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Consistent and Inconsistent Forcing Axioms

Nutt Tananimit

Abstract

This thesis explores the relationship between forcing axioms and square principles.
While classical forcing axioms, at the level of ω1, are incompatible with square principles,
the situation is different for forcing axioms at ω2; in fact, sufficiently strong generaliza-
tions of MAω2 actually imply square principles at ω2. Specifically, we prove that the
forcing axiom MA1.5

ℵ2
(stratified) implies the weak square □ω1,ω1 . Using this result, we

prove the inconsistency of the forcing axiom MMℵ2(ℵ2-c.c.). Moreover, we also prove that
MA1.5

ℵ2
(stratified) implies weak Chang’s Conjecture and the existence of a locally compact

scattered (LCS) space of height ω2 and width ω.



Access Condition and Agreement 
 
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, 
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material 
may be duplicated by you for your research use or for educational purposes in electronic or print form. 
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions 
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative 
Commons licence or Open Government licence. 
 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly 
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or 
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder 
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright 
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in 
this database has been supplied on the understanding that it is copyright material and that no quotation 
from the material may be published without proper acknowledgement. 
 





Acknowledgements

I am deeply grateful to my supervisors David Asperó and Joseph Grant invaluable guidance
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Chapter 1

Introduction

Since the dawn of set theory, when set-theorists started adopting the axiomatic approach,

we have been searching for a set of axioms that would be best at formulating our field

of study. While the usual axiomatic system, namely Zermelo-Fraenkel Set Theory with

the Axiom of Choice, ZFC, may be more than enough for the average mathematician in

terms of the strength of implications, it fails to answer many questions naturally asked by

set-theorists. Among the first to be considered is the question of the size of the continuum.

In fact, Georg Cantor famously spent the last years of his life at the turn of 20th century

trying to prove or disprove the Continuum Hypothesis, CH (2ℵ0 = ℵ1), in the framework

of ZF. As is well-known, his efforts were spent in vain, as CH was to be shown to be

independent of ZF by the famous work of Kurt Gödel in around 1938 [12] (who proved

that CH is consistent with ZFC), and Paul Cohen, in 1963 [6], who through the invention

of the forcing method showed that ¬CH is also consistent together with ZFC. Thus began

the search for natural axioms which, when supplemented to ZFC, would decide this, and

other questions about the set-theoretic universe left open by ZFC.

One such axiom is Gödel’s Axiom of Constructibility, V = L. This axiom says that

the set-theoretic universe is precisely L, namely the smallest possible (under inclusion)

inner model of ZF containing all ordinals. This axiom is very powerful in that it decides

essentially all questions occurring naturally in set theory. Among its consequences one
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can mention CH, and in fact the Generalized Continuum Hypothesis (GCH), Jensen’s ♢κ

principle for all infinite regular cardinals κ, or Jensen’s □κ principle for every infinite

cardinal κ ([15]). It is worth pointing out that ♢ω1 implies the existence of a Souslin tree

on ω1, and that □ω1 + CH implies the existence of Souslin tree on ω2 ([13]). Hence, all

these tree existence axioms are true under V = L. However, despite its successes, V = L

is usually seen as an undesirable axiom due to its limitative nature. One instantiation of

this is the fact that V = L is incompatible with most large cardinal axioms considered

in set theory; in fact it is with measurable cardinals and anything above that ([25]). The

family of axioms we will consider next are of an opposite character, they are ‘maximality’

principles, and are consistent with all large cardinal axioms.

We are referring to forcing axioms. These are axioms postulating some suitable satu-

ration of the universe with respect to forcing extensions. The guiding idea is that “many

of the things that one can force are already true in the universe”. Formally, these are

axioms asserting the existence, given any member P of some given nice class Σ of forcing

axioms, and any family D of relatively small size (typically of size ℵ1) consisting of dense

subsets of P, of a filter of P meeting all members of D. The best known forcing axioms

include Martin’s Axiom, MA,1 the Proper Forcing Axiom, PFA, and Martin’s Maximum,

MM. It is straightforward to show that MA implies the failure of CH. What is perhaps

more surprising is that sufficiently strong (classical) forcing axioms, like PFA, imply an

exact value of 2ℵ0 , with this value being ℵ2 (this is due to Todorčvić and Veličković, s.

[30]). PFA has also other remarkable consequences; for example that any two ℵ1-dense

set of reals are isomorphic ([4]), or the failure of the combinatorial principle square □ω1

([29]). This last implication will be one focal point of this thesis.

In this thesis, we will explore forcing axioms above ℵ1 (i.e., forcing axioms for meeting

all members of collections D of dense sets for |D| > ℵ1). These are high analogues of

‘classical’ forcing a forcing axioms (where D has size ℵ1). In particular, we will consider

(consistent) extensions of Martin’s Axiom and (inconsistent) extensions of weak forms of

Martin’s Maximum. We will focus on the consistency, or otherwise, of these principles

1This was in fact the first forcing axiom to be isolated.
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and on their consequences.

For basic resources and definitions, one can refer to Jech’s [14] and Kunen’s [18] text-

books.
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Chapter 2

Forcing Axioms, Infinite

Combinatorial Principles and

Their Relations

2.1 Square principles

The combinatorial principle □κ was introduced by Jensen [15] when he was investigating

the consequences of the axiom of constructibility V = L.

Definition 2.1.1. Let κ be an uncountable cardinal. A □κ-sequence is a sequence (Cα :

α ∈ lim(κ+)) such that for every α ∈ lim(κ+)

1. Cα is closed and unbounded1 in α.

2. If cf(α) < κ, then ot(Cα) < κ.

3. For all β ∈ lim(Cα), Cβ = Cα ∩ β.

We say □κ holds if there exists a □κ-sequence.

1From here on we shall use the word “club” to abbreviate “closed and unbounded set”.
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In the paper [15], Jensen found that if V = L, then □κ holds for every κ ≥ ω1. Jensen

used a □κ-sequences to construct κ+-Souslin trees in L which motivated others to use such

sequences to construct other objects of size κ+.

Let κ be a regular uncountable cardinal. A set S ⊆ κ is stationary if S ∩ C ̸= ∅ for

every club subset C of κ.

Definition 2.1.2. Let κ ≥ ω1 and let S be a stationary subset of κ.

1. S reflects at α if α < κ, cf(α) > ω and S ∩ α is stationary in α.

2. Refl(S) holds if every subset of S which is stationary in κ reflects at some α.

3. S is non-reflecting if S does not reflect at any α.

Stationary reflection and the square principle are inherently connected concepts in

infinite combinatorics. This result is due to Solovay.

Fact 2.1.3. □κ implies that for every stationary subset S of κ+ there is a subset T of S

which is stationary in κ+ and such that Refl(S′) fails.

Proof. Let (Dα : α ∈ lim(κ+)) be a □κ-sequence and S a stationary subset of κ+. Let

T ⊆ S be stationary and such that, for some β0 < κ, ot(Dα) = β0 for all α ∈ T (T and

β0 exist since {α ∈ S : ot(Dα) = β}, for β ≤ κ, partitions S into κ-many pieces). Now

suppose, towards a contradiction, that S′ reflects at α0 < κ+. Let D be the set of limit

points of Dα0 . Then D∩T is stationary in α0. Now, if α ∈ D∩T , then Dα = Dα0 ∩α (by

coherence), and therefore ot(Dα) = ot(Dα0 ∩ α) = β0. But of course there is at most one

α such that ot(Dα0 ∩ α) = β0. Hence, D ∩ T has at most one element, and so it cannot

be stationary in α0.

Fact 2.1.3 implies that there exists a non-reflecting stationary subset of S2
0 ,

2 which

Gregory [13] used to show that GCH and □ω1 implies the existence of an ω2-Souslin tree.

Corollary 2.1.4. □κ implies that for every infinite reglar cardinal λ ≤ κ there is a subset

S of Sκ+

λ which is stationary in κ+ and which does not reflect.

2Here, S2
0 = {α ∈ ω2 : cf(α) = ω}.
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In that same paper, Jensen [15] introduced the weak square, a weaker version of the

square principle presented above. The motivation was to attempt to weaken the assump-

tion of Fact 2.1.3.

Definition 2.1.5. Let κ be an infinite cardinal. A □∗
κ-sequence is a sequence (Cα : α ∈

lim(κ+)) such that

1. Cα is a nonempty collection of clubs of α and |Cα| ≤ κ..

2. If cf(α) < κ then ot(C) < κ for every c ∈ Cα

3. For every C ∈ Cα and every β ∈ lim(C), C ∩ β ∈ Cβ.

We say □∗
κ holds if there exists a □∗

κ-sequence.

The weak square sequence □∗
κ is an object of interest when κ is singular due to the

fact that κ<κ = κ implies □∗
κ. Jensen [15] showed that the weak square □∗

κ is equivalent

to the existence of a special κ-Aronszajn tree. On the other hand, the weak square

principle does not imply failure of stationary reflection like the the square principle does.

A counterexample can be found in Theorem 21 of the paper of Cummings et al.[7].

The next definition is due to Schimmerling [24], the weak square with λ clubs on each

level.

Definition 2.1.6. Let κ be an infinite cardinal and a cardinal λ ≤ κ+. A □κ,<λ-sequence

is a sequence (Cα : α ∈ lim(κ+)) such that

1. Cα is a nonempty collection of clubs of α and |Cα| < λ.

2. If cf(α) < κ, then ot(C) < κ for every c ∈ Cα

3. For every C ∈ Cα and every β ∈ lim(C), C ∩ β ∈ Cβ.

We say that □κ,<λ holds if there exists a □κ,<λ-sequence and □κ,λ holds if □κ,<λ+ holds.

Clearly, □∗
κ = □κ,κ, □κ = □κ,1, and □κ,λ is weaker as λ increases. Schimmerling [24]

discovered that for sufficiently small λ, we can construct non-reflecting stationary sets by

using □κ,<λ. Here we note that κ<λ = κ implies λ ≤ cf(κ).
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Fact 2.1.7. [24] Let λ and κ be regular cardinals such that λ ≤ κ+ and suppose □κ,<λ

holds. If S ⊆ κ+ is stationary, then there exists a stationary set T ⊆ S such that T does

not reflect at any α with cf(α) ≥ λ.

The research regarding square principles branches off in many ways. One of the most

important among them is the square principles when κ is a singular cardinal along with

some form of large cardinal. Shelah’s PCF theory also shares some connection with the

square principles, namely the fact that □κ,λ implies a very good scale for singular cardinal

κ [7].
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2.2 Forcing Axioms

Forcing axioms are a class of axioms that assert the existence of a filter that is sufficiently

generic3 for a partial order in some class of partial orders Γ. The axioms are useful in that

they imply that the universe is rich enough relative to the generic extensions of the forcing

notions in Γ in the sense that some of the information present in the forcing extensions is

already there in the base universe and there is no need for a proper generic extension of

one.4

Let us recall some forcing axioms.

Notation 2.2.1. Martin’s Axiom, MA. If P is a partial order which has the ccc5 and D

is a collection of fewer than 2ℵ0 dense subsets of P, then there is a subset G of P such that

• if p and q are elements of G, then there is some r in G such that r ≤ p and r ≤ q,

• if p ≥ q and q ∈ G, then p ∈ G, and

• G ∩D ̸= ∅ for every D ∈ D.

We say that G is a P-generic filter. MA(κ) is the statement of MA replacing the clause

“D is a collection of fewer than 2ℵ0 dense subsets of P” with “D is a collection of κ dense

subsets of P”.

Given a set X, [X]ω denotes the collection of all countable subsets of X.

We make a note here that when we say a stationary subset S of [A]ω for some un-

countable set A we mean the subset S meets every club under ⊆ on [A]ω. More precisely,

S ⊆ [A]ω is stationary if for every F : [A]<ω → A,S contains a closure point of F .

Definition 2.2.2. A forcing notion is proper if for every uncountable cardinal λ, every

stationary subset of [λ]ω remains stationary in the generic extension.

3Some authors call this a “pseudo generic” filter
4Here, we use the terms “partial order” and “forcing notion” interchangeably.
5ccc stands for the ‘countable chain condition’. P having the ccc means that P does not have uncountable

antichains.
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When we work with a proper forcing notion, we will be working with models which

satisfy fractions of ZFC. The models will satisfy the theory ZFC minus the power set axiom.

Consider the collection H(θ) of all sets of hereditary cardinality less than θ. Then H(θ)

satisfies this theory, and so does every countable elementary submodel M of (H(θ),∈).

We say that a cardinal θ is large enough for an object X to mean that P(X) ∈ H(θ), and

we say that θ is large enough if θ is large enough for every object of interest.

Fact 2.2.3. [14](Theorem 31.7) A forcing notion P is proper if and only if for every large

enough θ there is a club E of [H(θ)]ω such that for every N ∈ E and every p ∈ N ∩ P

there is some q ≤P p which is (N,P)-generic (i.e., given any dense set D ⊆ P, D ∈ N ,

every q′ ≤P q is ≤P-compatible with some r ∈ D ∩N).

Notation 2.2.4. The proper forcing axiom, PFA, is the statement of MAω1 replacing “P

is a partial order which has the ccc” with “P is a proper forcing notion”

Notation 2.2.5. Martin’s Maximum, MM, is the statement of PFA replacing “P is a

proper partial order” with “P is a forcing notion preserving stationary subsets of ω1”. We

will sometimes just say that “P preserves stationary sets”.

In order to streamline our notations of axioms, we shall use the following notation

scheme.

Notation 2.2.6. Given a class Γ of forcing notions and a cardinal κ,

FAκ(Γ)

is the statement that for every P ∈ Γ and every collection D of κ dense subsets of P there

is a filter G ⊆ P such that G ∩D ̸= ∅ for every D ∈ D.

Remark 2.2.7. The forcing axioms presented above can be written in the following way.

• MA is FA<2ω(ccc).

• MAκ is FAκ(ccc).

• PFA is FAω1(proper).
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• MM is FAω1(preserves stationary sets).

Fact 2.2.8. The following diagram illustrates the relationships among the properties of a

forcing notion P (s. [14]).

P has the ccc

⇓

P is proper

⇓

P preserves stationary subsets of ω1

⇓

P preserves ω1

The relationships between the forcing axioms presented thus far is the following.

MM ⇒ PFA ⇒ MA.

A forcing iteration ⟨Pα, Q̇β : β < λ, α ≤ λ⟩ is said to have countable supports if for

every α ≤ λ, Pα consists of α-sequences p with p ↾ β ⊩Pβ
p(β) ∈ Q̇β for all β < α and such

that |{β < α : p(β) ̸= 1Q̇β
}| ≤ ℵ0, where 1Q̇β

denotes the maximum (weakest) condition

in Q̇β.

Fact 2.2.9 (Shelah). [14](Theorem 31.15) Properness is preserved by countable support

iteration.

Hence, it is possible to iterate proper forcing in any length while preserving properness,

so in particular preserving ω1. This provides a way to build models with interesting

combinatorics for objects of size ℵ1.

A significant consequence of this fact is the countable support iteration of proper

forcing preserves ℵ1.

Now we shall present some well known consequences of PFA.

Fact 2.2.10. [30] PFA implies 2ℵ0 = ℵ2.
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Fact 2.2.11. [29] PFA implies the failure of □λ for all regular λ ≥ ω2.

Now from Fact 2.2.9, if κ is a supercompact cardinal, then there is a countable support

iteration (Pα : α < κ), Pκ ⊆ Vκ, such that Pk forces PFA (Baumgartner and Shelah). All

V -cardinals λ such that ω1 < λ < κ are collapsed to ω1 along the iteration. Hence,

2ℵ0 = ℵ2 in the final extension.

In fact, if there exists a supercompact cardinal κ, then square fails above κ.

Fact 2.2.12. [28] If κ is supercompact, then □λ fails for all λ ≥ κ.

Under MM, the square principle and its weak forms fail in general.

Fact 2.2.13. [8] Suppose MM holds and λ is an uncountable cardinal. Then:

(1) If cf(λ) = ω, then □∗
λ fails.

(2) If cf(λ) = ω1, then □λ,µ fails for every µ < λ.

(3) If cf(λ) ≥ ω2, then □λ,µ fails for every µ < cf(λ).

This is due to the fact that MM implies the following stationary reflection principles

studied in [11]:

(i) if λ is an uncountable cardinal and S is a stationary subset of [λ+]ℵ0 , then there is

X ⊆ λ+ such that |X| = ℵ1 and S ∩ [X]ℵ0 is stationary.

(ii) if κ is a regular cardinal with κ > ω1 and (Si : i < ω1) is a sequence of stationary

subsets of κ with cf(ω), then there are stationarily many α ∈ κ with cf(ω) such that

Si ∩ α is stationary for every i < ω1.

By Theorems 7, 8 in [7], stationary reflection in the form of (i) is incompatible with

weak square □∗
λ when cf(λ) = ω. Thus, it can be shown that when MM holds, □∗

λ fails for

every singular λ where cf(λ) = ω.

Similarly, the other two claims in Fact 2.2.13 can be proved by using the stationary

reflection principle (ii) and the fact that if λ is uncountable and □λ,µ, then for every
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stationary subset of λ+ there is a stationary subset which does not reflect at any point of

uncountable cofinality.

The weak square □∗
κ is not, however, the weakest form of square principles. In fact,

Foreman and Magidor [10] introduced the Very Weak Square principle, denoted VWSκ,

which is considerably weaker than the weak square but still offers some applications to

algebra and topology. However, this notion will not be used in this thesis, so to the readers

who are interested, we refer to the reference we cited.

Interestingly, Martin’s Maximum also has some influence on very weak squares.

Fact 2.2.14. [19] MM implies the failure of VWSκ where cf(κ) = ω.
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Chapter 3

A Consistent Forcing Axiom,

Weak Square and An Inconsistent

Forcing Axiom

In this chapter, we shall first briefly explore the forcing axioms in the form of MA1.5
κ

extending MAκ (i.e., Martin’s Axiom at κ), we will define a class of stratified forcing

notions, and will establish basic facts. Then, we shall present the effect of the forcing

axiom MA1.5
ℵ2

(stratified), that is, the usual forcing axiom MA1.5
κ but restricted to the class

of stratified partial orders, on the weak square □ω1,ω1 . And lastly, we shall observe the

inconsistency which arises when we strengthen the forcing axiom to MMℵ2(ℵ2-c.c.).

3.1 Notions and basic facts

The forcing axioms in the form of MA1.5
κ are the forcing axioms FAκ(Γ), where Γ is the

class of those partial order which satisfy what we shall call the ℵ1.5-chain condition. The

property is indeed named in such a way to emphasize the fact that a partial order with the

countable chain condition satisfies ℵ1.5-chain condition, and likewise, every partial order

with the ℵ1.5-chain condition class satisfies the ℵ2-chain condition.
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Definition 3.1.1. A partial order P has the ℵ1.5-chain condition, or is ℵ1.5-c.c for short,

if for every large enough cardinal θ (i.e., every cardinal θ such that P ∈ H(θ)) there is a

club E of N ∈ [H(θ)]ℵ0 such that for every finite N ⊆ E and every N0 ∈ N , if N0 has

minimum height within N , then for every p0 ∈ N0 ∩P there is some extension p ∈ P of p0

such that p is (N,P)-generic for all N ∈ N .

Indeed, we shall define the strengthening MA1.5
κ of MAκ for any cardinal κ using the

notation scheme introduced in the previous chapter.

Definition 3.1.2. Let κ be a cardinal. We write MA1.5
κ to denote

FAκ({P : P has the ℵ1.5-c.c.}),

that is, MA1.5
κ is the following statement: For every ℵ1.5-c.c. partial order P and every

collection D of size κ consisting of dense subsets of P, there is a filter G ⊆ P such that

G ∩D ̸= ∅ for all D ∈ D.

This particular forcing axiom was introduced in the paper [2] and in the same paper

(Theorem 2.1) it was proved that if CH holds and λ ≥ ω2 is a regular cardinal which

is closed enough, that is, µℵ0 < λ for any µ < λ, and, another combinatorial principle

similar to square, the diamond principle ♢({α < λ : cf(α) ≥ ω1}) holds, then there is a

proper cardinal-preserving forcing notion P of size λ such that MA1.5
λ holds in the generic

extension by P. We will not make use of diamond principle in this thesis. Interested

readers can refer to general texts on set theory such as [14].

The forcing axiom which we shall be working on is a mild strengthening of MA1.5
κ ,

which will be called MA1.5
ℵ2

(stratified), defined by restricting the finite family N ⊆ E to

have a certain nice structural property. First, we shall define the notion of a stratified

collection of models.

Definition 3.1.3. A collection N of countable elementary submodels of H(θ), for some

infinite cardinal θ, is stratified if for allN0, N1 ∈ N , ifN0∩ω1 < N1∩ω1, then ot(N0∩ω2) <

N1 ∩ ω1.
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Indeed, since the elementary submodels are countable, there can only be so many

ordinals below ω1 for such a model N , certainly not uncountably many of them when

viewed from outside of the model. We will now define a natural notion of height of a

(countable) model, and will say what it means for a model to be closed under a given

sequence of bijections between ordinals in ω2 and their cardinality.

Definition 3.1.4. 1. Given a set N such that N ∩ ω1 ∈ ω1, we denote N ∩ ω1 by δN ,

the height of N .

2. Given a sequence e⃗ = (eα : α ∈ ω2), where eα : |α| −→ α is a bijection for each

α < ω2, we say that a set N is closed under e⃗ if

(a) eα ↾ ξ + 1 ∈ N whenever α ∈ ω2 ∩N and ξ ∈ |α| ∩N , and

(b) e−1
α (ξ) ∈ N whenever α, ξ ∈ N

We will be using the following well-known fact repeatedly, sometimes without mention,

and for the sake of completeness we shall give its simple proof.

Fact 3.1.5. Suppose e⃗ = (eα : α ∈ ω2), where eα : |α| −→ α is a bijection for each

α < ω2, and suppose N0 and N1 are countable submodels of H(ω2) closed under e⃗ such

that δN0 ≤ δN1. Then N0 ∩ α ⊆ N1 for every α ∈ N0 ∩N1 ∩ ω2.

Proof. Given any ᾱ ∈ N0∩α, ξ = e−1
α (ᾱ) ∈ N0∩|α|. But since α and ξ are both members

of N1 as |α| ≤ ω1, we also have that ᾱ = eα(ξ) ∈ N1.

Corollary 3.1.6. Suppose e⃗ = (eα : α ∈ ω2), where eα : |α| −→ α is a bijection for each

α < ω2, and suppose N0 and N1 are countable submodels of H(ω2) closed under e⃗ of the

same height. Then N0 ∩N1 ∩ ω2 is an initial segment of both N0 ∩ ω2 and N1 ∩ ω2.

Now, back to the topic at hand of defining the forcing axiom MA1.5
ℵ2

(stratified).

Definition 3.1.7. We say that a forcing notion P has the ℵ1.5-c.c. with respect to finite

stratified families of models iff for every infinite cardinal θ such that P ∈ H(θ) there is

a club E ⊆ [H(θ)]ℵ0 such that for every finite stratified N ⊆ E, if p0 ∈ N0 ∩ P, where
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N0 ∈ N is of minimal height within N , then there is an extension p of p0 in P such that

p is (N,P)-generic for every N ∈ N .

Clearly, every partial order with the ℵ1.5-c.c. also has the ℵ1.5-c.c. with respect to finite

stratified families of models.

Definition 3.1.8. Given a cardinal κ, we write MA1.5
κ (stratified) to denote

FAκ(K),

where K is the class of partial orders P such that P has the ℵ1.5-c.c. with respect to finite

stratified families of models.

The following proposition extends the aforementioned fact that every forcing with the

ℵ1.5-c.c. is proper and has the ℵ2-c.c.

Proposition 3.1.9. If a forcing notion has the ℵ1.5-c.c. with respect to finite stratified

families of models, then it is proper and has the ℵ2-c.c.

Proof. Suppose P is a forcing notion with the ℵ1.5-c.c. with respect to finite stratified

families of models. Let θ be a cardinal such that P ∈ H(θ) and let E ⊆ [H(θ)]ℵ0 be a

club witnessing, for H(θ), that P has the ℵ1.5-c.c. with respect to finite stratified families

of models. Given any N ∈ E, {N} is trivially stratified, and therefore for every p ∈ P∩N

there is an (N,P)-generic extension of p. This shows that P is proper.

To prove that P has the ℵ2-chain condition let us assume, towards a contradiction,

that there is a maximal antichain A of P such that |A| ≥ ℵ2, and let (pi : i < λ) be a

one-to-one enumeration of A, for some λ ≥ ω2. Let M be an elementary submodel of some

large enough H(χ) such that

1. E, A, (pi : i < λ) ∈ M and

2. |M | = ℵ1 and ℵ1 ⊆ M .

Let i0 ∈ ω2 \M and let N ≼ H(χ) be countable and such that pi0 , E, M ∈ N . Let

τ = M ∩ ω2 and β = sup(N ∩ τ).
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Now, by correctness of M we may find i1 ∈ ω2∩M for which there is some N ′ ∈ E∩M

such that δN ′ = δN and pi1 ∈ N ′. Indeed, the existence of such an N ′ is expressed by a

true sentence, as witnessed by i0 and N , with δN , E and (pi : i < λ) as parameters.

We note that N = {N,N ′} is a stratified family of members of E as δN = δN ′ .

It follows, since pi0 ∈ N and δN = δN ′ , that we may find an (N ′,P)-generic condition p

extending pi0 . Then there must be condition p′ extending p and extending some p̄ ∈ A∩N ′.

But that is impossible since A is an antichain and p̄ ̸= pi0 as N ′ ⊆ M .

We will be using essentially the same forcing construction from [2], which shows the

consistency of MA1.5
<κ, for any given closed enough κ. This construction can be used to

prove the following theorem.

Theorem 3.1.10. (CH) Let κ ≥ ω2 be a regular cardinal such that µℵ0 < κ for all µ < κ

and ♢({α < κ : cf(α) ≥ ω1}) holds. Then there is a proper forcing notion P of size κ with

the ℵ2-chain condition such that the following statements hold in the generic extension by

P.

(1) 2ℵ0 = κ

(2) For every λ < κ, MA1.5
λ (stratified)

The reason why, we claim, the proof works here is because, coincidentally, all relevant

collections of models appearing in the proof from [2] are themselves stratified. In particu-

lar, Theorem 3.1.10 will show that the forcing axioms of the form MA1.5
<κ(stratified) with a

suitable κ are relatively consistent with ZFC. However, we will not verify these assertions

in this thesis.

3.2 MA1.5
ℵ2
(stratified) implies □ω1,ω1

The main goal in this section is the following.

Theorem 3.2.1. MA1.5
ℵ2

(stratified) implies □ω1,ω1.
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The strategy we shall employ to prove this theorem is by constructing a partial or-

der P of finite approximations to a weak square such that P satisfies the conditions of

MA1.5
ℵ2

(stratified). Thus, the forcing axiom will imply the existence of a weak square. The

partial order is defined as follows.

Let e⃗ = (eα : α < ω2) be such that eα : |α| −→ α is a bijection for each α < ω2. We

define the following forcing notion P.

Conditions in P are triples

p = (hp, ip,Np)

with the following properties.

1. hp is a function such that dom(hp) ∈ [Lim(ω2)×ω1 ×Lim(ω1 +1)]<ω and such that

for each (α, ν, τ) ∈ dom(hp), hp(α, ν, τ) ⊆ τ × α is a finite function which can be

extended to a strictly increasing and continuous function f : τ −→ α with range

cofinal in α.

2. For every (α, ν, τ) ∈ dom(hp):

(a) if cf(α) = ω1, then τ = ω1 and ν = 0;

(b) if cf(α) = ω, then τ ∈ Lim(ω1).

3. For every α and ν there is at most one τ such that (α, ν, τ) ∈ dom(hp).

4. ip is a function whose domain is the set of triples (α, ν, τ̄) such that (α, ν, τ) ∈

dom(hp) for some τ and τ̄ ∈ dom(hp(α, ν, τ))∩Lim(ω1), and ip(α, ν, τ̄) ∈ ω1 for each

(α, ν, τ̄) ∈ dom(ip).

5. For every (α, ν, τ) ∈ dom(hp) and every limit ordinal τ̄ ∈ dom(hp(α, ν, τ)),

(hp(α, ν, τ)(τ̄), ip(α, ν, τ̄), τ̄) ∈ dom(hp)

and

hp(hp(α, ν, τ)(τ̄), ip(α, ν, τ̄), τ̄) = hp(α, ν, τ) ↾ τ̄ .
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6. Np is a finite stratified collection of countable elementary submodels of (H(ω2);∈)

closed under e⃗.

7. For every N ∈ Np and every (α, ν, τ) ∈ dom(hp) such that α, ν ∈ N :

(a) τ ∈ N ;

(b) hp(α, ν, τ) ↾ N ⊆ N ;

(c) If cf(α) = ω1, then

δN ∈ dom(hp(α, ν, ω1))

and

hp(α, ν, ω1)(δN ) = sup(N ∩ α)

(d) For every τ̄ ∈ dom(hp(α, ν, τ)) ∩ Lim(ω1), i
p(α, ν, τ̄) ∈ N .

Given P-conditions p0 and p1, p1 extends p0 if and only if:

1. dom(hp0) ⊆ dom(hp1);

2. for every (α, ν, τ) ∈ dom(hp0),

(a) hp0(α, ν, τ) ⊆ hp1(α, ν, τ), and

(b) ip1(α, ν, τ̄) = ip0(α, ν, τ̄) for each τ̄ ∈ dom(hp0(α, ν, τ)) ∩ Lim(ω1).

3. Np0 ⊆ Np1 .

Given p ∈ P, we denote {α ∈ S2
1 : (α, ν, τ) ∈ dom(hp) for some ν, τ} by Xp.

1

Here each hp(α, ν, τ) serves as a finite sequence which we will extend, using the generic

filter of P, to a sequence C ∈ Cα as in the definition of the weak square. The function

ip(α, ν, τ) is the index function which keeps track of the correct subsequences of hp(α, ν, τ).

It is necessary for tracing back the correct sequence of C; without such an index function

we would not have enough information to construct Cα.
1For the sake of simplicity in the notation, we shall write S2

1 to denote the set of limit ordinals with
cofinality ω1 in ω2. This is also denoted Sω2

ω1
in the literature.
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Now, the first step in the proof of Theorem 3.2.1 is to show that the partial order P

indeed satisfies the ℵ1.5-c.c. with respect to finite stratified families of models.

Lemma 3.2.2. P has the ℵ1.5-c.c. with respect to finite stratified families of models.

Proof. Let θ be such that P ∈ H(θ) and let N ∗ be a finite stratified collection of countable

elementary submodels of H(θ) containing e⃗. We will assume that for each N∗ ∈ N ∗, N∗ =⋃
ν<δN∗ N

∗
ν , where (N∗

ν )ν<δN∗ is a continuous ∈-chain of countable elementary submodels

of H(θ) containing e⃗. In fact, if there is any cardinal χ > θ such that N∗ is of the form

N∗∗ ∩H(θ) for a countable N∗∗ ≼ H(χ) with e⃗, θ ∈ N∗∗, then N∗ is a continuous ∈-chain

of countable elementary submodels of H(θ) as above.2 This is because if we let (xn)n<ω

be an enumeration of N∗ and let (βn)n<ω be a strictly increasing sequence converging to

δN∗ , then by correctness of N∗∗ we may build a sequence (N⃗∗
n)n<ω of members of N∗∗

such that

1. for each n, N⃗∗
n = (N∗

i )i≤βn is a continuous ∈-chain of length βn + 1 consisting of

countable elementary submodels of H(θ) containing e⃗ and xn;

2. N⃗∗
n+1 end-extends N⃗∗

n.⋃
n<ω N⃗∗

n is then as desired.

Let N = {N∗ ∩ H(ω2) : N∗ ∈ N ∗}. Let also N0 ∈ N be of minimal height and

let p0 ∈ N0 be a P-condition. Given any α ∈ Xp0 , let (α(k) : k < mα) be the strictly

increasing enumeration of

{sup(N ∩ α) : N ∈ N , α ∈ N}

and, for every k < mα, let δ
α
k = δN for any N ∈ N such that α ∈ N and sup(N∩α) = α(k).

Note that by Fact 3.1.5, δαk is well-defined for every k < mα (i.e., δακ is independent from

the choice of N as long as α ∈ N and sup(N ∩ α) = α(k)) as in fact N ∩ α = N ′ ∩ α

whenever N , N ′ ∈ N are such that α ∈ N ∩ N ′ and δN = δN ′ . For each α ∈ Xp0 and

2It is enough to assume the above since for all sets X ⊆ Y and for every club C of [Y ]ω, the collection
of set of the form X ∩N where N ∈ C contains a club of [X]ω.
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k < mα, let i(α, k) ∈ δαk \ range(ip0) be such that δN < i(α, k) for each N ∈ N with

δN < δαk .

In order to prove the lemma, it suffices to show that

p∗ = (hp
∗
, ip

∗
,Np0 ∪N )

is an (N∗,P)-generic condition for each N∗ ∈ N ∗, where

dom(hp
∗
) = dom(hp0) ∪ {(α(k), i(α, k), δαk ) : α ∈ Xp0 , k < mα}

and where for each (α, ν, τ) ∈ dom(hp
∗
):

1. if (α, ν, τ) ∈ dom(hp0) and cf(α) = ω, then

(a) hp
∗
(α, ν, τ) = hp0(α, ν, τ) and

(b) ip
∗
(α, ν, τ̄) = ip0(α, ν, τ̄) for each τ̄ ∈ dom(hp0(α, ν, τ)) ∩ Lim(ω1);

2. if (α, ν, τ) ∈ dom(hp0) and cf(α) = ω1, then

(a) hp
∗
(α, ν, τ) = hp0(α, ν, τ) ∪ {(δαk , α(k)) : k < mα},

(b) ip
∗
(α, ν, τ̄) = ip0(α, ν, τ̄) for every τ̄ ∈ dom(hp0(α, ν, τ)) ∩ Lim(ω1), and

(c) ip
∗
(α, ν, δαk ) = i(α, k) for each k < mα;

3. if α ∈ Xp0 and k < mα, then

(a) hp
∗
(α(k), i(α, k), δαk ) = {(δαk′ , α(k′)) : k′ < k} and

(b) ip
∗
(α(k), i(α, k), δαk′) = i(α, k′) for each k′ < k.

Claim 3.2.3. If α0 < α1 are such that α0, α1 ∈ Xp0, then α0(k0) < α0 < α1(k1) for all

k0 < mα0 and k1 < mα1.

Proof. The inequality α0(k0) < α0 is immediate given that α0(k0) = sup(M ∩α0) for some

countable M . Also, we note that if N ∈ N is such that α1 ∈ N and α1(k1) = N ∩α1, then

α0 ∈ N by Fact 3.1.5 since α ∈ N0 and δN0 ≤ δN . Hence α0 < sup(N ∩ α1) = α1(k1).
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Claim 3.2.4. For every N ∈ N , α ∈ Xp0 and k < mα, if α(k), i(α, k) ∈ N and k′ < k,

then α(k′) ∈ N .

Proof. Since i(α, k) ∈ N , we have that δN ≥ δαk . But α(k
′) ∈ M ∩ α(k) for every M ∈ N

such that α ∈ M and δM = δαk , and M ∩ α(k) ⊆ N ∩ α(κ), where the inclusion follows

from Fact 3.1.5 since δN ≥ δαk .

The proof of the following claim is essentially the same.

Claim 3.2.5. For all N ∈ N and α ∈ Xp0, if α ∈ N , then hp0(α, 0, ω1) ∈ N and

ip0(α, 0, τ̄) ∈ N for every τ̄ ∈ dom(hp0(α, 0, ω1)) ∩ Lim(ω1).

Using the above two claims together with Fact 3.1.5, one can easily verify that p∗ is a

P-condition, and it obviously extends p0. Let now N∗ ∈ N ∗ and let us prove that p∗ is

(N∗,P)-generic. For this, let D ∈ N∗ be an open and dense subset of P and let p ∈ D

extend p∗. We will prove that there is a condition r ∈ D ∩N∗ compatible with p.

Let (N∗
ν )ν<δN∗ be a continuous ∈-chain of countable elementary submodels of H(θ)

containing e⃗ such that N∗ =
⋃

ν<δN∗ N
∗
ν . Since Np is stratified and N∗ ∩H(ω2) ∈ Np, we

may find some ν0 < δN∗ such that

1. (hp ∪ ip) ∩N∗ ⊆ N∗
ν0 ,

2. there is some η ∈ N∗
ν0 ∩ ω2 such that [η, ω2) ∩N∗

ν0 ∩N = ∅ for every N ∈ Np with

δN < δN∗
ν0
, and

3. for every α /∈ N∗
ν0 such that (α, ν, τ) ∈ dom(hp) for some ν, τ , and such that

α∗ = min((N∗
ν0∩ω2)\α) exists, there is some ηα ∈ N∗

ν0∩α∗ with [η, α)∩N∗
ν0∩N = ∅

for every N ∈ Np such that δN < δN∗
ν0
.

Given a P-condition q, let M(q) be a structure with universe

Uq := {(α, ν, τ, ξ, β) : (α, ν, τ) ∈ dom(hq), (ξ, β) ∈ hq(α, ν, τ)} ∪ iq

coding hq and iq in some fixed canonical way.
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Let us denote N∗
ν0 by N+. Let R = Up ∩N+. Working in N+ we may find a condition

r ∈ D such that Up ∩N+ ⊆ Ur and for which there is an isomorphism

π : M(p) −→ M(r)

which is the identity on Up ∩ Ur and is such that the following holds for each (α, ν, τ) ∈

dom(hp):

1. if α ≥ sup(N+ ∩ ω2), then π(α) > η;

2. if α /∈ N+ and α∗ = min((N+ ∩ ω2) \ α) exists, then π(α) > ηα;

3. if α ∈ N+ but ν /∈ N+, then π(ν) > δN for each N ∈ Np such that δN < δN+ ;

4. Np ∪Nr is stratified.

Such an r can indeed be found in N+ since the existence of a condition with the

properties above is a true statement, as witnessed by p, which can be expressed over H(θ)

by a sentence with parameters in N+.

In order to finish the proof it suffices to show that p and r can be amalgamated into

a condition p′ ∈ P. This condition p′ can be obtained as p′ = (hp
′
, ip

′
,Np ∪ Nr) by the

following construction, very similar to that of p∗ from p0.

For every α ∈ Xr, let (α(k) : k < mα) be the strictly increasing enumeration of

{sup(N ∩ α) : N ∈ Np, α ∈ N}

and, for every k < mα, let δ
α
k = δN for any N ∈ N such that α ∈ N and sup(N∩α) = α(k).

As in the construction of p∗ from p0, each δαk is well-defined. For each α ∈ Xr and k < mα,

let i(α, k) ∈ δαk \ range(ip) be such that δN < i(δ, k) for each N ∈ Np with δN < δαk .

We define hp
′
and ip

′
by letting hp

′
be a function with

dom(hp
′
) = dom(hp) ∪ dom(hr) ∪ {(α(k), i(α, k), δαk ) : α ∈ Xr, k < mα}
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and making the following definitions for each (α, ν, τ) ∈ dom(hp
′
) (where, given a condition

t ∈ P and a tuple (α, ν, τ) /∈ dom(ht), we define ht(α, ν, τ) = ∅ if (α, ν, τ) /∈ dom(ht), and

similarly with it in place of ht):

1. if (α, ν, τ) ∈ dom(hp) ∪ dom(hr) and cf(α) = ω, then

(a) hp
′
(α, ν, τ) = hp(α, ν, τ) ∪ hr(α, ν, τ) and

(b) for each τ̄ in (dom(hp(α, ν, τ)) ∪ dom(hr(α, ν, τ))) ∩ Lim(ω1), ip
′
(α, ν, τ̄) =

ip(α, ν, τ̄) ∪ ir(α, ν, τ̄);

2. if (α, ν, τ) ∈ dom(hp) and cf(α) = ω1, then

(a) hp
′
(α, ν, τ) = hp(α, ν, τ),

(b) ip
′
(α, ν, τ̄) = ip(α, ν, τ̄) for every τ̄ ∈ dom(hp(α, ν, τ)) ∩ Lim(ω1) and

(c) ip
′
(α, ν, τ̄) = ir(α, ν, τ̄) for every τ̄ ∈ dom(hr(α, ν, τ)) ∩ Lim(ω1);

3. if (α, ν, τ) ∈ dom(hr) and cf(α) = ω1, then

(a) hp
′
(α, ν, τ) = hr(α, ν, τ) ∪ {(δαk , α(k)) : k < mα},

(b) ip
′
(α, ν, τ̄) = ir(α, ν, τ̄) for every τ̄ ∈ dom(hr(α, ν, τ)) ∩ Lim(ω1) and

(c) ip
′
(α, ν, δαk ) = i(α, k) for each k < mα;

4. if α ∈ Xr and k < mα, then

(a) hp
′
(α(k), i(α, k), δαk ) = {(δαk′ , α(k′)) : k′ < k},

(b) ip
′
(α(k), i(α, k), τ̄) = ir(α, 0, τ̄) for every limit ordinal τ̄ ∈ dom(hr(α, 0, ω1))

and

(c) ip
′
(α(k), i(α, k), δαk′) = i(α, k′) for each k′ < k.

The choice of η and of ηα, for ξ ∈ Xp\N+ such that min((N+∩ω2)\α) exists, together

with the way r has been fixed, immediately yields the following.

Claim 3.2.6. For every N ∈ Np and every α ∈ Xr\Xp, if α ∈ N , then δN ≥ δN+.
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Using Claim 3.2.6, we can prove the following versions of Claims 3.2.3 and 3.2.5.

Claim 3.2.7. If α0 < α1 are such that α0, α1 ∈ Xr, then α0(k0) < α0 < α1(k1) for all

k0 < mα0 and k1 < mα1.

Claim 3.2.8. For all N ∈ Np and α ∈ Xr, if α ∈ N , then hr(α, 0, ω1) ∈ N and

ir(α, 0, τ̄) ∈ N for every τ̄ ∈ dom(hr(α, 0, ω1)) ∩ Lim(ω1).

We also have the following counterpart of Claim 3.2.4, proved in exactly the same way.

Claim 3.2.9. For every N ∈ Np, α ∈ Xr and k < mα, if α(k), i(α, k) ∈ N and j < k,

then α(j) ∈ N .

Using the corresponding forms of Claims 3.2.3 and 3.2.4, together with Fact 3.1.5 and

the particular choice of r together with Claims 3.2.7, 3.2.8 and 3.2.9, we can then verify

that p′ is a condition in P, which finishes the proof of the lemma since then p′ of course

extends both p and r.

We will need the following four density lemmas to verify that the function hp can be

extended in order to form a weak square sequence.

Lemma 3.2.10. For every α < ω1 of countable cofinality and every p ∈ P there is a

condition p′ ∈ P extending p and such that (α, 0, ω) ∈ dom(hp
′
).

Proof. We simply let p′ = (hp ∪ {((α, 0, ω), ∅)}, ip,Np).

Lemma 3.2.11. For every α ∈ S2
1 and every p ∈ P there is a condition p′ ∈ P extending

p and such that α ∈ Xp′.

Proof. We may obviously assume α /∈ Xp. We may also assume that α ∈ N for some

N ∈ Np as the conclusion in the other case is immediate. Let (α(k) : k < mα) be the

strictly increasing enumeration of

{sup(N ∩ α) : N ∈ Np, α ∈ N}
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and, for every k < mα, let δ
α
k = δN for anyN ∈ N such that α ∈ N and sup(N∩α) = α(k).

As usual, using Fact 3.1.5 we have that each δαk is well-defined. For each α ∈ Xr and

k < mα, let i(α, k) ∈ δαk \ range(ip) be such that δN < i(α, k) for each N ∈ Np with

δN < δαk .

We can now easily verify that the following is a condition p′ ∈ P as required: p′ =

(hp
′
, ip

′
,Np), where

dom(hp
′
) = dom(hp) ∪ {(α, 0, ω1)} ∪ {(α(k), i(α, k), δαk ) : k < mα}

and where for each (α, ν, τ) ∈ dom(hp
′
):

1. if (α, ν, τ) ∈ dom(hp), then

(a) hp
′
(α, ν, τ) = hp(α, ν, τ) and

(b) ip
′
(α, ν, τ̄) = ip(α, ν, τ̄) for each τ̄ ∈ dom(hp(α, ν, τ)) ∩ Lim(ω1);

2. hp
′
(α, 0, ω1) = {(δαk , α(i)) : i < mα} and ip

′
(α, 0, δαk ) = i(α, k) for each k < mα;

3. for each k < mα,

(a) hp
′
(α(k), i(α, k), δαk ) = {δαk′ : k′ < k} and

(b) ip
′
(α(k), i(α, k), δαk′) = i(α, k′) for each k′ < k.

Lemmas 3.2.12 and 3.2.13 are also easy.

Lemma 3.2.12. For every p ∈ P, α ∈ Xp, and every ν < ω1 there is a condition p′ ∈ P

extending p and such that ν ∈ dom(hp
′
(α, 0, ω1)).

Lemma 3.2.13. For every p ∈ P, α ∈ Xp, every nonzero limit ordinal δ ∈ dom(hp(α, 0, ω1)),

and every η < hp(α, 0, ω1)(δ) there is a condition p′ ∈ P extending p together with some

limit ordinal µ ∈ dom(hp
′
(α, 0, ω1)) ∩ δ such that hp

′
(α, 0, ω1)(µ) > η.
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Proof. We can choose a countable elementary submodel N of H(ω2) closed under e⃗ such

that δN0 < δN < δN1 , where sup(N0 ∩ α) ≥ η and sup(N1 ∩ α) = δ. By Fact 3.1.5 and

using the construction of p′ with Np′ = Np∪{N} in the proof of Lemma 3.2.11 yields then

the result.

Given a P-generic filter G, a limit ordinal α < ω2, and ν < ω1, we define CG
α,ν as

⋃
{range(hp(α, ν, τ)) : p ∈ G, (α, ν, τ) ∈ dom(hp) for some τ}

Let also

CG
α = {CG

α,ν : ν < ω1, C
G
α,ν ̸= ∅}

We immediately obtain the following corollary from Lemmas 3.2.2, the density lemmas

3.2.11–3.2.13, and the definition of P.

Corollary 3.2.14. If G is a P-generic filter over V , then

(CG
α : α ∈ Lim(ω2))

is a □ω1,ω1-sequence.

Corollary 3.2.14 yields the following.

Corollary 3.2.15. MA1.5
ℵ2

(stratified) implies □ω1,ω1.

The original goal of our work was to show that the forcing axiom MA1.5
ℵ2

(stratified)

implies the square □ω1,ω but it became clear very soon that out proof strategy just didn’t

work when ν ranges over ω; there is simply too little space to accommodate all the se-

quences CG
α,ν . This limitation of our approach naturally yields the following question.

Question 3.2.16. Does MA1.5
ℵ2

(stratified) imply □ω1,ω?

It is proved in [21] that MA1.5
κ , for any given κ, is consistent with ¬□ω1,ω.

Question 3.2.17. Does MA1.5
ℵ2

imply □ω1,ω1?
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Finally, the following corollary is an immediate consequence of Corollary 3.2.14.

Corollary 3.2.18. ZFC proves that there is a poset P such that

1. P is proper,

2. P has the ℵ2-c.c., and

3. P forces weak square.

Similar results have been obtained by Neeman. One of the results in [21] is that a

forcing axiom MA1.5
ω2

(U), whose definition involves a certain parameter U ⊆ [ω2]
ℵ0 , implies

both □ω1,<ω and the following strengthening □ta
ω1,ω of □ω1,ω:

3 Given cardinals λ ≤ κ such

that κ ≥ ω1, □ta
κ,λ holds if and only if there is a □κ,λ-sequence (Cα : α ∈ Lim(κ+)) such

that for every α ∈ Lim(κ+) and for all C, C ′ ∈ Cα, C and C ′ agree on a tail, i.e., there is

some β < α such that C \ β = C ′ \ β.4

Neeman also points out in [21] that both □ω1,ω and □ta
ω1,ω follow from some of his strong

high analogues of PFA. On a related vein,5 Sakai shows in [23] that Martin’s Maximum

proves that □p
ω1 (i.e, partial square at ω2) holds and that this is not the case for PFA.

Let us write PFAℵ2(ℵ2-c.c.) to denote FAℵ2(K), where K is the class of proper forcing

notions with the ℵ2-chain condition.

Theorem 3.1.10, as well as other similar strengthenings of the main result from [2],

motivate the following question which was the original goal of this project.6

Question 3.2.19. Is PFAℵ2(ℵ2-c.c.) consistent?

We are not able to answer this question. However, in Section 3.4 we will show

that MMℵ2(ℵ2-c.c.), a natural strengthening of PFAℵ2(ℵ2-c.c.), is in fact inconsistent.

3On the other hand, the definition of MA1.5
ω2

(stratified) is parameter-free.
4The superscript ta stands for ‘tail agreement’.
5One important aspect in which Sakai’s result is different from both Neeman’s results and the first main

result in the present paper is that Sakai’s theorem involves strong forcing axiom at ω1, whereas the others
are implications from forcing axioms at ω2.

6This question is also motivated by the main result from [1], to the effect that it is consistent, for
arbitrary choice of κ, that FAκ({P : P proper, |P| = ℵ1}) holds. It is worth pointing out that the proof of
this theorem is very different from the proof of the main result from [2].
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MMℵ2(ℵ2-c.c.) is FAℵ2(K∗), where K∗ is the class of forcing notions that both preserve

stationary subsets of ω1 and have the ℵ2-chain condition.

One of the ingredients of this proof will be the fact that MMℵ2(ℵ2-c.c.) implies □ω1,ω1

(since MMℵ2(ℵ2-c.c.) extends MA1.5
ℵ2

(stratified)).

3.3 Uniformization property for ℵ2

This section contains the necessary facts which we shall employ in Section 3.4 to prove

another result in this thesis.

Given a set S of ordinals and a set X, let us denote by UnifS,X the statement that for

every sequence (fα : α ∈ S) of colourings fα with colour set X such that dom(fα) is a

club of α there is a function H :
⋃
S −→ X such that for every α ∈ S,

{ξ ∈ dom(fα) : fα(ξ) = H(ξ)}

contains a club of α.

Shelah proves the following theorem in [26], Appendix, Chapter 3. A more accessible

alternative proof can be found in Rinot’s blog [22].

Theorem 3.3.1. (Shelah) UnifS2
1 ,2

is false.

We can also define a natural weakening Unif cS,X of UnifS,X by restricting to sequences

(fα : α ∈ S) of constant colourings (i.e., for every α ∈ S, fα is a constant function).7 It is

immediate to see that for any S ⊆ Ord and any set X, Unif cS,X can be equivalently stated

as the assertion that for every function F : S −→ X there is a function H :
⋃
S −→ X

with the property that for every α ∈ S there is a club C ⊆ α of α such that H(ξ) = F (α)

for every ξ ∈ C. We will say that H uniformizes F mod. clubs.

The following is implicit in [26], Appendix, Chapter 3.

Theorem 3.3.2. (Shelah) If S ⊆ S2
1 is stationary and Unif cS,2 holds, then CH holds as

well.
7The superscript c is for ‘constant’.
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Proof. Unif cS,2 clearly implies Unif cS,R: Given F : S −→ ω2, let Fn : S −→ 2 be defined

by Fn(α) = (F (α))(n) (for each n < ω). Applying Unif cS,2 to each Fn we obtain functions

Hn : S −→ 2 and clubs Dn
α ⊆ α, for α ∈ S and n < ω, such that Hn(ξ) = Fn(α) for

all ξ ∈ Dn
α. But then, if we define H : S −→ ω2 by letting H(ξ) = (Hn(ξ) : n < ω), it

follows that H uniformizes F mod. clubs as witnessed by the clubs Dα, for α ∈ S, where

Dα =
⋂

nD
n
α.

Thus, if 2ℵ0 ≥ ℵ2 and Unif cS,2 holds, then Unif cS,ω2
holds as well. Now suppose Unif cS,2

holds and 2ℵ0 ≥ ℵ2. Letting F be the identity function on S, we apply Unif cS,ω2
to F and

get a corresponding uniformizing function H : ω2 −→ ω2 and clubs Dα ⊆ α for α ∈ S.

Since S is stationary, we may find α ∈ S closed underH. But now we reach a contradiction

since there is obviously no club D ⊆ α such that H(ξ) = F (α) = α for all ξ ∈ D.8

We can straightforwardly prove the above assertion with the full statement of UnifS,2

to show that CH holds with the same main idea of the proof. The full proof can be found

in [22].

Remark 3.3.3. If S ⊆ S2
1 is stationary and UnifS,2 holds, then CH holds.

Remark 3.3.4. Given a club-sequence C⃗ = (Cα : α ∈ S) such that ot(Cα) = cf(α) for

each α ∈ S, we can define the following strengthening Unif c,C⃗, cbd
S,2 of Unif cS,2: Unif c,C⃗, cbd

S,2

is the statement that for every function F : S −→ 2 there is a function H : sup(S) −→ 2

such that for every α ∈ S,

{ξ ∈ Cα : H(ξ) = F (α)}

is co-bounded in α.9

If CH holds and C⃗ = (Cα : α ∈ S) is as above, Unif c,C⃗, cbd
S2
1 ,2

can be forced by a σ-

closed and ℵ2-c.c. forcing, obtained as the direct limit of a long enough countable support

iteration of σ-closed forcing notions with the ℵ2-c.c. At any given stage of the iteration,

the corresponding iterand is the forcing QC⃗,F for adding a uniformizing function on C⃗

mod. co-bounded sets, for some given colouring F : S −→ 2: A condition in QC⃗,F is a

8There is obviously not even any nonempty D ⊆ α like that.
9We say that H uniformizes F on C⃗ modulo co-bounded sets.



31

function q = (bqα : α ∈ Zq), for some countable Zq ⊆ S2
1 , such that bqα < α for each

α ∈ Zq, and such that sup(dom(Cα′) ∩ α) < bqα′ for all α < α′ in Zq with F (α) ̸= F (α′).

The extension relation is reverse inclusion.

Question 3.3.5. Is the dependence on a fixed club-sequence in the consistency proof in

Remark 3.3.4 necessary? In other words, is the following strengthening of Unif c,C⃗∗, cbd
S,2 ,

for a fixed club-sequence C⃗∗ = (Cα, : α ∈ S2
1) with ot(Cα) = ω1 for each α, consistent?

Suppose C⃗ = (Cα : α ∈ S) is a club-sequence such that ot(Cα) = ω1 for each α ∈ S. Then

for every function F : S −→ 2 there is a function H : sup(S) −→ 2 such that for every

α ∈ S,

{ξ ∈ Cα : H(ξ) = F (α)}

is co-bounded in α.

Recall the definition of generalized diamond principle ♢. For any cardinal number κ

and a stationary set S ⊆ κ, ♢(S) is the statement there exists a ♢-sequence (Aα ⊆ α :

α ⊆ S) such that for every A ⊆ κ, {α ∈ S : A ∩ α = Aα} is stationary in κ.

Remark 3.3.6. The statement that Unif cS,2 holds for every stationary S ⊆ S2
1 is not

equivalent to CH as, for example, the assumption that ♢(S) holds for every stationary

S ⊆ S2
1 implies ¬Unif cS,2 for every such S: Suppose (Aα : α ∈ S) is a ♢-sequence and let

F : S −→ 2 be such that for every α ∈ S, F (α) = 1− i if Aα codes a function Hα : α −→ 2

and there are club-many ξ ∈ α such that Hα(ξ) = i. It is easy to see that no function

H : ω2 −→ 2 can uniformize F mod. clubs.

Given a class K of countable models, let us say that a proper forcing P is proper with

respect to K in case for every cardinal θ such that P ∈ H(θ) there is a club D ⊆ [H(θ)]ℵ0

such that for every N ∈ D∩K and every condition p ∈ P∩N there is an extension p∗ ∈ P

of p which is (N,P)-generic.

Given a cardinal θ, a set S ⊆ [H(θ)]ℵ0 is a projective stationary subset of H(θ) in case

for every stationary S ⊆ ω1 and every club D of [H(θ)]ℵ0 there is some N ∈ S ∩D such

that δN ∈ S. The following proposition is standard.
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Proposition 3.3.7. Let K be a class of models such that K ∩ [H(θ)]ℵ0 is a projective

stationary subset of [H(θ)]ℵ0 for every cardinal θ > ω1 such that P ∈ H(θ). Let P be a

forcing notion which is proper with respect to K. Then P preserves stationary subsets of

ω1.

Proof. Let Ċ be a P-name for a club of ωV
1 , let S ⊆ ω1 be stationary, and let p ∈ P. Let

θ be large enough and, using the projective stationarity of K ∩ H(θ), let N ≺ H(θ) be

countable and such that P, Ċ, p ∈ N and δN ∈ S. Let p∗ be an (N,P)-generic condition

stronger than p. Then p∗ forces that δN ∈ S is a limit of ordinals in Ċ and therefore, since

Ċ is a P-name for a closed set, that δN ∈ Ċ.

3.4 MMℵ2
(ℵ2-c.c.) is false

This section is one of the main results of this thesis. As has already been presented,

the square principles are not compatible with the forcing axioms which are modelled by

collapsing a supercompact cardinal to ω2 such as PFA and MM. Weaker forcing axioms

such as Martin’s Axiom are, however, compatible with square principles.

In the previous section, we have shown that one of these weaker axioms, more precisely,

MA1.5
ℵ2

(stratified), not only is compatible with square principles but also outright implies

one of them.

We define MMℵ2(ℵ2-c.c.) as follows. Given a cardinal κ, MMκ(ℵ2-c.c.) denotes FAκ(Γ),

where Γ is the class of all posets P such that

• P preserves stationary subsets of ω1 and

• P has the ℵ2-c.c.

Theorem 3.4.1. MMℵ2(ℵ2-c.c.) is false.

Let us assume, towards a contradiction, that MMℵ2(ℵ2-c.c.) holds. In particular

FAℵ2(
<ω2) holds and therefore CH fails.10 Let S = S2

1 . It follows, by Theorem 3.3.2,

10In fact 2ℵ0 ≥ ℵ3.
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that there is a function F : S −→ 2 for which there is no function H : ω2 −→ 2 uniformiz-

ing F mod. clubs.

Since MA1.5
ℵ2

(stratified) also holds, we may fix a □ω1,ω1-sequence C⃗ = (Cα : α ∈

Lim(ω2)) (by Theorem 3.2.1). Let also e⃗ = (eα : α < ω2) be such that eα : |α| −→ α is a

bijection for each α < ω2.

Let Ke⃗
C⃗
be the class of countable models N such that N ∩ ω2 =

⋃
γ∈C eγ“δN for some

C ∈ Cα, where α = sup(N ∩ ω2).

The following is quite standard.

Claim 3.4.2. For every cardinal θ > ω1, Ke⃗
C⃗
∩ H(θ) is a projective stationary subset of

[H(θ)]ℵ0.

Proof. Suppose D is a club of [H(θ)]ℵ0 and S ⊆ ω1 is stationary. Let f : <ωω2 −→ ω2 be

a finitary function such that for every X ∈ [ω2]
ℵ0 , if f“[X]<ω ⊆ X, then X = N ∩ ω2 for

some N ∈ D. Let α ∈ S2
0 be such that ω1 < α and f“[α]<ω ⊆ α and let C ∈ Cα. But now,

since E = {M ∩ α : M ≺ (H(ω2);∈, e⃗, C)} contains a club of [α]ℵ0 , we may pick some

X ∈ E closed under f and such that δX ∈ S, and if N ∈ D is such that N ∩ω2 = X, then

N will be a member of Ke⃗
C⃗
such that δN ∈ S.11

We will show that there is a forcing notion Q which is proper with respect to Ke⃗
C⃗
,

has the ℵ2-c.c., and forces the existence of a function H : ω2 −→ 2 uniformizing F mod.

clubs. This will yield a contradiction since then Q will preserve stationary subsets of ω1

by Proposition 3.3.7 and Claim 3.4.2, and so the existence of such a function H will follow

from an application of FAℵ2({Q}).

Remark 3.4.3. One can prove directly that □ω1,ω1 , which we know followsMMℵ2(ℵ2-c.c.),

implies that for every sequence f⃗ = (fα : α ∈ S2
1) of colourings as in the definition of

UnifS2
1 ,2

there is a proper forcing notion Q
f⃗
which is proper with respect to K∗, has the ℵ2-

c.c., and forces the existence of a function H : ω2 −→ 2 such that {ξ ∈ dom(fα) : fα(ξ) =

H(ξ)} contain a club for every α ∈ S2
1 . It then follows that MMℵ2(ℵ2-c.c.) is inconsistent

11The choice of α being of countable cofinality is inessential. We could have taken α of cofinality ω1,
considered E = {M ∩ α : M ≺ (H(ω2);∈, e⃗, C⃗)}, and continued the argument using the coherence of C⃗.
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since it implies UnifS2
1 ,2

, which always fails by Theorem 3.3.1. However, proceeding as

we are doing here has the advantage of producing a self-contained proof, not relying on

Theorem 3.3.1.

Notation 3.4.4. For each α ∈ Lim(ω2), let us fix an enumeration (Cα,ν : ν < ω1) of Cα.

Also, given a set X, we will write cl(X) to denote X ∪X ∩ Ord, where X ∩ Ord denotes

the closure of X in the order topology.12

Definition 3.4.5. Let us say that a family N of countable models is C⃗-stratified in case

the following holds.

1. N ⊆ Ke⃗
C⃗

2. For all N0, N1 ∈ N , if δN0 = δN1 but N0 ∩ ω2 ̸= N1 ∩ ω2, then

(a) αi := min((Ni ∩ ω2) \N1−i) exists for each i ∈ 2,

(b) cf(α0) = cf(α1) = ω1, and

(c) there is no ordinal α above sup(N0 ∩ N1 ∩ ω2) such that α ∈ cl(N0 ∩ ω2) ∩

cl(N1 ∩ ω2).

3. For all N0, N1 ∈ N , if δN0 < δN1 , then

α := max(cl(N0 ∩ ω2) ∩ cl(N1 ∩ ω2))

exists, α ∈ N1, and there is some ν < δN1 such that

N0 ∩ α =
⋃

γ∈Cα,ν

eγ“δN0 .

We note that every C⃗-stratified family of models is stratified.

The following simple remark will be quite useful.

12We stress that X need not be a set of ordinals.
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Remark 3.4.6. Suppose N is a C⃗-stratified family of models, ᾱ < ω2, N0, N1 ∈ N , and

α0 ∈ N0 ∩ S and α1 ∈ N1 ∩ S are such that

sup(N0 ∩ α0) = sup(N1 ∩ α1) = ᾱ

Then δN0 = δN1 . Hence, if α0 ̸= α1, then α0 = min((N0 ∩ ω2) \N1) and α1 = min((N1 ∩

ω2) \N0).

Definition 3.4.7. Let us say that a C⃗-stratified family N of models is compatible with F

in case for all N0, N1 ∈ N , if δN0 = δN1 , N0∩ω2 ̸= N1∩ω2, and αi = min((Ni∩ω2)\N1−i)

for each i ∈ 2, then F (α0) = F (α1).

Definition 3.4.8. We define Q to be the forcing notion consisting of ordered pairs

q = ((Iq
α : α ∈ Xq),Nq)

with the following properties.

1. Xq ∈ [S]<ω

2. For every α ∈ Xq, Iq
α is a finite collection of pairwise disjoint intervals of the form

[γ0, γ1) with γ0 < γ1 < α.

3. For all α0, α1 ∈ Xq, if F (α0) ̸= F (α1), then min(I) ̸= min(I ′) for all I ∈ Iq
α0 and

I ′ ∈ Iq
α1 .

4. Nq is a finite family of countable elementary submodels of the structure (H(ω2);∈

, e⃗, C⃗) which is C⃗-stratified and compatible with F .

5. The following are equivalent for every α ∈ Xq and every β < α.

(a) β = min(I) for some I ∈ Iq
α.

(b) β = sup(N ∩ α) for some N ∈ Nq such that α ∈ N .

Given conditions q0, q1 ∈ Q, q1 extends q0 iff
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1. Xq0 ⊆ Xq1 ,

2. for every α ∈ Xq0 and every I ∈ Iq0
α there is some (necessarily unique) I ′ ∈ Iq1

α such

that min(I ′) = min(I) and sup(I ′) ≥ sup(I), and

3. Nq0 ⊆ Nq1

We will use the two following density lemmas.

Lemma 3.4.9. For every Q-condition q and every α ∈ S there is some q∗ ∈ Q extending

q and such that α ∈ Xq∗.

Proof. If α ∈ q then we are already done. Now, suppose α /∈ Xq. Let

I = {{sup(N ∩ α)} : N ∈ Nq, α ∈ N}

. We are going to show that

q∗ := ((Iq
β : β ∈ Xq) ∪ {(α, I)},Nq)

is the extension of q in Q as desired. To see this, let ᾱ = sup(N ∩ α) for some N ∈ Nq

with α ∈ N . For q∗ to fail to be a condition in Q, there must be some α′ ∈ Xq and some

N ′ ∈ Nq such that α′ ∈ N ′, sup(N ∩ α′) = ᾱ, and F (α′) ̸= F (α). In fact, this is the only

way for q∗ to fail to be a condition since Iq
β ⊆ Iq∗

β . By C⃗-stratification of Nq and Remark

3.4.6 we have that δN = δN ′ , α = min((N ∩ ω2) \N ′), and α′ = min((N ′ ∩ ω2) \N). But

then F (α) = F (α′) since Nq is compatible with F , which is a contradiction.

Lemma 3.4.10. For all q ∈ Q, α ∈ Xq, and η < α there is some extension q∗ ∈ Q

together with some I ∈ Iq∗
α such that min(I) > η.

Proof. Let N be a sufficiently correct elementary submodel of H(ω2) containing q and η,

i.e., the chosen N allows us to construct q∗ as

q∗ = ((Iq∗

β : β ∈ Xq),Nq ∪ {N}),
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where

Iq∗

β = Iq
β ∪ {{sup(N ∩ β)}}

for each β ∈ Xq.

It is clear that q∗ is condition in Q stronger than q. Also, η < sup(N ∩ α) since

η ∈ N .

Another crucial part of the proof is to show that Q is proper for the relevant models.

The following is the relevant properness lemma.

Lemma 3.4.11. Let θ be a cardinal such that Q ∈ H(θ) and let M0 and M1 be countable

elementary submodels of H(θ) of the same height such that F , C⃗, e⃗ ∈ M0 ∩ M1 and

{M0,M1} is a C⃗-stratified family compatible with F . Then for every q0 ∈ Q ∩M0 there

is an extension q∗ ∈ Q of q0 such that q∗ is (M i,Q)-generic for i = 0, 1.

Proof. Let

N = {M0 ∩H(ω2),M
1 ∩H(ω2)}

and for every α ∈ Xq0 let ρα = sup(M0 ∩ α).

The proof will be complete once we show that

q∗ = ((Iq∗
α : α ∈ Xq0),Nq0 ∪N )

is an (M i,Q)-generic condition for i = 0, 1,

where Iq∗
α = Iq

α ∪ {{ρα}}.13

We start by noting that Nq0 ∪N is C⃗-stratified. This comes from the hypothesis that

N is C⃗-stratified and compatible with F , and since Nq0 ∈ M0 and δM0 = δM1 . The fact

that Nq0 ∪ N is C⃗-stratified is immediate. The condition q∗ is indeed a condition in Q

since for every α ∈ Xq0 and every I ∈ Iq0
α , min(I) < ρα and ρα /∈ M0, and for all α < α′

in Xq0 , ρα < α < ρα′ . Now, since the condition q∗ is defined to be an extension of q0, it

suffices to prove that q∗ is (M i,Q)-generic for each i = 0, 1. To do this, suppose D ∈ M i

13Here, we shall use {ρα} in place of [ρα, ρα + 1) for the sake of simplicity.
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is an open and dense subset of Q and q is an extension of q∗ in D. We will find a condition

in D ∩M i compatible with q.

Let ∆ = {δN : N ∈ Nq} ∩ δM i . Let us note that, by C⃗-stratification of Nq and

M i ∈ Nq,

Rq = {N ∩ ω2 ∩M i : N ∈ Nq, δN ∈ ∆} ∈ M i.

Using this, and by a reflection argument as in the proof of Lemma 3.2.2, we may find in

M i a condition r ∈ D such that

q′ := ((Iq
α ⊕ Ir

α : α ∈ Xq ∪Xr),Nq ∪Nr) ∈ Q,

where Iq
α ⊕ Ir

α is defined as follows for each α ∈ Xq ∪Xr.

1. If α ∈ Xq \Xr, then Iq
α ⊕ Ir

α = Iq
α.

2. If α ∈ Xr \Xq, then

Iq
α ⊕ Ir

α = Ir
α ∪ {{sup(N ∩ α)} : N ∈ Nq, α ∈ N}

3. If α ∈ Xq ∩Xr, then Iq
α ⊕ Ir

α is the unique set I of pairwise disjoint intervals with

{min(I) : I ∈ I} = {min(I) : I ∈ Iq
α ∪ Ir

α}

such that for every I ∈ I, if γ0 = min(I), then

(a) sup(I) = sup(I0) in case I0 ∈ Iq
α, min(I0) = γ0, and there is no J ∈ Ir

α such

that min(J) = γ0;

(b) sup(I) = sup(I1) in case I1 ∈ Ir
α, min(I1) = γ0, and there is no J ∈ Iq

α such

that min(J) = γ0;

(c) sup(I) = max{sup(I0), sup(I1)} in case I0 ∈ Iq
α, I1 ∈ Ir

α, min(I0) = γ0, and

min(I1) = γ0.
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More specifically, we find r ∈ D ∩M i with the following properties.

1. For all α ∈ Xr, I ∈ Ir
α, α

′ ∈ Xq, and I ′ ∈ Iq
α′ , if min(I) = min(I ′), then F (α) =

F (α′).

2. For every N ∈ Nr such that δN ∈ ∆ there is some X ∈ Rq such that X is an initial

segment of N ∩ ω2. Moreover, X is a proper initial segment of N ∩ ω2 if and only if

there if there is some N ′ ∈ Nq such that X is a proper initial segment of N ′ ∩ω2, in

which case, for every such N ′, if α0 = min((N∩ω2)\X) and α1 = min((N ′∩ω2)\X),

then F (α0) = F (α1).

We can indeed find such an r ∈ M i, by correctness of M i, since the existence of an r

with the above properties is a true fact, as witnessed by q, which can be expressed by a

sentence with parameters in M i. And given r ∈ M i as above, the amalgamation q′ of r

and q described earlier is a condition in Q. This finishes the proof of the lemma since q′

extends both q and r.

The following is an immediate corollary from Lemma 3.4.11.

Corollary 3.4.12. Q is proper with respect to Ke⃗
C⃗
.

Lemma 3.4.13. Q has the ℵ2-c.c.

Proof. Suppose, towards a contradiction, that (qi ; i < λ), for some cardinal λ ≥ ω2, is a

one-to-one enumeration of a maximal antichain A of Q. Let θ be a large enough cardinal.

For every i < ω2 let Mi be a countable elementary submodel of H(θ) belonging to Ke⃗
C⃗
and

such that pi, F , C⃗, e⃗, A ∈ Mi.

Let P be an elementary submodel of some higher H(χ) such that |P | = ℵ1 and C⃗,

((qi,Mi) : i < λ) ∈ P . Since all qi are distinct and λ ≥ ω2, we may find i0 such that

qi0 /∈ P . Now, working in P and since Mi0 ∩ P ∈ P as Mi0 ∈ Ke⃗
C⃗
, we may find i1 ∈ P ∩ λ

such that δMi0
= δMi1

and {Mi0 ,Mi1} is C⃗-stratified. By Lemma 3.4.11 there is a condition

q∗ ∈ Q extending qi0 and such that q∗ is (Mi1 ,Q)-generic. But now, since A ∈ Mi1 is a
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maximal antichain of Q, we can find a common extension q′ of q∗ and some qi2 ∈ A∩Mi1 ,

which is a contradiction since qi2 ̸= qi0 yet q′ extends both qi0 and qi2 .

Let now G be a Q-generic filter. Given any α ∈ S, let

DG
α = {min(I) : I ∈ Iq

α, q ∈ G, α ∈ Xq}

By Lemma 3.4.9, DG
α is an unbounded subset of α.

Lemma 3.4.14. For every α ∈ S, DG
α is closed in α.

Proof. Let δ < α be a limit ordinal forced by some q ∈ Q with α ∈ Xq to be a limit point

of DĠ
α and suppose, towards a contradiction, that δ ̸= min(I) for any I ∈ Iq

α. By the

choice of q we may assume that there is some I ∈ Iq
α such that min(I) < δ. Letting I0 be

the unique such I with min(I) maximal within Iq
α we may now extend q to a condition

q′ such that [min(I0), δ + 1) ∈ Iq′
α . But q′ forces that DĠ

α ∩ δ ⊆ min(I0) + 1 < δ, which

contradicts the assumption that q forced DĠ
α to be cofinal in δ.

It follows from Lemmas 3.4.9, 3.4.10, and 3.4.14 together that if we aim to define

H : ω2 −→ 2 by letting H(η) = F (α) for any α ∈ S such that η ∈ DG
α (and H(η) = 0 if

there is no α as above), then H is a well-defined function with uniformizes F mod. clubs,

as witnessed by DG
α for α ∈ S. This concludes the proof of Theorem 3.4.1.

There are other results in the literature dealing with failures of forcing axioms at ℵ2 or

above. In this respect we single out the following theorem of Shelah [27], extended by the

main result in this section that there is no naive higher analogue of MM, that is, For every

regular cardinal κ ≥ ω2,FAκ(Γκ) fails where Γk is the class of forcing notions preserving

stationary sets of µ for every uncountable regular µ ≤ κ.14

Theorem 3.4.15. (Shelah) Given any regular cardinal λ > ω1, FAλ(Kλ) is false, where Kλ

is the class of forcing notions preserving all stationary subsets of µ for every uncountable

regular cardinal µ ≤ λ.

14Here, MMℵ2(ℵ2−c.c.) is FAℵ2(Γℵ1).



41

Remark 3.4.16. We point out that the inconsistency proof of the forcing axiomMMℵ2(ℵ2-c.c.)

we have given shows the impossibility of having FAℵ2(Γ) for the class Γ of posets which

have the ℵ1.5-c.c. with respect to families of models which are simultaneously C⃗-stratified,

for a fixed □ω1,ω1-sequence C⃗, and F -compatible for arbitrarily fixed choices of F . On the

other hand, the methods of [2] allow us to build models of the forcing axiom FAℵ2(Γ0),

where Γ0 is the class of partial orders with the ℵ1.5-c.c. with respect to families which are

C⃗-stratified, for a fixed □ω1,ω1-sequence C⃗.
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Chapter 4

More on the consequences of

MA1.5
ℵ2 (stratified) and another proof

of inconsistency of MMℵ2(ℵ2-c.c.)

In this chapter we shall present additional implications of MA1.5
ℵ2

(stratified). These include

a negation of the weak Chang’s conjecture and the existence of an LCS partial order on

ω×ω2. Furthermore, we will also present another proof of the failure of the forcing axiom

MMℵ2(ℵ2-c.c.) using the other implication of MA1.5
ℵ2

(stratified), the negation of the weak

Chang’s conjecture.

4.1 MA1.5
ℵ2
(stratified) implies ¬wCC.

The weak Chang’s conjecture, denoted wCC, is the statement that there is no function

from ω1 into ω1 bounding all canonical functions (modulo club). In other words, that for

every function f from ω1 to ω1 there is some α < ω2 such that {ν < ω1 : f(ν) < gα(ν)} is

stationary, where gα is the canonical function for α defined as follows.

Definition 4.1.1. Let α < ω2 be a nonzero ordinal and π : ω1 → α a surjection. The

function gα : ω1 → ω1 defined by letting gα(ν) = ot(π“ν) is called a canonical function for
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α.

A canonical function for an ordinal α is clearly increasing. The degree of uniqueness

of canonical functions for a given α is given by the following obvious observation, which

in particular implies that gα is uniquely determined modulo clubs.

Fact 4.1.2. Given α < ω2 and given surjections π0, π1 : ω1 −→ α there is a club of ν < ω1

such that π0“ν = π1“ν.

Another standard fact about canonical functions for α is that they represents the

ordinal α in every generic ultrapower of V obtained by forcing with P(ω1)/NSω1 . In

other words, if g is a canonical function for α, then P(ω1)/NSω1 forces that, letting

M = ((ω
V
1 V ) ∩ V )/Ġ be the generic ultrapower of V obtained from Ġ, the set of M -

ordinals below the class [g]Ġ of g in M is well-ordered in order type α.

A natural weakening of CB is weak Chang’s Conjecture, wCC [9]. Martin’s Maximum

implies the saturation of NSω1 [11], and hence also CB. On the other hand, it is not

difficult to see that not even wCC follows from PFA (s. e.g. [2] for strong forms of this

non-implication).

Notation 4.1.3. Club-bounding by canonical functions, CB, is the statement that every

function f : ω1 −→ ω1 is bounded on a club by the canonical function of some nonzero

α < ω2. CB is a weakening of NSω1 being saturated.

The goal of this section is to prove the following theorem.

Theorem 4.1.4. MA1.5
ℵ2

(stratified) implies ¬wCC.

As usual we fix a sequence e⃗ = (eα : 0 < α < ω2), where eα : ω1 −→ α is a surjection

for each α.

We consider the following forcing notion R. A condition in R is a triple p = (fp, (h
p
α :

α ∈ Xp),Np), where:

1. fp ⊆ ω1 × ω1 is a finite function.
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2. Xp ∈ [ω2 \ {0}]<ω

3. For each α ∈ Xp,

(a) hpα ⊆ ω1×ω1 is a finite function which can be extended to a continuous strictly

increasing function h : ω1 −→ ω1, and

(b) for each ν ∈ dom(hpα), ν ∈ dom(fp) and ot(eα“h
p
α(ν)) < fp(h

p
α(ν)).

4. Np is a finite stratified family of countable elementary submodels of (H(ω2);∈, e⃗, f⃗).

5. The following holds for each N ∈ Np.

(a) fp ↾ δN ⊆ N ;

(b) δN ∈ dom(fp) and fp(δN ) ≥ ot(N ∩ ω2);

(c) for every α ∈ Xp ∩N ,

i. hpα ↾ δN ⊆ N ,

ii. δN ∈ dom(hpα), and

iii. hpα(δN ) = δN .

Given R-conditions p0 and p1, p1 extends p0 iff

1. fp0 ⊆ fp1 ,

2. Xp0 ⊆ Xp1 , and

3. for every α ∈ Xp0 , h
p0
α ⊆ hp1α . .

The following density lemmas are easy.

Lemma 4.1.5. For every p ∈ R and every nonzero β < ω2 there is a R-condition p∗

extending p and such that β ∈ Xp∗.

Proof. We may of course assume that β /∈ Xp. It then suffices to set

p∗ = (fp, (h
p
α : α ∈ Xp) ∪ {(β, {(δN , δN ) : N ∈ Np, β ∈ N})},Np)
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To see that this is a condition in R it suffices to note that if N ∈ Np is such that β ∈ N ,

then δN ∈ dom(fp) and

ot(eβ“δN ) = ot(N ∩ β) < ot(N ∩ ω2) ≤ fp(δN ),

and that, sinceNp is stratified, ot(N∩ω2) < δN ′ for every N ′ ∈ Np such that δN < δN ′ .

Lemmas 4.1.6, 4.1.7 and 4.1.8 are straightforward.

Lemma 4.1.6. For every p ∈ R, α ∈ Xp and ν < ω1 there is some p∗ ∈ R extending p

and such that ν ∈ dom(hp
∗

α ).

Lemma 4.1.7. For every p ∈ R, α ∈ Xp, every nonzero limit ordinal δ ∈ dom(hpα),

and every η < hpα(δ) there is a condition p∗ ∈ R extending p together with some ν ∈

dom(hp
∗

α ) ∩ δ such that hp
∗

α (ν) > η.

Lemma 4.1.8. For every p ∈ R and every ν < ω1 there is a condition p∗ ∈ R extending

p and such that ν ∈ dom(fp∗).

It follows from Lemmas 4.1.5–4.1.8 together that if G is R-generic and we set

fG =
⋃

{fp : p ∈ G}

and

CG
α =

⋃
{range(hpα) : p ∈ G, α ∈ Xp}

for each nonzero α < ω2, then fG : ωV
1 −→ ωV

1 is a function, each CG
α is a club of ωV

1 , and

ot(eα“ν) < fG(ν) for each α and ν ∈ CG
α . Hence, if we can show that R has the ℵ1.5-c.c.

with respect to finite stratified families of models, an application of MA1.5
ℵ2

(stratified) to

R will show that MA1.5
ℵ2

(stratified) implies ¬wCC.

Lemma 4.1.9. R has the ℵ1.5-c.c. with respect to finite stratified families of models.

Proof. Let θ be a large enough cardinal, let N ∗ be a finite stratified family of countable

elementary submodels of H(θ) containing e⃗ and f⃗ , and let p0 ∈ R ∩ N∗
0 , where N∗

0 is of
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minimum height within N ∗. We will prove that there is a condition p∗ ∈ R stronger than

p0 such that p∗ is (N∗,R)-generic for each N∗ ∈ N ∗.

Let N = {N∗ ∩H(ω2) : N∗ ∈ N ∗} and for every δ ∈ {δN : N ∈ N} let

µ(δ) = max{ot(N ∩ ω2) : N ∈ N , δN = δ}

Let

p∗ = (fp0 ∪ {(δN µ(δN )) : N ∈ N}, (hp∗α : α ∈ Xp0),Np0 ∪N ),

where

hp
∗

α = hp0α ∪ {(δN , δN ) : N ∈ N , α ∈ N}

for each α ∈ Xp0 . It is easy to check that p∗ is a condition in R, and it of course extends

p0 by construction. Hence, it will be enough to show that p∗ is (N∗,R)-generic for every

N∗ ∈ N ∗. Let D ∈ N∗ be a dense and open subset of R and let p be an extension of p∗

in D. We will show that there is a condition in D ∩N∗ compatible with p.

As in the proof of Lemma 3.2.2, we may assume that N∗ =
⋃

ν<δN∗ N
∗
ν , where

(N∗
ν )ν<δN∗ is a ⊆-continuous ∈-chain of models. By moving to a suitable N∗

ν0 and ar-

guing there as in the proof of Lemma 3.2.2 using the stratification of Np, we may find a

condition r ∈ D ∩N∗
ν0 such that

1. for every α ∈ Xp∩Xr, h
p
α∪hrα can be extended to a strictly increasing and continuous

function h : ω1 −→ ω1,

2. for every α ∈ Xr ∩Xq and every N ∈ Np such that δN < δN∗ , α /∈ N , and

3. Np ∪Nr is stratified.

Let now

p′ = (fr ∪ (fp ↾ (ω1 \ δN∗)), (hp
′

α : α ∈ Xp ∪Xr),Np ∪Nr),

where

1. for every α ∈ Xp ∩Xr, h
p′
α = hpα ∪ hrα,
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2. for every α ∈ Xp \Xr, h
p′
α = hpα, and

3. for every α ∈ Xr \Xp, h
p′
α = hrα ∪ {(δN , δN ) : N ∈ Np, α ∈ N}.

Then p′ is a condition in R, which finishes the proof of the lemma since p′ is of course

stronger than both p and r.

The above lemma concludes the proof of Theorem 4.1.4.

4.2 Another proof of the inconsistency of MMℵ2
(ℵ2-c.c.)

In this section of the thesis we will give another proof of Theorem 3.4.1 in Section 3.4.

Our argument is essentially due to Shelah showing that in some circumstances stationary

forcing argument cannot be iterated without collapsing ω1.

Let us assume that MMℵ2(ℵ2-c.c.) holds. Hence, MA1.5(stratified) holds as well and

so, by Theorem 4.1.4, there is a function f : ω1 −→ ω1 such that {ν < ω1 : g(ν) < f(ν)}

contains a club for every nonzero α < ω2 and every canonical function g for α. We will

build a sequence (fn)n<ω of functions from ω1 to ω1, together with clubs Cn of ω1, such that

for every n and every ν ∈ Cn, fn+1(ν) < fn(ν). This of course will yield a contradiction

since then, if ν ∈
⋂

nCn, then fn+1(ν) < fn(ν) for all n, which is impossible.

We will make sure that the construction can keep going by arranging, for every n < ω

and every nonzero α < ω2, that fn dominates every canonical function for α on a club.

We start our construction by letting f0 = f .

Given n < ω and assuming fn has been constructed, we will find fn+1 by an application

of MMℵ2(ℵ2-c.c.) to the following slight variant Rfn of the poset R in the proof of Theorem

4.1.4.

Let Kfn be the collection of countable N ≼ (H(ω2);∈, e⃗, f⃗ , fn) such that ot(N ∩ω2) <

fn(δN ).

A condition in Rfn is a tuple p = (fp, dp, (h
p
α : α ∈ Xp),Np) with the following

properties.

1. fp ⊆ ω1 × ω1 is a finite function.
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2. dp ⊆ ω1 × ω1 is a finite function which can be extended to a continuous strictly

increasing function d : ω1 −→ ω1.

3. For every ν ∈ dom(dp), fp(dp(ν)) < fn(dp(ν)).

4. Xp ∈ [ω2 \ {0}]<ω

5. For each α ∈ Xp,

(a) hpα ⊆ ω1×ω1 is a finite function which can be extended to a continuous strictly

increasing function h : ω1 −→ ω1, and

(b) for each ν ∈ dom(hpα), ν ∈ dom(fp) and ot(eα“h
p
α(ν)) < fp(h

p
α(ν)).

6. Np is a finite stratified family of members of Kfn .

7. The following holds for each N ∈ Np.

(a) fp ↾ δN ⊆ N ;

(b) δN ∈ dom(fp) and fp(δN ) ≥ ot(N ∩ ω2);

(c) dp ↾ δN ⊆ N , δN ∈ dom(dp), and dp(δN ) = δN .

(d) for every α ∈ Xp ∩N ,

i. hpα ↾ δN ⊆ N ,

ii. δN ∈ dom(hpα), and

iii. hpα(δN ) = δN .

Given Rfn-conditions p0 and p1, p1 extends p0 iff

1. fp0 ⊆ fp1 ,

2. dp0 ⊆ dp1 ,

3. Xp0 ⊆ Xp1 , and

4. for every α ∈ Xp0 , h
p0
α ⊆ hp1α .
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We now have the following density lemmas. Lemma 4.2.1 is proved by the same

argument as in the proof of Lemma 4.1.5 using the fact that all models of Np are in Kfn ,

and Lemmas 4.2.2–4.2.5 are straightforward.

Lemma 4.2.1. For every p ∈ Rfn and every nonzero β < ω2 there is a Rfn-condition p∗

extending p and such that β ∈ Xp∗.

Lemma 4.2.2. For every p ∈ Rfn, α ∈ Xp and ν < ω1 there is some p∗ ∈ Rfn extending

p and such that ν ∈ dom(hp
∗

α ).

Lemma 4.2.3. For every p ∈ Rfn, α ∈ Xp, every nonzero limit ordinal δ ∈ dom(hpα),

and every η < hpα(δ) there is a condition p∗ ∈ Rfn extending p together with some ν ∈

dom(hp
∗

α ) ∩ δ such that hp
∗

α (ν) > η.

Lemma 4.2.4. For every p ∈ Rfn and every ν < ω1 there is a condition p∗ ∈ Rfn

extending p and such that ν ∈ dom(fp∗).

Lemma 4.2.5. For every p ∈ Rfn and every ν < ω1 there is a condition p∗ ∈ Rfn

extending p and such that ν ∈ dom(dp∗).

It follows from the above density lemmas that if G is Rfn-generic and we let

DG =
⋃

{range(dp) : p ∈ G},

fG =
⋃

{fp : p ∈ G},

and

CG
α =

⋃
{range(hpα) : p ∈ G, α ∈ Xp}

for each nonzero α < ω2, then DG is a club of ωV
1 , f

G : ωV
1 −→ ωV

1 is a function, each CG
α

is a club of ωV
1 , ot(eα“ν) < fG(ν) for each α and ν ∈ CG

α , and fG(ν) < fn(ν) for each

ν ∈ DG. It follows that an application of MMℵ2(ℵ2-c.c.) to Rfn will provide us with fn+1.

Hence, we just need to prove that Rfn preserves stationary subsets of ω1 and has the

ℵ2-c.c. This we will prove by means of the following version of Lemma 3.4.11 in Section

3.4.
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Lemma 4.2.6. Let θ be a cardinal such that Rfn ∈ H(θ) and let M0, M1 ≺ H(θ) be

countable models of the same height and such that Rfn ∈ M0 ∩ M1 and M0 ∩ H(ω2),

M1 ∩ H(ω2) ∈ Kfn. Then for every p0 ∈ Rfn ∩ M0 there is an extension p∗ ∈ Q of p0

such that q∗ is (M i,Rfn)-generic for i = 0, 1.

Proof. Let µ = max{ot(M0 ∩ ω2), ot(M
1 ∩ ω2)} and

p∗ = (fp∗ , dp∗ , (h
p∗
α : α ∈ Xp0),Np0 ∪ {M0 ∩H(ω2),M

1 ∩H(ω2)}),

where

1. fp∗ = fp0 ∪ {(δM0 , µ)},

2. dp∗ = dp0 ∪ {(δM0 , δM0)}, and

3. hp
∗

α = hp0α ∪ {(δM0 , δM0)} for each α ∈ Xp0 .

Using the fact that M0 ∩ H(ω2), M
1 ∩ H(ω2) ∈ Kfn , it is immediate to check that

p∗ ∈ Rfn , and it of course extends p0. It will thus suffice to show that p∗ is (M i,Rfn)-

generic for i = 0, 1. For this, let D ∈ M i be a dense and open subset of Rfn and let p ∈ D

be an extension of p∗. We will show that there is a condition r ∈ D∩M i compatible with

p.

We can find r by arguing, in M i, in the same way as in the reflection argument in

the proof of Lemma 4.1.9. More specifically, and exactly as in that proof, we may assume

that M i =
⋃

ν<δMi
M i

ν , where (M i
ν)ν<δMi

is a ⊆-continuous ∈-chain of models. Then, by

moving to a suitable M i
ν0 and arguing there as in the proof of Lemma 3.2.2 using the

stratification of Np, we may find a condition r ∈ D ∩M i
ν0 such that

1. for every α ∈ Xp∩Xr, h
p
α∪hrα can be extended to a strictly increasing and continuous

function h : ω1 −→ ω1,

2. for every α ∈ Xr ∩Xq and every N ∈ Np such that δN < δM i , α /∈ N , and

3. Np ∪Nr is stratified.
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Let us define hp
′

α , for α ∈ Xp ∪Xr, as follows:

1. for every α ∈ Xp ∩Xr, h
p′
α = hpα ∪ hrα;

2. for every α ∈ Xp \Xr, h
p′
α = hpα;

3. for every α ∈ Xr \Xp, h
p′
α = hrα ∪ {(δN , δN ) : N ∈ Np, α ∈ N}.

We then have that

p′ = (fr ∪ (fp ↾ (ω1 \ δM i)), dp ∪ dr, (h
p′
α : α ∈ Xp ∪Xr),Np ∪Nr)

is a common extension in Rfn of p and r, which finishes the proof of the lemma.

Lemma 4.2.7. Kfn is projective stationary.

Proof. Given a cardinal θ ≥ ω2, a function F : [ω2]
<ω −→ ω2, and a stationary set

S ⊆ ω1, it is enough to show that there is a countable X ⊆ ω2 closed under F such that

δ := X ∩ ω1 ∈ S and such that fn(δ) > ot(X).

In order to find such an X we first pick α ∈ S2
0 above ω1 such that F“[α]<ω ⊆ α. We

then let N be a countable elementary submodel of some larger H(χ) containing F , α, fn,

and f⃗ and such that δN ∈ S, and let X = N ∩ α. Then F“[X]<ω ⊆ X, X ∩ ω1 = δN ∈ S,

and fn(δN ) ≥ ot(N ∩ ω2) > ot(N ∩ α) = ot(X).

We now have the following corollary from Lemmas 4.2.6 and 4.2.7.

Corollary 4.2.8. Rfn is proper with respect to Kfn and therefore it preserves stationary

subsets of ω1.

We also have the following corollary from Lemma 4.2.6.

Lemma 4.2.9. Rfn has the ℵ2-c.c.

Proof. This is similar to the proof of Lemma 3.4.13. Suppose (pi ; i < λ), for some cardinal

λ ≥ ω2, is a one-to-one enumeration of a maximal antichain A of Rfn . Let θ be a large



52

enough cardinal and for every i < ω2 let Mi be a countable elementary submodel of H(θ)

such that pi, A ∈ Mi and such that Mi ∩H(ω2) ∈ Kfn .

Let P be an elementary submodel of some higher H(χ) such that |P | = ℵ1 and

((pi,Mi) : i < λ) ∈ P . We may then find i0 such that pi0 /∈ Rfn . Working in P , we

may find i1 ∈ P ∩ λ such that δMi0
= δMi1

. By Lemma 4.2.6 there is a condition p∗ ∈ Q

extending pi0 and such that p∗ is (Mi1 ,Rfn)-generic. Since A ∈ Mi1 is a maximal an-

tichain of Rfn , we can find a common extension p′ of p∗ and some pi2 ∈ A∩Mi1 , which is

a contradiction since pi2 ̸= pi0 yet p′ extends both pi0 and pi2 .

Lemmas 4.2.8 and 4.2.9 complete our second proof of Theorem 3.4.1.

4.3 MA1.5
ℵ2

(stratified) and LCS partial orders

A LCS space is a Hausdorff, locally compact and scattered topological space constructed

using the α-Cantor-Bendixson derivative of a topological space X. The notion of cardinal

sequences is relevant in the study of LCS spaces. Juhász and Weiss proved the result that

an infinite cardinal sequence (κα)α<ω1 is a sequence of an LCS space if and only if κβ < κωα

for every α < β < ω1 [17]. Some attempts at characterizing cardinal sequences have been

made. See [16] and [20] for more on this. It is relatively consistent with ZFC that there

exists a LCS space with length ω2 and width ω, as shown in [5]. For more on LCS spaces,

we refer the reader to the survey paper by Joan Bagaria [3], In this last section, we will

prove that MA1.5
ℵ2

(stratified) implies the existence of a LCS space with length ω2 and width

ω.

Definition 4.3.1. A partial order ≤ is said to be LCS partial order on ω × ω2 if

(1) ≤ is a subset of ω × ω2,

(2) (n0, α0) < (n1, α1) ⇒ α0 < α1,

(3) ∀(n, α), ∀β < α,∃ infinitely many m such that (m,β) < (n, α) and
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(4) ∀x0, x1 ∈ ω × ω2, ∃ finite b({x0, x1}) ⊆ {x : x ≤ x0, x1} and ∀z ≤ x0, x1, ∃x ∈

b({x0, x1}) such that z ≤ x.

Let LCS(ω, ω2) be the statement that there exists a LCS partial order on ω × ω2.

LCS(ω, ω2) implies the existence of a LCS space which is thin-tall since the height is

greater than the width.

Theorem 4.3.2. MA1.5
ℵ2

(stratified) implies LCS(ω, ω2).

Let P be a forcing notion whose conditions are the following:

p = (≤p, bp,Np,Ap)

where

(1) ≤ is a finite subset of ω × ω2 such that (n0, α0) < (n1, α1) ⇒ α0 < α1,

(2) bp : [dom(≤p)]
2 → [dom(≤p)]

<ω such that ∀{x0, x1} ∈ [dom(≤p)]
2,

(i) bp({x0, x1}) ⊆ {x ∈ dom(≤p) : x ≤p x0, x1} and

(ii) ∀x0, x1 ∈ dom(≤p), z ≤p x0, x1 ⇒ ∃x ∈ b({x0, x1}),

(3) Np finite stratified family of countable N ≼ (H(ω2);∈, e⃗),

(4) Ap ⊆ Np and

(5) ∀N ∈ Ap,∀x0 ̸= x1 in dom(≤p) ∩N, bp({xo, x1}) ∈ N.

and if p0, p1 ∈ P, p1 ≤ p0 iff

(1) ≤p0 ⊆ ≤p1 ,

(2) ∀x0, x1 ∈ dom(≤p0), bp0({xo, x1}) = bp1({xo, x1}),

(3) Np0 ⊆ Np1 ,

(4) Ap0 ⊆ Ap1 .
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We will need the following density lemmas.

Lemma 4.3.3. For every p ∈ P, and every (n, α) ∈ ω × ω2, there exists p∗ ≤ p such that

(n, α) ∈ dom(≤p∗).

Proof. In case if α > δN for all N ∈ Np, then we can find a sufficiently correct elementary

submodel of H(ω2) containing (n, α). We construct p∗ as follows. Let

p∗ = (≤p∗ , bp∗ ,Np ∪ {N}, {N})

So, for every x ̸= (n, α) in dom(≤p∗), b({x, (n, α)}) = b({x, (n∗, α∗)}) ∪ {(n∗, α∗)} for

some (n∗, α∗) < (n, α). Thus, we can easily check that p∗ is a condition in P.

Similarly, we have the following.

Lemma 4.3.4. For every p ∈ P, (n, α) ∈ dom(≤p), β ∈ α, and every n ∈ ω,∃n∗ > n,

there exists p∗ ≤ p, (n∗, β) ≤ (n, α).

Therefore, the forcing axiom with this particular forcing notion yields an LCS partial

order on ω × ω2.

Corollary 4.3.5. FAℵ2({P}) implies LCS(ω, ω2).

To finish proving Theorem 4.3.2, we now need to show that the forcing notion in

question has the ℵ1.5-c.c. with respect to stratified families.

Lemma 4.3.6. P has the ℵ1.5-c.c. with respect to stratified families.

Proof. Let N ∗ be a finite stratified family of countable submodels N∗ ≼ H(θ) such that

θ is a large enough cardinal number,1 e⃗ ∈ N∗ and N∗ =
⋃

ν∈δN∗ N
∗
ν where (N∗

ν )ν<δN∗ is

an ∈-increasing, ⊆-continuous chain such that e⃗ ∈ N∗
ν and N∗

ν ⊆ H(θ) for all ν.

Let p = (≤p, bp,Np,Ap) ∈ N∗
0 ∩ P where N∗

0 is a model of minimal height in N ∗ and

p∗ = (≤p, bp,Np ∪ {N∗ ∩H(ω2) : N
∗ ∈ N ∗},Ap ∪ {N∗ ∩H(ω2) : N

∗ ∈ N ∗}).
1In this particular case, θ can be (2ℵ1)+.
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Claim 4.3.7. p∗ ∈ P and p∗ ≤P p.

Now we need to show that p∗ is (N∗,P)-generic for every N∗ ∈ N ∗. Let p′ ≤P p∗, N∗ ∈

N ∗, D ∈ N∗ is a dense subset of P. Suppose p′ ∈ D. We want to find r ∈ D ∩ N∗

such that there exists q ∈ P where q ≤ r, p′. Let ν ∈ δN∗ such that D ∈ N∗
ν and for all

(n, α) ∈ dom(≤p′)\N∗
ν there is ηα ∈ N∗

ν ∩ α such that for every M ∈ Ap,

M ∪ [ηα, sup(N
∗
ν ∩ α)) ∩N∗

ν = ∅ whenever δM < δN∗ .

Working in N∗
ν find r ∈ D such that

(1) ≤p′ ∩N∗
ν ⊆ ≤r,

(2) bp′ ↾ [N∗
ν ]

2 ⊆ br,

(3) there exists π : (≤p′ , bp′) −→ (≤r, br) where π is the identity on dom(≤p′) ∩N∗
ν ,

(4) for every (n, α) ∈ dom(≤p′)\N∗
ν , ηα ≤ lv(π(n, α)) < α2 and

(5) Np′ ∪Nr is stratified.

Let q = (≤, b,Np′ ∪Nr,Ap′ ∪ Ar) where

(1) ≤ is the transitivization of ≤p′ ∪ ≤r
3,

(2) b = bp′ ∪ br ∪ {b({x0, π(x1)} : x0, x1 ∈ dom(≤p′)\N∗
ν where

b({x0, π(x1)}) =
⋃

{bp′({x0, x}) : x ∈ dom ≤p′ ∩N∗
ν , x||≤p′x0, x ≤r π(x1)}∪⋃

{bp′({x, π(x1)}) : x ∈ dom ≤p′ ∩N∗
ν , x ≤p′ x0, x||rπ(x1)}.

Claim 4.3.8. q ∈ P

All conditions hold trivially except clause (5). Let x ̸= y ∈ dom(≤p′) ∪ dom(≤r)) ∩ N

where N ∈ Ap′ ∪ Ar. Then we have the following cases:

(1) N ∈ Ap′ , x, y ∈ dom(≤p′);

2lv(n, α) = α.
3that is, ≤ is the smallest LCS partial order on ω × ω2 such that ≤p′ ∪ ≤r⊆≤
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(2) N ∈ Ar, x, y ∈ dom(≤r).

Both these cases are trivial;

(3) N ∈ Ap′ ,

(3.1) δN < δN∗
ν
. Then x, y ∈ dom(≤p′), so b({x, y}) = bp′({x, y}) ∈ N ;

(3.2) δN∗
ν
≤ δN . WLOG y ∈ dom(≤r)\dom(≤p′).

(3.2.1) Suppose x ∈ dom(≤r)\dom(≤p′) then lv(x), lv(y) ∈ N, δN ≥ δN∗
ν
, ω×(N∗

ν ∩

min{lv(x), lv(y)}) ⊆ N where br({x, y}) ⊆ N∗
ν ∩min{lv(x), lv(y)};

(3.2.2) x ∈ dom(≤p′)\N∗
ν . Then for every z such that x||≤p′z, z ⊆r y ⇒ lv(z) ∈ N

since δN ≥ δN∗
n
and lv(y) ∈ N∗

ν . Hence bp′({x, z}) ∈ N . Also for every z ∈

dom(≤r), br({y, z}) ∈ N again since lv(y) ∈ N and δN ≥ δN∗
ν
, b({x, y}) ∈

N .
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[1] D. Asperó and M. Golshani. “The proper forcing axiom for ℵ1-sized posets and the
size of the continuum”. In: Submitted (2022).
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