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INTRODUCTION

With increasing longevity and declining fertility our 
global population is becoming disproportionality aged. 
Ageing is associated with an increased incidence of 
Alzheimer's disease (AD), which is now recognised as 
one of the most significant health challenges globally 
with important socio-economic dimensions (Alzheimer's 
disease facts and figures, 2022). AD is characterised 
by a progressive decline in cognition and memory, as 
well as emotional and personality changes (Knopman, 
Amieva, et  al.,  2021). The pathological hallmarks in-
clude extracellular amyloid beta (Aβ) plaques (paren-
chymal Aβ1-42 peptides and vascular amyloid deposits 
with shorter Aβ1-40 peptides), intraneuronal accumula-
tion of neurofibrillary tangles, and neuroinflammation, 
primarily in the cortex and hippocampus, which spread 
to other brain regions as the disease progresses 

(Braak & Braak, 1991; DeTure & Dickson, 2019; Thal 
et al., 2002). Interestingly, recent research from animal 
models of AD and post-mortem human tissue points to 
the presence of beta-amyloid in the gut, with the ratio 
of Aβ1-42 to Aβ1-40 being higher in the gut than in the 
brain of human patients (Jin et al., 2023).

The amyloid cascade hypothesis posits that AD 
pathogenesis is caused by the accumulation of Aβ in 
the brain, triggering a cascade of inflammation, tau ac-
cumulation and the generation of neurofibrillary tangles, 
synaptic dysfunction, and subsequent neuronal death 
(Hardy & Allsop, 1991; Mattsson-Carlgren et al., 2021; 
Therriault et  al.,  2021). However, after over 400 clin-
ical trials targeting brain-derived Aβ, such a strategy 
has not proven to be very effective (Banik et al., 2015; 
Cummings et al., 2014; Geldenhuys & Darvesh, 2015; 
Knopman, Jones, & Greicius, 2021). Furthermore, re-
cent developments in amyloid-targeting monoclonal 
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antibody medications only offer marginal benefits for 
cognitive decline (van Dyck et al., 2023). Plasma levels 
of tau are reported as reliable biomarkers for AD pa-
thology (Ashton et al., 2021; Palmqvist et al., 2020) with 
predictive capacity for future AD diagnosis (Lantero 
Rodriguez et  al.,  2020), and tau targeted treatments 
have also been explored, but with limited efficacy 
(Florian et al., 2023; Teng et al., 2022). Multiple recent 
genome wide association studies report a central role 
of the innate immune system in AD pathophysiology 
(Bellenguez et al., 2022; Kunkle et al., 2019; Wightman 
et al., 2021), pointing to the multifactorial nature of the 
disease. The complexity of AD resides in the fact that 
genes and the immune system do not work in isolation 
but are manipulated by other players such as periph-
eral and environmental factors. The gut microbiota is 
particularly receptive to environmental influences and 
the microbiota-gut-brain axis (MGBA) is emerging as 
a key target for investigation in AD. Recent research 
on the involvement of microbes in age-related cogni-
tive decline and AD is bolstered by findings from over 
a decade ago proposing Aβ as an antimicrobial pep-
tide (Connell et  al.,  2022; Cryan et  al.,  2020; Soscia 
et  al.,  2010). Thus, there is growing support from re-
search observations for a microbial hypothesis of AD, 
and it is tempting to speculate that it could have sig-
nificant implications for how researchers approach the 
development of treatments (Table S1).

AMYLOID BETA: A VILLAIN OR 
HERO?

Several lines of evidence support the role of Aβ as an 
antimicrobial peptide, which defends the brain against 
invading pathogens. Aβ has a similar structure to other 
antimicrobial peptides and acts by triggering an in-
nate immune response to pathogen entry into the brain 
(Eimer et al., 2018). Specifically, Aβ variants can trigger 
agglutination of microbes by binding to surface carbo-
hydrates found on microbes, which prevents micro-
bial entry into host cells and tissues and/or promotes 
phagocytosis by microglia (Eimer et al., 2018; Spitzer 
et al., 2016; Vojtechova et al., 2022). Increased levels 
of microbes in the brains of AD patients (Alonso, Pisa, 
Marina, et  al.,  2014; Dominy et  al.,  2019; Jamieson 
et al., 1991; Pisa, Alonso, Rábano, et al., 2015) have 
been linked to increased antimicrobial activity (Soscia 
et al., 2010) and might also reflect on a weaker blood–
brain barrier (BBB) integrity of this population (Vigasova 
et al., 2021). Moreover, elevated Aβ protected against 
infection with the bacteria Salmonella Typhimurium in 
a mouse model of AD (Kumar et al., 2016). However, 
ageing, or genetic vulnerabilities can have nega-
tive consequences on an individual's Aβ system. For 
example, the apolipoprotein E4 (APOE4) gene vari-
ant is the stronger genetic risk factor for AD, driving 

earlier and more abundant Aβ deposition in the brain 
(Corder et al., 1993; Kloske & Wilcock, 2020; Saunders 
et  al.,  1993). Prolonged elevation of Aβ triggers over 
activation of microglia, increasing neuroinflammation 
and ultimately leading to neurodegeneration and the 
progression of AD symptoms (Moir et  al.,  2018). In 
AD patients, microglia appear to be dysfunctional and 
their overactivation/reduced phagocytosing capacity 
could explain the accumulation of Aβ in AD (Cameron 
& Landreth,  2010). However, while it is plausible that 
increased deposition of Aβ, and consequent neuroin-
flammation and AD progression occurs in response to 
the presence of microbes in the brain, neuroinflamma-
tion may also arise from systemic infections (perhaps 
due to a weakened immune system) (Knox et al., 2022) 
or microbial dysbiosis (Thapa et al., 2023). The infec-
tious disease hypothesis posits that a pathogen may be 
the cause of AD (Mawanda & Wallace, 2013; Seaks & 
Wilcock, 2020), particularly in late onset AD (Sochocka 
et al., 2017). This pathogen can act directly or indirectly, 
by triggering an inflammatory response (Li et al., 2021) 
(Table S1).

ALZHEIMER'S DISEASE AND 
VIRAL INFECTION

A role for the virus herpes simplex type 1 (HSV1) – the 
cause of cold sores – in AD was first theorised in 1982 
when its presence was reported in human trigeminal 
ganglia. The finding that brain regions affected in AD 
are the same brain regions damaged by HSV encepha-
litis contributed to speculation that latent viruses may 
travel via trigeminal ganglia to the brain, become reac-
tivated, and cause AD neurodegeneration (Ball, 1982). 
This theory was supported in 1991 when Professor 
Ruth Itzhaki discovered increased levels of herpes 
virus in postmortem brain samples of patients with 
AD (Jamieson et al., 1991). Since then, it has been re-
ported that HSV-1 infection can seed Aβ in both in vitro 
and in  vivo experiments (Eimer et al.,  2018; Wozniak 
et  al.,  2007). More recently, evidence suggests that 
HSV1 preferentially targets the hippocampus, a brain 
region particularly impacted in AD (reviewed by Yong 
et  al.,  2021). Additionally, HSV1 infection in patients 
who carry the APOE4 gene variant increases the risk of 
developing AD (Linard et al., 2020). HSV1 may access 
the brain in early- or mid-life via an olfactory route to 
the olfactory bulb, through vertical transmission mater-
nally during pregnancy, or may be dormant in trigeminal 
ganglia (reviewed by Duarte et al., 2019). Reactivation 
of HSV1 in later life, due to stressors such as other in-
fections, head trauma, or an ageing immune system, 
contributes to chronic neuroinflammation and conse-
quent neurodegeneration. This is supported by a study 
that found recurrent reactivation of HSV1 by thermal 
stress in mice which led to the accumulation of Aβ and 
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tau in the cortex and/or hippocampus with consequent 
cognitive deficits (Chiara et al., 2019). Interestingly, Aβ 
was reported to prevent the entry of HSV1 into infected 
MRC-5 cells in vitro thereby inhibiting their replication 
(Bourgade et al., 2015).

The proposal of a relationship between herpes virus 
and AD was greatly strengthened by a study that found 
herpes viruses HHV6 and HHV7 in post-mortem brain 
tissue of patients with AD in three independent cohorts 
(Readhead et al., 2018). Moreover, it was shown that 
viruses may interact with host genes that are risk fac-
tors for AD, such as genes regulating the processing of 
APP (Readhead et al., 2018). In fact, some viruses such 
as HSV1, Epstein–Barr virus (EBV), and Vaccinia virus 
(VACV) have all been reported to feature co-expression 
networks specific to virus-host systems (Aguirre & 
Guantes, 2023; López-Lastra, 2022). As a result, sev-
eral host protein interactors are differentially expressed 
during viral infection (Karunakaran et  al.,  2022). Of 
major interest, it has recently been observed that APP 
interacts with SARS-CoV-2 transmembrane fusion 
proteins, known as spike proteins, which not only fa-
cilitates viral entry but also worsens the progression of 
Aβ-associated disease (Chen, Chen, et al., 2023).

A seminal retrospective cohort study from Taiwan 
has shown that patients with HSV infections treated 
with an antiherpetic had decreased the risk of develop-
ing dementia by 90% (Tzeng et al., 2018). Vaccinations 
against other viruses (herpes zoster and/or tetanus, 
diphtheria, and pertussis) have also been associated 
with decreased risk of dementia (Wiemken et al., 2022), 
and causal evidence of the herpes zoster vaccination 

against dementia risk has been reported (Eyting 
et  al.,  2023). However, a clinical trial in patients with 
early-stage AD found only a slight and highly variable 
improvement in mini mental state examination scores 
and no change in cerebrospinal fluid (CSF) levels of 
tau after 4 weeks of treatment with the antiviral valacy-
clovir (Weidung et al., 2022). Thus, although there is in-
creasing support for a viral role in AD more research is 
needed to turn this knowledge into the development of 
efficacious treatments. It should be noted that although 
HSV1 is a major focus, over 20 types of viral infection 
have recently been associated with an increased risk of 
dementia (Levine et al., 2023) (Figure 1 and Table S2).

ALZHEIMER'S DISEASE AND  
FUNGAL AND PROTOZOAN  
INFECTION

Various fungal species and fungal infections have been 
reported in the brains of AD patients (Alonso, Pisa, 
Marina, et al., 2014; Pisa, Alonso, Rábano, et al., 2015; 
Salama et  al.,  2018), and the protozoan parasite 
Toxoplasma gondii has been implicated in AD patho-
genesis. A recent meta-analysis exploring the connec-
tion between T. gondii and AD reported a small effect 
size, but findings were based on a small number of 
studies and thus the authors could not infer a conclu-
sive result (Nayeri Chegeni et al., 2019). The potential 
role of fungi in AD pathology is further supported by the 
detection of fungal DNA and proteins in AD patients, 
specifically, postmortem brain tissues (Pisa, Alonso, 

F I G U R E  1   Proposed mechanisms and risk factors involved in brain health.
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Juarranz, et al., 2015), blood serum, and CSF (Alonso, 
Pisa, Rábano, & Carrasco, 2014). However, the role of 
fungi and protozoa has been overshadowed by explo-
ration into other microbes, and thus more research is 
needed to understand the role of fungal infection and 
protozoan infection in AD (Figure 1 and Table S2).

ALZHEIMER'S DISEASE AND 
BACTERIAL INFECTION

Bacteria have been implicated as triggers in AD 
pathogenesis, particularly Porphyromonas gingivalis, 
the periodontal bacteria that cause gum disease 
(Beydoun et  al.,  2020; Dominy et  al.,  2019; Sparks 
Stein et al., 2012). P. gingivalis infection in mice is re-
ported to increase Aβ in peripheral macrophages (Nie 
et al., 2019) and has been found in postmortem brain 
samples from AD patients (Dominy et al., 2019). Oral 
bacteria in the brains of individuals with AD have been 
reported to be circa seven-fold higher when compared 
to cognitively healthy individuals (Miklossy,  2008). 
However, whether microbes have simply gained patho-
genic entry into the brain, or are forming an ecosys-
tem is up for debate, as the notion of microbes within 
the brain is not without controversy. Although some 
question whether microbes have an intimate relation-
ship with the brain, forming a sort of brain microbiome, 
other cautions against drawing conclusions from low 
biomass samples as results may indicate contamina-
tion rather than local habitation (Kennedy et al., 2023).

The mechanism underlying the effects of P. gingiva-
lis in AD is proposed to be via the production of toxic 
proteases called gingipains, as levels of gingipains in 
the brain correlate with tau pathology in AD patients. 
Moreover, gingipain inhibition was reported to have 
neuroprotective effects after P. gingivalis infection in 
mice, reducing the levels of Aβ and markers of neuroin-
flammation (Dominy et al., 2019). However, a P. gingi-
valis targeting drug failed to display significant benefits 
in clinical trials and concerns of liver toxicity halted the 
clinical trials (Atuzaginstat | ALZFORUM).

Other bacterial species have also been hypothesised 
to play a role in AD. The DNA sequence of Chlamydia 
pneumoniae, a common respiratory pathogen in elderly 
people, was reported in the brain tissue of 80% of pa-
tients with AD (Gérard et al., 2006), and a more recent 
study in mice showed that Chlamydia pneumoniae 
could infect the central nervous system, potentially trav-
elling via the olfactory and trigeminal nerves (Chacko 
et al., 2022). Borrelia burgdorferi, which is associated 
with Lyme disease (Miklossy, 2011), has also been hy-
pothesised to play a role in AD pathogenesis as it has 
been found to colocalise with plaques in AD patients, 
and its in  vitro infection of mammalian cells induced 
an increase in the levels of Aβ and phosphorylated 
tau (Senejani et  al.,  2022). Furthermore, a common 

pathogen involved in the development of periodontitis, 
Fusobacterium nucleatum, has been reported to play 
a role in AD. Antibodies against F. nucleatum were de-
tected in the serum of cognitively impaired patients as 
well as in the serum of AD patients (Wu et al., 2022). 
Importantly, the causal relationship was confirmed with 
evidence of an exacerbation of cognitive symptoms, Aβ 
accumulation, and tau phosphorylation in 5XFAD mice 
topically infected with F. nucleatum to induce periodon-
titis (Wu et al., 2022) (Figure 1 and Table S2).

ALZHEIMER'S DISEASE AND THE 
GUT MICROBIOME

Changes in gastrointestinal physiology during age-
ing lead to alterations in the intestinal microbiota and 
may in turn influence the brain (Boehme et al., 2023). 
Microbes are part of the complex ecosystem of micro-
organisms called the microbiome and have co-evolved 
with humans and play commensal, symbiotic, and 
pathogenic roles in their human host. The microbiome 
is localised in body sites such as skin, mucosa, or gut, 
which is the largest component of the human microbi-
ome. Crucial findings connecting the gut microbiome 
health with brain health ushered forth the research 
field which has been known as the microbiota-gut-
brain axis (Bercik et al., 2011; Bravo et al., 2011; Heijtz 
et  al.,  2011; Neufeld et  al.,  2011). This bidirectional 
link between the gut and the brain comprises neural 
(via the vagus nerve), immune, metabolic, and endo-
crine pathways (Cryan et al., 2019). The initial study 
showing a disrupted gut microbiome in AD patients 
(Vogt et  al.,  2017) has been supported by studies 
showing that Alzheimer's patients display alterations 
in their gut microbiota composition, and in particular 
a decrease in microbial diversity. Microbial diversity 
is a potential hallmark of healthy ageing, and ageing 
leads to divergences in the gut microbiome composi-
tion (Claesson et al., 2011). Gut microbial character-
istics in AD have shown that the relative abundance 
of the bacterial phylum Firmicutes, which produces 
beneficial metabolites, is lower and the abundance 
of Bacteroidetes which have inflammatory activity is 
higher in AD patients (Chen, Zhou, et al., 2023; Saji 
et  al.,  2019). Of interest, increased Bacteroidetes 
and/or low microbial uniqueness was recently linked 
to higher risk of mortality in a 4-year follow-up study, 
with distinct microbial metabolic outputs in the blood 
(phenylalanine/tyrosine metabolites) (Wilmanski 
et al., 2021). In this regard, AD patients are reported 
to have an increased prevalence of pro-inflammatory 
genera in the gut microbiota, which positively cor-
relates with pro-inflammatory cytokine expression 
in the blood (Cattaneo et al.,  2017). Moreover, cog-
nitive performance in AD has been negatively as-
sociated with the inflammatory pathobiont genera 
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Desulfovibrio (Grabrucker et  al.,  2023). Changes in 
the gut microbiome composition have recently been 
reported to precede the early stages of disease pa-
thology (Sheng et al., 2022), suggesting a role of the 
microbiome in AD development, which could be quali-
fied as a potential biomarker and an early signal of 
the disease. Recent studies have reported a genetic 
overlap between AD and gastrointestinal disorders in 
humans (Adewuyi et  al.,  2022) and correlations be-
tween the gut microbiome genera and AD associated 
genes (Cammann et al., 2023), indicating an interac-
tion between the gut microbiome and genetics in AD 
pathogenesis. For example, it is well documented in 
mammals and humans that APOE genotype alters the 
gut microbiome diversity and metabolism (Maldonado 
Weng et al., 2019; Tran et al., 2019; Zajac et al., 2022).

Preclinical studies using animal models of AD with 
the depleted gut microbiota, derived by crossing with 
germ-free mice (genetically and environmentally de-
void of microorganisms) or by using either long-term 
broad-spectrum combinatorial antibiotic treatment, 
have demonstrated that the lack of gut microbiota in-
duces a reduction of Aβ pathology, a delay in memory-
deficits, and an altered microglial activation status, 
which occurs in concert with a reduction in tau accu-
mulation (Harach et al., 2017; Mezö et al., 2020; Minter 
et al., 2016; Seo et al., 2023). It has also been shown 
that transplantation of the gut microbiota from an AD 
mouse model can transfer the AD-related memory im-
pairment to wild-type mice (Kim et  al.,  2021). These 
studies provided the first indication of a relationship 
between the gut microbes and AD, at least in animal 
models and point to microglial-mediated Aβ clearance 
mechanisms. A recent study found that transferring 
the gut microbiota from Alzheimer's patients to healthy 
young rats also transferred the cognitive impairments 
(Grabrucker et al., 2023). This research has confirmed 
a causal role of the gut microbiota in AD and highlights 
that an understanding of microbes in brain–body inter-
action may lead to novel approaches for AD (Figure 1 
and Table S2).

BURNING QUESTIONS

Are microbes a main player or a 
supporting act in Alzheimer's pathology?

Are microbes the cause of AD or are they simply a re-
flection of homeostatic dysregulation seen in the dis-
ease by acting as opportunistic pathogens that infect a 
weakened host. Are the microbes localised in the brain 
due to the weakened BBB, or could this weakened 
BBB be arising from alterations in the gut microbiota 
that exacerbate disease pathology via influencing the 
immune system and barrier permeability? Longitudinal 
clinical studies which can determine when microbes 

enter the brain and/or when alterations in the gut micro-
biome occur in relation to the AD onset will be crucial 
for ascertaining the microbe-AD relationship (Itzhaki 
et al., 2020). This is pertinent because AD pathology is 
reported to begin 20 years before AD symptomatology 
appears, making it not only difficult to establish a causal 
link but also difficult to determine an optimal time to 
initiate treatment (Golde et al., 2018). By assessing the 
gut microbiota biomarkers at presymptomatic stages or 
earlier in the life course such as in middle age (Ances 
et al., 2023; Ferreiro et al., 2023), it is plausible that the 
lack of gut homeostasis and related changes in metab-
olites and neuroactive compounds could be identified 
as a prodromal symptom of AD. Studies such as these 
could also reveal whether the microbes, their metabo-
lites, or both, are potentially responsible for AD symp-
toms and disease progression.

How one crisis aggravates another: What 
is the link between COVID-19 and the 
risk of developing AD?

New research highlights that SARS-CoV-2 infec-
tion can cause atrophy in brain regions related to AD 
(Douaud et  al.,  2022). Moreover, SARS-CoV-2 pa-
tients display tau hyperphosphorylation implicated in 
AD (Reiken et al., 2022), and an increased risk of AD 
following SARS-CoV-2 infection has been suggested 
(Wang et  al.,  2022). Given the high infection rate by 
SARS-CoV-2 globally, parsing apart the relationship 
between microbes and AD is becoming increasingly 
important. This knowledge will be critical for guiding not 
only the development of treatment strategies for AD but 
also prevention strategies such as the use of antivirals.

How does biological sex influence the 
relationship between microbes and 
Alzheimer's disease?

As researchers work to close the biological sex gap, in-
creasing evidence highlights sex specific differences in 
AD. A greater number of AD patients are female (Rajan 
et al., 2021). Females have a different gut microbiome 
composition from males (Shobeiri et al., 2022), and sex 
differences in immune cells and their responsivity have 
been reported in patients with AD. Specifically, periph-
eral blood leukocytes display a lower response to viral 
infection ex vivo in female compared to male AD pa-
tients (Coales et  al.,  2022; Sochocka et  al.,  2022). A 
study exploring gene expression in the brain and blood 
of patients with AD suggested AD immune dysregu-
lation may be a specific feature to females (Paranjpe 
et al., 2021), and a preclinical study reported sex spe-
cific responsivity of microglia to antibiotic treatment in 
a mouse model of AD (Dodiya et al., 2019). It was also 
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suggested that the higher prevalence of AD in females 
might be due to the modulation of oestrogen levels 
(Wharton et  al.,  2009), which, interestingly, was ob-
served in relation to changes in the microbiome during 
adolescence and menopause (Peters et al., 2022), and 
there is now an increasing awareness that menopause 
may be a critical stage for AD treatment (Scheyer 
et  al.,  2018). Taken together, it is likely that microbial 
action in AD has sex specific features. Thus, under-
standing the relationship between biological sex, AD, 
and microbes will be necessary for the development 
of adequate and equitable treatment and prevention. 
Speaking of minority groups, it is essential that longi-
tudinal studies exploring a causal relationship between 
microbes, metabolites, and AD are ethically and racially 
diverse (Raman et al., 2021), as some studies report an 
almost two times increased risk of dementia in African 
Americans (Barnes, 2022).

Could precision medicine increase the 
efficacy of microbe targeted treatments?

With increasing research reporting a role of different 
microbes in AD pathology, finding a universally effec-
tive treatment is currently challenging; thus, a preci-
sion medicine-based approach may be more effective. 
However, with the sheer quantity of microbes, the lack 
of targeted treatments, and the developmental trajec-
tory of AD highlighting that symptom appearance oc-
curs years after disease initiation, the complexity of 
timing for prevention and treatment is challenging. The 
findings from FMT studies open a promising avenue 
for microbial mediated attenuation of the negative cog-
nitive effects of Alzheimer's disease, which could be 
part of precision medicine approach. A recent study 
employed a precision medicine-based approach that 
utilised antimicrobial, lifestyle, and hormonal screening 
and treatment resulting in 84% of AD patients display-
ing improvements (Toups et al., 2022). In this regard, it 
could be considered that the best defence against AD 
may be a good offence. Instead of waiting for AD to 
arise along with the dysregulation of the immune sys-
tem and microbiome that comes with age, the ageing 
global population could be equipped with immuno- and 
microbial- modulatory lifestyle habits to face the com-
ing storm of neurodegeneration.

The gut microbiome and AD

The intestinal microbiome plays a key role in maintain-
ing host health, including the brain. However, before 
designing microbiome targeted therapies, we need to 
understand the ecosystem of microbes, microbial me-
tabolites, and microbe host interactions throughout the 
lifespan, as recently proposed by Ratsika et al. (2023). 

Clarifying our understanding of what makes a “healthy/
unhealthy” gut microbiome is paramount, as there is 
currently no consensus and proper definition of “gut 
dysbiosis” (Brüssow, 2020). Until now, the GMBA field 
has focused on bacteria, but expanding our exploration 
to all microbes and microbe-microbe interactions will 
be crucial for understanding and targeting this “second 
brain” when our “first brain” fails.

CONCLUSION

The field of AD research has long focused on Aβ as 
the main player in disease pathogenesis, but with re-
search now highlighting the potential involvement of 
microbes in AD pathology; coupled with evidence of an 
antimicrobial role of Aβ, microbes may soon take cen-
tre stage. However, the role of microbes in AD is not in 
opposition to other theories but is rather unifying. By 
providing an explanation for the increased presence of 
Aβ and inflammation in AD pathology, microbes bring 
together the Aβ hypothesis, the antimicrobial protection 
hypothesis, and the infectious disease hypothesis. The 
aetiology of AD is complex and most likely cannot be 
connected to one specific mechanism. Indeed, from 
the gut to oral microbiome, viruses, fungi, and proto-
zoa microbes are proposed as causal in AD. Extending 
the research in AD to encompass the role of microbes, 
provides novel opportunities for treatment development 
and hope for the future.
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