-bath boundary placement. These models are depicted in a) and b) of

figure 4.3.1.

In both cases the ground and excited electronic states are separated by

ω
(ν)
eg = 10 000 cm−1, which is then coupled to a vibrational mode of frequency

ω
(ν)
0 = 500 cm−1. The excited state potential energy surface is displaced from

the ground state along the molecular coordinate by d̃, a dimensionless

parameter, of magnitude 1.09 resulting in a system reorganisation energy of

λ(ν) = 300 cm−1. In the HVM model vibrational degrees of freedom are

contained by the Hamiltonian explicitly as energy levels. Following numerical

diagonalisation of these levels through a unitary transformation (2.2.25) the

remaining levels are a truncated subset, νM = {0, 1, 2}. In contrast, the BVM

has no explicit vibrational energy levels but has a secondary bath to compensate

for this loss.

For the HVM there is a single weakly inhomogeneous bath, with n = 1,

constructed as an infinite ensemble of harmonic oscillators and reduced to the

Lorentz-Drude spectral density function, as in equation (2.2.45). The BVM

model has n = 2 and is constructed with a pair of spectral distributions: an

overdamped component equivalent to the HVM, and an underdamped
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contribution arising from the canonical transform of the vibrational degrees of

freedom. The overdamped spectral density takes the form, equation (4.3.1), and

the underdamped equation (4.3.2), which are equivalent to those discussed in

section 2.2.2.2.

JO(ω) =
2ηOωΛO

ω2 + Λ2
O

, (4.3.1)

JU(ω) =
2ηOωΛO

ω2 + Λ2
O

+
2η2ω

2
2ω

(ω2
2 − ω2)2 + (γ2ω)2

. (4.3.2)

The coupling of the overdamped bath, determined by the associated

reorganisation energy, is η
(ν)
O = 50 cm−1, and the bath dissipation rate is

Λ
(ν)
O = 100 cm−1 so that the environment is dominated by low frequency modes,

as is typical for solution phase photochemistry at 300 K. In order to induce a

slow decay of the system-bath correlation, leading to weak inhomogeneity, the

damping rate is chosen to be γ
(ν)
1 = 2500 cm−1 which is equivalent to

Λ
(ν)
O = 100 cm−1.

The two components in the BVM spectral density, equation (4.3.2),

corresponds to the purely environmental degrees of freedom from the HVM

model and the intramolecular vibrational mode in the underdamped limit231,

respectively. In addition, ω2 ≫ γ2, such that ω2 = ω0 the vibrational mode

frequency, and η2 = λ from equation 2.2.8. Rather than being dominated by low

frequency modes, this bath features a sharp Lorentzian peak at the vibrational

mode frequency. This peak has an unavoidable canonical damping, outlined in

sections 3.2 and F.2, with breadth proportional to γ2.

The bath is coupled to the explicit Hamiltonian states through the coupling

operators (2.2.47) which have been transformed through the same unitary

transformation as the Hamiltonian. In the HVM this coupling induces a

modulation of the excited state transition frequency, which as a consequence of

stochastic motion, leads to dephasing of the associated wavepacket. In the HVM

the vibrational contributions to this wavepacket, which are absent in the BVM,

are neglected by assuming that the vibrational relaxation, and any associated

modulation of the electronic coupling, are much slower processes than the

electronic dephasing. Similarly, the BVM which has only explicit electronic

states, is coupled to the bath through a pure dephasing operator equivalent to

that used for the HVM. For this vibronic monomer system the coupling operator

takes the form,

BS
M = |e⟩⟨e| . (4.3.3)

In both models the system Hamiltonians are renormalised in order to account for

the shift in energy due to the system-bath coupling1.
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4.3.2 Virtual Correlation

From these models, correlation functions are generated following section 2.3 but,

in a manner similar to section 3.3, this metric is also applied to the ADOs. Unlike

virtual information the auxiliary density operators vary by orders of magnitude in

scale based on the exponent of j{·} in the equation for the auxiliary density matrix

element, equation (2.5.40). Therefore an additional normalisation is employed

to allow comparison between ADOs,

ḡ(1)c (t, τ) =
g
(1)
c (t, τ)

max
(
|g(1)c (t, τ)|

) , (4.3.4)

ḡ(2)c1c2(t, τ) =
g
(2)
c1c2(t, τ)

max
(
|g(2)c1c2(t, τ)|

) , (4.3.5)

where c = {c1, c2}, and either c1 = c2 or c1 ̸= c2, for auto- or crossed-

correlations respectively. Similar to the virtual information discussed in section

3.3, application of standard metrics to the ADOs does not usually result in

physically meaningful information as only the density matrix is physical. This is

true for the HVM, however, the BVM mixes the system and environment degrees

of freedom through the canonical transform as the system-bath boundary is

moved into the spectral density. If there are mixed degrees of freedom within

the spectral density then qualitative physical insights can be drawn from the

ADOs about the system vibrations.

4.3.3 HVM and BVM Virtual Correlation

Figure 4.3.2 shows the virtual correlation of photons and phonons of order one

and two for the density matrix, and first eight auxiliaries, of a BVM model. a)

and b) which depict the first and second order correlation of photons clearly

demonstrate that the coupling of the system and bath vibrational structure

which is able to arise in 2DES through vibronic cross-peaks is unable to emerge

in correlations. This is because during the canonical transform the concept of

vibrational levels is extracted from the Hamiltonian and moved into the bath

degrees of freedom. Therefore, it no longer makes sense to consider vibrational

creation operations within the system. This manifests as a pure Rabi oscillation

highlighting that the photon correlation is only dependent on the electronic

degrees of freedom and is independent of phonon modes. Additionally, after

normalisation, there is no difference between any of the auxiliaries with each

being a replica of the density matrix.

In contrast, the following figures present results for the HVM model. Figure
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Figure 4.3.2: First and second order photon correlations for the BVM,
normalised following equations (4.3.4) and (4.3.5), are shown in a) and b)

respectively.

Figure 4.3.3: First order photon and phonon correlations for the HVM,
normalised following equation (4.3.4), shown in a) and c) respectively. b) and
d) show the associated second order correlations normalised following (4.3.5).

The bath reorganisation energy is set at η(ν)O .
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Figure 4.3.4: First order photon and phonon correlations for the HVM,
normalised following equation (4.3.4), shown in a) and c) respectively. b) and
d) show the associated second order correlations normalised following (4.3.5).

The bath reorganisation energy is set at 2η(ν)O .

4.3.3 shows the virtual correlations, which are now strictly non-physical as they

have not been canonically transformed, for the HVM. a) and b) show the photon

correlation of first and second order and c) and d) are the associated phonon

contributions. These results produce the familiar result associated with

continuous driving by a laser field of a vibronic monomer, shown in section 4.1,

including both electronic and vibrational modes. In the photon correlations

there is an electronic Rabi oscillation damped by the loss of phonons and, for

the second-order correlation, a minor oscillation associated with phonon modes.

In analogy with other phonon correlations, c) and d), present a vertical

translation for each ADO. The reversed order of vertical translation in first order

versus second order phonon correlations demonstrates an intrinsic difference in

behaviour of a single split beam of phonons (such as in interferometry), which

tends to antibunch, and a pair of sources which leads to bunching. This poses an

interesting consideration for models of interferometry.

Figures 4.3.3, 4.3.4, and 4.3.5 demonstrate electronic Rabi oscillations in the

correlation which are damped as phonons are lost to the bath through the

system-environment coupling. In all of the photon correlations there is the

anticipated minor oscillation as a consequence of phonon modes within the

excited state wavepacket which occur when λ(ν) > 0. In each case the system

demonstrates quantum antibunching. Similarly, the phonon correlations exhibit

a more classical bunching, along with an electronic Rabi oscillation which is

damped upon increasing the bath reorganisation energy.

In addition to the agreement with results in section 4.1, and a fundamental

difference with the BVM method, these results demonstrate the difference of

vibrational characteristics exhibited by each auxiliary. The phonon correlations
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Figure 4.3.5: First order photon and phonon correlations for the HVM,
normalised following equation 4.3.4, shown in a) and c) respectively. b) and d)
show the associated second order correlations normalised following (4.3.5). The

bath reorganisation energy is set at 3η(ν)O .

in figures 4.3.3, 4.3.4, and 4.3.5, all demonstrate the aforementioned vertical

translation with increasing ADO tier as a result of constituent Matsubara

frequencies. Similarly, the amplitude of the minor oscillation in the photon

correlations increase in amplitude in proportion to the auxiliary tier.

4.3.4 Zero Environment Reorganisation Energy

The nature of each auxiliary operator is further considered by producing

correlations for an HVM vibronic monomer and in the limit of the bath

reorganisation energy is zero. Under these conditions the dynamics are

controlled by only the Markovian free propagation terms in the HEOM,

discussed in section 2.5.4.

Figure 4.3.6 depicts all kinds of second order virtual correlation for photons

and phonons for the first three ADOs and for two bath reorganisation energies:

0 cm−1 and η
(ν)
O cm−1. Each column of this figure shows results for a different

ADO, and every two rows depict a different type of correlation. Each type of

correlation is considered first with zero bath reorganisation energy, and then

with η
(ν)
O reorganisation energy. Odd rows, a) – c), h) – j), n) – p), and t) –

v), clearly show that all of the auxiliaries contain no virtual correlation when

the bath is not coupled to the system. This confirms the vibrational nature of

auxiliaries, which are dependent on their Matsubara dimensions, and how they

relate to integer multiples of phonon interactions from the EOM. This is true even

for the non-thermal Matsubara dimensions, which for the overdamped hierarchy

is dimension one, which is shown in the first column. Even rows, d) – f), k) – m),

q) – s), and w) – y), show the correlation when the bath is coupled to the system
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Figure 4.3.6: Columns one two and three depict quantum correlations for an
HVM vibronic monomer in ADOs 1, 2, and 3 , respectively. Row 1, a) – c), shows

the normalised ḡ(2)aa with zero bath reorganisation energy, and row 2, d) – f),
with η(ν)O . Row 3, h) – j), shows the normalised ḡ(2)bb with zero bath

reorganisation energy and row 4, k) – m), with η(ν)O . Row 5, n) – p), shows the
normalised ḡ(2)ab with zero bath reorganisation energy and row 6, q) – s), with

zero bath reorganisation energy. Row 7, t) – v), shows the normalised ḡ(2)ba with
zero bath reorganisation energy and row 8, w) – y), with η(ν)O . Correlations for

each ADO are shown at 0, λ
2 , λ, and 2λ system reorganisation energies.
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and is in agreement with figures 4.3.3, 4.3.4, and 4.3.5.

In summary, this work has shown that the BVM model structure, despite being

effective for 2DES models, is incompatible with this metric of quantum

correlation. The only signal which can be resolved is that of the electronic Rabi

cycle due to electronic transitions at the fundamental frequency. Additionally,

alongside consideration of virtual correlation in the HVM, this has elucidated

the intrinsic vibrational nature of the ADOs. Each auxiliary is dependent on a

Matsubara frequency, from the dimensions of the hierarchy, and these

correspond to integer multiples of phonon modes. Interaction of these phonon

modes and dissipation from the system to the bath results in non-Markovian

dynamics leading to virtual correlation in ADOs and correlation in the density

matrix.

4.4 Phonon Signatures in Photon Correlations of

Electronically Coupled Molecules

The ubiquitous power of statistical measures of classical bunching, and quantum

antibunching have resulted in a plethora of physical applications. The original

experiments of Hanbury and Twiss6 have led to a range of interferometers able

to measure cosmic distances according to the loss of fringe interference patterns,

as well as microscopic measurements in ultracold conditions of strongly

bunched bosons which exhibit Bose-Einstein Condensation318. The original

experiments were performed with blue light from a mercury-vapor lamp6,319,

but in recent years there has been considerable interest in generating other

kinds of reliable photon sources ranging from Alkali metal atoms, quantum

dots320, and nanotubes318,321 for the generation of sub-poissonian statistics, to

emission of circularly polarised light resulting from excitonic fine structure322.

Tunable photon sources allow dynamical analysis of the non-radiative decay

of singlet-singlet or singlet-triplet annihilation in excitons320,323, as well

improved analysis of 2DES through improved spectral filtering of Liouville

pathways7. These processes are achieved through scattering from excitonic

states, and therefore the study of electronically coupled molecules such as J-

and H-aggregates, which are discussed in section 2.2.1.2, is imperative. To this

end, this section considers the second order photon and phonon correlations of

a range of electronically coupled molecules. Based on the results of section 4.3

these models are constructed in the HVM regime, as the BVM is incompatible

with this type of correlation metric, and the impact of this choice of system-bath

boundary placement is considered.
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4.4.1 HVM Model of Electronically Coupled Species

Each of the model systems are created as HVM, such that they can be visualised

in the same way as in figure 4.3.1 a). Within this framework the structure of the

(green) system component can be varied to generate HVM open quantum

models for a range of molecules. When there is no electronic coupling the

system depicts a monomer, and when the electronic coupling is zero the model

describes a monomer lattice. This is a spatially fixed, uncoupled dimer

containing two constituent monomers which can either be the same (homo) or

different (hetero) species. Such species physically represent molecules in the

limit of vanishing coupling strength, equivalent to molecules becoming

increasingly separated (J ∝ r−3). In addition, this could be used for molecules

which have TDMs that are orthogonal and a laser field which is capable of

driving both constituents. Alternatively, if |J | > 0 equivalent homo- and hetero-

dimers are generated. The homo- and heterodimer models are constructed with

a range of J values, summarised in table 4.1, such that both J- and H-aggregate

systems, described in section 2.2.1.2, are analysed. Figure 4.4.1 depicts each of

the proposed systems, based on theory in sections 2.2.1.1 and 2.2.1.3, which

result in a full range of electronic coupling strengths. The excited state potential

energy surface for each of the systems is displaced by increasing amounts

leading to a decreasing Franck-Condon overlap integral of the ground electronic

bound eigenstates. The smallest displacement induces a system reorganisation

energy λ(ν) ≈ 360 cm−1. Correspondent with the parameter regimes in sections

4.1 and 4.3, these systems are coupled to an overdamped phonon bath with

damping η(ν) = 5 cm−1 and bath speed Λ(ν) = 200 cm−1 at T = 298 K. Similarly,

the driving field is assumed to be a delta function in the frequency domain such

that excitations are induced only at the fundamental transition frequency. This

laser has strength E0 = 107 NC−1 and frequencies ω(ν)
Res and ω

(ν)
Det in order to be

resonant with the fundamental transition of the system, or detuned from it,

respectively. Specific values of the laser frequency, dependent on the system

type, are summarised in table 4.1. For a hetero-monomer lattice the resonant

frequency is at the fundamental transition frequency of monomer A whereas the

detuned frequency is at that of monomer B to demonstrate transitioning the

spectrum from one monomer to the other over the course of the detuning. In the

excitonic systems, the range of system reorganisation energies chosen lead to

demonstrations of both weak and strong coupling. When d̃ → 0, corresponding

to strong electronic coupling outlined in section 2.2.1.3.1, bright and dark

exciton states become grouped resulting in a band structure and full Davydov

splitting of 2J . In contrast, when d̃ > 0, corresponding to weak electronic

coupling outlined in section 2.2.1.3.2, bands are not sufficiently separated,

leading to a mixture of levels, and each exciton pair is split by a reduced 2Jvib.

This change to the energy levels of molecules with non-zero coupling are
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Figure 4.4.1: a) Monomer A with fundamental transition frequency and
transition dipole moment, ω(ν)

egA and µA. b) Monomer B with fundamental

transition frequency and transition dipole moment, ω(ν)
egB and µB. c)

Homo-monomer lattice, consisting of two uncoupled but spatially fixed A
monomer units. d) Hetero-monomer lattice, consisting of one monomer A and

one monomer B which are spatially fixed but uncoupled. e) Homodimer,
consisting of a pair of coupled A monomers which results in a pair of excitonic

states split by 2J . f) Heterodimer, consisting of one monomer A and one
monomer B which are coupled resulting in a pair of excitonic states. Black

energy levels vibrational ground states, purple electronic states are vibrational
excited states, which are included explicitly in the Hamiltonian, separated by

the vibrational mode frequency ω(ν)
0 = 500 cm−1.

Species J/cm−1 ω
(ν)
Res / cm−1 ω

(ν)
Det / cm−1

Monomer (Type A) 0 ω
(ν)
egA ω

(ν)
egB

Monomer (Type B) 0 ω
(ν)
egB ω

(ν)
egA

Homo-monomer lattice (Type A) 0 ω
(ν)
egA ω

(ν)
egB

Hetero-monomer lattice 0 ω
(ν)
egA ω

(ν)
egB

J aggregate, homodimer (Type A) −500, −250, −50 |ψ+
A⟩ |ψ+

A⟩+ |ω(ν)
egB − ω

(ν)
egA|

H aggregate, homodimer (Type A) 50, 250, 500 |ψ+
A⟩ |ψ+

A⟩+ |ω(ν)
egB − ω

(ν)
egA|

J aggregate, heterodimer −500, −250, −50 |ψ+
A⟩ |ψ+

A⟩+ |ω(ν)
egB − ω

(ν)
egA|

H aggregate, heterodimer 50, 250, 500 |ψ+
A⟩ |ψ+

A⟩+ |ω(ν)
egB − ω

(ν)
egA|

Table 4.1: Parameters for each of the HVM electronically coupled species. The
associated electronic transition frequencies are ω(ν)

egA = 15 000 cm−1,

ω
(ν)
egB = 18 000 cm−1, and the vibrational mode frequency is ω(ν)

0 = 500 cm−1.
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accounted for in the resonant frequencies chosen, as shown in table 4.1.

4.4.2 First and Second Order Correlations

4.4.2.1 Limits of Electronic Coupling

Figure 4.4.2 shows the second order photon correlations for a range of electronic

coupling strengths. Column 1 shows the correlation of a monomer A which has

no electronic coupling. Columns 3 and 4 are the two kinds of monomer lattice,

homo- (monomer A) and hetero-, which also both have zero electronic coupling.

Columns 4 and 5 are the two kinds of excitonic dimer, homo- (monomer A) and

hetero-, with a J coupling of −50 cm−1 resulting in J-aggregates. The top half of

the figure, a) – l), presents results which are driven by a laser field frequency that

is resonant with the fundamental electronic transition of the system, as shown in

table 4.1. The bottom half of the figure, m) – x), shows the associated models

when driven at a frequency detuned from the fundamental electronic transition,

ω
(ν)
Det. a) – f), and m) – r), of of the figure have an environment reorganisation

energy of 0 cm−1, and g) – l), and n) – x), have η(ν) cm−1. In all cases the system

reorganisation energy is varied through 0, λ
2 , λ, up to 2λ.

a) and g) in column 1 of figure 4.4.2, for the vibronic monomer A, is in

agreement with the results in section 4.1. The ground state Boltzmann

population of vibronic levels are promoted into their corresponding excited state

upon interaction with the driving field which, with the exception of the zero

system reorganisation models, results in an excited state wavepacket. When

λ = 0 there will be maximum Franck-Condon overlap between the ground and

excited state bound eigenstates such that electronic Rabi cycles at the

fundamental frequency are established without any phonon contributions.

However, when λ > 0 and the excited state potential energy surface is displaced

from the ground state, leading to a wavepacket upon projection of the ground

state population into the excited state. Within this wavepacket phonon

signatures at the vibrational mode frequency are induced through VR to the

ground vibrational state. The amplitude of the minor oscillatory mode increases

proportionally with the system reorganisation energy as a larger displacement

results in a lower Franck-Condon overlap with the ground state but better

overlap for higher vibrational excited states. The contrast between a) and m)

demonstrates the difference of detuning: the electronic Rabi oscillation is

entirely absent at the detuned frequency, and phonon effects cause the only

modulation of probability. When the system is driven at ω(ν)
Res the familiar

vibrational signals and electronic Rabi oscillations arise, but when the system is

detuned by 3 000 cm−1 no transitions at the fundamental frequency are

stimulated - not even a small percentage. This leads to a flat g(2)aa profile which is

211



Chapter 4: Measuring Quantum Correlations

Fi
gu

re
4.

4.
2:

Se
co

nd
or

de
r

ph
ot

on
co

rr
el

at
io

ns
fo

r
a

ra
ng

e
of

el
ec

tr
on

ic
al

ly
co

up
le

d
sp

ec
ie

s.
(T

op
)

at
th

e
re

so
na

nt
fr

eq
ue

nc
y
ω
(ν

)
R
es

in
ta

bl
e

4.
1

(B
ot

to
m

)
at

a
fr

eq
ue

nc
y

de
tu

ne
d

fr
om

th
e

fu
nd

am
en

ta
lt

ra
ns

it
io

n
of

th
e

sy
st

em
ω
(ν

)
D
et

,a
ls

o
sh

ow
n

in
ta

bl
e

4.
1.

C
ol

um
n

1
an

d
2

sh
ow

re
su

lt
s

fr
om

a
m

on
om

er
A

an
d

B
,c

ol
um

n
3

fo
r

a
ho

m
o-

m
on

om
er

la
tt

ic
e

of
A

m
on

om
er

s,
co

lu
m

n
4

fo
r

a
he

te
ro

-m
on

om
er

la
tt

ic
e,

co
lu

m
n

5
fo

r
a

ho
m

od
im

er
J-

ag
gr

eg
at

e,
an

d
co

lu
m

n
6

fo
r

a
he

te
ro

di
m

er
J-

ag
gr

eg
at

e,
bo

th
w

it
h

a
co

up
lin

g
of

−
50

cm
−
1
.

a)
–

f)
,m

)
–

r)
,a

re
fo

r
a

ba
th

re
or

ga
ni

sa
ti

on
en

er
gy

of
ze

ro
,w

he
re

as
g)

–
l)

,s
)

–
x)

,h
av

e
a

ba
th

re
or

ga
ni

sa
ti

on
of
η
.

212



Chapter 4: Measuring Quantum Correlations

dominated by the background movement of phonons. Detuning is particularly

highlighted by the appearance of phononic signatures in cases when the excited

state potential is not displaced, λ = 0, signifying that no electronic Rabi

frequencies are able to occur.

Column 2 shows equivalent results to those in figure 4.4.2 column 1, but with

a monomer B, with a higher fundamental transition frequency. This swaps the

behaviour from the b) and h) signifying that the system is now detuned by

3 000 cm−1 as in table 4.1. Even though the transitions are at significantly

higher frequencies the correlations generated in n) are equivalent to those in a).

In subtle contrast, b) and h) show a major oscillation, and gentle increase in

correlation, respectively, which signifies that a very small proportion of higher

vibrational states are able to transition at the fundamental transition frequency,

|g, 0⟩ → |e, 6⟩. This is likely due, in part, to the divergence of higher energy

levels of the quantum harmonic oscillator potential, and also demonstrates that

the resonance is not binary: even when the driving field is a continuous wave

that a small proportion of forbidden transitions occur. This is as a consequence

of the semi-classical approximation.

Column 3 of figure 4.4.2 presents the results for the homo-monomer lattice

with zero J = 0. This model consists of a pair of identical monomers, each with

associated vibrational levels, which are spatially fixed. This behaves like a three

level system with the ‘doubly’ excited state corresponding to simultaneous

excitation of both monomers, the singly excited state corresponding to one of

the two monomers being excited, and the ground state being the doubly ground.

Subsequently, there is a competition between the transition from the doubly

ground state to the first excited state and the transition between the singly and

doubly excited states, producing a double peak in the photon correlations (most

evident for λ = 0). One other noticeable feature is that, for λ = 0 at early τ

times, the observed behaviour for photons is bunching rather than

antibunching. This is because both excited states (or the ‘doubly’ excited state)

tend to relax at the same time when in equilibrium with the driving field. Apart

from this, the results are qualitatively similar to those of a monomer and are in

agreement with the first column. In contrast to panel g) for an isolated

monomer A, u) shows a large amplitude vibrational oscillation at the system

mode frequency when the system is coupled to the bath. This is a consequence

of doubling the number of monomers within the system, which allows an

equilibrium to be established with the laser whereby the system exists more

predominantly in vibrationally excited states, leading to greater VR and a larger

minor oscillation, because of the two competing excited states. Subsequently,

phononic vibrations within the wavepacket persist for longer even when

coupled to the bath. o) and u) present results in agreement with those in both

a), g) and b), h) showing strong phonon signatures in the absence of the
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electronic Rabi cycle. In addition, the increase in population which increases

vibrations in i) also occurs here, and results in higher vibrational states having

enough population for a minor increase in correlation to occur while detuned.

Column 4 shows the other type of monomer lattice: the hetero-monomer

case. These results also include a change to the dimensions of the truncation of

the Hamiltonian, as in order to access both the lowest vibrational levels of ω(ν)
egA

and ω(ν)
egB, requires a broad Hamiltonian truncation window. This is discussed in

detail in appendix I. Subsequently, the broad truncation has limited the number

of accessible vibrational levels and the majority of the phonon signatures are

lost from the correlations along with a change in the period of the electronic

Rabi cycles. This highlights how important vibrational contributions are to these

systems, even in the absence of electronic coupling, and that full vibrational and

electronic complexity is necessary to observe the correct correlations. This

would be achieved by allowing full vibrational and electronic complexity with a

broad truncation window, at significant computational cost, but in this thesis

such an approach is not possible because of the associated cost.

This system also has a pair of electronic energy levels and associated

vibrational energy levels, but they are not degenerate. The energy levels of

monomer A are at a lower energy to those of monomer B so that when the

system is driven by the field ω(ν)
Det only one of the monomers is able to reach the

excited state. Subsequently, the correlation for this system behaves like a single

monomer B, demonstrating the effect of moving between resonant and detuned

driving frequencies. This means d), j) and p), v) present equivalent correlations,

just as in a), g) and n), t), depicting movement from one monomer to the other.

As shown in appendix I, the profiles of column 4 are equivalent to those of a

monomer when the same restrictive truncation window is applied.

Column 5 of figure 4.4.2 shows the photon correlations for a homodimer of A

monomers with an electronic coupling of J = −50 cm−1. The system is now

delocalised into a single system, but with an increased total phonon number, as

such there is an equivalence between these results and column 3. The

importance difference is, as a consequence of state delocalisation, that there is

no competition between the two individual monomers and double peaks are

absent in the correlations. Instead the system acts as a single homodimer with

the electronic Rabi period doubling as a consequence, but the phononic

signatures having a similar magnitude to the lattice, most evident in e), k). This

means that the early time bunching of phonons in the lattice, due to the two

TLSs, is absent in these correlations and the homodimer presents early time

antibunching. Comparison of column 6, e), k), q), w) and column 1, a), g), m),

s), shows a clear similarity between the monomer A species correlations and

those of a monomer A homodimer. Both columns have minor and major
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oscillations of equivalent amplitude and reach similar states at equilibrium (long

τ). Similar to column 3, the homodimer has a shorter period than the monomer

consistent with the change in energy of the split exciton levels. Additionally,

similar to u) and in contrast to s), the gradual increase in correlation at higher

system reorganisation energies suggests that there is an energy transfer process

from dark to bright exciton states increasing correlations as a consequence of

the electronic coupling. The difference in behaviour between q), w) and p), v)

also highlights the significance of different constituent species: molecules with

more than one constituent monomer can exhibit correlations that are not

dominated by phonons at resonant and detuned frequencies.

Column 6 of figure 4.4.2 shows the photon correlations for a heterodimer of A

and B monomers also with an electronic coupling of J = −50 cm−1. Similar to

the homodimer in column 5, the system is delocalised into exciton states

resulting in photon correlations which are similar to the monomer from column

1, but with double the probability reflecting the increase in photon number. r)

and x) present the detuned correlations, and show almost constant values with

a very large probability, but in contrast to the other detuned correlations, the

phonon signatures do not dominate. This suggests that the system is detuned

from the fundamental transition but that the electronic coupling has brought the

electronic Rabi frequency closer to the value of the laser field such that a small

percentage is able to transfer. This means that the major oscillation is still

present, and is most evident for the reorganisation energy of λ. The very large

probability is a sign that the mean photon number is vanishing more quickly

than the variance of the photons, and subsequently the correlation diverges

when normalised. This highlights that the phonon number is vanishingly small

and correlations are very unlikely: suggesting the driving field is significantly

detuned from the transition frequency. The small relative amplitude of the

phonon signatures within r), x) suggest that not all of the vibrational levels of

necessary higher frequency transitions are being included in the model, as a

consequence a broader truncation window could be used similar to column 4.

Ideally, with much greater computational power, the full Hamiltonian could be

considered to further elucidate these signatures when far from resonance.

Another interesting open question is whether a double peak could be introduced

into the system if the laser was moved from being continuous, to a Gaussian

width which covers both the fundamental transitions of monomer A and B.

Again, this would require significantly more computational power in order to

process much larger proportions of the full Hamiltonian.

Figure 4.4.3 presents the second order phonon correlations for each of the

electronically coupled systems. These results are in agreement with both figure

4.4.2 and the results in section 4.1 and demonstrates the intrinsic difference

in vibrational signatures within systems that have and do not have electronic
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coupling.

Column 1 shows the correlation of phonons in a monomer (species A), and

highlights that, as a consequence of the independence from the order of

detection events, there is only a single source of vibrational character. The

phonon modes, at ω(ν)
0 , arise from direct measurement of the phonon number

resulting in a low amplitude minor oscillation. In those systems with an excited

state displacement, the resulting wavepacket will contain a superposition of

vibrational states. However, when there is no system reorganisation energy

there will be maximum Franck-Condon overlap of the ground and excited state

and no wavepacket forms resulting in no minor mode. In agreement with figure

4.4.2, both columns 1 and 2 demonstrate very similar correlations in their

respective resonant regimes. The only difference is that in t), with 2λ, the

increased energy of the detuning field promotes a greater probability of

detecting phonons than in s). In particular, g) and t) demonstrate the linear

proportionality between the excited state displacement and the magnitude of

vibrational correlation signifying that as the Franck-Condon overlap integral

with higher vibrational states increases so too does the amount of VR. In all

cases, both monomer A and B demonstrate bunching of phonons for early τ .

The correlations for the homo-monomer lattice are shown in column 3 of

figure 4.4.3 and show very similar trends to those in the third column of figure

4.4.2. While the double peak introduced by the competition between the

‘doubly’ excited state and singly excited states is less pronounced due to the

large mean phonon number relative to photons, it is still evident from the

change in period of the major Rabi oscillations (most evident for 2λ). The early

τ behaviour is inverted for this reorganisation energy to depict antibunching of

phonons and the period is stretched so that fewer full oscillations can occur over

4 ps. This is a consequence of the equilibrium established with the driving field

which promotes simultaneous emission of photons from the singly and doubly

excited states at early τ , and the lag time from this emission reduces the

probability of instantaneous phonon emission. However, the vibrational

signatures in the phonon correlations are in strong contrast with figure 4.4.2. In

all panels of column 3, figure 4.4.3, the amplitude of the minor oscillation is far

smaller, as a consequence of mean phonon number relative to the photons. In

the photon correlations, indirect phonon contributions to the excited state

wavepackets were amplified by doubling the number of photons within the

system, however, because the system already had many more phonons than

photons doubling does not have the same impact on phonon correlations.

Despite this, the increase in phonon number leads to a greater magnitude of

overall two phonon correlation for all system reorganisations energies reflecting

the increase in VR in the system containing multiple monomer units.
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Column 4 of figure 4.4.3 shows equivalent trends to those in figure 4.4.2, with

both the resonant and detuned frequencies presenting correlations

commensurate with individual monomers A and B under the influence of a

restrictive truncation. When the bath is coupled to the system, phonons are

rapidly dissipated into the bath resulting in an equilibrium correlation being

established, demonstrated by g) – l) and s) – x).

Column 5 of figure 4.4.3 shows the phonon correlations for a homodimer of

A monomers. Equivalent to figure 4.4.2 the delocalisation of the states results

in the loss of double peaks, and a doubling of the period of the electronic Rabi

oscillations. However, in contrast to the photon correlations, for the largest value

of excited state displacement, the dimer correlation of phonons antibunch for

early τ .

Column 6 of figure 4.4.3 shows the phonon correlations for a heterodimer of

A and B monomers with an electronic coupling of J = −50 cm−1. The trends

are similar to those shown in column 1 but with a significantly larger minor

oscillation due to the increased number of phonons within the delocalised system.

In contrast to the photon correlations, the signal of detuning in the phonon

correlations is a return to the equilibrium value of phonon transfer. Additionally,

as the number of phonons greatly outweighs the number of phonons, vibrational

correlations are insensitive to the movement of other phonons and detuned

correlations do not modulate. From the phonon correlations, in particular for

the homo-monomer lattice and homodimer, it is clear that highly displaced

excited states which induce wavepackets with a large vibrational component can

alter whether the system exhibits phonon bunching or antibunching at early τ .

In a manner equivalent to the discussion in section 4.1 it is possible to

understand the appearance of phonon signatures in the photon correlations

from the cross-correlation functions where the order of detection does matter.

Figure 4.4.4 shows the second order cross-correlation, g
(2)
ab , when the first

detection event is a photon and the second, τ later, is a phonon. In agreement

with section 4.1 the minor oscillation due to phonon contributions has a very

small amplitude, with notable exceptions being the homo-monomer lattice

driven off resonance, o), and the homodimer driven at resonance, e), with 2λ

reorganisation energy. In all other resonant panels, the minor oscillation

amplitude is minimised. This is because the primary behaviour of the

cross-correlation is of electronic Rabi cycles due to the photons. The first

detection is an instantaneous measurement of the photon number within the

system, and subsequently, does not induce any phonon signatures. The second

detection event, the τ dependent detection, is modulated by the population of

vibrational excited states throughout the time domain leading to signatures at

the vibrational mode frequency. However, because the phonon signatures are
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very small with respect to the electronic contributions their impact on the

excited state adiabatic population is minimal. In agreement with the previous

results, and because the primary character of these correlations is photonic,

when driven by a field detuned from resonance, the electronic Rabi cycle is

minimised or eradicated. In contrast, e) and p) have a larger vibrational

component for 2λ reorganisation energies. For the hetero-monomer lattice this

is because the broad truncation is not capturing sufficient vibrational levels, and

those which are caught are subtly diverging which increases the oscillation

amplitude. In the homodimer, e), this is a consequence of the delocalisation of

degenerate monomer A states. The increased population coupled with better

Franck-Condon overlap for higher vibrational excited states leads to an excited

state wavepacket with a more prominent vibrational contribution.

Similar to figure 4.4.4 a deeper understanding of the phonon signatures in

photon correlations can be gleaned from the cross-correlation functions where

the order of detection does matter. Figure 4.4.5 shows the second order

cross-correlation when the first detection event is a phonon and the second, τ

later, is a photon. In agreement with section 4.1 the minor oscillation due to

phonon contributions has a much larger amplitude, becoming a major

component of the probability. This is because the first and second detection

event both introduce vibrational character to the correlation. The detection of

the phonon at τ = 0 is an instantaneous measurement of phonon number with

intrinsic vibrational character at the system mode frequency. Similarly, the

detection of the photon at a time τ later introduces further vibrational character

due to vibrational transitions occurring between the detections. This means that

there is a direct and indirect source of vibrational character which combine to

produce a large amplitude minor oscillation at the vibrational mode frequency.

In all columns, when the system reorganisation energy is zero, the correlation

remains at a constant non-zero value, corresponding to the phonon movement

in the absence of excited state displacement. In addition, all resonant panels

exhibit a reduction in the probability below this phonon detection probability in

the absence of displacement as a direct result of the vibrational contributions.

This is attributed to a large proportion of the wavepacket undergoing

vibrational transitions such that further correlations are hindered. This effect is

most prominent when there is no electronic coupling, columns 1 and 2. This

effect persists for small values of τ and with strong bath dissipation. This is

because photon emission at ω(ν)
eg from higher vibrational levels is increasingly

suppressed for larger λ due to decreasing Franck-Condon overlap. When

system-bath interaction occurs, g) – l) and s) – x), the dissipation of phonons to

the bath leads to a reduction in the correlation with photons such that all

columns exhibit a reduction below the phonon movement in the absence of a

bath. Notably, in all models with the exception of the homo-monomer lattice

and homodimer i), k), the cross-correlation tends towards the value of phonon
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movement in the absence of a bath. In the homo-monomer lattice and

homodimer species the gradient of the correlation, and the correlation for 2λ,

suggest that they will exceed this value in the limit of large τ . This is a

consequence of the reduced energy of the bright exciton state, specifically in the

homodimer, and the competition between the singly and ‘doubly’ excited states

in the homo-monomer lattice which promote the wavepacket to have larger

phononic contributions. All of the columns in figure 4.4.5 present a quantum

antibunching, as phonon emission tends to inhibit subsequent photon emission,

particularly for small values of τ .

In summary, these results demonstrate the limits of electronic coupling in

coupled species, through to uncoupled and monomer systems. When there is no

electronic coupling it is shown that equivalent correlations are generated in

monomers, independent of their fundamental electronic transition frequency

and the frequency of the driving field. Additionally, in spatially fixed

monomer-lattices there is a competition between the constituent monomers

when their energy levels are degenerate. Consequently, homo-monomer lattices

exhibit double peaks due to the competition of the two TLSs. An equilibrium is

established between the system and the driving field such that the energetic

minimum, ‘doubly ground’, state can be reached which leads to a bunching of

the emitted photons from the two monomer units. In contrast, when the

monomer units are different (hetero-monomer lattice) either correlations

consistent with monomer A or monomer B appear, dependent on the driving

field frequency. In dimer species, as a result of the delocalisation due to

electronic coupling, there is a doubling of the period of electronic Rabi

oscillations rather than a doubling of the number of peaks. This highlights that

the system is now delocalised allowing for energy and phonon transfer between

different localised sites in the molecule.

4.4.2.2 Analysis of Electronic Coupling in Dimer Species

Given the analysis in the previous section, 4.4.2.1, different strengths of

electronic coupling are considered for both homodimers and heterodimers when

they are driven resonantly. Following figure 2.2.4, both J- and H-aggregates are

considered, however, due to the method of computational truncation of the

diagonalised matrices, the results for H-aggregates are less precise. When the

electronic coupling is negative the monomer excited state energy levels are split

by 2J into a pair of exciton states with the lower energy exciton state being the

allowed, bright, state. As a result of this, the lowest energies contained in the

Hamiltonian above the ground state correspond to the desired exciton states

allowing the large dimensions to be truncated saving computational effort.

However, when the electronic coupling is positive, the allowed, bright, exciton
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state is at higher energy. Subsequently, the exciton of interest is contained

within a number of vibrational excited state energies dependent on the system

parameters. There is no simple solution for finding the exact location of each

desired H-aggregate state, so in order to propagate for the same time period, the

dimensions of the composite Hilbert space are reduced sufficiently so that the

full matrix can be propagated. This results in a much poorer resolution of the

vibrational mode frequency, as higher energy levels begin to diverge, but global,

electronic oscillations will be resolved sufficiently well. This is discussed further

in appendix I.

Figure 4.4.6 shows the result of resonantly driving a series of homodimers for

a full range of electronic coupling, resulting in a series of J-aggregates in a) – c),

g) – i), m) – o), s) – u), and H-aggregates in d) – f), j) – l), p) – r), v) – x). Row

one shows that electronic coupling strengths closest to zero have the largest

phonon signatures in the photon correlation. This is because larger coupling

strengths split the levels into significantly higher energies for H-aggregates, or

lower energies for J-aggregates, resulting in poorer Franck-Condon overlap of

the ground state with vibrational excited states and the subsequent wavepacket

will have a smaller vibrational contribution. When the coupling is closest to

zero, the splitting of 2J will still be much less than the vibrational mode

frequency resulting in the best Franck-Condon overlap. Increasing the coupling

to 250 cm−1 or 500 cm−1 results in coupling at the magnitude of the vibrations,

or greater, which dramatically reduces the overlap integral. Additionally, upon

increasing the coupling strength of the J- or H-aggregate regimes, the starting

amplitude due to the choice of tend changes. When |J | = 50 cm−1 each of the

reorganisation energies has been given a tailored value of tend which maximises

the starting amplitude for the τ evolution. However, when the coupling is

increased to |J | is 250 cm−1 or 500 cm−1 the electronic Rabi cycles are increased

in period proportional to the excitonic splitting. Each Rabi cycle is effectively

independent as, in the first row, the bath is not coupled to the system which

means that the different increases in period move the contributions for different

reorganisation energies out of phase. Subsequently, contributions from λ
2 are

maximised when |J | = 250 cm−1 as this is half of the vibrational mode

frequency, and then λ is maximised for |J | = 500 cm−1.

When the bath is activated, in row 2, the oscillations are rapidly damped

towards an equilibrium with the driving field. In all cases, the phonon

signatures decrease with increasing coupling in agreement with the results in

row 1, and g) – j), s) – u), converge towards an equilibrium correlation of 1. In

contrast to this, the H-aggregates show an increase in the equilibrium position

of the photon correlation proportional to the strength of the electronic coupling.

This is evident in k) from the gradient (particularly for λ
2 , and λ), l), and in the

higher equilibrium position in w), x). When J = 50 cm−1 the splitting of the
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exciton states is not close enough to the vibrational transition frequency of

500 cm−1 to induce any resonance energy transfer effects. However, when the

electronic coupling is increased, in k) and l) the equilibrium correlation diverges

away from 1 in the systems with the largest excited state displacement. This

suggests that higher vibrational levels are able to induce transfer of photons

between donor and acceptor sites of the system, leading to large τ antibunching.

In all cases, except a small τ region for the first H-aggregate with reorganisation

energy of 2λ which is attributed to the truncation error, all photon correlations

exhibit early τ antibunching, with the strongest coupled H-aggregates also

showing this at large τ .

The phonon correlations show similar trends to those of the photon

correlations, but rather than exhibiting primarily antibunching, they

demonstrate bunching. All of the third row, m) – r), shows good agreement with

the findings in the previous rows, with a noticeable increase in the period of the

electronic Rabi oscillations with increasing electronic coupling, and a shift in the

starting τ evolution amplitude due to tend. However, in these correlations, the

vibrational mode frequency becomes more prominent as the electronic coupling

increases in the absence of a bath. In agreement with the previous results, the

equilibrium value of phonon correlation tends to 1 in J-aggregates, but for

highly coupled H-aggregates it diverges and demonstrating the first instance of

phonon antibunching, for long τ when coupled to a bath, due to transfer

between the system.

Similar to the results in figures 4.4.4 and 4.4.5, the crossed correlations in

4.4.7 allow the sources of vibrational and electronic character to be further

analysed by changing the order of detection events. In agreement with the

results in section 4.1 the g
(2)
ab correlations display a minimisation of the

vibrational signatures, with the exclusion of H-aggregate correlations at high

excited state displacement. This exclusion is again because these results will be

most impacted by the harsher truncation of the Hamiltonian and divergence of

the energy levels necessary to compute the correlations. In agreement with the

previous findings, the already minimal phonon signatures decrease as |J |
increases due to the relative size of the splitting and system vibrations.

Additionally, the increase in period of the Rabi oscillations leading to

maximisation of correlation for different reorganisation energies. In addition to

this, the correlation of photons and phonons leads to a bunching for early τ ,

where photons tend to be followed immediately by phonon emission. These

correlations also exhibit a divergence of probability when coupled to a bath for

strongly coupled H-aggregates, signifying that resonance energy transfer is

occurring.

Similarly, the g(2)ba correlations, in which the phonon is detected first, exhibit a
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strong amplification of the phonon signatures due to two sources of vibrational

character, as in section 4.1. The strong dependence on phonons results in a

relatively constant minor oscillation amplitude with increasing coupling in both

J- and H-aggregates, however the amplitude is larger for J-aggregates. When

coupled to the bath, these correlations exhibit a number of different behaviours.

In J-aggregates, the correlations tend to the equilibrium value for long τ

times, however at early τ and coupling strengths |J | ≥ 250 cm−1 (most evident

in t), u) ) a peak of probability occurs. When there is no bath reorganisation

energy, or in the long τ limit, antibunching suppresses photon emission due to

mixing of high vibrational states with higher (dark) excitons. However, there is

an additional small region of enhanced antibunching due to vibrations

promoting further photon emission when the exciton splitting is close to the

vibrational frequency such that vibrational excited states and lower exciton

states have degenerate energies.

In H-aggregates the weaker two coupling regimes have a similar increase in

probability above the non-displaced value, but only for the largest excited state

displacements. This region of antibunching is not tied directly to the vibrational

modes, as is the case for J-aggregates, but, because of the large increase in

correlation magnitude, are attributed to transfer within the molecule. Finally,

for the largest coupling there is an inversion of this profile leading to a bunching

at early times, followed by antibunching for large τ as the correlation diverges

away from the equilibrium value.

Finally, the second order photon and phonon correlations for a heterodimer

are considered for a range of electronic coupling strengths. The non-degenerate

monomer levels lead to a number of differences in the delocalised exciton states

which persist into the correlations, however, many of the trends previously

discussed are still present.

Row one, a) – f), of figure 4.4.8 shows very similar trends to those in row

one of figure 4.4.6, however the difference in energy of the constituent monomer

levels leads to differences in maximised reorganisation energies. In b), c), the λ

reorganisation energy is maximised whereas, in d) – f) the maximised energies

are λ
2 , 2λ and λ respectively. However, this still reflects the changing period of

the isolated transitions within the system. In all cases, the photon correlation

presents (unambiguously) antibunching for early τ .

In agreement with the results for the homodimer, when coupled to the bath

almost all of the systems exhibit antibunching and tend towards an equilibrium

value of the correlation. However, in contrast to the previous results, there is

a dip in the mean photon number for J- and H-aggregates with a coupling of

|J | = 250 cm−1, signified by the diverging probability. This suggests that the
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splitting is moving the transitions partially out of resonance with driving field.

The H-aggregate results are also in agreement with the homodimer results, and

demonstrate a divergence of the correlation away from the equilibrium value at

large τ times. However, a noticeable difference is that the bath has not fully

damped the electronic signatures out of the correlation for the strongest excited

state displacements which is able to manifest as a result of the asymmetric exciton

states. The large vibrational signature for J = 500 cm−1 is discounted as being

due to the divergence of the highest energy levels and harsh truncation as it only

impacts the highest vibrational levels.

The phonon correlations are also directly comparable to the results for

homodimers. The only noticeable difference in the aforementioned trends is for

H-aggregates, where in the case of heterodimers, the divergence from the

equilibrium value of correlation occurs also for the weakly coupled

(J = 50 cm−1) H-aggregate in v).

Finally the cross correlations are considered. The vast majority of trends are

equivalent to those present in the previous homodimer figure, 4.4.7, however, the

H-aggregates show further new behaviour. Notably, all g(2)ab correlations present

minimal phonon signatures, in equivalence with section 4.1, with the exception

of f) for a reorganisation energy of 2λ. d), j), f), r), cases also exhibit a more

classical bunching effect, except for 2λ reorganisation energy, and again this is

attributed, in part, to systematic errors due to the computational cost. However,

based on j), k), v), w) this antibunching is not purely due to truncation, and

emerges because of strong electronic dependence which is also noticeable in the

g
(2)
ba .

Additionally, when the system is coupled to the bath, the behaviour of the g(2)ba

correlations are strikingly different. They exhibit both a vibrational

enhancement of the probability above the equilibrium value, similar to the

J-aggregate homodimers in figure 4.4.7, and simultaneously exhibit the long τ

time enhancement of antibunching present in all other H-aggregates. This is

attributed to strongly vibrational, high energy, wavepackets which are not

completely dissipated upon interaction with the bath, leading to early time

bunching, before a resonance energy transfer, or recurrence from the bath,

produces antibunching in the long τ limit. Necessarily, any recurrence that does

occur must have a very small magnitude so as to not invalidate the Markovian

approximation and the quantum regression theorem. Such small recurrences

were demonstrated in Markovian dynamics within section 3.1.

In summary, this work demonstrates that not only do changes in quantum

antibunching and bunching effects occur due to the strength of electronic

coupling within a molecule, but that energy transfer can be observed within
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these systems via correlation function in complement to observations in

experimental 2DES. This can give rise to new insights about the quantum nature

of energy transfer. In J-aggregates coupled to a bath the correlations tend

towards an equilibrium state, whereas in H-aggregates vibrational contributions

to the wavepacket enhance correlations above the equilibrium value for small τ ,

and in the long τ limit resonance energy transfer from acceptor to donor sites in

the system, or recurrence from the bath, cause antibunching independent of

phonon signatures. Changes in the level of Franck-Condon overlap of higher

vibrational states, in all species, is shown to increase the proportion of VR and

subsequently phonon effects in the excited state wavepacket are presented

through a larger amplitude of the minor vibrational oscillation. In addition, by

setting the driving laser field to be either resonant with the fundamental

transition of the system, or detuned from it, it has been demonstrated that

individual components of the correlation can be amplified, or minimised,

including the constituent phonon signatures.
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5 Spectral Vibrations in the Limit
of Zero Canonical Damping

5.1 Realising Equivalence of the HVM and BVM

The location of the system-bath boundary has been demonstrated to have a

profound impact of the dynamics of the OQS model, as discussed in appendix D,

and sections 3.2, 4.3. In the HVM and BVM models, which differ only in

boundary placement, it has been shown that 2DES spectral features and

lineshape are in qualitative agreement between the two models, however the

same is not true for quantum correlations. Based on their construction, the HVM

and BVM should become mathematically equivalent models in the limit of

vanishing secondary damping but, as discussed in section 2.5, this is not

possible in conventional HEOMs. It is possible to use the ASD-HEOM to

overcome this, but at considerable computational expense. In this chapter a new

HEOM construction is considered which explicitly removes the secondary

intrinsic damping allowing the HVM and BVM to become equivalent, without

the computational expense of the ASD-HEOM. This is achieved through a HEOM

with two spectral density components, one of overdamped Lorentz-Drude form,

and the other an entirely undamped mode describing the pure intramolecular

vibration.

Finally, a new derivation which specifically addresses the limit of vanishing

canonical damping and hypotheses 1 and 3. In order to demonstrate the changes

to the open quantum system during the movement of the system-bath boundary

a hierarchy with two components must be generated in a manner equivalent to

the work of Tanimura157. Here, as discussed in Humphries et. al.2, the addition

of the overdamped and underdamped spectral densities as part of the canonical

transform results in intrinsic canonical damping from the underdamped modes

which are not present in the vibration when in positional coordinates. This

originates from the canonical transform which moves a pure vibrational system

mode into the environment degrees of freedom as an underdamped mode. By

creating a hierarchy which contains an overdamped component, which is

redefined as LD for Lorentz-Drudea, and an undamped contribution we aim to

demonstrate the effect of vanishing canonical damping. This requires some
aThis choice is to adequately distinguish the undamped oscillator (UO) mode, from the

overdamped mode. Subsequently the overdamped bath speed, Λ, is recast as ΛLD.

232



Chapter 5: Spectral Vibrations in the Limit of Zero Canonical Damping

subtle alterations to the theory used in the overdamped derivation 2.5.4.1,

which are outlined below. The full details of this can be found in appendix D.

5.1.1 Deriving the Lorentz-Drude Undamped Oscillator HEOM

We consider a one-dimensional system coupled to a bath of N harmonic

oscillators, with microscopic continuous operator q with particle mass m,

ensemble oscillator operator x, masses {mj}, frequencies {ωj} and coupling

constants {cj}, in a manner equivalent to the overdamped HEOM. We also

continue by applying the approximation that the system is initially uncorrelated

with the bath, however, from here the treatments diverge. The reduced density

matrix element expressed in path integral form, for an EOM which has n baths,

is143:

ρ(qt, q
′
t, t) =

∫∫ ∫ qt

q0

∫ q′t

q′0

exp

(
iSS[qt]

ℏ

)

× exp

(
− iSS[q

′
t]

ℏ

)(∏
n

Fn[qt, q
′
t]

)
ρS(q0, q

′
0, 0)

×D[qt]D[q′t] dq0 dq′0, (5.1.1)

where
∫
D[qt] represents the functional integral. The action corresponding to

the system Hamiltonian, HS, is denoted SS[qt; t]. The bath effects are contained

within the Feynman and Vernon influence functional for the nth bath with

spectral density

Jn(ω) =
2ηnγnω

2
0,nω

(ω0,n − ω)2 + (γnω)2
, (5.1.2)

and they take the form143

Fn[qt, q
′
t] =

∫∫∫∫∫
ρB(x0, x

′
0, 0)

× exp

(
i

ℏ

[
SB,n[x]− SB,n[x

′] + SSB,n[qt, x]− SSB,n[q
′
t, x
′]
])

×D[x]D[x′]dx0dx′0dx. (5.1.3)

The influence functional can be recast into a form that contains the kernels

corresponding to fluctuation, L
(α)
R,n(t), and dissipation, iL

(α)
I,n(t)

4,144 and

dependent on the system creation and annihilation operators through a

coherent state basis, equations (2.5.24) – (2.5.25). In such a basis the system is

dependent on the creation and annihilation operators for the system modes, a†i
and ai, rather than operators xj and pj for environment modes {j}.
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Subsequently, the influence functional becomes

Fn = exp

(
− i

ℏ

∫ t

0

∫ τ

0
B×n (qt, q

′
t; τ)

[
iL

(α)
I,n(τ − τ ′)B◦n(qt, q

′
t; τ
′)

+ L
(α)
R,n(τ − τ ′)B×n (qt, q

′
t; τ
′)

]
dτ ′ dτ

)
, (5.1.4)

where B×n (τ) = Bn(qt; τ) − Bn(q
′
t; τ), and B◦n(τ) = Bn(qt; τ) + Bn(q

′
t; τ). These

kernels can be expressed by the spectral distribution as

L
(α)
R,n(t) =

∫ ∞
0

Jn(ω) cos(ωt)coth
(
βℏω
2

)
dω, (5.1.5)

iL
(α)
I,n(t) = −

∫ ∞
0

Jn(ω) sin(ωt) dω. (5.1.6)

These equations are equivalent to equation (2.5.31), from the

fluctuation-dissipation theorem, and are restated here to highlight that they

hold for n baths. Note that there is a subtlety in the notation of B operators for

the LDUO derivation: overdamped contributions have one spectral density so

these coupling operators have no subscript, those for the undamped component

have two, and a corresponding subscript. We split our environment into two

major contributions: an overdamped bath which is appropriate for Gaussian

noise and the calculation of further correlation function measures, and an

undamped oscillator (UO) mode. The undamped oscillator mode is equivalent

to subsuming a fundamental system vibration within the spectral density and

then taking the limit to zero of its intrinsic canonical damping, as proposed in

Humphries et. al.2.

J(ω) = JLD(ω) + JUO(ω), (5.1.7)

where

JLD(ω) =
2ηLDγLDω

2
0ω

(ω0 − ω)2 + (γLDω)2
,

which can be further simplified to the Lorentz-Drude form given that γLD ≫ ω0

such that ΛLD = ω2
0/γLD,

JLD(ω) =
2ηLDωΛLD

ω2 + Λ2
LD

, (5.1.8)

and either

JUO =
1

2
SHR
UOωUOω (δ(ω − ωUO) + δ(ω + ωUO)) , JUO = SHR

UOωUOδ(ω − ωUO),

(5.1.9)

with SHR
UO = λUO/ωUO, the Huang-Rhys factor which is a measure of the

strength of the electronic and vibrational coupling. The two forms depend on

whether the vibration is split into two componenets, as in Seibt289, or whether

there is a single undamped vibrational mode. The next step is to decompose the
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respective bath contributions, according to the Matsubara scheme, in order to

explicitly incorporate time-dependent - but temperature-independent -

Matsubara decomposition coefficients and frequencies289,324 into the correlation

function. We perform this process for each component of the total spectral

density piecewise. Starting with the Lorentz-Drude component we decompose

the correlation function using complex contour integration, resulting in:

L
(α)
LD(t) = ηLDΛLD

(
cot

(
βℏΛLD

2

)
− i

)
e−ΛLDt +

∞∑
n=1

2ηLDΛLDνn
βℏ(ν2n − Λ2

LD)
e−νnt,

(5.1.10)

which can be simplified in terms of purely Matsubara frequencies by denoting,

d0 = ηLDΛLD

(
cot

(
βℏΛLD

2

)
− i

)
, ν0 = ΛLD, (5.1.11)

dn =
2ηLDΛLD

βℏ

(
νn

ν2n − Λ2
LD

)
, νn =

2nπ

βℏ
, (5.1.12)

such that

L
(α)
LD(t) =

∞∑
n=0

dne
−νnt. (5.1.13)

Next we decompose the undamped oscillator mode component, proposed by

Seibt et. al.289, through the sifting property of the delta function resulting in:

L
(α)
UO(t) =

SHR
UOω

2
UO

2

[
exp(−iωUOt)

(
coth

(
βℏωUO

2

)
+ 1

)

+ exp(iωUOt)

(
coth

(
βℏωUO

2

)
− 1

)]
. (5.1.14)

From this we have generated the Matsubara decomposition coefficients and

frequencies for the second bath:

c1 = c̃2 =
1

2
SHR
UOω

2
UO

(
coth

(
βℏ ωUO

2

)
+ 1

)
, (5.1.15)

c2 = c̃1 =
1

2
SHR
UOω

2
UO

(
coth

(
βℏ ωUO

2

)
− 1

)
, (5.1.16)

γ1 = γ̃2 = iωUO, (5.1.17)

γ2 = γ̃1 = −iωUO. (5.1.18)

Given these decompositions, and in a manner equivalent to the process in Ishizaki

and Tanimura150, we construct the total influence function as:∏
n

Fn = FLD ×FUO, (5.1.19)
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FUO = exp

(
−1

ℏ

∫ t

0

∫ τ

0

∑
k

B×k (Qt,Q
′
t; τ) exp(−γk(τ−τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′ dτ

)
.

(5.1.20)

where,

Θk =
1

2

[
(ck − c̃k)B

◦
k(Qt,Q

′
t; τ
′) + (ck + c̃k)B

×
k (Qt,Q

′
t; τ
′)

]
, (5.1.21)

and

FLD = exp

(
−1

ℏ

∫ t

0

∫ τ

0
B×(Qt,Q

′
t; τ)ϑ(Qt,Q

′
t; τ
′)ΛLD exp(−ΛLD(τ−τ ′)) dτ ′ dτ

)

×
∞∏
n=1

exp

(
− 1

ℏ

∫ t

0

∫ τ

0
B×(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ
′)νn exp(−νn(τ−τ ′)) dτ ′ dτ

)
.

(5.1.22)

where,

ϑ = ηLD

[
cot

(
βℏΛLD

2

)
B×(Qt,Q

′
t; τ
′)− iB◦(Qt,Q

′
t; τ
′)

]
, (5.1.23)

Ψn =
∞∑
n=1

2ηLDΛLDνn
βℏ(ν2n − Λ2

LD)
B×(Qt,Q

′
t; τ
′). (5.1.24)

For a value of K, which satisfies νK = 2πK/βℏ ≫ ω0 - where ω0 is the

fundamental frequency of the system - then

νn exp(−νn(τ − τ ′)) ≈ δ(τ − τ ′), n ≥ K + 1. This simplifies the influence

functional

F ≈ exp

(
−
∫ t

0

∫ τ

0

∑
k

B×k (Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′ dτ

)
×

exp

(
−
∫ t

0
B×(Qt,Q

′
t; τ) exp(−ΛLDτ)

[
−
∫ τ

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

dτ

)
×

K∏
n=1

exp

(
−
∫ t

0
B×(Qt,Q

′
t; τ) exp(−νnτ)

[
−
∫ τ

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

dτ

)
×

∞∏
n=K+1

exp

(∫ t

0
B×(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ) dτ

)
. (5.1.25)

In order to derive the equations of motion we additionally introduce the

equation for the auxiliary density operators. This equation takes the same form

as the influence functional, omitting −B×(Qt,Q
′
t; τ) as noted in the

supplemental material of Seibt and Mancal325, raised to the power of the ADO

number. This creates the hierarchy ADO structure with each order in the

hierarchy decreasing by an order of magnitude - as a consequence of the

236



Chapter 5: Spectral Vibrations in the Limit of Zero Canonical Damping

exponent. We introduce the auxiliary operator, ρ(m,lk)
j1...jK

, by its matrix element

as150

ρ
(m,lk)
j1...jK

(Qt,Q
′
t; t) =

∫ Qt(t)

Qt(t0)

∫ Q′
t(t)

Q′
t(t0)

exp

(
iSS[Qt,Q

′
t]

ℏ

)
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
×

ρ(Qt0 ,Q
′
t0 ; t0)

∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn

D[Qt] D[Q′t],

(5.1.26)

for non-negative integers lk,m, j1, . . . , jK . The reduced density matrix,

ρ
(0,0)
0,...,0 = ρ(t) is the only matrix within this hierarchy with physical meaning, and

the other auxiliary density operators are introduced for computational purposes.

Differentiating equation (5.1.26) with respect to time, and then computing the

path integrals, results in the following equations of motion:

∂

∂t
ρ
(m,lk)
j1...jK

=

(
− i

ℏ
H×S −

∑
k

(lkγk +mΛLD)−
K∑

n=1

jnνn+
∞∑

n=K+1

B×Ψn

)
ρ
(m,lk)
j1...jK

−

∑
k

lkΘkρ
(m,lk−1)
j1...jK

−mΛLDϑρ
(m−1,lk)
j1...jK

−
K∑

n=1

jnνnΨnρ
(m,lk)
j1...jn−1...jK

−(
B×ρ

(m+1,lk)
j1...jK

+
∑
k

B×k ρ
(m,lk+1)
j1...jK

)
−

K∑
n=1

B×ρ
(m,lk)
j1...jn+1...jK

. (5.1.27)

Upon first inspection it may appear that there is an absent factor of γk in the

creation term from the (lk − 1)th Matsubara axis, however this is not the case.

Based on the reduction criteria for the infinite Matsubara components, which for

the overdamped contribution is:

νK =
2πK

βℏ
≫ ω0, (5.1.28)

we reduce to a delta function for a sufficient value of K. However, such a

reduction cannot be performed for the undamped component. The undamped

contribution introduces a pair of Matsubara decomposition coefficients and

frequencies, as opposed to an infinite number, and as such a sufficient value of

K being chosen is unlikely. This lack of reduction motivates the current

derivation and it results in factors of (ck ± c̃k) in Θk, which (based on the form

of ck in equation (5.1.15)) accounts for the apparent missing factor of γk.
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For the condition

∑
k

(lkγk+mΛLD)+
K∑

n=1

jnνn ≫ ω0

min(I(νk),R(νn))
, =⇒ Γmax = 10 max

(
I(γk)

)
.

(5.1.29)

This criterion terminates the over and undamped axes through one condition,

leading to self-similar hierarchy volumes, where the overdamped termination is

considerably more stringent than necessary. A two step termination process could

be introduced as future work which terminates these axes separately.

Subsequently, the infinite hierarchy can be truncated by the terminator:

∂

∂t
ρ
(m,lk)
j1...jK

≈

(
− i

ℏ
H×S −

∑
k

lkγk +

∞∑
n=K+1

B×Ψn

)
ρ
(m,lk)
j1...jK

. (5.1.30)

Here, the phonon contributions from the system characteristic damping rate

vanish as they are a purely real decay, whereas the purely imaginary oscillating

components persist. This can be rationalised through the limit of infinite time,

all contributions with an associated damping will vanish leaving only oscillatory

components after the application of the Markovian criterion. This can be

rewritten as164

∂

∂t
ρ
(m,lk)
j1...jK

≈

(
− i

ℏ
H×S − i(l0 − l1)ωUO +

∞∑
n=K+1

B×Ψn

)
ρ
(m,lk)
j1...jK

. (5.1.31)

Since the undamped oscillator component contributes a pair of Matsubara

decomposition frequencies and coefficients, we expect the number of hierarchy

elements to be only slightly greater than that of an overdamped EOM.

Equivalent to the overdamped HEOM, the first term (red) within equation

(5.1.27) describes the Markovian free propagation of the system. Similarly the

first two blue terms describe the impact of the characteristic damping rate of the

system, mediated by bath phonons, on the total dynamics. This is split into a

purely imaginary oscillation from the undamped modes, and a decay from the

overdamped contributions. The final blue term is, again, a product of two bath

operator commutator terms which introduce higher order bath interactions, a

square coupling, to account for the introduction of the cutoff K 150. By

propagating a series of ADOs, representing different arrangements of bath

phonons, the HEOM accounts for a history of interactions such that

non-Markovian effects are automatically included. The ADOs are interconnected

via ADO raising and lowering terms corresponding to each of the dimensions of

the system. The integers lk refer to the undamped modes, m the temperature

independent overdamped modes, and jn the temperature dependent Matsubara

contributions from the overdamped modes. Subsequently raising and lowering
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in each of these dimensions are denoted by

jn ± 1,m± 1, lk ± 1 =⇒ ρ
(m,lk)
j1...jn±1...jK

, ρ
(m±1,lk)
j1...jK

, ρ
(m,lk±1)
j1...jK

. (5.1.32)

The first cyan term in the LDUO-HEOM is the raising term associated with the

undamped modes. The action of Θk is to destroy bath phonons and create system

states of an equivalent frequency as the phonons are absorbed by the system. This

corresponds to an increase of ADO tier resulting in a ‘raising’ of the ADO. This is

a temperature independent, undamped contribution with no intrinsic damping.

The second and third cyan terms are the raising terms from the temperature

independent frequencies and infinite Matsubara sum of the overdamped modes,

respectively. φ and ψn have an equivalent purpose to Θk but create bath states at

frequencies ΛLD and νn, respectively. These terms have intrinsic damping due to

their overdamped origins. The three orange terms, each with a B× operator, are

the respective lowering terms for each component. The action of this operator is

to demolish the system states, corresponding to the creation of bath phonons, as

they are emitted from the system into the bath.

5.1.2 Test Dynamics

Dynamics of the newly generated LDUO-HEOM are analysed through the

equilibration period, of 1 ps, to confirm that the undamped modes are correctly

introducing coherence into the system. In order to achieve this a test monomer

system, generated through a TLS coupled to the undamped mode, is produced.

The undamped spectral density contributes purely imaginary poles, with no

decaying component, and rather than introducing pure electronic dephasing

through a diagonal operator they continually stimulate coherence at the

undamped oscillator frequency. This leads to continually growing coherences

with time, that do not decay over longer equilibration times. Figure 5.1.1 shows

the first ps of dynamics for a vibronic dimer modelled using the LDUO-HEOM

hit with a laser pulse at 0.4 ps. The system has a fundamental electronic

transition frequency of 3 000 cm−1 and is initialised into a purely excited state

population. The system is evolved for 0.4 ps before being hit by an

instantaneous laser field of a single frequency with an infinitesimal spatial width

which is resonant with the fundamental electronic transition, before the

evolution is continued up to 1 ps.

The system initially exists in the excited state, ρee, at t = 0 ps with small but

non-zero coherences, ρeg and ρge. The settling of the hierarchy after the

initialisation in combination with the non-zero coherences establishes an

electronic Rabi oscillation within the populations of the system which begins to

establish an equilibrium up to 0.4 ps. At this point the system interacts with the
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Figure 5.1.1: Populations and coherences for a two-level system evolved for
0.4 ps using the LDUO-HEOM, before being hit by an instantaneous laser field at
the fundamental transition frequency, ω(ν)

eg , with an infinitesimal spatial width at
0.4 ps causing a rotation into the coherences, and evolved for the remaining

0.6 ps.

instantaneous laser field at 3 000 cm−1 which rotates the population states and

coherences within the density matrix. This transfers the large population

magnitude onto the imaginary axis which is continually increased by the

undamped mode within the LDUO hierarchy. The purely imaginary poles add to

the coherence leading to a divergent ρeg and ρge dependent on the strength of

the undamped mode coupling and the strength of this coupling relative to the

overdamped modes. The populations continue to oscillate between fixed values

indefinitely and are not divergent. The continual existence of coherences within

the density matrix of the LDUO highlights that the system is permanently in a

superposition of states throughout the evolution.

5.1.3 LDUO Linear and 2D Nonlinear Optical Spectroscopy

Following the theory of spectroscopy outlined in section 2.4, the evolved density

matrix generated from the LDUO-HEOM can be used to produce both linear and

non-linear optical spectra. The probability of generating a coherence within the
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system is proportional to the corresponding transition dipole moment element38,

ρeg ∝ iµge exp(−iω(ν)
ge t1) exp

(
− t1
T2

)
, (5.1.33)

with homogeneous broadening and lifetime dictated by T2, and can be related

to the first order polarisation through R(1) ∝ µgeρeg. The molecular response

function, as shown in equation 2.4.3, can be rewritten as

P (1)(t) ∝
∫ ∞
0

R(1)(t1)EI(t− t1) exp
(
− iω(ν)(t− t1)+ ik1 · r+ iϕ

)
dt1, (5.1.34)

where ϕ is the associated phase. In the impulsive limit the envelope function is

reduced to a delta function and the convolution simplifies to the sifting property.

To generate a spectral signal the squared magnitude of the Fourier transformed

macroscopic polarisation is calculated38 yielding, to first order,

S(ω) ≈ I0(ω) + 2R
(
iP̃ (1)(ω)

)
, (5.1.35)

with incident laser field contributions being contained within I0. The absorption

spectrum, which contains only signals from the interference of the incident

fields, is generated by subtracting the spectrum of the continuous laser,

S′(ω(ν)) = −log S(ω(ν))

I0(ω(ν))
, such that

S′(ω(ν)) ∝ R
∫ ∞
0
µ2ge exp

(
− iω(ν)(t− t1)

)
dt1 = R

µ2ge

i(ω(ν) − ω
(ν)
ge )− T−12

,

(5.1.36)

which leads to the absorptive component of a Lorentzian spectral contribution

(denoted g̃{·}(ω(ν))))

R(g̃{·}(ω
(ν))) = A(ω(ν)) ∝

µ2geT
−1
2

(ω(ν) − ω
(ν)
ge )2 + T−22

, (5.1.37)

and leads to sharp lineshape which decays as O
(
(ω(ν) − ω

(ν)
ge )−2

)
. Similarly, the

dispersive component of the same Lorentzian spectral contribution is

I(g̃{·}(ω(ν))) = D(ω(ν)) ∝
−µ2ge(ω(ν) − ω

(ν)
ge )

(ω(ν) − ω
(ν)
ge )2 + T−22

, (5.1.38)

and produces broader spectral lineshapes, if rotated onto the real axis, due to

the decay as O
(
(ω(ν) − ω

(ν)
ge )−1

)
. These elements of the total spectrum relate to

the behaviour of waves which are travelling as a wavepacket. Contributions to

the total superposition with lower frequency will travel slower than those with

high frequencies leading to a dispersion, or spreading, of the wavepacket as it

propagates. Subsequently, these kinds of waves have a group velocity which

describes the velocity of the wavepacket envelope, and a phase velocity which
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describes the velocity of each wave contribution within the superposition. In

addition, upon interaction of this wave with a medium interface, a proportion of

the wave will be transmitted into the material, a fraction will be reflected and a

small portion will be absorbed. The energy of the absorbed component relates

to the absorptive spectrum, whereas the refracted, transmitted, component is

related to the dispersive part. On these grounds, absorptive components are

usually positive, as they relate to energy of the constituent modes, but the

dispersive component can take negative values dependent on the wave

superposition.

Typically, computational calculation of the Fourier transform involves taking

the absolute value of the spectrum, resulting in a linear combination of absorptive

and dispersive contributions. However, within spectroscopic applications it can

be necessary to consider the absorptive and dispersive elements in isolation. In

the case of the LDUO-HEOM, the spectral vibration is entirely undamped leading

to a pure, single component, oscillation within the response function. The impact

of this on the absorptive, dispersive, and absolute spectra are considered in figure

5.1.2.

a) and b) of figure 5.1.2 demonstrate that when there is a single wave

component, g1(t), that the (standard) absolute Fourier spectrum produces a

delta function (Lorentzian lineshape), |g̃1(ω(ν))|, with breadth dependent on the

domain. In contrast, the absorptive spectrum produces a pair of split

Lorentzians which are symmetric about the y-axis and split into quadrantsb two

and four with a node at the fundamental transition frequency, and proportions

of negative and positive intensity controlled by the phase ϕn. The dispersive

spectrum is also a pair of split Lorentzians but with a broader spectrum of order

O
(
(ω(ν) − ω

(ν)
ge )−1

)
in quadrants one and three. The pair of peaks correspond to

positive (left moving) and negative (right moving) waves at the undamped

oscillator frequency.

In contrast, c) and d) show the resultant Fourier spectra for two kinds of

exponential decay which mimic homogeneous broadening or an

inhomogenenous distribution with a Gaussian or exponential envelope. In this

regime the absolute Fourier spectrum produces a single sharp Gaussian at the

origin with amplitude dependent on the rate of decay of the response function,

as demonstrated by moving from g2 to g3. Additionally, the absorptive and

dispersive contributions are oscillatory functions again split into opposite

quadrants. The sharp oscillations are a result of the jump discontinuity

introduced at t = 0.5 ps, resulting in the emergence of the Gibb’s phenomenon.

This is also demonstrated within decaying oscillations in e) and d).

bStandard mathematical quadrants moving anticlockwise from the x, and y positive region in
quadrant 1.
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Finally the change in breadth and amplitude of the absolute spectra are shown

in g) and h) as a function of the decay rate of the response function.

In addition to the differences between absorptive, dispersive, and absolute

spectra, differences arise as a consequence of the phase introduced through

E = δ(0) exp(−iϕn). Figure 5.1.3 depicts the change in response function, and

absorptive/dispersive Fourier spectrum components, as the phase is increased

from ϕ1 = 0c to ϕ4 = πc. It is clear from column 3 that by increasing the phase,

the amplitude and quadrant positions of the split halves of the absorptive and

dispersive Fourier spectra can be tuned. When the phase is zero, as in row one,

then the absorptive component becomes zero and the split imaginary Lorentzian

appears in quadrants two and four. By increasing the phase by π
4
c degrees the

spectral components are mixed resulting in equal and opposite absorptive and

dispersive lineshapes. The imaginary contribution is still found in quadrants two

and four, whereas the real absorptive component is in quadrants one and three.

The amplitude of these spectra is reduced relative to column one, due to the

mixing of dispersive and absorptive contributions. Row 3 depicts a rotation by

ninety degrees through application of a phase ϕ3 = π
2
c, which subsequently

takes the imaginary signal from row one and transfers it onto the real axis. As a

result, the dispersive element is zero and the absorptive contribution depicts the

split Lorentzian with an equivalent amplitude to that shown in row one. This

peak is split into quadrants one and three, opposite to those in row one. Finally,

row four demonstrates a full inversion of the results in row one through a phase

of π radians. This results in a flip of all signals across the y-axis.

The aim of the LDUO-HEOM is to reproduce BVM spectra, with accurate peak

broadening, in the limit of vanishing canonical damping. Therefore, the phase is

flipped such that the splitting of peaks is removed. This preserves the

broadening of the absoprtive and dispersive elements of the Fourier spectrum,

and ensures the absorptive components are strictly positive, at the cost of a node

appearing within the fundamental peak. In contrast, the absolute spectrum

could be used to remove the node and produce purely Lorentzian peaks, but at

the cost of increased lineshape broadening which would include both absorptive

and dispersive contributions. Figure 5.1.4 a) shows the linear response function

for a range of system reorganisation energies and undamped mode coupling

strengths with the LDUO-HEOM, and the comparative BVM response functions

which have a pair of reorganisation energies for the pair of baths, and no

undamped oscillator coupling. Figure 5.1.4 b) shows the associated linear

spectrum for each case. A further discussion of spectrum generation and the

necessary Hamiltonian truncation can be found in Appendix J.

There is a clear fundamental peak in all spectra, but the LDUO-HEOM peaks

closest to the fundamental are split and have a reduction in amplitude towards
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Figure 5.1.4: a) Linear response functions for the LDUO-HEOM and uHEOM,
BVM, for a range of bath reorganisation energies, η(ν), and undamped oscillator

coupling strengths, λ(ν)UO, between 0.0 and 1.5 ps. b) The associated linear
absorption spectra for each response function shown above.

the peak center. This is a consequence of the choice of phase shift, which is

chosen to preserve the peak broadening. When the bath reorganisation energies

are approximately equivalent, as in the case of η(ν) = (50, 50) cm−1 for the BVM

and η(ν) = 50 cm−1, λ(ν)UO = 2 cm−1 for the LDUO, the peak broadening and

intensity are similar. The clear vibronic progression evident in peaks at integer

multiples of 500 cm−1 above and below the fundamental are clear, and arise as a

consequence of the envelope of the response function. The sinusoidal envelope

is evident in both the LDUO and uHEOM BVM at early times. However, when

the balance between overdamped and undamped contributions strays from the

ideal regime the envelope function is destroyed as the response function begins

to diverge. This is shown by the loss of envelope function in the red data set of

panel a) and is shown to increase the broadening erroneously, which signifies that

the value of Γmax is limiting the dynamics. Consequently, the response function

is constrained with a Hamming window function at 1 ps, ensuring full decay.

Finally, the LDUO-HEOM is applied to nonlinear optical spectroscopy in order

to generate 2DES equivalent to the uHEOM BVM in the limit of vanishing

secondary damping. Columns one and three of figure 5.1.5 shows the BVM in

the weak and strong coupling limits, equivalent to those in figure 5.1.4 with

η(ν) = (50, 50) cm−1 and η(ν) = (300, 50) cm−1. Columns two and four show the
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equivalent LDUO-HEOM versions of the weak and strongly coupled BVM, with

η(ν) = 50 cm−1, λ(ν)UO = 1 cm−1, and η(ν) = 50 cm−1, λ(ν)UO = 2 cm−1.

All spectra within figure 5.1.5 are qualitatively similar and have very similar

peak positions and broadening, demonstrating that the LDUO-HEOM is effective

in modelling the BVM in the limit of vanishing canonical damping. Both the

uHEOM BVM and LDUO-HEOM spectra present an initial inhomogeneous

broadening of the fundamental peak which becomes more rounded for later

population times along with clear signs of vibrational relaxation as peaks shift

vertically downards. This is especially evident in k) and l) where there is clear

movement of population to lower vibrational states within the system. While the

LDUO-HEOM is effective at modelling the broadening in this limit, due to the

undamped intramolecular vibrational mode in the hierarchy, the fundamental

peak in the spectrum is split, with a node close to the fundamental frequency, as

a consequence of the choice of phase versus broadening. This results in worse

peak positional accuracy in the LDUO-HEOM close to the fundamental, however

this is minimal in vibronic peaks further from the fundamental frequency as

evidenced by the similarity in peak positional to the uHEOM particularly in i)

and l). The other consequence of the undamped mode is a vertical stretching of

the peaks. This results from the continually oscillating polarisation and can be

attributed, in part, to the response function containing a single, continually

oscillating component, rather than a decaying superposition.

One of the most fundamental benefits of this new approach, apart from the

simplification of the spectral density is the reduction in computational cost. In

order to generate these spectra there is an equilibration step, an evolution, and

then an evolution and calculation of 2D spectra. In the uHEOM BVM these steps

take 1 hour 29 mins, 3 hours 34 mins, and 16 hours and 19 mins, respectively.

However, in the LDUO-HEOM the same steps took ∼ 30 seconds, ∼ 1 minute,

and ∼ 3 minutes, respectively for the low coupling case. This means that the

LDUO-HEOM took 0.56% of the time the uHEOM did, or better, and represents

an improvement of at least 99.4%.

In summary, a new form of hierarchical equations of motion has been

generated for the purpose of realising the limit of vanishing canonical damping

within the BVM model. This HEOM, after careful phase correction, produces

spectra which are qualitatively similar to those of the uHEOM BVM

demonstrating effective modelling of the BVM in the limit of zero canonical

damping. It is shown that this method dramatically improves the computational

time for modelling the BVM model, reducing the time taken by 99.4%, or more,

in the weak coupling case.
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6 Conclusions

Perturbative and non-perturbative methods for modelling open quantum

systems have been described in detail, with emphasis on the approximations

and assumptions necessary to generate a full equation of motion. In each case, a

full derivation from first principles has been performed which justifies the

advancements leading up to the generation of the hierarchical equations of

motion147 for modelling non-Markovian effects within the bath dynamics of the

total system. A formal discussion of each of the damping limits within the

oHEOM and uHEOM is considered, as well as the implications this has on the

efficiency of termination with the Markovian convergence parameter, Γmax.

These models have been used to generate 2D electronic spectra in the impulsive

limit for vibronic systems, starting with monomers and extending to

electronically coupled species, based upon the Kasha model. The efficiency of

such models is strongly dependent on the size of the Hamiltonian and total

composite Hilbert space of the system, which increases non-linearly with dimer

size. Based on the construction of each model, reductions of the full quantum

mechanical treatment are considered which simplify the open quantum system

dynamics by limiting the total explicit degrees of freedom. The canonical

transform is leveraged to subsume vibrational degrees of freedom from the

system Hamiltonian into the environment degrees of freedom in order to limit

the size of the Hamiltonian. The cost of such an approach is scrutinised in terms

of efficacy and computational efficiency through comparison of metrics of

quantum behaviour applied to models before and after transformation. The

pre-existing suite of HEOM and spectroscopy modules has been expanded to

include quantum information and quantum correlation metrics which can be

applied to either the density matrix or the auxiliary density operators of the

system, as well as the creation of a bespoke equations of motion, the

LDUO-HEOM, aimed at elucidating the impact of a movable system-bath

boundary.

Chapter 3 presented the impact on quantum information of simplifying

hierarchical equations of motion models, with specific emphasis on the 2DES

lineshape. It was found that greater non-Markovianity occurs when the system

is coupled to an underdamped bath, but that this effect is cumulative over a

prolonged period of slow feedback. In contrast, overdamped baths were shown
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to exhibit a rapid return of information from the environment to the system.

The correlation between the ellipticity of overdamped 2D spectral features and

the degree of non-Markovianity highlights that environmental signatures, such

as inhomogeneous broadening, are due to a flow of quantum information from

the bath to the system which broadens the spectra.

Next, the explicit action of the canonical transform on the 2DES is considered.

A pair of models are generated for a vibronic monomer and homodimer, termed

the Hamiltonian vibration model (HVM) and bath vibration model (BVM).

These approaches differ only in the placement of the system bath boundary,

where the HVM has explicit vibrational levels within the Hamiltonian, but the

BVM does not. Both models generate clear vibronic structure, in agreement with

the previous chapter, but again differ in the level of broadening. It is shown that

HVM structure leads to sharp definition of energetic properties (peak position),

at the cost of uniform broadening, whereas the BVM has poorer peak positional

information but more accurate dynamical broadening when compared to

experimental spectra. The BVM broadening is attributed to the intrinsic

canonical damping associated with the underdamped intramolecular vibrational

mode which is canonically subsumed into the bath. Through analysis of the

correlation functions associated with the overdamped and underdamped

components of the total environment, it is shown that in the limit of vanishing

canonical damping the BVM and HVM are mathematically equivalent. In the

more complex homodimer system the 2DES demonstrate that the choice of

system-bath boundary placement also alters the vibronic coupling effects. This is

demonstrated by the lack of vibronic quenching relative to the the Hamiltonian

eigenvalues in BVM system. Application of the BVM shifts the computational

bottleneck to the bath dynamics, from the diagonalisation of large Hamiltonians

in the HVM, exponentially increasing the number of auxiliary density operators

as a function of decreasing damping strength. Therefore a choice of HVM versus

BVM is a trade-off between energetic precision, dynamical broadening, and

computational expense.

Qualitative physical insights relating to the system-bath interaction and

non-Markovianity can be drawn from virtual information flow which is

mediated by phonons at integer multiples of each constituent Matsubara

frequency within the ADOs. It is shown that, with the exception of temperature

independent axes which arise from non-thermal poles of the spectral

distribution, Matsubara axes are independent from each other as a consequence

of their relative timescale. Subsequently, a new hierarchy termination criterion

is considered which simplifies the sealed hierarchy volume by allowing each

Matsubara axis to be terminated to a different length rather than requiring

self-similar volumes. It is shown through termination contours that the

proposed, volume reducing, termination scheme would reduce the
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computational cost of large hierarchy volumes. Full implementation of this

termination scheme is a computational challenge which is beyond the scope of

this thesis, but its efficacy has been demonstrated. Future studies could involve

the computational implementation of an algorithm to trim the hierarchy based

on this criterion.

Chapter 4 presents an equivalent analysis of the placement of the system-bath

boundary, but through the impact on quantum correlations. First, the correlations

of a vibronic monomer system, built as HVM, which is continuously driven by a

laser field of infinitesimal width are considered. Within the photon correlations,

the purely quantum behaviour of antibunching is observed along with phonon

signatures, whereas in the phonon correlations bunching is observed. Sources

of vibrational character are elucidated through cross-correlations in which the

order of boson detection has a considerable impact on the probability. It is shown

that sources of vibrational character can be either direct, such as in the number

operator for phonons, or indirect, such as in emission of photons modulated

by level of vibrational excitation. These sources lead to a strong amplification

of phonon signatures in g
(2)
ba correlation, and a reduction of such signatures in

the g
(2)
ab . It is noted that, through correlation with photons, these correlation

functions present an opportunity to investigate phonon dynamics indirectly using

existing quantum-optical techniques to understand the impact on quantum versus

classical processes in molecular systems.

Thereafter, the implications of driving fields with Gaussian width are

considered. The result of this on the correlation is that the electronic signatures

tend towards step functions where there are regions of zero interaction, and

zero change in correlation, followed by regions of intense vibrational activity as

the system interacts with the field pulse containing many frequencies.

Before moving on to more complex electronically coupled species, an analysis

of the movement of vibrational structure through the canonical transform in a

vibronic monomer, in the context of quantum correlation, is considered. The

second order correlation metric of quantum correlations is applied to the ADOs

for the BVM and HVM. It is demonstrated that auxiliary density operators are

dependent on a Matsubara frequency, from the dimensions of the hierarchy, and

these correspond to integer multiples of phonon modes. Interaction of these

phonon modes, and dissipation due to the thermal environment lead to virtual

correlations within the ADOs of HVM systems. However, because the canonical

transform fundamentally mixesa the system vibrations with the environment

degrees of freedom, all qualitative physical information about quantum

correlations is lost and the BVM is incompatible with current quantum

correlation metrics. This poses the possibility of a future study which further
aOr ‘entagles’ the degrees of freedom, similar to bathentanglement.

251



Chapter 6: Conclusions

develops non-Markovian corrections to the theory, such as extensions of the

quantum regression theorem, so that the BVM can be extended to these

scenarios.

Finally, quantum correlation metrics are applied to complex electronically

coupled species, within an HVM framework, in order to elucidate the impact of

excitonic coupling on quantum behaviours. In the absence of electronic

coupling, such as in the proposed monomer lattice structures, the photon

correlations can be amplified due to competition between the doubly and singly

excited states, as well as through the relative increase in photon number with

respect to a single monomer, which leads to a temporary inversion of correlation

statistics from bunching to antibunching. Consequently, photons derived from

the driving of a single monomer tend to exhibit antibunching, whereas

monomer lattices are able to exhibit both bunching and antibunching dependent

on the displacement of the excited state potential energy surface. By detuning

the driving field it is shown that the fundamental electronic Rabi cycles can be

removed from the correlation leaving modulations purely due to phonon

movement. In electronically coupled dimer systems J-aggregates are shown to

antibunch at early τ for photons, and bunch for phonons, with both tending

towards an equilibrium with the laser when coupled to a bath. In contrast,

H-aggregates show more complex correlation character, and tend to diverge

away from an equilibrium when coupled to the bath. For low H-aggregate

couplings, vibrational contributions to the wavepacket enhance correlations

above the equilibrium value for small τ , and in the long τ limit resonance

energy transfer from acceptor to donor sites in the system, or recurrence from

the bath, cause antibunching independent of phonon signatures.

Chapter 5 presented the realisation of the BVM in the limit of vanishing

canonical damping through the LDUO-HEOM. Based on the analysis of

necessary approximations and assumptions a new hierarchical equations of

motion was generated which incorporated a pure intramolecular vibration

coupled to a Lorentz-Drude overdamped environment. This coupling generates

a vibronic progression within the linear and 2D electronic spectra, which after

correction through a Hamming window and phase flipping, are in agreement

with those generated by the uHEOM.

6.1 Response to Proposed Hypotheses

In short, there is an affirmative answer to all of the proposed hypotheses in

chapter 1.

Hypothesis 1: Through non-perturbative, modern, formalisms can model
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complexity be maximised in conjunction with a minimisation of computational
effort? Hypothesis 1 is addressed in chapters 3 and 4 which consider the impact

on 2DES and quantum correlations of movement of the system-bath boundary

using the HEOM. The volume reducing termination criterion and development

of the BVM demonstrate that complexity can be maximised in conjunction with

a minimisation of computational effort with certain approximations.

Additionally the computational savings are demonstrated through a new HEOM,

(LDUO) in chapter 5, which represents an improvement of at least 99.4% in

computational time.

Hypothesis 2: Are genuine quantum effects strongly impacted by system-bath
boundary placement, and can these impacts be controlled by approximations and
advanced formalisms? This hypothesis is addressed by implementation of the

vibronic Hamiltonian for monomer and dimer systems into quantum dynamical

simulations followed by calculation of necessary quantum metrics in chapters 3

and 4. It is shown that quantum behaviours are affected by the system-bath

boundary placement, examples being vibronic quenching in 2DES and BVM

correlations.

Hypothesis 3: Through reduction to an undamped vibrational mode, can models
with canonically subsumed vibrations become equivalent to those with explicit
vibrational structure? In chapter 5 it was confirmed through a new HEOM that

systems modelled with explicit vibrational structure are equivalent to models

with canonically subsumed vibrations in the limit of zero vibrational mode

damping.

6.2 Future Research

Potential future research based on the findings in each chapter are summarised

below.

The work in chapter 3, when compared to the systems in chapter 4, suggests

that RET could be further considered in H-aggregate systems and the quantum

information content of these systems be further analysed. This thesis only went

so far as to study homodimers, but did not consider a full range of electronically

coupled species. It is clear that H-aggregates with strong coupling exhibit more

energy transfer, but the impact this has on the quantum information is unclear.

Such studies would require computational improvements to allow for

propagation of much larger systems. Additionally, through the analysis of virtual

information the impact of subsuming a system vibration could be further

explored. Future work could focus on generating an algorithm to reduce the

hierarchy, following the proposed volume reducing termination criterion, and
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this could be tested on a model molecular system.

Chapter 4 also presents a number of possible future directions for research. It

is clear that, currently, the BVM are incompatible with metrics of quantum

correlation. This theory could be further developed, potentially through

extensions of the quantum regression theorem, to allow the BVM to be utilised

in these scenarios. Additionally, the study of electronically coupled species open

a number of new avenues. Further exploration of the limit of vanishing

coupling, for monomer lattices, through systems which have orthogonal dipole

moments for the constituent monomer units could realise this coupling regime

without large inter-monomer distances. This would require vectorised systems

which do not rely on collinear dipoles, and driving fields capable of stimulating

both monomer units. Similarly, this could lead to insights into quantum

behaviour when correlations are generated from structured, or circularly

polarised light. Finally, RET could be further explored in strong H- and

J-aggregates. The current computational limitations could be removed allowing

for large values of N = ddim so that full vibrational complexity in heterodimers

could be achieved. This would remove the limitations involved with harsh

truncation.

Finally, chapter 5 presents the new LDUO-HEOM which is applied to a single,

simple, test vibronic monomer. Further work could involve further exploring the

capabilities and limits of this new hierarchy by modelling vibronic dimers and

other electronically coupled species. Currently, the metrics of quantum

information and correlation have not been explored deeply for this EOM, and

this presents another opportunity for further research.
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A Mathematical Notation and
Physical Interpretation

Notation

Real and Imaginary parts of a number

R, I. (A.0.1)

For example, for an arbitrary complex number C = a+ ib

R(C) = a, and I(C) = b, (A.0.2)

where a, b ∈ R.

Integral

The integral over a variable x between a and b. Here x is strictly a variable, hence

the italic font, and is not a functional. For functional integrals see A.0.66.∫ b

a
{·} dx. (A.0.3)

Integral of symmetric integrands

An integral of a function which is symmetric with respect to a defined line or axis

C, when integrated along the domain perpendicular to C can be transformed

so that the original integral along the entire domain is equal to two lots of the

integral over half of the domain. For example, if f(x) is symmetric around C

where C is the y−axis and the domain is x ∈ [−∞,∞] then:

2

∫ ∞
0

f(x) dx =

∫ ∞
−∞

f(x) dx. (A.0.4)
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Integral of antisymmetric integrands

Similarly, for an antisymetric function we have:∫ a

0
f(x) dx = −

∫ 0

−a
f(x) dx. (A.0.5)

Matsubara frequencies

Energy of Matsubara frequencies

The energy associated with the Matsubara frequency νn is βℏνn
2 .

Spectral Density

A continuous function, J(ω), which traces the profile of an infinite number of

weighted delta functions corresponding to the frequencies of individual modes

within an environment ensemble within an open quantum system. The associated

dissipation rate of the environment depends on: Λ for overdamped baths, and γ

for underdamped baths. This takes the form:

Jn(ω) = π
∑
ν

g2n,ν
2mn,νωn,ν

δ(ω − ωn,ν), (A.0.6)

Sine and Cosine functions

sin({·}) = I
(
exp(i{·})

)
, cos({·}) = R

(
exp(i{·})

)
. (A.0.7)

Hyperbolic Sine and Cosine functions and relations

sinh({·}) = 1

2

(
exp({·})− exp(−{·})

)
, cosh({·}) = 1

2

(
exp({·}) + exp(−{·})

)
.

(A.0.8)

sinh(i{·}) = isin({·}), cosh(i{·}) = cos({·}). (A.0.9)

Laplace Transform

LLap{f}(s) =
∫ ∞
0

f(t) exp(−st) dt, (A.0.10)
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where Lap denotes the Laplace transform, in order to differentiate it from the

Lagrangian, Liouvillian, and Lindbladian operators.

Closed System

A closed system in a single Feynman-Vernon coordinate X is

H(X). (A.0.11)

Open System

An open system in a pair of Feynman-Vernon coordinates X and Q is

H(X,Q) = H(X) + HI(X,Q), (A.0.12)

with a coupling HI(X,Q) in terms of both variables.

Stochastic Forcing

Stochasticity introduced through a random or probabilistic varibale such as

forcing F (t).

Scale of Oscillations Approximation

Separation of equations into ‘relevant’ and ‘irrelevant’ parts based on the relative

speed of the oscillations. This is often achieved through operators, an example

being the Zwanzig projection operators.

ρS = Pρ, ρB = Qρ. (A.0.13)

Similar to the rotating wave approximation, (A.0.15).

Weak coupling Approximation

Simplification based on the scale of interactions, assessed through a small

dimensionless quantity, ϵ,

HI,tot = H0 + ϵHI, (A.0.14)

where H0 is the Hamiltonian for the system without interactions, and HI links the

coordinates of the open system.
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Rotating Wave Approximation

Similar to Zwanzig projection operators, (A.0.13). Sufficiently rapid oscillations

are neglected such that the system moves into a moving frame of reference.

|ω − ω′| ≫ ϵ2, (A.0.15)

where ϵ is a small dimensionless quantity.

Secular Approximation

Environmental frequencies are restricted to those at resonance.

ω = ω′. (A.0.16)

Born (Adiabatic) Approximation

The nuclear and electronic contributions to a system evolution are separable such

that:

|α⟩ ⊗ |n⟩ . (A.0.17)

Markovian Approximation

The system-bath interaction is simpplified through the assumption that bath

contributions are not time-dependent (particularly within nested commutators)

such that each future evolution step depends solely on the previous time step.

ρB(t) ≈ ρB(t0). (A.0.18)

Factorisable Initial Conditions

The system and bath degrees of freedom are initially separable such that,

ρtot = ρS(t)ρB(t). (A.0.19)

An Infinite Bath

A bath generated from a continuous coordinate rather than discrete

environmental modes such that there are an infinite number of distinct
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frequencies within the environment ensemble.

J(ω). (A.0.20)

Canonical Environment Distribution

A canonically distributed environment approximation requires that the

environment represents a thermal equilibrium distribution of molecules.

High Temperature Approximation

High temperature such that,

βℏγ ≪ 1. (A.0.21)

Conditional Moment Exists

An approximation requiring that the conditional moment can be generated as

a type of expectation value for the system. In the Schrödinger equation this

requires an operator p → iℏ∇.

State Vector

A column vector describing the state of a system, |ψ(t)⟩, dependent on the

wavefunction.

Unitary Evolution Operator

The operator which evolves a state vector through time, U(t, t0),

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (A.0.22)

Chronological Time Ordering Operator

An operator, or path ordering procedure, which generates reorganises constituent

operations into a product of time ordered operations, T←.
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The Trace

For an n× n matrix, ρ, the trace is defined as

Tr(ρ) =

n∑
i=1

ρii, (A.0.23)

where ρii are the diagonal entries of the matrix ρ.

Hermitian Conjugate

The Hermitian conjugate of a matrix is the transpose and conjugate. Is the

conjugate of a matrix is denoted by a bar, Ā, and the transpose by T, AT, then

A† = (Ā)T = ¯(AT). (A.0.24)

A matrix is said to be Hermitian if Aij = Āij .

Liouville von Neumann Evolution Superoperator

The superoperator associated with the Liouville von Neumann equation and its

dynamics:

iℏ
∂ρ(t)

∂t
= [H, ρ(t)], (A.0.25)

= LLVNρ(t). (A.0.26)

Tensor Product

A product of two tensors which expands the underlying space of the first tensor by

the dimensions of the second, Rn⊗Rm = Rnm. For example, a composite Hilbert

space which expands the system space to include degrees of freedom from a pair

of monomers.

|x⟩ ⊗ |y⟩ = |x, y⟩ , (A.0.27)

(
x1 x2

x3 x4

)
⊗

(
y1 y2

y3 y4

)
=


x1

(
y1 y2

y3 y4

)
x2

(
y1 y2

y3 y4

)

x3

(
y1 y2

y3 y4

)
x4

(
y1 y2

y3 y4

)
 (A.0.28)
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C∗ -algebra

In Quantum Mechanics the state of a physical system, |ϕ(t)⟩, is a linear

functional which is acting on an abstract C∗-algebra, and physical observables

are the hermitian elements of the same algebra. In the context of this thesis the

algebra is a closed set of continuous linear operators on a complex Hilbert space.

Dynamical Map

An operator analogous to the unitary evolution operator, A, but which acts solely

on the system degrees of freedom is defined as a dynamical map, ϕM.

A Generator

For a given set of dynamics (examples could be the LVN equation or Lindblad

equation) the generator is analogous to the evolution superoperator and takes

the form Lg. In this sense, the Liouville von Neumann Evolution Superoperator,

A, is a generator.

Propagator

For each generator (evolution superoperator) there is an associated propagator

which is the dynamical map, A, for the dynamics of this system. A general time

dependent propagator takes the form:

V(t, t0) = T←exp
(∫ t

t0

L{·}(s) ds
)
. (A.0.29)

If a propagator is entirely divisible, and numerically explicit, then it can be

defined as Markovian. This allows dynamical maps to be used as a measure of

memory effects.

The Von Neumann Entropy Function

The amount of disorder present within a system:

S(ρ) = −kBTr
(
ρlnρ

)
. (A.0.30)
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The Helstrom (Bures) Metric

Quantification of the distinguishability of a pair of probability distributions is

achieved through a measure of the statistical distance between the two states.

When the two probabilities are arbitrary this is known as the Helstrom metric,

but when the two probabilities are equal it is known as the trace distance.

∆H(ρ1, ρ2) = Tr|p1ρ1 − p2ρ2|, (A.0.31)

when p1 = p2 =
1
2 , ∆H = D.

Information Flux

The amount of information (complement of entropy) moving through quantum

channels within an open quantum system is defined as a flux:

σ =
d

dt
D(ρ1, ρ2). (A.0.32)

The BLP Metric

The cumulative maximum of the positive information flux is termed the degree

of non-Markovianity, or the BLP metric, and is generated through

N = maxρ1,2

∫
σ(t) dt. (A.0.33)

Dimensionless Momentum, Position, and Excited State Displacement
Operators

The non-dimensionalised forms of the momentum, position, and excited state

displacement operators, from a potential energy surface of a TLS shown in figure

2.2.1. For a potential energy surface of a vibronic monomer where the pair of

electronic states are each coupled to the jth vibrational mode, these operators

are: p̃j , q̃j , d̃j .
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The Kronecker Delta

A function of two variables, dependent on two indices, with either takes the value

of 1 or 0, when the indices are equal or not equal, respectively.

δjk =

0 j ̸= k,

1 j = k.
(A.0.34)

The Creation and Annihilation Operators

Operators, a(†) and b(†), which destroy (and generate) a quanta of electronic

excitation or vibrational excitation within the system.

b
(†)
j =

1√
2
(q̃j ± p̃j). (A.0.35)

The Huang-Rhys Parameter

Physically this parameter corresponds to the mean number of phonons in a

coherent state that has been displaced by the reorganisation energy from that of

the vacuum distribution. It is calculated as:

SHR
j =

1

2
d̃2j . (A.0.36)

Electronic Coupling Strength

Whether it be through spatial separation or direct covalent bonding, the

electronic coupling of a molecule, J , is given by the Förster coupling equation:

J =
κAB|µA||µB|
4πεrε0R3

. (A.0.37)

The Molecular Orientation Factor

This factor describes the orientation of the constituent transition dipole moments

of a molecule:

κAB = µ̂A · µ̂B − 3(µ̂A · R̂)(µ̂B · R̂), (A.0.38)
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The Transition Dipole Moment Operator

The magnitude of the transition dipole moment of the system is given by µ, the

direction of the vector quantity is given by d, and the operator is given by

µSel,M = µeg

(
|g⟩⟨e|+ |e⟩⟨g|

)
. (A.0.39)

The Identity Operator

Formally, an identity function obeys

If(X) = X, (A.0.40)

such that any input is mapped to itself. For an operator this manifests as a

diagonal matrix of ones, where all off-diagonal elements are zero. This takes the

form

I(n), when n = 2, (A.0.41)

I(2) =

(
1 0

0 1

)
. (A.0.42)

Bath Reorganisation Energy

The strength of coupling of each environmental mode (delta function) within the

spectral distribution is given by

ηn =
1

π

∫ ∞
0

Jn(ω)

ω
dω. (A.0.43)

Bath Coupling Operators

Explicit forms of the operators (site basis) which couple the system and bath are:

BS
1,M =

∑
n

|e, n⟩ ⟨e, n| , (A.0.44)

for a monomer and,

BS
1,D =

∑
nA,nB

(
|g, nA, e, nB⟩ ⟨g, nA, e, nB|+ |e, nA, g, nB⟩ ⟨e, nA, g, nB|

+ 2 |e, nA, e, nB⟩ ⟨e, nA, e, nB|
)
, (A.0.45)
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for a dimer. These couplings contain no off-diagonal elements and subsequently

describe the impact of stochastic bath motion on the transition frequencies

between electronic states, which leads to T ∗2 pure dephasing.

Correlation Function

The correlation function of system-bath interaction, which is fundamental to the

fluctuation-dissipation theorem, models the rate of decay of bath correlations

subject to dissipation and thermal fluctuation.

L(α)
n (t) =

ℏ
π

∫ ∞
0

Jn(ω)

(
coth

(βℏω
2

)
cosωt− i sinωt

)
dω. (A.0.46)

Different forms of the correlation function, such as autocorrelation, real and

imaginary components are labelled as a subscript.

Transition Frequency Fluctuation Magnitude

The magnitude of fluctuations in the excited state energy profile is defined as ∆n.

Correlation Time

The timescale for the decay of correlations within the excited state energy profile

is τc. This is equivalent to the time taken for the bath to return to equilibrium

after being perturbed.

The Overdamped Bath Dissipation Rate

The overdamped bath dissipation (dephasing) rate is defined as Λ. This relates

to the underdamped equivalent through

Λ =
ω2
0

γ
=

1

τc
. (A.0.47)

The Underdamped Bath Dissipation Rate

The underdamped bath dissipation (damping) rate is defined as γ.
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The Vibrational Mode Frequency

The frequency of underdamped vibrational mode in bath is defined as ω0.

The Electric Field

Via the semi-classical approximation an external electromagnetic field can be

introduced where:

EI(r, t) =
∑
m

êmχmE
′(t− τm)

(
exp(−iωmt+ ikm · r) + exp(iωmt− ikm · r)

)
,

(A.0.48)

with circular frequency, ωm = 2πνm, wavevector, km, of magnitude |km| = ω
c ,

and field strength χm, in V m−1. The unit vector, êm, defines the polarisation of

each pulse. Additionally, this can be split into two components, when directional

dependence has been removed:

EI = E(t) + E∗(t). (A.0.49)

Field Envelope Function

The field envelope of the laser field is assumed to be Gaussian and centred at τm
such that

E′(t− τm) = exp
(
− (t− τm)2

2ς2

)
, (A.0.50)

with a full-width-at-half-maximum (FWHM) τ1/2 = 2ς ·
√
2 ln 2 in the time

domain, which is equivalent to τ
(ν)
1/2 = 4 ln 2

πcτ1/2
in the frequency domain. This

temporal ‘width’, ς, is analogous to the spatial width, σg.

The Electric Field Strength

The electric field strength of the mth pulse is defined as χm.

Bosonic Correlation Functions

The correlation of different boson emission events can be produced from the

creation and annihilation operators in a normalised, or non-normalised form as:

g(1)(t, τ) =
⟨c(t)c†(t+ τ)⟩
⟨c(t)c†(t)⟩

, (A.0.51)
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g(2)(t, τ) =
⟨c1(t)c2(t+ τ)c†2(t+ τ)c†1(t)⟩

⟨c1(t)c2(t)c†2(t)c
†
1(t)⟩

, (A.0.52)

and

G(2)
c1c2(t, τ) = Tr

(
c†1c2 exp(Lτ)(c1ρc

†
2)
)
. (A.0.53)

The equation can be extended to an mth order correlation

g(m)(t, t1, . . . , tm) =
⟨E−(t)E−(t(1)) . . .E−(t(m))E+(t(m)) . . .E+(t(1))E+(t)⟩

⟨|E(t)|⟩ ⟨|E(t(1))|⟩ . . . ⟨|E(t(m))|⟩
,

(A.0.54)

where t(m) =
∑m

i=1 ti. First order correlations are equivalent to the excited state

population (an amplitude), and second order correlations are equivalent to a

joint detection probability (an intensity). When τ = 0 these are called

simultaneous time correlation functions, and measure an instantaneous

correlation, whereas when τ > 0 they are two-time correlations.

The Molecular Response Function

The molecular response function (for anm pulse technique) contains information

about the system structure and its interaction with the environment and takes the

form:

R(m)(tm, . . . , t1) =

−
(
− i

ℏ

)m
⟨µ(tm + . . .+ t1)[µ(tm−1 + . . .+ t1), . . . [µ(0), ρS(−∞)] . . .]⟩ .

(A.0.55)

The Polarisation

The polarisation after interaction (with m pulses) can be written as

P (m)(t) =

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

EI(t− tm)EI(t− tm − tm−1) · . . .

× EI(t− tm − . . .− t1)R
(m)(tm, . . . , t1) dt1 . . . dtm−1 dtm. (A.0.56)

The Fourier Transform

The Fourier transform decomposes a waveform, in the time domain, into its

constituent frequencies, in the frequency domain, as a Fourier spectrum. This

process is denoted by a tilde:

f̃(ω) = FFou[f(t)] =
1√
2π

∫ ∞
−∞

exp(−ikω)f(t) dω. (A.0.57)
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Convolution

M(k; ∆,Γ) =
1√
2π

∫∫ ∞
−∞

G(ω′; ∆)L(ω − ω′; Γ)e−ikω dω dω′,

is strictly

M(k; ∆,Γ) =
1√
2π

∫ ∞
−∞

(∫ ∞
−∞

G(ω′; ∆)L(ω − ω′; Γ) dω
)
e−ikω dω′.

Substitute η = ω − ω′ to solve,

M(k; ∆,Γ) =
1√
2π

∫∫ ∞
−∞

G(ω′; ∆)L(η; Γ)e−ik(η+ω′) dη dω′.

This enables the splitting of the integral into two parts

M(k; ∆,Γ) =
1√
2π

∫ ∞
−∞

G(ω′; ∆)e−ikω
′

dω′
∫ ∞
−∞

L(η; Γ)e−ikη dη.

The first half of this equation is exactly the definition of the Fourier transform,

the second half is missing a factor of 1/
√
2π which we account for, resulting in

I(k; ∆,Γ) =
√
2π G(k; ∆)L(k; Γ).

Translation Property of Fourier Transforms

G(k; ∆) =
1√
2π

∫ ∞
−∞

e−((ω−ωeg)/2∆)2

∆
√
2π

e−ikω dω,

substitute η = ω − ωeg such that,

G(k; ∆) =
1√
2π

∫ ∞
−∞

e−(η/2∆)2

∆
√
2π

e−ik(η+ωeg) dη,

G(k; ∆) =
e−ikωeg

√
2π

∫ ∞
−∞

e−(η/2∆)2

∆
√
2π

e−ikη dη,

G(k; ∆) = e−ikωegFFou

[
e−(η/2∆)2

∆
√
2π

]
(k),

where Fou denotes the Fourier transform, to differentiate this from the influence

functional.

Frequency Shift Property of Fourier Transforms

∫ ∞
−∞

e−ikω

ω2 + Γ2
dω =

πe±kΓ

Γ
.
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If this function is denoted J (k; Γ) then,

π

Γ
J (k; Γ) =

e−kΓ, k > 0

ekΓ, k < 0

implies

J (k; Γ) =
π

Γ
e−|k|Γ.

Now consider

Z(ω; Γ) = eik0ωJ(ω; Γ).

For this function the Fourier transform is

1√
2π

∫ ∞
−∞

e−ikωeik0ω

ω2 + Γ2
dω =

1√
2π

∫ ∞
−∞

e−i(k−k0)ω

ω2 + Γ2
dω,

such that

Z(k; Γ) =
π

Γ
e−|k−k0|Γ

Absorptive, Rephasing, and Non-Rephasing Spectra

The molecular response function and polarisation have rephasing and

non-rephasing components equivalent to the absorptive spectrum. Additionally,

the absorptive spectrum can be created by:

P̃
(3)
{·} = S{·}(ωτ , T, ωt), (A.0.58)

SA = R(SR + SNR). (A.0.59)

The Laplace Operator

The second order derivative of a euclidean space which is the divergence of the

gradient:

∇ · ∇{·} = ∇2{·}, (A.0.60)

which in one dimension is equivalent to the second derivative in a spatial

coordinate x.

Power Spectrum of the Bath Correlation

The bath correlation function can be written as a noise-power spectrum,

ϖm =
∑
n

∫ ∞
0

Lmn(τ)Sn(−τ) dτ. (A.0.61)
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The Lindbladian Superoperator

The Lindbladian superoperator, or jump operator, is an operator which describes

the dissipative component of the dynamics. It is similar to other types of

superoperator A. The Lindbladian is denoted L.

Relaxation Superoperator

D[ρS(t)] is an arbitrary relaxation superoperator defining the interaction with

the bath. Γg is a, less general, form of the relaxation superoperator due to the

generator Lg. If the time independent component of the total Hamiltonian is

written as the system contribution, HS, and the relaxation superoperator is

written in its most general form, D[ρS(t)], this is equivalent to the most general

master equation (ME). Depending on the other assumptions and

approximations employed within the EOM the relaxation superoperator can take

many different forms. Some examples include:

• Markovian approximation → D[ρS(t)] = −ϵ2
∑

m[Sm, ϖmρS(t)− ρS(t)ϖ†m].

The Redfield master equation, discussed in section D.1.5

• Markovian approximation →
D[ρS(t)] =

∑
ω,l

(
Ll(ω)ρS(t)L

†
l (ω) −

1
2

{
L†lLl(ω), ρS(t)

})
. The Lindblad

master equation, discussed in section D.1.6.

• Non-Markovian → D[ρS(t)] = −ϵ2
∫ t
t0
[HI(t), [HI(t

′), ρS(t)]] dt′. The

Nakajima-Zwanzig equation, as discussed in section D.1.3.

Stochastic Friction

The parameter ζ is the associated friction of the random forcing applied by the

environment ensemble in a stochastic model.

Coherent State Representation

A coherent state basis which is dependent on the creation and annihilation

operators for the system modes, a†i and ai, rather than operators xj and pj for

environment modes {j}. This representation uses

|ϕ⟩ = exp
(∑

i

ϕia
†
)
|0⟩ , (A.0.62)
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where |0⟩ is the vacuum sate, ϕi are complex numbers, and ϕ∗i their complex

conjugates such that

ai |ϕ⟩ = ϕi |ϕ⟩ , (A.0.63)

⟨ϕ| a†i = ⟨ϕ|ϕ∗i . (A.0.64)

This is equivalent to considering a movement onto a sphere, analogous to a Bloch

sphere, and is similar to the Floquet, and Bogoliubov transforms.

Feynman and Vernon Influence Functional

The Feynman and Vernon influence functional is

F [qt, q
′
t] =

∫∫∫∫∫
ρB(x0, x

′
0, 0) exp(i

[
SB[x]− SB[x

′]

+ SSB[qt, x]− SSB[q
′
t, x
′]
]
/ℏ) D[x]D[x′]dx0dx

′
0dx, (A.0.65)

where
∫
D[x] denotes a Feynman path integral. This contains all of the

dependence on the bath coordinates, x, through the bath action and

system-bath interaction actions.

Feynman Path Integral

A Feynman path integral over an infinite number of trajectories (histories) which

generates the equation for the density matrix elements,

ρn(ϕ,ϕ
∗; t) =

∫∫ {(
− i

ℏ

)∫ t

0
exp(−ΛO(t− τ))η

(
B× − i

βℏΛO

2
B◦
)

dτ

}n

×

exp
( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
D[Q′t] D[Qt], (A.0.66)

which is differentiated to form an equation of motion. The D signifies that this is

a path integral, over trajectories, rather than over a variable.

Closed Contour Integral

The integral around a closed curve is denoted
∮

.
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Combined Over- and Under-damped Intrinsic Damping Parameter

ζn =

√
ω2
n0 −

(
γn
2

)2
contains the intrinsic damping parameter from any baths

within the system. This can be purely real, complex, or imaginary depending on

the type and number of bath contributions. For the underdamped kernels it is

equivalent to that of the overdamped spectral density, however, introduction of

the system mode splits the single temperature independent Matsubara frequency

into two: positive and negative combinations of the intrinsic damping parameter,
γn
2 , and iζn.

Matsubara Frequencies

Matsubara frequencies arise from singularities in the spectral distribution

function. These singularities become poles in a contour integral which results in

Matsubara frequencies at evenly spaced energies. Further discussion of the

Matsubara frequencies and dimension can be found in section 2.5.5.

HEOM Raising and Lowering Terms

The different hierarchical equation of motion all have ADO raising and lowering

terms dependent on the spectral densities incorporated in their derivation. Each

of these terms, which have similar forms, create and destroy phonon modes

within the system and bath. Such operators include:

• ϕnl and Θ±n

• Θ(O) and ψ(O)
n

• ψ
(U)
nl

• Ξ(g) and Θ
(g)
l .

Conditional Probability Distribution

The time local equation for a general probability density function is

p(ρ)(x, t+ t′) =

∫
p(ρ)(x, t+ t′|x′, t)p(ρ)(x′, t) dx′, (A.0.67)

where p(ρ)(x, t + t′|x′, t) is the conditional probability distribution function, as

part of the Kramers-Moyal expansion.
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Drift and Diffusion Coefficients

D(1) is the drift and D(2) is the diffusion coefficient generated as part of the

Kraymers-Moyal expansion of the Fokker-Planck equation.

Bose-Einstein Distribution

A type of spectral distribution function, which here is the expected number of

bosons in an energy state i for Bose–Einstein statistics. This is written as

nB =
1

exp(βℏ)− 1
. (A.0.68)

Generalised Symmetric and Anti-symmetric Correlation Functions

A set of K time dependent basis functions ϕ(g) are generated in order to produce

symmetric and anti-symmetric correlation functions from linear combinations of

this basis and the delta function:

S(t) =
∑
lk

σlslkϕ
(g)
k (t) + Sδ · 2δ(t), (A.0.69)

A(t) =
∑
lk

σlajkϕ
(g)
k (t), (A.0.70)

where σl, slk, and alk are constants dependent on the system parameters. These

correlation functions are equivalent to the fluctuation and dissipation kernels,

S(t) = L
(α)
R (t), and A(t) = L

(α)
I (t), equation (2.2.53).

Canonical Partition Function

The canonical partition function, Z, is

Z =
∑
k

exp
(
− ϵk
kBT

)
= Tr

(
exp

(
−

HE
D

kBT

))
. (A.0.71)

Hamming Apodisation Function

The Hamming apodisation functions is a method of removing experimental noise

or reducing persistent singals within data. This is achieved by

wHam(n) = a0

(
1− cos

(2πn
N

))
, (A.0.72)
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for a domain [0, N ] and where a0 = 0.54, which limits the oscillating component

of the system-bath correlation.

The Product Rule

For arbitrary functions f(x), g(x), and h(x), where f is the product of g and h

f(x) = g(x)h(x), (A.0.73)

the derivative of f can be calculated as

df(x)

dx
=

d

dx

(
g(x)h(x)

)
, (A.0.74)

df(x)

dx
=

dg(x)

dx
· h(x) + g(x) · dh(x)

dx
. (A.0.75)

The Chain Rule

For an arbitrary function y(x) which can be written through a substitution as

y(x) = u, where u = u(x), (A.0.76)

in order to simplify further calculations, the derivative of y can be expressed as

dy

dx
=

dy

du
· du
dx
. (A.0.77)

This is highly suitable for functions of functions, y
(
u(x)

)
, an example being

exp(−x2) where y(x) = exp(−u) and u(x) = x2.

The Liebniz Integral Rule

For arbitrary functions, f(x, t), a(x), and b(x), the Liebniz rule describes

differentiation under integration. For∫ b(x)

a(x)
f(x, t) dt, (A.0.78)

with −∞ < a(x), b(x) <∞, then differentiation of equation (A.0.78) yields

d

dx

(∫ b(x)

a(x)
f(x, t) dt

)
= f

(
x, b(x)

)
· db
dx

− f
(
x, a(x)

)
· da
dx

+

∫ b(x)

a(x)

∂

∂x
f(x, t) dt.

(A.0.79)
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In the specific case of a(x) = a a constant, and b(x) = x this can be simplified to

d

dx

(∫ x

a
f(x, t) dt

)
= f

(
x, x

)
· db
dx

+

∫ x

a

∂

∂x
f(x, t) dt. (A.0.80)

The Pauli Matrices

The Pauli matrices are a set of 2× 2 complex, hermitian, unitary matrices which

are used in many of the bath coupling operators of OQSs to introduce dephasing

and dissipation. They take the form:

σx =

(
0 1

1 0

)
, (A.0.81)

σy =

(
0 −i
i 0

)
, (A.0.82)

σz =

(
1 0

0 −1

)
. (A.0.83)
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B Integration by Numerical
Quadrature

B.1 Fourth Order Runge-Kutta

Integration of the EOMs is completed using the Fourth Order Runge-Kutta (RK4)

algorithm within the FORTRAN portion of the software326. RK4 quadrature,

which can be both numerically implicit or explicit, is an extension of the

standard forward Euler quadrature for integrating an initial value problem. In

the forward Euler method the area below an arbitrary function, y(t), is

approximated by its tangent at an initial value and then the trapezoidal area

below the tangent is taken as the approximate integral of the function in the

specified region. Over many iterations this generates what is known as a

polygonal curve.

B.1.1 Forward Euler

The forward Euler method is the simplest of the explicit numerical quadratures

and, for an ODE involving the arbitrary function y(t), is expressed as

yj+1 = yj + hf(tj , yj), with tj = t0 + jh, and where (B.1.1)

dy(t)
dt

= f(t, y(t)), with y(t0) = y0. (B.1.2)

Through a Taylor expansion of y(t) is it possible to quantify the local truncation

error of forward Euler:

y(t0 + h) = y(t0) + hy′(t0) +
1
2h

2y′′(t0) +O(h3), (B.1.3)

τj+1 = y(t0 + h)− y1 =
1
2h

2y′′(t0) +O(h3), (B.1.4)

where primes denote differentiation with respect to t. The local truncation error,

τj+1, is order h2 when the third derivative is bounded. This local error is the

magnitude of difference between the approximate and true solution specifically

at a given point within the domain.

Similarly, we can consider the global truncation error which is a measure of

convergence of the method over the entire domain. This is constructed from
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Lipschitz continuity of y, which has the associated condition

|f(t, y1)− f(t, y2)| ≤ LLip|y1 − y2|, (B.1.5)

where, for t = [a, b], and y ∈ R,

LLip = max
(∂f
∂y

)
. (B.1.6)

By subtracting the definition of the forward Euler method from the local

truncation error it is possible to generate the global error. Suppose that ỹ is the

solution with Euler’s method, then

ej+1 = ej + h
(
f(tj , yj)− f(tj , ỹj)

)
+ τj+1, (B.1.7)

which, if LLip is bounded, allows introduction of the Lipschitz property

|ej+1| ≤ (1 + LLiph)|ej |+ |τj+1|. (B.1.8)

This relation for the jth component can be written as a geometric series

|ej | ≤ (1 + LLiph)
j +

j∑
k=1

(1 + LLiph)
j−k|τj |, (B.1.9)

which is of the form
∑j−1

k=0 ar
k = rn−1

r−1 a. Subsequently, the global error can be

expressed as

|ej | ≤
(1 + LLiph)

j − 1

(1 + LLiph)− 1
|τj | =

y′′(t0)h

2

(
(1 + LLiph)

j − 1
)
. (B.1.10)

Noticing that (1 + LLiph) ≈ exp(LLiph) when h is small, the upper bound can be

approximated using (1 + LLiph)
j ≤ exp(LLiphj) = exp(LLip(tj − t0)), to

|ej | ≤
y′′(t0)h

2

(
exp(LLip(tj − t0))− 1

)
≈ O(h). (B.1.11)

As a result of the order h global error, the forward Euler method is considered a

first order technique. This means that, in general, an approximation of the global

bound can be achieved via |τj |h .

Methods with O(h) global error are not sufficiently accurate for use as

quadrature for the EOMs within this thesis, so a more sophisticated method is

applied: namely RK4.
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t

y

y0

t0

k1

t0 +
h
2

k2

k3

y0 +
hk1
2

y0 +
hk2
2

y(t)

k4

y0 +
hk3
2

t0 + h

Figure B.1.1: A plot of the arbitrary function y, and the generation of the RK4
constituents, k1, k2, and k3 through forward Euler, and gradients generated from

combinations of the midpoint of the subdomain, h
2 , and k{·}.

B.1.2 RK4 Quadrature

RK4 is an extension of the Euler method which is generated by improving the

‘guess’ applied by taking the tangent to the arbitrary curve, y. This is achieved by

four steps: the first is an Euler step with a tangential approximation generating

k1. The second is the gradient at the midpoint of the subdomain, h
2 , using k1 and

y in order to generate k2. Third is the gradient component at the midpoint of the

subdomain using k2 and y in order to generate k3. Finally the gradient at the end

of the subdomain using k3 and y is used to create k4. This process is depicted in

figure B.1.1.

The RK4 scheme, depicted in figure B.1.1, is

yj+1 = yj +
h

6

(
k1 + 2k2 + 2k3 + k4

)
, with tj+1 = tj + h, (B.1.12)
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where

k1 = f(tj , yj), k2 = f(tj +
h

2
, yj +

hk1
2

), (B.1.13)

k3 = f(tj +
h

2
, yj +

hk2
2

), k4 = f(tj + h, yj + hk3). (B.1.14)

It is possible to then consider the associated local error of the RK4 scheme. In

full generality RK4 can be written as

k1 = f(tj , yj), (B.1.15)

k2 = f
(
tj +

h

2
, yj +

h

2
f(yj , tj)

)
, (B.1.16)

k3 = f

(
tj +

h

2
, yj +

h

2

{
f
(
tj +

h

2
, yj +

h

2
f(yj , tj)

)})
, (B.1.17)

k4 = f

(
tj + h, yj + h

{
f

(
tj +

h

2
, yj +

h

2

{
f
(
tj +

h

2
, yj +

h

2
f(yj , tj)

)})})
.

(B.1.18)

This can be simplified by considering a test ODE, such as f(tj , yj) = yj , which

simplifies this scheme to

k1 = yj , (B.1.19)

k2 = yj +
h

2
yj =

(
1 + h

2

)
yj , (B.1.20)

k3 = yj +
h

2

((
1 + h

2

)
yj

)
=
(
1 + h

2 + h2

4

)
yj , (B.1.21)

k4 = yj + h

((
1 + h

2 + h2

4

)
yj

)
=
(
1 + h

2 + h2

4 + h3

4

)
yj , (B.1.22)

such that the RK4 equation for yj+1 becomes

yj+1 = yj +
h

6

{
yj + 2

(
1 + h

2

)
yj + 2

(
1 + h

2 + h2

4

)
yj +

(
1 + h

2 + h2

4 + h3

4

)
yj

}
,

(B.1.23)

=
(
1 + h+ h2

2 + h3

6 + h4

24

)
. (B.1.24)

Hence, the local error can be found by subtracting this expansion from the Taylor

series for exp(h):

τj+1 =
(
1+h+ h2

2 + h3

6 + h4

24 +
h5

120 +O(h6)
)
−
(
1+h+ h2

2 + h3

6 + h4

24

)
, (B.1.25)

therefore the local error is τj+1 = O(h5) and subsequently the total accumulation

of this error across the entire domain, or global error, is ej+1 = O(h4). The fourth

order of global error is what gives RK4 its name.
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C Calculation of a Feynman Path
Integral

This appendix outlines the process of calculating a Feynman path integral. This

is based on the work of Feynman and Vernon4,144, Caldeira and Leggett214,

Tanimura and Kubo147, and Mosel327.

C.1 Free Particle Propagator

Following the work of Mosel327, a propagator of the form

Kfree(x, t; xi, ti) = NT

∫
exp

( i
ℏ
Sfree

)
D[x], (C.1.1)

with a normalisation constant, NT, and action of the free particle, Sfree, can be

written as

Kfree = lim
n→∞

( m

2πℏiηt

)n+1
2

∫ ∞
−∞

exp

(
i

ℏ
ηt

n∑
j=0

m

2

(xj+1 − xj
ηt

)2) n∏
k=1

dxk.

(C.1.2)

This is a product of Gaussian integrals, which can be computed exactly. A

standard Gaussian integral takes the form,
∫∞
−∞ exp

(
− 1

2ax
2
)
dx =

√
2π
a , a > 0

This can easily be extended to a product of n Gaussian integrals

∫ ∞
−∞

exp

(
− 1

2

n∑
k=1

akx
2
k

)
dx1 . . . dxn =

√
(2π)n∏n

k=1

√
ak
, ak > 0. (C.1.3)

Consequently, equation (C.1.2) can be solved by inspection through the

application of equation (C.1.3) as

Kfree = lim
n→∞

( m

2πℏiηt

)n+1
2

(
(iπ)n

(n+1)

(
m

2ℏηt

)n

) 1
2

exp
(

im
2ℏηt(n+1)(x− xi)

2
)
. (C.1.4)

When xn+1 = x, x0 = xi, and (ηt + 1)ηt = t− ti this becomes

Kfree(x− xi, t− ti) =

√
m

2πℏi(t− ti)
exp

(
i
ℏ
m(x−xi)2
2(t−ti)

)
, for ti ≤ t. (C.1.5)
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D Derivations from first
principles

D.1 Equations of Motion

D.1.1 The Schrödinger Equation

The Schrödinger equation is constructed as less of a mathematically rigorous

derivation, but rather through physical considerations113,328,329. First we

consider the similarities to the classical wave equation and then we construct

the Schrödinger equation as a quantum equivalent of Newton’s second law330:

When a body is acted upon by a force, the time rate of change of its momentum
equals the force. This means that, given an initial condition, the energy and

momentum can be used to generate a numerically explicit description of future

conditions of the system.

D.1.1.1 Particles Like Classical Waves

From Newton’s second law, and Hooke’s law we can generate the classical wave

equation331:

FNewton = ma(t), (D.1.1)

= m
∂2u(x+ h, t)

∂2t
. (D.1.2)

If we consider the classical wave equation, then the force exerted on a mass m at

x+ h is

FHooke = Fx+2h − Fx, (D.1.3)

= k{u(x+ 2h, t)− u(x+ h, t)} − k{u(x+ h, t)− u(x, t)}. (D.1.4)

If we then consider extending this so that there is an array of N weights over a

distance L = Nh, a total mass M = Nm, and a total spring constant K = k/N ,
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Appendix D: Derivations from first principles

and by equating the two forces

∂2u(x+ h, t)

∂2t
=
KL2

M

u(x+ 2h, t)− 2u(x+ h, t) + u(x, t)

h2
, (D.1.5)

(D.1.6)

then in the limit N → ∞, h → 0 this becomes a full second derivative resulting

in the classical wave equation:

∂2u(x, t)

∂2t
= v2

∂2u(x, t)

∂2x
, (D.1.7)

where v is the wave propagation speed.

D.1.1.2 Quantum Mechanics

Intrinsically, the Schrödinger equation is a quantum wave equation which

describes matter waves through the wavefunction. The eigenfunction is a

superposition of two plane waves, with equal but opposite momenta ±p,
forming a standing wave in analogy with a classical string standing wave. In

analogy with this classical string we propose a one dimensional wavefunction,

which is separable

ψ(x, t) = f(x)g(t). (D.1.8)

If we propose that the wavefunction, in the x coordinate, is periodic with a period

of 2π, takes the form of a simple sinusoid, and moves strictly from left to right

then

f(x) = exp
(2πix

λ

)
. (D.1.9)

By substituting this into the classical wave equation we generate a second order

homogeneous ordinary differential equation

d2g

dt2
= −v

24π2

λ2
g, (D.1.10)

which when solved using an auxiliary equation with g = exp(ct), with the

substitution λ = v/ω

g′′ +
v24π2

λ2
g = 0 (D.1.11)

c2 + 4π2ω2 = 0. (D.1.12)

Subsequently the wavefunction takes the form

ψ(x, t) = exp
(
2πi
(x
λ
− ωt

))
. (D.1.13)
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If this is differentiated with respect to time

dψ
dt

= −2πiωψ, (D.1.14)

which simplifies via Planck’s equation, E = hω, to

dψ
dt

= − iE
ℏ
ψ. (D.1.15)

The derivatives in space of the wavefunction are

dψ
dx

=
2πi

λ
ψ, (D.1.16)

d2ψ

dx2
= −4π2

λ2
ψ, (D.1.17)

which simplifies by substitution of the De Broglie formula, p = h/λ,

d2ψ

dx2
= −p2

ℏ2
ψ. (D.1.18)

Finally we assume that the particle is nonrelativistic such that the energy and

momentum can be related by: E = (1/2)mv2 = p2/2m and substitute the forms

of the wavefunction

− ℏ2

2m

d2ψ

dx2
= iℏ

dψ
dt
. (D.1.19)

This is the one-dimensional Schrödinger equation for a free particle. This can be

immediately generalised to include trapped particles where there is a non-zero

potential energy term, E = (1/2)mv2 + V (x), and to higher dimensions:

iℏ
∂

∂t
ψ(r, t) =

{
− ℏ2

2m
∇2 + V (r)

}
ψ(r, t). (D.1.20)

From this derivation it is clear that we are considering a single nonrelativistic

particle, which is either trapped or free, in microscopic continuous coordinates.

In addition, since the energy is conserved we are dealing with a system of

conservation laws for a closed system. In order to model dissipative open

systems many of these assumptions need to be relaxed, the first set which we

will tackle are the microscopic continuous variables and single particle nature:

we will move to quantum states of an ensemble.

D.1.2 The Liouville-von Neumann Equation

The standard, general Schrödinger equation can be written in a form involving

operators113,125 rather than functions of microscopic continuous variables by

considering an eigenvector rather than an eigenfunction. The previous form of

ψ(x, t) is a sinusoidal function of position and time travelling from left to right.
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An exponential solution such as this consists of linear combinations of right and

left travelling waves, like in a classical standing wave, and as such lends itself

nicely to a vector description. If we consider a Hilbert space, a space of vectors

with a well defined inner product distance measure, then a state of the quantum

mechanical system can be defined as a colum vector, |ψ⟩. This vector is

normalised by the inner product, distance, of the Hilbert space ⟨ψ|ψ⟩ = 1, and

the physical properties of the quantum system can be considered as operators

which act on the Hilbert space. Based on this construction, a space-time

wavefunction can be written as a time dependent state vector inner product of

positional eigenstates: ψ(x, t) = ⟨x|ψ(t)⟩. This means that equation (D.1.1.2)

can be written as

iℏ
d
dt

|ψ(t)⟩ = H |ψ(t)⟩ , (D.1.21)

and it now defines the evolution of a pure state. A pure state is best understood

as being a vector which lies on the surface of the Bloch sphere, where the Bloch

sphere is a visualisation of the state space for a qubit. As these states lie on the

surface of the sphere, they are extreme and independent, and they cannot be

written as linear combinations of other pure states. In contrast, a mixed state is a

state which can be written as a combination of pure states, and this corresponds

to some point within the volume of the Bloch sphere. Pure and mixed states are

depicted in figure D.1.1.

As an example consider the red line within figure D.1.1 as a vector r in

spherical coordinates (sin θ cosϕ, sin θ sinϕ, cos θ). This vector can be

transformed to any point on the surface of the Bloch sphere, or within its

volume, with appropriate angles θ and ϕ. If we create an outer product of the

resulting state vector |φ⟩ and its transpose, then we generate an operator

containing the populations and coherences of the system. This is the density

operator, or density matrix describing the state |φ⟩:

|φ⟩ ⟨φ| = ρ, (D.1.22)
1

2
(I + r · σ) = ρ, (D.1.23)

=
1

2

[
1 + rz rx − iry

rx + iry 1− rz

]
, (D.1.24)

where σ are the Pauli matrices. This results in a useful way of differentiating

pure and mixed states, as for a pure state

Tr(ρ2) = 1, =⇒ |r| = 1. (D.1.25)
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|φ⟩

x

z

y

|0⟩

|1⟩

θ

ϕ

Figure D.1.1: The Bloch sphere for qubit states. Blue nodes are the up and down
pure states of an electron (corresponding to basis vectors) and the surface of the
sphere produces pure states. The red node is an example of a mixed state at an

angle θ and ϕ. Nodes within the sphere volume are mixed states.

Subsequently an example of a pure state is

ρ = |ψ⟩ ⟨ψ| , (D.1.26)

=
1

2

[
1 1

1 1

]
, (D.1.27)

which can be written in the {|0⟩ , |1⟩} basis as

|ψ⟩ = |0⟩+ |1⟩√
2

, (D.1.28)

such that r = (1, 0, 0). The coherence terms, off diagonal elements, couple the

populations together allowing for quantum interference. We can show that the

basis vectors for this state are |0⟩ and |1⟩:

det(ρ− Iλ) =

[
1
2 − λ 1

2
1
2

1
2 − λ

]
, (D.1.29)

= λ2 − λ, (D.1.30)

= λ(λ− 1), (D.1.31)

therefore λ1 = 0 and λ2 = 1. This generates a pair of systems of homogeneous
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linear equations which can be solved through Gaussian elimination.

[
1
2

1
2 0

1
2

1
2 0

]
R1 → R1 × 2

∼

[
1 1 0

1
2

1
2 0

]
R2 → R2 −R1

∼

[
1 1 0

0 0 0

]

vλ1 =

[
1

1

]
, λ1 = 0. (D.1.32)

[
−1

2
1
2 0

1
2 −1

2 0

]
R1 → R1 ×−2

∼

[
1 −1 0

1
2 −1

2 0

]
R2 → R2 −R1

∼

[
1 −1 0

0 0 0

]

vλ2 =

[
−1

1

]
, λ1 = 1. (D.1.33)

In contrast a mixed state has |r| < 1, with an example being

ρ = |φ⟩ ⟨φ| , (D.1.34)

=
1

2

[
1 0

0 1

]
, (D.1.35)

Which has basis vectors:

det(ρ− Iλ) =

[
1
2 − λ 0

0 1
2 − λ

]
, (D.1.36)

= λ2 − λ+
1

4
, (D.1.37)

=
(
λ− 1

2

)2
, (D.1.38)

therefore λ1 = 1
2 and λ2 = 1

2 . This generates a pair of systems of homogeneous

linear equations which can be solved through Gaussian elimination. λ1,2 lead to

a trivial set of linear equations such that
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[
0 0 0

0 0 0

]

vλ1 =

[
1

0

]
, (D.1.39)

vλ2 =

[
0

1

]
, λ1 =

1

2
. (D.1.40)

This particular mixed state has r = (0, 0, 0) on the interior of the Bloch sphere.

Given these definitions we are free to extend the definition of the Schrödinger

equation in equation (D.1.2) to evolve the density matrix. If we take the density

matrix for an ensemble of particles with pi the weighting probability332,333,

ρ =
∑
i

pi |ψi⟩ ⟨ψi| , (D.1.41)

and differentiate it with respect to time to get

∂ρ

∂t
=
( ∂
∂t

|ψ⟩
)
⟨ψ|+ |ψ⟩

( ∂
∂t

⟨ψ|
)
. (D.1.42)

Into this we substitute for the quantities contained by parentheses from equation

(D.1.2) and its complex conjugate yielding

∂ρ

∂t
=

H |ψ⟩
iℏ

⟨ψ|+ |ψ⟩ − ⟨ψ|H
iℏ

, (D.1.43)

which simplifies to

iℏ
∂ρ

∂t
= Hρ− ρH, (D.1.44)

iℏ
∂ρ

∂t
= [ρ,H], (D.1.45)

which is the Liouville-von Neumann equation, or the Schrödinger equation for

density matrices. This equation models the Markovian free propagation of an

ensemble of particles in terms of states of the system. This equation has the ability

to model many particles and ensemble expectation values for the observables

can be calculated from the evolved states. However, it still shares a number of

the same drawbacks as the general Schrödinger equation: it is a closed system

for an ensemble of nonrelativistic particles. The next fundamental difficulty to

tackle is the opening of the closed system so that dynamics can be obtained for a

dissipative system.
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D.1.3 The Nakajima-Zwanzig Equation

The Nakajima-Zwanzig equation is one method of dealing with the extreme

complexity of ensembles of interest interacting with environment ensembles.

This derivation starts from the Markovian free propagation, equation (D.1.2) -

the Liouville-von Neumann equation, and proposes simplification based on the

scale of oscillations within the total system130,131,334. In a process analogous to

the Wentzel–Kramers–Brillouin (WKB) approximation335 the system is split into

a pair of components whose behaviour is dependent on oscillating components

with intrinsic lengthscales which differ by orders of magnitude. We term these

components P and Q, which are the reduced density operator and the

equilibrium density matrix of the bath respectively. The assumption imposes

that P is the relevant component of the dynamics, with a fundamentally larger

timescale, which can be separated from the fast oscillating thermal contribution

by projection130,131,

ρ = (P +Q)ρ, Q ≡ (1− P). (D.1.46)

It is this step which is fundamentally non-Markovian336, and as such, the

equation of motion for the reduced density operator will be a non-Markovian

equation. In addition we fundamentally, but subtly, alter the Hamiltonian within

the governing equation. We propose that

H = H0 + ϵHI, (D.1.47)

where the total Hamiltonian is now written in orders of ϵ. The O(ϵ0) term is the

uncoupled evolution of the system and environment, and the O(ϵ) term contains

the coupling between the system and bath. This is a not yet a perturbative

approach337, as we have not performed a complete expansion, we simply are

able to write the Hamiltonian in terms of two orders of the dimensionless

expansion parameter (associated with the interaction coupling) ϵ. Consequently,

equation (D.1.2) can be written:

∂ρ

∂t
= − iϵ

ℏ
[HI(t), ρ(t)], (D.1.48)

with

HI = exp(iH0t)HI exp(−iH0t). (D.1.49)

From this framework the Liouville-von Neumann equation in equation (D.1.3)

can be recast as a pair of simultaneous equations in vector form

∂

∂t

[
P
Q

]
ρ = ϵ

[
P
Q

]
L

[
P
Q

]
ρ+ ϵ

[
P
Q

]
L

[
Q
P

]
ρ (D.1.50)

289



Appendix D: Derivations from first principles

where the commutator i/ℏ[{·},H] is written as the Liouville superoperator L{·}.

Direct integration of the second equation leads to a formal solution of the form

Qρ = G(t, t0)Qρ(t0) + ϵ

∫ t

t0

G(t, t′)QL(t′)Pρ(t′) dt′, (D.1.51)

where

G(t, t′) ≡ T← exp
(
ϵ

∫ t

t′
QL(τ) dτ

)
, (D.1.52)

and T← denotes chronological time ordering, such that the time arguments of

products of super-operators increase from right to left. This propagator satisfies

the following differential equation and appropriate initial condition:

∂

∂t
G(t, t′) = ϵQL(t)G(t, t′), G(t′, t′) = I. (D.1.53)

By substitution of the formal solution for the bath contribution to the total density

matrix into the equation for the reduced density operator, we arrive at the full

Nakajima-Zwanzig equation:

∂

∂t
Pρ = ϵPL(t)G(t, t0)Qρ(t0)+ϵPL(t)Pρ(t)+ϵ2

∫ t

t0

PL(t)G(t, t′)QL(t′)Pρ(t′) dt′.

(D.1.54)

This equation is completely exact as currently no expansion has been performed

- ϵ is an expansion coefficient for the coupling of the system but no Taylor series

has yet been used to reach this. The first term on the right hand side is an

inhomogeneous contribution dependent on the initial condition of the system,

and the O(ϵ2) term is the fully non-Markovian memory of past states within the

interval [t0, t]. Under the assumption113 that the initial equilibrium

configuration of the bath is zero, which occurs when correlations of fluctuations

on different sites caused by the thermal bath is zero, or when the initial

condition is factorisable - ρ(t0) = ρS(t0) ⊗ ρB =⇒ Pρ(t0) = ρ(t0),Qρ(t0) = 0 -

inhomogeneous contributions to the dynamics vanish leaving:

∂

∂t
ρS = ϵPL(t)ρS + ϵ2

∫ t

t0

KρS dt′, (D.1.55)

K(t, t′) = PL(t)G(t, t′)QL(t′), (D.1.56)

where the non-Markovian memory kernel K and the reduced density operator

for the system ρS have been introduced. Despite the series of transformations

performed to reach the Nakajima-Zwanzig equation it is still a considerable

challenge to solve this equation for the reduced density operator. This is due to

the fact that the memory kernel contains the convolution of a series of

superoperators - which is nontrivial to compute. In order to reduce this to a

solvable equation we must now consider approximations of equation (D.1.3),
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primarily achieved through genuine perturbative expansions of the

componenets of the memory kernel. There are two natural choice for

perturbations to approximate this equation, namely orders of the interaction

Hamiltonian coupling strength or in orders of the memory time. In the latter

case, expansions depend on the width of the memory kernel and the purely

Markovian contribution is equivalent to a kernel of minimal width,

K(t, t′) ≈ δ(t − t′). Alternatively take equation (D.1.3) and apply a perturbative

expansion in orders of the interaction strength such that equation (D.1.3) can be

rewritten in a more explicit form using commutators as,

ρB(t) = ρB(t0)− iϵ

∫ t

t0

[HI(t
′), ρS(t

′)] dt′. (D.1.57)

If we substitute the commutator term into equation (D.1.3) the explicit history

dependence in the total density matrix can be expanded into a set of nested

commutators corresponding to a change of t′ → t. This resulting intermediate

equation is very similar to equation (D.1.3),

∂

∂t
ρS = −iϵ[HI(t), ρS(t0)]− ϵ2

∫ t

t0

[HI(t), [HI(t
′), ρS(t)]] dt′ +O(ϵ3), (D.1.58)

and is equivalent to

∂

∂t
ρS = ϵPL(t)ρS + ϵ2

∫ t

t0

KρS(t) dt′ +O(ϵ3), (D.1.59)

K(t, t′) = PL(t)QL(t′). (D.1.60)

This equation contains a Markovian assumption: if we allow the coupling

between the system and environment (interaction strength) to be small, then

the density matrix no longer depends on the history of time states t′ and is

dependent only on t. This also allows us to neglect higher order coupling terms

which explicitly contain the non-Markovian contributions of this memory effect

resulting in:

∂

∂t
ρS = −iϵ[HI(t), ρS(t0)]− ϵ2

∫ t

t0

[HI(t), [HI(t
′), ρS(t)]] dt′. (D.1.61)

which is equivalent to

∂

∂t
ρS = ϵPL(t)ρS + ϵ2

∫ t

t0

KρS dt′, (D.1.62)

K(t, t′) = PL(t)QL(t′). (D.1.63)

This can be further simplified to

∂

∂t
ρS = ϵ2

∫ t

t0

PL(t)L(t′)ρS(t) dt′, (D.1.64)
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under the assumption that PL(t)P = 0 which can be written explicitly in terms

of the interaction Hamiltonian as

∂

∂t
ρS = −ϵ2

∫ t

t0

TrB[HI(t), [HI(t
′), ρS(t)⊗ ρB]] dt′. (D.1.65)

Even this simplified form of the Nakajima-Zwanzing equation, making use of the

perturbative expansion in orders of interaction strength, and factorisable initial

conditions, is a formidable integro-differential equation. In principle it can be

solved approximately, but it often requires significant computational effort.

Specifically for this thesis the inability to control the placement of the

system-bath boundary and perturbative approach to the dynamics make it a

poor choice. Despite this, the equation is powerful because, before perturbation,

it is exact and fully non-Markovian113,336 however due to the difficulty

associated with finding solutions it is often impractical. For this reason it is

related to a number of similar equations which employ a number of different

assumptions or simplifications which make them easier to solve.

D.1.4 Master Equations

As discussed in section 2.1.2, the evolution of the reduced density operator can

be generated from the propagator of the dynamics, V(t, t0), which accounts for

the interaction with the bath through the generator Lg(t), equation (2.1.17). The

master equation of the reduced system has the general form115,283

∂ρS
∂t

= Lg(t)ρS(t) = − i

ℏ
[HS +HSF(t), ρS] + D[ρS(t)], (D.1.66)

where D[ρS(t)] is an arbitrary relaxation superoperator defining the interaction

with the bath, and where the square brackets denote the commutator. This EOM

is generated from a second order perturbation of the Liouville Von-Neumann

equation with a time dependent Hamiltonian:

iℏ
∂ρS
∂t

= [H(t), ρS], (D.1.67)

= [H0 + ϵH1(t), ρS], (D.1.68)

such that the equation can be rewritten as284

∂ρS
∂t

= − i

ℏ
[H0, ρS] + Γg

(
ρS(t)− ρS(0)

)
, (D.1.69)

where Γg is a, less general, form of the relaxation superoperator due to the

generator Lg. If the time independent component of the total Hamiltonian is

written as the system contribution, HS, and the relaxation superoperator is

written in its most general form, D[ρS(t)], this is equivalent to the most general
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master equation (ME).

Depending on the other assumptions and approximations employed within

the EOM the relaxation superoperator can take many different forms. Some

examples include:

• Markovian approximation → D[ρS(t)] = −ϵ2
∑

m[Sm, ϖmρS(t)− ρS(t)ϖ†m].

The Redfield master equation, discussed in section D.1.5

• Markovian approximation →
D[ρS(t)] =

∑
ω,l

(
Ll(ω)ρS(t)L

†
l (ω) −

1
2

{
L†lLl(ω), ρS(t)

})
. The Lindblad

master equation, discussed in section D.1.6.

• Non-Markovian → D[ρS(t)] = −ϵ2
∫ t
t0
[HI(t), [HI(t

′), ρS(t)]] dt′. The

Nakajima-Zwanzig equation, as discussed in section D.1.3.

D.1.5 The Bloch-Redfield Master Equation

The first alteration to the Nakajima-Zwanzig approach, which is another

generalisation of the Liouville-von Neumann equation, is the Bloch-Redfield

equation. This is a further generalisation, it is a master equation for quantum

applications and it describes the evolution of the density matrix and all

off-diagonal elements rather than probabilities of continuous

variables113,121,338. The Nakajima-Zwanzig equation is a formally exact solution

to the quantum master equation but it is very difficult to solve, and as such

approximations and simplifying assumptions, as used to generate the Redfield

equation, make finding solutions much more manageable. This derivation also

considers alterations to the Liouville-von Neumann equation which results in an

intermediate form of the Nakajima-Zwanzig equation. Beginning from

∂

∂t
ρS = −ϵ2

∫ t

t0

TrB[HI(t), [HI(t
′), ρS(t

′)⊗ ρB]] dt′, (D.1.70)

we simplify further by applying the Born-approximation: there is never any

entanglement of the system and environment in such a way that they are fully

factorisable. Such an approximation is valid in the weak coupling limit which

was used as part of the perturbative approach to simplify the Nakajima-Zwanzig

equation. In addition we apply the Markovian approximation which allows the

explicit history dependence in the total density matrix to be removed (a change

of t′ → t) such that

∂

∂t
ρS = −ϵ2

∫ t

t0

TrB[HI(t), [HI(t
′), ρS(t)⊗ ρB(t0)]] dt′. (D.1.71)
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This step takes a time non-local master equation to a time local equation for the

density matrix which is much simpler to generate solutions from. However, this

equation still contains, implicitly, components which are not fully Markovian

from the limit of initial conditions. In order to make the equation fully

Markovian113 we eliminate t0 through shifting t0 → −∞ and t′ → τ = t − t′,

which instead introduces the initial equilibrium value of the bath which is

assumed to be decoupled from the system

∂

∂t
ρS = −ϵ2

∫ ∞
0

TrB[HI(t), [HI(t− τ), ρS(t)⊗ ρB]] dτ. (D.1.72)

The next assumption additionally splits the bath interaction Hamiltonian into a

factorisable form, in an equivalent manner to that of the states of the system,

HI =
∑
n

Sn ⊗ En, (D.1.73)

where the operator Sn acts purely on the system degrees of freedom, and the

operator En acts solely on the bath. Through such a transformation we can

introduce the correlation function for the bath influence and system operators:

∂

∂t
ρS = −ϵ2

∑
m,n

∫ ∞
0

{
Lmn(τ)[Sm(t),Sn(t−τ)ρS]−L∗mn(τ)[Sm(t), ρS(t)Sn(t−τ)]

}
dτ,

(D.1.74)

where Lmn(τ) = TrB(Em(t)Em(t− τ)ρB) and the environmental density matrix

is at the initial equilibrium value - a steady state. Finally, by writing the bath

correlation function as a noise-power spectrum,

ϖm =
∑
n

∫ ∞
0

Lmn(τ)Sn(−τ) dτ, (D.1.75)

∂

∂t
ρS(t) = −iϵ[H, ρS(t)]− ϵ2

∑
m

[Sm, ϖmρS(t)− ρS(t)ϖ†m], (D.1.76)

which is the general form of the Bloch-Redfield master equation121. This master

equation is generally much easier to solve than the exact Nakajima-Zwanzig

equation because of the series of Markovian assumptions, weak coupling limit

and factorisability conditions imposed. However, as a consequence of this the

populations within the density matrix for the Redfield equation are no longer

strictly positive. One further simplification can be considered: the secular

approximation. This restricts the environmental resonant frequencies and is

only valid for long timescales. While we do not go into the secular

approximation in detail here, it is worth noting that through the secular

approximation every Bloch-Redfield master equation can be transformed into a

master equation of Lindblad type, which is the next approximation considered.
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D.1.6 The Lindblad Master Equation

Next we consider a similar alteration to the Nakajima-Zwanzig approach, which

is another generalisation of the Liouville-von Neumann equation113. As

mentioned this is the Lindblad equation or the

Gorini-Kossakowski-Sudarashan-Lindblad equation339 which relates to the

Bloch-Redfield form through the secular approximation. We start from a form of

the Redfield equation, but apply the additional rotating wave approximation125

which discounts extremely rapid oscillations.

∂

∂t
ρS = −ϵ2

∫ ∞
0

TrB[HI(t), [HI(t− τ), ρS(t)⊗ ρB]] dτ, (D.1.77)

and again, we assume that the Hamiltonian for the interaction is also

factorisable125 into the form

HI =
∑
n

Sn ⊗ En, (D.1.78)

however we also must consider the resonant frequencies. Here Sn generates the

eigenvalues of the Hamiltonian when it is applied such that it follows

Sn =
∑
n

Sn(ωn), (D.1.79)

and

[H, Sn(ω)] = −ωSn(ω), [H, S†n(ω)] = ωS†n(ω). (D.1.80)

Equation (D.1.6) is an eigen-expansion of the system operator, and in order to

apply it we must revert to the Schrödinger picture for the interaction Hamiltonian

acting on the system Hilbert space. This is achieved by applying the unitary

evolution operators to the eigen-expansion and bath operator

S̃j(ω) = exp(iHt)Sj(ω) exp(−iHt), Ẽj = exp(iHBt)Ej exp(−iHBt), (D.1.81)

(note that the environment operators are still in the interaction picture) which

after substitution yields

H̃k(t) =
∑
j,ω

exp(−iωt)Sj(ω)⊗ Ẽjt, (D.1.82)

=
∑
j,ω

exp(iωt)S†j(ω)⊗ Ẽ†jt. (D.1.83)
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Expansion of the commutators in the Redfield equation are required to substitute

these expansions

∂

∂t
ρS(t) = −ϵ2TrB

(∫ ∞
0

HI(t)HI(t−τ)ρS(t)⊗ρB dτ−
∫ ∞
0

HI(t)ρS(t)⊗ρBHI(t−τ) dτ

−
∫ ∞
0

HI(t− τ)ρS(t)⊗ ρBHI(t) dτ +
∫ ∞
0
ρS(t)⊗ ρBHI(t− τ)HI(t) dτ

)
,

(D.1.84)

which upon substitution yields an equation very similar to equation (D.1.5) but

with τ dependence removed from the system contribution and explicit

dependence on the resonant frequencies introduced

∂

∂t
ρS(t) = −ϵ2

∑
ω,ω′,j,k

(
exp(i(ω′ − ω)t)Ljk(ω)[Sk(ω)ρS(t),S

†
j(ω
′)]+

exp(i(ω − ω′)t)L∗jk(ω
′)[Sk(ω), ρS(t)S

†
j(ω
′)]
)
, (D.1.85)

where Ljk(ω) =
∫∞
0 exp(iωt′)TrB(Ẽ

†
j(t)Ẽk(t − t′)ρB) dt′, which is the

eigen-expansion of the correlation function of the bath influence. It is now clear

how the secular expansion relates the Redfield and Lindblad forms of the master

equation based on the explicit frequency dependence. Additionally we can apply

the rotating wave equation |ω − ω′| ≫ ϵ2, which in the weak coupling limit

ϵ→ 0 leaves only contributions at the resonant frequency ω = ω′. This simplifies

the equation for ρS to

∂

∂t
ρS(t) = −ϵ2

∑
ω,j,k

(
Ljk(ω)[Sk(ω)ρS(t),S

†
j(ω
′)] + L∗jk(ω)[Sk(ω), ρS(t)S

†
j(ω)]

)
.

(D.1.86)

However to reach this equation, we employed an eigen-expansion in the

Schrödinger picture for the system components, but in the interaction picture

for the bath contributions. In order to reach the full master equation we need to

revert solely to the Schrödinger picture. We achieve this by splitting the bath

correlation function into Hermitian and non-Hermitian parts

Ljk(ω) =
1

2
(iGjk(ω) + πjk(ω)), (D.1.87)

πjk = Ljk(ω) + L∗jk(ω), (D.1.88)

=

∫ ∞
−∞

exp(iωt′)TrB(Ẽ
†
j(t)EkρB) dt′, (D.1.89)

Gjk(ω) = −i(Ljk(ω)− L∗jk(ω)). (D.1.90)
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Substitution of these into the master equation results in

∂

∂t
ρS(t) = −i[H+HL, ρS(t)]+

∑
ω,j,k

πjk(ω)
(
Sk(ω)ρS(t)S

†
j(ω)−

1

2

{
S†jSk(ω), ρS(t)

})
,

(D.1.91)

with

HL =
∑
ω,j,k

Gjk(ω)Sj(ω)Sk(ω). (D.1.92)

Here HL is the Lamb shift Hamiltonian and it renormalises the energy levels of

the system in response to the interaction with the bath. Finally, since πjk are

positive Fourier transforms of the environment contributions we can diagonalise

this operator with a unitary transformation

Oπ(ω)O† =


d1(ω) 0 . . . 0

0 d2(ω) . . . 0
...

...
. . .

...

0 0 . . . dN (ω)

 , (D.1.93)

leading to the diagonal form of the Lindblad master equation:

∂

∂t
ρS(t) = −i[H + HL, ρS(t)] +

∑
ω,l

(
Ll(ω)ρS(t)L

†
l (ω)−

1

2

{
L†lLl(ω), ρS(t)

})
,

(D.1.94)

where L is the Lindbladian (jump) operator.

D.1.7 The Quantum Langevin Equation

While the previously discussed equations are useful for producing approximate

solutions, in general they are either exact and difficult to solve or easy to solve

and approximate337,340,341. Another useful way of constructing an open,

dissipative quantum system: by introducing stochastic variables342. In previous

derivations we have made use of the fact that the Hilbert space can be split into

fast and slowly oscillating components with projection operators P and Q
corresponding to system and bath operators (slow and fast timescales)

respectively. This required solution via a pair of coupled equations of motion

where simplifying assumptions were made about the dynamics of the bath

density matrix. This method proposes solution of this problem by introducing a

random forcing term corresponding to a statistically distributed canonical

ensemble for the bath. This treatment assumes that the system of interest is a

Brownian particle surrounded by independent bath particles, which are also

modelled as Brownian177,343. The starting point is for the total Hamiltonian

consisting of a system Brownian particle in the coordinate x with momentum p

297



Appendix D: Derivations from first principles

and environment particles in the coordinate qj with momenta pj:

H =
p2

2m
+ V (x) +

∑
j

( pj
2

2mj
+

1

2
kj(qj − x)2

)
, (D.1.95)

with {m} and {mj} particle masses, spring constant for the Brownian particles

{kj} and terms consisting of a bilinear interaction and an energy renormalisation.

V (x) is the potential energy of the external forces on the Brownian particle. These

varibales satisfy the standard canonical commutation relations

[x,p] = iℏ, [qj , pk] = iℏδjk. (D.1.96)

The equations of motion for each of the operators in this system are governed by

the Heisenberg equation such that

dx
dt

=
p

m
,

dp
dt

= −dV (x)

dx
+
∑
j

kj(qj − x), (D.1.97)

and
dqj
dt

=
pj
mj

,
dpj
dt

= −kj(qj − x). (D.1.98)

In a manner analogous to the process involved in deriving the Nakajima-Zwanzig

equation, we first solve for the bath components in order to generate an equation

purely for the system of interest. The equations for the environment result in344

qj(t) = qj(0) cos(ωjt)+
pj(0)

mjωj
sin(ωjt)+x(t)−x(0) cos(ωjt)−

∫ t

0
cos(ωj(t−t′))

dx
dt′

dt′,

(D.1.99)

where the natural frequency of the oscillators is ωj =
√
kj/mj . When this is

substituted into the equation for the system of interest it becomes

m
d2x

dt2
+

∫ t

0
B(t− t′)

dx
dt′

+
dV
dx

+B(t)x(0) = FLE(t), (D.1.100)

where the forcing operator is

FLE(t) =
∑
j

(
qj(0)kj cos(ωjt) + pj(0)ωj sin(ωjt)

)
, (D.1.101)

and

B(t) =
∑
j

kj cos(ωjt). (D.1.102)

In this way all of the influence due to the environment particles is contained

within the forcing term. To continue we introduce the statistical average of the

environment initial conditions. This is achieved by the assumption344 that the

oscillators are canonically distributed with respect to the free oscillator
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Hamiltonian:

HO =
∑
j

p2j
2mj

+
kjq

2
j

2
. (D.1.103)

Due to this we are able to take the expectation value of the initial conditions with

a partial trace over the oscillator coordinates,

⟨qj(0)qk(0)⟩ =
⟨pj(0)pk(0)⟩
(mjωj)2

= δjk
ℏ coth(ℏωj β̃

−1)

2mjωj
, (D.1.104)

⟨qj(0)pk(0)⟩ = −⟨pk(0)qj(0)⟩ =
iℏδjk
2

. (D.1.105)

with β̃−1 = 1/(2kBT ). It can be shown, through the Gaussian property of the

expectation values of the initial conditions, that symmetric correlation of the

forcing operator344–346 is

1

2
⟨FLE(t)FLE(t

′) + FLE(t
′)FLE(t)⟩ =

∑
j

1

2
kjℏωj coth(ℏωj β̃) cos(ωj(t− t′))

(D.1.106)

and that

[FLE(t), FLE(t
′)] = −iℏ

∑
j

kjωj sin(ωj(t− t′)). (D.1.107)

Under the assumption that there are an infinite number of bath oscillators which

are continuously distributed, we reach the quantum Langevin equation344,347,348

m
d2x

dt2
+ ζ

dx
dt

+
dV (x)

dx
= FLE(t), (D.1.108)

where ζ is a friction constant associated with the random forcing applied by

the environment ensemble and the forcing operator is defined by its symmetric

correlation and commutator relation:

1

2
⟨FLE(t)FLE(0) + FLE(0)FLE(t)⟩ =

ζ

π

∫ ∞
0

ℏω coth(ℏωβ̃−1) cos(ωt) dω,

(D.1.109)

[FLE(t), FLE(0)] = −2iℏζ
π

∫ ∞
0

ω sin(ωt) = 2iℏζδ′(t). (D.1.110)

D.1.7.1 Kubo’s Stochastic Liouville Equation

When considering equations in which there are memory effects introduced by

an ensemble of environmental modes it can be easier to consider the

formulation through a Feynman and Vernon path integral178. In this formalism

a sum over an infinite number of trajectories, corresponding to historical states,

can be computed to generate the non-Markovian dynamics. Many exact,

stochastic methods can be related to formally exact, non-perturbative
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treatments of dissipative OQS through a path integral. The quantum Langevin

equation is no exception. In order to present the path integral equivalent, first

we consider Kubo’s Stochastic Liouville equation349, which is the ‘mediator’ for

the transformation.

Following Kleinert349 we consider the action generated by:

ST[px,py, x, y] =

∫ t

0
px

dx
dt

+ py
dy
dt

−HT, (D.1.111)

where

HT =
1

m
(px + gy)py + V

(
x +

y

2

)
− V

(
x− y

2

)
− i

2ℏ
yKTy, (D.1.112)

where KT(t, t
′) = ⟨FKSL(t)FKSL(t

′)⟩FKSL
is the random noise correlation

function, and the analogous noise-dependent effective action SFKSL
[px,py, x, y]

with Hamiltonian

HFKSL
=

1

m
(px + gy)py + V

(
x +

y

2

)
− V

(
x− y

2

)
− yFKSL. (D.1.113)

Using the path integral and these actions, we can generate an alternative form of

the time evolution operator:

US(x, y, x
′, y′, t) = F0

∫
exp

( iST[px, py, x, y]
ℏ

)
D[px]D[py]D[x]D[y], (D.1.114)

where F0 is the initial influence functional F0 =
∫
ρB(0)D[X] for the initial

condition X. As such, the noisy density matrix, ρFKSL
S (t), obeys the equation

iℏρFKSL
S (t) = HFKSL

ρFKSL
S (t), (D.1.115)

where the reduced density matrix is obtained via

ρS(x, y, t) = ⟨ρFKSL
S (t)⟩FKSL

. (D.1.116)

This is Kubo’s Stochastic Liouville equation. When the temperature of the

system becomes very large, the noise fluctuations become large and local, and

the random noise correlation function becomes proportional to a delta function.

This is equivalent to thermal averaging effects reducing the noise correlation

time. In this limit Kubo’s Stochastic Liouville equation can be written purely in

terms of the density matrix, and this resulting equation is the Fokker-Planck

equation with a finite bath friction.
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D.1.7.2 Relation to the Forward-Backward Path Integral

It is possible to define a pair of path integrals which move forwards or backwards

in time respectively. This process is useful both for solution of the integral and

also for carefully managing the limits of the integration349,350. By defining

x+(0) = x1, x+(t) = x, x−(0) = x′1, x−(t) = x′, (D.1.117)

we can shift the original operators into the forward and backward formalism via

x ≡ (x+ + x−)

2
, y ≡ x+ − x−, (D.1.118)

as in 349. The forward-backward path integral can then be expressed, through a

unitary operator, as

U(xx′, x1x
′
1, t) =

∫
F [x+, x−] exp

( i
ℏ
(SS[x+]− SS[x−])

)
D[x+]D[x−]. (D.1.119)

Writing Kubo’s Stochastic Liouville equation in forward-backward variables

results in

iℏ
∂

∂t
ρS(t)(x+, x−, t) =

[
H+

S −H−S +

g

2m
(x+ − x−)(p+ − p−)− (x+ − x−)η̃f (t)

]
ρS(x+, x−, t), (D.1.120)

with

p± = −iℏ ∂

∂x±
, H±S = HS(p±, x±), (D.1.121)

and where F̃KSL is the adjoint operator of the operator-valued Gaussian

noise349. The rest of this derivation is beyond the intended scope of this thesis,

but a summary of the steps from Kleinert349 is that expansion of the brakets for

forward-backward variables along with expansion in terms of noisy Heisenberg

operators yields the quantum Langevin equation (D.1.7). This work

demonstrates the equivalence between standard projection operator approaches

and numerically exact path integral methodologies through the introduction of

some ensemble averaged behaviour for the bath - in this instance through a

complex valued, forcing term, which takes the form of a Gaussian noise

operator.

D.1.8 The Stochastic Schrödinger Equation

As we have seen so far, stochastic interpretations of open quantum systems tend

to produce exact solutions or can be directly related to path integral equations

which do. The quantum Langevin equation was related to a stochastic form of
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the Liouville equation, and subsequently the path-integral formalism, and the

same can be achieved for the Schrödinger equation. The benefit of this is that, as

we have seen, the Liouville equation is formulated for mixed states, whereas the

Schrödinger equation can compute the evolution of a pure state. Following the

work of Carballeira310, we outline the derivation of the Stochastic Schrödinger

equation, but there are many other variations351. We start from the equation

(D.1.2)
∂

∂t
|ψ(t)⟩ = − i

ℏ
H |ψ(t)⟩ . (D.1.122)

In this case the environment Hamiltonian, which is assumed to consist of an

infinite number of bosonic oscillator modes, is written in the Bargmann coherent

state basis,

HB =
∑
n

ωnb
†
nbn, (D.1.123)

where

|α⟩ = ⊗n |αn⟩ , bn |α⟩ = αn |αn⟩ , (D.1.124)

is a coherent state. Physically, these coherent states are quantum states which

can be expressed as eigenvectors of the lowering (annihilation) operator.

Mathematically, they are complex valued and exist in Segal-Bargmann space

which has a number of powerful properties for definining OQS. Segal-Bargmann

space is the space of holomorphic functions F SB in n complex variables

satisfying the square-integrability condition. Physically this means that it

behaves as a type of phase-space such that, a coherent state FSB
α is a probability

density for a particle in phase space. In addition to this property, it is very useful

to define the OQS in terms of energy, in a creation and annihilation operator

basis. With this we can write the state vector for the system in a Bargmann basis

|ψ(α∗, t)⟩ = ⟨α|ψ(t)⟩ , (D.1.125)

which in the interaction picture is goverened by

∂

∂t
⟨α|ψ(t)⟩ = − i

ℏ
⟨α|H|ψ(t)⟩ . (D.1.126)

In a manner very similar to the Nakajima-Zwanzig equation, we introduce the

total Hamiltonian (equation (D.1.3) in terms of the interaction Hamiltonian and

its associated coupling. In this case however, the system and bath components

are explicitly separate, and the interaction is written in terms of the Lindblad

coupling operators, L, and bath mode coupling strengths, gn:

H = HS +HB + ϵ
(
L
∑
n

gnb
†
n + L†

∑
n

g∗nbn

)
. (D.1.127)
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This means that

ℏ
∂

∂t
⟨α|ψ(t)⟩ = (−iHS + ϵLα(t)∗) ⟨α|ψ(t)⟩ − iϵL†

∑
n

g∗n exp(−iωnt) ⟨α|bn|ψ(t)⟩ ,

(D.1.128)

where the complex Gaussian noise

α(t)∗ = −i
∑
n

gnα
∗
n exp(iωnt), (D.1.129)

has been introduced. In addition, the system-environment evolution operator,

|ψ(t)⟩ = USB(t) |ψ(0)⟩, in the interaction picture is governed by

USB(t) = exp(iHBt) exp(−iHt), (D.1.130)

∂

∂t
USB(t) = − i

ℏ

(
HS + ϵL

∑
n

gnb
†
n exp(iωnt) + ϵL†g∗nbn exp(−iωnt)

)
USB(t).

(D.1.131)

In a manner equivalent to that taken in all previous approaches, we assume that

the system and environment are initially uncorrelated such that

⟨α|bn|ψ(t)⟩ = ⟨α|bnUSB(0)|ψ(0)⟩ , (D.1.132)

with the environment in the vacuum state. To proceed, we consider the evolution

equation (in the Heisenberg picture) of the annihilation operator, which acts as

our coherent state basis,

bn(t) = U†SB(t)bnUSB(t), (D.1.133)

∂

∂t
bn(t) = USB

(
− i

ℏ
ϵgn exp(iωnt)L

)
USB(t), (D.1.134)

= − i

ℏ
ϵgn exp(iωnt)L(t). (D.1.135)

This can be solved by direct integration

bn(t) = bn − i

ℏ
ϵgn

∫ t

0
exp(iωnt

′)L(t′) dt′, (D.1.136)

which we can substitute into the initial condition

⟨α|USB(t)bn(t)|0⟩ = − i

ℏ
ϵgn

∫ t

0
exp(iωnt

′) ⟨α|USB(t)L(t
′)|0⟩ dt′. (D.1.137)
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The initial condition can be introduced into the second term on the right hand

side of the equation of motion such that

∂

∂t
|ψ(α∗, t)⟩ = 1

ℏ
(−iHS + ϵLα∗(t)) |ψ(α∗, t)⟩−

ϵ2

ℏ2
L

∫ t

0
L(t, t′) ⟨α|USB(t)L(t

′)|0⟩ |ψS(0)⟩ dt′, (D.1.138)

where, similar to the previous derivations, we have introduced the

zero-temperature environment correlation function

L(t, t′) =
∑

n |gn|2 exp(−iωn(t − t′)). We apply the chain rule of the functional

derivative of the Gaussian stochastic process α∗(t) such that

⟨α|bnUSB(t)|0⟩ =
∂

∂α∗n
⟨α|USB(t)|0⟩ =

∫ t

0

∂α∗(t′)

∂α∗n

δ

δα∗n(t
′)
⟨α|USB(t)|0⟩ dt′,

(D.1.139)

and the equation of motion for the Stochastic Schrödinger equation becomes

∂

∂t
|ψ(α∗, t)⟩ =

(
− iHS

ℏ
+
ϵLα∗n(t)

ℏ
− ϵ2L†

ℏ2

∫ t

0
L(t, t′)O(t, t′, α∗) dt′

)
|ψ(α∗, t)⟩ ,

(D.1.140)

where O is the ansatz of δ
δα∗(t′) |ψ(α

∗, t)⟩ = O(t, t′, α∗) |ψ(α∗, t)⟩. This operator

is associated with an equation for its evolution:

∂

∂t
O(t, t′, α∗) =

[
− iHS

ℏ
+
ϵLα∗(t)

ℏ
− ϵ2L†

ℏ2
Õ(t, α∗),O(t, t′, α∗)

]
− ϵL†

ℏ
δÕ(t)

δα∗(t′)
,

(D.1.141)

where the operator Õ is defined as

Õ(t, α∗) =

∫ t

0
L(t, t′)O(t, t′, α∗) dt′, (D.1.142)

with the initial condition

O(t, t′ = t, α∗) |ψ(α∗, t)⟩ = L |ψ(α∗, t)⟩ . (D.1.143)

The Stochastic Schrödinger equation takes a very similar form to the general

Schrödinger equation, apart from the two additional terms on the right hand side

which contain two orders of interaction Hamiltonian coupling, and introduce the

stochastic Gaussian process for the environment interaction with the system of

interest. The additional benefit of this derivation is that it makes use of the

coherent state representation, which is a physically convenient basis for this kind

of system. This equation is fully non-Markovian, due to the stochastic description

of the bath interaction, and does not require approximations such as the secular

or rotating wave assumptions of previous EOMs.
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D.1.9 The Fokker-Planck Equation

In addition to the previous methods, the quantum Langevin equation can be

further generalised to form the Fokker-Planck equation. This equation is also

known as the Kolmogorov-forward equation , the Smoluchowski equation in the

context of particle diffusion178, and the Klein-Kramers equation177 when

applied to particle position and momentum. Clearly, based on the large number

of applications this equation is particularly powerful. It makes use of stochastic

Gaussian processes to introduce a drift and diffusion term, in the Itô sense.

Because this equation is non-perturbative, stochastic, and produces exact

dynamics there are many ways to derive it352–356- and each different form can

be related to the others in a similar fashion to the path integral representation of

the quantum Langevin equation. As a consequence of this, we will only consider

two of the simpler derivations: through the Kramers-Moyal expansion of a

general master equation357, and through functional derivatives resulting in a

Kolmogorov-Fokker-Planck equation355.

D.1.9.1 Kolmogorov-Fokker-Planck Equation

This derivation requires the consideration of Itô calculus358, an extension of

standard calculus to stochastic variables. The fundamental result which we

require is Itô’s lemma which is a generalisation of the standard chain rule and

change of variables. This lemma occurs for a Brownian process as a

consequence of a quadratic correction which is not present for variables that are

not stochastic.

Lemma D.1.1. For a twice continuously differentiable function on the reals, f , for
an Itô process X, then by Itô’s lemma, f(X) is also an Itô process satisfying

df [X(t)] = f ′[X(t)]dX(t) +
1

2
f ′′[X(t)]σ2(t)dt. (D.1.144)

where primes denote derivatives with respect to the process X.

Following Sharma355, we then consider a general stochastic differential

equation:
∂x(t)

∂t
= f [x(t)] + g[x(t)]ξ(t), (D.1.145)

where x(t) is a non-Markov process and ξ(t) is the Ornstein-Uhlenbeck process -

a process governed by a stochastic differential equation of a Wiener process W ,

for example white noise358:

dξ(t) = −θξ(t)dt+ σdW (t). (D.1.146)

Converting this Wiener term into a white noise function, and converting into
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true derivatives (‘division’ by dt), generates another type of Langevin equation

equivalent to (D.1.7). If we consider the Ornstein-Uhlenbeck process to have

a zero mean, be stationary and Gaussian then the equation for the probability

density functional can be written as

∂

∂t
p[x, t] = −∂f(x)p

∂x
+

∂

∂x
g(x)

( ∂
∂x

∫ t

t0

L
(α)
UO(t− t′) ⟨δ(x(t)− x)

δx(t)

δξ(t′)
⟩ dt′

)
,

(D.1.147)

where L
(α)
UO(t − t′) is the autocorrelation function of the Ornstein-Uhlenbeck

process and δx(t)
δξ(t′) is the functional derivative. We can integrate the general

stochastic differential equation to find an exact solution for the non-Markov

process x(t), and then use this within the definition of the functional derivative:

δx(t)

δξ(t′)
=

∫ t

t′
f ′[x(τ)]

δx(τ)

δξ(t′)
+ g′[x(τ)]

δx(t)

δξ(t′)
ξ(τ) + g[x(τ)]

δξ(τ)

δξ(t′)
dτ, (D.1.148)

= g[x(t′)] +

∫ t

t′
f ′[x(τ)]

δx(τ)

δξ(t′)
+ g′[x(τ)]

δx(τ)

δξ(t′)
ξ(τ) dτ. (D.1.149)

In this form we can sequentially introduce the definition of the functional

derivative and input the solution for x(t):

δx(t)

δξ(t′)
= g[x(t′)] exp

(∫ t

t′
f ′[x(τ)] + g′[x(τ)]ξ(τ) dτ

)
, (D.1.150)

= g[x(t′)] exp
(∫ t

t′

∂ẋ(τ)

∂x(τ)
dτ
)
, (D.1.151)

where ẋ denotes the time derivative of x. The noise coefficient g[x(t)] can then be

expressed in terms of ẋ, expanded, and substituted into the previous definition

of the functional derivative to yield

δx(t)

δξ(t′)
= g[x(t′)] exp

(∫ t

t′
f ′[x(τ)] +

g′[x(τ)]

g[x(τ)]
f [x(τ)] dτ

)
. (D.1.152)

From here we Taylor expand in t′ − t up to O((t′ − t)2),

δx(t)

δξ(t′)
=
δx(t)

δξ(t)
+ (t′ − t)

( ∂

∂t′

( δx(t)
δξ(t′)

)
|t′=t

)
+O((t′ − t)2). (D.1.153)

We can use this in combination with the previous definition of the functional

derivative to write
δx(t)

δξ(t)
= g[x(t)], (D.1.154)

∂

∂t′

( δx(t)
δξ(t′)

)
|t′=t = −g[x(t)]f ′[x(t)] + g′[x(t)]f [x(t)]. (D.1.155)

This allows us to write every term in the Taylor expansion of the functional

306



Appendix D: Derivations from first principles

derivative in terms of either f or g

δx(t)

δξ(t′)
= g[x(t)]

(
1 + (t− t′)

f ′[x(t)]g[x(t)]− g′[x(t)]f [x(t)]

g[x(t)]

)
, (D.1.156)

by spotting the quotient rule and applying it in reverse we can write this in terms

of the probability distribution from the EOM as

⟨δ(x(t)− x)
δx(t)

δξ(t′)
⟩ = g[x](1 + (t− t′))g[x]

∂

∂x

(f [x]
g[x]

)
p[x]. (D.1.157)

This introduces the particular form of the autocorrelation function

L
(α)
UO(t− t′) =

D

τcor
exp

(
− |t− t′|

τcor

)
, (D.1.158)

where D is the diffusion coefficient and τcor is the associated correlation time

for the correlation of the Ornstein-Uhlenbeck process. The combination of these

equations and expansion is the Kolmogorov-Fokker-Planck equation:

∂p[x]

∂t
= − ∂

∂x
f [x]p[x]+D

∂

∂x

(
g[x]

∂

∂x

(
g[x]+τcorg

2[x]
∂

∂x

{f [x]
g[x]

})
p[x]

)
. (D.1.159)

The benefit of this derivation is the explicit introduction of the diffusion

coefficient through standard functional calculus.

D.1.9.2 Kramers-Moyal Expansion

Equivalent to this is the method of the Kramers-Moyal expansion. The benefit of

this method is that it does not require any Itô calculus and only one additional

assumption. Starting from the time local equation for a general probability

density function, we follow the work of Rahimi Tabar et. al. 357 by writing

p(ρ)(x, t+ t′) =

∫
p(ρ)(x, t+ t′|x′, t)p(ρ)(x′, t) dx′, (D.1.160)

where p(ρ)(x, t + t′|x′, t) is the conditional probability distribution function. We

make the assumption that a conditional moment exists which can be defined in

terms of the conditional probability distribution function as

K(n)(x′, t, t′) = ⟨[x(t+ t′)− x(t)]n⟩ |x(t)=x′ , (D.1.161)

=

∫
(x− x′)np(ρ)(x, t+ t′|x′, t) dx. (D.1.162)

We use the sifting property of the delta function in order to write the conditional

probability distribution as

p(ρ)(x, t+ t′|x′, t) =
∫
δ(y − x)p(ρ)(y, t+ t′|x′, t) dy. (D.1.163)
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We consider a translation of these coordinates involving x′, which is associated

with jumps in the probability distribution, and Taylor expand

δ(y − x) = δ(x′ − x + y − x′), (D.1.164)

=
∞∑
n=0

(−1)n
(y − x′)n

n!

∂n

∂xn
δ(x′ − x). (D.1.165)

We can use this to simplify the equation for the conditional probability

distribution

p(ρ)(x, t+ t′|x′, t) =
∞∑
n=0

(−1)n

n!

∂n

∂xn

∫
(y − x′)nδ(x′ − x)p(ρ)(y, t+ t′|x′, t) dy,

(D.1.166)

which allows the introduction of K(n)

p(ρ)(x, t+ t′|x′, t) =
[
1 +

∞∑
n=1

−1n

n!

∂n

∂xn
K(n)(x′, t, t′)

]
δ(x′ − x). (D.1.167)

Substituting this solution into the initial equation for the probability distribution

of x and t+ t′ and making use of the sifting property of the delta function gives

p(ρ)(x, t+ t′) =

∫ [
1 +

∞∑
n=1

(−1)n

n!

∂n

∂xn
K(n)(x′, t, t′)

]
δ(x′ − x)p(ρ)(x′, t) dx′,

(D.1.168)

=

∫
p(ρ)(x′, t)δ(x′ − x) dx′ +

∞∑
n=1

(−1)n

n!

∂n

∂xn
× (D.1.169)∫

δ(x′ − x)K(n)(x′, t, t′)p(ρ)(x′, t) dx′. (D.1.170)

Finally, if we reorganise, divide both sides by t′ and take the limit of t′ → 0

then we produce a full time derivative on the left hand side and obtain the full

Kramers-Moyal equation:

∂p(ρ)(x, t)

∂t
=
∞∑
n=1

(−1)n
∂n

∂xn
D(n)(x, t)p(ρ)(x, t), (D.1.171)

where

D(n)(x, t) = lim
t′→0

K(n)(x, t, t′)

n! · t′
. (D.1.172)

This equation can be simplified by the following theorem, the derivation of which

is outside the scope of this thesis:

Pawula’s Theorem:

Remark.

1. The process is deterministic and the expansion contains one term.
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2. The process is a type of diffusion and the expansion contains only two terms.

3. The behaviour is more complex than being deterministic or diffusive and an
infinite number of terms is required in order to keep the probability density
strictly positive.

We consider only the second case, and thus form the Fokker-Planck equation:

a two term form of the Kramers-Moyal equation

∂p(ρ)(x, t)

∂t
=

∂2

∂x2
(D(2)(x, t)p(ρ)(x, t))− ∂

∂x
(D(1)(x, t)p(ρ)(x, t)), (D.1.173)

where D(1) is the drift and D(2) is the diffusion coefficient. Based on the fact that

there has been a perturbation in time and a previous expansion of the interaction

Hamiltonian, this is considered a perturbative method354.

D.1.10 The Hierarchical Equations of Motion

The final set of derivations aim to be the most free from assumptions and

approximations. The hierarchical equations of motion are non-perturbative, and

are not limited by orders of interaction coupling strength, do not make use of

the Born-approximation, rotating wave-approximation, and can be strongly

non-Markovian. The main assumption that this derivation makes is the high

temperature approximation as a simplification of the system dissipation kernel

L
(α)
R to a form which is more amenable to use in combination with an

exponential basis. However, there also exist low temperature corrections to the

non-Markovian terms which extend the number of temperature regimes out of

the high temperature limit. The only other restriction comes from the choice of

basis function with which we expand our spectral density and this leads to

regimes of applicable homogeneity. As will be shown during the derivation,

overdamped and underdamped limits are natural choices and produce

hierarchies, but the point of critical damping is an area where the usual method

can struggle. This has been addressed recently by Tatsushi Ikeda through a

generalisation of the hierarchy scheme using the cumulant expansion which

circumvents the difficulty of expanding in an exponential basis139.

D.1.10.1 Overdamped HEOM

The key component of each HEOM derivation is its constituent spectral density

and the expansion used to decompose this into individual contributions. The full

derivation is considered for the overdamped case and the differences are

highlighted in other cases but their full derivation will be omitted and their

original source noted. The overdamped hierarchy is derived from an
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exponential expansion of an overdamped spectral density which is computed

through a contour integral

JO(ω) =
2ηωΛ

Λ2 + ω2
. (D.1.174)

D.1.10.1.1 System-bath Model

We consider a one-dimensional system coupled to a bath of N harmonic

oscillators. The system of interest is defined by a potential V (q) - where q is the

position operator as in the non-linear Schrödinger equation - and its mass m.

The oscillators in the ensemble have masses {mj}, frequencies {ωj} and

coupling constants {cj}. The total Hamiltonian,

Htot = HS +HB +HSB, (D.1.175)

where,

HS =
p2

2m
+ V (q), (D.1.176)

HB =
∑
j

(
p2j
2mj

+
mjωjx

2
j

2

)
, (D.1.177)

HSB = −
∑
j

cjxjq, (D.1.178)

and {p}, {q}, {pj}, {xj} are the respective momentum and position operators for

the system and the bath.

Given this description of the system and bath we can construct the density

matrix. For a set of states {|qi, xi⟩} with corresponding transition probabilities

{Pi} the density matrix is equivalent to the outer product,

ρ(q, x) =
∑
i

Pi |qi, xi⟩ ⟨qi, xi| . (D.1.179)

D.1.10.1.2 Feynman and Vernon Influence Functional

To derive the equations of motion we define the evolution of the density matrix

at time zero to a time t using the path integral formalism. Introducing the time

propagation operators we can find the density matrix at an arbitrary, non-zero

time, t given the form of the density matrix at time zero,

ρt(q, x) = exp

(
iH(q, x)t

ℏ

)
ρ0(q, x) exp

(
−iH(q, x)t

ℏ

)
. (D.1.180)
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Next we apply the initial condition assumption that the system is, initially, in a

factorisable state and that the bath is in thermal equilibrium - but not in

equilibrium with the system of interest.

ρ0(q, x) = ρS(q)ρB(x), (D.1.181)

ρS(q, q
′) = ρ0(q, q

′), ρB(x, x
′) = ⟨x| exp(−βHB)/ZB |x′⟩ (D.1.182)

Here β is the inverse temperature 1/(kBT ). We can rewrite the density matrix as,

⟨qt, x| ρ(t) |q′t, x′⟩ =
∫∫∫∫

⟨qt, x| exp(iHt/ℏ) |q0, x0⟩ ρ0(q0, q′0)×

⟨x0| exp(−βHB)/ZB |x′0⟩ ⟨q′0, x′0| exp(−iHt/ℏ) |q′t, x⟩dx0dx′0dq0dq
′
0, (D.1.183)

equivalent to a probability of transition with time dependent paths qt, q′t, x, and

x′ 4,143,144,214. The influence of the bath on the system of interest can then be

explicitly incorporated, through the action contributions, by application of the

path integral formalism and the Feynman and Vernon influence functional:

⟨qt, x| ρ(t) |q′t, x′⟩ =
∫∫∫∫

K(qt, x, t, q0, x0, 0)ρ0(q0, q
′
0)×

⟨x0| exp(−βHB)/ZB |x′0⟩K∗(q′t, x′, t, q′0, x′0, 0) dx0dx′0dq0dq
′
0, (D.1.184)

where

⟨qt, x| exp(iHt/ℏ) |q0, x0⟩ = K(qt, x, t, q0, x0, 0), (D.1.185)

=

∫∫
exp(iS[qt, x]/ℏ) D[qt]D[x], (D.1.186)

⟨q′0, x′0| exp(−iHt/ℏ) |q′t, x′⟩ = K∗(q′t, x
′, t, q′0, x

′
0, 0), (D.1.187)

=

∫∫
exp(−iS[qt, x]/ℏ) D[q′t]D[x′], (D.1.188)

with endpoints: q(t) = qt, q(0) = q0, q′(t) = q′t, q
′(0) = q′0, x(t) = x, x(0) = x0,

x′(t) = x′, x′(0) = x′0, and action S = SS + SB + SSB =
∫ t
0 LLag dτ , where LLag is

the Lagrangian. We aim to model physical observables for the system of interest

in the coordinate q, so we are free to trace out the bath degrees of freedom:

∫
⟨qt, x| ρ(t) |q′t, x′ = x⟩ dx =

∫ [∫∫∫∫
K(qt, x, t, q0, x0, 0)ρ0(q0, q

′
0)×

⟨x0| exp(−βHB)/ZB |x′0⟩K∗(q′t, x′ = x, t, q′0, x
′
0, 0) dx0dx′0dq0dq

′
0

]
dx. (D.1.189)
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Where we can split the action based on the origin of their respective

contributions,

ρ(qt, q
′
t, t) =

∫∫ ∫ qt

q0

∫ q′t

q′0

exp(iSS[qt]/ℏ) exp(−iSS[q′t]/ℏ)F [qt, q
′
t]×

ρS(q0, q
′
0, 0) D[qt]D[q′t]dq0dq

′
0, (D.1.190)

and the Feynman and Vernon influence functional is

F [qt, q
′
t] =

∫∫∫∫∫
ρB(x0, x

′
0, 0) exp(i

[
SB[x]− SB[x

′]

+ SSB[qt, x]− SSB[q
′
t, x
′]
]
/ℏ) D[x]D[x′]dx0dx

′
0dx. (D.1.191)

where
∫
D[x] denotes a Feynman path integral. Here the classical action - in

terms of the Lagrangian - for an isolated system is used,

SS[qt, t] =

∫ t

0

m
˙{

qt(τ)
}2

2
− V [qt(τ)]dτ, (D.1.192)

SB[x, t] =

∫ t

0

∑
j

mj
˙{

xj(τ)
}2

2
−
mjω

2
j

{
xj(τ)

}2

2
dτ, (D.1.193)

and

SSB[qt, x, t] =

∫ t

0

∑
j

cjxj(τ)qt(τ)dτ. (D.1.194)

The influence functional is then taken in its most general form. This is created

by assuming that there is a bilinear coupling between the system and bath such

that:

LSB
Lag = gqtx and LB

Lag(ẋ, x, t), (D.1.195)

where,

Ltot
Lag = LS

Lag(
˙{qt}, qt, t) + LB

Lag(ẋ, x, t) + LSB
Lag(qt, x). (D.1.196)

The influence is considered by studying properties of x - the bath - only, i.e.

simply the impact of x on qt. In Fourier space we define Q̃t(ω) as the Fourier

transform of g(t)qt(t), from the linear interaction, (where

ã(ω) =

∫ ∞
0

a(t) exp(−iωt) dt, (D.1.197)

ã∗(ω) =

∫ ∞
0

a(t) exp(iωt) dt, (D.1.198)

is defined as the Fourier transform of a general function a(t)) and introduce z̃
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which is a classical impedence function relating x to an applied force. This

function, z̃, is a type of response function dictating the changes and movements

in x due to a classical input force. z̃ is calculated by creating a classical system

corresponding to x with Lagrangian, LB
Lag(ẋ, x, t), and finding the response

under the influence of a driving force f(t), derived from the potential f(t)x(t) -

in analogy with gqt. Here, f(t) is applied at t = 0 and is subject to the initial

conditions: ẋ(0) = x(0) = 0, such that

z̃ =
f̃

iωx̃
. (D.1.199)

Subsequently, the influence phase is

Φ(Q̃t, Q̃
′
t) =

1

2πℏ

∫ ∞
0

[
Q̃′t(Q̃

∗
t − Q̃′

∗
t )

iωz̃
+

Q̃∗t (Q̃t − Q̃′t)

−iωz̃

]
dω, (D.1.200)

which in the time domain is

iΦ(qt, q
′
t) = − 1

2ℏ

∫ ∞
−∞

∫ t

−∞
g(t)g(s)(qt−q′t){qt(s)F ∗(t−s)−q′t(s)F (t−s)} ds dt,

(D.1.201)

- here F ∗ is the complex conjugate - where I(F (t)) for t > 0 is the classical

response of x to a force f(t) = δ(t). R(F (t)), which is temperature dependent, is

the correlation function for the zero point fluctuation of the variable x.

This process is equivalent to substituting the Lagrangian into the influence

functional to form a Gaussian functional integral. Rearranging the integrand of

this intergal and solving the Euler-Lagrange equation, contained within,

generates a solution dependent on the end points of the classically minimised

path. This formulates the influence functional into a more useful form

containing correlation functions which relate to the fluctuation-dissipation

theorem. As such F (t) can be related directly to the correlation functions, which

physically represent fluctuation and dissipation,

L(α)(τ − s) =
∑
j

c2j
2mjωj

(
exp(−iωj(τ − s))+

exp(iωj(τ − s)) + exp(−iωj(τ − s))

exp(βℏωj)− 1

)
, (D.1.202)

where

F (t) = L
(α)
R (t) + iL

(α)
I (t), (D.1.203)

L
(α)
R (t) = − 2

π

∫ ∞
0

I

(
1

iωz̃

)
cos(ωt) dω, (D.1.204)

L
(α)
I (t) = − 2

π

∫ ∞
0

I

(
1

iωz̃

)
sin(ωt) dω. (D.1.205)
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This allows the influence functional to be recast as

F [qt, q
′
t] = exp

(
− 1

ℏ

∫ t

0

∫ τ ′

0
(qt(τ)− q′t(τ))×

(L(α)(τ − s)Qt(s)− L(α)∗(τ − s)q′t(s)) dτ ds
)
. (D.1.206)

This is now directly related to the spectral density of the harmonic oscillator bath

modes, as this is the autocorrelation function of the bath coordinate.

F (t) =

∫ ∞
0

J(ω) cos(ωt)coth

(
βℏω
2

)
dω − i

∫ ∞
0

J(ω) sin(ωt) dω, (D.1.207)

We can now define the spectral density, J(ω), which describes the N harmonic

oscillators which make up the bath ensemble as

J(ω) = ℏ
∑
j

c2j
2mjωj

δ(ω − ωj). (D.1.208)

Introduction of this simplifies the autocorrelation function equation. If we

rewrite this, and take the real and imaginary parts - such that we can reduce the

exponentials - we get:

L
(α)
R (t) =

∫ ∞
0

J(ω) cos(ωt)coth
(
βℏω
2

)
dω, (D.1.209)

L
(α)
I (t) = −

∫ ∞
0

J(ω) sin(ωt) dω. (D.1.210)

These forms of L(α)(t) can be combined to produce L(α)
corr(t), which matches the

literature147,149,157. Next we introduce the Debye spectral density:

J(ω) =
2ηΛω

Λ2 + ω2
.

Split the correlation function into two components and solve it with a pair of

contour integrals

L
(α)
R +iL

(α)
I =

1

π

∫ ∞
0

2ηΛω

Λ2 + ω2
coth

(
βℏω
2

)
cos(ωt) dω− i

π

∫ ∞
0

2ηΛω

Λ2 + ω2
sin(ωt) dω.

First consider L
(α)
R , extend it along the entire real axis and write cosine in

exponential form

L
(α)
R (t) =

1

2π
R
[∫ ∞

0

2ηΛω

Λ2 + ω2
coth

(
βℏω
2

)
eiωt dω

]
.

In order to compute the contour integral the poles of the integrand are required.

In order to achieve this split the coth function into a fractional form and find the
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roots of the denominator

(Λ2 + ω2) sinh

(
βℏω
2

)
= 0.

The solutions of this equation are

ω = ±iΛ,

or when

sinh

(
βℏω
2

)
= 0.

Letting ω be complex with real part ωR we can solve

i sin

(
βℏωR
2

)
= 0.

Since sin(nπ) = 0 ∀ n ∈ Z the other solutions are

ω =
2nπi

βℏ
, n ∈ Z ̸= 0.

In this case n cannot be zero without the integrand vanishing, and hence this is

not a pole. By setting

2ηΛω

Λ2 + ω2

cosh
(
βℏω
2

)
sinh

(
βℏω
2

) = f(ω),

the general method of integrating a complex function of the form eiωzf(z) along

the real axis can be considered. In order to do this we apply evaluation of Fourier

transforms and solve the problem for a closed semi-circular arc. As such we have

an integral of the form359

I =

∫ ∞
−∞

f(z)eimzdz.

Where if we assume that there are no poles on the real axis, that we have a finite

number of poles, and that f(z) → 0 as |z| → ∞ then we can apply Cauchy’s

Residue Theorem and Jordan’s Lemma in order to show that:

For m > 0 with a contour CΓ in the upper half of the complex plane∮
f(z)eimzdz =

∫ R

−R
f(z)eimzdz +

∫
Γ2

f(z)eimzdz

These assumptions come from the proof of Jordan’s Lemma using complex

analysis. While the proof is not shown here the Lemma is written out explicitly

below and the assumptions briefly discussed359.

Lemma D.1.2. If CΓ is the semi-circular arc given by z = Reiθ, 0 ≤ θ ≤ π then if
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|f(z)| → 0 as |z| → ∞ then:

IR =

∫
CΓ

f(z)eimzdz → 0, m > 0 and real.

The reason for these requirements is that we have to consider which parts of

the integrand tend to zero or infinity fastest. When we apply z = Reiθ then

our integrand contains both a small quantity, f(z), and a large quantity, R. Our

integrand is f(Reiθ)eimR cos(θ)e−mR sin(θ)iReiθ, so if we consider the magnitude

of these quantities we find that we must evaluate ϵRe−mR sin(θ) between 0 and

π. Given ϵ > 0, there exists R0(ϵ) such that |z| > R0 ⇒ |f(z)| < ϵ. Hence for

R > R0:

|IR| ≤
∫ π

0
ϵ|eimR cos(θ)|e−mR sin(θ)|iReiθ|dθ ≤

∫ π

0
ϵRe−mR sin(θ)dθ

We cannot find an analytical solution to this integral easily so we simply

approximate it using an underestimate as a pair of straight lines. We apply,

0 ≤ θ ≤ π
2 , sin(θ) > 2θ

π so that we have a bound for the magnitude of this decay.

|IR| ≤ ϵR · π

mR
[1− e−mR] < ϵR · π

mR
=
ϵπ

m

The importance of this result is that the rate of decay of the sine term exactly

cancels with the exponentially growing R component meaning that we are left

with proportionality to only our small quantity ϵ.

Hence, IR → 0, as R→ ∞ for R > R0(ϵ)

This means that we can apply Jordan’s lemma to the integral along the arc of our

semi-circle which simplifies the contour integral to:∮
f(z)dz = 2πi

∑
Res =

∫ ∞
−∞

f(z)eizTdz + 0

Where Res are the residues of the poles inside the semi-circle CΓ.

For the complex plane ω + iσ a semicircular contour in the upper half plane

CΓ = Γ1 + Γ2 is used such that the integral along the real axis can be computed∫
Γ1

f(ω)eiωtdω = 2πi
∑
j

Res(j).

Initially take strictly positive poles for the contour in the upper half plane starting

with the simple pole z = iγ.

Res (f(z), z = iγ) = lim
z→iγ

((z − iγ)f(z))
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ω

σ

R-R

iγ

2πi
βℏ

4πi
βℏ

6πi
βℏ

2nπi
βℏ ...

CΓ

Γ1

Γ2

Figure D.1.2: Complex Semicircle, CΓ, with a, temperature independent, pole at
iγ and further poles at integer multiples of 2π

βℏ which correspond to Matsubara
(thermal) frequencies.

lim
z→iγ

(
2λγ

zγ

γ2 + z2
(z − iγ)

eβℏz + 1

eβℏz − 1
eizt
)

= λγ2
eiβℏγ + 1

eiβℏγ − 1
e−γt

Poles at z = 2nπi
βℏ , n ∈ Z ≥ 1 have residue

Res

(
f(z), z =

2nπi

βℏ

)
= lim

z→ 2nπi
βℏ

(
2ηzΛ

z2 + Λ2

exp(βℏz) + 1

exp(βℏz)− 1
exp(izt)

)
,

=

∞∑
n=1

(
2η 2nπi

βℏ Λ(
2nπi
βℏ

)2
+ Λ2

exp(βℏ2nπi
βℏ ) + 1

exp(βℏ2nπi
βℏ )− 1

exp(it
2nπi

βℏ
)

)
, (D.1.211)

=

∞∑
n=1

4ηΛnπi

βℏ
(
Λ2 −

(
2nπ
βℏ

)2) exp(2nπi) + 1

exp(2nπi)− 1
exp

(
− 2nπt

βℏ

)
, (D.1.212)

which, by removing the singularity, yields

∞∑
n=1

4ηΛnπi

βℏ
(
(Λ)2 −

(
2nπi
βℏ

)2)(exp(2nπi) + 1) exp
(
i

(
2nπi

βℏ

)
t
)

=

∞∑
n=1

8ηΛnπiβℏ
(Λβℏ)2 − (2nπ)2

e
− 2nπt

βℏ . (D.1.213)

In order to apply the residue theorem we require

|f(z)| → 0 as |z| → ∞, (D.1.214)
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so in this case

lim
z→∞

2ηzΛ

z2 + Λ2

cosh
(
βℏz
2

)
sinh

(
βℏz
2

) (D.1.215)

= lim
z→∞

2ηΛ

z + Λ2

z

exp(−βℏz) + 1

1− exp(−βℏz)
, (D.1.216)

where

exp(−βℏz) → 0 as z → 0, (D.1.217)

and
2ηΛ

z + Λ2

z

is O
(1
z

)
as z → 0, (D.1.218)

hence Jordan’s lemma is valid. Finally, the overall result of complex integration

over the upper half plane is

∫
Γ1

f(ω)eiωtdω = 2πi

[
ηΛ

eiβℏΛ + 1

eiβℏΛ − 1
e−Λt +

∞∑
n=1

8ηΛnπiβℏ
(Λβℏ)2 − (2nπ)2

e
− 2nπt

βℏ

]
.

By defining Matsubara frequencies ν0 = Λ, νn = 2nπ
βℏ we can introduce the

definition of cot into our solution. While we can choose any contour which

contains any number of poles in order to calculate the integral, physically the

choice of strictly positive Matsubara frequencies is another good justification for

considering only the upper half plane.

L
(α)
R (t) =

1

2π
R
[∫

Γ1

f(ω)eiωtdω
]
.

Hence the result for the first integral is

L
(α)
R (t) = ηΛcot

(
βℏΛ
2

)
e−Λt +

∞∑
n=1

4ηΛνnβℏ
(νnβℏ)2 − (Λβℏ)2

e−νnt (D.1.219)

Next the integral for the L(α)
I (t) component,

iL
(α)
I (t) =

1

π

∫ ∞
0

−J(ω)i sin(ωt) dω.

sin(ωt) has no poles in the complex plane so the only residue will be from the

single Matsubara frequency in the upper half plane.

iL
(α)
I (t) = − i

2π
I
[∫ ∞
−∞

2ηΛω

Λ2 + ω2
eiωtdω

]
.

Res(f(z), z = iΛ) = lim
z→iΛ

((z − iΛ)f(z)),

iL
(α)
I (t) = − i

2π
I
[
2πiηΛe−Λt

]
,
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L
(α)
I = −ηΛe−Λt (D.1.220)

This solution uses the same function f(z) and so Jordan’s lemma is still valid.

Finally the solution of equation (D.1.10.1.2) can be reconstructed using

equations (D.1.10.1.2) and (D.1.10.1.2)

L(α)
corr(t) = L

(α)
R + iL

(α)
I .

L(α)
corr(t) = ηΛcot

(
βℏΛ
2

)
e−Λt +

∞∑
n=1

4ηΛνnβℏ
(νnβℏ)2 − (Λβℏ)2

e−νnt − iηΛe−Λt,

which can be simplified in terms of purely Matsubara frequencies by denoting,

d0 = ηΛ(cot

(
βℏΛ
2

)
− i), ν0 = Λ, (D.1.221)

dn =
4ηΛνnβℏ

(νnβℏ)2 − (Λβℏ)2
, νn =

2nπ

βℏ
, (D.1.222)

such that

L(α)
corr(t) =

∞∑
n=0

dn exp(−νnt). (D.1.223)

The resulting form of the correlation function, in exponential form, represents

physically a memory-frequency decomposition of the bath correlation. The

exponential expansion of bath correlation function dictates the structure of the

HEOM being derived286–288. Given this form of the correlation function, we now

differentiate the equation for the density matrix, (D.1.10.1.2), in order to reach

the HEOM.
d
dt
ρ(t) =

d
dt

U(t, t0)ρS(t0), (D.1.224)

where the Liouville space evolution superoperator is

U(t, t0) =
∫ qt

q0

∫ q′t

q′0

exp(iSS[qt]/ℏ) exp(−iSS[q′t]/ℏ)F [qt, q
′
t] D[qt]D[q′t]

(D.1.225)

with

F [qt, q
′
t] = exp

(
− 1

ℏ

∫ t

0

∫ τ ′

0
(qt(τ)− q′t(τ))×

(L(α)
corr(τ − s)qt(s)− L(α)∗

corr (τ − s)q′t(s)) dτ ds
)
. (D.1.226)

The Caldeira-Leggett form of the Feynman path integral143, in terms of

microscopic position and momentum operators in space, can be reformulated

into a more useful basis for computation. In a manner similar to the Stochastic

Schrödinger equation we move into a coherent state basis which is dependent

on the creation and annihilation operators for the system modes, a†i and ai,

rather than operators xj and pj for environment modes {j}. This representation
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uses

|ϕ⟩ = exp
(∑

i

ϕia
†
)
|0⟩ , (D.1.227)

where |0⟩ is the system vacuum sate, ϕi are complex numbers, and ϕ∗i their

complex conjugates such that

ai |ϕ⟩ = ϕi |ϕ⟩ , (D.1.228)

⟨ϕ| a†i = ⟨ϕ|ϕ∗i , (D.1.229)

as in the original derivation by Tanimura and Kubo147. This transformation

results in

U(t, t0) =
∫ Qt

Q0

∫ Q′
t

Q′
0

exp(iSS[Qt]/ℏ) exp(−iSS[Q′t]/ℏ)F [Qt,Q
′
t] D[Qt]D[Q′t]

(D.1.230)

and

F [Qt,Q
′
t] = exp

(
− 1

ℏ2

∫ t

0

∫ τ ′

0
B×(Qt,Q

′
t)×(

L
(α)
R (τ ′ − τ)B×(Qt,Q

′
t)− iL

(α)
I (τ ′ − τ)B◦(Qt,Q

′
t)
)

dτ dτ ′
)
, (D.1.231)

where

B×(Qt,Q
′
t) = B(Qt(τ)) + B(Q′t(τ)), (D.1.232)

B◦(Qt,Q
′
t) = B(Qt(τ))− B(Q′t(τ)). (D.1.233)

This is a movement from trajectories in physical space to trajectories of coherent

states: q(
′) and x(

′) to Qt = (ϕ∗(τ),ϕ(τ)) and Q′t = (ϕ′∗(τ),ϕ′(τ)). Into this

we can substitute the kernels generated from the spectral density via contour

integration and can rearrange the influence functional to

F [Qt,Q
′
t] = exp

(
− 1

ℏ2

∫ t

0

∫ τ ′

0
B××

(
ηΛcot

(βℏΛ
2

)
B×−iηΛB◦

)
exp(−Λ(τ ′−τ))+

B×B×
∞∑
n=1

4ηΛνnβℏ
(νnβℏ)2 − (Λβℏ)2

exp(−νn(τ ′ − τ)) dτ dτ ′
)
. (D.1.234)

Depending on the choice of spectral density, and the complexity of the Matsubara

decomposition and frequencies, the difficulty of the following simplification to

an equation of motion can vary. In the simplest overdamped scenario where

there is not an infinite number of Matsubara contributions, substitution of the

kernels is enough simplification138,149, however in other cases further simplifying

assumptions can reduce the expansion complexity.
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D.1.10.1.3 High Temperature Hierarchies

This derivation is the simpler of the two temperature cases because it involves

two additional approximations: the high temperature approximation, and the

assumption that the average thermal energy of the oscillators is large. In this

simplified case we have147,149

JO(ω) =
2ηωΛO

Λ2
O + ω2

, (D.1.235)

where

βℏΛO ≪ 1, and coth
(βℏΛO

2

)
∼ 1. (D.1.236)

The overdamped bath speed, ΛO, is similar to the previous overdamped bath

speed, Λ, but the latter does not include any assumption about the scale of the

oscillator energy. Consequently the imaginary and real kernels become:

L
(α)
I = −ηβℏΛO

2
exp(−ΛOt), L

(α)
R = η exp(−ΛOt). (D.1.237)

These can be directly substituted into the influence functional requiring minimal

extra simplification

F [Qt,Q
′
t] = exp

((
− i

ℏ

)2
×

∫ t

0
B× exp(−ΛOτ

′)

∫ τ ′

0
η
(
B× − i

βℏΛO

2
B◦
)
exp(ΛOτ) dτ dτ ′

)
. (D.1.238)

This can then be introduced into the equation for the density matrix elements,

ρn(ϕ,ϕ
∗; t) =

∫∫ {(
− i

ℏ

)∫ t

0
exp(−ΛO(t− τ))η

(
B× − i

βℏΛO

2
B◦
)

dτ

}n

×

exp
( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
D[Q′t] D[Qt], (D.1.239)

which is differentiated to form the equation of motion.

D.1.10.1.4 Low Temperature Hierarchies

By relaxing the high temperature and oscillator energy scale approximations

results in the most general form of an overdamped hierarchy. This equation will

use the standard overdamped spectral density, equation (2.5.4.1), and will have

an infinite number of Matsubara frequencies in its expansion. It is possible to

relate the individual Matsubara frequency components to each other through a

recursion relation, which for low number of Matusbara axes (such as in
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undamped hierarchies)289 can be advantageous, and this is equivalent to

applying a cutoff to the Matsubara sum and expanding138,150,219. This

assumption means that we are simplifying the breadth of certain Matsubara

terms to delta functions (rather than having widths dependent on their relative

speed) and this is valid for low temperatures as well as for stronger coupling.

Subsequently, components beyond the cutoff criterion are assumed to be fully

Markovian and have instantaneous correlation times. This allows the influence

functional for a more complex overdamped spectral density, equation

(D.1.10.1.2), can be written as

F [Qt,Q
′
t] ≈ exp

(
−
( i
ℏ

)2 ∫ t

0
B× exp(−ΛOτ

′)×

∫ τ ′

0

(
ηΛOcot

(βℏΛO

2

)
B× − iηΛOB

◦
)
exp(ΛOτ) dτ dτ ′+

(
− i

ℏ

)2 K∑
n=1

∫ t

0
B× exp(−νnτ ′)

∫ τ ′

0
B×

4ηΛOνnβℏ
(νnβℏ)2 − (ΛOβℏ)2

exp(νnτ) dτ dτ ′+

∞∑
n=K+1

∫ t

0
B×

4ηΛOνnβℏ
(νnβℏ)2 − (ΛOβℏ)2

dτ

)
, (D.1.240)

under the assumption that

νn exp(−νn(τ − τ ′)) ≈ δ(τ − τ ′) when n ≥ K + 1. (D.1.241)

This can be simplified to

F [Qt,Q
′
t] ≈ exp

(
1

ℏ2

∫ t

0
B× exp(−ΛOτ

′)

∫ τ ′

0
ΛOθ(O) exp(ΛOτ) dτ dτ ′

)
×

K∏
n=1

exp

(
+

1

ℏ2

∫ t

0
B× exp(−νnτ ′)

∫ τ ′

0
νnψ

(O)
n exp(νnτ) dτ dτ ′

)
×

∞∏
n=K+1

exp

(∫ t

0

1

ℏ2
B×ψ(O)

n dτ

)
, (D.1.242)

by defining

θ(O) =
(
ηΛOcot

(βℏΛO

2

)
B× − iηΛOB

◦
)
, (D.1.243)

ψ(O)
n = B×

4ηΛOνnβℏ
(νnβℏ)2 − (ΛOβℏ)2

. (D.1.244)

This is equivalent to saying that

νK =
2πK

βℏ
≫ ω0, (D.1.245)
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where ω0 is the fundamental system mode. If we introduce the equation for the

density matrix element

ρj(ϕ,ϕ
∗; t) =

∫∫ {(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}j0

×

K∏
n=1

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn

×

exp
( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
D[Q′t] D[Qt], (D.1.246)

then we can construct the equation of motion by differentiating this equation

and substituting for influence functional. Notice, that when compared to the

high-temperature density matrix element, each ADO is defined by a component

of the vector j = (j0, . . . , jn, . . . , jK) as there is now a Matsubara sum component.

For simplicity we denote the first two sets of braces (each with exponents) as χ

and then successively apply the chain, product, and Liebniz rules.

∂ρn
∂t

=

∫∫
∂

∂t

{
χ exp

( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)}
D[Q′t] D[Qt],

(D.1.247)

First with the product rule this can be expanded to

∂ρj
∂t

=

∫∫
∂χ

∂t
exp

( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
+ χ

∂

∂t

{
exp

( iSS[Qt]

ℏ

)}
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
+ χ exp

( iSS[Qt]

ℏ

) ∂
∂t

{
F [Qt,Q

′
t]

}
exp

(−iSS[Q′t]
ℏ

)
+ χ exp

( iSS[Qt]

ℏ

)
F [Qt,Q

′
t]
∂

∂t

{
exp

(−iSS[Q′t]
ℏ

)}
D[Q′t] D[Qt], (D.1.248)

which via application of the chain rule becomes

∂ρj
∂t

=

∫∫
∂χ

∂t
exp

( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
+
i

ℏ
∂SS[Qt]

∂t
ρj

+ χ exp
( iSS[Qt]

ℏ

) ∂
∂t

{
F [Qt,Q

′
t]

}
exp

(−iSS[Q′t]
ℏ

)
− i

ℏ
∂SS[Q

′
t]

∂t
ρj D[Q′t] D[Qt].

(D.1.249)
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Next we consider the differential of χ:

∂χ

∂t
=

∂

∂t

({(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}j0

×

K∏
n=1

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn)

, (D.1.250)

which through the product and chain rules can be expanded to

∂χ

∂t
= j0

{(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}j0−1

× ∂

∂t

{(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}

×
K∏

n=1

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn)

+

K∑
n=1

jn

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn−1

× ∂

∂t

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}

×
K∏

l=1, l ̸=n

(
− i

ℏ

∫ t

0
exp(−νl(t− τ))ψ

(O)
l dτ

)
×

{(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}j0

. (D.1.251)
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Take the first term on the right hand side and apply the product rule, followed by

the Liebniz rule yielding

j0

{(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}j0−1

× ∂

∂t

{(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}

×
K∏

n=1

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn)

=

− j0ΛOχ− j0

{(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}j0−1

×−
iθ(O)

ℏ

×
K∏

n=1

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn)

+

j0

{(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))θ(O) dτ

)}j0−1

×
(
− i

ℏ

∫ t

0
exp(−ΛO(t− τ))

∂θ(O)

∂t
dτ
)

×
K∏

n=1

{(
− i

ℏ

∫ t

0
exp(−νn(t− τ))ψ(O)

n dτ
)}jn)

. (D.1.252)

Given the fact that B× and B◦ are not explicitly time dependent, the last term

vanishes simplifying this to −j0ΛOχ− ij0
ℏ χ
−
j0

, where χ−j0 is shorthand for χ where

the exponent j0 on the first half of the equation contained in parentheses is

reduced to an exponent of j0 − 1. In an equivalent manner the second terms can

be expanded and reduced so that overall

∂χ

∂t
= −j0ΛOχ−

ij0
ℏ
χ−j0 −

K∑
n=1

jnνnχ−
ijn
ℏ
ψ(O)

n χ−jn , (D.1.253)

where χ−jn is shorthand for χ where the exponent jn on the second half of the

equation contained in parentheses is reduced to an exponent of jn − 1. This can

be reformulated to match the form generated from a recursion relation:

∂χ

∂t
= −

K∑
n=0

jnνnχ−
i

ℏ

{
dnB(Qt)χ

−
jn

− d∗nB(Q
′
t)χ
−
jn

}
, (D.1.254)

where dn are the coefficients from the Matsubara expansion, equation 2.5.4.1.2,

∗ denotes the complex conjugate, and where j0 and jn have been combined in a

manner equivalent to the poles in the Matsubara expansion. This means that the

sum has been expanded to include zero.

The last term to consider is the differential of the influence functional. Taking
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equation 2.5.4.1.2 and differentiating it through the chain rule and then

application of Liebniz rule results in

∂F
∂t

≈

{(
1

ℏ2
B× exp(−ΛOt)

∫ τ ′

0
ΛOθ(O) exp(ΛOτ) dτ

)
+

K∑
n=1

exp

(
1

ℏ2
B× exp(−νnt)

∫ τ ′

0
νnψ

(O)
n exp(νnτ) dτ

)
+

1

ℏ2
∞∑

n=K+1

exp

(
B×ψ(O)

n

)}
F , (D.1.255)

as none of the integrands are dependent on t. All of these terms can then be

resubstituted into the equation for the derivative of the density matrix element:

∂ρj
∂t

=

∫∫
i

ℏ
∂SS[Qt]

∂t
ρj −

i

ℏ
∂SS[Q

′
t]

∂t
ρj−

K∑
n=0

jnνnχ exp
( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
− i

ℏ

{
dnB(Qt)χ

−
jn

− d∗nB(Q
′
t)χ
−
jn

}
exp

( iSS[Qt]

ℏ

)
F [Qt,Q

′
t] exp

(−iSS[Q′t]
ℏ

)
+ χ exp

( iSS[Qt]

ℏ

){( 1

ℏ2
B× exp(−ΛOt)

∫ τ ′

0
ΛOθ(O) exp(ΛOτ) dτ

)
+

K∑
n=1

exp

(
1

ℏ2
B× exp(−νnt)

∫ τ ′

0
νnψ

(O)
n exp(νnτ) dτ

)
+

1

ℏ2
∞∑

n=K+1

exp

(
B×ψ(O)

n

)}
F ×− exp

( iSS[Q′t]
ℏ

)
D[Q′t] D[Qt]. (D.1.256)

This can be simplified to

∂ρj
∂t

=

∫∫
i

ℏ
∂SS[Qt]

∂t
ρj−

i

ℏ
∂SS[Q

′
t]

∂t
ρj −

K∑
n=0

jnνnρjn − i

ℏ

{
dnB(Qt)ρ

−
jn

− d∗nB(Q
′
t)ρ
−
jn

}
− i

ℏ
B×ρ+jn +

1

ℏ2
∞∑

n=K+1

exp

(
B×ψ(O)

n

)
ρj D[Q′t] D[Qt]. (D.1.257)

After computing the path integrals this moves from an equation in terms of

trajectories and paths back into an equation in terms of energy and creation and

annihilation operators in the coherent state basis:

∂ρj
∂t

= −

{
i

ℏ
H× +

K∑
n=0

jnνn − 1

ℏ2
∞∑

n=K+1

exp
(
B×ψ(O)

n

)}
ρj−

i

ℏ

{
dnBρ

−
jn

− d∗nBρ
−
jn

}
− i

ℏ
B×ρ+jn . (D.1.258)
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Termination of this infinite set of equations makes use of a Markovianity

criterion which corresponds to the assumption that auxiliary density operators

deeper into the hierarchy are significantly smaller than those closer to the

density matrix. Under the high temperature approximation this assumption is

naturally true, however this is not always true when in the low-temperature and

strong-coupling limits. The significance of this is that non-Markovian feedback is

much larger and more impactful to the dynamics which means that ADOs

deeper into the hierarchy are no longer always smaller, especially when the

coupling is strong. The low temperature assumption that there is a cutoff to the

ADOs at K, after which Matsubara terms are fully Markovian naturally stabilises

the 1 to ∞ components of the expansion through a double B commutator term,

but in order to safely suppress the increase in magnitude of deeper elements in

the hierarchy the cutoff K must be used in conjunction with a double

commutator associated with the first Matsubara frequency150:

Ξ(O) =
η

β

{
1− βΛOcot

(βℏΛO

2

)}
B×B×, (D.1.259)

such that the full equation of motion becomes

∂ρj
∂t

= −

{
i

ℏ
H× +

K∑
n=0

jnνn − 1

ℏ2
∞∑

n=K+1

exp
(
B×ψ(O)

n

)
−

Ξ(O)

ℏ2

}
ρj−

i

ℏ

{
dnBρ

−
jn

− d∗nBρ
−
jn

}
− i

ℏ
B×ρ+jn . (D.1.260)

With the introduction of the necessary stabilisation term the termination of the

low-temperature EOM can be generated as

∂ρj
∂t

≈ −

{
i

ℏ
H× − 1

ℏ2
∞∑

n=K+1

exp
(
B×ψ(O)

n

)
−

Ξ(O)

ℏ2

}
ρj, (D.1.261)

valid for integers j = (j0, . . . , jK), with

K∑
n=0

jnνn >>
ω0

min(ν0, ν1)
. (D.1.262)

and convergence parameter

2(K + 1)π

ℏβ
>> Γmax. (D.1.263)

This can be further generalised to allow for multiple baths. In this case the

derivation is performed in an identical manner, but will require expansions for

each component bath, resulting in:

dn0 = ηnΛn(cot

(
βℏΛn

2

)
− i), νn0 = Λn, (D.1.264)
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dnl =
4ηnΛnνnlβℏ

(νnlβℏ)2 − (Λnβℏ)2
, νnl =

2lπ

βℏ
, (D.1.265)

with operators

ψnl = B×n
4ηnΛnνnlβℏ

(νnlβℏ)2 − (Λnβℏ)2
, (D.1.266)

Ξn =
ηn
β

{
1− βΛncot

(βℏΛn

2

)}
B×nB

×
n , (D.1.267)

and equation of motion,

∂ρj
∂t

= −

{
i

ℏ
H× +

NB∑
n=0

K∑
l=0

jnlνnl −
1

ℏ2

NB∑
n=0

∞∑
l=K+1

exp
(
B×nψnl

)
− Ξn

ℏ2

}
ρj

− i

ℏ

{
dnlBnρ

−
jnl

− d∗nlBnρ
−
jnl

}
− i

ℏ
B×n ρ

+
jnl
, (D.1.268)

and associated terminator

∂ρj
∂t

≈ −

{
i

ℏ
H× − 1

ℏ2

NB∑
n=0

∞∑
l=K+1

exp
(
B×ψnl

)
− Ξn

ℏ2

}
ρj, (D.1.269)

valid for integers j = (jn0, . . . , jNBK), with

NB∑
n=0

K∑
l=0

jnlνnl >>
max(ωn0)

min(νn0, νn1)
= Γmax. (D.1.270)

This hierarchy termination criterion terminates each Matsubara axis in an

identical manner resulting in hierarchies of self-similar volumes. Dependent on

the necessary termination criterion the termination equation can be simplified

to contain only the Markovian free propagation of the system (red), but here is

shown in full generality. Throughout this thesis, unless stated otherwise, the

convergence criterion is set to Γmax = 10 max(Λn).

The first term (red) within the generated HEOM, equation D.1.268, describes

the Markovian free propagation of the system, and the second term (blue)

introduces the impact on this propagation of integer multiples of Matsubara

frequencies corresponding to interaction with bath phonons. The final two

terms (blue) proportional to ρj are the low temperature correction of the free

propagation and a double commutator of the bath operator which introduce

higher order bath interactions, a square coupling, to account for the

introduction of the cutoff K. This term was derived by Ishizaki and Tanimura in

order to reduce the number of Matsubara frequencies required under strong

coupling to reach convergence150. By propagating a series of ADOs,

representing different arrangements of bath phonons, the HEOM accounts for a

history of interactions such that non-Markovian effects are automatically

included. The ADOs are interconnected via ADO raising and lowering terms

which are denoted by j± = (j10, . . . , jnk ± 1, . . . , jNBK) vectors. The first ρ−{·}
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dependent term (term five - cyan) in the HEOM, equation (D.1.268), is the first

raising term. The action of i
ℏdnlBn, and its conjugate, is to destroy bath

phonons, of coupling amplitude dnl, as they are absorbed by the system. This

corresponds to an increase of ADO tier resulting in a ‘raising’ of the ADO.

Subsequently, this process is associated with thermal fluctuations and the real

part of the correlation function because of its temperature dependence. The

final term (orange), dependent on ρ+{·}, is the corresponding lowering term. The

action of i
ℏB
×
n is to demolish the bath states corresponding to the creation of

bath phonons as they are emitted from the system into the bath. Destruction of

bath states in this manner are a consequence of the imaginary part of the

correlation function associated with system dissipation.

An example overdamped hierarchy is presented in figure D.1.3, where ADOs

are depicted as spheres in a lattice structure, with each Matsubara frequency

given its own dimension. The first ADO beyond Γmax in each axis is assigned

as a terminator such that the overall hierarchy defines a sealed volume, within

which non-Markovian memory effects are fully accounted for. Each information

channel, or raising/lowering event, is colour coded to match the terms in the

overdamped HEOM, (D.1.268), to depict bath phonon creation and annihilation.

D.1.10.2 Underdamped HEOM

Similarly it is possible to generate an EOM from an underdamped spectral density

J (U)
n (ω) =

2ηnγnω
2
0nω

(ω2
0n − ω2)2 − (γnω)2

. (D.1.271)

The exponential expansion for this spectral density can be constructed in a

manner analogous to the method performed for the overdamped spectral

density, with the caveat that the Matsubara poles are now complex rather than

purely imaginary. This results in a translation of the contour. In addition, this

form of spectral density is associated with the canonical transform, discussed in

detail in section 2.2.2.2, resulting in the system mode, ω0n, being subsumed into

the environment degrees of freedom. As discussed, this is the primary method of

moving the system-bath boundary which is discussed in detail in this thesis, and

it involves obscuring the distinction between the bath and system degrees of

freedom. This has a profound impact on quantum information and correlations.

The associated underdamped fluctuation and dissipation kernels are,

L
(α)
R,n =

ℏηnω2
0n

2iζn

{
exp

(
−
(γn
2

− iζn

)
t
)
− exp

(
−
(γn
2

+ iζn

)
t
)}

, (D.1.272)

329



Appendix D: Derivations from first principles

Figure D.1.3: Hierarchy diagram for a single overdamped bath, such that there
are three Matsubara dimensions. The longest axis is the temperature

independent Matsubara frequency associated with an overdamped bath. Each
sphere represents a density operator where the reduced density matrix of the
system is blue, normal ADOs are white and terminating ADOs are grey. Each

ADO is connected by a coloured line which matches terms in equation (2.5.41)
corresponding to their origin.

L
(α)
I,n =

ℏηnω2
0n

2ζn
exp

(
−
(γn
2

− iζn

)
t
)
coth

(
ℏβ
2

(
ζn + i

γn
2

))

− ℏηnω2
0n

2ζn
exp

(
−
(γn
2

+ iζn

)
t
)
coth

(
ℏβ
2

(
− ζn + i

γn
2

))

− 4ηnγnω
2
0n

ℏβ

∞∑
k=1

νk exp(−νkt)
(ω2

0n + ν2k)
2 − (γnνk)2

, (D.1.273)

where ζn =

√
ω2
n0 −

(
γn
2

)2
when γn < 2ω0n and νk = 2πk

ℏβ are the Matsubara

frequencies. The derivation for the underdamped kernels is equivalent to that of

the overdamped spectral density, however, introduction of the system mode splits

the single temperature independent Matsubara frequency into two: positive and

negative combinations of the intrinsic damping parameter, γn
2 , and iζn. This

means that following the same derivation leads to two terms in L(α)
R,n rather than

one, and three in L(α)
I,n rather than two, due to the split temperature independent

cases.
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This is then written as an expansion in the exponential basis with Matsubara

frequencies and coefficients, νnl and dnl,

νn0 =
γn
2

− iζn, (D.1.274)

νn1 =
γn
2

+ iζn, (D.1.275)

νnl =
2π(l − 1)

ℏβ
, (D.1.276)

dn0 =
ℏηnω2

0n

2ζn

{
coth

(
ℏβ
2

(
ζn + i

γn
2

))
− 1

}
, (D.1.277)

dn1 = −ℏηnω2
0n

2ζn

{
coth

(
ℏβ
2

(
− ζn + i

γn
2

))
− 1

}
, (D.1.278)

dnl = −4ηnγnω
2
0n

ℏβ
νnl

(ω2
0n + ν2nl)

2 − (γnνnl)2
, (D.1.279)

such that

L(α)
corr,n(t) =

∞∑
l=0

dnl exp(−νnlt). (D.1.280)

The EOM for the ADOs of this expansion is then1,

∂ρj
∂t

= −

(
i

ℏ
H× +

NB∑
n=1

K∑
l=0

jnlνnl −
NB∑
n=1

∞∑
l=K+1

B×nψ
(U)
nl

)
ρj

+

NB∑
n=1

K∑
l=0

B×n ρ
+
jnl

+

NB∑
n=1

jn0Θ
−
n ρ
−
jn0

+

NB∑
n=1

jn1Θ
+
n ρ
−
jn1

+

NB∑
n=1

K∑
l=2

jnlνnlψ
(U)
nl ρ

−
jnl
, (D.1.281)

where

ψ
(U)
nl =

4ηn
ℏβ

γnω
2
0n

(ω2
0n + ν2nl)

2 − (γnνnl)2
B×n , (D.1.282)

Θ±n =
ηnω

2
0n

2ζn

{
∓ B◦n ± coth

(
ℏβ
2

(
∓ ζn + i

γn
2

))
Bn

}
, (D.1.283)

and B×n ρ = [Bn, ρ] denotes the commutator of the bath coupling operator and

the density matrix and B◦nρ = {Bn, ρ} the corresponding anti-commutator. The

associated terminator for this hierarchy is164

∂ρj
∂t

≈ −

(
i

ℏ
H× + i

NB∑
n=1

(jn0 − jn1)ζn −
NB∑
n=1

∞∑
l=K+1

B×nψ
(U)
nl

)
ρj, (D.1.284)
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valid for integers j = (jn0, . . . , jNBK), with

NB∑
n=1

M∑
l=0

jnl|R(νnl)| > Γmax. (D.1.285)

In addition, computationally the sum to infinity is truncated with a sufficiently

high value with respect to the criterion Γmax.

Equivalent to the overdamped hierarchy, the ADOs are characterised by the

NB(K + 1)-dimensional vectors j and j±, with the terms of eq. D.1.281

interpreted in terms of the creation and annihilation of bath phonons, but where

the complex Matsubara frequencies have split the temperature independent

term in two such that there are now additional terms involving Θ±n .

An example underdamped hierarchy is presented in figure D.1.4, again

demonstrating a sealed volume and showing annihilation and creation with

colours matching equation 2.5.55. It is worth noting, the splitting of the

temperature independent Matsubara frequency into νn0 and νn1 results in the

first two axes having equal depth, such that the underdamped HEOM involves

many more ADOs than the overdamped case, increasing computational

complexity.

The underdamped spectral density, equation (D.1.271), reproduces the Drude

form on increasing the damping to the overdamped limit, when γn ≫ ω0n, also

requiring ζn = i

√(
γn
2

)2
− ω2

0n. However, due to a singularity in the exponential

basis which is the foundation of these derivations, ω0n ≈ γn, this HEOM is

insufficiently stable and the additional computational requirements of the

underdamped HEOM means the overdamped HEOM, equation (2.5.41), is

preferable for overdamped environments. This weakness in basis is most evident

from the divergent limit of vanishing ζn in the temperature independent

Matsubara terms, limζn→0 dn0 = limζn→0 dn1 = ∞. This flaw is addressed by

Ikeda and Scholes139 through the generalised HEOM discussed in section

2.5.4.4.

D.1.10.3 Arbitrary Spectral Density (ASD) HEOM

As discussed in section 2.2.2.2, the power of structured spectral densities is that

they can be used to model processes which are strongly non-Markovian, or

which have had system modes subsumed into them by the canonical transform.

Therefore, it stands to reason that a hierarchy which is derived from a purely

general spectral density would allow for modelling a broad range of physical

regimes. Tanimura considers this possibility is one of his original articles149,

where the HEOM becomes a more general integro-differential equation of
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Figure D.1.4: Hierarchy diagram for a single underdamped bath, such that there
are three Matsubara dimensions. The longest two axes (ν0, ν1) are the

temperature independent Matsubara frequency associated with an
underdamped bath. Each sphere represents a density operator where the
reduced density matrix of the system is blue, normal ADOs are white and

terminating ADOs are grey. Each ADO is connected by a coloured line which
matches terms in equation (D.1.281) corresponding to their origin.

motion,

∂

∂t
ρS(t;ω1, ω2, . . . , ωm) = −

(
i

ℏ
H× + i

M∑
j=1

ωj

)
ρS(t;ω1, ω2, . . . , ωm)

− i

∫ ∞
−∞

B×ρS(t;ω1, ω2, . . . , ωm+1) dωm+1

− i

m−1∑
k=1

Θ(ωk)ρS(t;ω1, ω2, . . . , ωk−1, ωk+1, . . . , ωm)

− iΘ(ωm)ρS(t;ω1, ω2, . . . , ωm−1), (D.1.286)
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where,

Θ(ω) = J(ω)

(
coth

(βℏω
2

)
B× +B◦

)
, (D.1.287)

written in terms of the total spectral density, J(ω) =
∑NB

n=1 Jn(ω), and bath

coupling operator, B =
∑NB

n=1Bn. The auxiliary equations for

ρS(t;ω1, ω2, . . . , ωm) represent simultaneous evolution of the system in the

presence of m bath phonons with associated frequencies ωm. Just as in the

previous HEOMs there are cyan lowering terms, and an orange ADO raising

term, but here because of the generality of the spectral density the raising term

involves an integral over the phonon frequency ωm+1.

While it is possible to reach this equation using a derivation analogous to the

method presented in section D.1.10, the general spectral density makes it

impossible to calculate a specific contour integral to expand the Matsubara

components. For this reason Tanimura149 presents an elegant alternative

involving multiplication of continued fraction forms of the Laplace transform.

The Laplace transform, within appendix A, is very similar to the Fourier

transform and the equation used for the contour integration. It takes a function

of time and moves it into the complex frequency domain with the added effect

of transforming ordinary differential equations into algebraic equations and

convolutions of functions into products. Within the ASD-HEOM this allows the

system-bath entanglement, due to the arbitrary spectral density, to be expressed

in resolvent form through products of operators as part of a continued fraction:

ρS[s] =
1

s+ i
ℏH
× +

∫
B× Θ(ν1)

s+iν1+
i
ℏH

×+
∫
B× Θ(ν2)

s+iν2+... dν2
dν1

ρS(t0), (D.1.288)

where LLap{t} = s.

This generalisation of spectral influence on the HEOM evolution nicely

demonstrates the incorporation of non-Markovian effects. Interaction of the

system and bath, through i
∫∞
−∞B×{·}dωm+1, creates bath phonons which are

propagated alongside the reduced system within the ADOs. This accounts for

the transfer of information, along a quantum channel, from the system to the

bath where it is stored within the environment degrees of freedom. Then,

dependent on the timescales of bath relaxation relative to the system, the

behaviour is either a local or global evolution. When the environment relaxation

timescale is rapid compared to the system, the phonons will dissipate

throughout the bath degrees of freedom and will not influence the system

dynamics again, resulting in local, Markovian, evolution. Alternatively, if the

timescales are commensurate, the phonons can be reabsorbed by the system,

through the action of iΘ(ω), creating a feedback of information and linking the

current state with past auxiliaries. This produces a global, non-Markovian,
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Figure D.1.5: Markovian vs. Non-Markovian evolution demonstrating global or
local behaviour for the ASD-HEOM. The colours in the figure match those in the

EOMs.

evolution. Both Markovian and non-Markovian evolutions are depicted in figure

D.1.5. In this way, the HEOM accounts for all possible sequences of interactions

and the creation and annihilation of bath phonons of any frequency in any

order, accurately modelling the dynamics of the system in a broad range of

conditions.

However, despite the power of being able to create models which require

highly structured, non-Markovian, environments this method suffers a pair of

drawbacks. The first is that it is incredibly costly to implement computationally

because of the large dependence on phonon frequencies. Discretising the

spectral density to W frequencies, the mth layer involves Wm auxiliaries, each

with dimensions of the reduced density operator, which itself is large in the case

of the vibronic dimers discussed in section 2.2.1.3. The other drawback is that,

despite the increased number of physical regimes accessible with an arbitrary

spectral density, it does not circumvent flaws in the basis functions. As discussed

in the section on the underdamped HEOM, D.1.10.2, the exponential basis is

highly sensitive to the bath damping strength relative to the system mode

frequency especially in the region of critical damping. The divergence of the

Matsubara frequencies in these cases have not been addressed by the arbitrary

choice of spectral density which means that it addresses niche, highly

structured, regimes within the strongly underdamped limit. This is

demonstrated in the work of section F, where the ASD-HEOM is employed, and

this flaw is rectified by Ikeda and Scholes139 which is discussed in section

D.1.10.4.
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D.1.10.4 Generalised HEOM

The generalised HEOM139, denoted gHEOM, addresses the flaw with the basis

functions, crucial to previous HEOM derivations, by including treatment of

non-exponential correlation functions. This addition means that a full range of

damping strengths, including critical damping, can be modelled. This derivation

makes use of the cumulant expansion technique, which was discussed in section

2.2.2.2.1, and as such does not directly follow the steps previously discussed in

section D.1.10. A full description of the current derivation is beyond the scope

of this thesis, but it is summarised for completeness.

A set of K time dependent basis functions ϕ(g) are generated in order to

produce symmetrised and anti-symmetrised correlation functions from linear

combinations of this basis and the delta function:

S(t) =
∑
lk

σlslkϕ
(g)
k (t) + Sδ · 2δ(t), (D.1.289)

A(t) =
∑
lk

σlajkϕ
(g)
k (t), (D.1.290)

where σl, slk, and alk are constants dependent on the system parameters. These

correlation functions are equivalent to the fluctuation and dissipation kernels,

S(t) = L
(α)
R (t), and A(t) = L

(α)
I (t), equation (2.2.53). With these substitutions

the influence functional, equivalent to (D.1.206), can be expressed in terms of

cumulants as,

F = exp

(∫ t

t0

iB×
∫ s

t0

( i
ℏ
S(s− u)B×(u)− 1

ℏ
A(s− u)B◦(u)

)
du ds

)
,

(D.1.291)

= exp

(∫ t

t0

−Ξ(g)(s) +
∑
j

ϕ
(g)
l (s

∫ s

t0

Θ
(g)
l )(s, u) du ds

)
, (D.1.292)

where

Ξ(g)(s) = −Sδ
( iσl

ℏ
B×(s)

)2
, (D.1.293)

Θ
(g)
l (t, s) =

∑
k

i

ℏ
σlslkϕ

(g)
k (t− s)B×(s)− 1

ℏ
alkϕ

(g)
k (t− s)B◦(s). (D.1.294)

Introduction of additional terms into Θ
(g)
l (t, s), acts as the ADO lowering

operator, and corresponds to additional non-Markovian corrections which link

auxiliaries with the same number of phonon interactions. Differentiation of the

336



Appendix D: Derivations from first principles

subsequent equation for the auxiliary density matrix elements results in,

∂ρj
∂t

= −
( i
ℏ
H×+Ξ(g)

)
ρj−

∑
l,k

nlγlkρjl−1,k+1
−
∑
k

iσk
ℏ

B×k ρjk+1
−
∑
k

nkΘ
(g)
k ρjk−1

,

(D.1.295)

in the Schrödinger picture. This equation is terminated in a similar fashion to

previous EOMs through,

∂ρj
∂t

≈ −
( i
ℏ
H× + Ξ(g)

)
ρj, (D.1.296)

but with a considerably simplified Markovianity criterion139

∑
k

nk > Γmax. (D.1.297)

As before, the red term is the Markovian free propagation of the system, the

first blue term is a Markovian correction containing a double commutator, the

second blue term is the introduction of bath phonons as a consequence of the

basis set ϕ(g), the orange term is the associated ADO raising, and the cyan term

is the associated ADO lowering term.

As mentioned, because of the extension of the basis to include a full range

of damping strengths, the coupling between the ADOs is more complex than

for previous cases. There are additional links between processes involving one

phonon from different Matsubara dimensions, referred to as tier one in each axis

which is discussed in section 3.3, which accounts for all sources of non-Markovian

feedback. This is shown in figure D.1.6 with a general gHEOM hierarchy diagram.

D.1.10.5 Lorentz-Drude Undamped Oscillator (LDUO) HEOM

Finally, we consider a new type of HEOM construction, based on the work of

Tanimura157, and Seibt289,325, in order to directly observe the changes due to

the canonical transform of moving the system-bath boundary. The proposed

scheme is a combination of a Lorentz-Drude overdamped spectral density with

an underdamped spectral density which is denoted LDUO. Such a system should

be equivalent to the summation of an overdamped hierarchy and an

underdamped hierarchy in the limit of vanishing canonical damping. This name

is chosen, where O (overdamped) is replaced with LD (Lorentz-Drude) so that

these components are sufficiently different from the UO (undamped)

componentsa.

In order to generate this EOM the Lorentz-Drude correlation function and the
aSubsequently, ΛO = ΛLD

337



Appendix D: Derivations from first principles

Figure D.1.6: Hierarchy diagram for the gHEOM. Each sphere represents a
density operator where the reduced density matrix of the system is blue, normal

ADOs are white and terminating ADOs are grey. Each ADO is connected by a
coloured line which matches terms in equation (2.5.69) corresponding to their

origin.

underdamped oscillator correlation function must be summed to produce a total

function describing the fluctuation and dissipation for the system. Equations

(2.5.33)–(2.5.35), from the overdamped derivation, are the Lorentz-Drude

component.

Undamped oscillator correlation function

Next consider the undamped oscillator component following Seibt and

Mancal289,325. From either JUO(ω) = 1/2SHR
UOωUOω{δ(ω − ωUO) + δ(ω + ωUO)},

or JUO(ω) = SHR
UOωUOδ(ω − ωUO), we generate the kernels required for the

undamped oscillator influence functional. The omission of a factor of ωUO in the

former spectral density is to ensure that the coupling to the bath has a

magnitude of λUO and is not additionally proportional to the magnitude of

vibrational mode frequency. The derivation continues with the split form of the

undamped vibration, but this is equivalent to a singular delta function. From the
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definition in equation D.1.207

iL
(α)
I,UO(t) = −i

∫ ∞
0

1

2
SHR
UOωUOω

{
δ(ω − ωUO) + δ(ω + ωUO)

}
sin(ωt) dω,

(D.1.298)

= −
iSHR

UOωUO

2

{∫ ∞
0

δ(ω − ωUO)ω sin(ωt) dω +

∫ ∞
0

δ(ω + ωUO)ω sin(ωt) dω

}
.

(D.1.299)

Through the sifting property of the delta function this is

= −
iSHR

UOωUO

2

(
ωUO sin(ωUOt) + (−ωUO) sin(−ωUOt)

)
, (D.1.300)

iL
(α)
I,UD(t) = −iSHR

UOω
2
UO sin(ωUOt). (D.1.301)

Similarly, the kernel L(α)
R,UO is

L
(α)
R,UO(t) =

∫ ∞
0

1

2
SHR
UOωUOω

{
δ(ω−ωUO)+δ(ω+ωUO)

}
coth

(
βℏω
2

)
cos(ωt) dω,

(D.1.302)

=
SHR
UOωUO

2

{∫ ∞
0

δ(ω − ωUO) ω coth

(
βℏω
2

)
cos(ωt) dω+

∫ ∞
0

δ(ω + ωUO) ω coth

(
βℏω
2

)
cos(ωt) dω

}
. (D.1.303)

Applying the sifting property and the properties:

cos(−x) = cos(x), coth(−x) = −coth(x), (D.1.304)

L
(α)
R,UO(t) =

SHR
UOωUO

2

(
ωUO coth

(
βℏωUO

2

)
cos(ωUOt)+

(−ωUO) coth

(
− βℏωUO

2

)
cos(−ωUOt)

)
, (D.1.305)

L
(α)
R,UO(t) = SHR

UOω
2
UO coth

(
βℏωUO

2

)
cos(ωUOt). (D.1.306)

The two kernels can be combined to generate the total correlation function,

L
(α)
corr,UO(t):

L
(α)
corr,UO(t) = −iSHR

UOω
2
UO

(
i

2
exp(−iωUOt)−

i

2
exp(iωUOt)

)
+

SHR
UOω

2
UO coth

(
βℏωUO

2

)(
exp(−iωUOt)

2
+

exp(iωUOt)

2

)
, (D.1.307)
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L
(α)
corr,UO(t) =

SHR
UOω

2
UO

2

[
exp(−iωUOt)

(
coth

(
βℏωUO

2

)
+ 1

)
+

exp(iωUOt)

(
coth

(
βℏωUO

2

)
− 1

)]
. (D.1.308)

From this we have generated the Matsubara decomposition coefficients and

frequencies for the second bath:

c1 = c̃2 =
1

2
SHR
UOω

2
UO

(
coth

(
βℏωUO

2

)
+ 1

)
, (D.1.309)

c2 = c̃1 =
1

2
SHR
UOω

2
UO

(
coth

(
βℏωUO

2

)
− 1

)
, (D.1.310)

γ1 = γ̃2 = iωUO, (D.1.311)

γ2 = γ̃1 = −iωUO. (D.1.312)

Total correlation function

L
(α)
corr,tot(t) = L

(α)
corr,LD(t) + L

(α)
corr,UO(t), (D.1.313)

which can additionally be split into the iL(α)
I,tot(t) and L(α)

R,tot(t) components in the

same manner as for each constituent part.

L
(α)
corr,tot(t) = ηLDΛLD

(
cot

(
βℏΛLD

2

)
− i

)
exp(−ΛLDt)+

∞∑
n=1

2ηLDΛLDνn
βℏ(ν2n − Λ2

LD)
exp(−νnt)+

1

2
SHR
UOω

2
UO

[(
coth

(
βωUO

2

)
+ 1

)
exp(−iωUOt)+(

coth
(
βωUO

2

)
− 1

)
exp(iωUOt)

]
, (D.1.314)

such that:

iL
(α)
I,tot(t) =

iηLDΛLD

2
exp(−ΛLDt)− iSHR

UOω
2
UO sin(ωUOt), (D.1.315)

L
(α)
R,tot(t) = ηLDΛLD cot

(
βℏΛLD

2

)
exp(−ΛLDt)+

∞∑
n=1

2ηLDΛLDνn
βℏ(ν2n − Λ2

LD)
exp(−νnt)+

SHR
UOω

2
UO coth

(
βℏωUO

2

)
cos(ωUOt). (D.1.316)
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This form is in agreement with the analogous derivation by Tanimura157. It is

worth noting that this composite system only contains dissipation terms from

the Lorentz-Drude component based on the undamped and temperature

independent nature of the Matsubara decomposition of the undamped oscillator.

Additionally, this hierarchy will contain two additional Matsubara frequencies in

the shared Matsubara axis, when compared to the standard overdamped

equations of motion, hence we would expect similar numbers of hierarchy

elements and computational performance. The resulting form of the correlation

function - in exponential form - represents physically a memory-frequency

decomposition of the bath correlation. The exponential expansion of bath

correlation function dictates the structure of the HEOM being derived286–288.

The equations of motion

From our description of the density operator, equation (5.1.1), and the kernel

equations (D.1.315), (D.1.316) for iL(α)
I,tot and L

(α)
R,tot, we can differentiate the

density operator to generate an equation for the auxilliary density operators.

Introducing our two component baths into equation (5.1.1) results in

ρS(Qt,Q
′
t, t) =

∫∫ ∫ Qt

Q0

∫ Q′
t

Q′
0

exp(iSS[Qt]/ℏ)

(∏
n

Fn[Qt,Q
′
t]

)
×

exp(−iSS[Q′t])ρ0(Q0,Q
′
0, 0) D[Qt] D[Q′t] dQ0 dQ′0. (D.1.317)

Additionally we take the influence functional from equation (D.1.206) and recast

the correlation function using the defined kernels138,157,

F [Qt,Q
′
t] = exp

(
− i

ℏ

∫ t

0

∫ τ

0
B×(Qt,Q

′
t; τ)×

[
iL

(α)
I,tot(τ − τ ′)B◦(Qt,Q

′
t; τ
′)+

L
(α)
R,tot(τ − τ ′)B×(Qt,Q

′
t; τ
′)

]
dτ ′ dτ

)
. (D.1.318)

Following the derivation process outlined in Ishizaki and Tanimura150, we

write out the density matrix and input the kernels in order to simplify:

F [Qt,Q
′
t] = FLD ×FUO (D.1.319)
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FUO = exp

(
− i

ℏ

∫ t

0

∫ τ

0
SHR
UOω

2
UOB

×
k (Qt,Q

′
t; τ)×[

− i sin(ωUO(τ − τ ′))B◦k(Qt,Q
′
t; τ
′)+

coth

(
βℏωUO

2

)
cos(ωUO(τ − τ))B×k (Qt,Q

′
t; τ
′)

]
dτ ′ dτ

)
, (D.1.320)

or,

FUO = exp

(
− i

ℏ

∫ t

0

∫ τ

0

1

2
SHR
UOω

2
UOB

×
k (Qt,Q

′
t; τ)×[

exp(−iωUO(τ − τ ′))

(
coth

(
βℏωUO

2

)
B◦k(Qt,Q

′
t; τ
′) + B×k (Qt,Q

′
t; τ
′)

)
+

exp(iωUO(τ − τ ′))

(
coth

(
βℏωUO

2

)
B◦k(Qt,Q

′
t; τ
′)− B×(Qt,Q

′
t; τ
′)

)]
dτ ′ dτ

)
,

(D.1.321)

FLD = exp

(
− i

ℏ

∫ t

0

∫ τ

0
ηLDΛLDB

×(Qt,Q
′
t; τ)×[

− i exp(−ΛLD(τ − τ ′))B◦(Qt,Q
′
t; τ
′)+{

cot

(
βℏΛLD

2

)
exp(−ΛLD(τ − τ ′)) +

∞∑
n=1

2νn
βℏ(ν2n − Λ2

LD)
exp(−νn(τ − τ ′))

}
×

B×(Qt,Q
′
t; τ
′)

]
dτ ′ dτ

)
. (D.1.322)

From the definition of the Matsubara decomposition coefficients and frequencies

for the undamped mode we can introduce

Φ{·}(Qt,Q
′
t; τ) =

i

ℏ
B×{·}(Qt,Q

′
t; τ), (D.1.323)

Θk(Qt,Q
′
t; τ
′) =

1

2

[
(ck − c̃k)B

◦
k(Qt,Q

′
t; τ
′) + (ck + c̃k)B

×
k (Qt,Q

′
t; τ
′)

]
,

(D.1.324)

so that when γ1 = iωUO then

Θ1(Qt,Q
′
t; τ
′) =

1

2
SHR
UOω

2
UO

[
coth

(
βℏωUO

2

)
B◦1(Qt,Q

′
t; τ
′) + B×1 (Qt,Q

′
t; τ
′)

]
,

(D.1.325)
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and when γ2 = −iωUO

Θ2(Qt,Q
′
t; τ
′) =

1

2
SHR
UOω

2
UO

[
coth

(
βℏωUO

2

)
B◦2(Qt,Q

′
t; τ
′)− B×2 (Qt,Q

′
t; τ
′)

]
.

(D.1.326)

We can now write, based on the definition of γk and ck from equation (5.1.15),

FUO = exp

(
−
∫ t

0

∫ τ

0

∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′ dτ

)
.

(D.1.327)

We perform a similar set of substitutions to the overdamped component with

ϑ(Qt,Q
′
t; τ
′) = ηLD

[
cot

(
βℏΛLD

2

)
B×(Qt,Q

′
t; τ
′)− iB◦(Qt,Q

′
t; τ
′)

]
, (D.1.328)

Ψn(Qt,Q
′
t; τ
′) =

∞∑
n=1

2ηLDΛLDνn
βℏ(ν2n − Λ2

LD)
B×(Qt,Q

′
t; τ
′), (D.1.329)

such that

FLD = exp

(
−
∫ t

0

∫ τ

0
Φ(Qt,Q

′
t; τ)ϑ(Qt,Q

′
t; τ
′)ΛLD exp(−ΛLD(τ−τ ′)) dτ ′ dτ

)
×

∞∏
n=1

exp

(
−
∫ t

0

∫ τ

0
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ
′)νn exp(−νn(τ − τ ′)) dτ ′ dτ

)
.

(D.1.330)

From these substitutions we can write the full influence functional for the

composite system as

F = exp

(
−
∫ t

0

∫ τ

0

∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′ dτ

)
×

exp

(
−
∫ t

0

∫ τ

0
Φ(Qt,Q

′
t; τ)ϑ(Qt,Q

′
t; τ
′)ΛLD exp(−ΛLD(τ − τ ′)) dτ ′ dτ

)
×

∞∏
n=1

exp

(
−
∫ t

0

∫ τ

0
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ
′)νn exp(−νn(τ − τ ′)) dτ ′ dτ

)
.

(D.1.331)

We now briefly consider the termination of the infinite number of Matsubara

frequencies for the overdamped component. For a value of K, which satisfies

νK = 2πK/βℏ ≫ ω0 - where ω0 is the fundamental frequency of the system -

then νn exp(−νn(τ − τ ′)) ≈ δ(τ − τ ′), n ≥ K + 1. This simplifies the influence
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functional

F = exp

(
−
∫ t

0

∫ τ

0

∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′ dτ

)
×

exp

(
−
∫ t

0
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ) dτ

[
−
∫ τ

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
])

×

K∏
n=1

exp

(
−
∫ t

0
Φ(Qt,Q

′
t; τ) exp(−νnτ) dτ

[
−
∫ τ

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
])

×

∞∏
n=K+1

exp

(∫ t

0
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ) dτ

)
. (D.1.332)

This allows us to terminate the Matsubara axis. In order to derive the equations

of motion we additionally introduce the equation for the auxiliary density

operators. This equation takes the same form as the influence functional,

omitting −Φ(Qt,Q
′
t; τ) as noted in the supplemental material of Seibt and

Mancal325, raised to the power of the ADO number. This creates the hierarchy

ADO structure with each order in the hierarchy decreasing by an order of

magnitude - as a consequence of the exponent. We introduce the auxiliary

operator, ρ(m,lk)
j1...jK

, by its matrix element as150.

ρ
(m,lk)
j1...jK

(Qt,Q
′
t; t) =

∫ Qt(t)

Qt(t0)

∫ Q′
t(t)

Q′
t(t0)

exp

(
iSS[Qt,Q

′
t]

ℏ

)
F×

exp

(
−iSS[Qt,Q

′
t]

ℏ

)
ρ0(Qt0 ,Q

′
t0 ; t0)×

∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn

D[Qt] D[Q′t].

(D.1.333)

In order to differentiate this to form the equations of motion, we successively
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apply the product rule. To simplify this process we call

χ[Qt,Q
′
t, t] = ρ0(Qt0 ,Q

′
t0 ; t0)×

∏
k

{∫ t

0
exp(−γk(t−τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn

, (D.1.334)

so that

ρ
(m,lk)
j1...jK

(Qt,Q
′
t, t) = exp

(
iSS[Qt,Q

′
t]

ℏ

)
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t].

(D.1.335)

Hence,

∂

∂t
ρ
(m,lk)
j1...jK

(Qt,Q
′
t, t) =

∂

∂t

{
exp

(
iSS[Qt,Q

′
t]

ℏ

)
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}
,

(D.1.336)

apply the chain rule, by inspection as we have done previously, on the first

instance of the product rule

=
i

ℏ
∂SS [Qt,Q

′
t]

∂t
exp

(
iSS[Qt,Q

′
t]

ℏ

){
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}
+

exp

(
iSS[Qt,Q

′
t]

ℏ

)
∂

∂t

{
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}
, (D.1.337)

perform the next of the successive product rules

=
i

ℏ
∂SS[Qt,Q

′
t]

∂t
exp

(
iSS[Qt,Q

′
t]

ℏ

){
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}
+

exp

(
iSS[Qt,Q

′
t]

ℏ

)[
∂F
∂t

{
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}

+ F ∂

∂t

{
exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}]
, (D.1.338)
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perform the last product rule

=
i

ℏ
∂SS[Qt,Q

′
t]

∂t
exp

(
iSS[Qt,Q

′
t]

ℏ

){
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}
+

exp

(
iSS[Qt,Q

′
t]

ℏ

)[
∂F
∂t

{
F exp

(
−iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]

}

+ F

{
− i

ℏ
∂SS [Qt,Q

′
t]

∂t
exp

(
− iSS[Qt,Q

′
t]

ℏ

)
χ[Qt,Q

′
t, t]+

exp

(
− iSS[Qt,Q

′
t]

ℏ

)
∂χ[Qt,Q

′
t, t]

∂t

}]
, (D.1.339)

which we can expand and simplify to

∂

∂t
ρ
(m,lk)
j1...jK

=
i

ℏ
∂SS
∂t
ρ
(m,lk)
j1...jK

+
∂F
∂t
ρ
(m,lk)
j1...jK

+

(
− i

ℏ

)
∂SS
∂t
ρ
(m,lk)
j1...jK

+
∂χ

∂t
ρ
(m,lk)
j1...jK

.

(D.1.340)

We now consider the integral of F and χ, first we take F . By applying the chain

rule the first set of products are converted to sums,

∂F
∂t

=
∂

∂t

{
−
∫ t

0

∫ τ

0

∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′ dτ+(∫ t

0
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)×

[
−
∫ τ

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

dτ

)
+

K∑
n=1

(∫ t

0
Φ(Qt,Q

′
t; τ) exp(−νnτ)×

[
−
∫ τ

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

dτ

)

+
∞∑

n=K+1

(∫ t

0
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ) dτ

)}
F . (D.1.341)

To compute this derivative we will have to apply Leibniz’ integral rule on each of

the three terms.

∂F
∂t

= −
∫ t

0

∑
k

Φk(Qt,Q
′
t; t) exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

+−
∫ t

0

∫ τ

0

∂

∂t

(∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′)

)
dτ ′ dτ+

∂

∂t

{(∫ t

0
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)×

[
−
∫ τ

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

dτ

)
+

K∑
n=1

(∫ t

0
Φ(Qt,Q

′
t; τ) exp(−νnτ)×

[
−
∫ τ

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

dτ

)

+
∞∑

n=K+1

∫ t

0
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ) dτ

}
F , (D.1.342)
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During the second application of Leibniz’ rule we have to additionally apply the

product rule on the integrand,

∂F
∂t

= −
∫ t

0

∑
k

Φk(Qt,Q
′
t; t) exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

−
∫ t

0

∫ τ

0

∂

∂t

(∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′)

)
dτ ′ dτ+

+Φ(Qt,Q
′
t; t) exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

+

{∫ t

0

∂

∂t

(
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)

)
×

[
−
∫ τ

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

dτ+

∫ t

0
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)×

[
−
∫ τ

0

∂

∂t

(
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′)

)
dτ ′
]

dτ

}
+

∂

∂t

{
K∑

n=1

(∫ t

0
Φ(Qt,Q

′
t; τ) exp(−νnτ)×

[
−
∫ τ

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

dτ

)

+

∞∑
n=K+1

∫ t

0
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ) dτ

}
F , (D.1.343)

and the same process is used on the penultimate term

∂F
∂t

=

[
−
∫ t

0

∑
k

Φk(Qt,Q
′
t; t) exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

−
∫ t

0

∫ τ

0

∂

∂t

(∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′)

)
dτ ′ dτ+

+Φ(Qt,Q
′
t; t) exp(−ΛLDt)×

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

+

{∫ t

0

∂

∂t

(
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)

)
×

[
−
∫ τ

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

dτ+

∫ t

0
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)×

[
−
∫ τ

0

∂

∂t

(
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′)

)
dτ ′
]

dτ

}
+{

K∑
n=1

Φ(Qt,Q
′
t; t) exp(−νnt)×

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

−
K∑

n=1

{∫ t

0

∂

∂t

(
Φ(Qt,Q

′
t; τ) exp(−νnτ)

)
×

[
−
∫ τ

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

dτ+

K∑
n=1

∫ t

0
Φ(Qt,Q

′
t; τ) exp(−νnτ)×

[
−
∫ τ

0

∂

∂t

(
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′)

)
dτ ′
]

dτ

}

+
∂

∂t

∞∑
n=K+1

∫ t

0
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ) dτ

]
F , (D.1.344)
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and the final application:

∂F
∂t

=

[
−
∫ t

0

∑
k

Φk(Qt,Q
′
t; t) exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

−
∫ t

0

∫ τ

0

∂

∂t

(∑
k

Φk(Qt,Q
′
t; τ) exp(−γk(τ − τ ′))Θk(Qt,Q

′
t; τ
′)

)
dτ ′ dτ+

+Φ(Qt,Q
′
t; t) exp(−ΛLDt)×

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

+

{∫ t

0

∂

∂t

(
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)

)
×

[
−
∫ τ

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

dτ+

∫ t

0
Φ(Qt,Q

′
t; τ) exp(−ΛLDτ)×

[
−
∫ τ

0

∂

∂t

(
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′)

)
dτ ′
]

dτ

}
+{

K∑
n=1

Φ(Qt,Q
′
t; t) exp(−νnt)×

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

+
K∑

n=1

{∫ t

0

∂

∂t

(
Φ(Qt,Q

′
t; τ) exp(−νnτ)

)
×

[
−
∫ τ

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

dτ+

K∑
n=1

∫ t

0
Φ(Qt,Q

′
t; τ) exp(−νnτ)×

[
−
∫ τ

0

∂

∂t

(
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′)

)
dτ ′
]

dτ

}

+

∞∑
n=K+1

Φ(Qt,Q
′
t; t)Ψn(Qt,Q

′
t; t)+

∞∑
n=K+1

∫ t

0

∂

∂t

(
Φ(Qt,Q

′
t; τ)Ψn(Qt,Q

′
t; τ)

)
dτ

]
F .

(D.1.345)

First, since none of the integrands are explicitly dependent on time, or

∂Φ(Qt,Q
′
t; τ)/∂t = ∂Θ(Qt,Q

′
t; τ
′)/∂t = ∂ϑ(Qt,Q

′
t; τ
′)/∂t = ∂Ψn(Qt,Q

′
t; τ
′)/∂t =

0, we can simplify to three terms

∂F
∂t

=

{
−
∫ t

0

∑
k

Φk(Qt,Q
′
t; t) exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

+Φ(Qt,Q
′
t; t) exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]

+

K∑
n=1

Φ(Qt,Q
′
t; t) exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]

+

∞∑
n=K+1

Φ(Qt,Q
′
t; t)Ψn(Qt,Q

′
t; t)

}
F , (D.1.346)
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∂F
∂t

= −Φtot(Qt,Q
′
t; t)

{∫ t

0

∑
k

exp(−γk(t− τ ′))Θk(Qt,Q
′
t; τ
′) dτ ′+

− exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]
+

−
K∑

n=1

exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]
−

∞∑
n=K+1

Ψn(Qt,Q
′
t; t)

}
F .

(D.1.347)

Here we notice that we have generated −Φtot(Qt,Q
′
t; t) (which is −Φ when

applied to LD terms and −Φk when applied to UO terms) lots of the product

contained within the equation for the ADO matrix element, equation (D.1.333).

This can combine with these components to introduce ADO raising terms in

each axis in the equations of motion: m, lk, and jn. Next considering χ and

differentiating we get

∂

∂t
χ[Qt,Q

′
t, t] =

∂

∂t

(
ρ(qt0 , q

′
t0 ; t0)×

∏
k

{∫ t

0
exp(−γk(t−τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

, (D.1.348)

The initial condition can be factorised out of this equation in manner equivalent

to Seibt and Mancal289 such that

∂

∂t
χ[Qt,Q

′
t, t] =

∂

∂t

(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

, (D.1.349)

apply the product rule to separate into individual derivatives and then use the
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Leibniz’ rule to evaluate them.

∂

∂t
χ[Qt,Q

′
t, t] =

(∏
k

∂

∂t

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

+

(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×

∂

∂t

{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

+

(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

∂

∂t

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

. (D.1.350)

Take each component in isolation, for ease, and apply the chain rule. Define

χ1 =
∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn

, (D.1.351)
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Component 1 becomes

∏
k

∂

∂t

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn

=

lk
∏
k

∂

∂t

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}
×{

exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn

× χ
l−k
1 , (D.1.352)

where χ
l−k
1 indicates a reduction by one from lk in the first component of the

derivative of χ. Apply Leibniz’ rule

=(∏
k

lkΘk(Qt,Q
′
t; t)−

∏
k

lkγk
∂

∂t

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}
+{∏

k

lk

∫ t

0
exp(−γk(t− τ ′))

∂Θk(Qt,Q
′
t; τ
′)

∂t
dτ ′
})

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

× χ
l−k
1 , (D.1.353)

which simplifies to

1 =(∏
k

lkΘk(Qt,Q
′
t; t)− lkγk

∂

∂t

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}
+{

exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

× χ
l−k
1 . (D.1.354)
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We now take the second term in the derivative of χ: 2

(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×

∂

∂t

{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

, (D.1.355)

then apply the chain rule

(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×

∂

∂t

{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

=(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×

m

{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

× χm−
1 ,

(D.1.356)

where χm−
1 indicates a reduction by one from m in the second component of the
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derivative of χ. Now apply Leibniz’ rule

= (∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
−mΛLD exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]
+

−m exp(−ΛLDt)ΛLDϑ(Qt,Q
′
t; t) exp(ΛLDt) +

m exp(−ΛLDt)

[
−
∫ t

0
ΛLD

∂ϑ(Qt,Q
′
t; τ
′)

∂t
exp(ΛLDτ

′) dτ ′
]}

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

× χm−
1 ,

(D.1.357)

which simplifies to

2 = (∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
mΛLD exp(−ΛLDt)

[∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]
−mΛLDϑ(Qt,Q

′
t; t)

]}
×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

× χm−
1 ,

(D.1.358)

Since the third term in the derivative of χ is identical in form to the first term,

we can perform this derivative by inspection to yield:

3 = (∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
jnνn exp(−νnt)

[∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]
−

jnνnΨn(Qt,Q
′
t; t)

]}
× χj−n

1 , (D.1.359)
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where χj−n
1 indicates a reduction by one from jn in the third component of the

derivative of χ. If we recombine 1 , 2 and 3 , then we get:

∂

∂t
χ[Qt,Q

′
t, t] =[(∏

k

lkΘk(Qt,Q
′
t; t)− lkγk

∂

∂t

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}
+{

exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

× χ
l−k
1 +

(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
mΛLD exp(−ΛLDt)

[∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]
−

mΛLDϑ(Qt,Q
′
t; t)

]}
×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn)

× χm−
1 +

(∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
jnνn exp(−νnt)

[∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]
−

jnνnΨn(Qt,Q
′
t; t)

]}
× χj−n

1

]
. (D.1.360)

By looking at the form of χ, in equation (D.1.334), it is clear that we have

regenerated the original components in each of 1 , 2 and 3 allowing us to

return χ
l−k
1 , χm−

1 , and χj−n
1 to χ while additionally introducing ADO lowering

terms.

∂

∂t
χ[Qt,Q

′
t, t] =

∏
k

lkΘ(Qt,Q
′
t; t)χ

l−k
1 −mΛLDϑ(Qt,Q

′
t; t)χ

m−
1 −

K∏
n=1

jnνnΨn(Qt,Q
′
t; t)χ

j−n
1 −

∏
k

(lkγk +mΛLD)χ−
K∏

n=1

jnνnχ. (D.1.361)
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where

χ =
∏
k

{∫ t

0
exp(−γk(t− τ ′))Θk(Qt,Q

′
t; τ
′) dτ ′

}lk

×{
exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]}m

×

K∏
n=1

{
exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]}jn

(D.1.362)

We can now recombine these components into equation D.1.340, which takes the

form:

∂

∂t
ρ
(m,lk)
j1...jK

=
i

ℏ
∂SS
∂t
ρ
(m,lk)
j1...jK

+
∂F
∂t
ρ
(m,lk)
j1...jK

+

(
− i

ℏ

)
∂SS
∂t
ρ
(m,lk)
j1...jK

+
∂χ

∂t
ρ
(m,lk)
j1...jK

.

(D.1.363)

∂

∂t
ρ
(m,lk)
j1...jK

=
i

ℏ
∂SS[Qt]

∂t
ρ
(m,lk)
j1...jK

+

(
− i

ℏ

)
∂SS[Q

′
t]

∂t
ρ
(m,lk)
j1...jK

+(
− Φtot(Qt,Q

′
t; t)

{∫ t

0

∑
k

exp(−γk(t− τ ′))Θk(Qt,Q
′
t; τ
′) dτ ′+

exp(−ΛLDt)

[
−
∫ t

0
ΛLDϑ(Qt,Q

′
t; τ
′) exp(ΛLDτ

′) dτ ′
]
+

K∑
n=1

exp(−νnt)

[
−
∫ t

0
νnΨn(Qt,Q

′
t; τ
′) exp(νnτ

′) dτ ′
]
−

∞∑
n=K+1

Ψn(Qt,Q
′
t; t)

}
F

)
ρ
(m,lk)
j1...jK

+(∏
k

lkΘ(Qt,Q
′
t; t)χ

l−k
1 −mΛLDϑ(Qt,Q

′
t; t)χ

m−
1 −

K∏
n=1

jnνnΨn(Qt,Q
′
t; t)χ

j−n
1 −

∏
k

(lkγk +mΛLD)χ−
K∏

n=1

jnνnχ

)
ρ
(m,lk)
j1...jK

, (D.1.364)

which given the form of the ADO matrix element, in equation (D.1.333), allows
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us to reduce this equation to

∂

∂t
ρ
(m,lk)
j1...jK

=

(
i

ℏ
∂SS[Qt]

∂t
− i

ℏ
∂SS[Q

′
t]

∂t
+

∞∑
n=K+1

Φ(Qt,Q
′
t; t)Ψn(Qt,Q

′
t; t)

)
ρ
(lk,m)
j1...jK

−(
Φρ

(m+1,lk)
j1...jK

+
∑
k

Φkρ
(m,lk+1)
j1...jK

)
−

∑
k

K∑
n=1

Φk(Qt,Q
′
t; t)ρ

(m,lk)
j1...jn+1...jK

−
∑
k

lkΘk(Qt,Q
′
t; t)ρ

(m,lk−1)
j1...jK

−∑
k

mΛLDϑ(Qt,Q
′
t; t)ρ

(m−1,lk)
j1...jK

−

K∑
n=1

jnνnΨn(Qt,Q
′
t; t)ρ

(m,lk)
j1...jn−1...jK

−
∑
k

(lkγk +mΛLD)ρ
(m,lk)
j1...jK

−
K∑

n=1

jnνnρ
(m,lk)
j1...jK

.

(D.1.365)

This simplifies to:

∂

∂t
ρ
(m,lk)
j1...jK

=

(
− i

ℏ
H×S −

∑
k

(lkγk +mΛLD)−
K∑

n=1

jnνn+

∞∑
n=K+1

B×Ψn

)
ρ
(m,lk)
j1...jK

−

∑
k

lkΘkρ
(m,lk−1)
j1...jK

−mΛLDϑρ
(m−1,lk)
j1...jK

−
K∑

n=1

jnνnΨnρ
(m,lk)
j1...jn−1...jK

−(
B×ρ

(m+1,lk)
j1...jK

+
∑
k

B×k ρ
(m,lk+1)
j1...jK

)
−

K∑
n=1

B×ρ
(m,lk)
j1...jn+1...jK

. (D.1.366)

Upon first inspection it may appear that there is an absent factor of γk in the

creation term from the (lk − 1)th Matsubara axis, however this is not the case.

Based on the reduction criteria for the infinite Matsubara components, which for

the overdamped contribution is:

νK =
2πK

βℏ
≫ ω0, (D.1.367)

we reduce to a delta function for a sufficient value of K. However, such a

reduction cannot be performed for the undamped component. The undamped

contribution introduces a pair of Matsubara decomposition coefficients and

frequencies, as opposed to an infinite number, and as such a sufficient value of

K being chosen is unlikely. This lack of reduction motivates the current

derivation and it results in factors of (ck ± c̃k) in Θk, which (based on the form

of ck in equation (5.1.15)) accounts for the apparent missing factor of γk.
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For the condition

∑
k

(lkγk+mΛLD)+
K∑

n=1

jnνn ≫ ω0

min(I(νk),R(νn))
, =⇒ Γmax = 10 max

(
I(γk)

)
.

(D.1.368)

This criterion terminates the over and undamped axes through one condition,

leading to self-similar hierarchy volumes, where the overdamped termination is

considerably more stringent than necessary. A two step termination process could

be introduced as future work which terminates these axes separately.

Subsequently, the infinite hierarchy can be truncated by the terminator:

∂

∂t
ρ
(m,lk)
j1...jK

≈

(
− i

ℏ
H×S −

∑
k

lkγk +

∞∑
n=K+1

B×Ψn

)
ρ
(m,lk)
j1...jK

. (D.1.369)

Here, the phonon contributions from the system characteristic damping rate

vanish as they are a purely real decay, whereas the purely imaginary oscillating

components persist. This can be rationalised through the limit of infinite time,

all contributions with an associated damping will vanish leaving only oscillatory

components after the application of the Markovian criterion. This can be

rewritten as164

∂

∂t
ρ
(m,lk)
j1...jK

≈

(
− i

ℏ
H×S − i(l0 − l1)ωUO +

∞∑
n=K+1

B×Ψn

)
ρ
(m,lk)
j1...jK

. (D.1.370)

Since the undamped oscillator component contributes a pair of Matsubara

decomposition frequencies and coefficients, we expect the number of hierarchy

elements to be only slightly greater than that of an overdamped EOM.
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E Imaginary Time and Resultant
Frequencies

E.1 Imaginary Time

The density matrix permits calculation of all static and dynamic properties of an

OQS at thermal equilibrium360,361. From this statistical description expectation

values can be constructed which generate equilibrium values, associated with the

density matrix, for any given operator. Therefore, the expectation of an operator

N within a thermal ensemble of harmonic oscillators at temperature T can be

written as

⟨N⟩ =
∑
j

Nj exp(−βEj), (E.1.1)

where Ej is the energy of the jth state. This description involves the inverse

temperature β and the associated energy of the states. This can be related to

the evolution of a superposition of basis states through time, t, via the familiar

unitary evolution operation discussed in section 2.1, equation (2.2.25). This

results in 〈
N

∣∣∣∣∣ exp(− iHt

ℏ

)∣∣∣∣∣ψ
〉

=
∑
j

Nj exp
(
− itEj

ℏ

)
. (E.1.2)

It is clear from these two forms that moving from statistical mechanics and the

description of the partition function, to a quantum field theoretic approach

results in β = 1
kBT

= it
ℏ . This corresponds to a Wick rotation of the temperature

dependent terms onto the imaginary axis in the complex plane, and is used as a

means of solving mathematical problems through movement from Lorentzian

(Minkowski) to Euclidean space.

This concept seamlessly links to the concept of discretised Euclidean path

integrals, which are a simplification of full path integrals which are discussed in

appendix C. An evolution between a state Q′t and Qt can be expressed in terms

of a discretised partition function,〈
Qt

∣∣∣∣∣ exp(− iHt

ℏ

)∣∣∣∣∣Q′t
〉

=

∫ ωFV(t)=Qt

ωFV(0)=Q′
t

exp
(
− SEuc[ωFV]

ℏ

)
D[ωFV], (E.1.3)

where ωFV is a molecular coordinate variable (similar to X and Q in chapter 1)

and FV denotes Feynman-Vernon. In this description an integral is performed
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over all trajectories which start at Q′t and end at Qt, and therefore is a

superposition of Euclidean action362.

E.2 Frequencies Arising from Imaginary Time

Solutions of EOMs in systems with many degrees of freedom can be achieved

through a Matsubara Green’s function, which is named for its similarity to

standard Green’s functions which solve ordinary differential equations. The

evolution of an arbitrary wavefunction can be expressed in terms of a Green’s

function362,363, which is the propagator of the associated dynamics, as

V(jt, j′t′) = −iθG(t− t′)

〈
ψj

∣∣∣∣∣ exp(− iHt

ℏ

)∣∣∣∣∣ψ′j
〉
. (E.2.1)

The propagator depends on imaginary time, or Wick transformed temperature,

and contains system states |ψ′j⟩ and ⟨ψj | corresponding to initial and final

conditions of the evolution. In this form θG, denoted G for Green’s function, is

the step function. When the imaginary time is restricted so that it is greater than

zero but less than the inverse temperature364 this can be Fourier transformed

resulting in

Ṽ(k, νn) =
1

ζk − iνn
, (E.2.2)

where νn is defined as the Matsubara frequency,

νn =
2πn

βℏ
. (E.2.3)

These frequencies emerge as a consequence of integration of periodic signals in

imaginary time, with period ℏβ, which result in singularities in Fourier space.

This form of frequency arises in the context of correlation functions and

canonical partition functions as poles of the distribution function. Examples of

such distribution functions include the Bose-Einstein distribution

nB = (exp(βℏ)− 1)−1 and spectral densities, such as those considered in section

2.2.2.2. The spectral density is expanded in a series of these fundamental

frequencies, generated from a contour integral which is discussed in appendix

D, during generation of a HEOM. Subsequently, these frequencies are used to

generate a set of dimensions which house the auxiliary density operators of the

HEOM.
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F Application of Highly
Structured Spectral Densities

F.1 Intermediate Homogeneities as a Voigt Profile

As discussed in the previous studies, the 2DES lineshape can range from an

elliptical peak, due to inhomogeneous broadening, to rounded and symmetrical

when homogeneous components dominate the spectrum. If the 2D peaks are

projected onto anti-diagonal and diagonal axes, similar to a 1D linear spectrum,

then it is clear that this structure arises from the limits of Gaussian and

Lorentzian 1D lineshape. As discussed in section 2.4.3.2, spectral lineshape is a

manifestation of the system-bath interaction where homogenenous broadening

is a result of uncertainty regarding the transition frequency during stochastic

perturbation and subsequently is proportional to T ∗2 pure dephasing110,242. In

contrast, the inhomogenenous broadening is directly impacted by the

homogeneity of the environment ensemble, where diagonal peak elongation can

result from a Gaussian distribution of ensemble transition frequencies in the

static limit138,268. This is depicted in figure 2.2.11. These features lead the 1D

spectrum of the diagonal and anti-diagonal to range from a Lorentzian, such as

in the thermally averaged limit of an overdamped spectral density, to a

Gaussian, such as in the static limit of an inhomogenenous overdamped

environment365. Intermediate character which is neither a perfect Guassian or

Lorentzian exists between the limiting cases resulting in 2DES peaks which are

neither circular or elliptical, depicted in figure F.1.1.

This intermediate character can be described by a Voigt profile, which is a

convolution of a Gaussian and a Lorentzian,

JVoigt(ω; ∆G,ΓL) =

∫ ∞
−∞

G(ω′; ∆G)L(ω − ω′; ΓL) dω′, (F.1.1)

where37

G(ω;σg) =
1

σg
√
2π

exp

(
− (ω − ωeg)

2

2σ2g

)
, (F.1.2)

and

L(ω; ΓL) =
1

π

ΓL

(ω − ωeg)2 + Γ2
L

, (F.1.3)

Where G and L are Guassian and Lorentzian functions, respectively. This
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function, which presents a hybrid of Lorentzian and Gaussian behaviour can be

used to describe intermediate 1D lineshape broadenings such as those in figure

F.1.1 f).

Similarly, underdamped modes are described with a Lorentzian spectral

density, and strongly overdamped environments with red-shifted Gaussian

profiles. In a multi-bath OQS, with n > 1, such as the model proposed by

Tanimura in ref. 157 and the model in section 3.2 a combined over and

underdamped spectral density could take the form of a Voigt profile. This would

correspond to a single strong mode with damping from a Gaussian distribution

of inhomogeneous molecules. Such an approach would be possible through

application of the ASD-HEOM, (2.5.4.3) derived in D.1.10.3, allowing for a

range of homogeneities contained within a single spectral density.

However, this approach still suffers from a number of the drawbacks

associated with other HEOMs. As this requires the ASD-HEOM for evolution of

the density matrix, it will still suffer from basis failure at critical values of

damping discussed in section D.1.10, and demonstrated in the results of section

3.1 in the data where the damping strength and subsumed vibrational mode are

approximately equivalent in size. Additionally, while this offers options for

additional combinations of homogeneity in the environment, it does not address

the source of intrinsic canonical damping as a consequence of canonically

subsuming a vibrational mode, and therefore will suffer the same broadening

problems as the results in section 3.2.

F.2 Delta Function Spectral Densities

In contrast, application of the ASD-HEOM with a delta function spectral density

will entirely remove the canonical damping due to the broadening of the peak,

due to its infinitesimal width. This is equivalent to taking the limit of vanishing

width of a Lorentzian spectral density, but by-passes the associated failure of the

truncation criterion as a consequence of the more complex dynamics associated

with solving an integro-differential equation. The following spectral density,

Jdel(ω) = δ(ω − ω0), (F.2.1)

results in an undamped hierarchy, when applied to equation (2.5.4.3), with a

continually oscillating correlation function associated with an entirely static

environment in which each ensemble mode interacts with the system uniquely.

The spectral density is centred at the vibrational mode frequency of the system

of interest, ω0, so that this construction is equivalent to the canonical

transformation of an intramolecular vibration when there is zero added

362



Appendix F: Application of Highly Structured Spectral Densities

damping. Based on the construction of the ASD-HEOM, discussed in appendix

D, this EOM is equivalent to undamped hierarchies discussed by Tanimura et.

al.118,149.

A model vibronic monomer is generated with a fundamental transition

frequency, ω(ν)
eg = 10 000 cm−1, a dimensionless excited state displacement

factor, d̃ = 1.09 resulting in a system reorganisation energy of λ(ν) = 300 cm−1,

and a vibrational mode frequency of ω(ν)
0 = 500 cm−1. This system is coupled to

a delta function spectral density with a bath reorganisation energy of

η(ν) = 20 cm−1 through a purely dephasing operator, as applied in section 3.2,

B = σz. As expected of an infinitesimally thin spectral density, system-bath

interaction occurs through the filtering property of the delta function, and

correlation will persist indefinitely within the system resulting in a continuous

polarisation. In order to generate a 2D spectrum, and linear spectrum with

readable peaks it is necessary to force the polarisation to partially decay during

calculation. This is achieved by implementation of a Hamming function to force

decay, discussed in detail in section 2.5.6.2. The Hamming apodisation function,

wHam(n) = a0

(
1− cos

(2πn
N

))
, (F.2.2)

for a domain [0, N ] and where a0 = 0.54, limits the oscillating component in a

fashion equivalent to the process of noise elimination applied in experimental

set-ups, discussed in section 2.5.6.2, so that a 2D spectrum can be generated.

Figure F.2.1 shows the resultant 2DES and BLP measure associated with the delta

function spectral density for a vibronic monomer.

Due to computational restraints the 2DES spectra must be calculated for a

similar strongly undamped mode, rather than pure undamped mode, using the

uHEOM, but the BLP metric is found from the ASD-HEOM. This is because of

the increased computational demand for arbitrary spectral densities, coupled to

the increased computational demand for pure vibrational modes. The resultant

2D spectrum contains a sharp Lorentzian peak at the fundamental transition

and is surrounded by many equally broad peaks as a consequence of the static

environment. These are found at integer multiples of the vibrational mode

frequency away from the fundamental in all directions and are especially

present in the spectrum as a result of the non-decaying correlation which is

expected for an unerdamped mode. Each of these peaks is sharp and Lorentzian,

with the only broadening introduced via the sharp Lorentzian spectral density

function, which leads to minimal (but non-zero) canonical damping and range

of system-environment interactions at every different frequency within the

ensemble.

In addition, the BLP metric is shown for the comparable ASD-HEOM model of
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Figure F.2.1: a) – c) 2DES for a vibronic monomer at T = 0, 50, and 100 fs
generated from a strongly undamped uHEOM (with similar computational limits
as the ASD-HEOM). Spectra shown do not include application of the Hamming

window to demonstrate the difficulty of calculation with pure
undamped/underdamped modes. d) – f) the associated cumulative

non-Markovianity, the positive flux, and the form of the spectral density,
calculated from the ASD-HEOM.

an undamped mode. There are clear parallels with the results from section 3.1,

with a consistent feedback of information as a result of non-Markovian feedback

from the environment. Since this mode is entirely undamped, this is the purest

form of non-Markovian feedback corresponding to the impact of a single mode

in isolation. There is a continuous, regular, sinusoidal feedback of information

from the bath to the system of interest. Building up an ensemble of modes, as is

performed when generating a spectral density from delta functions, creates a

superposition of oscillating recurrence signatures which focus the information

flux into a more structured profile. When the global system behaviour is

Markovian, such as for a vibronic monomer which is discussed in section 4.1,

this leads to a red-shifted Guassian profile corresponding to an instantaneous

reaction to the environment at t = 0 reflecting, for example, a rapid

reorganisation of solvent molecules upon excitation of the solute. Similarly if
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this collection of delta functions leads to an underdamped distribution then a

sharp Lorentzian peak, mimicking a delta function but with associated breadth,

is generated. This generates a continual non-Markovian feedback, as shown in

figure 3.1.6, much like the delta function mode, but with an additional

instantaneous solvent reorganisation contribution. Summation of contributions

at specific transition frequencies, equivalent to the delta function result in figure

F.2.1, is capable of generating a full spectrum of behaviour. One such spectral

density is shown in appendix F.

However, while the ASD-HEOM has been able to generate undamped

hierarchies equivalent to those in work by Tanimura et. al.149,157,164, it too

suffers from problems which relate to its construction. Equivalent to all other

HEOM methods, excluding the gHEOM, this method is constructed with an

expansion of Matsubara frequencies as an exponential basis. This formulation,

while effective for certain spectral densities, fails in the critical damping limit

when γ{·} ≈ ω0. This is due to a singularity in the necessary expansion when at

the critical damping value. Despite its breadth of acceptable homogeneities and

environments, due to accepting highly structured spectral densities, it is still

fundamentally restricted by the basis and its constituent expansion. The

additional structured spectral densities are extremes of the current range of

damping. Methods which expand this through an arbitrary choice of basis, such

as the gHEOM, represent a much broader range of accessible environments,

including critical damping.

As a consequence of the arbitrary spectral density, the ASD-HEOM dynamics

are more complex than for other simpler HEOMs for specific spectral densities.

The EOM is split into specific layers corresponding to the interaction with

integer multiples of phonons within the system, analogous to the structure of

Matsubara dimensions discussed in section 2.5.5. Subsequently, each additional

layer constitutes a significant increase in computational complexity as many

additional multiples of phonons, dependent on the system, must be considered.

This scales exponentially, based on the order n exponent of the auxiliary density

matrix element. Therefore, generation of fully accurate spectra will require a

sufficiently large number of layers to incorporate all necessary phonon

interactions. As a consequence of the increased size of Matsubara dimenion

vectors, corresponding to ADO number, extending beyond the second layer of

the ASD-HEOM is infeasible as discussed in sections 2.5.5 and 2.5.4. With

appropriate scaling, and sufficiently more computational power, the ASD-HEOM

could be a very powerful tool for probing the system-bath boundary as it is

tractable in the limit of vanishing canonical damping. However, in this thesis, a

less computationally expensive alternative is proposed in section 5.
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G Supplement to Quantum
Information

G.1 Analysis of Virtual Information Flux

As a supplement to the analysis in section 3.3, an analysis of the virtual

information movement within ADOs is considered for a two-level-system,

analogous to the model in section 3.1, which corresponds to the HVM, and an in

depth analysis of phonon contributions to the hierarchy.

G.1.1 HVM Vibronic Monomers

Figure G.1.1 shows the normalised trace distance, flux, positive flux, and BLP

for a TLS subject to three differing Markovianity constraints. The cutoff is set to

an incredibly low value, corresponding to a very restrictive Markovian regime,

in order to isolate a minimum of ADOs. This constraint is then increased in

increments of 50 cm−1 so that the number of auxiliaries increases by one with

each increment. In this way, the impact of successively adding a single ADO can

be examined, and the virtual information that an ADO contains can be analysed.

Figure G.1.1 shows the BLP with three of the Markovianity constraints:

gammamax = 1 =⇒ Γ(ν)
max = 50 cm−1,

gammamax = 2 =⇒ Γ(ν)
max = 100 cm−1, and

gammamax = 3 =⇒ Γ(ν)
max = 150 cm−1.

Column a) contains the results when only the density matrix evolution is within

the hierarchy. Column b) introduces a single ADO leading to an immediate

increase in the total BLP as a consequence of phonons and virtual information

being free to recur from the environment. The addition of a single ADO does not

just impact the hierarchy locally, but globally, as is demonstrated by the fact the

flux of the density matrix is altered by interactions with an additional auxiliary,

leading to a non-Markovian feedback which is not present when

Γ
(ν)
max = 50 cm−1. Column c) introduces another single ADO to the total

hierarchy. These results show that each successive ADO has a more rapidly

decaying trace distance, and a sharper initial peak of non-Markovianity. This is

in agreement with the results from section 3.1 and is due to instantaneous

366



Appendix G: Supplement to Quantum Information

Figure G.1.1: TLS model system showing an ADO by ADO increase along the
first Matsubara axis. Normalised, flux, and BLP against time in ps. Column a):
Γ
(ν)
max = 50 cm−1, column b): Γ(ν)

max = 100 cm−1, column c): Γ(ν)
max = 150 cm−1.

solvent reorganisation. As the tier increases the contributions are due to larger

multiples of phonons, reducing the interaction timescale, and shifting closer to

the Markovian limit.

G.1.2 Multiple Phonon Contributions to the Hierarchy

In addition to the analysis of the primary Matsubara axes and one phonon

contributions to the hierarchy in section 3.3.2, this appendix systematically

considers multiple phonon contributions, which have tier greater than 0 in a

number of axes, and a consideration about whether contributions from each

Matsubara dimension are independent.

Figures G.1.2, and G.1.3 present the contributions from single phonons within

the fast dissipation rate BVM model. These are in agreement with the

underdamped equivalents in 3.3.2 but with a significantly smaller hierarchy

size. This leads to multiple phonon contributions being minimal. This is as a

consequence of non-Markovian behaviour arising from structured spectral

densities, which induce virtual information recurrence in a large number of

ADOs at high tiers. Consequently, the fast dissipation rate BVM model has a

small number of multiple phonon contributions, as shown by n = {1, 2} for n1 in

figure G.1.3. Therefore, conclusions are drawn from the slow dissipation rate

BVM model parameters, due to the increased hierarchy size, but these findings

extend naturally to all forms of the BVM.

Figures G.1.4 and G.1.5 present fluxes and BLP for the first and second

Matsubara axes, M1 and M2 of the slow dissipation rate BVM model. The

comparison of these two figures are in subtle contrast to the results presented in
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Figure G.1.2: Fast dissipation rate BVM model with γ(ν)2 = 1750 cm−1, and
γ
(ν)
1 = 2500 cm−1 showing normalised trace distance, flux, positive flux, and

BLP measure for 1n, n = {1, 2, 3, 4, 5, 6, 7, 8}.

Figure G.1.3: Fast dissipation rate BVM model with γ(ν)2 = 1750 cm−1, and
γ
(ν)
1 = 2500 cm−1 showing normalised trace distance, flux, positive flux, and

BLP measure for n1, n = {1, 2}.

section 3.3.2, where it was concluded that (in general) phonons from each

Matsubara axis are more similar to those from the same axis than others.

However, in contrast to this, in these figures the oscillations of virtual

information are regular and similar with a non-Markovian feedback of ∼ 50% of

the magnitude of Markovian feedback. This is as a consequence of the structure

of the underdamped HEOM, which contains a pair of temperature independent

Matsubara frequencies with differing signs of ζn. These results demonstrate

that, unlike all other temperature dependent axes, the temperature independent

axes are similar and have a qualitatively similar movement of virtual

information. Temperature dependent effects, which control the level of thermal

narrowing in 2DES, are strongly independent based on their differing timescales

unlike these poles. This effect is EOM specific, and will change dependent on

the construction and damping of the HEOM, being absent in regimes with a

faster dissipation rate.

The next consideration is of a combination of two Matsubara axes in order to
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Figure G.1.4: Slow dissipation rate BVM model with γ(ν)2 = 100 cm−1, and
γ
(ν)
1 = 300 cm−1 showing normalised trace distance, flux, positive flux, and BLP

measure for n1, n = {1, 2, 3, 4}.

Figure G.1.5: Slow dissipation rate BVM model with γ(ν)2 = 100 cm−1, and
γ
(ν)
1 = 300 cm−1 showing normalised trace distance, flux, positive flux, and BLP

measure for n2, n = {1, 2, 3, 4}.

generate an ADO which has equal integer multiples of phonons in two

dimensions. Based on the previous analysis which demonstrated the similarity

between the temperature independent axes, but independence of thermal axes,

this is considered through n1n2, figure G.1.6, and n1n3, figure G.1.7. Figure

G.1.6 is in agreement with the findings in the previous figures: the non-thermal

dimensions behave similarly. However, the fact that this is now a multi-tiered

ADO has an impact on the non-Markovian flux, which manifests as a vertical

translation of the trace distance with low tier auxiliaries being more

indistinguishable and a larger oscillation amplitude of the positive flux. The loss

of state distinguishability resulting in more significant non-Markovian feedback

over a longer timescale, coupled with the fact that these multi-tier ADOs have

very low auxiliary numbers of less than 200, suggests that they are significant

sources of non-Markvoian dynamics for the system. Similarly, figure G.1.7

presents the two multi-tiered contributions from n1n3. The small number of

ADOs despite the low auxiliary number relative to the maximum of ∼ 90 000

suggests that combinations of tiers with a mixture of thermal and non-thermal

frequencies are not common and that the timescale of such processes are very

369



Appendix G: Supplement to Quantum Information

Figure G.1.6: Slow dissipation rate BVM model with γ(ν)2 = 100 cm−1, and
γ
(ν)
1 = 300 cm−1 showing normalised trace distance, flux, positive flux, and BLP

measure for n1n2, n = {1, 2, 3, 4}.

Figure G.1.7: Slow dissipation rate BVM model with γ(ν)2 = 100 cm−1, and
γ
(ν)
1 = 300 cm−1 showing normalised trace distance, flux, positive flux, and BLP

measure for n1n3, n = {1, 2}.

fast. Despite this, the same conclusions, as in section 3.3.2, can be drawn:

multi-tier contributions seem to be most similar to their constituent axes.

The next set of results, in figures G.1.8 and G.1.9, are for ADOs which are tier-1

in a pair of different Matsubara axes ranging from 1 to 8. These considerations

fix the number of phonons to one in each axis, to guarantee a relatively large

timescale, and consider each possible axis. These results, in agreement with

previous findings, demonstrate that multi-tiered ADOs involving two one phonon

interactions from each dimension are most similar to their constituent axes, and

share little behaviour with other axes. This is shown by the range of oscillatory

periods, amplitudes and percentages of Markovianity presented in a) – d) of

figure G.1.8. In addition to pairs of interactions in neighbouring axes, this also

extends to axes which are separated as demonstrated in figure G.1.9, where the

same findings are observed for 1n1(n+2) as were found for 1n1(n+1).

The final set of considerations is the scenario when the tier of the multi-tiered

ADOs are not equal in both dimensions, signifying that a number of integer
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Figure G.1.8: Underdamped BVM model with γ(ν)2 = 100 cm−1, and γ(ν)1 = 300
cm−1 showing normalised trace distance, flux, positive flux, and BLP measure

for 1n1(n+1), n = {1, 2, 3, 4, 5, 6, 7}.

Figure G.1.9: Underdamped BVM model with γ(ν)2 = 100 cm−1, and γ(ν)1 = 300
cm−1 showing normalised trace distance, flux, positive flux, and BLP measure

for 1n1(n+2), n = {1, 2, 3, 4, 5, 6}.

multiples of phonons are involved from one axis along with a different number

of phonons from another axis. Figure G.1.10 is in agreement with the results

from figure G.1.8 which both show the striking difference between processes on

neighbouring axes. Even when the phonon contributions from the two axes are

not equal, as in figure G.1.10 where there are contributions from 2(n+1) the

dissimilarity between differing axes persists. However, in contrast to figure

G.1.8 the magnitude of non-Markovianity has dropped from flux that is ∼ 50%

of the Markovian contributions to ∼ 10%. This is a consequence of the shorter

relative timescale due to the increased number of phonons from one of the axes

which pushes these ADOs deeper into the hierarchy and closer to the Markovian

cutoff. Subsequently, these ADOs are less significant to the total

non-Markovianity of the full dynamics. Similarly, the results from figure G.1.11

are in agreement with those in figure G.1.5 where integer multiples of phonons

from the same axis share much more character than with those from different

axes. By plotting all of the n112 for n = {2, 3, 4} it is clear that there are only

three multi-tier ADOs of this type. Despite the low auxiliary number, this
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Figure G.1.10: Underdamped BVM model with γ(ν)2 = 100 cm−1, and γ(ν)1 = 300
cm−1 showing normalised trace distance, flux, positive flux, and BLP measure

for 1n2(n+1), n = {1, 2, 4, 5, 6}.

Figure G.1.11: Underdamped BVM model with γ(ν)2 = 100 cm−1, and γ(ν)1 = 300
cm−1 showing normalised trace distance, flux, positive flux, and BLP measure

for n112, n = {2, 3, 4}.

suggests that temperature independent axes contribute fewer high tiered

auxiliaries, in agreement with figure G.1.7.
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H Supplement to Lasers with a
Gaussian Width

H.1 Analysis of Pulse Widths

This appendix contains supplementary analysis from section 4.3 for spatial

FWHMs of 50 cm−1 and 250 cm−1. Figures H.1.1 shows the first and second

order photon correlations with a spatial FWHM of 50 cm−1. All panels and

columns exhibit the same divergence in correlation as for figure 4.2.4 and the

first two rows of figure 4.2.6, demonstrating that the mean photon number

becomes vanishingly small faster than the variance. It is also clear that changing

the magnitude of m from 41 through to 401 has minimal impact on the

correlations. This is because, as depicted in c) of figure 4.2.2, changing the

number of discrete frequencies when the spatial FWHM is small does not result

in a pulse-like structure: the laser remains continuous. When the spatial FWHM

is low, only frequencies very close to the electronic fundamental transition will

have amplitudes ∼ 1 resulting in a negligible phase difference between

constituent waves, and therefore minimal destructive interference.

Subsequently, there are no nodes within the laser field and the field intensity,

ω
(ν)
eg ± 50 cm−1, result in oscillations with an evident minor oscillation for 2λ but

in agreement with results for the continuous driving field.

Figure H.1.2 presents the associated first and second order phonon

correlations when the spatial FWHM is set at 50 cm−1. In agreement with both

the results from sections 4.3 and 4.1 there are electronic Rabi oscillations due to

the varying probability of emission as a consequence of electronic excited state

population and a minor phonon mode oscillation. The vibrational oscillation has

a slightly larger amplitude than those in the model of driving by a continuous

wave as a direct result of the FWHM of 50 cm−1 including additional accessible

transitions as a consequence of the broader spectrum. In agreement with figure

H.1.1, increasing thee number of discrete frequencies within the superposition

of waves has minimal impact on the correlation as a result of the small

amplitudes imparted by the spatial breadth.

Figure H.1.3 shows the second order crossed correlations for photons and

phonons when the spatial FWHM is set at 50 cm−1 and is in agreement with the

analysis of the previous figures. The global trend is that in the presence of a
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Figure H.1.3: Order two crossed photon and phonon correlations with a spatial
pulse width of FWHM = 50 cm−1 for a range of frequency distributions dictated
by m. Column 1, a) – e), m = 41. Column 2, f) – j), m = 101. Column 3, k) – o),
m = 401. Each results in a different temporal structure of the incident field,

depicted in figure 4.2.2.

bath the system dissipates phonons and electronic Rabi oscillations are damped.

Additionally, the nature of cross correlations is to superimpose the

characteristics of the former particle onto the behaviour of the latter. For the

g
(2)
ab , the instantaneous measurement of the photon number does not impart

vibrational dependency and the subsequent correlation with phonons presents a

limited increase in minor oscillation amplitude because of the larger number of

accessible transitions. The reason for this is that the fast phonon signatures are

very small with respect to the electronic contributions, hence their impact on the

excited-state adiabatic population is minimal. In contrast, g(2)ba has two sources

of vibrational character: vibrations intrinsic to the phonons in the first detection

event, and from phonon effects during the optical cycles leading to the photon

emission. Subsequently these correlations contain large minor oscillations due

to phonons, but the spatial FWHM is a very minor addition to these, so

noticeable differences in amplitude are minimal.

In direct contrast to this, are the results showing correlations when the spatial

FWHM is increased to 250 cm−1. As depicted in figure 4.2.2 d), with an increase

in the FWHM to ω
(ν)
0
2 the driving field profile changes from completely continuous,

through sinusoidal envelope, to temporally separated pulses, dependent on the

choice of m. This means that a full range of characteristics, from driving by a
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Figure H.1.6: Order two crossed photon and phonon correlations with a spatial
pulse width of FWHM = 250 cm−1 for a range of frequency distributions

dictated by m. Column 1, a) – e), m = 41. Column 2, f) – j), m = 101. Column
3, k) – o), m = 401. Each results in a different temporal structure of the incident

field, depicted in figure 4.2.2.

continuous wave through to pulses, will be exhibited by these correlations.

Figure H.1.4 shows the photon correlations of both orders upon increasing

the FWHM to 250 cm−1, and is in strong agreement with figure 4.2.4. Column

one shows identical correlation to figure H.1.1 because 41 discrete frequencies

result in a continuous laser field. In column 2 the combination of the increased

spatial FWHM and 101 discrete frequencies lead to a laser envelope function

which is beginning to separate into pulses. However, these pulses are not entirely

temporally separated, which means that there are regions of reduced correlation,

but not zero driving as in figure 4.2.4. Subsequently there is a subtle modulation

of the correlations which will tend towards a step function as the driving field is

pinched into distinct temporal pulses upon further increasing the FWHM or m.

These steps are not more pronounced for the same reason that is discussed in

section 4.3: 101 distinct frequencies, at integer multiples of 200 cm−1 (∆ω(ν)),

result in a separation which favours the electronic excited state, but only the

ground and second excited vibrational states.

Figure H.1.5 presents the phonon correlations, of first and second order, for

this model system. These results are in agreement with the discussion of results

for figure H.1.4, but particularly nicely demonstrate the effect of the largest value

of m. When there are 401 discrete frequencies within the superposition of waves
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in the driving field it ceases to be a continuous field, and becomes a series of

temporally separated pulses as depicted in e) of figure 4.2.2. For this number of

frequencies, the spacing between each constituent increases in multiples (∆ω(ν))

which are factors of the vibrational mode frequency, so upon interaction with the

pulse a range of Stokes and anti-Stokes Raman processes will be excited alongside

the fundamental electronic transition. Additionally, the separation of the pulses

results in regions of zero field interaction which is reflected in the correlation

function as a step function profile in agreement with the results in figure 4.2.5.

Finally, figure H.1.6 depicts the crossed correlations of photons and phonons

for the intermediate value of spatial FWHM. These results are also in agreement

with the previous analysis and nicely demonstrate the intermediate character of

this driving field. g), when compared to c), demonstrates a subtle increase in

the minor mode amplitude (most evident in the 2λ peak at ∼ 3 ps) as a

consequence of the sinusoidal envelope function. In addition, column 3 shows

the intermediate changes to the electronic beating. The period of the major

oscillation is unchanged by the pulse separation but the sinusoidal curve is

sharpened into a series of steps. Similarly the g
(2)
ba correlation with a system

reorganisation of 2λ demonstrates that the correlations do not becomes entirely

stepped until higher FWHMs are reached, and that many different phonon

modes contribute to the excited state wavepacket.

In summary, these results show that for smaller spatial FWHMs, such as

50 cm−1, the weighting of allowed transitions is highly focused on the

fundamental electronic frequency and vibrational modulation away from the

results of driving by a continuous wave are largely absent. This is supported by

c) of figure 4.2.2 in which the field never becomes entirely separated pulses, no

matter the choice of m. Intermediate FWHMs, such as 250 cm−1, demonstrate a

subtle movement from continuous to pulse-like field structure, with small

modulations of the correlation arising due to temporal nodes in the laser field

for only the largest number of discrete frequencies.
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Correlations

I.1 Additional Analysis of Quantum Correlations in

Electronically Coupled Molecules

This appendix serves as a supplement to the results in section 4.4 discussing the

method of truncating large dimer Hamiltonians, developed as part of ‘Spec Suite’

by Dr Dale Green173, and presenting a set of correlations which demonstrate the

impact of such truncation.

I.1.1 Truncation of Dimer Hamiltonians

Within a vibronic monomer, as outlined in section 2.2.1.1, the tensor product of

electronic and vibrational degrees of freedom is used to generate a composite

Hilbert space |α, n⟩. Hamiltonians for such a system will contain n vibrations

and α electronic states, which within the computational models and ‘Spec Suite’

modules corresponds to ddim vibrations and 2 electronic states for the vibronic

monomer. Subsequently, the Hamiltonian has x and y dimensions of 2ddim

resulting in (2ddim)2 Hamiltonian matrix elements.

Upon moving to the vibronic dimers, outlined in section 2.2.1.3, the tensor

product of electronic and vibrational degrees of freedom is extended to

|αA, nA⟩ ⊗ |αB, nB⟩. This means that the total Hamiltonian has x and y

dimensions of (2ddim)2, resulting in (2ddim)4 Hamiltonian matrix elements.

When this diabatic Hamiltonian is diagonalised into the adiabatic basis, the

states of the total system are rearranged in size order such that the doubly

ground, gg, single exciton manifold, eg/ge, and doubly excited, ee, states have

calculable locations. This Hamiltonian structure is shown schematically in figure

I.1.1. In the diabatic basis the location of individual levels and constituent

monomer contributions are mixed throughout the Hamiltonian, whereas in the

adiabatic basis, after diagonalisation, the location of individual contributions

can usually be ascertained. This is possible because the levels lie along the

diagonal and increase in energy. The doubly ground is found in the top left,

doubly excited in the bottom right, and a mixture of eg and ge states are

contained within the central square known as the single exciton manifold. This
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Hamiltonian is then truncated, up to an integer dimension N, and a new smaller

matrix is constructed from the specific system contributions which are deemed

necessary. This new matrix is not renormalised and has no specific

orthonormality requirement as this would result in the dynamics being altered

to suit the truncated dimension. Figure I.1.1 depicts the generation of the

truncated submatrix from the total Hamiltonian.

Within the total Hamiltonian, depicted in figure I.1.1, the singly coloured

squares of dimension N2 contain the levels chosen for truncation. These are the

lowest energy levels from the doubly ground state (red), the lowest N2 and

second lowest N2 energy levels associated with the ge and eg exciton states

(mauve and purple), and the lowest energy levels from the doubly excited state

(blue). The doubly excited and ground state levels are easily distinguishable in

the adiabatic basis by their energies, whereas the single exciton manifold

contains a mixture of vibrational and electronic states from the excitons and due

to the degenerate nature of many of these levels, they are not necessarily

distinguishable. Subsequently, an uneven number of energy levels are taken

from the A and B monomers of a heterodimer due to the non-degenerate

energies. The lowest energy 2N2 are chosen from the single exciton manifold

resulting in greater A contributions unless ddim = N. In such a situation there is

no truncation, but propagation of a full system requires a reduction in the size

of ddim. When ddim = N the vibrational levels used for evolution, ddim, are

reduced significantly allowing the full Hamiltonian to be propagated and equal

numbers of A and B dependent states are chosen. The off-diagonal portions of

the total Hamiltonian are truncated in an identical fashion for use in the

truncated transition dipole moment operator and bath coupling operators.

Off-diagonal squares of dimension N2 have two colours, one for each of the two

pure coloured states which they couple. For example, the second square in row

one, which is mauve and red, couples the pure red doubly ground state levels

and the lowest N2 energy levels of the single exciton manifold in mauve. The

work in this thesis typically uses N = {1, 3, 5} and ddim = {3, 10}. The three N

values correspond to the standard BVM and other dissipation rate BVM models,

with N = {3, 5} being chosen for differing numbers of vibrational levels in the

HVM. The two ddim values correspond to such HVM regimes, where the harsh

and default truncation limits for the HVM models of monomer-lattices, and

dimers have ddim = N = 3, and ddim = 10, N = 3, respectively. Larger values

are possible, but would require more computational power than is currently

available.
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Figure I.1.1: a) The full dimer Hamiltonian, of dimensions (2ddim)2, showing
the size of each constituent part: doubly ground and excited states of dimension
ddim2, the single exciton manifold of dimension 2ddim2 (one ddim2 for each

monomer), and N2 truncated regions containing ‘necessary’ energy levels. The
four singly coloured N2 regions along the diagonal contain states of increasing
energy, the other two-coloured regions denote coupling between the levels of

colours which they share (e.g. the second square in row 1 is red and mauve and
couples gg and the lowest N2 levels of the single exciton manifold). b) shows

the combination of all N2 units into the truncated Hamiltonian and has
dimension 4N2.
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Figure I.1.2: Second order two-time photon correlations in the default and
harsh truncation limits for a monomer and a hetero-monomer lattice. a), e)

depict a monomer with ddim = 10, N = 3, with resonant field frequency ω(ν)
egA

and i), m), have detuned frequency ω(ν)
egB. b), f) depict the hetero-monomer

lattice with ddim = 10, N = 3, with field frequency ω(ν)
Res and j), n), have field

frequency ω(ν)
Det. c), g) depict a monomer with ddim = N = 3, with resonant field

frequency ω(ν)
egA and k), o), have detuned field frequency ω(ν)

egB. d), h) depict the

hetero-monomer lattice with ddim = N = 3, with field frequency ω(ν)
Res and l), p),

have field frequency ω(ν)
Det.

I.1.2 Correlation from harshly truncated Hamiltonians

In the hetero-monomer lattice, moving from an A resonant laser field to a B

resonant laser field should show correlations move from one monomer to the

other. This would appear as no change in correlation, as figure 4.4.2

demonstrates that correlations at differing frequencies result in equivalent

signals. However, the A monomer energy levels are located within the first 2N2

energy levels in the single exciton manifold, but the necessary B monomer

energy levels are not. Additionally, the two monomer units are not sampled

evenly, because of the non-degenerate energies, when ddim ̸= N. This is

demonstrated in columns 1 and 2, which have ddim = 10 and N = 3, of figure

I.1.2 where monomer A is visible in the monomer-lattice, panel b) and f), but

the B monomer is absent and electronic signals far from resonance of monomer

A are detected in panels j) and n). Upon shifting to the harshly truncated regime
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with ddim = N = 3 both monomer units are present within correlations.

However, this comes at the expense of vibrational (phonon) signatures as a

result of reduced ddim vibrational levels, and also an inability to model large

system reorganisation energies. This is because large system reorganisation

energies, as a consequence of large excited state displacement, induce

transitions to highly vibrationally excited states which are either not present in

the model or are strongly divergent due to computational error. This means,

that while the results in columns 3 and 4 correctly demonstrate the desired

correlation, only those data-sets with λ ≈ 0 are reliable. Current computational

restraints require the use of ddim = {3, 10}, but these findings demonstrate that

increasing to larger Hamiltonians warrants further investigation on the basis of

correlations being strongly dependent on higher vibrational levels.
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J Supplement to LDUO-HEOM
Spectra

J.1 Phase Shifting in the LDUO-HEOM

As a supplement to the discussion in chapter 5 this appendix outlines the

coupling, and broadening limits of the LDUO-HEOM linear spectra and discusses

the phase flipping procedure employed to generate vibronic progressions.

Figure 5.1.4 shows uHEOM BVM spectra and the comparative LDUO-HEOM

spectra. In all panels the phase is set to be ϕ1 = 0c and therefore peaks close to

the fundamental electronic transition frequency are split Lorentzians. a) and b)

demonstrate a weak coupling to the undamped mode, with λ
(ν)
UO = 1 cm−1,

resulting in very small amplitude vibronic peaks at integer multiples of the

vibrational mode frequency. As discussed in section 5, the oscillatory envelope

of the response function gives rise to the vibronic progression and represents an

interaction of vibrational and electronic degrees of freedom within the EOM.

Each of the data sets in a) are run with a constant value of Γ(ν)
max = 1000 cm−1

leading to a balance between the overdamped environmental coupling and the

undamped mode coupling in order to generate the vibronic progression. As the

overdamped coupling strength increases, interaction with the pure undamped

mode leads to a divergent response function which loses definition of the

envelope function, for this specific hierarchy depth, which results in erroneous

broadening of the spectral lineshape. This could additionally be improved by

increasing the value of Γmax. As discussed in section 2.5.6.2, the indefinite

oscillations within the linear response function also lead to a vertical and

horizontal stretching of the spectrum and the formation of satellite peaks from

the Fourier transform of a continuous oscillation. In order to mitigate both of

these effects, a Hamming apodisation function is applied to limit divergence and

continual oscillation in the response function.

The results shown in c) and d) of figure 5.1.4 present results with an

increased undamped mode coupling strength and the application of the

Hamming window. Within the uHEOM BVM any increase in the coupling to the

intramolecular vibration is accompanied by a large increase in the intrinsic

canonical damping, as evidenced by the movement from η(ν) = (50, 50) cm−1 to

η(ν) = (300, 50) cm−1. This both dramatically broadens the spectra and increases
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Figure J.1.1: A series of uHEOM BVM spectra and comparative LDUO-HEOM
spectra. a) and b) present the linear response function and linear spectra of a
system which is weakly coupled to the undamped mode with λ(ν)UO = 1 cm−1.

The response function is allowed to oscillate indefinitely resulting in
infinitessimal peak widths. c) and d) depict an increase of the undamped

coupling strength to λ(ν)UO = 2 cm−1 and the application of a Hamming
apodisation to limit the divergence of the response function and reduce the
necessary Γmax value. In both cases a constant phase of ϕ1 = 0c is applied.
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the amplitude of vibronic peaks. In the LDUO-HEOM vibronic peaks arise from

coupling to a pure intramolecular oscillation, with zero damping, making it very

sensitive to increased coupling. A small increase in λ(ν)UO from 1 cm−1 to 2 cm−1

leads to a dramatic increase in the amplitude of vibronic peaks, along with the

amplitude of the sinusoidal envelope of the response function, but in turn a

dramatic increase in the speed of divergence for this value of Γmax. This makes

application of a Hamming window increasingly necessary in order to limit the

intense changes to the response function induced by coupling to a pure

undamped mode. However, it is clear that the LDUO-HEOM is able to model a

range of vibrational coupling strengths through increasing the parameter λ(ν)UO.

The lineshape of each of the data sets in panel d) show qualitative agreement

with the strong and weakly coupled uHEOM BVM scenarios presented. In

particular, there is good agreement in peak position, amplitude, and broadening

between the LDUO-HEOM with η(ν) = 10 cm−1, λ(ν)UO = 2 cm−1, and the uHEOM

BVM with η(ν) = (50, 50) cm−1.

On the right hand side of the fundamental transition, the broadening in the

LDUO-HEOM occurs below the x-axis because of the negative value of

absorptive spectrum generated from a single oscillatory mode rather than a

wavepacket. As a result of energy considerations, discussed in section 5 we

chose to make the absorptive component strictly positive, but rather than taking

the absolute Fourier spectrum which would increase the lineshape broadening

because of dispersive elements, phase is exploited. This is achieved by

implementing a phase jump discontinuity centred at the fundamental electronic

frequency. In the frequency domain this is achieved through multiplying the

spectrum by −H(ω(ν) − ω
(ν)
eg ), where H is the step function, which is equivalent

to convoluting the response function with a time dependent phase of πc. This

ensures that the absorptive spectrum is strictly positive and broadened

dependent on only the absorptive contributions to the spectrum. Results of this

kind are shown in figure 5.1.4.
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K Acronyms

2DES 2D electronic spectroscopy.

2DEV 2D electronic-vibrational

spectroscopy.

2DVE 2D vibrational-electronic

spectroscopy.

2DIR 2D infrared spectroscopy.

2DOS 2D optical spectroscopy.

EOM equation of motion.

ODE ordinary differential

equation.

ADO auxiliary density operator.

HEOM hierarchical equations of

motion.

NLS nonlinear Schrödinger

equation / Schrödinger equation.

QMC Quantum Monte-Carlo.

MCTDH Multi-Configuration

time-dependent Hartree.

LVN(E) Liouville von-Neumann

(equation).

FIs Feynman path integrals /

Feynman integrals.

MEs master equations.

QMEs quantum master

equations.

BRME Bloch-Redfield master

equation.

LME / GKSL(E) Lindblad master

equation / Gorini – Kossakowski –

Sudarshan – Lindblad (equation).

NZE Nakajima-Zwanzig equation.

LE / QLE Langevin equation /

quantum Langevin equation.

GLE generalised Langevin

equation.

KSLE Kubo’s stochastic Liouville

equation.

SEs stochastic equations.

SSE stochastic Schrödinger

equation.

pFPE perturbative Fokker-Planck

equation.

FPE Fokker-Planck equation.

uHEOM underdamped HEOM.

PTQME polaron transformed

quantum master equation.

ASD-HEOM arbitrary spectral

density HEOM.

gHEOM generalised HEOM.

LDUO-HEOM Lorentz-Drude

undamped oscillator HEOM.

387



Appendix K: Acronyms

CPTP completely positive trace

preserving.

BLP Breuer, Laine, and Piilo.

EET excitation energy transfer.

ESA excited state absorption.

GSB ground state bleach.

FFT Fast Fourier Transform.

FWHM full-width-at-half-

maximum.

HPC (ADA) High Performance

Computinga.

IVR intramolecular vibrational

relaxation.

VR vibrational relaxation.

LO local oscillator.

MBO multimode brownian

oscillator.

PES potential energy surface.

QED quantum electrodynamics.

RK4 fourth-order Runge-Kutta.

TLS two-level-system.

UEA University of East Anglia.

TBC to be confirmed.

aSynonymous with ADA, after Mathematician Ada Lovelace.
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[67] T. Mančal et al., J. Phys. Chem. Lett. 3, 1497 (2012).

[68] H. G. Duan, P. Nalbach, V. I. Prokhorenko, S. Mukamel, and M. Thorwart,

New J. Phys. 17 (2015).

[69] R. Tempelaar et al., J. Phys. Chem. A 120, 3042 (2016).

[70] M. S. Barclay et al., J. Chem. Phys. 158, 035101 (2023).

[71] S. Freitas et al., Mar. Drugs 17, 229 (2019).

[72] S. S. Senlik, V. R. Policht, and J. P. Ogilvie, J. Phys. Chem. Lett. 6, 2413

(2015).

[73] R. Moca, S. R. Meech, and I. A. Heisler, J. Phys. Chem. B 119, 8623

(2015).

[74] E. Meneghin, C. Leonardo, A. Volpato, L. Bolzonello, and E. Collini, Sci.

Rep. 7, 11389 (2017).

[75] S. Kopec, P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 137,

184312 (2012).

[76] P. Ottiger, S. Leutwyler, and H. Köppel, J. Chem. Phys. 136, 174308
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[96] B. Brüggemann, P. Kjellberg, and T. Pullerits, Chem. Phys. Lett. 444, 192

(2007).

[97] Y. Kim et al., Quantum Reports 3, 80 (2021).

[98] H. G. Duan et al., Proc. Natl. Acad. Sci. U. S. A. 114, 8493 (2017).

[99] S. M. Blau, D. I. Bennett, C. Kreisbeck, G. D. Scholes, and A. Aspuru-Guzik,

Proc. Natl. Acad. Sci. U. S. A. 115, E3342 (2018).
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[234] T. Mančal, A. V. Pisliakov, and G. R. Fleming, J. Chem. Phys. 124, 234504

(2006).

[235] D. Egorova, M. F. Gelin, and W. Domcke, J. Chem. Phys. 126, 074314

(2007).

[236] D. Egorova, J. Chem. Phys. 140, 034314 (2014).

[237] G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, Chem. Phys. 386, 1

(2011).

[238] X. Leng, S. Yue, Y. X. Weng, K. Song, and Q. Shi, Chem. Phys. Lett. 667,

79 (2017).

[239] A. Anda and J. H. Cole, J. Chem. Phys. 154, 114113 (2021).

[240] J. Sung and R. J. Silbey, J. Chem. Phys. 115, 9266 (2001).

399



Bibliography

[241] T. N. Do, M. F. Gelin, and H. S. Tan, J. Chem. Phys. 147, 144103 (2017).

[242] M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258

(2003).

[243] D. P. Craig and T. Thirunamachandran, Molecular Quantum
Electrodynamics: An Introduction to Radiation-molecule Interactions,
Courier Corporation, 1998.

[244] G. H. Richards, K. E. Wilk, P. M. Curmi, and J. A. Davis, J. Phys. Chem.

Lett. 3, 272 (2014).

[245] V. P. Singh et al., J. Chem. Phys. 142, 212446 (2015).

[246] Y. Song et al., Rev. Sci. Instrum. 90, 013108 (2019).

[247] S. Wolff, A. Sheikhan, and C. Kollath, SciPost Phys. Core 3, 010 (2020).

[248] M. Ban, Eur. Phys. J. D 73, 1 (2019).

[249] U. Fano, Am. J. Phys. 29, 539 (1961).

[250] B. Bai et al., Sci. Rep. 7, 2145 (2017).

[251] M. Dagenais and L. Mandel, Phys. Rev. A 18, 2217 (1978).

[252] R. J. Glauber, Phys. Rev. 130, 2529 (1963).

[253] M. Moslehi, H. R. Baghshahi, M. J. Faghihi, and S. Y. Mirafzali, Eur. Phys.

J. Plus 137, 777 (2022).

[254] T.-t. Ma, D. B. Horoshko, C.-s. Yu, and S. Y. Kilin, Phys. Rev. A 105, 053718

(2022).

[255] S. Abo et al., Sci. Rep. 12, 17655 (2022).
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[296] E. K. Irish, R. Gómez-Bombarelli, and B. W. Lovett, Phys. Rev. A - At. Mol.

Opt. Phys. 90, 012510 (2014).

[297] H. Mustroph et al., ChemPhysChem 10, 835 (2009).
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