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ABSTRACT 

 

The urban heat island (UHI) is a well-observed phenomenon, where temperature in a city is 

usually warmer than the surrounding rural area. The properties of the UHI are influenced by 

both the climate and the morphology of the city. It follows therefore, that a changing climate 

is expected to result in consequences for characteristics of the UHI.  

Modelling the future climate of cities remains a challenge as the resolution of global climate 

models is too coarse to capture the scale of a city, and regional climate models are 

computationally expensive. To address these limitations, statistical or machine learning 

models can prove effective. Focusing on cities in the tropics and subtropics and those with a 

population of less than 1 million, this research explores the relationship between the UHI 

effect and climate. Satellite data, with global coverage, is used to quantify the surface UHI 

(SUHI) of the chosen cities using a novel physics-based machine learning model fitted to the 

current observations, including predictive climate variables.  

With use of this machine learning model and global climate model projections, changes in the 

SUHI under 2 °C global warming from preindustrial are examined. Based the 50th percentile 

of Earth System Model outputs, the model projects 81% of the selected cities will have an 

increase in the annual mean SUHI to varying extents up to 1.9 °C, with an increase of over 1 

°C for 14% of cities. In the warmest 3 months of the year, SUHIs in the selected cities in China 

are shown to have increases in magnitude of 0.8 °C, further exacerbating uncomfortable 

temperatures for city residents during these months.  

This new approach has potential to better inform adaptation and mitigation policies in 

vulnerable cities, especially in south and east Asia. 
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1 INTRODUCTION 

Urbanisation represents one of the most extreme examples of anthropogenic land 

modification. Cities can be vast in size, with surfaces made up of an array of man-made 

materials such as concrete, brick, glass, metals and plastics. If someone were to stand in the 

same spot before anthropogenic influence, the area would be unrecognisable. It follows that 

this enormous alteration to the landscape should bring with it alterations to the local climate.  

 

Figure 1.1 “The outward and upward growth of Panama City, Panama, 1930 – 2009” Figure 1.2 from Angel et 

al (Angel et al., 2016) (Skyscraper City, Brian Gratwicke).  

An urban heat island (UHI) is a well observed phenomenon, where the temperature in a city 

is differs from the surrounding rural area, often being warmer. The name ‘UHI’ stems from 

the pattern on a heat map; these show an ‘island’ of a city surrounded by a ‘sea’ of surrounding 

cooler countryside (Oke, 1995). This pattern can be seen in Figure 1.2, showing the UHI of 

London in 1959.  
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Figure 1.2: Distribution of minimum temperature in London, 14 May 1959. Isotherms numbered in °F. Figure 4 

in the International Association of Urban Climate reprint of Howard (1833).  

The UHI can be measured both by means of air temperature, known as the canopy urban heat 

island (CUHI) or by surface skin temperature, referred to as the surface urban heat island 

(SUHI). The benefits and limitations surrounding the two measures are discussed in section 

2.3.  

Understanding and predicting UHI behaviour is not simple, as it is very much dependent on 

the local climate, alongside properties relating to the city form. For example, in subtropical 

cities, UHI intensities are generally lower in comparison with cities in temperate regions, due 

to differences in anthropogenic heating and differences in surface water retention. Higher 

intensities are seen in dry seasons and lower in wet seasons, relating to moisture availability 

and cloud cover (Roth, 2007; Cui and de Foy, 2012). The peak intensity can occur in winter 

for a cold climate (Konstantinov et al., 2018), and summer for a Mediterranean climate (Yague 
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et al., 1991). Based on these factors, it is difficult to say what the ‘average’ UHI magnitude 

is, as different values can be found conditional on the chosen region and time of year, but the 

CUHI has been known to reach up to 10 °C in certain locations and weather conditions 

(Chapman et al., 2017). Arid climates on the other hand, can experience negative heat islands 

(or urban cool islands), where cities experience cooler temperatures in comparison to the 

surrounding rural area due to higher moisture availability in the city, which has a cooling 

effect (Rasul et al., 2017).  

Given this strong dependence of the UHI on climate, a pressing question is how exactly will 

the UHI be affected by climate change. A deeper understanding of its drivers and potential 

future evolution can help city planners design cities in ways as to optimize for comfort and 

human health and mitigate the negative impacts that changes in climate can have on a city 

environment.   

Assuming a continuation of the current mitigation measures only (emissions scenario SSP3-

7.0, section 2.8.1), global mean surface air temperature is projected to have increased by 

between 1.95 and 4.38 °C by the period 2081–2100, relative to 1995– 2014 (Tebaldi et al., 

2021). In addition, extreme heat events are highly sensitive to this warming and studies have 

shown that anthropogenic climate change has led to current increases in the frequency of heat 

waves (Horton et al., 2016). In global modelling studies of the UHI, warm nights with high 

heat stress increase more in urban areas than their rural counterparts, with the additional urban 

warming causing temperatures to be pushed above the threshold of human comfort (McCarthy 

et al., 2010; Fischer et al., 2012; Oleson, 2012). The effect of urbanisation is typically not 

resolved in global climate models, with urban land simply represented as a slab or rock cover 

(fraction of land type), as its scale is typically smaller than the horizontal resolution of the 

model itself. For regional climate models it is more important, and more detailed 

representations of the urban surface are often employed in these models (Daniel et al., 2019). 

An increased understanding of the UHI will result in better representations of the urban surface 

in these models and lead to more accurate projections of how climate change induced 

temperature increases will affect and be distributed across urban areas.  

Alongside an increasing global population, countries are seeing migration from rural areas to 

the cities as migrants seek to increase livelihood. Just over half the world’s population 

currently lives in cities and this proportion is projected to increase to 68 percent in 2050 

(Lerch, 2017; United Nations, Department of Economic and Social Affairs, 2019). Substantial 

urban population growth is projected to take place in cities of all sizes (Kii, 2021), yet despite 

this much of the current research focus of the UHI is on megacities. Typically, as cities expand 
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the intensity of their UHI also grows. However, detailed later in this thesis (section 2.5.3), it 

is observed that saturation of the UHI with city size occurs in very large cities (e.g., London). 

A complete picture of UHI must be therefore gained by examination of the medium sized 

cities, alongside the current body of research on larger cities.  

Alongside an increasing number of people being affected by the impacts of the UHI, global 

health risks associated with extreme heat are increasing due to climate change (Kovats and 

Hajat, 2008). This means city inhabitants face the dual impact of both climate change and UHI 

related heat risks. The IPCC 5th assessment report states ‘much of the key and emerging global 

climate risks are concentrated in urban areas’. Cities in low and middle income countries, 

which account for close to three-quarters of the world’s urban population, contain highly 

vulnerable communities living in informal settlements, many of which are at high risk from 

extreme weather; one of these threats being heat stress (Revi et al., 2014). These cities are 

often in the more southern parts of the world, yet in the current literature, the selection of cities 

tends to be in the more Northern parts of the world. Outlined in more detail later in this thesis 

(section 2.3.1), there is a lack of availability of suitable weather stations for cities in these 

areas, and, as local knowledge is beneficial when studying a city, many authors focus research 

on where the institute is located. Cities in different areas of the world have different forms and 

climates, and therefore it cannot be certain that knowledge gained from cities in one part of 

the world is transferrable to those in another. Therefore, it is essential this knowledge gap is 

addressed. 

Additionally, even in high income countries, city dwellers are at increased risk of heat related 

health issues and discomfort, in particular the very young, the elderly and those with pre-

existing illness (Maller and Strengers, 2011; Oudin Åström et al., 2011; Taylor et al., 2015; 

Heaviside et al., 2017). Extreme heat leads to excess mortality and in many places, such as 

North America, is the largest weather related killer (Johnson and Wilson, 2009; Maller and 

Strengers, 2011). In these high-income cities, there are also compelling reasons to shift away 

from air conditioning as a solution. Not only does the high electricity use contribute to 

greenhouse gas emissions and dissipate heat outdoors, thereby exacerbating the problem it 

aims to combat, it also potentially creates a peak demand of electricity that exceeds supply, as 

has already been observed in Australia (Maller and Strengers, 2011). Clearly, other methods 

of cooling cities are needed. If the interaction of the UHI effect with climate change can be 

better understood, more effective solutions could be proposed to minimise it.  
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Aims and Objectives 

The aim of this research is to examine to impact of climate change in the development of the 

surface Urban Heat Island (SUHI) in medium size (less than 1 million population) cities in a 

range of wet and dry climates.  

In order to achieve this aim, the specific objectives are as follows: 

1. To quantify the SUHI in terms of magnitude in cities of similar size (medium) and 

geographical characteristics (inland and in non-mountainous areas) in wet and dry 

climates. 

 

2. To examine the relationship between these SUHI features and background climate 

by comparison of the results for different cities, building this knowledge into the 

development of a predictive model.  

 

3. To use this predictive model to assess the importance of background climate as a 

predictor of SUHI behaviour and assess sensitivity of the SUHI to changes in the 

predictor variables.  

 

4.  To assess the potential impacts of climate change on the SUHI using the predictive 

model developed and CMIP6 climate change projections.  

Thesis Overview 

Section 2 of this thesis gives an overview of the key underlying concepts. The first of these is 

an explanation of the Urban Heat Island (UHI); why it exists, how it is measured and 

examined, and the various aspects of its behaviour, with a particular focus on its interaction 

with the local climate. The second concept is climate projections, outlining how future changes 

in climate can be quantified using physical models. Section 3 informs of the data used and the 

mechanisms of the statistical/ machine learning models it is to be used together with. In section 

4, a machine learning model is created, with the ability to predict the SUHI magnitude for 

cities in a range of different climates. This model acts as a tool, allowing exploration of the 

influence of climate related factors on the magnitude of the SUHI. The focus of the next 

chapter, section 5 is on the future SUHI. Climate model projections are combined with the 

developed model to give a picture of future SUHI magnitudes for the selected cities.  Finally, 

section 6 ties the chapters together with discussions and conclusions. 
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2 LITERATURE REVIEW 

Some of the elements of this literature review has been published as my contribution in the 

paper Goodess et al (2021).  

2.1 RATIONALE OF CONTENTS 

In this literature review, there are seven sections that aim to provide a background for the 

motivation of the work in the later sections. Section 2.2 gives a physical explanation of why 

the UHI exists, so the contributing factors can be directly related to how they cause changes 

in the reasons for formation. In 2.3 we see how the UHI is currently studied, and the 

shortcomings and strengths of each approach. This is to give context to why statistical and 

machine learning approaches are used in this thesis. Section 2.4 examines the climate and how 

it affects the UHI, as climate is highly influential on the contributing factors outlined in 2.2. 

The focus of section 2.5 is to give an understanding of how the UHI varies in its diurnal cycle, 

within the city (e.g., locations of the warmest spots) and its long-term trends. Section 2.6 

summarises the knowledge gaps, which the aims of this thesis addresses. Finally, sections 2.7 

and 2.8 give the information needed for the non UHI specific aspects of this thesis, concerning 

the data used (how land surface properties are generated from satellite data) and climate 

projections.  

2.2 FORMATION OF THE URBAN HEAT ISLAND (UHI)  

The presence of an urban area modifies the lower atmosphere surrounding it through a number 

of mechanisms. The result of this modification, ‘the urban boundary layer’ and the processes 

which lead to its formation will be discussed in this section.  

The urban boundary layer 

The UHI can be split into two vertical layers. The lower layer is the urban canopy (seen in 

Figure 2.1), the layer at building level and caused by the roughness of the urban surface. This 

layer is dominated by the characteristics of urban surface itself and will be different depending 

on the materials and form of the surrounding environment, for example, an area dense with 

buildings versus a park. Buildings on the surface increase its roughness and turbulence 

dominates, leading to large variations in airflow speed and direction with height. For these 

reasons, this layer is controlled by urban micro-scale processes (see Figure 2.2 for scales of 

urban components). 
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The upper layer is the urban boundary layer, a local to mesoscale concept, depicted in Figure 

2.1. The urban boundary layer is the area of the planetary boundary layer where the presence 

of the city has modified the climatic characteristics. Here the turbulence is more settled and 

more homogenous with height (Barlow, 2014), but increased drag and turbulence can lead to 

reduced wind speeds over the city in comparison to rural counterparts. This local slowing of 

wind causes convergence of air over the city, which can cause the boundary layer to ‘dome’ 

up over the city. For potentially tens of kilometres downwind of the city, an urban plume of 

rising air occurs. Another feature of the boundary layer is it tends to diminish at night as the 

bulk of the planetary boundary layer is stable and this supresses vertical transfer of heat (Oke, 

1976, 1978).  

 

 

Figure 2.1 The urban boundary layer (Oke, 1976)  

 

Figure 2.2 Scales of urban climate components, adapted (Oke, 2006). From the scale of a single building (micro) 

to a neighbourhood (local) to the entire city and large-scale thermal circulations such as country breezes (macro).  

UHI studies are conducted at various spatial scales dependent on the objective of the study. 

An investigation into the impact of a park in improving pedestrian comfort, for example, 

requires a different scale to one examining urban-rural breezes (Mirzaei, 2015). Scales of UHI 

phenomena include the urban canopy layer at the microscale, the surface urban boundary layer 

at the local scale and the outer urban boundary layer at the mesoscale (Oke, 2006). At the 

urban canopy layer, the microscale, there are many different surface elements such as 
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buildings, greenspaces, trees or paved areas with a range of radiative, thermal, aerodynamic 

and moisture properties (Arnfield, 2003). At this scale, airflow can vary by large amounts due 

to perturbation, even by small objects. The local scale is that which climate stations are 

designed to monitor, including orography but aiming to exclude the microscale effects. The 

mesoscale is where the influence of the city on the climate will be seen, typically stretching 

tens of kilometres across the entire city (Oke, 2004).  

The focus of this thesis is the local to mesoscale. At these scales, studies aim to understand 

the UHI across the entire urban area and how characteristics of a city such as its location, 

greenness or urban morphology can affect UHI magnitudes.  

Contributing factors 

In his pioneering work, Howard (1833) identified four causes for the UHI in London, with 

Oke (1981) later adding two further causes. These can be summarised as follows. 

• Anthropogenic heat 

• Impervious surfaces 

• Thermal properties of the city fabric 

• Surface geometry 

• Urban roughness 

• Air pollution 

Anthropogenic heat, 𝑄𝐹 

The activity of a city itself acts as an internal heat source, which can be divided into three 

main causes. These are the heat produced by vehicle emissions, heat released from buildings 

and from the metabolic heat of people themselves (Allen et al., 2011).  

As it can be shown to account for less than 1% of the total anthropogenic heating of a city, 

most studies either ignore metabolic heat, or integrate it as a component of buildings (Sailor, 

2011). The heat released by human activity is dependent on working patterns and public 

holidays, vehicle use and energy consumption of the particular city (Allen et al., 2011). For 

example, on weekdays residential buildings peak in energy use in the early morning and 

evening, and heat from vehicle use reduces at the weekends as there is a dip in commuter 

travel (Figuerola and Mazzeo, 1998; Sailor, 2011).  

A point to note, however, is that the UHI in temperate areas is often observed to be greatest in 

the warm season, rather than the cold when anthropogenic heat requirements are higher. The 
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implication of this is that anthropogenic heating alone is not the primary cause (Oke, 1982). 

The influence of anthropogenic heat is found to depend largely on the city and season in 

question; more developed cities carry out a higher volume of heat emitting processes, and 

seasonal temperature differences lead to varying heating and cooling requirements (Ichinose 

et al., 1999; Zhou et al., 2014). For some it is a key factor (Ichinose et al., 1999), whereas for 

others it is not so prominent in comparison to other key drivers of the urban heat island (Zhao 

et al., 2014).  

Impervious surfaces / Surface ‘waterproofing’  

A key variable for the daytime radiant energy of an area is moisture availability, required for 

latent heat loss (Oke, 1982). City materials, such as concrete, asphalt or metals tend to be 

impervious, and city drainage systems remove excess water, whereas soil and vegetation retain 

moisture. This means there is very little cooling due to latent heat in highly built-up urban 

areas. Urban parks become cooler than the surrounding area due to the ‘oasis’ effect, as they 

are a source of moisture in an otherwise dry area. As with parks, the rural area acts as a source 

of moisture and evapotranspiration takes place, leading to more energy being dissipated in the 

latent form (Oke, 1978). Anthropogenic processes such as combustion in vehicle engines and 

industry also produce moisture, although this effect is often either not taken into account or 

simplified in studies of the urban climate (Sailor, 2011). The small role of latent energy in a 

city means sensible heating is the main energy release. A measure to consider here is the 

Bowen ratio, the ratio of sensible to latent heat fluxes. Urban areas characteristically will have 

a large value for the Bowen ratio (Oke et al., 1992).  

Thermal properties of city fabric 

The thermal properties of the city fabric drive the heat stored in the city. Typically, the heat 

stored in a city is larger than the surrounding areas due to the city materials having greater 

thermal conductivity (k, in J K-1) and heat capacity (C, in J K-1). Thermal conductivity 

represents the ability of the material to conduct heat. For a given temperature difference, a 

material with a higher thermal conductivity will transmit larger amounts of heat to the 

environment than one with a lower value. Heat capacity indicates the ability to store heat, 

giving the amount of sensible heat taken up or released by a material based on its change in 

temperature. A high heat capacity means a smaller temperature change (Oke, 1982; Oke et al., 

2017). The combination of these properties (which make up thermal admittance, µ, in W m-2 

K-1), means the city materials release and store heat relatively easily, playing a large role in 

the nocturnal heat island. This is because heat storage is particularly important for maintaining 

temperatures in the absence of solar energy (Oke, 1982). However, it is important to note that 

heat capacity may not always be higher in the city in comparison to its surrounding rural area, 
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for example the greater values can be found in rural environments when soils are wet (Oke et 

al., 2017).  

Surface geometry 

Surface geometry contributes towards the heat island by trapping radiation within the city, 

which in a rural (flatter) area would be released to the sky. Figure 2.3 shows an example of a 

rural surface and an urban street canyon. In the rural area, heat can be radiated back to the sky 

in all directions, whereas in the urban area, the heat from the surface is absorbed by the 

building walls with some escaping to the sky. The canyon walls also radiate heat back to the 

surface (Oke et al., 1991). As the height to width ratio of the canyon increases, the nocturnal 

cool sky is replaced by the sides of warmer buildings; dense cities with tall buildings cool 

much slower than rural counterparts at night (Oke, 1981).  

 

Figure 2.3: Schematic of a rural versus urban area with representation of the processes involved in nocturnal 

cooling of a) rural and b) urban canyon surfaces under ‘ideal’ (calm and cloudless) weather conditions. Taken 

from Johnson et al (1991).  

Oke (1991) constructed physical models to show that the geometry of a city does indeed cool 

slower than a flat rural surface. This was done by building two wooden models, one with 
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similar geometry to a city and one completely flat, both made from the same mass of wood. 

The ‘city’ model cooled at a slower rate; with the only changing variable between the two 

simulations being the geometry, supportive of the hypothesis.  

Urban roughness 

The presence of high roughness parameters in urban areas results in restricted air circulation, 

and air decelerates as it flows over the area, limiting the dispersal of the heat and pollution 

generated by the urban form (Bornstein and Johnson, 1977; Barlag and Kuttler, 1990). This 

urban roughness is attributable to the numerous levels of tall, inflexible buildings of varying 

heights. This element of the urban surface results in the formation of a roughness sublayer, a 

layer of air closest to the urban surface, consisting of interacting waves and plumes of heat, 

humidity and pollutants, which can be up to several times the average building height in depth. 

This roughness sublayer behaves differently to the surface layer found in a rural area. While 

the surface layer characteristics are determined by height and vertical temperature gradient, 

the roughness sublayer characteristics depend on the horizontal distance and spacing of the 

elements within it (Rotach, 1999; Roth, 2000; Arnfield, 2003).  

Air pollution and albedo 

Pollution leads to an increased level of aerosols in the urban atmosphere, which can impact 

the radiation received by an urban area in two ways, depending on the type of aerosol. The 

first impact is that aerosols can absorb incoming and outgoing short-wave radiation and emit 

it as long-wave radiation. In this case, an urban area will receive additional longwave radiation 

(Oke, 1978; Li et al., 2018). During the night, these aerosols cause urban radiation to be 

absorbed and re-emitted, contributing further to the difference in cooling rates between the 

urban and rural environments. The second way aerosols can impact the UHI is to scatter and 

reflect short-wave radiation, leading to a reduction in the amount of this energy reaching the 

city surface. Table 2.1 gives the example of two cities, where the differences in incoming solar 

and atmospheric longwave are quantified.  
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Table 2.1 Differences in incoming solar and atmospheric longwave radiation in urban and rural areas, due to 

the presence of aerosols.  

City Urban – Rural 

Difference Incoming 

Solar 

Urban – Rural 

Difference 

Atmospheric 

Longwave 

Reference 

Toulouse, 

France 

−30 W/m2  15 to 25 W/m2 (Estournel et al., 

1983) 

Berlin, 

Germany 

−30.07 and − 48.06 

W/m2  

13.26 and 20.38 W/m2  (Li et al., 2018) 

 

The albedo of city surfaces tends to be lower than rural counterparts, with the exception of 

forests and areas with dark soils (Oke, 1978). Oke (1978) calculates an average urban albedo 

for a mid-latitude city to be about 0.15, which is lower than most rural landscapes. The albedo 

of Sapporo and Tokyo, Japan is measured to be 0.12, lower than the surrounding forest of 

albedo 0.16. This is attributed to the sparse vegetation in city areas, and radiation undergoing 

multiple reflections in the urban canopy (Sugawara and Takamura, 2014). Basel, Switzerland 

as a mean albedo of around 0.1, in comparison with a rural average value of 0.2 (Christen and 

Vogt, 2004). In most cases the radiation imbalance due to pollution is partially offset by this 

lower urban albedo during the day (Oke, 1978), although at night the effect is stronger and 

found to enhance the UHI by 12% for a clear night in Berlin (Li et al., 2018).  

2.3 METHODS OF STUDYING UHI 

2.3.1 Observations  

As with many anthropogenic climate influences, the true size of any urban effect on its micro-

climate is difficult to estimate without measurements of the same area pre-urbanisation. In the 

absence of this pre-urban baseline, temperatures of the surrounding rural area are taken to be 

a good approximation, although it should be noted that the rural land itself has often undergone 

human alteration, for example due to agriculture (Oke, 1978).  

The Canopy UHI: using 2m air temperature  

The earliest approach to examining the UHI uses urban-rural station pairs, taking the 

difference between urban and rural station temperatures as the UHI magnitude (Howard, 1833; 

Ackerman, 1985; Karl et al., 1988; Moreno-Garcia, 1994; Figuerola and Mazzeo, 1998; 

Morris and Simmonds, 2001). These air temperatures are a measure of the urban canopy layer 
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(Figure 2.1), an important aspect of the UHI, and the UHI quantified by air temperature is 

sometimes referred to as the canopy urban heat island (CUHI). For clarity, the term CUHI 

when used in this thesis will refer to the increase in urban air temperatures in comparison to 

rural surroundings. The UHI refers to the difference in temperature created by the presence of 

a city and will refer to this phenomenon overall rather than for a specific measurement 

methodology.  The 2 m air temperature is that which is experienced by the people in the city, 

and therefore an indication of the human discomfort experienced due to higher temperatures.  

The long-standing nature of some weather stations means that the CUHI can be studied over 

a large temporal span using this method. For example, warming trends have been studied 

starting from 1900 and 1910 in London and Vienna, respectively (Jones et al., 2008; Jones 

and Lister, 2009).  

The limitation of this station pairing method is that it implicitly assumes that the urban surface 

is homogeneous and does not consider variations within the city. The city-atmosphere system 

is complex, and exchanges of energy, mass and momentum take place over a wide range of 

space and time scales. Understanding this from just one fixed point is not possible (Oke, 1982). 

Finding a rural site without some form of urban influence can also prove problematic. Jones 

et al (2008) overcome the lack of rurally located weather stations in China by using 

reanalyses1, and in order to obtain accurate temperature data Kidder and Essenwanger (1995) 

use small cities as the rural temperature measurement. Small cities and even villages do, 

however, exhibit CUHI characteristics (Oke, 1973; Karl et al., 1988; Lindén et al., 2015). 

Stewart (2007) highlights the ambiguity of the term “rural” and the variation of these sites 

between studies, pointing out that a common source for temperature records, airports, have 

been used as both urban and rural sites in different studies. An additional limitation in using 

weather station data is cities which lack appropriately positioned weather stations cannot be 

studied. This limits research to certain areas, and in a study by Du et al (2021) after filtering 

cities for appropriate weather station data, 355 cities in the Northern hemisphere and 11 cities 

in the Southern Hemisphere remained. Figure 2.4 is taken from this paper and shows the 

locations by climate zone. Here, using this method strongly limits the climate types for which 

the CUHI may be studied.   

 
1 Reanalyses are datasets which are created using both observations and models, in a process named data 
assimilation (Parker, 2016). 
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Figure 2.4 Figure 1 from Du et al (2021), showing the global distributions of the 366 cities where weather station 

data is available to study the CUHI.  

To address the issue of urban heterogeneity, some studies use data taken from vehicles with 

temperature sensors attached. This gives a more detailed representation of the spatial 

characteristics of the urban heat island (Oke, 1973, 1976; Wong and Yu, 2005; Hart and Sailor, 

2009; B. Zhou et al., 2019). However, this traverse data is only a snapshot in time, and does 

not give information beyond the timeframe in which vehicles are deployed. This makes it 

difficult to compare with other data sources. The spatial extent of the data is also limited to 

the road network, so will not take into account areas such as parks when the cooling effect 

does not reach the road (B. Zhou et al., 2019). Another method of studying the spatial extent 

of the CUHI is to use a network of sensors across a city. This can be temporary, to assess the 

CUHI over a short period of time (Chow and Roth, 2006; Kolokotroni and Giridharan, 2008), 

or permanent sensors to examine seasonal behaviour and the impact of different weather 

conditions (Schatz and Kucharik, 2014; Azevedo et al., 2016). These sensor networks allow 

the analysis of different types of urban form across the city, with a longer temporal aspect than 

traverse data. A limiting factor of such studies is there are few cities that contain the dense 

sensor networks required, due to equipment cost and upkeep (Chapman et al., 2015). A 

method of reducing such upkeep costs is for members of the public to maintain the sensors. 

For example, in Hong Kong a sensor network is run by citizen scientists in schools and local 

communities (Hung and Wo, 2012). Additionally, personal weather stations are gaining 

increasing attention as a method for increasing spatial resolution of urban air temperature 

observations, an approach known as crowdsourcing (Chapman et al., 2023). This 

crowdsourcing approach has also been utilised using personal car thermometers to give CUHI 

spatial patterns at 200m resolution (Marquès et al., 2022).  
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The effects of the UHI can also be measured in the boundary layer. Measuring this is often 

time consuming and costly, requiring tall towers, radiosondes and aircraft, and has been done 

in only a few large cities worldwide (D. Zhou et al., 2019).  

The surface UHI: using land surface temperature 

The introduction of satellite remote sensing, used to generate land surface temperature (LST) 

datasets, led to explorations of the spatial extent of the heat island. Early studies are qualitative 

in type, describing the thermal patterns and simple correlations (Roth and Oke, 1989; Voogt 

and Oke, 2003). In recent years, as satellite data has become more freely and widely available, 

remote sensing has become a popular method of study due to its consideration of both spatial 

and temporal characteristics of the urban heat island (Weng et al., 2004; Tiangco et al., 2008; 

Li et al., 2011; Clinton and Gong, 2013; Zhou et al., 2014; Mallick et al., 2013; Zhou et al., 

2013; Rasul et al., 2015; Estoque et al., 2017; Singh et al., 2017; Equere et al., 2020). The 

two commonly used satellite sensors are Landsat Thematic Mapper/ Enhanced Thematic 

Mapper/ Thermal Infrared Sensor and MODIS, which account for 78% of the publications in 

a 2019 review of satellite remote sensing for UHI studies. Other satellite sensors such as 

ASTER, AVHRR, SEVERI, GOES and more make up the rest (D. Zhou et al., 2019).   

Remote sensing methods compute the land surface temperature (LST) rather than air, and this 

technique brought with it a new measurement for examining the UHI, the surface UHI (SUHI). 

As with use of air temperatures to calculate the CUHI, there is not set formula for the 

calculation of a SUHI, and therefore different quantification methods are used to determine 

its magnitude. An idealised definition of the UHI is the temperature increase of an area that 

has resulted from the presence of a city. However, in order to know this, it must be possible 

to measure the temperature of an area with and without a city, in the same period of time. As 

this is impossible, a few different methods have been developed in order to quantify the 

magnitude of the SUHI. All methods require identifying the urban (city) area and a rural 

reference area, which is to act as a proxy for what the temperature in the city area would be if 

there did not exist a city. The urban area is relatively simple to define as it is the area marked 

as urban in landcover data. The rural area can be defined in numerous ways, however. The 

rural area can be defined as a ‘buffer zone’, a ring of rural area at a set distance around the 

urban outline (Clinton and Gong, 2013; Lai et al., 2021) or a box (Anniballe et al., 2014) a set 

distance from the city centre. Commonly, once these areas have been defined, the SUHI 

magnitude is taken to be the average urban temperature minus the average rural temperature. 

Some methods, however, aim to examine the peak SUHI intensity, where the temperature 

difference is at its greatest. This include using quantiles (Flores R. et al., 2016), and fitting 

Gaussian surfaces to the city temperature difference (Streutker, 2002). More detail on these 

methodologies can be seen in section 4.2 and in the appendix section A.4. Schwarz et al (2011) 
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explores numerous methods of quantifying the SUHI, 11 in total, finding different 

quantification methods can show different characteristics of the SUHI. Based on this, the 

authors recommend consultation of multiple methods when examining SUHI magnitude. 

Whilst the two measures are linked, studies show that both the magnitude and the temporal 

and spatial patterns of urban LST and air temperatures are different, meaning studies looking 

at the SUHI should not be directly compared to the CUHI. This must be taken into 

consideration when making conclusions from SUHI studies, particularly if they are related to 

human health and comfort, as here air temperature is most significant.  

The issue with using remotely sensed LST (and therefore the SUHI) is that the observation 

from the sensor is two dimensional, whereas an urban area is in three dimensions. The area 

seen is limited by viewing angle, and vertical surfaces such as building walls and well shaded 

ground are hidden from view (Voogt and Oke, 2003). The sensor will capture the top of a tree 

canopy, for example, rather than the cool surface below, which is closer to the temperature 

felt by the city inhabitants. The structure of the surface itself (i.e., building heights and density) 

alters the city climate through advection and absorption or reflection of radiation (this can be 

seen later in this thesis in Figure 2.5) which two dimensional LST cannot capture (Stewart and 

Oke, 2012). Satellite measurements are also limited in their ability to study the full diurnal 

cycle (section 2.5.1), as satellites are over a given region for a limited time each revolution. If 

there happen to be clouds at this time, information of the SUHI below will not be captured 

(Mirzaei and Haghighat, 2010). This can lead to less data being generated in polluted and 

chronically cloudy areas, which if seasonal can introduce bias (Clinton and Gong, 2013). It 

also means it is not possible to gain a continuous record at short time intervals throughout a 

diurnal cycle, as the time of day that measurements are acquired at is limited to the overpass 

time. Avoiding cloud contamination, along with that the SUHI often being at its peak during 

this time, means summer daytime is a common time period of study in the northern hemisphere 

(B. Zhou et al., 2019; D. Zhou et al., 2019).  

In studies, it is found that urban LSTs have a larger amplitude of diurnal cycle, tending to be 

larger during the day and smaller during the night in comparison to air temperatures (Jin and 

Dickinson, 2010; Amorim et al., 2021). SUHI intensities tend to be largest in the day, whereas 

CUHI intensity is greatest at night, although this is climate dependent (Roth and Oke, 1989; 

Eliasson, 1996; Arnfield, 2003). Spatial patterns differ as the CUHI is altered by winds and 

advection, while the SUHI is more controlled by land cover types (Azevedo et al., 2016). 

While both surface and air temperatures are dependent on surface energy balance, this 

additional effect of advection processes on air temperature leads to a lack of simple coupling 

between the two (Roth and Oke, 1989).  
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Studies have delved further into this complex relationship by examining both the CUHI and 

SUHI together for the same city or cities. As mentioned previously in this section, there are a 

number of methods used to define both the CUHI and SUHI, which results in a mix of 

methodologies to determine differences between CUHI and SUHI. Table A.1.1 in the 

appendix gives an overview of studies that compare the CUHI and SUHI, and this difference 

of methods is highlighted in the methods column of the table.  

Using a dense sensor network of air temperature measurements and comparing with satellite 

LST is used to study a single city (e.g., Azevedo et al., 2016; Feng et al., 2019; Amorim, 

2020) and allows for direct CUHI-SUHI comparisons at multiple locations. Using weather 

station pairs (e.g., Gawuc et al., 2020; Sun et al., 2020; Wang et al., 2020) allows for a large 

number of cities to be studied at the same time (although it should be noted these are restricted 

by the availability of suitably positioned weather stations), but means that the location of the 

weather station must be used for both air and LST measurements for a direct comparison. The 

studies examined find SUHI magnitude is generally greater than CUHI (although for arid cities 

SUHI is lower than CUHI during the day). For a study of 342 cities in Europe using 

crowdsourced citizen weather station data, the SUHI is greater than the CUHI for 91% of 

cities during the day and 81% during the night (Venter et al., 2021). Variance in both SUHI 

and CUHI could be explained by differences in evapotranspiration between rural and urban 

areas, but albedo was more influential on the SUHI and surface roughness more important for 

explaining the CUHI. Due to the influence of advection on the CUHI, windspeed and direction 

strongly influence its magnitude and spatial patterns. Wind direction can cause CUHI hotspots 

and SUHI hotspots within the city to lie in different areas, as the CUHI peak intensity shifts 

downwind (Azevedo et al., 2016; Cao et al., 2021). Multiple studies observe the CUHI-SUHI 

correlation is greater during the night (Azevedo et al., 2016; Yao et al., 2021; Berg and 

Kucharik, 2022), where different mechanisms control the formation of the UHI. During the 

day, it is attributed to differences between evaporative cooling, and at night, radiative cooling 

rates dominate (see section 2.5.1). The strength of the CUHI-SUHI correlation also can differ 

based on season (Ma et al., 2016; Hu et al., 2019), as seasonal weather patterns such as wind 

speed will impact the strength of the relationship. 

These differences are problematic if SUHI is to be used to recommend CUHI mitigation 

measures, as given their relationship is not linear, it is hard to understand whether the impact 

on the CUHI will be the same. A quantifiable decrease in LST cannot be translated into a 

known impact for air temperature. This limits the applications of SUHI studies, as they cannot 

be used directly by policymakers or city planners who are aiming to reduce city air 

temperatures by set targets. It also can make deciding between two mitigation options tricky, 

as the impact on the CUHI may differ from the SUHI.     
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Although the relationship between LST and air temperatures in relation to the UHI is not 

simple, LST is nevertheless an important aspect of the phenomena. It plays a part in human 

comfort within an urban area by controlling the temperatures at the lower layers of the urban 

atmosphere and those inside buildings (Voogt and Oke, 2003), and a strong correlation 

between the two measures does exist. Surface temperatures can also give information for 

applications outside of human health. For example, to determine what temperatures building 

materials may be exposed to for civil engineering applications, or whether city surfaces will 

require gritting at the same time as surrounding rural area (Chapman and Thornes, 2006).  

2.3.2 Modelling 

In this section, the different approaches used to model the CUHI/SUHI are outlined. This gives 

context to why in this thesis, a statistical modelling or machine learning approach to modelling 

the SUHI is taken over other approaches.  

Statistical Modelling and Machine Learning 

Statistical analysis is an important tool in analysing the remotely sensed SUHI, and studies 

can be grouped into two categories. They tend to either focus on an individual or few cities 

(Weng et al., 2004; Tiangco et al., 2008; Xiong et al., 2012; Mallick et al., 2013; Rasul et al., 

2015; Geletič et al., 2016; Equere et al., 2020), or on large numbers of urban areas within a 

global or regional span (Tran et al., 2006; Imhoff et al., 2010; Clinton and Gong, 2013; Zhou 

et al., 2013, 2014; Peng et al., 2018).  

Studies focusing on one or a few cities most often are interested in the spatial features of the 

SUHI. They analyse the LST and how it is related to the variations of land cover, giving a 

detailed picture of the SUHI within a city. Some studies look at cities over different years to 

investigate the impact of urban development and expansion (Xiong et al., 2012; Mallick et al., 

2013). These aspects make these studies advantageous for city planning and for understanding 

the potential for mitigation measures. As outlined in section 2.3.1, there is not set methodology 

for how a SUHI or CUHI is quantified, making direct city-to-city comparisons of studies 

difficult. To address this lack of consistent and compatible observation data in standalone city 

studies, characteristics of large groups of cities have in other cases been analysed together, 

with the same SUHI quantification methods being used for all cities in question (e.g. Tran et 

al., 2006). The relationships of these sets of SUHIs and their influencing factors are then 

explored, and statistical or machine learning techniques can be used to predict SUHI 

magnitudes. A summary of these studies (12 in total) can be found in the appendix, Table 

A.1.2, which outlines the different techniques used and the range of input variables explored. 

Not all studies examine climate variables (e.g., precipitation, relative humidity) as potential 

influencing factors on the SUHI, and climate variables feature in half of the studies. Measures 
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of vegetation, however, are included in the majority of studies, and this is related to climate 

indirectly as the abundance and type of vegetation in an area is a product of the climate.  

The most popular method of study is linear regression, an approach is widely used in many 

fields of research and easy to interpret and understand. This makes it ideal for understanding 

relationships between influencing factors and the SUHI magnitude by examining the fitted 

coefficients (section 3.5). Comparison of the values of the fitted coefficients also can give an 

indication of the influence of each variable, with the most influential having the highest 

magnitude. It is used both to combine all influencing factors together to predict the SUHI 

magnitude (Zhou et al., 2014; Schwarz and Manceur, 2015; Zhou et al., 2017; Peng et al., 

2018; Y. Li et al., 2021; Liu et al., 2021), or as separate single variable models looking at the 

impact of an influencing factor in isolation (Imhoff et al., 2010; Li, Zha and Zhang, 2020). 

However, a downside of this model is it lacks the flexibility to capture any nonlinear 

relationships, and assumes variables are independent. This means if correlated variables are 

used in the same linear regression model, the interpretation of coefficients will be distorted. 

The model also has a tendency to overfit, although this can be reduced by regularisation 

(section 3.5) and is sensitive to outliers. The other modelling technique used is random forest 

regression (section 3.5) (Clinton and Gong, 2013; Wang et al., 2015; Ma et al., 2021). Unlike 

linear regression, random forest regression is more flexible and can capture non-linear 

relationships, generally having a better predictive accuracy. As with interpreting the 

coefficients of linear regression, an understanding of the most influential variables on the 

SUHI are given using a method known as feature importance (a caveat being if correlated 

variables are included the importance of the related variables will be reduced). Of all the 

studies assessed, using both these modelling techniques, of note is that over half (7) of the 

studies fit and test the models on the entire dataset, meaning there is no assessment of 

overfitting. Additionally, none of the fitted models have been used for prediction, with the 

focus on statistical inference, aiming to understand relationships between the influencing 

variables and SUHI magnitude.  

Aside from these studies, the more popular use for machine learning techniques relating to the 

CUHI/SUHI is in studies which aim to predict urban air temperatures based on urban LST 

measurements (Wang et al., 2023). Established previously in this section (2.3.1), the ability 

to generate urban air temperature measurements at the resolution of satellite LST would be 

highly beneficial for UHI research. As the relationship between SUHI and CUHI is complex 

and nonlinear, these studies utilise a wider range of models (15 different methods are found 

in a recent review by Wang et al (2023)), such as random forests and neural networks, which 

can capture more flexible relationships. Often these studies also employ linear regression 
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models as a type of yardstick model, by which comparisons to the chosen nonlinear model can 

be made (dos Santos, 2020; Wang et al., 2023).  

Circulation models  

An alternative approach used to examine the UHI is to use physics-based circulation models, 

to directly represent the processes involved with its formation via these climate, or circulation, 

models. With climate models, the overarching narrative for use in studying the UHI is a trade-

off between computational expensive, which limits studies to a single city, and resolution, 

which if too coarse fails to capture the UHI. These models have the benefit of generating both 

air temperature projections, which can be used to assess the CUHI, and LST projections, which 

can be used with observations to validate the models.  

Urban areas make up a small fraction of the Earth and are small in comparison to the grid size 

of most global climate models (GCMs), however, urban areas are of particular significance as 

such a high percentage of the world’s population is concentrated in these areas. A more 

detailed picture of the physical processes can be given using regional climate models (RCMs), 

which have higher spatial resolutions. Scales of these models are coarser than the detailed 

Computational Fluid Dynamics models (see appendix section A.1), therefore some 

representation of the urban surface must be made by means of parameterisations, representing 

the city area by a simplified version of its true form. Information on urban parameterisations 

can be found in the appendix, section A.1.  

The grid resolution of GCMs means they are not often used as a standalone tool to examine 

the UHI, although there are some exceptions. GCMs with embedded urban surface models 

have been used to simulate the impact of climate change on cities at a coarse (0.9375° x 1.25° 

resolution) scale (Fischer et al., 2012; Oleson, 2012). These models focus on the impact of the 

CUHI and climate change on cities, analysing what climate change means for an urban area 

as opposed to a rural one. For example, Fischer et al (2012) studied heat stress across Europe 

and Africa, and found nights with extremely high heat stress occur more in cities than in the 

surrounding rural areas. However, these models do not have the capability to model the UHI 

on a finer scale to give intra-urban patterns or examine smaller cities (which are the focus of 

this thesis). The coarse scale does not allow for important features and feedbacks to be 

accounted for, for example urban expansion (Lauwaet et al., 2016), and anthropogenic heat 

and moisture (Fischer et al., 2012). The resolution also does not allow for temperatures at rural 

and urban reference locations to be extracted and compared to quantify the UHI in the same 

way as it is done for observations (Hamdi et al., 2014). These drawbacks mean these models 

are not commonly used in UHI studies.  
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RCMs dynamically downscale projections from a GCM, or weather forecasting model to give 

results at a high spatial resolution. Some examples of these models used in UHI studies can 

be found in appendix Table A.1.3. These models are commonly initially developed for weather 

prediction, but often used to make projections of future climate. RCMs are useful both for 

examining how the UHI might change under future climate change scenarios (McCarthy et 

al., 2011; Kusaka and Takane, 2012; Argüeso et al., 2014; Hamdi et al., 2014; Tewari et al., 

2017) and to explore understanding of the processes and highlight how it can be mitigated 

(Miao et al., 2009; Sarkar and de Ridder, 2011; Wouters et al., 2013; Salamanca and Mahalov, 

2019). As to be expected for models providing detailed outputs (in comparison to a GCM), 

the downsides of using RCMs to simulate the UHI is they take a long time to run for an 

individual city, which can be limiting if a goal is to study large numbers of different cities, or 

to simulate the UHI over a large number of years (Lauwaet et al., 2015). For these reasons 

RCM studies are mostly limited to a single city, and some of the higher resolution models are 

only used to model the present CUHI.  

A fairly recent development in models used to study the UHI is the boundary layer climate 

model UrbClim (B. Zhou et al., 2016; Garciá-Diéz et al., 2016; Lauwaet et al., 2016; Sharma 

et al., 2016). This model was developed to address the computationally intensive nature of 

other urbanised mesoscale climate models such as RCMs, with the purpose to be used for 

urban climate projections. The model uses the simplest parameterisation scheme and simple 

3-D model of the lower atmosphere rather than an RCM to ensure a simple scheme, designed 

to be fast to run. In validation exercises UrbClim was found to fulfil this purpose and ran two 

orders of magnitude faster than high resolution mesoscale climate models such as comparison 

model ARPS, in Table A.1.3 (De Ridder et al., 2015). Its low computational cost also gives 

UrbClim the possibility of reaching resolutions of 250m (Lauwaet et al., 2016). In accordance 

with its development purpose, the strengths of the model lie in urban climate projections, and 

it does not replace the need for the mesoscale atmospheric models when the focus of the study 

is on more complex urban interactions between the city and the atmosphere (Garciá-Diéz et 

al., 2016). Typically, studies using this model focus on its validation against present UHIs (B. 

Zhou et al., 2016; Sharma et al., 2016) or other models (Garciá-Diéz et al., 2016) due to its 

relatively recent development. Despite this model having a faster run time than an RCM, it is 

still relatively slow in comparison to a statistical or machine learning model, and therefore is 

suited to the study of an individual city.  

Other modelling approaches 

Other modelling approaches examine processes in the microscale, focusing on a building or 

single street, which is not the objective of this thesis. These include Computational Fluid 

Dynamics (CFD), which directly compute processes such as the temperature and velocity of 
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air based on the laws of fluid flow (Gagliano et al., 2017), and lab based models, which are 

experimental physically constructed models representing a city. They are used in conjunction 

with heating chambers or wind tunnels to examine microscale processes. More details on both 

these modelling approaches can be found in the appendix section A.1. 

2.4 INFLUENCE OF WEATHER AND CLIMATE 

The contributing factors which result in the formation of the CUHI/SUHI (section 2.2) are 

related to climatic and meteorological conditions. By comparison of the CUHI and SUHI in 

section 2.3.1, it was seen that windspeed has a large influence on CUHI – SUHI differences. 

Therefore, in order to make connections or comparison between the two, any assessment of 

how windspeed impacts both is made. Cloud cover is important for the context of examination 

of the SUHI, due to the potential influence of cloud contamination on satellite sensed LST 

measurements. This means an understanding of the likely consequences of this cloud bias can 

be gained by reviewing how cloud cover impacts the UHI.  

The second part of this section reviews how the UHI is influenced by climate. This is key, as 

an understanding how current climates interact with the UHI is the basis for understanding 

how changes in climate may impact its behaviour in the future.  

2.4.1 Windspeed and Cloud 

Calm, clear weather conditions are shown to result in stronger development of the UHI, and 

cloudy conditions weakening its intensity (Unwin, 1980; Yague et al., 1991; Mihalakakou et 

al., 2002; Santamouris, 2015). This phenomenon has been measured both for the daytime 

(Schatz and Kucharik, 2014) and night-time CUHI (Santamouris, 2015; Feng et al., 2019; Q. 

Huang et al., 2020). During the night, the CUHI is at its greatest and this is where the effect 

is seen the most (Schatz and Kucharik, 2014). The reason for these observed effects is that 

these weather conditions affect the mechanisms resulting the formation of the urban heat 

island in two ways. Cloud cover impacts the radiation exchanges, limiting the amount of solar 

radiation reaching the Earth’s surface and trapping terrestrial radiation. Therefore, the rate of 

evaporative (relating to the solar radiation) and radiative (relating to the terrestrial radiation) 

cooling is impacted by the cloud cover. At night, this difference in the rate of radiative cooling 

between urban and rural areas (section 2.2) is an important factor for the formation of the heat 

island. Therefore, it follows that when this is dampened the CUHI intensity also decreases. 

Winds impact the turbulent and convective fluxes and advection, moving heat away from the 

urban surfaces, and cooler air from rural areas enters the urban boundary layer and mixes with 

warm urban air. Downwind, rural areas experience the opposite, with warmer urban air mixing 

with the cooler rural air (Wang et al., 2020). High wind speeds have been found to prevent the 
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development of the night-time CUHI (Alonso et al., 2007). In a study of Buenos Aires, strong 

winds were found to result in the formation of an inverse CUHI (or urban cool island, UCI) 

during the daytime, where the city was cooler than the surrounding rural area (Figuerola and 

Mazzeo, 1998). In order to remove these complex effects of wind and cloud, most CUHI 

studies are limited to the calm, clear conditions optimal for its development (Ackerman, 1985; 

Morris and Simmonds, 2001). 

The impact of these conditions on the SUHI is harder to quantify, as the satellite sensed LST 

cannot be generated when cloud cover is present (see section 2.3.1). A higher relative 

humidity, which is associated with more cloudy conditions, is found to weaken the intensity 

of the night-time SUHI (Lai et al., 2021). This is the same mechanism as described for the 

night-time CUHI, where the cloud cover limits the radiative cooling in the rural area to a 

greater extent than in the urban, and the nocturnal cooling rates of the two areas become more 

equal. The night-time SUHI also is found to decrease with increasing windspeeds (Feng et al., 

2019; Lai et al., 2021), although Lai et al (2021) finds the windspeeds must be strong in order 

to do so, as here the mechanism is to cool urban surfaces through convection, in contrast to 

the movement of the cool and warm air in the CUHI.   

Often cities are located in coastal areas, where sea breezes arise during the daytime due to 

land-sea temperature gradients. The presence of the CUHI intensifies the effect by increasing 

this gradient. The interaction of the CUHI with the daytime sea breeze is found to be 

significant and influence the city climate (Yoshikado, 1994; Acero et al., 2013; Santamouris, 

2015; Y. Zhou et al., 2019; J. Yang et al., 2022), with models showing the CUHI accelerates 

the sea breeze (Freitas et al., 2007). Sea breezes decrease CUHI intensity by removing the 

warm urban air and replacing it with cool sea air, and therefore must be considered when 

studying the UHI of a coastal city (Kim and Baik, 2002). For example, an inland rural 

reference station compared to a coastal urban area would not reflect the true influence of 

urbanisation (Sakakibara and Owa, 2005). At night this sea breeze is reversed as the land cools 

rapidly in comparison to the sea. The urban area dampens this night-time breeze, due to both 

its friction and the CUHI, as its higher temperature now decreases the land sea temperature 

difference (Martilli, 2003). The topography of the surrounding area also influences the CUHI, 

with katabatic winds2 distorting the nocturnal CUHI for cities located in areas surrounding by 

hills or mountains (Deosthali, 2000; Ohashi and Kida, 2002; Alcoforado and Andrade, 2006), 

or mountains even isolating the city from the cooling effect of the land-sea breeze (Charabi 

and Bakhit, 2011).  

 
2 Katabatic winds are downslope winds, typically on a mountain, which are driven by temperature differences 
between the cooler air at the top of the slope versus that further down (Katabatic wind - AMS Glossary, 2012). 
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The interaction between sea breezes and the SUHI have been less well studied, as it is related 

to the movement of air so the relationship with the UHI is more appropriate. Wang et al (2020) 

finds the CUHI-SUHI correlation is not as strong for cities with sea or mountain breeze effects, 

indicating the sea breeze effect on the SUHI is to a smaller extent.  

In summary, two key points arise from the above. First, the CUHI tends to be of smaller 

magnitude in cloudy conditions, so SUHIs not calculated due to satellite images rendered 

unusable on days of high cloud cover are likely to have lower SUHI magnitudes than their 

counterparts on non-cloudy days. Secondly, CUHIs in coastal or mountainous/hilly areas are 

likely to have different behaviour to those that are not, due to the presence of localised wind 

phenomena, which is taken into consideration in the methods of this thesis by limiting cities 

to in-land and in relatively flat surroundings.   

An additional point regarding the interaction of the UHI with the local climate is that the 

presence of the cities itself can impact other meteorological features in addition to 

temperature. This includes the formation of country breezes, alteration of precipitation 

patterns, and increases in cloud cover. More information on the mechanisms behind these 

urban influences can be found in the appendix, section A.1.  

2.4.2 Climate 

The factors that lead to the formation of the UHI are both related to the city morphology and 

the climate, as seen in section 2.2.  Figure 2.5 shows a simplified schematic of some of these 

factors, split into whether they part of the urban or the rural form. In blue, the climate related 

properties can be seen. For example, the amount of precipitation in a region will impact the 

difference in moisture availability between urban and rural areas, and the solar radiation will 

determine how much evaporative cooling takes place. The vegetation abundance and type are 

also strongly linked to climatic factors; arid environments are likely to contain sparse 

shrubland or deserts, whereas warm, humid climates will have dense forests and grasslands or 

crops.  
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Figure 2.5 A comparison of the Urban and Rural form, showing how differences in the two lead to the formation 

of the UHI. Factors relating to the urban form are black and climate related properties are blue. Air pollution 

can be influenced by climate but is not considered in this thesis so is left in black.   

A notable difference based on climate is the existence of a negative UHI, or urban cool island 

(UCI). Urban cooling can be seen in deep and narrow street canyons, where the street level is 

in continuous shade, limiting absorption of short-wave radiation (Oke, 1978). UCIs are most 

prominent in dry and arid climates (Bornstein et al., 2012). This is driven by differences in 

convection and evapotranspiration due to the lack of vegetation and dry soils, desert or stone 

in rural areas. In these climates, when compared to rural areas, urban land is on average 20% 

more efficient at removing heat from the surface by convection. Urban trees and lawns 

contribute to this effect by evaporative cooling (Zhao et al., 2014). This phenomenon exists 

for both the CUHI and SUHI (Rasul et al., 2017).  

The moisture content of rural soils has a big part to play in the formation of the UHI. Wet 

soils have high thermal admittance (µ, W/m2K, see section 2.2), so heat up and cool down 

slowly, whereas the converse is true for dry soils. The properties of the urban materials such 

as concrete mean a city has a thermal admittance somewhere in the middle of a wet and dry 

soil (Bornstein et al., 2012). Bornstein (2012) uses this information, along with seasonal 

distribution of regional precipitation to theorise CUHI behaviour for different climates, 

which are summarised in Table 2.2.  

 



Literature Review 

 

26 
 

Table 2.2 Predicted behaviour of the CUHI in different climates (Bornstein et al., 2012). 

 

City type 

Köppen-Geiger Climate 

Classification 

UHI maximum  UHI minimum 

Warm/hot low latitude 

cities surrounded by 

wet rural soils 

-Hot tropical climates at 

the equator (A) 

-Mediterranean 

climates with warm wet 

summers (Cfa) 

Daytime and 

wet season  

Nighttime and dry 

season urban cool 

island 

Warm cities with dry 

rural soils 

-Mid latitude dry 

climates on the Sahara 

and west side of the 

continents (B)  

-Marine Mediterranean 

climates with cool dry 

summers (Csb) 

Nighttime  Daytime urban cool 

island 

Cold cities -Cold high-altitude 

climates in Tibet and 

the Andes (H)  

-High latitude cold 

snowy winter climates 

in Canada and Siberia 

(D) 

-High latitude cold 

polar climates in 

Antarctica, Greenland 

and Northern Canada 

and Asia (E) 

Winter and 

night-time  

Summer and 

daytime 

 

In the table, the Köppen-Geiger climate classifications are listed. This classification system is 

a method of categorising climates based on long-term temperature and precipitation 

measurements and their cycles throughout the year, consisting of five main classes and 30 

subgroups (Beck et al., 2018). Table 2.3 shows the main climate categories based on two 
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letters. More detailed classifications based on additional criteria can add a third letter to the 

classification, to categorise further. The Köppen-Geiger climate classification locations can 

be seen in Figure 2.6. Linking this back to the areas where the UHI is understudied, this can 

be compared with Figure 2.4, mainly consisting of areas under around 40 ° N, which will be 

the focus of the thesis to address research gaps. Here, there exists large areas of A and B 

climate classifications (equatorial and arid), and additionally areas in the C classification 

(warm temperate).  
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Table 2.3 Köppen-Geiger main climate groups, first 2 letters of classification. Taken from Kottek et al (2006). 

Tmin (Mean temperature of coldest month), Tmax (Mean temperature of warmest month), Pmin (Precipitation of 

driest month), Pann (Annual precipitation), Psmin (lowest monthly precipitation in summer half-year), Pwmin (lowest 

monthly precipitation in winter half-year), Psmax (highest monthly precipitation in summer half-year), Pwmax 

(highest monthly precipitation in winter half-year), Pth (threshold precipitation, calculated dependent on annual 

temperature). Values given are per month.  

Climate Type Description Criterion 

A Equatorial climates Tmin≥+18 °C 

Af Equatorial Rainforest, fully 

humid 

Pmin≥ 60 mm 

Am Equatorial monsoon Pann ≥ 25 mm (100 - Pmin) 

As Equatorial savannah with 

dry summer 

Pmin< 60 mm in summer 

Aw Equatorial savannah with 

dry winter 

Pmin< 60 mm in winter 

B Arid climates Pann < 10 Pth 

BS Steppe Pann > 5 Pth 

BW Desert Pann ≤ 5 Pth 

C Warm temperate climates −3 °C < Tmin <+18 °C 

Cs Warm temperate climate 

with dry summer 

Psmin < Pwmin, Pwmax > 3 Psmin 

and Psmin < 40 mm 

Cw Warm temperate climate 

with dry winter 

Pwmin < Psmin and Psmax > 10 

Pwmin 

Cf Warm temperate climate, 

fully humid 

neither Cs nor Cw 

D Snow climates Tmin≤ -3 °C 

Ds Snow climate with dry 

summer 

Psmin < Pwmin, Pwmax > 3 Psmin 

and Psmin < 40 mm 

Dw Snow climate with dry 

winter 

Pwmin < Psmin and Psmax > 10 

Pwmin 

Df Snow climate, fully humid neither Ds nor Dw 

E Polar climates Tmax <+10 ◦C 

ET Tundra climate 0 °C ≤ Tmax <+10 °C 

EF Frost climate Tmax < 0 °C 
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Figure 2.6 Köppen-Geiger classifications (1980-2016) (Beck et al., 2018).  

In reality for UHI studies generalising behaviour by climate zones is not so straightforward. 

Table 2.4 shows diurnal and seasonal patterns for some CUHI studies, grouped by climate. 

Comparison with Table 2.2 shows for climates in the A classification, the highest magnitudes 

would be expected to be during the daytime and the wet season, whereas in Table 2.4, these 

cities have the strongest CUHI at night and during the drier season. For climates in the dry (B) 

and marine Mediterranean (Csb) classifications, the behaviours are as expected for 2 out of 3 

cities, with the maximum intensities of the CUHI occurring at night. The cold cities (H, D, E 

climates) show the expected behaviour, with the maximum CUHI occurring during the night, 

although some cities do not show a distinct diurnal cycle. Therefore, it can be seen that whilst 

climate is an important predictor of CUHI behaviour, it cannot alone determine the 

characteristics, and there are other variables that must be considered. For example, wintertime 

peaks in CUHI intensity for the coastal cities Lisbon and Bilbao are thought to be due to the 

sea breeze effect during summer (Alcoforado and Andrade, 2006; Acero et al., 2013). This 

confirms coastal cities should be considered in a separate category to inland (section 2.4.1). 

An additional factor can be that grouping variables in any way, here done via Köppen-Geiger 

classifications, will lead to information being lost as a continuous variable is turned into a 

categorical.  
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Table 2.4 Diurnal and seasonal patterns of some CUHI studies. 

Climate Cities studied Diurnal 

pattern 

Seasonal 

pattern 

References 

-Hot tropical climates 

at the equator (A) 

-Mediterranean 

climates with warm 

wet summers (Cfa) 

Singapore 

Bangkok, 

Chiang Mai, 

Songkhla 

(Thailand) 

Milan (Italy) 

 

Strongest 

CUHI at 

night 

Strongest 

during the 

drier season 

(Chow and 

Roth, 2006; 

Jongtanom et 

al., 2011; 

Pichierri et al., 

2012) 

-Mid latitude dry 

climates on the 

Sahara and west side 

of the continents (B)  

-Marine 

Mediterranean 

climates with cool dry 

summers (Csb) 

Muscat 

(Oman) 

Gaborone 

(Botswana) 

Eilat (Israel) 

Strongest 

CUHI at 

night for 

Muscat, 

Gaborone, 

day for Eilat 

Strongest 

during 

summer for 

Muscat and 

Eilat, winter 

for Gaborone 

(Jonsson, 

2004; Sofer 

and Potchter, 

2006; Charabi 

and Bakhit, 

2011) 

 

-Cold high-altitude 

climates in Tibet and 

the Andes (H)  

-High latitude cold 

snowy winter 

climates in Canada 

and Siberia (D) 

-High latitude cold 

polar climates in 

Antarctica, Greenland 

and Northern Canada 

and Asia (E) 

Fairbanks, 

Barrow 

(Alaska) 

Salekhard, 

Vorkuta, 

Nadym, Novy 

Urengoy 

(Russia) 

Seoul (Korea) 

Strongest 

CUHI at 

night in 

Fairbanks, 

Seoul  

Some cities 

in Russia 

have no clear 

diurnal cycle 

in winter 

Strongest 

during autumn 

and winter 

(Magee et al., 

1999; Kim and 

Baik, 2002; 

Hinkel et al., 

2003; Lee and 

Baik, 2010; 

Konstantinov 

et al., 2018) 
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-Temperate Oceanic 

Climates (Cfb) 

Melbourne 

(Australia) 

Birmingham, 

London (UK) 

Bilbao 

(Spain) 

Strongest 

CUHI at 

night 

Weakest 

CUHI is in 

winter, 

strongest 

varies per 

city, autumn, 

summer and 

spring  

(Unwin, 1980; 

Morris and 

Simmonds, 

2001; 

Kolokotroni 

and 

Giridharan, 

2008; Acero et 

al., 2013) 

-Mediterranean 

climates with dry 

summers and mild 

wet winters (Csb) 

Barcelona, 

Madrid 

(Spain) 

Lisbon 

(Portugal) 

Adelaide 

(Australia) 

 

Strongest 

CUHI at 

night 

Strongest 

during 

summer for 

Madrid and 

Adelaide, 

winter and 

autumn for 

Barcelona and 

Lisbon 

(Yague et al., 

1991; Moreno-

Garcia, 1994; 

Alcoforado 

and Andrade, 

2006; Erell 

and 

Williamson, 

2007; Martin-

Vide and 

Moreno-

Garcia, 2020) 

-Monsoon influenced 

humid climates (Cwa) 

Delhi, 

Guwahati 

(India) 

Mexico City 

(Mexico) 

Strongest 

VUHI at 

night 

Strongest in 

summer for 

Guwahati, but 

found 

constant in 

Mexico City 

(Cui and de 

Foy, 2012; 

Mohan et al., 

2012; Borbora 

and Das, 2014) 

 

Background climate is a strong influencer on the seasonal patterns of the SUHI. In a global 

study, Chakraborty (2019) found arid regions to have distinct seasonal and diurnal patterns, 

with higher nocturnal SUHI intensities and seasonal two peaks in the year. Fu and Weng 

(2018) found the largest differences in seasonal temperature cycles in US cities were in 

tropical regions. As with CUHI studies, there are no clear rules to quantify the effect of 

background climate on a SUHI. The use of remote sensing is further complicated for tropical 
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cities, where cloud coverage problems can lead to SUHI data only being available for the dry 

season (Tran et al., 2006).  

To combat the loss of information by putting cities into climate groups, individual climate-

related measures can be studied with relation to the UHI. As this requires a larger number of 

cities to sample a spread of different climates, these studies tend to look at the SUHI so they 

can utilise the global availability of satellite sensed LST data. The relationships with 

precipitation and relative humidity are discussed in the following for the SUHI mostly.  

In the US, the annual mean midday SUHI intensity is found to be strongly positively correlated 

to precipitation (although night-time intensity was not), with cities in humid climates having 

higher intensities than those in dry regions (Zhao et al., 2014; Gu and Li, 2018; Li et al., 2019). 

This positive relationship between precipitation and SUHI intensity is also found in global 

studies, with saturation at high precipitation values (Manoli et al., 2019) . Typically this is 

thought to be caused by a reduction in evaporative cooling in cities compared to rural areas 

(rural areas contain more vegetation and water is stored in soils) (Li et al., 2019), although 

Zhao (2014) finds the main driver is convection. In humid climates rural land is densely 

vegetated and aerodynamically rough, which enhances convection by increasing the surface 

area available for this purpose, therefore dissipating more heat. In dry climates the urban land 

is rougher than rural, and the convection efficiency of the urban area is higher than the rural. 

This again illustrates the need to carefully consider comparisons of the SUHI and CUHI, as 

this mechanism will not have the same cooling effect on air temperatures.  

A number of studies find a negative correlation between relative humidity and the CUHI (Kim 

and Baik, 2002, 2004; Santamouris, 2015; Hu et al., 2019; Lai et al., 2021) and SUHI (Hu et 

al., 2019; Lai et al., 2021), although it appears counterintuitive as lower relative humidity 

means there is drier soils and therefore less rural evaporation. There are numerous theories for 

why this relationship exists. High relative humidity occurs when there is higher cloud cover, 

and therefore less solar radiation reaching the city and rural areas to create strong differences 

in evaporative cooling rates. Due to its higher thermal admittance, mentioned earlier in this 

section, saturated wet soil absorbs more solar radiation and therefore stays warmer for longer. 

This means the wetter rural soils retain heat (Hu et al., 2019). Roth (2007) and Kim and Baik 

(2002), who find the relationship in the CUHI, attribute the negative relationship to high water 

vapour content in the air, meaning there is less of a deficit for the evaporative cooling to take 

place. Lai et al (2021) (who study the SUHI) adds further to this that the high atmospheric 

water vapor also reduces the radiation load at the surface, meaning less solar radiation is going 

into heating the urban and rural surfaces.  
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A final important characteristic related to climate is the vegetation, as vegetation type, 

abundance and seasonal cycle is strongly linked to climate (Richardson et al., 2013). Globally, 

the less vegetated cities have stronger SUHI intensities (Clinton and Gong, 2013), with the 

strongest SUHIs occurring when rural areas have large amounts of vegetation in comparison 

to urban, and negative SUHIs when urban areas contain more vegetation than their rural 

counterparts (Peng et al., 2012). The CUHI/SUHI interacts with the vegetation itself, 

influencing the growing season of vegetation. In North America and in Northern Hemisphere 

cities (≥30° N) the CUHI was found to extend the growing season length (Zhang et al., 2004; 

Wang et al., 2019) and in a tropical city in Uganda, the growing season was shortened (Kabano 

et al., 2021).  

Understanding how climate can influence the CUHI is central to finding successful mitigation 

measures in city planning. Measures such as increasing green cover and albedo will be most 

effective in dry regions, whereas the cooling of tropical cities will not respond in the same 

way, and require different solutions to their counterparts in temperate regions (Manoli et al., 

2019). 

2.5 VARIATIONS OF THE UHI IN TIME AND SPACE 

2.5.1 Diurnal cycle 

There is a need to understand the diurnal cycle of the UHI to contextualise the measurements 

taken at particular times (in the case of using satellite measures to determine the SUHI, these 

will be the overpass times). Are these measurements taken when the UHI is at its greatest 

magnitude, its smallest, or mid-range? In this section, the diurnal cycle of the CUHI will first 

be described, then the SUHI. As outlined in 2.3.1, studies making direct comparisons between 

the two have shown the peaks to occur at different times.  

The CUHI intensity is in most cases greater at night then it is in the day, as shown in Table 

2.4. This is well documented and found across many different climates, from temperate 

regions to semiarid areas (Sundborg, 1950; Vukovich, 1971; Roth and Oke, 1989; Oke et al., 

1992; Kim and Baik, 2002; Chow and Roth, 2006; B. Zhou et al., 2019; Salamanca and 

Mahalov, 2019), although in some cases there is no change from day to night (Konstantinov 

et al., 2018, Polar climate) or daytime CUHI intensity is greater (Sofer and Potchter, 2006, 

Arid coastal climate).  

The peak in intensity seen at night is due to the difference in cooling rates between urban and 

rural areas. It can be explained by the reasons given for the formation of the CUHI given in 

section 2.2 (surface geometry, thermal properties of the urban fabric, anthropogenic heat and 
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air pollution). Geometry of the buildings leads to less thermal radiation escaping to the sky 

(urban surfaces are more closed off from the free atmosphere and sky), thermal properties of 

urban areas versus rural leads to more retention of heat in the urban environments, and finally 

anthropogenic heat from buildings act as internal heat sources (Johnson et al., 1991). Figure 

2.7 shows idealised features of a CUHI from Oke (1982). A rural area cools at a faster rate 

than its urban counterpart as solar radiation decreases in the evening, then heats at a faster rate 

as solar radiation increases again in the morning hours after sunrise. This pattern has been 

shown to exist for Vancouver, a temperate mid-latitude city and for Ouagadougou, Burkina 

Faso, an arid tropical city. Therefore, it can be theorised that the basic physics of the urban 

boundary layer remain the same for all urban areas, and the differences in boundary conditions 

such as surface cover, ground conditions and weather are drivers of any variations (Oke et al., 

2017). Oke (1999) speculates that urban areas around the world are actually climatically more 

similar to each other than to their rural surroundings, which include forests, fields, swamps, 

deserts, snow and more.  

 

Figure 2.7 An idealised form of temporal features of the urban heat island. Showing air temperature, cooling and 

heat island intensity (Oke, 1982).  
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Due to weekday and weekend differences in anthropogenic energy use, weekly diurnal cycles 

also exist. Figure 2.8 taken from Sailor (2011) shows a typical diurnal cycle of anthropogenic 

heat on weekends and weekdays. Energy use on weekend and holidays are typically lower 

than those on workdays (Sailor, 2011). In Buenos Aires, where 60% urban movement was 

attributed to work (as a comparison in San Francisco, work was only 24%), Figuerola and 

Mazzeo (1998) found the maximum CUHI intensity fell 1°C on weekends in comparison to 

weekdays.   

 

Figure 2.8 Typical shapes of diurnal profiles of anthropogenic heating for a) workdays and b) non-workdays 

(Sailor, 2011).  

This diurnal cycle of anthropogenic emissions is rarely included in urban parameterisation 

schemes (appendix section A.1), as it is often considered to be small and difficult to estimate. 

In the case of London, anthropogenic heat output is believed likely to increase in the future, 

and evidence suggests that more accurate estimates should be considered in future research 

(Bohnenstengel et al., 2014).  

Satellite data has low temporal resolution, as there are limited overpasses over a region a day, 

and detailed diurnal cycles of the SUHI cannot be studied. The main comparison is made of 

nocturnal SUHIs versus daytime SUHIs. Generally, day-time SUHI is found to be higher than 

night-time (Schwarz et al., 2011; Peng et al., 2012, 2018), although the opposite is found for 

arid areas (Wu et al., 2019). Ma et al (2021) finds the controlling factors of the night-time 

SUHI for cities in China to be due to variables relating to the urban from such as city area, as 

opposed to the daytime SUHI which is more connected to natural factors such as climate. Peng 

et al (2012) attributes albedo difference and night-time lights (a proxy for anthropogenic 

activity) to the formation of the SUHI at night, and differences vegetation activity to be an 

indicator for daytime SUHIs. Night-time SUHI shows less seasonal variations, which follows 

these observations, as natural factors such as climate and vegetation follow seasonal cycles 

but city-form related properties, such as size or building height, do not (Wu et al., 2019).  
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2.5.2 Spatial variability within a city 

The measurements used to quantify the SUHI (section 2.3.1) result in the phenomena being 

reduced to a single number, defining a difference between urban and rural temperature. 

However, in Figure 1.2, isotherms representing the CUHI of London are seen, showing the 

extent to which the CUHI impacts will be felt by a city inhabitant is conditional on where 

exactly in the city they are.  The figure shows the characteristic spatial feature of the CUHI, 

represented by a ‘thermal island’; a sharp incline at the urban perimeter, a rough plateau where 

most of the urban area is and a peak in the core of the city (Oke, 1981; Tiangco et al., 2008). 

The internal pattern of a CUHI is controlled by the land use and building densities within (Karl 

et al., 1988). Hot spots are in the urban core, industrial areas (Kumar et al., 2023) and densely 

populated areas of the city (Cao et al., 2021), whilst cool areas are found in the city parks and 

green spaces (Jonsson, 2004; Azevedo et al., 2016). Based on current studies, an urban green 

space is on average 1°C cooler in air temperature than its non-green equivalent (Bowler et al., 

2010) during the day, and small wooded areas in cities had a cooling effect that was still 

apparent 100m away (Shashua-Bar and Hoffman, 2000). The cooling effect of city parks also 

exists at night, and can extend to over 1100m from a park border (Upmanis et al., 1998),  

The majority of studies examining spatial pattern utilise satellite sensed LST data to examine 

the SUHI, as air temperature measurements in uniform spatial distances are uncommon (just 

four cities have temperature sensor networks in review Table A.1.1). There is agreement with 

CUHI behaviour, with the warmest areas of cities found to be the highly built up industrial 

and commercial areas, and the coolest parks and vegetated areas, across a range of climates 

(Roth and Oke, 1989; Tran et al., 2006; Tiangco et al., 2008; Xiong et al., 2012; Mallick et 

al., 2013; Bokaie et al., 2016; Geletič et al., 2019; Equere et al., 2020). Negative correlations 

have been found between vegetation abundance and surface temperature in urban areas (Tran 

et al., 2006; Tiangco et al., 2008; Li et al., 2011; Bokaie et al., 2016) and cities with less 

vegetation are found to have a large SUHI (Clinton and Gong, 2013). For dry, arid climates, 

where the SUHI/UHI is replaced by a UCI (section 2.4), there is a negative relationship 

between building density and surface temperature. Densely built up city centres and green 

spaces exhibit lower surface temperatures than the surrounding area, attributed to the increased 

availability of moisture for the SUHI (Rasul et al., 2015; B. Zhou et al., 2019).  

The height of buildings are important factors in determining the spatial characteristics of the 

CUHI and SUHI. Areas of high-rise buildings can be found cooler than areas of low rise 

buildings in terms of LST (in San Francisco, Singapore, Shanghai) (Nichol, 1996; Li et al., 

2011; Equere et al., 2020) and air temperature (in Portland) (Hart and Sailor, 2009) due to 

shading, a greater portion of horizontal surface for heating and a reduced sky view factor. Sky 

view factor is a measure of the radiation output from a point that is intercepted by the sky, 
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determining the fraction of a hemisphere over a point that is occupied by the sky (Oke, 1981). 

It should be noted that low sky view factors are also reasons for the nocturnal UHI, as 

mentioned in section 2.2, see Figure 2.3.  

2.5.3 Long term trends  

As explained in section 1, future pressures of climate change and increasing urban populations 

make this aspect of UHI research a vital issue. This section outlines how climate change and 

urban expansion have been shown to interact with the CUHI/SUHI in the past, and what the 

expected impact may be in the future.   

More longstanding cities tend to show little change in the CUHI. The impact of urbanisation 

on the CUHIs of London and Vienna remain constant throughout the twentieth century, 

indicating the urban warming happened earlier than records began (Jones et al., 2008; Jones 

and Lister, 2009; Bassett et al., 2021). The relative strength of New York’s CUHI only grew 

by approximately 0.5°C since 1900. It is noted that with areas of New York becoming more 

built up vertically, the expectation would be that this growth should be greater (Gaffin et al., 

2008).  

However, in other cases there is a clear link between CUHI intensity and increasing 

urbanisation. Manchester CUHI increased in intensity from 2000 to 2009, as the urban site 

became more urban throughout the study period and lost green spaces (Levermore et al., 

2018). Beijing and Wuhan, Chinese cities which have experienced rapid urbanisation in the 

past 50 years, are found to have increased in temperature at a faster rate than rural reference 

stations (Ren et al., 2007), as have Asian megacities between 1992-2012 (Lee et al., 2020). A 

study of Fairbanks, Alaska, studies 49 years of temperature records, during which the 

population increases by 500%, and finds the highest increases in the UHI happened while the 

largest increase in population occurred (Magee et al., 1999). The cases of London, Vienna and 

New York suggest saturation of the CUHI exists.  

Remote sensing studies have found that SUHI intensity increases with size of the urban area, 

but the rate of increase tapers off amongst the larger cities. However conclusions are difficult 

to make, as there are many small cities but only a few large (Zhou et al., 2013, 2017). Based 

on this, smaller cities are likely more at risk of large increases in UHI magnitudes with urban 

expansion, and representation of these in CUHI/SUHI future projections is of high importance 

(and in the objectives of this thesis). SUHI increases in recent years are also driven by climate 

change. Globally, trends from 2002 to 2021 show that surface warming in urban areas has 

been increasing at a faster rate than the rural counterparts, with the majority of this increase 

attributed to background climate change in all areas aside from India and China, where the 

majority of the increasing trend is due to urban expansion (Liu et al., 2022).     
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Studies examining the impact of future climate change on the CUHI currently are limited to 

studies using models such as RCMs or UrbClim (section 2.3.2). In such studies examining the 

future CUHI, the impact of urban growth often is not considered, however a few studies 

account for this alongside the climate change scenarios. An assessment of 11 such studies 

(outlined in appendix Table A.1.4 ) finds three have included landcover changes due to urban 

expansion in the future scenario. These studies find that the landcover changes have more of 

an impact on the CUHI than those related to climate change. Argüeso (2014) finds the impact 

of urbanisation in Sydney, Australia will have a strong effect on minimum temperature (but 

little on the maximum) in an assessment of the 2040-2059 under a high emission scenario 

(SRES A2, Nakicenovic et al., 2000). Tewari et al (2017) models the UHI of Phoenix and 

Tuscan, US in 2070 under the high emissions RCP8.5 scenario (Stocker et al., 2013). The 

increased temperatures due to climate change are homogenous throughout the cities, but the 

temperature increase attributed to urban expansion is unevenly distributed, with higher 

increases in newly urbanised regions. Silva et al (2022) also uses the RCP8.5 scenario, in this 

case to examine the CUHI in Lisbon, and finds the largest increases in intensity in the period 

2081 – 2100 are during the night, due to an increase in urban landcover combined with a 

decrease in greenspace.  

Studies modelling the impact of the CUHI under climate change scenarios with no urban 

expansion find a range of different outcomes. In some studies the magnitude to be unaffected 

by the increase in global temperatures (e.g. McCarthy et al., 2011; Lauwaet et al., 2016; 

Keppas et al., 2021), in others the CUHI will decrease in intensity (e.g. Oleson et al., 2011; 

Hamdi et al., 2014) and a couple find increases in summer-time intensity (van der Schriek et 

al., 2020; Andrade et al., 2023). As the CUHI is a relative measure, these decreases in its 

intensity can reflect more changes in the rural areas due to climate change. For example, 

Hamdi (2014) find the decrease in intensity is chiefly due to drier soils in the future. Studies 

additionally often examine the frequency of future heatwave events, and in Athens (Greece) 

and Brussels (Belgium), the formation of the CUHI results in an increased number of heatwave 

events in the city areas in comparison to rural, based on the definition of a heatwave as being 

days and nights where temperatures remain above a certain threshold (Hamdi et al., 2014; van 

der Schriek et al., 2020).  

The balance between higher resolution and capturing a larger area described in section 2.3.2 

can be seen in these examined studies (appendix Table A.1.4 ). For example, only two (of 11) 

studies examine more than two cities. In these studies, the resolution is coarse in comparison 

to those focusing on a single city. Oleson et al (2011) examines global cities with a resolution 

of 1.9 ° latitude x 2.5° longitude and McCarthy et al (2011) investigates the CUHI of UK cities 

with a 25 km resolution RCM. Whilst these resolutions are able to capture the CUHI of large 
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cities, they are much larger than the scale of a medium sized city. The current range of studies 

regarding the impact of future climate change give information on two types of cities, the first 

being large cities, and the second the select few cities for which RCM or UrbClim studies 

have been carried out. Also of note is that currently the majority of studies use emissions only 

based scenarios, with the most common the RCP8.5 (Stocker et al., 2013), used by 7 of the 

studies. This does not take into account rural land use changes (which the most recent 

emissions pathways, the SSPs, do include, see section 2.8.1). The UHI is a product of both 

urban and rural areas, as increasing or reducing the vegetation in the surrounding area of a city 

will impact the CUHI (and SUHI), and potentially results may change with a different future 

scenario choice.   

2.6 UNDERSTUDIED CITIES AND GEOGRAPHICAL REGIONS  

In section 2.4.2, it was highlighted that the UHI is a product of both city form and climate. 

Therefore, it follows that to gain a full understanding of the UHI in both present and future 

climates, a range of city forms and geographical regions must be studied. However, in both 

these areas within the current literature, there exists research gaps, with a bias towards 

megacities or large cities and the global North. 

Medium sized cities  

The UHI is present in cities of all sizes, in fact, evidence of urban warming is not only limited 

to cities. Villages with just 1000 inhabitants are seen to exhibit a difference in temperature 

from the rural area (Oke, 1973; Lindén et al., 2015) and urban effects on temperature are 

detectable for small towns with populations of around 10,000 (Karl et al., 1988). Yet despite 

this, much of the current research focus of the UHI is on megacities, which represents just 

12% of the urban population. Systematic reviews of urban climate studies highlight small and 

medium sized cities (population under 1 million) as key areas of focus (D. Zhou et al., 2019; 

Lamb et al., 2019).  

Most future urban growth will take place in small cities, yet modelling of the UHI under the 

effects of climate change is limited to large, well-studied cities. Section 2.5.3 outlined how 

saturation in the UHI may occur for very large cities, which may lead to different behaviour 

of these cities under climate change. If climate change impacts are only studied in these large 

cities, the global impacts of climate change on the CUHI/SUHI may be underestimated. 

Basing policy in medium sized cities on studies of megacities could lead to ineffective UHI 

mitigation or adaption solutions being put in place.  

The current tools to examine the impact of climate change on medium sized cities lack 

suitability. GCM studies of CUHI magnitudes based on future climate change have coarse 
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resolutions, due to the required trade-off between investigating a wider area versus more detail 

in a smaller area (Section 2.5.3). Whilst it is possible a grid cell may capture the resolution of 

a megacity, it cannot capture the scale of a medium sized city. RCMs do not provide a solution 

as smaller cities are more numerous than large cities or megacities. This means it is not 

possible to examine each one individually as a case study (as is the focus of RCMs due to 

computational expense, section 2.3.2), as can be done for megacities. An alternative 

methodology to assess the impacts of climate change on medium sized cities must therefore 

be developed.  

Global South cities 

In reviews of CUHI /SUHI studies, the lack of studies focusing on the global south is 

consistently highlighted (Wienert and Kuttler, 2005; Chapman et al., 2017; Bai, 2018). 

Wienert and Kuttler (2005) find just 26 out of 150 cities examined were in the Southern 

Hemisphere. In a review of satellite based SUHI studies, out of a total 492 selected, under 37 

included research in Africa, South and Central America and Oceania, and of these, most were 

as a global scale study rather than focusing on cities predominately in these areas (D. Zhou et 

al., 2019). Rasul (2017) also highlights the need for the utilisation of remote sensing data to 

assess SUHI and SUCI of dry and semi dry environments on a large scale. An investigation 

into studies which assess large numbers of SUHIs, shown in appendix Table A.1.5 , shows a 

China and Europe in particular are favoured, alongside global studies with no particular 

regional focus. Of these 23 studies, seven investigate cities within China, six are global, five 

European, three look at cities within USA, one study looks at megacities in Asia and one study 

focuses on cities within South America.  

Areas in the southern hemisphere are likely to be highly impacted by both the hazards of 

increased temperatures due to climate change and high levels of urbanisation. GCM 

projections show regions with potential for high CUHI intensities, such as Middle East, Indian 

sub-continent and East Africa are all also regions of high population growth (McCarthy et al., 

2010). In a global study, Manoli et al (2019) finds background climate is a strong contributor 

to the SUHI, and ‘one sizes fits all’ solutions will be inefficient in mitigating the SUHI, 

commenting tropical cities in Africa and South Asia will require different measures outside of 

increasing green space and albedo modification measures (e.g., white roofs). These are also 

areas of rapid urban expansion; more than two-thirds of the global urban expansion by 2050 

is expected to occur in Asia and Africa (Huang et al., 2019).  
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Medium sized cities in the global south 

The two knowledge gaps of medium sized cities and the southern hemisphere have been 

highlighted. To give a complete and diverse picture of the UHI, these should be the focus of 

future studies.   

The importance of addressing these knowledge gaps, together with climate change impacts, is 

highlighted in the IPCC 5th assessment report; “Urban centres in Africa, Asia, and Latin 

America with fewer than a million inhabitants are where most population growth is expected 

(UN DESA Population Division, 2012), but these smaller centres are “often institutionally 

weak and unable to promote effective mitigation and adaptation actions” (Romero-Lankao 

and Dodman, 2011)” (Revi et al., 2014).  

These research problems are to be addressed in this thesis by first of all, selecting cities to 

study with a focus on including those in the global south. Secondly, setting a population 

criterion of less than one million. And finally, use of a machine learning model which can take 

GCM projections and transform them into future SUHI projections for the chosen cities, 

bypassing the high computational expense of generating these using RCMs.    

2.7 SATELLITE REMOTE SENSING PRINCIPLES 

The land surface temperature and land cover data used in this analysis are taken from satellite 

sensor measurements. The following section gives a brief overview of how satellite remote 

sensing is used to generate land surface temperatures and land cover information.  

Electromagnetic Radiation 

The foundation of remote sensing is electromagnetic radiation. Satellite sensors detect and 

measure this electromagnetic energy above the Earth and the data is processed to derive 

information about the surface below. There are three types of interaction which are of 

importance for remote sensing. The first of these is transmission, where the radiation passes 

straight though. The second is absorption, where radiation is absorbed by the atmosphere. 

Finally scattering, where radiation is redirected in different directions by particles suspended 

in the atmosphere, or large molecules of atmospheric gases. Figure 2.9 shows the interactions 

of these processes with the atmosphere and satellite sensor (Tempfli et al., 2009; Campbell 

and Randolph, 2011).  
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Figure 2.9 Energy interactions in the atmosphere, taken from Tempfli et al (2009).  

Atmospheric Transmission Windows 

Absorption and transmission are important processes to consider in satellite remote sensing, 

as radiation absorbed by the atmosphere will not reach the satellite sensors. Most solar 

radiation is absorbed by molecular oxygen, ozone, water vapour, or carbon dioxide. These 

gases absorb radiation at different bands, shown in Figure 2.10, resulting in ranges of 

wavelength able to pass through without absorption by the atmosphere, demonstrated in the 

figure by the white areas (Alavipanah et al., 2010; Campbell and Randolph, 2011). These 

ranges are called the atmospheric transmission windows. Transmission windows determine 

the wavelengths that can be used for remote sensing of surface properties, where use of 

wavelengths outside of the atmospheric transmission windows will lead to an inaccurate image 

of the surface below.    

 

Figure 2.10 Atmospheric windows, figure from Alavipanah et al (2010).  

The atmospheric windows used in satellite remote sensing are the 0.4 µm to 2 µm band, 

comprising mainly of reflected energy, and three windows in the thermal infrared range (two 
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in the 3 µm to 5 µm band and one from 8 µm to 14 µm) (Tempfli et al., 2009). Infrared sensors 

typically operate around 3.5 µm to 11 µm (Dash et al., 2002). 

Measuring Temperature 

Following on from these concepts, by choosing the correct band, the energy emitted by the 

Earth’s surface can be measured using satellite sensors. The wavelength and energy emitted 

by an object is relative to its temperature, with higher temperatures leading to shorter 

wavelengths and more energy. Objects on Earth emit in the infra-red spectrum, so this 

wavelength range is used to determine their temperature.  

Emitted energy flux (W m-3) of a surface is measured by the satellite infrared sensor and using 

equations surrounding the wavelength and energy flux, the temperature of a ‘blackbody’ (an 

object which only absorbs and emits radiation, with none reflected) emitting the same energy 

fluxes is calculated (Campbell and Randolph, 2011). Most objects reflect radiation, and 

therefore only absorb and emit a certain fraction of radiation in comparison to a blackbody. 

This fraction is known as emissivity. Emissivity varies from surface to surface, and this aspect 

of measuring temperature can be calculated in different ways. The surface temperature dataset 

used in this thesis is generated (by the NASA science team) using a split window approach. 

This approach uses a classification scheme based on land cover type, by consulting a look up 

table containing emissivity for various classifications of surface types calculated using 

experimental data (Snyder et al., 1998). Consequently, by measuring the energy flux at 

wavelengths in the infrared spectrum emitted by surfaces on Earth, it is possible to calculate 

temperature, given the emissivity for the surface type is known.  

Measuring Surface Characteristics 

Surface characteristics of the Earth can be measured by focusing on the visible and infrared 

energy reflected. The ratios of absorbed, reflected and transmitted energy are dependent on 

the wavelength and surface material. For materials of interest, the proportion of incident 

radiation reflected at different wavelengths can be measured experimentally using a field 

spectrometer, and a reflectance curve generated. Figure 2.11 shows an example of a 

reflectance curve for vegetation. A library of these reflective curves is then used to gather 

information on the surface materials, based on the satellite sensor measurements of the 

radiative energy reflected at each wavelength (Tempfli et al., 2009).  



Literature Review 

 

44 
 

 

Figure 2.11 Idealised reflective curve for healthy vegetation, from Tempfli (2009).  

2.8 CLIMATE PROJECTIONS AND THE COUPLED MODEL 

INTERCOMPARISON PROJECT 

Climate models are representations of the climate system based on equations of physical 

processes, parameterisations and observations (Goosse et al., 2010). Parameterisations are 

used where the model processes cannot be resolved explicitly, due to for example the scale 

being less than the model resolution (e.g., cloud formation) and/or limited understanding of 

the exact equations determining the process (e.g., many biological processes). Different 

models have different parameterisation schemes and differing levels of complexity. For 

example, the atmospheric boundary layer, the area of the atmosphere which interacts with the 

surface of the Earth, which includes the urban boundary layer (section 2.2), must have some 

representation in terms of the behaviour of heat flux and wind stress in a model. This 

representation can be limited by computational power and the observations available to 

develop parameterisations. Climate projections are generated by models to understand the 

impact of differing levels of future external forcing to the climate systems (Katzav et al., 

2012). With models showing skill in different areas, the Coupled Model Intercomparison 

Project (CMIP) coordinates global model simulations, setting standardised outputs for 

analysis and experimental protocols, most recently in phase 6 of the project (CMIP6; Eyring 

et al., 2016). The availability of the CMIP framework makes a direct intercomparison of a 

large range of model results possible (Lee et al., 2021).  

There is no standalone metric which can describe all aspects of model performance, even if 

the model used is to be highly specific, which makes selection of a single best performing 

model ultimately impossible (Eyring et al., 2019). Outputs examined collectively give more 

of an understanding of how much uncertainty there may be in the projections and give an 

assessment of their robustness and reproducibility (Lee et al., 2021). While the investigation 

of multiple model results for future projections is good practice, this is not without downsides, 
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because some models have the same components or parameterisations, so there will be a 

tendency for overall ensemble outputs are weighted towards these models (Sanderson et al., 

2015; Nowack et al., 2020).  

2.8.1 Shared Socioeconomic Pathways (SSPs) 

CMIP6 consists of a number of experiments, upon which the model outputs are compared. 

These are known as Model Intercomparison Projects (MIPs). One of such MIPs is 

ScenarioMIP. Future climate projections are shaped by anthropogenic external forcings such 

as greenhouse gases (including chemically trace reactive gases), land use changes and 

aerosols. These forcings will be decided by future socioeconomic developments, and therefore 

a range of possible pathways are set out by ScenarioMIP, known as Shared Socioeconomic 

Pathways (SSPs) (O’Neill et al., 2016). The SSPs are widely used in climate projections, for 

example in the IPCC chapter on future global climate (Lee et al., 2021). There are five SSP 

narratives, which describe “future changes in demographics, human development, economy 

and lifestyle, policies and institutions, technology, and environment and natural resources” 

(O’Neill et al., 2017).  

These SSPs present varying levels of challenge for mitigation and adaption to climate change. 

Figure 2.12, taken from O’Neill et al. (2017) shows the extent to which each faces both.   

 

Figure 2.12 SSPs and representations of the challenges they present for mitigation and adaption of climate change. 

Figure has been taken from (O’Neill et al., 2017).  

In CMIP5, climate projections were based on Representative Concentration Pathways (RCPs), 

four pathways of radiative forcing (in W m-2) based on emission, concentration and land use 
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trajectories ending in the year 2100 (van Vuuren et al., 2011). For continuity with its 

predecessor, CMIP6 integrates RCP and SSP scenarios, combining the forcing pathway (the 

RCP) with the socioeconomic conditions of the SSP, so long as the two are consistent with 

each other. For example, a low emissions SSP could not be combined with a high emissions 

RCP (O’Neill et al., 2016). 

ScenarioMIP at the most basic level consists of four scenarios that are performed by all 

participating modelling groups, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 (Lee et al., 

2021).   

2.8.2 Vegetation projections 

Vegetation can be expected to undergo changes in the future due to the impacts of climate 

change, carbon dioxide (CO2) concentration and human influences. These are challenging to 

predict due to large numbers of interacting environmental variables (e.g., water availability, 

soil nutrients, surface energy) and land use change (e.g., irrigation, fertilisation, deforestation/ 

afforestation) (W. Yang et al., 2022).  

There are two main approaches to understand changes in vegetation. The first of these is to 

consult Earth System Models (ESMs), climate models which additionally encompass the 

movement of carbon through the earth as well as atmospheric and oceanic components. 

Vegetation-climate feedbacks are complex, with vegetation changes influencing aspects such 

as surface albedo and roughness, and fluxes of water, carbon dioxide and energy (Richardson 

et al., 2013). As with representations of the urban surface (section 2.3.2), these complex and 

small-scale processes cannot be fully represented in models, so parameterisations must be 

used. One such parameterisation is a variable known as Leaf Area Index (LAI), used to 

represent the abundance of vegetation in an area. ESMs then use this to scale leaf level carbon 

and water fluxes to a regional or global scale. It is a dimensionless quantity, denoting the ratio 

of leaf area to ground area. For example, if an area had an LAI of 3, this means the area of 

leaves in that area placed flat on the ground would cover its area 3 times. This quantity is used 

in ESMs to describe changes in the vegetation canopy, so the impact can be translated into 

changes in the atmospheric component (Park and Jeong, 2021). Studies examining ESM 

projections under SSP scenarios show global LAI is expected to increase with changes in 

climate (Zhao et al., 2020), but with a regionally diverse picture of increases and decreases 

(Chen et al., 2022).   

Future LAI projections can be uncertain. CMIP5 (predecessor to CMIP6) model agreement 

on LAI projections is weak, some models predict little change whereas others a significant 

amount (but generally an increase in the global mean). In the tropics, the models found to 

show the most skill when assessed with LAI observations tended to be those projecting smaller 
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changes (Mahowald et al., 2016). This was confirmed to be the case for CMIP6 models in a 

study of vegetation in deciduous forests in the northern extratropics, where a positive bias was 

found in comparison to observations (Park and Jeong, 2021). Therefore, some model 

disagreement can be expected in the projections for vegetation changes, but this does not mean 

they cannot be useful to give potential future ranges of what the future vegetation changes 

may be. Additionally, the expectation is likely that vegetation changes could be on the lower 

end of the CMIP6 projections, due to the observed positive bias.  

Satellite measurements of vegetation, known as vegetation indexes (section 3.2), measure the 

abundance and health of vegetation, and one such vegetation index is known as the Enhanced 

Vegetation Index (EVI). EVI and LAI are closely linked. In fact, one methodology of 

calculating LAI is to use satellite sensed vegetation indices and in situ LAI measurements and 

their empirical relationships (Fang et al., 2019). Studies have examined the relationship 

between EVI and LAI and have found strong linear relationships from in situ measurements 

in a forest environment (Potithep et al., 2010) and MODIS satellite measurements (the sensor 

used in this thesis) regardless of vegetation type or geographical area (Alexandridis et al., 

2020). Based on this, the percentage increase in LAI from ESMs can be used to give an idea 

of whether EVI will increase with future warming.  

The second approach to project future changes in vegetation is to use climate variable outputs 

from GCMs, which are proven more reliable. Statistical models are built using observations 

of climate and vegetation variables, then projections made from model output climate 

variables (Ouyang et al., 2020; Yuan et al., 2021; Chen et al., 2022). In this thesis, this 

approach to this is also taken, but to make SUHI projections rather than vegetation projections 

(sections 4 and 5). 
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3 DATA AND MODELS 

The objective of this research is to select a dataset of cities meeting the requirements of 

medium size and including understudied regions and generate projections of the future SUHI 

based on observations. This is a novel approach for generating climate scenario-based 

projections of the SUHI, as the present literature methodologies focus on using RCMs or 

UrbClim to assess the future UHI (section 2.3.2).  

Figure 3.1 gives an overview of the workflow involved with this thesis, with the section in 

which the component is described in labelled. The initial aspect of the workflow is 

identification of data suitable to meet the objectives of this research, and the chosen datasets 

are described in this section.  

 

Figure 3.1 Workflow Diagram of the steps taken to create the machine learning model, assess its performance and 

use it examine the SUHI’s for the current period (2002-2020). Yellow diamonds represent the data used and the 

grey rectangle with sharp corners the machine learning model, which are described in section 3. The grey squares 

with rounded corners are the processed data which is input into the models, and this is described in section 4. 

Descriptions of the machine learning model is in section 3.5 and the model build and evaluation in section 4. The 

assessment of the future SUHI, with use of CMIP6 data is carried out in section 5.  
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The first step of creating the dataset is to select cities to be included. This is done by starting 

from a wide pool of global cities and narrowing it down based on certain city selection criteria. 

As many datasets are used for this purpose, these are not shown on the workflow (Figure 3.1), 

but are fully described in section 3.1.  

After the chosen cities are finalised, the next stage is to collect the city data which will be used 

to build the machine learning (ML) model. The target variable of the model is the SUHI 

magnitude, and the data used to generate this is outlined in section 3.2. The data used to 

generate predictor variables for the ML model are then outlined within the next sections, 

consisting of vegetation data, albedo data and landcover data information from satellite 

datasets (section 3.2) and climate variables from reanalysis data (section 3.3). Figure 3.1 

shows how these datasets, represented as yellow diamonds, are used in the model building 

processes.  

A final data source consulted was CMIP6 climate and vegetation projections (section 3.4), 

which provided, along with the current observations, the inputs predictor variables 

representing potential climate futures, to examine the potential impact of climate change on 

the SUHI. These are also shown as a yellow diamond on the workflow diagram (Figure 3.1).  

The last aspect of this chapter, section 3.5 describes the ML model used.  

Summary tables of the datasets (which this section goes on to describe in detail) used can be 

found in the appendix. The city selection data is in Table A.2.6, the SUHI quantification in 

Table A.2.7 and predictor variables in Table A.2.8.  

3.1 CITY SELECTION DATA 

The following datasets outlined in this section were used to select the cities used in the 

development of this model. The goal of the city selection stage is to define a set of comparable 

cities based on certain known characteristics (details in section 4.1). The required city 

characteristics are identified as; 

• In understudied regions (below 40 ° latitude) 

• Similar population (between 300, 000 and 1 million) 

• Not coastal (due to sea breezes effects) 

• Not near any very large water bodies (due to lake breeze effects) 

• In a non-mountainous/hilly area (due to elevation/mountain breeze effects) 

The datasets described below are used to quantify these chosen characteristics, to allow for 

the selection of the most suitable cities.  
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Urban Population  

The population dataset is taken from the United Nations World Urbanisation Prospects 2018 

report (United Nations, Department of Economic and Social Affairs, Population Division, 

2018). This dataset contains estimates of current and projected populations produced from 

national information sources, most commonly censuses or population registers. Unless the 

urban definitions used by a particular country had changed over time, resulting in 

inconsistencies, the statistics reported in the dataset were not adjusted by the authors. The term 

Urban Agglomeration is defined as “the population contained within the contours of a 

continuous territory inhabited at urban levels of urban density” (United Nations, Department 

of Economic and Social Affairs, 2019). This definition of an urban area is applicable to this 

research, rather than administrative borders, as the heat island sprawl is urbanised or built-up 

land. This dataset also provides a global list of cities with population above 300 thousand 

inhabitants, which acts as a starting point for the city selection, where cities with a population 

of up to one million are selected to meet the objective of medium sized cities.  

Distance to water bodies 

Distance to the coast was taken from the NASA Goddard Space Flight centre Ocean Color 

Group distance to nearest coastline dataset, which contains distance to the coastline in 

kilometres calculated using the Generic Mapping Tools software with intermediate resolution 

coastline (Stumpf, 2012). Using this dataset, it is simple and straightforward to look up the 

distance of a coordinate point to a coastline. Some accuracy is lost due to the resolution of the 

coastline (the intermediate resolution coastline ignores features which are less than 20 km2 in 

area). In this research, the distance to the coastline is used to ensure there is no influence of 

coastal breezes and is in the magnitude of tens of kilometres. Therefore, the resolution of the 

coastline is not needed to be extremely precise, and an increased resolution would be of 

negligible benefit, so the dataset resolution is acceptable for this purpose.  

The distance to lakes is calculated using the GloboLakes: high- resolution global limnology 

dataset v1 (L. Carrea et al., 2015). The dataset contains location and identification information 

for global water bodies at a resolution of 300m, generated from the Land Cover Climate 

Change Initiative dataset of the European Space Agency (Laura Carrea et al., 2015). The 

dataset is highly useful for this purpose as it is specifically for identifying waterbodies, so land 

cover codes do not have to be interrogated and interpreted. The land use dataset (Landcover 

cci) used for the derivation of this dataset is also used in the land cover classification in this 

study and is discussed in section 3.2.  
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Elevation 

Elevation data is taken from the Global Land One-kilometer Base Elevation (GLOBE) Digital 

Elevation Model dataset (Hastings et al., 1999). GLOBE is a working dataset compiled from 

multiple broad sources of information from various organisations. The dataset is global in 

nature, developed in order to fill the gap of high-resolution digital elevation models (DEMs) 

which have global coverage and are not restricted by copyright. This is to ensure cities are not 

in valleys or in mountainous areas (the UHI is influenced by mountain breezes, and urban-

rural elevation differences create temperature gradients unrelated to the UHI), via an upper 

threshold on the standard deviation of elevation.  

3.2 SATELLITE DATA 

Land Surface Temperature Data 

The land surface skin temperature is taken from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor on Aqua and Terra, satellites with circular sun 

synchronous polar orbits. Both satellites have two overpasses a day over each location on 

Earth, Terra at 10.30 and 22.30 UTC and Aqua at 01.30 and 13.30 UTC, allowing the diurnal 

cycle of the SUHI to be examined. The Terra satellite has been active from 2000, with Aqua 

launching two years later in 2002, giving a number of years over which to examine seasonal 

cycle and change over this timeframe (MODIS Web, 2020).  

The other satellite sensor most commonly used in SUHI studies is the Landsat Thematic 

Mapper/ Enhanced Thematic Mapper/ Thermal Infrared Sensor (Landsat series) (Deilami et 

al., 2018; D. Zhou et al., 2019). The Landsat satellite has a 16-day return period, which is 

reflected in its high spatial resolution in comparison to MODIS data, with Landsat at 30m 

versus MODIS at 1000m. This makes this dataset useful for examining spatial patterns and 

identifying hotspots within the city environment (e.g., Amani-Beni et al., 2022; Berg and 

Kucharik, 2022). Due to its longer return period, Landsat will produce fewer images than 

MODIS over the same timeframe. As cloud contamination is a risk with satellite data, this 

may result in larger seasonal gaps in the data for Landsat data as more MODIS images results 

in a higher likelihood of capturing clear sky conditions. An advantage of using MODIS over 

Landsat series is the four daily overpasses of the MODIS sensors. With a single overpass every 

16 days, the Landsat series gives a more limited view in terms of the SUHI temporal scales. 

The overpass of MODIS at 13:30 is also more suited to urban heat studies as this is the warmer 

part of day and therefore more relevant to human comfort, whereas the overpass for Landsat 

is around 10:00, when temperatures tend to be cooler. Similarly, for the study of nighttime 

temperatures, the MODIS overpass of 01:30 is preferable to Landsat’s 22:00. To summarise, 

two different use cases can be made for the two satellite sensors. Detailed studies of spatial 
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characteristics are suited to Landsat, and monitoring of larger scale processes at a high 

temporal resolution are appropriate for MODIS. For the purposes of this thesis, prioritizing a 

high number of good quality images to avoid seasonal bias and a higher temporal resolution 

result in MODIS being the selected sensor.  

The MODIS sensor has 36 bands, narrow ranges of wavelengths which the sensor measures 

(Tempfli et al., 2009). Section 2.7 outlines how by using measuring the radiation emitted by 

a surface, its temperature can be calculated. The MODIS algorithm also corrects for the 

atmospheric effects on radiation by using adjacent infrared bands, calculating the differences 

in absorption between bands (Wan and Dozier, 1996). The final radiances can then be used to 

generate temperature. In comparisons with in situ values, the accuracy of this MODIS LST 

product is found to be better than 1 °C (Wan, 2008). It should also be noted that as the SUHI 

is quantified by a relative rather than absolute value (the difference between urban and rural 

LST), some systemic error will be removed by its calculation (Quan et al., 2014).  

The version of this product used is the 8-day average LST (MOD11A2), generated by 

averaging from two to eight days of the daily product (MOD11A1). Days where the LST 

cannot be calculated due to cloud contamination are removed, but the product will always 

contain at least two days of LST data in the average. The eight day compositing period was 

chosen as the exact ground track repeat of the satellite paths are 16 days, so choosing half of 

this reduces the influence of different viewing angles (Wan, 2013) (MODIS scans at ±55° 

from nadir (Wan and Dozier, 1996)). Measurements are sensitive to the viewing angle, as 

magnitude of radiation emitted by a surface can vary based on direction, known as anisotropy 

(Voogt and Oke, 2003), and the authors account for this when generating the MODIS LST 

datasets (Wan and Dozier, 1996).  

Use of this 8-day product over the daily product is advantageous for a number of reasons, and 

this data product is commonly used in SUHI studies (Flores R. et al., 2016; Sidiqui et al., 

2016; Keeratikasikorn and Bonafoni, 2018; Yang et al., 2019; Peng et al., 2020). One such 

benefit of using this composite product is an increased number of useable pixels, as gaps due 

to cloud contamination are reduced (Hu and Brunsell, 2013). The 8-day averaged product also 

results in less variation in the overpass local time, which fluctuates typically within a 2-hour 

window. For example, the 10.30am overpass time may actually be closer to 9.30am one day, 

and 11.30am another. This could lead to biases in LSTs, particularly during the daytime, as 

this is when the temperature is more variable (Hu et al., 2014). By taking an average, this 

variability in time is mitigated. To assess any loss of accuracy due to this approach, Hu and 

Brunsell (2013) studied the impact of aggregation on LST by comparison of the MODIS daily 

and 8 day products for Houston, Texas. Results showed SUHI values were enhanced in terms 
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of intensity in the daytime and influences of aggregation seen most in spring and summer 

periods. However, for long term or global SUHI studies, as it the nature of this research, the 

authors concluded that aggregation is beneficial (Hu and Brunsell, 2013).  

The main disadvantage of using thermal infrared satellite data for the purpose of measuring 

LST is that sensors cannot penetrate clouds. Overcast or rainy days where clouds are present 

therefore will not be included in analysis due to a large percentage of cloud contaminated 

pixels, resulting in bias towards certain seasons and conditions. With the use of a recently 

developed all weather LST product which spans Western China (TRIMS LST), Liao et al 

examines the SUHI intensities (based on urban- rural means) for clear sky conditions and finds 

the product has good agreement with MODIS LST for clear sky days (defined as images with 

less than 20% cloud contaminated pixels). Using the all-weather LST to examine the SUHI 

under different levels of cloud, it is found the SUHI generally decreases under cloudy 

conditions (as seen in section 2.4). This decrease is more apparent for the night-time SUHI 

than daytime. Seasonal bias will also exist when comparing variations in the city itself. Lai et 

al (2018) found for cities in China the extreme seasons, Summer and Winter, consisted of 

fewer clear sky days then the transitional seasons of Spring and Autumn. Additionally, 

algorithms that screen for cloud contamination are not always a hundred percent successful at 

detecting clouds. This means even products which are deemed cloud free can contain 

contaminated pixels (Hu et al., 2014).  

Despite the limitation of cloud contamination, thermal infrared satellite remains the dominant 

choice for SUHI studies. The use of microwave data, which is able to penetrate clouds (Ermida 

et al., 2019) is not appropriate for SUHI studies. Microwave emissivity varies with land 

characteristics such as soil moisture, soil texture, surface roughness, land-cover type and 

vegetation optical depth, and assessment of the uncertainties involved is needed before these 

can be applied to wider applications (Prakash et al., 2018), with the development of a general 

physical algorithm an ongoing area of research (Mao et al., 2018). Microwave sensor 

resolutions also have coarse resolution, much larger than the area of a city and therefore must 

be ruled out for this study (Tomlinson et al., 2011).  

Land Cover Data 

Landcover data is important in UHI studies as it allows for the identification of the city area. 

The MODIS landcover product MCD12Q1 is a popular choice for SUHI studies (Schwarz et 

al., 2011; Zhou et al., 2011; Anniballe et al., 2014; Quan et al., 2014; Bonafoni et al., 2015; 

Sidiqui et al., 2016; Keeratikasikorn and Bonafoni, 2018), with a global coverage and 500m 

resolution. Another MODIS product, MCD12C1 is also available at 5,600m resolution, but 

usage is not as common (Flores R. et al., 2016). Other studies use local landcover datasets, 
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such as China's land use/cover datasets (CLUDs), which are found to have accuracy of over 

90% (by comparison to ‘ground truth’ measurements such as GPS locations, photographs and 

google earth) (Yang et al., 2019; Peng et al., 2020). However, global span is required for the 

dataset used in this thesis, as cities in a wide range of locations are to be studied to address the 

research gaps of cities in the global south.  This means regionally limited datasets are 

excluded, to allow for use of the same dataset for all cities.  

The land cover information used in this study is taken from the European Space Agency (ESA) 

Land Cover Climate Change Initiative (Land_Cover_cci): Global Land Cover Maps dataset 

(ESA Land Cover CCI project team; Defourny, 2019). This dataset contains global land cover 

classifications at a 300m spatial resolution for each year from 1992 to 2015. The classifications 

are derived from three satellite time series; AVHRR (National Oceanic and Atmospheric 

Administration’s Advanced Very High Resolution Radiometer) from 1992 to 1999, SPOT-

VGT (SPOT satellite vegetation programme) from 1999-2013 and PROBA-V (ESA satellite) 

from 2014-2015.  

The resolution of Land_cover_cci is slightly higher than MODIS MCD12Q1 at 300m. The 

annual temporal resolution of this dataset is beneficial, given the cities are to be studied over 

an extended period of time. In many studies, the change in urban extent is not widely 

considered, and the land cover information is used is taken from a single snapshot. However, 

it is advantageous to match land cover and LST data temporally. Zhao et al (2016) examined 

the effect of using outdated urban extent maps to quantify the SUHI, and finds “it is critical to 

use concurrent urban extent and LST maps to estimate UHI”.  

Vegetation Indices 

A commonly used measure of vegetation activity, relevant to the SUHI due to its cooling 

effect (section 2.2), is vegetation indices (VI). These are generated by using at least two bands 

of wavelengths to measure the contribution of the vegetation to the reflected and absorbed 

light. This gives an indication of the photosynthetic activity and variations of the vegetation 

canopy (Huete et al., 2002). This can therefore be used as a measure to quantify the extent and 

greenness of vegetation in an area.  

The two MODIS VI products are the normalised difference vegetation index (NDVI) and the 

enhanced vegetation index (EVI). The NDVI was developed prior to the EVI, and is known 

as the ‘continuity index’, as it is often used so comparisons can be made with previous studies 

and datasets (Didan et al., 2015). The NDVI is also more sensitive to chlorophyll than the EVI 

(Huete et al., 2002). The chlorophyll in the vegetation absorbs light in the red band, whereas 

most near infrared radiation (NIR) is scattered. This results in the difference between the two 
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bands giving an indication of the ‘greenness’ of the vegetation. The NDVI is calculated using 

equation (3.1).  

 𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 (3.1) 

 

where ρNIR and ρRed are the surface bidirectional reflectance factors (a measure of the amount 

radiation reflected) for the NIR and Red bands.  

The EVI was designed to improve upon the NDVI, using an additional blue band in the 

calculation to correct for atmospheric effects, resulting in a VI more sensitive to variations 

within the structure of the vegetation canopy (Huete et al., 2002). EVI is calculated by (3.2).  

 𝐸𝑉𝐼 =  𝐺
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝐶1𝜌𝑅𝑒𝑑 − 𝐶2𝜌𝐵𝑙𝑢𝑒 + 𝐿
 (3.2) 

where L, C1, C2 and G are constants, which for the MODIS EVI are set as L = 1, C1 =6, C2=7.5 

and G=2.5. ρNIR, ρRed and ρBlue are the surface bidirectional reflectance factors for the NIR, Red 

and Blue bands.  

Due the correction for atmospheric effects, the EVI is found to perform well in areas with high 

aerosol occurrences (Huete et al., 2002). In cities and surrounding areas, there is likely to be 

pollution from urban activities, so this property is beneficial for this research.    

The datasets used to calculate urban and rural EVI were MODIS MYD13A2 and MOD13A2 

datasets. These datasets have a spatial resolution of 1000m, on the same grid as the MODIS 

LST data used, and the temporal resolution is 16 days. The algorithm generates the pixel 

output by taking the final value as the best available over the 16-day period (Didan et al., 

2015). The two datasets correspond to the aqua and terra satellites, with overpass times at 

13:30 and 10:30, respectively. Both were used to improve the amount of data passing the 

quality checks. For the mean monthly values, a mean for each pixel was taken based on the 

ones of good quality.  

Albedo 

Albedo is a key property in land surface studies, representing the amount of surface reflected 

irradiance as a fraction of the total radiation incident on the surface. An increase in albedo will 

therefore lead to a decrease in the amount of latent and sensible heat at a surface, contributing 

factors in the formation of the UHI (section 2.2). Shortwave albedo is deemed the most 

important for surface energy budget studies as it is the band over which the majority of solar 
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radiation is distributed (Liang and Wang, 2020). There are two different measurements of 

albedo available for use, white sky albedo (WSA) and black sky albedo (BSA). WSA 

represents the albedo measurement with the angular dependency removed (i.e., illumination 

on the surface is from all directions), and BSA the albedo at local solar noon (directional 

hemispherical reflectance) (Schaaf et al., 2015). For use in SUHI studies, there tends to be a 

preference for use of WSA (Zhao et al., 2014; Zhou et al., 2014; Yao et al., 2018; Yang et al., 

2019; Du et al., 2021), although BSA is used as well (Lai et al., 2021). Peng et al (2012) 

assessed both WSA and BSA, and found the two have a linear relationship and show similar 

results.  

The dataset used to calculate urban and rural albedo was the MODIS MCD43A3 dataset, 

consisting of 16-day averages weighted on the ninth day with a spatial resolution of 500m. 

The MODIS MCD43A2 dataset was also used to determine quality assessment flags for the 

albedo values. The shortwave band (0.3-5 µm) and WSA was used, as results with BSA would 

be expected to lead to similar results.  

3.3 REANALYSIS DATA 

Reanalysis datasets are widely used in climate monitoring applications, giving complete 

“maps without gaps” coverage of climate variables across the globe. Modelling tools are used 

to ‘reanalyse’ observations in order to produce spatially and temporally continuous datasets. 

The final product is a dataset made up of a combination of observations, forecast models, and 

data assimilation (Hersbach et al., 2020).  

The accuracy of reanalysis data is dependent on both observation error and model ability to 

correctly simulate physical processes, as any model bias or error will be passed on to the final 

product (Bližňák et al., 2022; Gomis-Cebolla et al., 2023). This is particularly relevant for 

processes which involved the simulation of clouds, e.g., precipitation and downwelling 

longwave radiation, which require parameterisations to capture the small-scale processes 

involved in the formation (Silber et al., 2019).  

Climate variables were taken from the ERA-5 Land reanalysis (Muñoz Sabater, 2019). This 

dataset was chosen as out of the global reanalyses considered (shown in appendix Table 

A.2.9), the horizontal resolution of this dataset is the highest. High resolution is beneficial for 

this study, where the focus is on the scale of a city. The ERA-5 reanalysis replaces the previous 

ERA-Interim reanalysis, benefitting from recent developments in model physics and data 

assimilation (including more satellite data) to provide higher levels of accuracy. Observational 

data consists of satellite data and in situ data, for example from weather stations, aircrafts, 

buoys or radar, and the forecasting model is the European Centre for Medium Range Weather 
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Forecasts (ECMWF) Integrated Forecasting System (IFS) Cy41r2, operational in 2016 

(Hersbach et al., 2020). The monthly product is used in this thesis, as the purpose is to examine 

the impact of these climatic variables on the monthly SUHI.  

The variables total precipitation, air temperature at 2m and dew point temperature were taken 

from the ERA-5 dataset. Relative humidity (RH) was calculated from air and dew point 

temperature using the August-Roche-Magnus approximation (Thiis et al., 2017). 

 𝑅𝐻 = 100
exp (

𝑎𝑇𝑑
𝑏 + 𝑇𝑑

 )

exp (
𝑎𝑇

𝑏 + 𝑇
)

 (3.3) 

 

where T is the air temperature (in °C), a= 17.67, b = 243.5 and Td is the dew point temperature 

(in °C).  

3.4 CMIP6 DATA 

Climate models (which will be referred to as GCMs (Global Climate Models) and ESMs 

(Earth System Models) from here on for clarity) are selected based on the criteria that they 

take part in the ScenarioMIP CMIP experiments (section 2.8) and have made available model 

output for the required variables (section 4.3) in both the historic and future projections. In 

addition, I paid attention to select models contributed by a range of different modelling centres 

(to ensure there is no particular selection bias towards specific modelling groups, e.g., if 

modelling centres submitted multiple versions of their climate models). Overall, this led to a 

selection of 14 GCMs listed in detail in appendix Table A.2.10. 

The SSP3-7.0 scenario was chosen. This pathway assumes no additional mitigation takes place 

beyond the current measures, and acts to fill a gap between the lower and higher ends of the 

forcing pathways (Tebaldi et al., 2021).  

The GCM with the lowest horizontal resolution is the CanESM5 model, with a resolution of 

2.8° x 2.8°. Therefore, all models are re-gridded to this resolution, to ensure an accurate 

comparison can be made. The variables taken from these models are near surface relative 

humidity (%) and precipitation flux (kg m-2 s-1). Precipitation flux is multiplied by 

24*60*60 to get the total rainfall in mm per day. These units and factorisations arise because 

1kg (1 litre) of water spread over 1m2 is 1mm thick, then taken times the number of seconds 

in a day.  

ESM projections are used to examine future vegetation (and climate) changes, using the 

projected changes in LAI to infer changes in EVI (see section 2.8.2). The ESMs used for this 
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are shown in appendix (Table A.2.11), consisting of five in total. Some of these models were 

also used as the GCMs to generate climate projections (see Table A.2.10), but because not all 

GCMs contain an earth system component, many of these could not be used. Again, the ESM 

with the lowest spatial resolution remains the CanESM5 model, so all ESMs were gridded to 

its resolution.  

3.5 STATISTICAL AND MACHINE LEARNING MODELS 

To assess the predictability of the SUHI magnitude based on environmental factors, a few 

different statistical or machine learning (ML) approaches were investigated. These are 

Multiple Linear Regression (MLR), Ridge Regression (RR), Generalised Additive Modelling 

(GAM), Random Forest Regression (RFR), Gaussian Process Regression (GPR) and 

Regression Enhanced Random Forest (RERF). This section outlines the statistical models and 

metrics that can be used to assess their performance.  

The first part of this section outlines the performance metrics, which are used to determine 

how well the various models manage to predict the SUHI in comparison to the true values, the 

observations, and outlines other key metrics which are used. Then given are specifics of how 

the model fits are validated against overfitting, by splitting the data into training and test 

datasets. Aside from MLR, all the models have values which are not set by the fitting process 

itself and must be specified before the model fit, which are known as hyperparameters. These 

are set by a process known as cross validation, which is outlined in this section.  

As the RERF model turned out to show the best performance, the focus of this and the result 

sections will be on this regression type. However, as the RERF is a hybrid of RR and RFR, all 

three approaches will be explained in detail. RR in turn builds upon the MLR, with MLR being 

a case of RR with nil regularization. Therefore, this section will follow the logic of increasing 

regression model complexity, starting with an explanation of MLR, followed by RR, RFR, 

and finally RERF. 

The final aspect of the section tackles the ‘black box’ nature of machine learning models and 

how this is dealt with.  

Performance Metrics 

For many regression models R-squared (r2, the coefficient of determination) is typically used 

to assess the most accurate model.  

 𝑟2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑚

𝑖=1

∑ (𝑦𝑖 − �̅�)2 𝑚
𝑖=1

 

 

 (3.4) 
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where m is the number of datapoints, �̂�𝑖 is the predicted value and �̅� is the mean of samples 

𝑦𝑖.  

R-squared is the proportion of the variance in the data explained by the regression model 

(Wood, 2017). It gives an indication of how close the estimated results are to the observed, in 

reference to a model where simply the mean of the total observations is taken, essentially 

comparing a system which uses predictor variables to a system which simply uses the observed 

results (their mean). Figure 3.2 illustrates how this intuitively relates to equation (3.4).   

 

Figure 3.2 R-squared compares the fit of the regression model to taking the data mean. a) taking the difference of 

the observations from the mean. This is the denominator of equation (3.4). b) taking the difference of the 

observations from the regression model predictions. This is the numerator of equation (3.4). If using the regression 

model is no different to using the mean of the observations as the prediction for y, the sums for a) and b) will be 

equal and R-squared is 0.  

Some caveats must be considered when using R-squared to compare models. Low R-squared 

does not necessarily mean the model is not useful, if R-squared is low but greater than zero 

(so the model is doing a better job than simply using the mean), the model can still give useful 

information on the relationship between variables. This is because R-squared is relative, so 

the model could explain a large fraction of the variance in absolute terms, but if the overall 

variance of the observations is very high, R-squared will be low.  

Another typical metric to measure the performance of regression models is root mean square 

error (RMSE) (Geron, 2017b).  
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 𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(�̂�𝑖 − 𝑦𝑖)2

𝑚

𝑖=1

 

 

(3.5) 

 

where m is the number of datapoints, �̂�𝑖 is the predicted value and 𝑦𝑖 the true value.  

The more accurate the model, the smaller these error metrics will be. In general, RMSE is 

more commonly used in computer science (Geron, 2017b), but R-squared is found more 

commonly in SUHI modelling studies (for example, the studies outlined in Table A.1.2). 

Therefore, in order to avoid the potential pitfalls associated with using each performance 

metric in isolation, the combination of both RMSE and R-squared will be used to assess the 

models, as is also common in other studies comparing machine learning models, for example, 

Zhou et al (2011).  RMSE gives an indication of how far the predicted values are from the 

observed in absolute terms, and R-squared how well the model explains the variance in the 

observations compared to just taking the sample mean.    

Prediction Intervals 

By choosing the best ML model and predictor variables, it is possible to minimise error in the 

prediction. However, there still will be some residual error, and this can be accounted for in 

the predictions made by means of prediction intervals. A prediction interval gives an upper 

and lower limit to the prediction and the probability of the true value falling within this range. 

One such method of generating prediction intervals is via the following formula.  

 

 �̂�𝑝,𝑢𝑝𝑝𝑒𝑟 , �̂�𝑝,𝑙𝑜𝑤𝑒𝑟 = �̂�𝑝 ± √𝑀𝑆𝐸 × (1 +
1

𝑚
+

(�̂�𝑝 − �̅�)

∑ (�̂�𝑖 − �̅�)2𝑚
𝑖

 

 

(3.6) 

 

where �̂�𝑝,𝑢𝑝𝑝𝑒𝑟 , �̂�𝑝,𝑙𝑜𝑤𝑒𝑟  are the upper and lower prediction intervals, �̂�𝑝  is the prediction, 

MSE is the mean squared error (RMSE2), m is the sample size, �̂� are the predictions and �̅� is 

the mean of the predictions.  

These prediction intervals show where, for a new prediction made, the range that there is a 

68% probability (i.e., ± the standard deviation) that the true value will fall within. 

Predictor Variable Correlation 

When building ML models, issues that can arise when predictor variables are correlated. 

Parameter estimates may be unstable, and the effect of predictor variables cannot be separated, 
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meaning it is hard to extrapolate. Dormann et al (2013) give the example of annual temperature 

and annual precipitation being used as predictor variables. The two variables are negatively 

linearly related, and one can be used to partly explain the effect of the other. So, if precipitation 

is the variable which is truly important and temperature is not, temperature may still be 

included in the model due to its correlation with precipitation. The model could incorrectly 

predict that the target variable will increase with temperature (and precipitation remaining 

constant) when in fact it will remain constant if precipitation remains so.  

A common measure to measure correlation is Pearson’s correlation coefficient, r, shown by 

equation (3.7).    

 𝑟 =
1

𝑚 − 1
∑ (

𝑥𝑖 − �̅�

𝑠𝑥
) (

𝑦𝑖 − �̅�

𝑠𝑦
) 

𝑚

𝑖=1

 (3.7) 

 

where x and y are the two variables and m is the number of observations. The formula 

represents the sum of the standardised products divided by the degrees of freedom of the 

sample (Boslaugh and Watters, 2008).  

r ranges from -1 to 1, with 1 representing a perfect positive correlation and -1 a perfect negative 

correlation. Values close to zero show non-existent or very weak correlations.  

Model Validation 

Training test data split 

The data was split into training and test samples at the start of model evaluation and analysis. 

Common practice is to use 80% of the data to train the model and 20% to generate test statistics 

quantifying its predictive power, although the 80:20 split is fairly arbitrary, and choices for 

test data percentage range from 20% to 50% (Joseph, 2022). The two options for how the data 

will be split are to generate test and training data based on city, or based on time.  

Splitting the data by cities is useful as it answers the question, ‘can we predict the SUHI of a 

city, given we know its climate?’. However, a drawback of this is that the success of the model 

may vary greatly depending on which city is in the test dataset, due to the issue of spatial 

autocorrelation. Spatial autocorrelation refers to the idea that areas which are geographically 

near each other will be more similar to those further away (Ploton et al., 2020). In the cities 

selected for the analysis, outlined later in section 4.1, there ends up being more cities in Brazil, 

China, and India than in other countries. It is likely cities in the same countries share similar 

characteristics unrelated to climate, such as building types and materials. Therefore, if the test 

dataset is made up of cities in Brazil, China, or India, it may perform better than if the test 
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dataset consisted of cities outside of these three more represented countries. This can give an 

inflated level of confidence in the predictions made.  

Splitting by time means taking the training data as certain years of data and testing this on the 

remaining years. The benefit of this is that it avoids any bias due to the cities selected to be 

part of the test set, as all are included. Additionally, using the early years as training data and 

later years as the test data evaluates the model’s ability to predict future SUHI magnitudes 

based on past magnitudes, which is highly important for use in investigating future climates. 

On the other hand, this method does not measure the ability of the model to generalise to other 

cities outside of the dataset, as all the cities investigated are included in the model.  

The train-test split is made using time, as this means the model can be evaluated for its 

intended purpose, using past climates to predict the future. Natural variability in the climate 

exists on an interannual basis due to factors such as ENSO (El Nino-Southern Oscillation) and 

including too few years in the test data could mean the range of climate related predictor 

variables the model is tested on is limited (for example, only being tested on years with lower 

precipitation). To ensure this is accounted for in the test data, the data was split evenly between 

the two (50:50), in contrast to the 80:20 percent split commonly used in statistical modelling 

applications (Joseph, 2022), as this would only give around 4 years of test data.  

The split is made by putting odd years in the training dataset and even years in the test dataset. 

A test is also done using the earliest years (from 2002 to 2011) to predict the later years (2012 

to 2020), to examine the model’s ability to extrapolate.  

Cross validation 

To ensure a model is not overfitting, and will perform well on unseen data, model validation 

must be carried out. The approach was to use nested cross validation.  

Nested cross validation first involves splitting the data into a training and test dataset, where 

the test dataset remained untouched throughout the model fitting process, which was done as 

described above. The ML models investigated in this thesis (RR, RFR, GAM and GPR) all 

contain values relating to the set-up of a model, that must be manually specified before the 

model is fit using the training data, known as hyperparameters. This are distinctly different to 

model parameters (e.g., the coefficients in MLR, see later in this section), which are calculated 

as part of the model fitting process using the training data.  

There are a range of possible hyperparameters for each model, and these must be narrowed 

down to select the most appropriate. These must be determined using the training data, but 

also must be validated against overfitting. Yet, as the test data must remain untouched during 

the fitting process (it would not be a fair test of model skill if the model is tested based on data 
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used in the model development), the hyperparameters are identified using k-fold cross 

validation, where k is a predetermined number. The methodology takes the training dataset 

and divides it further into k datasets. One of these datasets is then removed (the validation 

dataset) and the model trained using the remaining k-1. Then the validation dataset is used to 

generate performance statistics based on the fitted model. This is repeated so each of the k 

datasets are removed from the data and used as the hold out validation dataset. Once 

performance statistics for all the validation datasets have been generated, they are averaged 

for each hyperparameter value and the hyperparameters from the model with the best skill is 

selected. The model is then refit on the entire training dataset with these selected 

hyperparameters. The value for k is chosen so datasets sufficient size to be representative of 

the overall data. Typically, either 5 or 10 is taken as the choice for k (James et al., 2021). For 

this thesis, a validation dataset ideally contains a good spread of the different possible climate 

regimes, therefore, a choice of k = 5 is made to ensure the validation datasets are of a sufficient 

size.  

Multiple Linear Regression (MLR) 

As explained previously in this section, the ML model used is a hybrid model, which combines 

Ridge Regression and Random Forest Regression. Ridge Regression is an MLR with the 

addition of a regularisation parameter. Therefore, for a thorough explanation of the final 

model, an overview of MLR is given.  

In quantitative research domains, MLR is often the first go-to model applied to identify 

relationships between predictor and target variables. It is easy to interpret and fit, which make 

it the most popular choice in SUHI studies (section 2.3.2). 

It can be generally described with the equation,  

 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 

(3.8) 

 

where y is the target variable, x1, x2, … xk are the predictor variables, and β1, β2, … βk, are the 

coefficients, which are fixed numbers determined by fits to the training data (the data samples 

upon which the model is built). The coefficients are chosen by minimising the sum of squared 

residuals i.e., R-squared (defined earlier) (Gujarati, 2020). 

Within certain limitations, e.g., the assumption of linearity, assumptions about causality 

between the xi and y, and collinearity, the method has the advantage to be easily interpretable. 

The sign and magnitude of coefficient values can be used to characterize the relative influence 
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of xi on y so that predictor variables can be ranked in order of how important they are in 

predicting the model. A larger magnitude for the coefficient equates to a more important 

predictor variable.  

A key limitation of this method is that it suffers from situations where input variables are 

correlated with each other (one can be described by a function of the other), known as 

multicollinearity. Multicollinearity causes both the estimates of coefficient and the 

accompanying statistics (the standard error, p-values and partial t-test results) to be unreliable, 

also affecting appropriateness for inference (Saleh et al., 2019). However, if the goal of the 

model is to predict and not to infer this is, practically, less of an issue.  

Another important factor to be wary of is the MLR potential to overfit if there are too many 

predictor variables. Variable selection processes, aiming to reduce predictor sets as to only 

keep variables with strong predictive power can be used to address overfitting. Holding back 

test data for independent verification of the model’s ability to perform on unseen data is a 

standard way to examine whether overfitting has occurred, as previously outlined. In MLR, 

there is therefore no method-intrinsic way to address overfitting, or the ‘curse of 

dimensionality’, other than methods to reduce the number of predictors. In higher-dimensional 

predictions problems, e.g., for typical machine learning applications, this is a general issue 

when the regression model contains, by design, many predictor variables (the dimensions). 

Since the number of datapoints required increases exponentially with the number of 

dimensions, in many practical problems there is simply no way to avoid overfitting by means 

of collecting more data (Bishop, 2006). RR, described below, is a way to use regularization to 

address overfitting in MLR models with many predictors, even in underdetermined problems. 

Other issues, not specific to but often encountered when using MLR, are (a) the assumption 

that the residuals have a normal distribution and constant variance (homoscedasticity), and (b) 

its sensitivity to outliers. This can be tested for by visually inspection of plots of the MLR 

residuals. 

In the context of this present work, an issue is that the predictor variables in the dataset are 

correlated (for example, climate variables such as relative humidity and evaporative fraction). 

Earlier in this section, it was outlined how this is measured using Pearson correlation and this 

accounted for in the variable selection process (section 4.2).  MLR is a common approach for 

SUHI studies (see Table A.1.2). As MLR is a case of Ridge Regression (RR) without 

regularization, outlined below, a MLR model does not need to be trained separately and is 

grouped in with RR for the purpose of this thesis.  
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Ridge Regression (RR) 

Ridge Regression (RR) (Hoerl and Kennard, 1970) is described in this section as it is the ‘base’ 

used in the final hybrid model. Although there is a preference of past SUHI studies for using 

MLR (section 2.3.2), none have utilised RR at present, despite it having the same benefits 

without the downside of potential overfitting.   

RR aims to improve upon a MLR by adding in a regularisation parameter, λ (sometimes 

referred to as a penalty value), in the optimisation process. This hyperparameter is added as a 

penalty term to reduce variance of the model and prevent overfitting. It was developed to 

overcome the problems of ‘ill fitting’ situations such as the multicollinearity issue of MLR 

explained previously (Draper and Smith, 1998).  

In MLR, the fit is made by minimising the sum of squared residuals. In RR the fit is made by 

minimising the sum of squared residuals + λ multiplied by the gradient of the slope squared 

(i.e., the magnitudes of the coefficients squared). Doing so keeps the magnitudes of 

coefficients to a smaller range, but still aims to minimise the sum of square residuals. The aim 

of this is to penalise overfitting. The steeper the slope in MLR/ the larger the coefficient 

values, the more sensitive the prediction is to changes in the input variables, hence adding a 

penalty based on the steepness of the slope results in predictions less sensitive to small changes 

in input variables.  

The hyperparameter λ is tuned via the outlined 5-fold cross validation process. One of the 

choices given as a potential value for λ is 0, which results in the fit being made by minimising 

the sum of squared residuals, with no consideration of the coefficient values. For this case, the 

RR is the same as the MLR model. This is how MLR is included in the model selection process 

for RR. As with the MLR model, when using RR caution must be taken when looking at the 

coefficient values, as they will be influenced by both any collinearity and the regularisation 

parameter (λ).  

Random Forest Regression (RFR) 

The second half of the hybrid model used is Random Forest Regression (RFR) (Breiman, 

2001). Alongside MLR, RFR is also used in SUHI studies (section 2.3.2) due to its ability to 

capture nonlinear relationships.  

RFR is a type of machine learning model that combines the outputs of multiple models in 

order to give one overall prediction, a technique known as ensemble learning. Specifically, 

RFR uses many decision trees to create multiple predictions and takes the mean as the final 

resultant prediction. An example of a decision tree can be seen Figure 3.3.  
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Figure 3.3 An example of a decision tree. The data has a nonlinear relationship, the decision tree gets around this 

by splitting the data at set points and using the mean result of the groups as the prediction. a) A simple two-

dimensional example shows target variable y and input variable x. The relationship between the two is nonlinear. 

b) the data can be split into 4 groups based on x, which have similar values for y: x < 4, 4 < x < 6, 6 < x < 8 and 

x > 8. c) The decision tree is built by calculating which one of these groups an x value belongs to and outputting a 

prediction (shown in green). The output prediction is the mean value for the group. For example, the mean of the 

group x < 4 is y = 2.5, so this is given as the prediction if an x value of less than 4 is an input to the model.  

The output prediction of the decision tree, shown in in Figure 3.3c by the green boxes and 

labelled in red, is known as a leaf. The point where the data is split into two paths is a node, 

also shown labelled in red. The value used to split the decision tree data points arriving at a 

given node (in Figure 3.3c the first value used to split the data is 4), is determined by the 

following. 

1. Take a value for x, call this xthreshold. 

2. Calculate the mean of the points greater and less than xthreshold, call these yprediction over 

and yprediction under. 

3. For all points work out the difference y - yprediction over or y - yprediction under. These are the 

residuals.  

4. Sum the square of the residuals, repeat for all x values and choose the xthreshold which 

minimises the sum of squared residuals.  

Decision trees have an advantage of being able to handle nonlinear relationships, but the 

drawback is a tendency to overfit. RFR maintains this ability to fit nonlinear relationships but 

reduces the risk of overfitting by using many different trees.  

There are various methods to make each tree distinct (e.g., by using a slightly different subset 

of the overall dataset as the basis for the tree), of which two are used in the case of this thesis 

and described below.   

Different subsets are typically created in a process called bootstrapping to generate a unique 

sample of the original training data. To do this a sample of the dataset is produced by taking 

training points at random with replacement, meaning that each sample contains some 

datapoints only once, some not at all, and some are duplicated. For example, take the original 
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dataset: p1, p2, p3, p4, p5.  A bootstrapped sample of this might be: p1, p2, p2, p4, p4. Here the 

points p2 and p4 appear twice, p1 once, and the other 2 points not at all. Multiple unique samples 

are generated using this method and each of these samples are used to build an individual tree.  

A second step to introduce further randomness relates to the predictor variable used to split 

the data. In the one-dimensional example in Figure 3.3, there was only one predictor variable, 

x. However, in a model with multiple input variables, say A, B and C, the algorithm will repeat 

the 4 steps to determine xthreshold for A, B and C, and choose the variable that minimises the 

sum of squared residuals. Figure 3.4 illustrates this choice made to split the data for three input 

variables. Removing one of these variables from the running at random could result in the 

variable chosen to split the node being a different one to that if all variables had been 

considered (Breiman, 2001; Geron, 2017a).  

 

Figure 3.4 If the data has predictor variables A, B, C, there is a choice of these to split the data. If a subset of these 

is considered the data could be split only on A or C, for example. 

There are several hyperparameters that can be tuned as part of the RFR optimisation process, 

also to address overfitting in combination with cross-validation. The most commonly tuned 

hyperparameters are:  

• Tree depth.   

Tree depth is the number of steps the decision tree goes through before it reaches its final 

prediction. The tree depth should be large enough that the model can make an accurate 

prediction, but not so large that the model will overfit.  

• Number of trees  

This is the number of trees which are included in the forest. Enough trees should be 

included so the predictions are stable, but after a certain number adding additional trees 

will have little impact on the prediction ability yet will require more computational power. 

Geron (2017a) likens this to a coin toss. For a small number of coin tosses, the heads to 

tails ratio will fluctuate, meaning it is difficult to determine an estimate of probably of 
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heads or tails. However, after a large number of coin tosses, the ratio will stabilise, and 

continuation of the exercise will have no benefit.  

• Minimum number of samples per leaf 

The minimum number of samples on a leaf indicates how many samples can be on the 

final point of a decision tree, where no further split occurs. This point is where the mean 

of the training data is taken and used as the prediction. In Figure 3.3b this refers to the 

minimum number of points enclosed by the red circles. If the minimum number of samples 

is too small the model can overfit and a value too large can result in underfitting.    

• Minimum number of samples required to split a node.  

This determines at what point the algorithm must stop trying to split the data further and 

turn the current group into a leaf. This point will also be influenced by the minimum 

number of samples per leaf, as the split at the node must result in the leaf having the 

required number of samples. As with the samples per leaf, this hyperparameter balances 

the model tendency towards overfitting versus underfitting.  

• Max Features considered at each node 

Randomness can further be introduced into the decision trees by only considering a 

subset of features when making decisions on how to split a node. The number of features 

considered can be determined using this hyperparameter.  

An advantage of RFR is it is more flexible than models such as RR. Nonlinearity and 

interactions can be accounted for in the model, without having to explicitly define the 

relationship (Grömping, 2012). It can handle outliers better than a model fitting a function as 

their influence will be limited to the leaf the outlier datapoint falls on. Another major 

advantage is that RFR models are, relatively, interpretable non-linear models by means of 

intrinsically calculatable ‘feature importances’ (also known as relative importance). As these 

are not used in the main body of this thesis, these are outlined in appendix section A.3. 

The main disadvantage of RFR in the context of the work presented here is that it does not 

have the ability to extrapolate outside the range of the training data. In the RFR, a datapoint 

will go through a decision tree and end up on a final leaf. The prediction at this leaf will be 

the mean of the training data outputs that are categorised into that leaf, and if a new datapoint 

was outside of the range of these datapoints, it would still be predicted as their mean. This 

contrasts to a linear model such as RR, which can be extended outside of the range, given the 

relationships between input and output remain linear (it should be noted these models will not 

be robust if the relationships are nonlinear). This is of particular significance for the results 
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discussed in section 5, as it is potentially to be used to make predictions based on variables 

that may change to outside of the current range under climate change. For example, if the 

driest area becomes even drier in the future.   

Regression Enhanced Random Forest (REFR) 

The chosen hybrid model used is the Regression Enhanced Random Forest (REFR) (Zhang et 

al., 2019), which is a combination of RR and RFR, both of which were explained previously 

in this section. The purpose of these explanations was for an understanding of the RERF.   

They aim to capitalise on the strengths of RR in its ability to extrapolate, and RFR, with its 

ability to fit nonlinear relationships. A ‘base’ estimator (RR in this case, although different 

base models can be used) is fitted to the observations. The residuals between the observations 

and this base model estimates are then calculated and a RFR is fit to these. When the RERF is 

used to make a new prediction, it creates a base model prediction and a prediction of the 

residuals, which are added together to create a final prediction. So the RERF has the advantage 

of the benefits of linear and nonlinear models, both of which have been used previously in the 

SUHI literature, but as separate models (section 2.3.2).  

Care must still be taken when using REFR to extrapolate, as there is still the assumption that 

the underlying relationship between the variables does not change (as with RR) and that the 

distribution of residuals does not change beyond cases covered in the training domain.  

Understanding the models 

Many machine learning techniques are described as “black boxes”. This refers to the concept 

that they take input data and output a prediction, but there is no explanation of how the model 

uses those input variables. Fox et al (2017) define three key reasons why these models should 

in fact be explainable.  

The first of these is the need for trust. Understanding the relationship between target and 

predictors are important in assessing the reliability of the models; an unexpected relationship 

between a predictor and target variable could be an indication the model should not be trusted. 

In addition to the requirement for models to be accurate, they also should make intuitive sense, 

aligning with physical processes and laws.  

Second is the need for interaction. There is a need for models not only to be used for 

prediction but also for inference. It is useful to understand how each predictor variable is 

interacting with the final prediction. For example, how adding vegetation to a city and 

therefore decreasing the urban – rural EVI difference might affect the predicted SUHI.  
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Finally, the need for transparency. Where the model is not making the correct predictions 

(i.e., not predicting the test data), why is this? If there is range of values for which the model 

is not accurate, we want to understand the data values where this is happening, which can 

indicate how to improve the model.  

These aspects all apply to the models used in this thesis. The objective is to understand how 

the climate can influence the SUHI magnitude and to examine what may happen with climate 

changes. Therefore, it is important there is trust in the predictions and the underlying 

relationships are reliable and will not substantially change in the future. Inference is to be 

made from the models, as shown in the example given, to understand how each variable 

individually contributes to the SUHI magnitude. This in turn could lead to conclusions about 

mitigation measures, and which are the most effective – in which climates could albedo 

altering methods such as white roofs be more impactful than urban greening? Therefore, tools 

which can address the black box nature of machine learning models are used to identify how 

the models operate, and these are described below.  

Partial Dependence and Accumulated Local Effects Plots 

Partial dependence plots (PDPs) and Accumulated Local Effects (ALE) plots are useful tools 

in understanding how individual variables contribute to the overall outcome of a model, both 

aiming to show how a variable influences a model on average. PDPs show the marginal effect 

that each feature has on the model predictions (Molnar, 2022). For example, if the magnitude 

of the SUHI increases if there is a decrease in the surrounding vegetation (EVI).  For the RR 

model, these relationships will always be linear, but for non-linear models the PDP can have 

a different shape. Figure 3.5 shows the process of creating a PDP for a set of dummy data. 

The x-axis on a PDP shows a variable, and the y-axis shows the average SUHI for that value 

of the variable.  
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Figure 3.5 The process of creating a PDP. Step 1 shows a dummy dataset, created to give a simple example of the 

methods used to create the final plot, shown in step 4. PDPs are a way of understanding the individual impact of 

a variable on the model prediction. In step 4, as variable A increases (on the x-axis), the increase in the prediction 

is shown on the y-axis.  

The biggest disadvantage of PDPs is that they assume the input variables are independent. 

This is because the mechanism behind calculating the values relies on artificially setting one 

feature to a certain value, and assuming this will not affect the others. This results in a PDP 
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that is calculated using points which in reality are not physically possible (Molnar, 2022). For 

example, a large amount of rainfall occurring in a month, but relative humidity being very 

low. As illustrated by this example, in this case the variables are not independent, so any 

analysis of these plots must take this into consideration. Even if the artificial datapoints used 

to create the PDP are physically sound, they could extrapolate significantly from the dataset 

used to build the model, which should be avoided. Another disadvantage can be seen in step 

2 of Figure 3.5. The methodology takes means of the model predictions for a certain variable 

value but does not give any indication of the distribution of these predictions. A point marked 

on the PDP plot could have a high value for standard deviation that will not be visible to a 

reader of the plot.   

ALE plots address the problems associated with PDPs’ inability to handle correlated variables 

by examining the relationship between predictor and model prediction in a small window 

around the predictor variable observed value, examining the sensitivity of the target variable 

(the SUHI) to a chosen predictor. This is also less computationally expensive, as model 

predictions do not have to be generated for the entire dataset (Apley and Zhu, 2016). Figure 

3.6 shows how an ALE plot would be calculated for the dummy dataset shown for a PDP in 

Figure 3.5. By only looking at an interval close to a true observation, the data points considered 

by the algorithm are realistic and not mixing the effect of correlated features. Accumulating 

the points and centering the plots on zero means that the y axis on the plot shows the difference 

from the mean prediction. The x-axis on the ALE plot shows a variable, and the y-axis shows 

the difference from the average prediction at that point (Molnar, 2022). For example, at A = 

0.5 (see Figure 3.6), the value for the ALE plot is 0, and for A= 0.6 the ALE plot increases by 

1. So, at A = 0.5 it can be expected you will have a y value around the mean of the dataset. If 

you increase variable A by 0.1 (from 0.5 to 0.6), this will increase y by 1.  
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Figure 3.6 The figure shows the process of creating an ALE plot, based on a dummy dataset, shown in step 1. The 

final ALE plot is shown in step 4. ALE plots are a method of understanding how changes in a predictor variable 

can impact the prediction made by a model. 
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4 CREATING A STATISTICAL MODEL TO PREDICT THE 

SUHI 

Creating a statistical model to predict the SUHI requires several steps, which are outlined in 

this chapter. The first is identification of the cities for which the SUHI will be examined. After 

these cities are selected, the SUHI magnitude (the target variable) and the variables used to 

predict it (the predictor variables) must be quantified. The target and predictor variables are 

then used to fit statistical/ machine learning models, with various methods employed to assess 

their accuracy and reliability and a choice of the best model is made. The model is then used 

to examine the current SUHI, through its relationships with the predictor variables. Each of 

these steps is discussed in this section. 

4.1 SELECTION OF THE CITIES  

In section 2.6, a need to address the gaps in the current literature with regards to both the 

locations of cities (to include cities in the Southern Hemisphere), and also the size of cities 

(medium sized cities). These are the cities projected to undergo increasing growth, resulting 

in urban hazards impacting increasingly higher numbers of people, yet the impacts of climate 

change on the city temperatures are uncertain. The selection of cities is made to include cities 

that satisfy both these criteria. Additionally, the surrounding features (lakes, hills, oceans) of 

cities are assessed, to control other variables and isolate the impact of climate. The cities are 

identified by starting with a large starting pool of cities, and narrowing this group down based 

on various criteria. A brief overview of the criteria can be seen in Table 4.1, with more 

descriptions given in this section.  
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Table 4.1 Brief Overview of the criteria for city selection and the number of cities remaining in the dataset after 

each step is performed. 

Criteria  Threshold Number cities remaining 

after criteria satisfied  

Population 300,000 to 1,000,000 1,347 

Location < 40 °N Latitude 1,050 

Not Coastal > 100 km from shoreline 603 

No lake breeze > 50 km from large lakes (50 

km diameter 

600 

No influence of water in 

rural reference 

> 22 km from lakes greater 

than 1 km diameter 

252 

Topography < 150 m standard deviation 

elevation in 55 km 

surrounding city 

153 

Nearby city influence > 42 km to the nearest city 

with population over 

300,000 

120 

City Area > 5 km2 city area in 2002 104 

 

The starting dataset of cities was those with a population of between 300,000 and 1,000,000, 

taken from the United Nations population dataset (United Nations, Department of Economic 

and Social Affairs, 2019), discussed in section 3.1. These represent the medium sized cities, 

identified as a literature gap in section 2.6. This gave a total of 1,347 cities to explore. To meet 

the objective of studying cities of different climates and cities in the global south, cities were 

selected based on location being under 40°N latitude. Figure 4.1 shows the climate 

classification map detailed in section 2.4.2, with a line drawn to show the areas considered. 
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Figure 4.1 Koppen Geiger classification map, figure 1 from Beck et al (2018), areas under 40°N were considered 

in the selection criteria for final cities.  

Sea breezes promote the dispersal of heat and are known to influence the UHI (section 2.4). 

The city selection process aims to remove any external influence aside from urbanisation 

hence coastal cities must be excluded. In a review of sea breeze observations, Abbs and 

Physick (1992) state whilst in mid latitudes the maximum sea breeze extent is 40 to 50 km, 

the tropical and subtropical sea breeze reaches up to 100 to 150 km inland. Therefore, in order 

to avoid the potential influence of a sea breeze on the SUHI, cities which were less than 100 

km from the coastline are removed from the dataset (Figure 4.2).  

 

Figure 4.2 Cities less than 100km from the coast (red) are removed from the dataset. 

For large lakes (diameter greater than 50 km), the lake breeze characteristics are similar to 

those of sea breezes (Segal et al., 1997). The lake breeze is not as well studied as the sea 

breeze, but its inland penetration is shown to be less (Harris and Rao Kotamarthi, 2005). Based 

on this, a smaller distance to the large lake can be permitted, and cities within approximately 

50 km (0.5° latitude/ longitude from the city centre) of a lake with diameter greater than 50 
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km were removed. Another important consideration is water bodies being in the rural area 

close to the city, as these have a cooling effect due to the heat capacity of water, and therefore 

must also be excluded. Therefore, cities with water bodies more than 1 km wide either in the 

city or the surrounding area (0.2° latitude/ longitude from the city centre) were also removed 

(Figure 4.3).  

 

Figure 4.3 Cities where the influence of waterbodies could interfere with rural LSTs are removed (red). 

Cities were also removed on the elevation of the area. In section 2.4, the UHI of cities 

surrounded by hills or mountains was influenced by this surrounding topography, so to 

mitigate this, cities where the city and surrounding area (55 km box around the city centre) 

have a standard deviation of elevation of more than 150 m are removed (Figure 4.4).  

The 150 m figure was chosen based on limiting temperature differences due to elevation 

change. Experimentally, for the first 11 km of the atmosphere, the temperature difference is 1 

°C for every 150 m change in altitude (Lente and Ősz, 2020). The accuracy of the LST data is 

found to be better than 1 °C (section 3.2), so an aim to keep the differences in the LST due to 

elevation to a minimum of 1 °C leads to keep elevation below 150 m.  

 

Figure 4.4 Cities in hilly areas are removed to reduce the influence of topography (red). 

The distance to another city (with population greater than 300k) was considered. If another 

city is close by in the surrounding area, it will influence the LST of the surrounding rural 

pixels, leading to an inaccurate rural baseline LST. To avoid this occurrence, distances 
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between city centre coordinates and that of the nearest city were calculated, and those where 

the distance was less than 42 km were removed (Figure 4.5).  

This distance was roughly calculated using the population density. According to the 

Organisation for Economic Co-operation and Development (OECD) (2020), population 

density of cities can range from 2,000 to 8,000 inhabitants per km2 (in North America versus 

South Asia and Sub-Saharan Africa, respectively), so the midpoint of 5,000 inhabitants per 

km2 is taken. The population range investigated in this study is from 300,000 to 1 million, so 

taking the upper end of the range gives a city area of 200 km2 (1 million /5,000). It should be 

noted that the city areas found in this data will likely be smaller than this as they are calculate 

based on landcover data, and not administrative boundaries, so this is an estimate on the larger 

side to allow more room. The definition of the rural area to be used (outlined next in section 

4.2) is three times the city height or width. Based on this, the rural extent considered for a 

square city of 200 km2 area would be 42 km (3 × √200 𝑘𝑚2).  

 

Figure 4.5 Cities with other cities in the surrounding area were removed to ensure a truly rural baseline (red). 

After the cities were selected, land cover data (discussed in section 3.2) was used to determine 

the area of cities, and those with an area of less than 5 km2 were removed, Figure 4.6. This 

was to ensure there was sufficient urban pixels in the LST dataset to not be too influenced by 

potential missing urban pixels (due to cloud contamination), as the resolution of this data is 1 

km2.  

 

Figure 4.6 Cities which were smaller than 5km2 in 2002 were removed to ensure the size is compatible with the 

LST dataset resolution. 
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The locations of the final selected cities can be seen in Figure 4.7, shown in blue, alongside 

those not selected in red.   

 

Figure 4.7 The final cities selected (blue) and those rejected (red) by the city selection process. 

The final set of selected cities (104 in total) and are located in Afghanistan (1), Algeria (1), 

Angola (3), Bangladesh (1), Benin (1), Brazil (16), Burkina Faso (1), China (17), Democratic 

Republic of the Congo (DRC) (3), Egypt (1), India (18), Iraq (4), Mali (1), Mexico (1), 

Morocco (1), Mozambique (1), Niger (1), Nigeria (7), Pakistan (2), Saudi Arabia (4), South 

Africa (2), Sudan (2), Syria (1), Tanzania (1), Thailand (2), Turkey (2), United States of 

America (USA) (7), Zambia (1) and Zimbabwe (1).  

 

Figure 4.8 The final selected cities to be modelled and their Köppen Geiger Climate classifications.  

Figure 4.8 shows the final selected cities by Köppen Geiger Climate classification. The cities 

encompass a range of different climates, ranging from arid to temperate to tropical. The plot 

also draws attention to some cities that are close in location but have different climate 

classifications, demonstrating the potential pitfalls of using categories for continuous data 

explained in section 2.4.  

Figure 4.9, Figure 4.10, Figure 4.11, Figure 4.12, Figure 4.13 show photos of some of the 

selected cities.  
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Figure 4.9 Bikaner, India. View of the city from Jain temple before a sandstorm. Photo Credit: 

https://tinyurl.com/2rkhxey3.  

 

Figure 4.10 Sokoto, Nigeria, Ariel View, Photo Credit: https://soluap.com/sokoto/.  

https://tinyurl.com/2rkhxey3
https://soluap.com/sokoto/
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Figure 4.11 Londrina, Brazil, Photo Credit: Wilson Vieira, https://tinyurl.com/5fcswka9.  

 

Figure 4.12 Visalia, USA. Photo Credit: Jacob Boomsma, https://tinyurl.com/rm3yetv7.  

https://tinyurl.com/5fcswka9
https://tinyurl.com/rm3yetv7
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Figure 4.13 Heze, China. Photo Credit: https://tinyurl.com/ydceev3a.  

  

https://tinyurl.com/ydceev3a
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4.2 GENERATING THE TARGET AND PREDICTOR VARIABLES  

After city selection, the next step is to generate the target and predictor variables to be used as 

the data in the model. The target variable is the SUHI magnitude, as this is what the model 

should predict. The predictor variables are selected to be variables which are known to 

influence the SUHI magnitude. These variables are shown in Figure 3.1 as the grey boxes with 

rounded corners, where they are split into training and test data to build and assess the model, 

respectively. The target and predictor variables are generated using satellite and reanalysis 

data, described in section 3 and seen in Figure 3.1. An additional step for the satellite data was 

to ensure the images used were of sufficient quality, which is covered in this section first. The 

steps taken to process the data (satellite and reanalysis) and get it into the desired variables are 

then outlined.  

Data Quality  

One of the limitations of satellite data (section 3.2) is that it is possible for pixels to be unusable 

due to cloud contamination. If too many of the pixels are unusable on a given day, results 

generated from this dataset will be incomparable to days with more pixels and using these 

images will result in biased results. To ensure the satellite datasets used were accurate, a 

threshold for the number contaminated pixels was set at 30% for the LST, EVI and WSA data.  

Any images with a number higher than this were discounted from the study, and for the images 

deemed acceptable, any poor-quality pixels were masked in the analysis to promote accuracy. 

This threshold for the number of pixels varies from study to study, ranging from 10% (Quan 

et al., 2013) to 50% (Yang et al., 2019; Li et al., 2022). The 30% threshold was chosen as to 

strike a balance between selecting the most accurate LST images, but also aiming to reduce 

the inevitable bias towards certain weather conditions (if the threshold is chosen too strictly, 

images will be limited to completely cloud free days), discussed in section 3.2. 

Another additional threshold was added for the percentage of high-quality urban pixels. In 

some cases, the cloud contamination may be high only over the city. This case could lead to 

an image passing the initial quality check based on overall pixels but have very few or no 

high-quality pixels within the city. Therefore, a threshold of 50% for the number of pixels 

within the city was set. This was set at 50% rather than 30% to reflect the fewer pixels in the 

city, as setting the criteria too strict could result in too many rejected images.  

Figure 4.14 shows the total percentage of LST images which satisfy this selection criteria for 

each city.  
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Figure 4.14 Map showing the locations of cities and the percentage of total images for which the city and its 

surrounding area has less than 30% cloud contamination and the city area has less than 50% contamination for 

a) the overpass at 13:30 and b) overpass at 01:30.  

The majority of cities have a high percentage of LST image available for use, with the daytime 

and night-time city mean percentage of usable images at 85% and 84%, although some show 

a higher proportion of contamination. The city with the lowest number of available images is 

Umuahia, Nigeria, which has only 30% of those available showing good enough quality. Rio 

Branco, Brazil also shows a high percentage of contamination with 49% of images being 

available. A seasonal bias can be seen in the patterns of cloud contamination, shown in Figure 

4.15 for the daytime (13:30) overpass and Figure 4.16 for the night-time (01:30) overpass. 

This reinforces the need to specify the analysis and model predictions made in this thesis are 

for the approximately cloud-free days only, and a large amount of extrapolation on 

precipitation volumes should not be done. The seasonal bias is expected, as during the wet 

seasons, there will be a high number of cloudy days. This is similar for both the daytime and 

night-time overpasses, as the cloud persists throughout the 24-hour period, although the night-

time shows slightly fewer cloud contaminated images in some cases. JJA months (June, July, 

August) are when the highest number of cities have less than 10% of images available due to 

cloud contamination, consisting of four cities in total, Lampang and Nakhom Ratchasima 

(Thailand), Mymensingh (Bangladesh) and Umuahia (Nigeria). Figure 4.17 shows the 

seasonal precipitation patterns for the selected cities, which confirms the increase in cloud 

contamination during the rainy seasons. Comparison of the cloud contamination and 
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precipitation plots for the DJF months (December, January, February) also shows how the 

cities with more contamination are in the wet seasons during this time.  

This bias is one of the main drawbacks of using satellite data (see section 3.2), and currently 

remains unavoidable. As useful information can be inferred about these cities from the data 

that is usable, they are kept in the analysis. However, when using the learned SUHI model to 

extrapolate, changes in precipitation are assessed to ensure they do not go too far beyond the 

model training input range.  
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Figure 4.15 Map showing the locations of cities and the percentage of total LST images for which the city and its 

surrounding area has less than 30% cloud contamination and the city area has less than 50% contamination in the 

13:30 overpass for a) MAM (March, April, May) b) JJA (June, July, August) c) SON (September, October, 

November) d) DJF (December, January, February).   
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Figure 4.16 Map showing the locations of cities and the percentage of total LST images for which the city and its 

surrounding area has less than 30% cloud contamination and the city area has less than 50% contamination in the 

01:30 overpass for a) MAM months (March, April, May) b) JJA Months (June, July, August) c) SON Months 

(September, October, November) d) DJF Months (December, January, February). 
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Figure 4.17 Total precipitation rate for a) MAM months (March, April, May) b) JJA Months (June, July, August) 

c) SON Months (September, October, November) d) DJF Months (December, January, February).  

For EVI data, both the Aqua and Terra MODIS datasets were used, and the same quality 

thresholds applied. As the 16-day product was used, monthly means were calculated by 

combining images where the 8th day falls within that month. This is to ensure the timeframe 

where the EVI is calculated lines up with that of the LST data.    

The annual mean percentage of quality images for a city was less than for the LST images at 

76%. Figure 4.18 shows the spread of this percentage across the cities. Different 

measurements are used to calculate LST and EVI (EVI uses the red and blue in additional to 
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the near infrared bands, bands and LST the infrared bands) and the composition methods used 

to create the final products are different. LST in this thesis is only using the Aqua overpass in 

comparison to the additional use of the Terra (at 10:30) for EVI. Therefore, differences in the 

cloud contamination of the two measurements type can be expected. Table 4.2 shows a 

summary of the seasonal bias for each set of images.  

As with the LST images, there are some cities that experience higher levels of cloud 

contamination than others. Ha’il (Saudi Arabia) and Gombe (Nigeria) have the lowest number 

of good quality images at 33% and 34% respectively.   

 

Figure 4.18 Map showing the locations of cities and the percentage of total EVI images for which the city and its 

surrounding area has less than 30% cloud contamination and the city area has less than 50% contamination.  

Seasonal bias of the cloud contamination in EVI images can be seen in Figure 4.19.  
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Figure 4.19 Map showing the locations of cities and the percentage of total EVI images for which the city and its 

surrounding area has less than 30% cloud contamination and the city area has less than 50% contamination a) 

MAM months (March, April, May) b) JJA Months (June, July, August) c) SON Months (September, October, 

November) d) DJF Months (December, January, February). 

As with LST images, EVI images show the most contamination in the JJA months. Gombe 

(Nigeria) experiences the most contamination in MAM, Kikwit (DRC) and Bikaner (India) 

are seen to have the most during summer months, and Cuito (Angola) in SON months.  

For the WSA data, quality flags were consulted, and a pixel was deemed of sufficient quality 

if there were at least two days out of the 16 for which the quality was good. The useable images 
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were grouped by the month of the 9th day (as the data is temporally weighted around this day) 

and the mean of these used as the final monthly value.  

For WSA, 89% of the final monthly grouped images were useable. Figure 4.20 shows the 

distribution of the fits by city. As with the LST images, Umuahia (Nigeria) has the lowest 

percentages of usable months at 21% and Hechi (China) follows closely with only 26% of 

months usable.  

 

Figure 4.20 Map showing the locations of cities and the percentage of total WSA monthly images for which the 

city and its surrounding area has less than 30% cloud contamination and the city area has less than 50% 

contamination. 

 

Table 4.2 Summary of the percentage of non-cloud contaminated images for LST 13:30, LST 01:30 and EVI data. 

 Percentage of non-cloud contaminated images 

Season LST 13:30 LST 01:30 EVI WSA 

MAM 92% 89% 77% 94% 

JJA 75% 80% 75% 77% 

SON 88% 87% 73% 92% 

DJF 84% 80% 78% 92% 

Annual 85% 84% 76% 89% 
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SUHI Quantification  

The overpass times 13:30 and 01:30 are studied as these are closest to when the 2m air 

temperatures are at a maximum and minimum (and therefore encompass a wider diurnal 

range), in comparison with the 10:30 and 22:30 overpasses which are also available (Oke et 

al., 2017; Du et al., 2021).  

Rural Extent 

The first decision to be made when quantifying the SUHI is the area over which to examine. 

Whilst the area of the city can be clearly identified by land cover information, the extent of 

the rural area to use as a reference is less clear-cut. The choice of how the rural area is defined 

can have an impact on the values given for the SUHI. For example, an area too big can include 

too much topography and even other cities or urban areas (if the area is above 42 km in this 

case, as this was checked for in city selection, section 4.1), but an area too small can include 

too much influence from the city. Clinton and Gong (2013) find that using a 10 km ring around 

the city (known as the ‘buffer’, see section 2.3.1) results in a larger SUHI magnitude than the 

5 km buffer, most likely due to the smaller area containing influence of suburban areas.  

There are two types of approaches to defining the rural land. One approach would be to set 

the size of the whole area used, urban and rural, to a predetermined distance from the city 

centre and use this for all cities (Rajasekar and Weng, 2009; Anniballe et al., 2014; Bechtel, 

2015; Lai et al., 2021). This is easy to implement, as the area stays the same for all cities so 

little processing is needed to determine the area. The second approach is to have the rural area 

proportional to the city size. For example, Yang et al (2019) set the rural area to be the same 

as that of the urban core. This means that in the larger cities, the number of rural pixels in 

comparison to the number of urban pixels will remain the same as in the smaller cities. Fewer 

rural pixels, and of these a high percentage nearer to city itself may lead to an apparent smaller 

SUHI in large cities due to this smaller heat differential in a smaller buffer (Clinton and Gong, 

2013).  

The rural area was therefore defined to follow the second approach, but rather than a circular 

buffer a rectangular shape was used. The area was chosen to be a box with width three times 

that of the city and height three times that of the city (so the city takes up roughly 10% of the 

entire area). To ensure the area was not too small for very small cities, if this ended up being 

less than 10 km, then a length of 10 km from edge of the city was used instead. The area in 

2020 was used here for all the years in the study, to ensure a consistent rural landcover type 

throughout.   
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Mean SUHI (SUHI_MEAN) 

The simplest way of quantifying the SUHI is to use a mean SUHI value (which will be referred 

to as SUHI_MEAN). The method takes the mean LST for the city pixels marked urban and 

subtracts the mean LST for the pixels marked rural, see equation (4.1). Any urban pixels in 

the area outside of the city were asked, and not included in either mean.  

 𝑆𝑈𝐻𝐼_𝑀𝐸𝐴𝑁 = ∑ 𝐿𝑆𝑇𝑢𝑟𝑏𝑎𝑛

𝑛𝑢𝑟𝑏𝑎𝑛

𝑖

− ∑ 𝐿𝑆𝑇𝑟𝑢𝑟𝑎𝑙

𝑛𝑟𝑢𝑟𝑎𝑙

𝑖

 

 

(4.1)  

 

where LSTurban, nurban, LSTrural, nrural represents the LST and number of urban and rural pixels, 

respectively.   

A benefit of using the SUHI_MEAN is that it can be calculated for cities which have irregular 

shapes, or the warmest part of the city is not at the centre, which other methods do not deal 

well with (in particular the Gaussian Surface Approximation (GSA), outlined in the appendix, 

section A.4). Using the SUHI_MEAN definition therefore increases the range of cities for 

which the model can be applied.  

The need to assess multiple methods of SUHI quantification is highlighted in section 2.3.1, as 

different quantification methods have been shown to result in different outcomes in terms of 

the impact of city or climate related properties. For this reason, other methods of SUHI 

quantification were also used, in particular the GSA Peak SUHI magnitude, to be referred to 

as SUHI_PEAK_GSA (appendix section A.4). The focus here will be on the method found to 

be captured best by the ML models, which is SUHI_MEAN (details comparing the SUHI 

quantification methods can be found in A.4).   

Assessment of the SUHI 

The SUHI_MEAN shows diurnal and seasonal variations. Figure 4.21 shows how the 

SUHI_MEAN varies on a seasonal basis at both 13:30 and 01:30. During the daytime, many 

cities show strong negative or positive SUHI_MEAN, which decrease in magnitude during 

the night, and for negative daytime SUHI_MEANs become positive. There are some cities 

however, which experience very small SUHI_MEAN magnitudes (less than 1 °C) during the 

day but encounter more nocturnal heating. The Pearson’s correlation coefficient (section 3.5) 

for 13:30 versus 01:30 SUHI_MEAN, is -0.16. The slight negative coefficient could indicate 

a strong daytime SUHI is associated with weaker one at night, but the magnitude of the 

coefficient is low, so it is hard to draw firm conclusions. The lack of correlation found between 

the two is confirmed in other studies (Peng et al., 2012) indicating the factors that contribute 
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to a high SUHI in the day are different to those that drive the SUHI during the night (section 

2.5.1). 

 

Figure 4.21 The seasonal and diurnal SUHI_MEANs for the selected cities. The seasonal SUHI_MEAN is shown 

for the 13:30 MAM (March, April, May), JJF (June, July, August), SON (September, October, November), and 

DJF (December, January, February) on the left-hand side, and the same for the 01:30 overpass on the right-hand 

side of the plot. Day (13:30) versus Night (01:30) differences can be seen by comparing the two sides.  

Negative nocturnal SUHI_MEANs do not persist in any of the cities studied on average, 

although they have been observed for individual months, they are not a common feature for 

any of the cities studied. Table 4.3 gives a summary of the positive and negative annual SUHIs. 

The range of city annual SUHI_MEANs ranges from -4.0 °C to 5.4 °C for the 13:30 overpass 

and from 0.3 °C to 2.8 °C for the 01:30. 

Table 4.3 Summary of the mean and standard deviations of SUHI_MEAN. These values were calculated by 

taking the annual means of the cities, then grouping them into two groups, those with a positive annual 

SUHI_MEAN and those with a negative annual SUHI_MEAN. The mean and standard deviation of these groups 

are then calculated and are seen in the table. The groupings are done separately for day and night. As outlined 

in the main text, there are not any cities with a negative SUHI_MEAN at night.  

 Positive SUHI Negative SUHI 

Metric 13:30 01:30 13:30 01:30 

Mean SUHI 2.2 ± 1.3 °C 1.5 ± 0.6 °C -1.1 ± 0.9 °C - 
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Mean Enhanced Vegetation Index (EVI) 

Mean EVI (section 3.2) was calculated for the urban and rural areas to give a measure of the 

greenness and vegetation activity in both areas. Both these urban and rural EVI values, and 

the difference between them are considered as predictor variables for the SUHI. The spatial 

averaging is done using the same method as for the mean SUHI outlined previously in this 

section (4.1), by simply calculating the mean result for the areas marked urban and rural. 

Figure 4.22 shows the annual mean values of rural and urban EVI (EVI_R and EVI_U) and 

the difference (urban minus rural) (EVI_D). For most cities, the rural EVI exceeds the urban, 

aside from 4 cities shown in blue in Figure 4.22c. Rural EVI also shows more variation 

between cities. Figure 4.22 shows the rural EVI split into 4 seasons. Rural EVI shows seasonal 

differences, increasing during the summer months (JJA or DJF, depending on the hemisphere 

of the city). The greatest rural EVI is in Cascavel (Brazil) in the DJF months at 0.56 and the 

lowest in Ha’il (Saudi Arabia) which persists at a mean of 0.06 year-round.  

 

Figure 4.22 Map showing annual mean values of EVI averaged across 2002-2020 for a) rural area b) urban area 

and c) the urban minus rural difference. Cities with a positive EVI difference (urban area has a higher EVI than 

the rural area) are shown in blue.  
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Figure 4.23 Seasonal Cycle of Rural EVI: the mean EVI of rural areas, averaged across 2002-2020 during a) 

Spring (March, April, May) b) Summer (June, July, August) c) Autumn (September, October, November) d) Winter 

(December, January, February)  

  



Creating a statistical model to predict the SUHI 

 

97 
 

Mean White Sky Albedo (WSA) 

The mean WSA was calculated using the same spatial/pixel averaging method as for 

SUHI_MEAN and mean EVI values. Figure 4.24 shows the rural WSA (WSA_R) and the 

(urban – rural) WSA difference (WSA_D). The urban WSA is not included in the figure as 

the rural and urban WSA values are very similar, which can be seen by the scale of the 

WSA_D. Figure 4.24b shows the cities where there is a positive WSA_D in blue, where the 

WSA_U is greater than WSA_R, representing the cities where urban surfaces are more 

reflective than the surrounding rural area. This would be expected to lead to a decrease in the 

SUHI, as less solar radiation is reaching the city and warming its surfaces in comparison to 

the rural area. This is the theory behind SUHI mitigation measures such as white roofs. Areas 

with higher WSA_R are located in the arid environments, consisting of deserts, shrublands 

and bare soils, with comparatively higher albedos than forests and grasslands. The arid areas 

with high WSA_R also have the most negative WSA_D, so in these areas the urban materials 

are not as reflective as the rural surroundings.   

 

Figure 4.24 Map showing annual mean values of WSA averaged across 2002-2020 for a) rural area (WSA_R) and 

b) the urban minus rural difference. Cities with a positive WSA difference (urban area has a higher WSA than the 

rural area) are shown in blue. These are the cities which are brighter than the surrounding rural area.  
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City Size and Shape 

The city predictor variables included in the model are the area and eccentricity of the city. 

Using the landcover dataset (section 3.2), the area of the city is calculated by summing the 

number of urban pixels within the bounds of the city area. Despite having population between 

300 thousand and 1 million inhabitants, the areas of the selected cities show a wide range. 

Bahawalpur (Pakistan) and Mymensingh (Bangladesh) are the smallest two cities in any year, 

with areas of 5 km2 in 2002, growing to 43 km2 and 17 km2 respectively in 2020. The largest 

city by 2020 is Birmingham, USA, spanning an area of 675 km2. The methodology used to 

determine the city area means if a city is surrounded by a highly urbanised area (and therefore 

the whole area- city plus suburban surroundings- comes up as urban in the landcover data), 

these pixels will also be classed as urban and therefore part of the city. The city of 

Birmingham, USA has a large amount of suburban sprawl outside of the administrative 

borders of the city, which are classed as urban landcover. As the SUHI is driven by the urban 

landcover, it is important to still include these areas as belonging to the city.   

Studies show as the city area increases, so does the magnitude of its SUHI (Zhou et al., 2017; 

Gaur et al., 2018; Dewan et al., 2021). This relationship has been shown to be described by a 

logarithmic function (Imhoff et al., 2010; Tan and Li, 2015; Li et al., 2017). However, the 

focus in these past studies is on positive SUHI magnitudes. If the effect of the city area 

increasing is the amplify the SUHI, for a negative SUHI magnitude, the SUHI would be 

expected to become more negative as the area increases. The cities in this thesis show a similar 

relationship with log10(Area) as the current literature for cities with a positive SUHI_MEAN 

(averaged over the entire dataset, from 2002-2020) (Figure 4.25), and a relationship where the 

SUHI magnitude becomes more negative in cities with a negative SUHI_MEAN. As there are 

only positive annual SUHI_MEANs during the night-time (01:30), the relationship is positive 

here. Pearson’s correlation coefficients show the strongest relationship is during the day 

(13:30) for positive SUHI_MEANs, at r = 0.39, followed by the negative correlation for 

negative SUHI_MEANs at r = -0.24. Finally, the night-time (01:30) SUHI_MEAN has a 

smaller positive correlation with the log10(Area) than during the day, at r = 0.22.  
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Figure 4.25 Log10(Area) plotted against annually averaged SUHI_MEAN, with the type of SUHI_MEAN (positive 

or negative) shown by colour for a) 13:30 b) 01:30. The least squares optimised line of best fits and corresponding 

Pearson’s correlation coefficients are shown for the Log10(Area) versus positive (and negative if relevant) 

SUHI_MEANs.   
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The eccentricity is included as a measure of the city shape. It is calculated by fitting an ellipse 

representative of the city shape and calculating its eccentricity, defined by 

 

 

𝑒𝑐𝑐 =  √
𝑎2 − 𝑏2

𝑎2
 

 

 (4.2) 

where a2 is the major axes and b2 is the minor axes (a > b). 

If the eccentricity is 0 the shape is a circle, and it becomes more elliptical as it moves closer 

to 1. This could reflect the change of a city shape over the years if it expands in one direction 

and reflect differences across cities. It is common for cities to have more of an elliptical shape, 

with few cities having an eccentricity of close to 0.  

Zhou et al (2017) studied the urban form and its relation to the daytime mean SUHI for cities 

in Europe, finding its intensity decreases as the city becomes more elliptical.  This could be 

due to an inner core less isolated from the surrounding rural areas. However, in the chosen 

cities, there does not appear to be an obvious trend between eccentricity and SUHI_MEAN. 

This suggests that for the cities considered here, other factors are more important and 

effectively overlay any possible effect of the city shape on the average SUHI_MEAN 

magnitude.    

Climate Variables 

The spatial resolution of the reanalysis climate data (section 3.3) used is relatively coarse in 

comparison to the satellite data (used for LST, EVI and WSA), with a spatial resolution of 9 

km versus 1 km. This means it cannot capture values for the urban area and the rural area 

separately. Therefore, the climate variables (relative humidity, total precipitation, net surface 

solar radiation, evaporative fraction) were taken to be the mean of the entire area inspected 

for the analysis, including both the city and the rural area. To give an idea of the general 

climate characteristics, Figure 4.26 shows some of the climate characteristics of the selected 

cities (2m air temperature was additionally calculated to give a more detailed picture of the 

climate characteristics of the cities, but this is not used in the ML model).  
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Figure 4.26 Annual mean climate characteristics averaged across 2002-2020 for the selected cities. Considered 

are a) relative humidity b) net surface solar radiation c) total precipitation per day d) evaporative fraction.  

Seasonal cycles of total precipitation and 2m air temperature are shown in Figure 4.27. During 

certain seasons, heavy rainfall is experienced in some cities, in MAM and JJA months for 

those in Asia and during the DJF months for the cities in South America and southern Africa. 

For the rest of cities, there is less rainfall on average, and most cities (including those which 

do not experience a heavy wet season) have a total precipitation rate of less than 4mm/day. 

Generally, the cities with the highest annual mean 2m temperatures have smaller seasonal 

temperature cycles. For example, the cities in South America only slightly cool in SON 
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months and cities in South Asia are slightly cooler in the DJF months, but differences are not 

large in comparison to other cities. Cities in China, North America and the Middle East have 

the strongest seasonal temperature differences, with mean season 2m air temperatures ranging 

from below 10°C to above 25°C.  

 

 

 



 

 

10
3

 

 

Figure 4.27 Seasonal Means of precipitation and 2m air temperature, averaged across 2002-2020. a) Precipitation MAM (March, April, May) b) Precipitation JJA (June, July, August) c) 
Precipitation SON (September, October, November) d) Precipitation DJF (December, January, February) e) 2m air temperature MAM (March, April, May) f) 2m air temperature JJA (June, July, 
August) g) 2m air temperature SON (September, October, November) h) 2m air temperature DJF (December, January, February).
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4.3 OVERVIEW OF ALL PREDICTOR VARIABLES 

A number of predictor variables are considered to be incorporated in the machine learning 

models for predicting the SUHI. These predictor variables summarised in Table 4.4. Here the 

short names for the variables are shown, and for the duration of the thesis, variables will be 

referred to by these. The physical meanings of the predictor variables are also included, to 

show how these variables related to the SUHI. Note that many of these variables are 

potentially a measure of the same impacts, and therefore are likely to be correlated, which is 

discussed in this section. Essentially the aim of this is to find the variables which most 

represent the factors that lead to the formation of the SUHI (section 2.2).  
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Table 4.4 Predictor variables considered for the machine learning predictive model for the SUHI.  

Predictors Short name Units Variable Physical Meaning  

Rural Enhanced 

Vegetation Index 

EVI_R None Measure of rural vegetation 

cooling 

Urban Enhanced 

Vegetation Index 

EVI_U None Measure of urban vegetation 

cooling 

Urban - Rural Enhanced 

Vegetation Index 

EVI_D None Measure of urban- rural 

differences in vegetation cooling 

Evaporative Fraction EF None Measure of latent heat cooling 

Net Surface Solar 

Radiation with seasonal 

cycle removed 

SSR_NO_SEASON W/m2 Measure of radiative heating 

Relative Humidity RH None Measure of latent heat cooling 

Total Precipitation TP m Measure of latent heat cooling and 

soil moisture 

Log10(City Area)  LOG_AREA None Measure of impervious surface 

lacking latent heat cooling 

City Eccentricity ECC None Measure of distance to the rural 

area from city points (further away 

means less benefit from green belt) 

Rural White Sky 

Albedo 

WSA_R None Measure of decreases of radiative 

heating in rural area 

Urban White Sky 

Albedo 

WSA_U None Measure of decreases of radiative 

heating in urban area 

Urban - Rural White 

Sky Albedo 

WSA_D None Measure of urban- rural 

differences in radiative heating  

Urban – Rural 

Elevation 

ELEVATION_D m Measure of elevation cooling 

differences 

Rural Elevation 

Standard Deviation  

STD_ELEVATION_R m Measure of rural elevation cooling  

Urban Elevation 

Standard Deviation 

STD_ELEVATION_U m Measure of urban elevation 

cooling  

Urban – Rural 

Elevation Standard 

Deviation  

STD_ELEVATION_D m Measure of elevation cooling 

differences 
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There is a high likelihood of the chosen variables being correlated, which can lead to 

complications and should be considered before fitting statistical and machine learning models 

(section 3.5). Dormann et al (2013) review various methods of dealing with collinearity, and 

contrast different predictive models in terms of their robustness to collinearity. They found 

correlation coefficients of |r| > 0.7 to be a threshold of where the model estimation will be 

severely distorted and therefore should be avoided.  Figure 4.28 shows a matrix of the Pearson 

correlation coefficients for the potential input variables. There are 7 pairs of variables which, 

ideally, should not be used in a model together in order to meet the threshold of 0.7 for the 

magnitude of the correlation coefficient, listed in Table 4.5.   

 

Figure 4.28 Pearson Correlation Coefficients for the input variable candidates. Variables with a correlation 

coefficient of greater than 0.7 are shown in orange and variables with a correlation coefficient of less than -0.7 

are shown in grey.   
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Table 4.5 Highly correlated pairs of variables. The listed variables have Pearson correlation coefficients of above 

0.7 or less than -0.7 and will not be used in any models together. 

Variable 1  Variable 2  Pearson Correlation 

Coefficient 

EF RH 0.84 

EVI_R EVI_U 0.89 

EVI_R EVI_D -0.83 

WSA_R WSA_U 0.94 

WSA_R WSA_D -0.73 

STD_ELEVATION_R STD_ELEVATION_D -0.89 

STD_ELEVATION_R STD_ELEVATION_U 0.73 

 

A number of variables that can impact the SUHI are identified, but as only one of a pair of 

correlated variables can be included in the model, a variable selection process must be carried 

out. Therefore, all possible combinations of variables are investigated using the RR. This 

model is used as it is fast to run and thereby makes such a brute force method feasible. REFR 

(and other ML models considered) are very slow to fit when containing many variables, and 

do not have any variable ranking systems via which removal of non-contributing variables can 

be made. Performance statistics for each number of variables is generated, and the optimum 

variable combination is chosen. 

4.4 MODELLING THE 13:30 SUHI 

In this section, first the best ML model for prediction of the 13:30 SUHI_MEAN is identified 

and assessed for the case of extrapolation to warmer climates.  

This (a) involved the optimization of the model considering different possible combinations 

of predictor variables and (b) the comparison of various linear and non-linear regression 

approaches for the predictive model in the form of MLR, RR, RFR, and RERF. Whilst the 

RERF was the chosen approach, it is important for the other models to be used as a comparison 

to demonstrate the more complex model is an improvement (needless complexity should be 

avoided). Secondly, the best model configuration is interpreted with respect to the predictive 

relationships it identified, which will also be important to inform any predicted changes under 

future climate scenarios. 

Identifying the best set of predictor variables 

Following this strategy, the first step is to identify which combination of predictor variables 

should be used. To do this, SUHI_MEAN is predicted as a function of all possible predictors. 
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For a fast optimisation and selection process, RR was used to fit the models. This results in 

multiple RR models, containing all possible combinations of predictor variables from single 

predictor variable models to a model with 16 predictor variables (the total number of predictor 

variables, see Table 4.4). The models which contain correlated variables are then discarded, 

and now the maximum number of possible variables is 12. For each number of variables, from 

1 to 12, the best RR model was selected based on training data performance statistics. Figure 

4.29 shows the performance statistics R-squared and RMSE for these RR models. In the plot, 

it can be seen that at 8 variables (on the x-axis), there is an ‘elbow’, marked with a red line. 

Before this elbow point, adding additional predictor variables to the model improves its 

performance statistics, but after this point, there is no additional gain by the inclusion of more 

predictors. Therefore, 8 variables are a good choice for the number of predictor variables to 

be used. The best performing RR model contained the predictor variables EVI_U, EVI_D, 

LOG_AREA, WSA_D, ELEVATION_D, RH, TP, and STD_ELEVATION_U. 

 

Figure 4.29 Performance statistics (R-squared and RMSE) for the best performing models for each number of 

predictor variables, with SUHI_MEAN as target variable. The red line marks the ‘elbow’ of the plot, taken to be 

where the addition of further variables will not improve model performance.  

Identifying the best regression method 

Multiple models are evaluated, and selection was made based on two criteria. The first of these 

was the performance statistics, R-squared and RMSE, and the second was the ability of the 

model to be used for potential extrapolation. Table 4.6 shows the training and test performance 

statistics for the RR, RFR and RERF models (further details on the model fittings such as 

hyperparameters and run times, and the other models examined can be found in the appendix 

section A.3).  

Based the test data, the best performing model is the REFR, with a R-Squared of 0.87 and 

RMSE of 0.86 °C, although the performance of the RFR is around the same. Comparison of 

the training and test scores for the models also indicates if the models are doing a good job of 
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capturing the underlying relationships within the data or are overfitting to this particular 

dataset. Overfitting is most likely with the RFR (section 3.5), and this could be the case here 

to some extent as this model has the biggest decrease from training to test performance, 

although the test performance is still high. RR performance statistics show very little change 

from training to test datasets, which builds confidence in this model fitting the relationships 

between predictor variables and the SUHI_MEAN. The RERF, being a hybrid model of both 

the RR and RFR (see section 3.5), benefits from both the higher performance in terms of test 

statistics from the RFR and the better fit of the underlying relationships from the RR. To give 

a visual interpretation of the REFR performance, Figure 4.30 shows the REFR Predictions vs 

Observations scatter plots. Here it can be seen that the model is doing a good job at capturing 

both the positive and negative SUHI_MEAN magnitudes.  

Table 4.6 Performance Statistics for the RR, RFR and RERF models.  

Model  Train R-

squared 

Test R-

squared 

Train 

RMSE 

Test 

RMSE 

RR 0.78 0.77 1.14 °C 1.14 °C 

RFR  0.90 0.85 0.77 °C 0.85 °C 

REFR 0.90 0.87 0.77 °C 0.86 °C 

 

The scatterplots in Figure 4.30 are used to assess if there is any model bias, by comparison of 

the line of best fit to the y = x line. This indicates the model predictions are relatively unbiased, 

with the intercept remaining the same for test and train data at -0.05, and the gradient close to 

1, at 1.03 for the training data and 1.02 for the test.  
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Figure 4.30 Predictions versus observations scatter plots for RERF a) train (odd years) and b) test (even years). 

The black line shows y = x, the red line a line of best fit (least squares fit), and the yellow line a 90% prediction 

confidence interval.   

As discussed in 3.5, RERF is a hybrid of RR and RFR, using a ‘base’ model (RR is this case) 

to make a prediction and correcting this using a RFR prediction of the residuals. Figure 4.31 

shows the predictions versus observations plots for this base model. The improvement can be 

seen clearly in the predictions for the negative SUHI_MEAN. In the RR base model, the model 

is not able to capture the SUHI_MEAN’s below around -2.5 °C, whereas the RERF model is 

a marked improvement. The residuals are also smaller, as expected, with the prediction 

interval for the line of best fit 0.5 °C smaller for the test data.  

 

Figure 4.31 Predictions versus observations scatter plots for a RR fit, the base function which is used in the 

RERF a) train (odd years) and b) test (even years). The black line shows y = x, the red line a line of best fit (least 

squares fit), and the yellow line a 90% prediction confidence interval. The RERF is a significant improvement 

upon using the RR base model alone.  
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The second consideration of the model selection process was the model’s ability to 

extrapolate. Both RR and REFR have been tested and found to perform well under 

extrapolation (Zhang et al., 2019; Nowack et al., 2021), whereas RFR does not.  

The issue with extrapolation in RFR can be seen in the ALE plots (section 3.5) of the different 

models. Figure 4.32 shows and the ALE plot for the EVI_D variable, for both the REFR and 

RFR. For the lowest and highest values of EVI_D, the RFR predicts no change in the 

SUHI_MEAN for incremental increases or decrease at these values. This is due to the 

mechanisms of the model, explained in section 3.5. The RFR prediction of a new datapoint is 

determined by the mean value of all the observations on the ‘leaf’ the new datapoint is 

assigned to. So, if a new datapoints has an EVI_D value of 0.15, but the maximum EVI_D of 

the dataset is 0.08, the prediction for this datapoint would be the same if its EVI_D was 0.08 

or 0.15.   

 

Figure 4.32 Accumulated Local Effects (ALE) plot for the predictor variable EVI_D. The ALE plot is a measure of 

how increasing (or decreasing) EVI_D impacts the prediction of SUHI_MEAN. The y-axis shows the change in the 

prediction. Shown in blue is the REFR and in orange is the RFR predicted effect on EVI_D. Further details on ALE 

plots can be found in section 3.5.  

As the RERF has the RR as its base model (section 3.5), the ALE plot shows no saturation at 

either end, meaning the model is able to better predict outside of the training data range, with 

the assumption that the underlying relationships remain the same for values outside of the 

range.   
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To further examine the ability of the models to extrapolate, a training test data split using the 

early years to train and later years to test was fitted. Figure 4.33 shows the results for this split. 

The test data still shows similar performance, meaning reasonable confidence can be placed 

in the model ability to extrapolate to warmer climates due to climate change.  

 

Figure 4.33 Predictions versus Observations Scatter Plots for 13:30 RERF a) train (2002-2011) and b) test 

(2012-2020) years. The black line shows y = x, the solid red line a line of best fit (least squares fit), and the 

dotted red line a 90% prediction confidence interval.   

The ability of the RERF to extrapolate to MEAN_SUHI values outside of the training data 

range is also examined by taking the 10th percentile plus 90th percentile as the test data, and 

training on the middle 80%. This resulted in all data with SUHI_MEAN less than -1.4 °C and 

greater than 4.8 °C being in the test dataset, and data between the two values in the training. 

Figure 4.34 shows predictions versus observations scatterplots containing both test and train 

data for RERF, RR and RFR models fitted using this data split. Plots for the RERF (Figure 

4.34a) and RR (Figure 4.34b) are similar. This similarity is anticipated, as the RERF uses the 

RR as its base model, and therefore maintains the same fit of the underlying relationships 

within the data.  

The RERF and RR both have similar lines of best fit, with the intercept of -0.42 and gradient 

of 1.28 for the RERF and -0.45 and 1.27 as intercept and gradient for the RR. There is also a 

similar fit to between these RERF and RR scatterplots (Figure 4.34a and Figure 4.34b) and 

Figure 4.31 of the RR model fitted on the alternate years (odd - even) test train split. The RR 

(and RERF with RR as its base model) is therefore managing to capture the underlying 

relationship well, as it is performing similarly with and without the extremes. In all three of 

these cases (RERF, RR fit on the extrapolation test dataset and RR fit on alternate years 

dataset), the ML models capture the high extremes better than the low extremes. The RERF 

trained on alternate years (Figure 4.30) is able to capture these low extremes, indicating there 
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is some non-linearity or change in relationship for these strong negatively SUHI_MEANs, 

which is not captured in the data when the model is fit without these in the training data. Figure 

4.34c shows the predictions versus observations scatterplot for the RFR. This demonstrates 

the pitfalls of RFR with regards to extrapolation, which are explained earlier with use of Figure 

4.32. The training data for the extrapolation was capped between -1.4 °C and 4.8 °C, and this 

can be seen clearly in the scatterplots, with the predictions made using the model limited to 

between this training data range.  

  

Figure 4.34 Predictions versus observations scatterplots for a) RERF, b) RR and c) RFR, trained on the middle 

80% of the SUHI_MEAN values and tested on the 10% of lowest and 10% of highest values. The scatter plots here 

show 100% of the data.  

Another assessment made on the RERF was to examine the ability to the ability to predict the 

SUHI_MEAN on an individual city level, to identify if there any cities for which the RERF 

significantly underperforms. There are 104 cities in the dataset, so one city for which the 

RERF performs poorly could potentially be masked in the dataset overall RMSE if the other 

cities are captured well. Figure 4.35 shows RMSE for the selected cities on an individual basis. 

Umuahia (Nigeria) has the highest RMSE, at 1.65°C. This is likely down to a limited amount 

of data for this city, as many images did not pass the quality assessment checks, highlighted 

in section 3.2. Another factor could be that Umuahia is only just over the threshold for cities 

not being near the coast, at a 100.4 km distance from the coastline. Penetration of sea breezes 

at 100 to 150 km can be found in the tropics and subtropics (section 4.1), so this could be 

driving the differences for this city.  
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Figure 4.35 RERF RMSE for each individual city, calculated for the 13:30 SUHI_MEAN.  

Interpretation of the predictive relationships found with RERF 

Opening up the ‘black box’ and understanding the relationships within machine learning 

models is highlighted in section 3.5, motivated by the need for trust, interaction, and 

transparency of models. In Figure 4.36, the relationships identified by REFR are illustrated 

through the mean of ALE plots (section 3.5). The RR base model is also included, in yellow, 

to show how the model differs from its linear base. An assessment of the relationships based 

on these plots is as follows:  

As EVI_U increases, the mean SUHI magnitude increases. At first, this appears to be contrary 

to expectations, because higher vegetation densities in cities would typically be associated 

with cooling effects. However, in a model based on correlations, this can be interpreted to be 

the result of the EVI_R and EVI_U being highly correlated (r = 0.89), as shown in Table 4.5, 

and the presence of the EVI_D variable as additional predictor (whose relationship in the ALE 

plots is negative). Cities in areas of abundant vegetation tend to have stronger positive SUHIs, 

and as EVI_U and EVI_R are correlated, so that a higher EVI_U implies statistically a higher 

EVI_R. As EVI_D becomes less negative the difference between urban and rural vegetation 

gets smaller, the mean SUHI magnitude decreases. In summary, the rural cooling aspect the 

vegetation is therefore captured via the EVI_U variable, whereas the extent to which the urban 

environment is cooled in comparison by vegetation is in this set-up represented by the EVI_D 

variable.  

As LOG_AREA of the city increases, its mean SUHI magnitude increases. This follows 

expectation from current literature (section 4.2).  

WSA_D (urban – rural) impact on the SUHI_MEAN shows a positive relationship between 

the two, with a higher urban (in comparison to rural) albedo leading to a higher SUHI_MEAN. 

The expected relationship would be a negative one, with a larger albedo difference meaning 

more solar radiation is reflected from the urban area than the rural, leading to a smaller (or 

more negative) SUHI_MEAN. The complex relationship could be due to seasonal effects, 
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with a study focusing on cities in China finding the SUHI- WSA_D relationship to be negative 

during the winter (Yao et al., 2018), and a study with global cities finding a positive 

relationship during the day and a negative relationship at night (Peng et al., 2012). It also may 

be the case that the albedo difference variable is picking up on landcover type. Surfaces such 

as forests have low albedos, and desert areas have high albedos (and cities in desert regions 

tend to have more vegetation than the rural area). The vegetative cooling effect overrides the 

low albedo during the day, but the increased solar radiation absorbed keeps more vegetated 

areas warmer during the night-time.  

The ELEVATION_D (urban – rural) ALE plot shows as a negative relationship, although it 

is not completely linear. In areas where the city is higher than the surrounding rural area, the 

SUHI_MEAN will be smaller, and in areas where the rural area is higher than the city, the 

SUHI_MEAN is larger. This shows the cooling impact of elevation, as areas higher up 

experience lower temperatures.  

As RH increases, mean SUHI decreases. This is in line with other studies, which find a 

negative correlation between the two, detailed in section 2.4, and is likely due to months with 

high RH being associated with cloudier conditions.   

Increasing TP is shown to increase the SUHI_MEAN. This indicates that wet soils lead to 

more rural evaporative cooling (compared to its simultaneous cooling effect on the urban 

area). There will be some interaction between TP and RH, as the variables are connected. 

Where wet soils are combined with lower RH, the conditions would be ideal for evaporative 

cooling to take place.  

STD_ELEVATION_U has a less clear effect on SUHI_MEAN in the ALE plots. For 

STD_ELEVATION_U of less around 60m, i.e., in relatively flat cities, there appears to be a 

minimal, noisy, effect, but after this a negative correlation occurs. In conclusion, hillier cities 

have a smaller (or more negative) SUHI_MEAN. This could be down to some impact of 

elevation, or potentially related to urban roughness. If the urban surface is rougher, there will 

be a larger area via which the surface can convect heat to the lower atmosphere.  
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Figure 4.36 13:30 SUHI_MEAN ALE plots for the REFR (blue), with the base RR model included (in orange), to 

show the differences between the two. Details of ALE plots are given in section 3.5. The ALE plots were fit using 

test data. Training data ALE plots show the same relationships.   

Inference made about the UHI through these ALE plots should be taken with some caveats, 

regarding the differences between the SUHI and CUHI during this time. In section 2.3.1, it 

was outlined how studies have shown during the daytime differences between the SUHI and 

CUHI are greatest. As the application of studying the UHI is the proposal of solutions to 

mitigate uncomfortable urban air temperatures, this limits the utility of daytime SUHI. The 

quantified impact on the SUHI_MEAN of decreasing EVI_D, for example, may not translate 

to the same change in the CUHI. During the nighttime, the SUHI-CUHI correlation is 

stronger and for this reason studies often focus on nighttime SUHIs (e.g., Feng et al., 2019; 

Lai et al., 2021). Additionally, the nighttime UHI is important as air temperatures during this 

time are important for human health and comfort. During the night, cool temperatures are 

required to recover from the heat of the day, and heatwave definitions include nighttime low 

thresholds in addition to daytime highs (Robinson, 2001).   
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4.5 MODELLING THE 01:30 SUHI 

The variable selection and model fitting were carried out for the 01:30 overpass using the 

same methodologies as the 13:30. This allows for comparison of the different mechanisms 

driving the night-time SUHI as opposed to the SUHI during the day. Night-time SUHI is also 

of significance as it found to be more closely related to the CUHI (section 2.3.1), which is 

important for human health and comfort.   

Identifying the best set of predictor variables 

The same steps as for the 13:30 overpass were carried out for the 01:30 overpass to determine 

the best set of predictor variables. Figure 4.37 shows the performance of the first variable 

selection step for the 01:30 overpass. Something of note is that despite the R-squared 

performance statistic being much lower than the RR model for the 13:30 overpass, the RMSE 

is lower. This demonstrates one of the caveats with using R-square (section 3.5) in it being a 

relative rather than absolute value. The variance of the 01:30 overpass SUHI observations 

about the mean is relatively small, which means when the variance captured by the model is 

scaled by this, it gives a lower R-squared. However, a positive R-squared score still shows the 

model does a better job than simply using the mean of all observations. In fact, based on 

RMSE, the prediction error is small.  A lower performance in terms of R-squared is found in 

other studies when predicting the night-time SUHI as opposed to the daytime (Peng et al., 

2012; Schwarz and Manceur, 2015). As can be seen in Figure 4.37, a set-up with 11 variables 

showed the best generalization performance. These variables are SSR_NO_SEASON, EVI_U, 

EVI_D, ECC, LOG_AREA, WSA_U, WSA_D, ELEVATION_D, RH, TP, 

STD_ELEVATION_R. 

 

 

Figure 4.37 Performance statistics (R-squared and RMSE) for the best performing models for each number of 

variables for the 01:30 overpass. The red line marks the ‘elbow’ of the plot, taken to be where the addition of 

further variables will not improve model performance.  
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Identifying the best regression method 

Evaluation of the same modelling techniques used for the 13:30 SUHI_MEAN gives the same 

model ranking, with the RERF performing the best on both train and test data. The difference 

between the performance statistics of the models in terms of R-squared is notable and can be 

seen for the RR, RFR and RERF in Table 4.7. Whilst the R-squared performance in predicting 

the 01:30 SUHI_MEAN is lower than the 13:30 (Table 4.6), RMSE of the 01:30 models is 

better. The 01:30 models are capturing less of the overall variance (as overall variance is 

lower), but the absolute error in the prediction is smaller.  

Table 4.7 Performance Statistics for the 01:30 RR, RFR and RERF models. 

Model  Train R-

squared 

Test R-

squared 

Train 

RMSE 

Test 

RMSE 

RR 0.33 0.33 0.67 °C 0.68 °C 

RFR  0.63 0.58 0.50 °C 0.54 °C 

REFR 0.73 0.67 0.43 °C 0.48 °C 

 

Figure 4.38 show predictions vs observations scatterplots for the RERF predicted 01:30 

SUHI_MEAN. The REFR is not able to capture the stronger negative SUHI_MEANs, which 

can be seen by the points which are below zero for the observations. There are relatively few 

points where this occurs, which makes it difficult for the model to capture this behaviour, and 

it also could be the case that these negative SUHIs are influenced by a variable which it not 

included in the model, for example, windspeed. As the model is better able to capture the 

SUHI at the higher end of the range, the line of best fit is not as close to the y = x line as the 

for the 13:30 SUHI.  
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Figure 4.38 01:30 Predictions versus Observations Scatter Plots for RERF a) train (odd years) and b) test (even 

years). The black line shows y = x, the solid red line a line of best fit (least squares fit), and the dotted red line a 

90% prediction confidence interval.   

An assessment of the RERF prediction of 01:30 SUHI_MEAN for the individual cities is 

made, shown in Figure 4.39. For all cities, the RMSE is less than 1 °C. As expected from the 

overall RMSE, this is generally lower than the RMSE daytime RERF performance, where the 

maximum RMSE reached 1.65 °C. However, it is not the case that areas where the error in 

SUHI_MEAN is highest during the day is the same as those where the error during the night 

is high, indicating the features or mechanisms that lead to a city having a SUHI_MEAN that 

is difficult to capture during the day do not apply in the same way during the night. There is 

also no clear relationship between the climate type and the cities with higher RMSE, which 

points to the possibility of there being a city form related property, such as building height 

/density, missed that causes the prediction error.  

 

Figure 4.39 RERF RMSE for each individual city, calculated for the 01:30 SUHI_MEAN.  

Interpretation of the predictive relationships found with RERF 

Figure 4.40 shows ALE plots for the test data, where the REFR ALE is plotted in blue, with 

the RR base model in orange to show how the REFR differs from the linear base. Based on 
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the ALE plots, changes in RH have one of the larger impacts on the SUHI (spanning over 

1.5°C), which agrees with the findings of Lai et al (2021) for the night-time SUHI. The 

SUHI_MEAN - RH relationship is the same for the 01:30 ALE plots as it is for the 13:30 ALE 

plots, with SUHI_MEAN decreasing as RH increases.  

The relationship with EVI_D is also found to be the same for both overpass times. This is in 

agreement with other studies which find urban greening produces a cooling effect during both 

the day and night (Liu et al., 2022), as increasing urban vegetation will decrease EVI_D in 

most cases. EVI_U, however, has less of a clear relationship for the nocturnal SUHI. For very 

small amounts of vegetation, there does not appear to be a clear relationship, then after this 

the relationship is weakly positive. However, taking into account the range of ALE values on 

the EVI_D plot, the variable influence is small. This confirms the theory that the SUHI during 

the day is known to be more influenced by land cover types, whereas the night-time SUHI 

does not have the same association.  

The SSR_NO_SEASON variable has a negative relationship with the SUHI_MEAN. This 

represents a lagged relationship, and how solar radiation during the day can be stored in 

materials and released at night as the materials cool. When there is more solar radiation during 

the day, there is a decrease in the 01:30 SUHI_MEAN. If the rural area has wet soils, this 

relationship could be due to the higher thermal admittance of wet soils then urban materials 

(see section 2.4) meaning the soils take in more energy during the day, heating up slowly (so 

the 13:30 SUHI_MEAN would be smaller) and also cooling slowly during the night, giving a 

smaller urban- rural temperature difference.  

The effect of ECC on the SUHI_MEAN is mixed, showing an increase in magnitude as the 

city shape becomes less circular, then have no impact until it reaches around 0.8, where the 

relationship is unclear. The impact of the changes in ECC are relatively small overall (less 

than 0.2°C), and it is likely this variable could be removed if the model was to be used for 

predictive purposes.   

LOG_AREA shows the same relationship with SUHI_MEAN for 01:30 as 13:30, with the 

magnitude increasing as the city size increases.  

WSA_U and WSA_D both have a negative relationship with SUHI_MEAN at 01:30. Again, 

this is likely a lagged relationship relating to the incoming solar radiation during the day. 

Increasing albedo of the city (in comparison to rural surroundings) leads to a smaller night-

time MEAN_SUHI. If more solar radiation is reflected rather than absorbed in the urban area 

during the day, it will be quicker to cool and therefore urban – rural temperature differences 

will be smaller. Paired with SSR_NO_SEASON being found more influential at night than 

during the day, the WSA relationships show how the night-time SUHI is driven by differences 
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in rates of cooling, described in section 2.2, which then relates to the amount of heat stored in 

the city and rural materials during the day.  

As with the 13:30 MEAN_SUHI, a negative relationship is found with the ELEVATION_D 

at 01:30.  

The relationship between MEAN_SUHI and TP is negative at 01:30, in contrast to the 

relationship at 13:30 which is positive. This could be related to the higher thermal admittance 

of wet soils (section 2.4), which will cool slower than dry soils during the night.  

Finally, the STD_ELEVATION_R variable shows no clear relationship with the 

SUHI_MEAN. Figure 4.41 shows the cities grouped into categories of STD_ELEVATION_R 

based on the changes in trend on the ALE plot. Here, there is some spatial clustering of cities 

which are close to each other (and therefore likely to be similar based on this rather than the 

variable STD_ELEVATION_R itself). This indicates overfitting for this predictor variable, 

and if using REFR to make predictions of the 01:30 SUHI_MEAN this predictor variable 

should be investigated further and likely should be removed.  
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Figure 4.40 01:30 SUHI_MEAN ALE plots for the REFR (blue), with the RR base model included (in orange), to 

assess how the two models differ. Details of ALE plots are given in section 3.5. The ALE plots were fit using test 

data. Training data ALE plots show the same relationships.   
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Figure 4.41 Cities grouped by STD_ELEVATION_R, based on the ALE plot for the 01:30 overpass. Here, the cities 

in blue represent the large values at the start of the ALE plot (where the contribution to SUHI_MEAN prediction 

is a large increase), and the city in orange where there is a sharp drop to negative ALE values. The cities in purple 

and green are where the ALE values are negative and around the same (although not completely flat), and the red 

values are at STD_ELEVATION_R 96 to 126, where the ALE values are positive. Here it can be seen there is some 

spatial grouping between the blue cities, seen in India and China, and the purple and green cities (which have the 

negative ALE values) are close together.  

The results of the ALE plots and Figure 4.41 indicate the ECC and STD_ELEVATION_R 

variables in the RERF are overfit and therefore before using the model to make predictions 

they are removed. Table 4.8 shows a comparison of the performance statistics from the 

resulting RERF fit with 9 variables (RERF (9)), with the RERF performance statistics for the 

previous 11 variable model (RERF (11)). As would be expected, there is a decrease in the 

performance, but the removal of the variables potentially causing overfitting reduces the 

difference between the test and training performance statistics. The performance statistics for 

the RERF (9) still outperform the other models, as can be seen in Table 4.7.  

Table 4.8 Performance statistics for the RERF fit with 11 variables – the initial fit, and with 9 variables – the fit 

with the 2 overfitting variables removed.  

Model  Train R-

squared 

Test R-

squared 

Train 

RMSE 

Test 

RMSE 

REFR (11) 0.73 0.67 0.43 °C 0.48 °C 

REFR (9) 0.68 0.65 0.46 °C 0.49 °C 

 

The predictions vs observations scatter plots and performance statistics for this model can be 

seen in Figure 4.42. Comparison of this with Figure 4.38 shows the RERF (9) is not as 

effective as capturing the largest positive SUHI_MEAN magnitudes as the RERF (11). 

Based on this, it was likely these positive SUHI_MEANs were captured due to overfitting, 

rather than the model fitting the underlying relationships between SUHI_MEAN and the 

predictor variables at this extreme end.  
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Figure 4.42 01:30 Predictions versus Observations Scatter Plots for RERF with 9 variables (ECC and 

STD_ELEVATION_R removed) a) train (odd years) and b) test (even years). The black line shows y = x, the solid 

red line a line of best fit (least squares fit), and the dotted red line a 90% prediction confidence interval.   

The robustness of the RERF was further tested again for the 01:30, using a training test data 

split using the early years to train and later years to test. Figure 4.43 shows the results for 

this split. The test data still shows similar performance, meaning reasonable confidence can 

be placed in the model ability to extrapolate to warmer climates due to climate change. 

 

Figure 4.43 Predictions versus Observations Scatter Plots for 01:30 RERF (9) a) train (2002-2011) and b) test 

(2012-2020) years. The black line shows y = x, the solid red line a line of best fit (least squares fit), and the 

dotted red line a 90% prediction confidence interval.   

Figure 4.44 shows the RMSE for the individual cities with the RERF (9). Comparison with 

Figure 4.39, the individual city performance for the RERF (11) shows the RMSE does not 

change greatly for the cities, which is to be expected. However, the maximum individual city 

RMSE is reduced. In the RERF (11), the highest RMSE was for Bikaner, India at 0.99 °C 
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and second largest Lexington-Fayette, USA at 0.91 °C. In the REFR (9) Bikaner has an 

RMSE of 0.72 °C and Lexington-Fayette is now 0.82 °C. Lexington-Fayette is now the 

largest RMSE, alongside Anshun, China which has increased on a RMSE of 0.77 °C to 0.82 

°C. Overall, the RMSE reduces for 53% of cities and increases for 47% of cities. Based on 

the individual city assessment, despite the overall performance of the RERF (9) being 

slightly worsening in terms of overall performance statistics, it can be seen on an individual 

city basis, the tendency is to improve the prediction. Removing the variables that seem to 

cause overfitting has improved the model ability to generalise.   

 

Figure 4.44 RERF (9) RMSE for each individual city, calculated for the 01:30 SUHI_MEAN.  
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5 USING A STATISTICAL MODEL TO EXAMINE THE 

FUTURE SUHI  

In section 4, a machine learning model able to predict the SUHI_MEAN under a range of 

different climate regimes is developed. This section focuses on how this model can be utilised 

in examining how the SUHI_MEAN will respond to changes in climate.  

It was seen in section 4 that there was the 01:30 SUHI_MEAN has less variability than the 

13:30 SUHI_MEAN. Table 4.3 shows the annual 01:30 SUHI_MEAN is positive for all cities, 

and the standard deviation of the 01:30 SUHI_MEAN is 0.6 °C, opposed to the positive 13:30 

SUHI_MEAN, which has a standard deviation of 1.3 °C. Based on this, it is apparent the same 

changes in climate and vegetation can be expected to produce a larger absolute change in 

SUHI_MEAN during the day in comparison to during the night.  

The focus in this section is how the SUHI_MEAN changes in each city. For reference and 

context, Figure 5.1 shows the historical annual mean 13:30 SUHI_MEAN and Figure 5.2 the 

01:30 SUHI_MEAN on top of which these changes are expected to occur. 

 

Figure 5.1 Annual mean SUHI_MEAN at 13:30 for the individual cities, based on the 2002-2020 dataset.  

 

Figure 5.2 Annual mean SUHI_MEAN at 01:30 for the individual cities, based on the 2002-2020 dataset. 

Before any analysis is carried out, the REFR model is refit on the entire dataset (with the same 

hyperparameters found using the training data) for both the 13:30 and 01:30 fits. This will 
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give the best constrained model on the largest possible training data range, still with the 

objectively best hyperparameter settings for the REFR fit.  

The changes in SUHI_MEAN presented in this section are investigated by changing values of 

the predictor variables in the dataset, and examining how this alters the REFR prediction. This 

is done by subtracting the RERF prediction made on the unaltered dataset from the RERF 

prediction made on the dataset with changes in predictor variables. The difference between 

predictions is used, rather than difference between observations (the actual SUHI_MEAN 

values) and REFR predictions, to ensure that any changes are not simply due to the residual 

error in the predictions.    

5.1 SENSITIVITY ANALYSIS 

To examine the extent to which changes in the predictor variables will impact each individual 

city, sensitivity tests are carried out. These involve changing one predictor variable at a time 

and assess the impact this has on the SUHI prediction. In these tests, all other predictor 

variables remain at 2002-2020 levels. 

City Expansion 

The extent of future urban expansion is uncertain, as it is conditional on various 

socioeconomic and practical factors (if there is space for the city to physically expand) (Huang 

et al., 2019). Additionally, it varies geographically and with time (X. Li et al., 2021), making 

it difficult to determine how expansion in the studied cities can be studied. As this is a 

sensitivity test rather than a projection, a simple approach is employed, and expansion is based 

on past trends.  

To get an idea of how cities might expand in a 10-year period, the least squares line of best fit 

is used to predict the area of a city, for the most recent 10 years (2010 to 2020). This is then 

extrapolated to 2030 to get a quantification of city expansion, and the LOG_AREA for 2030 

calculated. Figure 5.3 shows a map of how the selected cities will expand in a 10-year period 

if they were to continue the same expansion rate of area as for the years 2010 to 2020. The 

cities with the largest increases in LOG_AREA, with an increase of 0.22 log(km2) are Gombe 

(Nigeria) and Mymensingh (Bangladesh), where the area increase is 33 km2 and 11 km2 

respectively. Marrakech (Morocco) has the third largest increase in LOG_AREA (0.21 

log(km2)), and also the largest increase in area of 95 km2. Birmingham (USA) also has a large 

increase in area, of 93 km2, but as the city area is already very large (section 4.2 discusses the 

city size variable) this only translates to a 0.06 log(km2) increase in LOG_AREA. This 

demonstrates the saturation of the SUHI_MEAN when city area becomes very large.    



Using a statistical model to examine the future SUHI 

 

128 
 

 

Figure 5.3 A projection of LOG_AREA in 10 years from 2020, based on the current trajectory from 2010 to 2020. 

Changes in SUHI_MEAN based on these LOG_AREA trends were created by calculating the 

difference between a ‘current’ RERF prediction of SUHI_MEAN made based on the 2020 

LOG_AREA, and a ‘future’ RERF prediction made on the estimated 2030 LOG_AREA.  

The differences in the predictions made for the 13:30 overpass can be seen in Figure 5.4b. To 

give this context in terms of what this means for the overall 13:30 SUHI_MEAN, Figure 5.4a 

shows the RERF prediction for the annual mean based on the 2020 area. The largest decrease 

is in Kandahar (Afghanistan), where there exists a negative annual 13:30 SUHI_MEAN, so 

this becomes more negative, going from -1.45 °C to -1.95 °C (0.5 °C decrease). The largest 

increase is in Zacatecas (Mexico), where there is also a negative annual 13:30 SUHI_MEAN, 

so this becomes less negative, from -1.93 °C to -1.42°C (0.52 °C increase). Interestingly, these 

cities both have the same 2020 LOG_AREA value of 1.8 log(km2) and the same increasing 

trend which leads to a 2030 LOG_AREA of 2.0 log(km2) for both cities. This shows how the 

interactions of other predictor variables can determine how the increasing area impacts the 

predicted 13:30 SUHI_MEAN. For example, in Kandahar, the EVI_D is 0.01, whereas in 

Zacatecas it is -0.04. In Kandahar, an increase in area leads to an increase in vegetation cooling 

in the city, as there is more vegetation in the city than in the surrounding area, whereas this is 

not the case in Zacatecas. The assumption made here is that the urban area which is added to 

the city via its expansion has the same properties as the current city area (i.e., same amount of 

greenspace/ vegetation). 
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Figure 5.4 Investigation into how cities may expand and how this will impact the 13:30 SUHI_MEAN. The plots 

show a) The RERF projected 13:30 SUHI_MEAN based on the area in 2020 b) Based on the predictions of 

LOG_AREA in a), predicted changes in the 13:30 SUHI_MEAN from the LOG_AREA in 2020 to the LOG_AREA 

in 2030 are made using RERF.  

An assessment of the sensitivity of the 01:30 SUHI_MEAN to the same urban expansion was 

made and can be seen in Figure 5.5. Here Figure 5.5a shows the projected SUHI_MEAN with 

the 2020 LOG_AREA, and Figure 5.5b shows the projected differences based on the 

expansion in Figure 5.3. The largest increase in the 01:30 SUHI_MEAN is in Kandahar 

(Afghanistan) going from 1.5 °C to 2.3 °C. Kandahar was also the largest change at 13:30, 

however at 13:30 this was a decrease. This is due to Kandahar having a negative 

SUHI_MEAN during the day, but a positive SUHI_MEAN at night. The city heats up slowly 

in comparison to rural surroundings during the day, then cools down slower than rural 

surroundings during the night. Overall, there is less change in the 01:30 SUHI_MEAN in 

comparison to the 13:30, as the SUHI_MEAN displays less variability during the night.  
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Figure 5.5 Investigation into how cities may expand and how this will impact the 01:30 SUHI_MEAN. The plots 

show a) The RERF projected 01:30 SUHI_MEAN based on the area in 2020 b) Based on the predictions of 

LOG_AREA in a), predicted changes in the 01:30 SUHI_MEAN from the LOG_AREA in 2020 to the LOG_AREA 

in 2030 are made using RERF. 

There are some major limitations to this approach, as many of the cities experience a period 

of rapid growth which plateaus in recent years or have a steady area for earlier years and are 

currently experiencing a period of rapid growth. Based on this, it is unclear if the trends in 

either of these cases will continue as assumed here, and complex factors such as economic 

trends will play a large role. However, this approach does give a picture of how the urban 

growth in 10 years can impact the MEAN_SUHI of these cities, as it is based on past, plausible 

trends.  

Decreasing Rural Vegetation 

The impact of decreasing rural vegetation is examined by decreasing EVI_R. Future decreases 

in EVI_R may occur through deforestation, as forests are cleared for agriculture or logging, 

for example. Under a ‘business as usual’ scenario, Addae and Dragićević (2023) estimate 

global forest size to decrease by 10.5%. Therefore, the impact of a 10% decrease in rural 

vegetation is examined.  

Figure 5.6 assesses the impact of EVI_R decreasing to 90% of the values from the period 2002 

to 2020. Figure 5.6a shows this decrease represented by the absolute values, where for cities 

in more vegetated areas, the vegetation decrease translates as a large decrease in absolute 

terms. EVI_R is integrated into the model in the EVI_D variable, and a decrease in EVI_R 

leads to an increase in EVI_D. Based on the ALE plots (Figure 4.36and Figure 4.40), an 
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increase in EVI_D has the impact of decreasing the SUHI_MEAN, both at 13:30 and 01:30. 

Therefore, the changes shown in Figure 5.6b and Figure 5.6c are as expected, with a decrease 

in EVI_R reducing the SUHI_MEAN. This is driven by rural LST increases (as opposed to 

urban decreases), as less vegetation means less evaporative cooling.  

Comparison with Figure 5.1, the annual 13:30 SUHI_MEANs, highlights the areas with the 

largest positive 13:30 SUHI_MEANs (all the 4 to 6 °C, some 2 to 4 °C) as those being the 

ones which are shown to decrease the most with the EVI_R decrease (0.7 to 0.9 °C). They are 

also the areas with the largest EVI_R decreases, seen in Figure 5.6a. In areas with very little 

vegetation (e.g., the middle east), which have negative 13:30 SUHI_MEANs, there is little 

change with the decrease in vegetation, as it translates to a very small absolute decrease. In 

nine cities (3 in India, 3 in Nigeria, 1 in Angola and 2 in China), the change in 13:30 

SUHI_MEAN flips the sign of the annual SUHI_MEAN from positive to negative, as the rural 

area becomes warmer than the urban. The largest changes in annual 13:30 SUHI_MEAN were 

two cities in the USA, Fayetteville and Visalia (Figure 4.12), with decreases of 0.89 °C and 

0.84 °C respectively (a 32% decrease for both).  

Figure 5.6c shows the changes in the 01:30 SUHI_MEAN. Here the colour scale is different 

to represent the difference between the magnitude of the changes. The 13:30 SUHI_MEANs 

experience decreases of up to 0.9 °C, whereas at 01:30 the largest SUHI_MEAN change is a 

0.15 °C decrease. Again, this is due to less variability in the 01:30 versus the 13:30 

SUHI_MEAN. Comparable to 13:30, the largest reductions in the 01:30 SUHI are where the 

largest EVI_D decreases take place. The largest decreases in annual 01:30 SUHI_MEAN are 

in two US cities, Visalia (experiencing a 7% decrease) and Lexington, which reduces by 12%. 

Areas with little vegetation, mainly in the middle east, have the smallest changes in 01:30 

SUHI_MEAN. 
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Figure 5.6 Investigation into how decreasing rural vegetation will impact the SUHI_MEAN. The plots show a) 

how a 10% decrease in EVI_R translates to the absolute value and b) based on this, predicted changes in the 13:30 

SUHI_MEAN from RERF and c) predicted changes in the 01:30 SUHI_MEAN from RERF. Different colour scales 

are used for b) and c) to highlight the different magnitudes of the changes.   

Urban Greening  

The impact of increasing the vegetation in the city is examined by increasing EVI_U. The 

amount of green space in an urban area is a product of mostly climate, but also socioeconomic 

factors such as human development and population density (Bille et al., 2023). Cities with 

high EVI_U values are those with climatic conditions such as precipitation favourable for the 

growth of vegetation, and urban greening strategies within these cities will need less 

management and irrigation in comparison to cities with small EVI_U, which tend to be in arid 

climates. Maintaining urban vegetation in these cities will be more challenging, as the climate 

conditions are not favourable for its growth.  

This means, for a plausible increase in EVI_U, it follows a percentage increase on the current 

EVI_U is a good approach. Historical trends show mean global urban vegetation increased by 
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30% from 1990–2000, and 5.7% from 2000–2014, potentially driven by either changes in 

climate and carbon dioxide concentrations, urban greening policies, or a combination of the 

two (Corbane et al., 2020). To examine the potential impact of city policies promoting urban 

greening (e.g., green roofs, tree lined streets), a 20% increase in EVI_U is examined, shown 

in Figure 5.7a. This was chosen to account for a continuation of the 5% increasing trend, plus 

a plausible increase of what might be possible under a policy of proactive urban greening.  

As observed for EVI_R increases previously, the absolute value of the EVI_U decrease is city 

specific, and cities in greener areas experience a larger increase. Figure 5.4b shows how this 

increase in urban greening impacts the 13:30 SUHI_MEAN. For all cities, increased urban 

greening results in a smaller 13:30 SUHI_MEAN as urban vegetation driven cooling 

increases. Comparison of figure with Figure 5.1 with Figure 5.4b sees cities which have the 

largest decrease in 13:30 SUHI_MEAN also are those which have the large positive 13:30 

SUHI_MEANs, although for the cities in India with negative 13:30 SUHI_MEANs (those on 

the western side, mostly south), the increase in EVI_U also has a strong cooling influence.   

The impact of urban greening on the 01:30 SUHI_MEAN can be seen in Figure 5.4c. Change 

in the 01:30 SUHI_MEAN with urban greening is smaller than the 13:30 but has the same 

general trend. Cities which have the larger increases in EVI_U experience larger reductions 

in the 01:30 SUHI_MEAN, although there are some exceptions. For example, Zinder (Niger) 

has the largest reduction in 01:30 SUHI_MEAN, but not the largest EVI_D decrease. This 

indicates there are more non-linearities involved in the 01:30 RERF fit. This is reflected in the 

performance statistics (Table 4.7), as the linear base model, RR, captures little of the variance 

(measured by R-squared).  
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Figure 5.7 Investigation into how increasing urban vegetation will impact the SUHI_MEAN. The plots show a) 

how a 20% increase in EVI_U translates to the absolute value and b) based on this, predicted changes in the 13:30 

SUHI_MEAN from RERF and c) predicted changes in the 01:30 SUHI_MEAN from RERF.  

In this section, the sensitivity of the SUHI_MEAN to city related (city area) properties and 

vegetation related properties have been examined. The changes in SUHI_MEAN (at 13:30 

and 01:30) for vegetation, in terms of EVI_R and EVI_U are both clear and intuitive in their 

impact. LOG_AREA, on the other hand, is not as clear-cut as it is dependent on the regional 

climate as to whether an increase enhances a negative 13:30 SUHI_MEAN/positive 13:30 

SUHI_MEAN or causes a negative 13:30 SUHI_MEAN to decrease. This LOG_AREA 

relationship with SUHI_MEAN, where the same increase in LOG_AREA can result in a 

different increase in SUHI_MEAN in different cities highlights the need for region specific 

projections of changes in predictor variables. Figure 5.6 and Figure 5.7, showed how the same 

percentage increase in vegetation leads to varying magnitudes of change in the EVI values, as 

the regions themselves have varying levels of vegetation. The differing abundance of 

vegetation leads to differing potential impacts on the SUHI_MEAN due to vegetation changes. 
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For example, in Brazil, high EVI_R values mean deforestation can have a much larger impact 

on the SUHI_MEAN, whereas in the middle east, where EVI_R is very small, a reduction in 

this value will likely have little impact on the SUHI_MEAN, as the EVI_R change will be of 

a much smaller magnitude (16 cities in Brazil have an overall annual 13:30 SUHI_MEAN of 

3.4 °C and decrease by 0.7 °C, the 12 cities in Syria, Egypt, Iraq, Saudi Arabia and Turkey 

have an overall annual 13:30 SUHI_MEAN of -0.9 °C and decrease by 0.3 °C).  

5.2 CLIMATE PROJECTIONS 

Generating the Predictor Variable Changes 

A key question is how future changes in regional background climate will affect the SUHIs in 

cities of the type considered in this thesis. The impacts of climate change will not be the same 

in each region, and therefore, the changes in each city region, in terms of the predictor 

variables used in the model, will be different. In the following, this will be investigated by 

combining the RERF functions learned from observations with climate model projections for 

future regional changes (i.e., areas surrounding the cities considered) for the predictor 

variables. As outlined in section 2.8, the widest diversity and most consistent set of global 

climate change projections can be obtained from the CMIP6 archive, which is the most recent 

phase of the Coupled Model Intercomparison Project (CMIP). These climate model, or Global 

Climate Model (GCM), outputs - selected for a representative set of GCMs (section 3.4) – are 

used to quantify potential future changes in climate, so they can then be added into the dataset 

of predictor variables (see Figure 3.1).  

In section 5.1, the impact of the potential direct human changes on vegetation (deforestation 

and urban greening) were examined via idealised percentage changes in EVI_R and EVI_U. 

Vegetation is expected to change in the future, due to changes in climate, atmospheric 

constituents (e.g., carbon dioxide concentrations) and other environmental variables, with 

climate change being the dominant factor (Teng et al., 2023). As climatic changes vary from 

region to region, the same can be expected of the vegetation changes, so ESMs must be 

consulted for a realistic snapshot of future changes in the SUHI. These are used via the same 

approach as for the climate variables (projected using GCMs), by use of Earth System Models 

(ESMs).  

As already discussed in section 2.8, a key challenge is that GCM (and ESM) climate 

projections show different rates of warming due to the forcings, feedbacks and 

parameterisations used (Eyring et al., 2019). Looking at climate model projections at one point 

in time can therefore lead to a wide range of temperature increases. I will there pursue an 

alternative approach that looks at when a 2 °C global mean temperature from pre-industrial is 
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reached (Joshi et al., 2011). Before being able to use the CMIP output as input to my statistical 

learning functions, variables are converted according to the following pre-processing steps:  

1. Calculate a pre-industrial mean global temperature for each climate model, defined as the 

mean global temperature from 01/01/1850 to 01/01/1900.  

2. Find the 20-year period where the mean global temperature is 2 °C higher than 

preindustrial baseline. This will be known as future period.  

3. Re-grid the climate models so they are all on the same grid. This is the coarsest grid, 

CanESM5, which has spatial resolution 2.8 ° latitude x 2.8 ° longitude (see Table A.2.10 

and Table A.2.11 for the resolutions of all models).  

4. Use the climate model outputs from the pre-industrial period to get a baseline for the 

climate and vegetation variable outputs. These climate variables are (near surface) RH 

and TP from GCMs and vegetation variables are LAI from ESMs.  

5. Use the climate model outputs from the future period (2 °C global mean warming from 

pre-industrial) to get a projection for the future climate and vegetation variables. 

6. Calculate the change in the climate and vegetation variables using these two climate model 

outputs. This gives a change in RH and TP for each GCM (14 total) and a change in LAI, 

RH and TP for each ESM (5 total).   

By looking at the difference between pre-industrial and 2 °C warming in the model rather than 

the absolute prediction for each predictor variable, bias correction is performed on the GCMs 

and ESMs. The changes in the predictor variables are then added to observations. This also 

means the resolution of the variables will remain that of the observations, and not those of the 

GCMs. This technique is known as the delta method (Navarro-Racines et al., 2020). This is of 

particular significance for the ESM LAI projections, where a positive bias has been found in 

the studied regions (section 2.8.2). An assumption of the approach is that the climate forcing 

will be the constant throughout the individual city study area (rural and urban). Essentially, 

that the change in a climate variable projected in a model grid box will be homogenous 

throughout the grid box area.  

Figure 5.8 shows the median, 10th, 90th percentile of the GCM model changes in RH. The 

largest increases in RH can be seen in India, and even at the bottom end of the projections 

(10th percentile), the changes are still positive, although fairly small. The largest increases, of 

14% in the 90th percentile, are seen in Mathura and Shahjahanpur (India). In Brazil, the largest 

decreases are seen, with GCMs predicting a decrease in RH, or a very little change in the 90th 

percentile. The largest decrease in RH in the 10th percentile is 9%, seen in Campo Grande and 

Cuiaba (Brazil). How cities experience these annual changes in RH are not the same 

throughout the annual cycle, illustrated by Figure 5.9, which shows the annual range of RH 
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changes. Two cities which experience the same change in RH could have this change as a 

consistent increase each month of the year, or as a large increase in couple of months and 

negligible change in the remaining. For example, Wichita (USA) experiences similar changes 

in RH in 10th, 50th and 90th quantiles to the other cities in the USA, yet the annual range is 

larger. In northern India, the changes in monthly RH are the most seasonal, and in the 50th 

percentile, the difference between the month with the smallest change and the largest change 

is 14%, indicating the strengthening of the Indian monsoon. This means the annual changes 

in SUHI_MEAN will likely be unevenly spread throughout the year, with some months 

experiencing larger changes in SUHI_MEANs than others. Therefore, although the focus of 

this section is mostly on the annual changes, some seasonal changes are also considered.  

 

Figure 5.8 GCM RH change from historical pre-industrial RH to 2°C mean global temperature projected RH. The 

spread of the GCM projected changes is shown by a) the 10th Percentile, b) the 50th Percentile (Median), c) the 

90th Percentile.  
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Figure 5.9 The median annual range of RH (the difference between the month with the smallest RH changes and 

the month with the largest RH changes). Cities which have similar annual changes in RH have different annual 

ranges.  

Figure 5.10 shows the median, 10th, 90th percentile of GCM model in TP. Here, the spatial 

patterns can be connected to those of the RH changes. Areas where the RH show increases 

also show increases in TP, and areas of decrease in RH also show decreases in TP. Increased 

rainfall in an area leads to increased evaporation of surface water. This is of interest in relation 

to the RERF model, as the ALE plots show the SUHI_MEAN magnitude has a positive 

relationship with TP and negative relationship with RH. If this is the case, the contributions 

of changes in both variables may lead to less of a change in the SUHI_MEAN than if each are 

examined using the REFR separately. There is also a wide range in the percentiles of TP 

changes, with the majority of areas projected to have decreases in precipitation in the 10th 

percentile, and most areas increases in the 90th percentile.  
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Figure 5.10 GCM TP change from historical pre-industrial TP to 2°C mean global temperature projected TP. The 

spread of the GCM projected changes is shown by a) the 10th Percentile, b) the 50th Percentile (Median), c) the 

90th Percentile. 

LAI projections from ESMs are used to examine changes in EVI, by means of the linear 

relationship between LAI and EVI (section 2.8). Due to this linear relationship, a percentage 

change in LAI can be expected to equate to a similar percentage change in EVI. Therefore, 

the change in LAI is scaled by dividing by the pre-industrial LAI, to give a fractional change 

which is translated to a change in EVI by multiplying by the monthly mean EVI over the 2002-

2020 period. Figure 5.11 shows the changes in EVI_R. Plots showing the values for LAI 

changes can be seen in the appendix (Figure A.5.14). Again, the changes in vegetation mirror 

the changes in RH and TP. Where increases (decreases) in TP and RH are projected, the 

EVI_R also increases (decreases). This demonstrates how the variables interact and the 

importance of considering the impact of them together. The same changes are applied to the 

EVI_R and EVI_U variables to examine the projected future changes.   
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Figure 5.11 ESM EVI_R changes, based on LAI fractional change from historical pre-industrial LAI to 2°C mean 

global temperature projected LAI. The spread of the ESM projected changes is shown by a) the 10th Percentile, b) 

the 50th Percentile (Median), c) the 90th Percentile. 

In addition to the LAI projections, RH and TP projections were taken for the ESM models, 

for use simultaneously to understand the overall impact of these interacting variables. As there 

are fewer ESM models, the range of the predictions for these are smaller than the GCM 

projections of RH and TP but general patterns are similar. Plots showing the 10th, 50th and 90th 

quantiles for the ESM TP and RH projections can be found in the appendix (Figure A.5.15 

and Figure A.5.16).  

Using Climate Projections in the Statistical Models  

The impacts of the changing climate variables on the SUHI_MEAN is first examined 

individually. The changes in the SUHI_MEAN are generated using a dataset consisting of all 

the datapoints generated in section 4.2 (i.e., the monthly mean values for SUHI_MEAN and 

corresponding predictor variables from 2002 to 2020). A current RERF prediction of the 

SUHI_MEAN is made based on the dataset, which will be referred to as current prediction. 
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Then the monthly changes in the required climate variable, generated previously in this 

section, are added to the climate variable. For example, if the variable is RH, the new variable 

is RH + RH Change. A RERF SUHI_MEAN prediction is then made again, but now using the 

new climate variable with changes added, which will be known as future prediction. The 

difference between current prediction and future prediction is then calculated to determine the 

future change in SUHI_MEAN.   

In GCMs and ESMs where the increase leads to changes in predictor variables which are not 

possible (for example RH outside of the range 0-100%). This a downside to the bias correction 

approach used, which involves looking at changes in the GCM or ECM variables rather than 

at the absolute prediction value, but must be balanced with using actual GCM values, which 

can have significant biases, especially in TP, for example (Tian and Dong, 2020). To ensure 

the predictor variables do not go beyond the realm of physical possibility, the ranges are 

capped to the maximum possible amount in that predictor variable (e.g., A RH of 110% will 

be input as 100%). For the EVI_D values, the EVI_R values were capped to between 0 and 1 

(alongside the EVI_U values), and the difference recalculated. The values which have been 

capped are shown in brackets in Table 5.1.  

Table 5.1 Table detailing how much extrapolation is taking place when the projections of the future SUHI_MEAN 

is made. The predictor variables altered (RH, TP, EVI_U, EVI_D) and their current and new ranges are shown. 

This is the range in the monthly values from 2002- 2020.  

Variable Current 

minimum value 

Current 

maximum 

values 

After projection 

minimum value 

After projection 

maximum value 

RH 7% 93% 0.2% 100%  

(116%) 

TP 0.0004 mm/day 25 mm/day 0 mm/day  

(-3mm/day) 

26 mm/day 

EVI_U 0.01 0.54 0 (-0.29) 0.78 

EVI_D -0.41 0.08 -0.55 0.09 

 

Figure 5.12 shows how the 13:30 SUHI_MEAN is predicted to change based on the potential 

future RH projections. In these annual mean plots, the changes in 13:30 SUHI_MEAN can be 

compared with the annual mean changes in RH, shown in Figure 5.8. Based on the RH plots, 

an expectation would be that the cities in Brazil will experience the largest 13:30 

SUHI_MEAN increases in the 90th percentile (as the RH in these cities decreases the most in 

the 10th percentile), and cities in India experience the largest 13:30 SUHI_MEAN decreases 
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in the 10th percentile (due to largest RH increases in the 90th percentile), and this is seen in the 

13:30 SUHI_MEAN predicted annual changes. In the 50th percentile (Figure 5.12b), areas 

where the RH increases (India, Bangladesh, China, Nigeria, and Sudan) show decreases in 

13:30 SUHI_MEAN. These are all areas with positive annual 13:30 MEAN_SUHIs, apart 

from the two cities in Sudan, where the annual 13:30 SUHI_MEAN projection indicates it 

will become more negative. In some cases where a decrease in 13:30 SUHI_MEAN is found, 

the annual RH change decreases, and cities in the same regions have oppositive signs 

(positive/negative) of change. Here, changes in the seasonal means of RH could be influencing 

the predictions, as in Figure 5.9 shows how the range of changes in RH vary from month to 

month. Overall, the annual changes in 13:30 MEAN_SUHI from changes in RH only are 

small, ranging from a 0.27 °C decrease in the 10th percentile to a 0.29 °C increase. Half the 

cities (52) show a decrease in annual 13:30 SUHI_MEAN due to RH changes, and the other 

show an increase.  

 

Figure 5.12 Plots showing how RERF predictions of 13:30 SUHI_MEAN change with the GCM projected changes 

in RH. The spread of the 13:30 SUHI_MEAN projected changes is shown by a) the 10th Percentile, b) the 50th 

Percentile (Median), c) the 90th Percentile.  
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Figure 5.13 describes the projected changes in the 01:30 SUHI_MEAN based on the future 

RH projections. The magnitude of change for the 01:30 SUHI_MEANs is similar to those seen 

at 13:30, despite the greater variation in the 13:30. This is to be expected based on the ALE 

plots (Figure 4.36 and Figure 4.40), which show RH to be the most influential variable on the 

01:30 SUHI_MEAN, and therefore changes in this variable will have the greatest impact on 

the 01:30 SUHI_MEAN. Additionally, the ALE plots show increasing RH has a decreasing 

impact on 01:30 SUHI_MEAN. This can be seen by comparing Figure 5.13 to Figure 5.8; 

areas where RH decreases, such as Brazil, have a projected increase in 01:30 SUHI_MEAN 

and areas such as India and China where RH increases have decreases. The largest decreases 

in 01:30 SUHI_MEAN are all in India, with 12 cities decreasing by over 0.2 °C in the 10th 

percentile. The largest increases in the 90th percentile are for 5 cities in Brazil at over 0.15 °C. 

Overall, there is a roughly even split in SUHI_MEAN changes at 01:30, with 53% 

SUHI_MEANs increasing and the remaining 47% decreasing. All 01:30 SUHI_MEANs 

remain positive after the changes in RH.  
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Figure 5.13 Plots showing how RERF predictions of 01:30 SUHI_MEAN change with the GCM projected changes 
in RH. The spread of the 01:30 SUHI_MEAN projected changes is shown by a) the 10th Percentile, b) the 50th 
Percentile (Median), c) the 90th Percentile. 

The next climate variable examined was TP, changes for which can be seen in Figure 5.10. 

The impact of these changes on the 13:30 SUHI_MEAN can be seen in Figure 5.14. In 

agreement with the relationships observed in the ALE plots (Figure 4.36), in general when 

cities see an increase (decrease) in TP, the 13:30 SUHI_MEAN increases (decreases), 

although this is not always the case. Umuahia (Nigeria) and Caruaru (Brazil) city, show an 

increase in the 13:30 SUHI_MEAN in the 10th percentile, despite the TP decreasing. This 

could be related to both these cities only just meeting the coastal threshold as they are 100 km 

and 102 km from the coastline. The TP imposed changes in 13:30 SUHI_MEAN are of smaller 

magnitude than those from RH, with a maximum decrease of 0.13 °C in the 10th percentile 

and increase of 0.20 °C in the 90th percentile. 36% of annual 13:30 SUHI_MEANs decrease, 

and 64% show an increase. As mentioned previously, TP changes are connected to RH and 

EVI (by LAI), as it drives changes in both variables. Therefore, the actual changes due to TP 
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are likely to be larger, and changes of all these variables together are explored later in this 

section.  

 

Figure 5.14 Plots showing how RERF predictions of 13:30 SUHI_MEAN change with the GCM projected changes 

in TP. The spread of the 13:30 SUHI_MEAN projected changes is shown by a) the 10th percentile, b) the 50th 

percentile (median), c) the 90th percentile.  

The impact of the changing TP on the 01:30 SUHI_MEAN gives a different effect to the 

13:30. Figure 5.15 shows projections of how the GCM changes in TP alter the SUHI_MEAN 

at 01:30. It is expected there will be day-night differences due to the output of the ALE plots. 

For the 13:30 SUHI_MEAN (Figure 4.36), an increase in TP results in an increased 

SUHI_MEAN, whereas in the case of the 01:30 SUHI_MEAN (Figure 4.40) it results in a 

decrease. During the day, wet soils take longer to heat up, causing rural areas to remain at a 

lower temperature and increasing the SUHI. At night, wet soils take longer to cool down, 

which keeps rural areas warmer, thereby reducing urban-rural differences in cooling rates 

(explained in section 2.4.2). Changes in 01:30 SUHI_MEAN remain below 0.1 °C magnitude 

for most cities in all GCM percentiles. Just one city, Gombe (Nigeria), has a decrease of just 
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over 0.1 °C in the 10th percentile of GCMs and Napula (Mozambique) has an increase of 0.18 

°C in the 90th percentile. For 67% of 01:30 SUHI_MEANs, the TP changes lead to a projected 

increase.   

 

Figure 5.15 Plots showing how RERF predictions of 01:30 SUHI_MEAN change with the GCM projected changes 

in TP. The spread of the 01:30 SUHI_MEAN projected changes is shown by a) the 10th percentile, b) the 50th 

percentile (median), c) the 90th percentile. 

The final predictor variables for which changes are examined in is the EVI variables, to give 

an understanding of how future changes in vegetation will affect the SUHI.  

In section 4.3, it was shown that for the selected cities EVI_R and EVI_U are highly 

correlated, with a Pearson’s correlation coefficient of 0.89. Climatic conditions favourable to 

vegetation growth promote more abundant vegetation both in the urban and rural areas, and 

the seasonal cycles of vegetation growth are generally the same across the city and its 

surroundings, although it has been shown the UHI can influence growing seasons by a few 
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days (Wang et al., 2019). From this correlation, it follows that climate changes favourable (or 

unfavourable) to vegetation growth will impact both urban and rural vegetation.  

Studies into urban greening the regions of cities in this thesis can be sparse (Lindley et al., 

2018) and there is no guarantee that urban greening policies in place today will remain the 

same in the future. The same urban greening in all cities cannot be assumed, as it can be limited 

by practical issues such as limited space in more compact cities. Urban greenspace can also 

decrease as city densification occurs to cater for increasing urban populations (Puplampu and 

Boafo, 2021). Therefore, no assumption either way is made and the percentage change in 

vegetation is taken to be the same for both the urban and rural areas.  

The vegetation changes are applied to both EVI_U and EVI_R and changes in the RERF 

predictions of SUHI_MEAN are generated as previously. Figure 5.16 shows these changes in 

13:30 SUHI_MEAN. Based on the 50th percentile plots (Figure 5.16b), it is somewhat likely 

the majority of cities will see an increase in the 13:30 SUHI_MEAN based on the projected 

vegetation changes (87% of cities have an increase in the 50th percentile scenario). This is in 

line with expectations as the median EVI projections show increases, although there is 

uncertainty here (see Figure 5.11); more vegetation leads to increased rural cooling. The cities 

with decreases in 13:30 SUHI_MEAN are those where there is a decrease in EVI, aside from 

one city, Bikaner, which is located near the Thar desert in northwest India. This city is one of 

few with a positive EVI_D (EVI_U > EVI_R, see Figure 4.22c), and therefore a proportional 

increase for both EVI_R and EVI_U will increase the EVI_D further, resulting in a more 

negative SUHI_MEAN. The other two cities with a positive EVI_D experience an increase in 

the SUHI_MEAN, or rather, the annual 13:30 SUHI_MEAN becomes less negative. 

Comparison of the 10th percentile of EVI_R changes (Figure 5.11a) to the 10th percentile of 

13:30 SUHI_MEAN changes (Figure 5.16a) shows areas where there is the highest decrease 

in vegetation (the most southern cities in Brazil, cities in Angola, and a city in Thailand 

(Nakhon Ratchasima)) have the largest decreases in the 13:30 SUHI_MEAN.  
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Figure 5.16 Plots showing how RERF predictions of 13:30 SUHI_MEAN change with the ESM projected changes 

in EVI. The spread of the 13:30 SUHI_MEAN projected changes is shown by a) the 10th percentile, b) the 50th 

percentile (median), c) the 90th percentile. 

The impact of EVI changes on the 01:30 SUHI_MEAN is smaller (Figure 5.17). In the 10th 

percentile, 7 cities have decreases larger than 0.1 °C. Of these, 6 are in Brazil and one in 

Algeria. These are areas where the EVI is decreasing. In the 90th percentile, 12 cities have 

increases larger than 0.1 °C, the largest being a 0.16 °C increase in Bobo-Dioulasso (Burkina 

Faso). Comparison with the changes in EVI (Figure 5.11) show the changes in the 01:30 

SUHI_MEAN show similar patterns of change in the 13:30 SUHI_MEAN, increasing 

(decreasing) where EVI decreases (increases). In the median outcome, in most cities (78%) 

there is an increase in 01:30 SUHI_MEAN.  
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Figure 5.17 Plots showing how RERF predictions of 01:30 SUHI_MEAN change with the ESM projected changes 

in EVI. The spread of the 01:30 SUHI_MEAN projected changes is shown by a) the 10th percentile, b) the 50th 

percentile (median), c) the 90th percentile. 

All three predictor variables for which projected climate changes have been examined are 

connected (RH, TP and EVI). As there will be interactions between the RH, TP and EVI within 

the ESMs, the changes in predictor variables fed into the RERF must all come from the same 

ESM or GCM. Therefore, as only the ESMs generate LAI projections, these are used to 

examine the combined changes. 

Comparison of Figure 5.8, Figure 5.10 and Figure 5.11 shows how areas where RH is 

increasing also have increasing TP, and increases in EVI. The interactions between the three 

are clear; more precipitation leads to higher relative humidities, and also more soil water 

retention for vegetation growth. Therefore, via the means of the ESMs, the three are 

considered in unison (or four, as EVI_U and EVI_D are the predictor variables for EVI in the 

RERF model).  
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Figure 5.18 shows the RERF predicted increases in 13:30 SUHI_MEAN in the 10th, 50th and 

90th percentile. Based on the 50th percentile, the expectation in the majority of cities is that the 

13:30 SUHI_MEAN will increase (81% of cities have an increase in 13:30 SUHI_MEAN). 

This is mainly due to increases in rural vegetation. The addition of the ESM TP and RH 

changes into the model make a small difference to the 13:30 SUHI_MEAN changes, which is 

to be expected based on the relatively small changes shown in Figure 5.12 (the changes in 

13:30 SUHI_MEAN due to RH) and Figure 5.14 (the changes in 13:30 SUHI_MEAN due to 

TP) compared with those in Figure 5.16 (the changes in 13:30 SUHI_MEAN due to EVI).  

In Figure 5.18, it can be seen even in the 10th percentile, Chinese cities, along with a large 

proportion of cities in India and Nigeria, show increases in the 13:30 SUHI_MEAN. Over half 

(54%) of the selected cities in the middle east also show increases in the 13:30 SUHI_MEAN 

in the 10th percentile, and all in the 50th percentile, with the negative 13:30 SUHI_MEANs 

becoming less negative, or positive in some cases. The future of the 13:30 SUHI_MEAN for 

the cities in Brazil is more uncertain. The 10th percentile shows strong decreases in 13:30 

SUHI_MEAN, whereas the 50th percentile shows both increase and decreases, and the 90th 

percentile all increases aside from a single city.  
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Figure 5.18 Plots showing how RERF predictions of 13:30 SUHI_MEAN change with the ESM projected 

changes in RH, TP and EVI (EVI_U and EVI_D). The spread of the 13:30 SUHI_MEAN projected changes is 

shown by a) the 10th percentile, b) the 50th percentile (median), c) the 90th percentile. 

To contextualise the changes in the 13:30 SUHI_MEAN, Figure 5.19 shows points for the 

13:30 SUHI_MEAN before and after the 2 °C warming, based on the median changes. A 68% 

prediction interval (section 3.5), based on the RERF error is shown on the after 2 °C warming 

points. This represents the interval which there is a 68% probability the true value lies within. 

Here it can be seen that the 2 °C warming pushes more of the 13:30 SUHI_MEANs above 

certain thresholds. For example, before, there are seven cities with an annual 13:30 

SUHI_MEAN greater than 4 °C, but an additional five cities are added to this group by the 

climate change impacts. For three of the cities with negative 13:30 SUHI_MEANs, there is a 

change that flips this in sign to positive, with the largest change in Asyut (Egypt) (which is 

1.9 ±0.2 °C). The magnitude of the increase is much larger than the prediction interval, so this 

change is significant. The changes in 13:30 SUHI_MEAN are not proportional to the current 
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13:30 SUHI_MEAN magnitudes, with cities with very similar 13:30 SUHI_MEANs at present 

showing different extents of changes. 
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Figure 5.19 Comparison of the city annual 13:30 SUHI_MEANs current and with the RERF predicted changes. 

The orange dots show the median prediction for 13:30 SUHI with 2 °C warming, with a 68% prediction interval. 

The prediction interval was calculated for the annual values of each city individually to get city specific intervals. 

The blue and red dots show the current 13:30 SUHI_MEANs. Coloured arrows on the left-hand side of the plot 

denote the geographical regions the city is located. 
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When the same ESM RH, TP and EVI changes are applied to the 01:30 SUHI_MEAN, the 

projected changes are smaller than 13:30, reflecting its smaller magnitude in general (Figure 

5.20). Percentage of cities increasing in 01:30 SUHI_MEAN is 58%, showing a less clear 

increase in comparison to the 13:30.  

The most influential variable on the 01:30 SUHI_MEAN was RH (based on ALE plots, Figure 

A.3.4) and the impact of this variable can be seen by comparing the plots of all climate 

variables (Figure 5.20) to that where only changes in RH are investigate (Figure 5.13). The 

stronger decreases in the 01:30 SUHI_MEAN are seen in areas where the 13:30 SUHI_MEAN 

sees increase, for example India and China, and stronger increases seen in Brazil, which have 

decreases in the 13:30 SUHI_MEAN. The strongest decrease in 01:30 SUHI_MEANs are for 

5 cities located in India (3 cities), Nigeria and Niger, where the decrease is over 0.2 °C in the 

10th percentile. The largest increase is seen in Rio Branco, Brazil, at 0.28 °C. These differences 

between the changes in SUHI_MEAN at 13:30 and 01:30 show how the formation of the UHI 

is driven by different factors during the day and night.  
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Figure 5.20 Plots showing how RERF predictions of 01:30 SUHI_MEAN change with the ESM projected changes 

in RH, TP and EVI (EVI_U and EVI_D). The spread of the 01:30 SUHI_MEAN projected changes is shown by a) 

the 10th percentile, b) the 50th percentile (median), c) the 90th percentile. 

Figure 5.21 shows how changes in the 01:30 SUHI_MEAN have a small impact on its current 

annual mean value. Almost all the post 2 °C warming 01:30 SUHI_MEANs contain the pre-

warming SUHI_MEAN within the 68% prediction interval. Two cities in Brazil, Vitória da 

Conquista, and Anápolis show increases and a city in India, Satna, has a decrease within the 

entire prediction band. None of the projected decreases in in 01:30 are large enough to make 

any of the SUHI_MEANs negative.  
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Figure 5.21 Comparison of the city annual 01:30 SUHI_MEANs current and with the RERF predicted changes. 

The orange dots show the median prediction for 01:30 SUHI with 2 °C warming, with a 68% prediction interval. 

The prediction interval was calculated for the annual values of each city individually to get city specific intervals. 

The red dots show the current 01:30 SUHI_MEANs. Coloured arrows on the left-hand side of the plot denote the 

geographical regions the city is located. 
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The discussion of this section so far has focused on the annual mean SUHI_MEAN, and how 

a 2 °C warming can lead to changes in its magnitude (Figure 5.18). As seen in Figure 4.27 

(which shows seasonal means for 2m air temperature and TP), whilst some of the regions 

investigated have a relatively small seasonal cycle and therefore the SUHI_MEAN can be 

expected to be fairly consistent in magnitude and direction (positive or negative) throughout 

the year, some cities are located in regions with strong seasonal changes. Changes in the 

predictor variables could lead to small changes in one month and large changes in another, 

resulting in an apparent average annual change. There are stronger implications in terms of 

human impacts from higher SUHIs in the warmest months of the year, as the effect exacerbates 

warmer temperatures. Therefore, months where the 2 m air temperature is the highest are 

investigated. These months vary from city to city, as locations range from the north and south 

hemispheres. The months of monsoon also will be significant in shifts in the SUHI_MEAN, 

as it is highly influential on the climate and vegetations variables used in the machine learning 

model.  

Figure 5.22a shows, when split into four seasons, when the warmest months occur for each 

city. In the highest north, this is during the JJA months, becoming more in the MAM months 

further down, and the DJF or SON months in the south. The mean 2 m air temperature and 

mean 13:30 SUHI_MEAN during these months are shown in Figure 5.22b and Figure 5.22c. 

During these warm months, where the mean air temperature across all the cities ranges from 

18.8 °C to 37.8 °C, there does not appear to be any direct correlation between the warmest 

areas and the largest 13:30 SUHI_MEAN. Some of the hottest areas, located in the middle 

east, have negative 13:30 SUHI_MEANs and other similar temperatures experienced in 

northern India have positive 13:30 SUHI_MEANs, as other climate variables (such as TP and 

RH) and vegetation (EVI) are more influential.  

Figure 5.22d gives the 50th percentile of the RERF projected changes, based on RH, TP and 

EVI ESM projections. Comparison with Figure 5.18b, which shows the annual mean 13:30 

SUHI_MEAN change for the 50th percentile, shows during the warm season there are more 

cities with a reduction in the 13:30 SUHI_MEAN, although the number is still low at 22% of 

the total cities (versus 9% for the annual mean 13:30 SUHI_MEAN). This is most apparent in 

the east of the USA, where cities which have a projected annual increase in 13:30 

SUHI_MEAN show a decrease in 13:30 SUHI_MEAN during the warmest three months. The 

other cities where the 13:30 SUHI_MEAN is negative in the warm season, but positive on an 

annual basis, mainly located in Africa, undergo small changes in the 13:30 SUHI_MEAN (less 

than 0.5°C). The overall range of 13:30 SUHI_MEAN changes is less than that on the annual 

basis, ranging from -1.7 °C to 1.7 °C. From the two aforementioned points, it can be concluded 

that the overall largest changes in 13:30 SUHI_MEAN occur outside of the warmest season.  
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Nevertheless, as the warm seasons are when the impacts of the SUHI_MEAN are felt the most, 

changes during this season are of significance. For cities which are relatively warm all year-

round (the middle east) and where a negative daytime SUHI currently exists, the RERF and 

CMIP projected changes indicate this negative 13:30 SUHI_MEAN is likely to reduce in the 

future. This is of importance as heat in these areas is already at levels that can be 

uncomfortable for city inhabitants. The largest median change during the warm season is 

predicted for Asyut (Egypt), where the 13:30 SUHI_MEAN goes from being negative 

(although small at -0.04 °C) to a stronger positive 13:30 SUHI_MEAN of 1.66 °C. Some cities 

in China are predicted to experience strong increases in the 13:30 SUHI_MEAN, with a 

median change mean of 0.8 °C, although the strength of these changes vary based on the city 

location, with the more northern cities predicted to undergo larger changes (the median change 

mean rises to 0.9 °C when the four cities in China < 30 °N are excluded). Hechi, in the south, 

has a small projected change of 0.2 °C in the warm season, whereas the northern city Linqing 

is predicted to have an intensification of the 13:30 SUHI_MEAN by 1.4 °C, a 47% increase. 

Indian cities also are projected to have general increases in this season, with the median change 

overall 0.3 °C, rising to 0.4 °C if southern cities (< 21 °N) are excluded.  

The same warm season changes are assessed for the 01:30 SUHI_MEAN. The current warm 

season 01:30 SUHI_MEAN is shown in  Figure 5.23a. The strongest 01:30 SUHI_MEAN 

magnitudes are in some of the warmest cities studied (see Figure 5.22b), which is of concern. 

High temperatures at night are harmful for human heath as they do not allow the body to 

recover and sleep. Figure 5.23b gives the 50th percentile of the RERF projected changes, based 

on RH, TP and EVI ESM projections. Overall, 63% of 01:30 SUHI_MEANs have an increase 

and 32% decrease (with 6 cities having no change at all during the warm season). As with the 

annual mean 01:30 SUHI_MEANs, the magnitude of changes are small in comparison to 

13:30 changes. Visalia (USA) has the largest positive change at 0.1 °C and Zinder (Niger) has 

the largest decrease of 0.2 °C (this was also the decrease for Zinder on an annual basis). Other 

than Franca (Brazil), which has a decrease of 0.1 °C, all of the changes in 01:30 SUHI_MEAN 

are below 0.1 °C. The warm season 01:30 SUHI_MEAN has a range of 0.03 to 3.0 °C, 

compared to a range of -3.5 to 7.3 °C for the warm season 13:30 SUHI_MEAN. Therefore, to 

understand changes in this context, percentage increases in the 01:30 SUHI_MEAN are 

examined. For the majority of 01:30 SUHI_MEANs (64%), any change comes to less than 

1% of the current 01:30 SUHI_MEAN. Cities with the larger proportional changes in warm 

season 01:30 SUHI_MEAN typically experience this due to having low current 

SUHI_MEANs, aside from Zinger (Niger), which has an 11% decrease.  
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Figure 5.22 An assessment of 13:30 SUHI_MEAN during the warmest months. In a) the time of year which the 

warmest mean temperature occurs is shown, grouped into MAM (March, April, May), JJA (June, July, August), 

SON (September, October, November) and DJF (December, January, February). b) shows the mean 2m air 

temperature during the 3-month period denoted in a), where the mean 2 m air temperature is the highest. c) shows 

the mean 13:30 SUHI_MEAN during the 3-month period shown in a). this was calculated using observations. d) 

shows the 50th percentile change in the 13:30 SUHI_MEAN projected under 2 °C global mean warming, calculated 

using the RERF model and CMIP ESM model projections for EVI, RH and TP. 
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Figure 5.23 An assessment of 01:30 SUHI_MEAN during the warmest months. a) shows the mean 01:30 

SUHI_MEAN during the 3-month period shown in a). this was calculated using observations. b) shows the 50th 

percentile change in the 01:30 SUHI_MEAN projected under 2 °C global mean warming, calculated using the 

RERF model and CMIP ESM model projections for EVI, RH and TP. 
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6 DISCUSSION AND CONCLUSIONS 

6.1 DISCUSSION 

The method developed has led to estimates of how the SUHI_MEAN magnitude in certain 

cities is likely to change with future changes in climate. Through the model fitting, it has been 

demonstrated how climate and vegetation variables, projected to change in the future, 

influence the SUHI_MEAN. Based on the ALE plots (Figure 4.36) most influential variable 

on the 13:30 SUHI_MEAN is the EVI_D, which shows a small difference between rural and 

urban vegetation leads to a small 13:30 SUHI_MEAN and when urban vegetation is greater 

than rural, a negative 13:30 SUHI_MEAN exists.  

The ML models are combined with CMIP climate projections to determine how the annual 

13:30 SUHI_MEAN may change in the future. With future changes in EVI, RH and TP, the 

results point to overall increases in the annual 13:30 SUHI_MEAN for 81% of cities (in cases 

where the 13:30 SUHI_MEAN is negative, it will become less negative).  

This increase in 13:30 SUHI_MEAN has significance for climate change projections, as 

estimates of the future temperatures at a regional scale can be expected to be warmer in 

urbanised areas. This is minus the influence of urban expansion, which can have an additional 

increasing impact on the 13:30 SUHI_MEAN, although this is climate specific (negative 

13:30 SUHI_MEANs become more negative, section 5.1). The results of this thesis show that 

additional to the projected regional increases in temperature due to climate change, most 

urbanised areas can expect a larger increase than their rural counterparts in the median (the 

annual median changes of all cities averages to 0.4 °C). This expected median annual change 

is as large as 1.9 °C (±0.2 °C for a 68% prediction interval) in Asyut, Egypt, where the 13:30 

SUHI_MEAN goes from negative to positive (Figure 5.19), and over 1 °C for 14% of cities, 

which are mostly located in China and India. Interestingly, although this research set out with 

a focus on the southern hemisphere, the cities with positive latitudes are found to be those with 

some of the largest 13:30 SUHI_MEAN changes.  

The cities that feature in this research are in the warmer parts of the world, which makes this 

increase even more significant. In India and China, the 13:30 SUHI_MEAN is increasing in 

the warmest months if the year (Figure 5.22), intensifying the impacts of rising temperatures 

for urban inhabitants in these areas. In India, heatwaves are projected to increase in frequency, 

duration and intensity (Murari et al., 2015; Rohini et al., 2019), and an increase in humid 

heatwaves (where high temperatures are combined with high humidity) is seen in the areas of 

eastern China where the 13:30 SUHI_MEAN increases the most, alongside India and Pakistan 
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(Domeisen et al., 2023). The need for UHI mitigation in these regions is therefore all the more 

pressing.  

The RERF was also used to examine the SUHI_MEAN during the night, for which the most 

influential variable was RH. When RH is low, the 01:30 SUHI_MEAN is larger. This is most 

likely due to the presence of more monthly cloud cover when RH is high, which dampens 

rural radiative cooling at night. Future changes in RH contribute to projected changes in the 

01:30 SUHI_MEAN. At 01:30, in comparison to at 13:30, the SUHI_MEAN has a smaller 

variance (city annual values range from 0.3 °C to 2.8 °C as opposed to -4 °C to 5.4 °C for 

13:30, also see Figure 4.21) for the predictor variables to capture. This leads to the 01:30 

SUHI_MEAN having smaller absolute changes as a result of changes in input variables. 

However, small changes may still be important for city inhabitants in very hot parts of the 

world. Of note is that the 01:30 SUHI_MEAN changes can be positive when the 13:30 

SUHI_MEAN changes are negative (for example, in Brazil, see Figure 5.20). It is important 

to be aware of this potential difference in future trajectories of SUHI magnitudes, to ensure 

the best adaption practices are made. Nighttime temperatures are important for human 

comfort. Prolonged high temperatures at night stop indoor spaces from cooling, cause lack of 

sleep and prevent the body from recovering after the heat of the day (Heaviside et al., 2017). 

The ML model used is based on variables with known physical relationships with the SUHI, 

and therefore through interpretation of how these variables interact with the SUHI_MEAN, 

conclusions relating to SUHI mitigation can be made.  

The implications of these results are twofold. The first of these is that focus needs to be paid 

to SUHI mitigation (although the CUHI shall be the true target), as it can be expected to 

increase in the future, and the regions examined in this thesis should not be neglected. Due to 

climate change, there is expected to an increase in heat related mortality, with those living in 

the warmer parts of the world most at risk (Gasparrini et al., 2017). LST and air temperature 

are closely correlated, and a larger SUHI leads to an increase in the CUHI (section 2.3.1). 

These rising urban temperatures are harmful to city workers and inhabitants. The most direct 

impact of the CUHI is relating to outdoor workers, such as those in construction (who 

additionally will be working with materials directly impacted by surface temperatures) or 

street venders, who are more vulnerable to the hazards of extreme heat. Outdoor workers face 

the negative impacts of heat exposure, such as heat stress, fatigue, dehydration, cardiovascular 

disease (when dehydrated, the heart has to work harder to pump blood round the body) and 

respiratory disease (as increased heat can lead to an increase in ground level pollution) (Moda 

et al., 2019).  
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This is relevant to the cities in this thesis, as street venders are common in many of the regions. 

In India, seen in Figure 5.18 to experience daytime SUHI increases in most of the selected 

(medium sized) cities (even in the 10th percentile), countrywide there are 10 million street 

vendors and around 2.5% of the urban population is employed as such. There are also no 

employer regulations that protect these workers (as they are self-employed) and missing a 

day’s work means they forgo a day’s income. Many informal workers are women (Herrera et 

al., 2012), and if pregnant face additional risks of poor pregnancy health and birth defects 

(Moda et al., 2019). Additional to the economic need for the street vendors themselves, these 

street vendors are an important part of urban food networks. In sub–Saharan Africa (in Figure 

5.18b, 24 out of 25 sub–Saharan 13:30 SUHI_MEANs increase in the median), these food 

sources are essential for the majority of households, with 70% regularly sourcing food from 

street vendors due to the spatial and financial accessibility (as they can offer credit) (Giroux 

et al., 2021).  

The impacts of heat are also felt by those inside city buildings. Studies show heat related 

mortality increases more in urban areas than in rural counterparts during heatwave events 

(Kovats and Hajat, 2008), and the existence of the CUHI during the night allows inhabitants 

little recovery from heat exposure during daytime hours. Based on CMIP model projections, 

Sherman et al (2022) calculate changes in simplified wet bulb temperatures (a unitless measure 

taking into account temperature and humidity). A simplified wet bulb temperature above 30 

is determined to be outside the realm of human adaptability, and areas of the globe can be 

expected to go beyond this level are in critical need of air conditioning (AC) or alternative 

cooling systems. The authors find some of the largest increases in simplified wet bulb 

temperature are in Sub-Saharan Africa and the Middle East, both regions where the cities in 

this analysis see increase in 13:30 SUHI_MEAN, and it is highlighted that these areas already 

have simplified wet bulb temperatures that should require AC. India, where cities are also 

shown to have increasing 13:30 SUHI_MEANs, is projected to require large cooling demands 

in the future. This is problematic as the infrastructure may not be able to cope with this 

increased load, and the costs are prohibitive for many (Sherman et al., 2022).  

Although necessary, the solution of AC is not ideal as it heats the outside environment more 

by dispelling the hot air inside to outside the buildings, impacting on those in the urban 

outdoors or without access to AC. Additionally, growth in electricity demand can also lead to 

increased use of fossil fuels to meet this need, thereby contributing further to root cause of 

climate change. In addition to the health and emissions related impacts of rising temperatures, 

there is also an economic cost. Economic growth and heat are tied together, with hotter 

countries tending to be poorer. For countries in hot climates, hotter than average years are 

associated with lower per capita income (for cold climates, colder than average years result in 
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lower per capita income). This phenomenon is reduced by the use of AC, implying at least 

some of the reduction in income is due to human physiological impacts (other influential 

factors can be agricultural impacts, for example) (Heal and Park, 2013).  

A key highlight of the warm season assessment (Figure 5.22) was that the Chinese cities, 

which do not have the overall highest 2m air temperatures, experience larger changes in the 

13:30 SUHI_MEAN during the warmest months. During these months, which are when the 

SUHI is the most hazardous to city inhabitants, the 13:30 SUHI_MEAN is projected to 

increase by over 1 °C for 35% of the selected cities in China (and 65% increase by 0.5 °C). 

RCM studies examining the impact of climate change scenarios on the UHI are limited in the 

cities examined (Table A.1.4) and do not include Chinese cities at present. Land use and 

population changes have been considered (Zhu et al., 2021; Lan et al., 2023), but the 

interaction of the UHI with climate and extent as to which the magnitude of the UHI is 

influenced by climate change is not currently assessed. This result signifies the current 

research could be underestimating the impact of climate change on the UHI in China, 

particularly in the north half of the country.    

For the aforementioned reasons, mitigation of the SUHI (with the target of CUHI) and cooling 

cities should be a priority, as cities are faced with rising global temperatures and increasing 

frequency of extreme heat events. The regions in this thesis should also be a priority, as many 

of these are disproportionally affected by the heat related impacts of climate change (Mora et 

al., 2017). This ties into the second aspect of the results, which is relating them directly to 

mitigation measures, to determine which methods could be the most effective for SUHI 

mitigation. The predictor variables used in the model offer exploration of two mitigation 

strategies, either creating green space (and therefore modifying EVI) or using white roofs or 

pavements to modify WSA. An important note is that these recommendations of mitigation 

measures are made using the SUHI, and examination in terms of the CUHI is essential to 

confirm it exists for this measure also, which is the true target for mitigation. 

During the daytime, the most important influential variable on the SUHI_MEAN is the EVI_D 

variable (note the difference is urban - rural). This variable indicates that increasing EVI_U 

or decreasing EVI_R will lead to a smaller 13:30 SUHI_MEAN. As decreasing EVI_R results 

in a reduction in 13:30 SUHI_MEAN caused by rural warming rather than any change in urban 

LST, this is not a viable option for mitigation. It does indicate, however, that urbanisation in 

densely forested areas should be done with care, as these urban areas will have large SUHI 

magnitudes. It is well known that increasing urban vegetation (EVI_U), is an effective 

mitigation strategy for tackling the CUHI (Shao and Kim, 2022), and the results of this thesis 

are in line with other studies. Urban tree cover also offers shade for city dweller to take respite 
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from the heat and green spaces are known to improve mental health (Bratman et al., 2019). In 

comparison to the impact of the EVI predictor variables, the WSA predictors have little 

influence on the 13:30 SUHI_MEAN, indicating solar radiation modification measures such 

as white roofs are not as effective as urban greening if the motivation is to reduce the SUHI 

during the day.  

In a study of different mitigation measures across cities in the United States, Georgescu et al 

(2014) finds the most effective mitigation measure is dependent on geographical location. 

Findings here show there could also be a day versus night dependency. The night-time is when 

the CUHI is at its greatest (the SUHI is greatest during the day), so this finding is of 

significance where reducing nocturnal temperatures in cities is a concern. For the 01:30 

SUHI_MEAN, the results of this thesis show there is a lagged effect of albedo, as WSA_U 

and WSA_D have decreasing effect on 01:30 SUHI_MEAN. This is in agreement with the 

findings of Peng et al (2012), where a negative correlation between albedo difference and 

night-time SUHI intensity was also found. Less solar radiation absorption by the city materials 

during the day results in less heat storage to radiatively cool during the night. In regions where 

night-time temperatures are a concern, white roofs should be recommended as mitigation 

measures.  

A feature of the SUHI/CUHI is that it is not constant throughout the urban area; certain areas 

of the city are hotspots, and others cooler (e.g., parks) outlined in section 2.5. It is important 

to note that although the SUHI_MEAN was used as the quantification method in this thesis, 

alternative methods are explored. The SUHI_MEAN is more related to the vegetation 

properties (EVI), whereas the SUHI_PEAK_GSA (a SUHI quantification measure of the 

central hotspot of the SUHI, appendix A.4) is more a product of city related properties, which 

were not captured as well as the climate related factors in this thesis. This implies in future, 

the warmer parts of cities could be more influenced by city related properties, such as 

population density (Schwarz et al., 2011), and the city in its entirety more influenced by 

factors such as vegetation differences. This may be related to the uneven distribution of 

vegetation within the city, where the city centre is likely the most densely build up area of the 

city, with little green space. Therefore, the cooling in this area of the city will be less than 

throughout the city overall, and rather than considering just the amount of green space overall, 

the placement of greenspace is significant for homogenous city cooling. Urban heat exposure 

throughout cities is unequal, with neighbourhoods with lower average incomes corresponding 

to higher SUHI intensities (Chakraborty et al., 2019), and mitigation measures should also 

take this into account.  



Discussion and Conclusions 

 

166 
 

A final implication of the results of this thesis is the demonstrated ability of machine learning 

(ML) techniques for predicting SUHIs and their potential changes. The current main use of 

ML in UHI studies is aiming to predict the air temperature from LSTs, but here the results 

show that there is a wider range of applications for ML in SUHI studies, and the techniques 

used in this thesis can be applied to a wider range of cities, or cities in different locations. The 

use of cities in various climatic regions has allowed change in climate and vegetation that take 

variables outside of the regions current range to be examined, as this reduced the extrapolation. 

The identification and selection of a ML model which performs well in extrapolation 

circumstances has given confidence in the future projections.  

The advantage of this statistical based model over RCM simulations is in the speed at which 

it can be run, allowing for the examination and comparison of a large number of cities (104 in 

this thesis), and that it can be trained directly on observations. RCMs can contain biases, 

inherited from GCMs (as GCMs are used to specify boundary conditions, section 2.3.2) (Kim 

et al., 2021). GCM and ESM biases are corrected for in this methodology by looking at 

changes in the climate variables rather than the absolute projected values (the delta method, 

section 5). In this thesis, the selection criteria removed many cities, and relaxing these criteria 

with the addition of predictor variables to account for this (for example, distance to nearest 

water body, and its size) can make the model more general (section 6.3).    

A limitation of the analyses in this thesis with regards to human health and comfort in cities 

is that the results are based on LST measurements. Air temperature would be a better variable 

to relate to these impacts, as it is what is felt by the city inhabitants. The relationships between 

SUHI and CUHI are by no means straightforward (see section 2.3.1), so it is difficult to 

directly relate the two, or quantify exactly what an increase of 1 °C, for example, of the SUHI 

means for the CUHI. Deriving urban air temperature measurements from LST is currently an 

active area of research (section 2.3.1) and with further developments in this area, the results 

of this thesis will become still more informative in the context of this understanding.  

A further limitation, concerning the future projections of SUHI_MEAN, is that the changes in 

urban area are not considered (the LOG_AREA variable remains constant). Huang et al (2019) 

estimate the urban area of global cities will increase by 78%–171% compared to that in 2015 

by 2050. In section 5.1 it was seen that increasing city area, based on continuation of the past 

10-year trend of urban expansion continuing into the next 10 years, can result in considerable 

changes in the SUHI_MEAN (Figure 5.4). The dataset created by Huang et al (2019) is freely 

available, and the potential of inclusion of this is discussed in section 6.3.    

Assumptions made in this thesis are that there are not city management schemes relating to 

vegetation or policies to increase urban greenspace. This could result in the EVI_U following 
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a different trend to EVI_R, as it was assumed the EVI_U would increase or decrease 

proportional to EVI_R. City expansion could also result in loss of urban green space, 

depending on city regulations for protecting city parks or on where new development may 

take place. Liu et al (2022) examine trends of urban EVI, and find that in South America and 

Africa there are trends of decreasing urban vegetation, indicating it is EVI_U changes have 

some regional dependence and a more sophisticated estimate for future EVI_U, perhaps 

additionally including the current trend in annual EVI_U could be included. Another 

limitation, with regards to SUHI mitigation recommendations, is that the influence of water 

bodies is not considered, as the resolution of the landcover data is not high enough to capture 

rivers or small lakes (the selection criteria removed larger lakes with a width of greater than 1 

km) within the city and rural areas. It is common for cities, particularly in hotter climates, to 

be built on the banks of rivers. As these are not included as predictor variables in the ML 

model, it is not possible to assess the mitigation impact of water in the same way it has been 

done for green spaces, for example.  

6.2 CONCLUSIONS 

The aim of this thesis was to examine present and future SUHIs by means of satellite data, a 

ML model and CMIP6 climate projections. The first objective completed was to quantify the 

SUHI of medium sized cities in understudied geographical regions. This was done by 

development of a city selection process (section 4.1) to create a pool of cities for the basis of 

the thesis. Satellite data was then used to quantify the SUHI of these cities (section 4.2) to 

meet the remainder of objective 1.  

The second objective was to examine the relationship between the quantified SUHIs and 

background climate, using the results to build a predictive model. To do this, influential 

predictor variables relating to background climate were quantified (section 4.2) and employed 

in a ML model able to predict the magnitude of the SUHI in the selected cities. Through 

selecting the best performing ML model, the most influential background climate variables 

(from those investigated, section 4.3) are identified. The ML model was then used to explore 

current relationships between predictor variables such as vegetation, precipitation, relative 

humidity and city area, and SUHI intensity (sections 4.4 and 4.5).  

Objective 3 was to use the constructed ML model to assess the importance of background 

climate as a predictor of the SUHI and assess sensitivity to changes in predictor variables. 

Through assessment of the performance of this ML model (sections 4.4 and 4.5) and 

sensitivity tests (section 5.1), this objective was satisfied. 
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Finally, the last objective (4) was met by combining the ML model with CMIP6 climate 

change projections. This allowed an assessment of the future SUHIs, based on climate changes 

only.  

The current use case for the statistics-based models in examining the SUHI for the purpose of 

inference, exploring the relationships between influencing factors and the SUHI, or for the 

prediction of urban air temperatures. The work in this thesis is novel in two ways. 

The first is it utilises the constructed ML model for prediction, using it to examine how the 

future SUHI is likely to change based on changes in influencing variables. The second is, with 

use of scenario-based climate change projections, the ML model enables the examination of a 

large number of medium sized cities, benefiting from both high resolution and low 

computational expense. With the GCM and RCM based approaches, there is currently a trade-

off between these two features (section 2.3.2), meaning the current focus is on a few individual 

cities. Thereby, the research gap of medium sized cities can be addressed, as the resolution is 

that of the satellite data (1 km). The satellite data used also has global coverage, allowing for 

a second research gap to be addressed; that of understudied regions of the world, for which a 

focus is on cities in the global south. Many of the cities examined in this thesis are highly 

vulnerable to the impacts of rising temperatures due to climate change.  

The SUHI of a city can be predicted based on its background climate, and this thesis has 

demonstrated a physics-based ML model is able to do so. The ML model used has been shown 

to be appropriate for the use of predicting future SUHI_MEANs based on its ability to 

extrapolate. This model allows for assessment of a large number of future SUHIs, so certain 

areas can be highlighted as those most likely to have increases in SUHI magnitude due to 

changes in climate. Overall, the majority (81%) of selected cities show an increase in annual 

SUHI_MEAN in the 50th percentile.   

When examining the future climate in medium sized Chinese cities (particularly those in the 

eastern north/ central area) the magnitude of the SUHI (and therefore likely CUHI) should not 

be assumed constant. The results show the SUHI_MEAN in this area will increase annually 

and during the warm season when the repercussions of the SUHI with regards to human health 

and comfort are the greatest. Northern India is also highlighted as a key area where the climate 

change intensifies the annual SUHI_MEAN. Cities in arid areas, here mainly the middle east, 

can be expected to have less negative or even positive SUHI_MEANs in the future. In contrast, 

based on the CMIP models, it is uncertain whether cities in Brazil will undergo decreases or 

increases in the SUHI_MEAN.  

Liu et al (2022) examine surface warming trends in global cities from 2002 to 2021 and find 

the warming trend in cities is greater than that in the rural areas, meaning  the current behaviour 
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of SUHI magnitudes is of warming. The results of this thesis show these trends can be 

expected to continue with a continuation of changes in climate. The model assessment via 

ALE plots revealed the behaviour of the SUHI in the selected medium sized cities is in 

agreement with the current literature. The strong influence of EVI confirms the current 

theories on urban greening being an important mitigation measure (Shao and Kim, 2022), and 

that the daytime SUHI is largely driven by urban rural vegetation differences (Paschalis et al., 

2021). An additional finding to add to this is the day – night distinction of the best mitigation 

measures. During the day, it is clear attention should be given to urban greening, whereas for 

the night-time SUHI, urban greening combined with white roofs could be a more impactful 

strategy.  

Due to the issues surrounding cloud contamination when using satellite data, the results of this 

thesis can only be applied to relatively cloud free days (section 3.2). Therefore, it is likely 

there is some overestimation in the mean values, as they do not include overcast days, where 

the UHI tends to be smaller. The use of reanalysis data means the model errors associated with 

the precipitation and solar radiation (section 3.2) within this source have been passed on.  

A chief limitation of this thesis, highlighted in the discussion is that air temperature, and 

therefore the CUHI, is more important for human health applications. This should be 

considered when using the results for purposes such as CUHI mitigation measures.  

Additionally, the influence of windspeed has been overlooked. In section 2.4.1 it was seen the 

UHI is largest during clear and calm days, with high windspeeds cooling the urban surface. 

As atmospheric stability increases, so does UHI magnitude (Tomlinson et al., 2012). This 

means future changes in windspeed will have an impact on the SUHI_MEAN, and this has 

not been accounted for in the results of this thesis. GCMs project global decreases in near 

surface windspeed with climate change (Shen et al., 2022), implying the projected SUHI 

changes in this thesis may have been underestimated. 

In section 2.5.3, it was seen that climate model simulations show that the CUHI causes the 

number of urban heatwave events to increase in comparison to the rural surroundings, as UHIs 

push the city temperatures to above the threshold for heatwaves. When planning for the 

impacts of climate change in medium sized cities, it is likely the SUHI will not remain 

constant, and this must be considered. The future UHI magnitude is likely change with climate 

change, and urban adaptation measures must consider the impact of climate change alongside 

city expansion to protect a rapidly growing population of urban inhabitants.  
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6.3 FUTURE WORK 

There are a few different avenues that could be explored to add additional value to the work 

done in this thesis. Some of these simply require more analysis based on the work currently 

done, whereas others will invite the use of additional data sources and processing. Starting 

with the most straightforward, this section outlines a few ideas for which the work in this 

thesis can be expanded.  

The developed RERF model could be used with climate and vegetation projections from 

alternative SSPs, as in this these only one was examined, SSP3-7.0. Vegetation is highly 

influential for the SUHI_MEAN projections, and the SSPs factor in change in land use 

(O’Neill et al., 2017). Different futures may result in varying levels of vegetation changes. 

Therefore, examining different pathways could give a wider range of the possible future 

SUHI_MEANs.  

The issue of urban expansion could be addressed in the projections of future SUHI_MEANs 

by adding in projections for future urban expansion. In Huang et al (2019), the authors project 

future global urban expansion based on the SSPs, and have made the data freely available. 

This data is, however, looking at urban expansion by 2050 rather than with a 2 °C warming, 

as the CMIP data used in this thesis. Therefore, further investigation on this front is required.  

Another aspect relating to climate projections, is to look at the impact of replacing EVI in the 

models with LAI, so they can be more directly linked to climate model outputs, without the 

conversion to EVI through the linear relationship. However, generating LAI satellite 

measurements can be complex (Zheng and Moskal, 2009).  

Further future work could be to go back to the first step of the model creation, where the cities 

are selected (section 4.1) and relax the selection criteria. The criteria could then be included 

in the model as a predictor variable. One such criteria could be that of cities which have a 

waterbody greater than 1 km wide in the area. In the city selection process, 252 cities were 

excluded due to this criterion (Table 4.1), and therefore relaxing it, and including this as a 

potential predictor variable would increase the number of cities in the dataset. Another 

criterion would be to extend the population criteria. In section 4.2, it was noted that some cities 

can have a large suburban sprawl outside of the administrative boundaries, and cities with 

similar populations can have widely different areas depending on where in the world they are. 

This could be due to the city administrative area being smaller than the city area including its 

suburbs, or down to differences in city population density. As the REFR model has performed 

well for this range of city areas, there is an indication it is able to handle a larger range of city 

sizes, as having the LOG_AREA variable in the model takes city size into account. Other 

factors which cities were discounted based on was for the coastal influence, being near large 
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lakes, or in mountainous areas/ in a valley. By including these cities in the dataset with the 

selection criteria factored into the predictor variables instead, there is potential to quantify the 

influence of a large lake or the sea, for example, on the SUHI. Something of note regard the 

coastal aspect, however, was that the model did not perform as well for the city on the 

borderline of meeting the coastal criteria (Umuahia, Nigeria). It may be more appropriate to 

create a separate model for the coastal cities.  

The RERF model itself also would benefit from being revisited and windspeed added as a 

predictor variable. This could improve the performance of the RERF and create more informed 

future projections of the SUHI with the impact of atmospheric stability included.  

A final piece of future work, and the largest undertaking, would be to address one of the major 

issues with the use of LST for UHI studies, and investigate ways of examining and relating 

the CUHI to the results of the SUHI results. As there is a severe lack of suitable weather 

stations in the regions examined to obtain air temperature measures in both the rural and urban 

areas, and it is unfeasible to create a sensor network, there are highly limited options for how 

this could be done. A potential option is to use satellite remotely sensed atmospheric profiles 

to derive air temperature by vertically interpolating to surface pressure level, which has been 

shown to have good agreement with in situ measurements (Famiglietti et al., 2018). This 

approach is relatively uncommon, but has been used in a couple of UHI studies (Hu and 

Brunsell, 2015; F. Huang et al., 2020). The data is taken from MODIS sensor on the Aqua and 

Terra satellites, and as the Aqua MODIS sensor is used to derive the LST used in this thesis, 

direct comparison at the same times can be made. However, horizontal resolution of the 

atmospheric profiles is 5 km, so at a coarser scale than the LST data which has a resolution of 

1 km. This approach is still in the early stages of being adopted, so validation would need to 

be done, and therefore cities with a sensor network would need to be examined at first to prove 

the approach is reliable. 
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Table A.1.1 Studies which compare the CUHI and SUHI and the findings relevant to the comparison.  

Reference Cities Studied Method Findings 

(Unger et 

al., 2010) 

Szeged 

(Hungary) 

• LST data collected by airborne thermal infrared 

sensor. 

• 1.5m air temperature data collected using a car-

based temperature sensor. 

• Both collected simultaneously. 

• 2 days in August 

• Air and surface temperature measurements have a strong 

relationship, with air temperature being strongly influenced by the 

temperatures of the surrounding surfaces. 

(Azevedo 

et al., 

2016) 

Birmingham 

(UK) 

• LST data from MODIS aqua satellite sensor 

(13:30, 01:30 overpasses). 

• Air temperature data from high resolution 

meteorological network of temperature sensors 

and weather station interpolated using kriging. 

• Weather station (surrounding pixel for LST) 

used as rural reference area.  

• Daytime 06:00-17:59 air temperature, 13:30 

overpass for LST, Night-time 18:00-05:59 for 

air temperature, 01:30 overpass for LST. Day/ 

nights then averaged based on weather condition 

stability classes.  

• June, July, August 2013.  

• During the day there is a clear SUHI for all weather conditions, but 

for the CUHI, only the city centre is warmer than the reference.  

• The hottest areas of the CUHI and SUHI are both the urban core, but 

the CUHI thermal core extends in a different direction to the SUHI, 

influenced by the wind direction. The SUHI is influenced by land 

use.  

• Daytime CUHI-SUHI intensity differences (at overpass time) vary 

with land use. 

• Night-time SUHI and CUHI spatial patterns are similar to daytime.  

• The SUHI is consistently greater than the CUHI (day and night).  

(Ma et 

al., 2016) 

Shanghai 

(China) 

• LST data from MODIS satellite sensor (10:30 

overpass used) 

• Air temperature data from weather stations, at 

08:00 and 14:00, linearly interpolated to 

estimate satellite overpass time.  

• Pearson’s correlation between MODIS LST and air temperature is 

0.836. Split into months, correlations were highest in Autumn 

(October, 0.828) and lowest in Summer (July, 0.131). Differences in 

summer could be due to vegetation.  

• SUHI is consistently larger than the CUHI.  
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• January, April, July, October 2007 and 2008.  

(Hu et 

al., 2019) 

Beijing, 

Shanghai, 

Guangzhou 

(China) 

• LST data from MODIS satellite sensor, 8-day 

composite (10:30. 13:30, 22:30 and 01:30 

overpasses used).  

• Air temperature data from 19 urban and rural 

weather stations.  

• 2003 to 2016, grouped into seasons 

• Annual mean SUHIs generally larger than CUHIs.  

• The largest differences between SUHI and CUHI magnitude occur 

in summer.  

• The SUHI is largest in the summer and the CUHI is largest in winter.  

(Feng et 

al., 2019) 

Birmingham 

(UK) 

• LST data from MODIS aqua satellite sensor 

(22:30 and 01:30 overpasses). 

• Air temperature data from high resolution 

meteorological network of temperature sensors 

(20) and weather stations (2) 

• Simultaneous temperatures compared.  

• Weather station (surrounding pixel for LST) 

used as rural reference area.  

• June 2013 to August 2014 

• The SUHI-CUHI relationship weakens as wind speed increases and 

seasonally is weakest in winter (colder weather).  

• A CUHI is found to exist in cases when the SUHI is zero.  

• The CUHI and SUHI are more correlated in the urban areas versus 

the suburban, but a relationship between the two exists for both. 

• CUHI is impacted more than SUHI by wind speed.   

(Wang et 

al., 2020)  

Shanghai, 

Beijing, 

Taipei 

(China), 

Birmingham 

(UK) 

• LST data from MODIS satellite sensor (10:30, 

13:30, 22:30, 01:30 overpasses). 

• 1.5m air temperature data from weather stations 

interpolated using kriging.  

• Simultaneous temperatures compared.  

• Rural reference area used. For the air 

temperature, stations warmer than the rest due to 

air plume from city removed.  

• WRF-UCM simulation run to examine 

mechanisms.  

• 9% (201 out of 2232) CUHI-SUHI pairs were significantly different, 

with correlation coefficients of less than 0.2.  

• Beijing and Shanghai had greater differences in the CUHI-SUHI 

then Taipai and Birmingham which may be attributed to the 

mountain-valley breeze in Beijing and sea-land breeze in Shanghai.   

• SUHI intensity is consistently greater than the CUHI, and 

differences are greatest during the day (mean 1.88°C) than at night 

(0.63°C). Differences attributed to air advection.  

• Static estimations of the CUHI (i.e., weather station pairs) are not 

appropriate for CUHI studies as downwind rural areas are impacted 

by the CUHI.   
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• Multiple images over 2014-2016 for 

Birmingham, 2012-2014 for other cities.  

(Sun et 

al., 2020) 

Baoding, 

Beijing, 

Cangzhou, 

Chengde, 

Handan, 

Hengshui, 

Langfang, 

Qinhuangdao, 

Shijiazhuang, 

Tangshan, 

Tianjin, 

Xingtai, 

Zhangjiakou 

(China) 

• LST data from MODIS satellite sensor (10:30 

and 22:30 overpasses) 

• 2m air temperature data from weather stations 

(16 urban, 158 rural) 

• Mean, maximum and minimum LST calculated 

using both overpasses, and extracted from 

weather station data for air temperature.  

• Rural reference area locations of rural weather 

stations.  

• 2001 to 2015.  

 

• SUHI and CUHI calculated using mean temperatures were 

correlated, with a regression of SUHI on UHI giving R-squared 

valued of 0.794. Correlations not strong using minimum and 

maximum temperatures.  

• Both CUHI and SUHI show increasing trends, in line with 

increasing urbanisation of the cities.  

(Gawuc 

et al., 

2020) 

Warsaw 

(Poland) 

• LST data from MODIS satellite sensor (22:30 

and 01:30 overpasses) 

• Air temperature data from weather stations (21 

total). 

• Simultaneous temperatures compared.  

• Rural reference area locations of rural weather 

stations.  

• 2008 to 2017, night-time only.  

• Linear relationship between night-time CUHI and SUHI, with the 

strongest correlations where the station pairs have the highest CUHI 

intensity.  

(Amorim 

et al., 

2021)  

Presidente 

Prudente 

(Brazil), 

• LST data from Landsat 8 satellite (daytime and 

night-time).  

• Stronger SUHIs exist during the day (SUHI is recorded when not 

CUHI is shown), and CUHIs are greater than SUHIs during the night 
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Rennes 

(France) 

• Air temperature measurements taken at fixed 

urban and rural points (taken for 30 days).  

• Simultaneous temperature records.  

• 2019, images for President Prudente, October at 

13:22, November at 01:50. Rennes November at 

10:59, 21:33.  

(Yao et 

al., 2021) 

272 cities in 

China 

• LST data from MODIS satellite sensor (10:30 

and 22:30 overpasses) 

• Air temperature data from weather stations (697 

total), mapped to a 1km resolution grid using 

satellite data.  

• Rural reference for the SUHI was a ‘buffer’ ring 

of area around outside of the city perimeter.   

• Seasonal mean temperatures used.  

• 2001-2018 

• Trends in night-time SUHI and CUHI strongly related, but daytime 

the relationship is weak.   

• For the period studied, the CUHI increased. The SUHI increased 

apart from daytime winter.  

(Venter et 

al., 2021) 

342 cities in 

Europe 

• LST data from MODIS satellite sensor (10:30, 

13:30, 22:30, 01:30 overpasses) 

• Air temperature data from crowdsourced citizen 

weather stations  

• Simultaneous temperature records. 

• July 2019 (month with heatwave) 

• SUHI greater than the CUHI for 96% of cities during the day and 

80% during the night.  

• Mean SUHI for all cities is 1.45°C versus CUHI of 0.26°C.  

(Du et 

al., 2021) 

366 global 

cities 

• LST data from MODIS satellite sensor (13:30 

and 01:30 overpasses) 

• Air temperature data from urban-rural weather 

station pairs (monthly mean and minimum 

values).  

• Annual mean SUHI is greater than CUHI by 1.1°C during the day 

and 0.3°C at night.  

• In equatorial, warm temperate, and snow climates SUHI is greater 

then CUHI, but in arid climates the SUHI is lower than CUHI (by 

0.8°C) during the day.  



 

204 
 

204
 

• Rural reference for the SUHI was a ‘buffer’ ring 

of area around outside of the city perimeter.   

• Monthly mean temperatures used.  

• 2012 

(Cao et 

al., 2021) 

Shenzhen 

(China) 

• LST data from MODIS satellite sensor (13:30 

and 22:30 overpasses).  

• Air temperature data from network of 117 

weather stations. 

• 8-day composite used for LST but times 

simultaneous to air temperature (hourly 

measurements were taken).  

• 2017.  

• Urban LST is significantly correlated with air temperature (daytime 

and night-time), but the locations of the cool and hot spots were not 

always the same.   

(Berg and 

Kucharik, 

2022) 

Madison 

(USA) 

• LST data from Landsat 7 and 8 satellite (11:30 

and 23:30 overpasses) 

• 3.5m air temperature data from network of 146 

temperature sensors, interpolated to 400m grid 

using kriging.  

• Simultaneous temperature records. 

• June, July, August 2012-2019 

• Differences between LST and air temperature greatest during the 

day. 

• LST exhibits a greater temperature range than air temperature 

measured in the same location.  

• Rural temperatures vary dependent on rural reference point chosen.   

(Amani-

Beni et 

al., 2022) 

Beijing 

(China)  

• LST data from Landsat 8 satellite (14:53 

overpass) 

• Air temperature data from bicycle mounted 

sensors 

• Rural reference taken as centre of large park in 

the city (680 hectares in size).  

• Simultaneous temperature records. 

• 10 July 2017 

• SUHI is larger than the CUHI.  

• LST and air temperature positively correlated, but cool and warm 

spots differ spatially.  
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(Peng et 

al., 2022) 

Kitakyushu 

(Japan) 

• LST data from MODIS satellite sensor (10:30, 

13:30, 22:30 and 01:30 overpasses).  

• Air temperature data from a gridded 1km dataset 

(from Japan Ministry of Land, Infrastructure, 

Transport and Tourism). 

• Rural reference area taken as a 10km ‘buffer’ 

ring around the perimeter of the city.  

• 2010 

• Daytime SUHI and CUHI had similar spatial patterns but different 

spatial patterns at night.  

• Both CUHI and SUHI highest during summer daytime and weakest 

during winter night-time.  

(Kumar 

et al., 

2023) 

Delhi (India) • LST data from MODIS satellite sensor (10:30 

and 22:30 overpasses).  

• Air temperature data from 39 monitoring 

stations.  

• Seasonal means used.  

• Rural reference area taken as the non-urban 

pixels in the 39x39km study area.  

• 2019 to 2021 

• The mean CUHI is greater than the mean SUHI in all 4 seasons (note 

this is both overpasses).  

• In winter, the hottest areas for the CUHI and SUHI are the same, but 

during spring  

• Both CUHI and SUHI show increasing trends in spatial extent for 

the study period.  
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Table A.1.2 Statistical models predicting the SUHI of cities based on input variables. Not all the studies have input variables related to climate, and climate variables can be seen highlighted in 

bold in the table.  

Paper 

Reference 

Cities studied Models used Input Variables Test/Training 

split 

Findings  

(Schwarz 

and 

Manceur, 

2015) 

274 cities in 

Europe 

Multiple Linear 

Regression 

Land composition (size of 

each landcover type), 

elevation, population, 

distance to next city, 

rainfall, temperature of 

coldest/ warmest month, 

albedo, distance to coast, 

sunshine hours, latitude 

Data split into 5. 

Resulting patterns 

did not change 

considerably 

between them, so 

results presented 

show one 

randomly chosen. 

Explanatory power of the model is lower for the 

night-time SUHI.  

Population/city size variables most significant. 

(Y. Li et 

al., 2021)  

5000 cities in 

Europe 

Multiple Linear 

Regression  

 

Geographically 

Weighted 

Regression (GWR) 

 

Nonlinear 

Regression 

(Multiple Linear 

Regression model 

with variables 

transformed using 

sin, ln and functions 

of variables)  

Summer average EVI, 

precipitation, maximum 

2m air temperature and 

10m wind speed, elevation, 

solar radiation, latitude 

 

No split (all data 

included in 

model) 

GWR captures the relationship better than linear 

regression. 

Nonlinear regression performance is better than 

linear and comparable to GWR.  

Colder, wetter, winder cities with more vegetated 

rural areas experience strongest SUHI. 
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(Li, Zha 

and Wang, 

2020) 

145 Global 

Cities 

(population 

over 1 mil and 

contain a 

weather 

station) 

Linear Regression 

(separately for each 

variable) 

Air temperature, 

precipitation 

All data used as 

training/test 

Stronger correlation of the SUHI intensity and 

precipitation than with air temperature.  

Positive correlation during the day and negative 

at night.  

Cities with greater urban rural vegetation 

differences enhance the SUHI.  

 

(Zhou et 

al., 2014) 

32 cities in 

China 

Multiple Linear 

Regression 

Vegetation index, albedo, 

night-time lights, elevation, 

built-up intensity, urban 

size, total precipitation, 

mean temperature 

Non-parametric 

bootstrapping, 

1000 

randomisations 

 

Summer daytime SUHI primarily explained by 

night-time lights, and winter by temperature and 

precipitation  

(Manoli et 

al., 2019) 

30,000 Global 

cities 

Nonlinear physics 

modelling 

Precipitation, population, 

albedo 

n/a Mean annual precipitation and population size 

are the strongest predictors, and have nonlinear 

relationships with the SUHI magnitude 

(Ma et al., 

2021) 

Over 3000 

cities in China 

Random Forest 

Regression 

Anthropogenic heat flux, 

night light intensity, 

population density, 

morphological continuity, 

morphological fractal 

dimension, area size, 

elevation, precipitation 

rate, solar radiation, air 

temperature, specific 

humidity, wind speed 

 

3-fold cross 

validation, split 

by time 

 

Area size was the most influential in summer, 

urban development important winter.  

During the night, urban morphology was more 

important in predicting SUHI magnitude, but in 

the day natural factors were more important 

(climate variables and elevation) 
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(Liu et al., 

2021) 

1288 cities in 

China 

Multiple Linear 

Regression 

urban size, shape, centrality  All data used as 

training/test 

Stronger relationships observed in the daytime 

than night-time.  

 

(Imhoff et 

al., 2010) 

38 cities in 

USA 

Linear Regression 

(separately for each 

variable) 

Impervious surface area 

(ISA), size 

grouped by biome 

(landcover type) 

All data used as 

training/test 

ISA good predictor of the LST for all biomes 

expect desert and xeric shrublands. A positive 

relationship between SUHI magnitude and city 

area is found.  

(Peng et 

al., 2018) 

285 cities in 

China 

Linear Regression LST change over time  All data used as 

training/test 

The SUHI is largest in summer daytime, and 

SUHI magnitude varies dependent on location of 

cities.  

(Zhou et 

al., 2017) 

5000 cities in 

Europe 

 

Multiple Linear 

Regression 

City size, anisometry and 

fractal dimension 

 

All data used as 

training/test 

UHI intensity increases with log city size and 

fractal dimension, decreases with log anisometry. 

 

(Clinton 

and Gong, 

2013) 

28,327 Global 

cities 

 

Random Forest 

Regression (plus 

wrapped regression 

trees for variable 

selection) 

Cluster analysis 

Latitude, longitude, 

population, nightlights, 

urban area, EVI, urban 

structure height 

All data used as 

training/test 

Development intensity, vegetation amount, size 

of urban metropolis were found to be the most 

important variables to predict SUHI intensity.  

(Wang et 

al., 2015) 

67 cities in 

China 

Random Forest 

Regression 

Human-induced heat 

discharge factors, land 

surface, urban form, NDVI, 

albedo 

 

Split by years 

(2003-2008 

training, 2009-

2010 test) 

In Southern China the daytime SUHI was more 

intense, with annual electricity consumption & 

number public buses had greatest effect. The 

night-time SUHI was more intense in Northern 

China, where vegetation had greatest effect. 
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Methods of studying the UHI: Modelling 

Parameterisations 

There is a large body of research into the parameterisations of the urban surface scheme, with 

varying levels of complexity. Parameterisations of the urban surface in GCMs and RCMs can 

be split into 3 groups: bulk parameterisation, single level urban canopy models (UCMs) and 

multi-level UCMs. In bulk parameterisation, the urban surface is represented by bare soil or a 

flat plate with modified roughness length and thermal properties. There is reduced moisture 

availability to ensure sensible heat fluxes are favoured over latent (Masson, 2000; Martilli et 

al., 2002; Best, 2005; Liu et al., 2006). Single layer UCMs add more complexity. They 

represent the general characteristics of urban morphology, but do not take into account 

microscale aspects such as individual buildings or parks (Masson, 2000; Martilli et al., 2002; 

Liu et al., 2006). Kusaka (2001) developed a single layer UCM commonly used in WRF model 

simulations (see Table A.1.3). This UCM considers 3 surfaces (roofs, roads and walls) and the 

influence of shadowing and reflection of radiation due to canyon geometry. The most complex 

models are multi-level UCMs. These provide a more detailed representation of the urban form, 

dividing surfaces into a number of horizontal patches with their own energy balances 

(Grimmond et al., 2010).  

The parametrisation used depends on the goal of the study; multilevel UCMs are 

computationally expensive and require detailed input values, but are useful for studying 

complex urban interactions (Best, 2005; Chen et al., 2011). More simple approaches can be 

useful for looking at the evolution of the CUHI over a number of months or years, with some 

schemes no more complex to implement than the traditional modelling methods used 

previously (Best, 2005). In an international comparison project, simple parameterisations were 

found to perform just as well as those more complex (Grimmond et al., 2010) and represent 

the seasonal cycle of the CUHI even better (Best and Grimmond, 2013). 

An additional note, which concerns parameterisations, but not those of the urban surface, is 

that improving on the horizontal grid resolution in RCMs has been shown by sensitivity 

experiments to be as important as improving the representation of the urban surface (Chin et 

al., 2005). This can be done by using very high-resolution RCMs known as convection-

permitting models (Argüeso et al., 2014; Hamdi et al., 2014). These models have small enough 

grid spaces to resolve convection processes, meaning parameterisations of convection, known 

to be very difficult and complex, are no longer required, therefore giving a more accurate 

depiction of the atmosphere (Leutwyler et al., 2017). Finer resolution models also improve 

simulation of topography and coastlines of importance, as CUHIs are impacted by coastal 

locations, discussed in section 2.4 (Lowe et al., 2019). Consequently, the ongoing research 
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into the improvement in resolutions of RCMs will lead to better prediction and projection of 

the UHI.  

Table A.1.3 Some examples of regional climate models used in UHI studies.  

Regional 

Climate 

Model 

UHI studies 

using RCM 

Cities Spatial 

Resolution in 

studies 

Temporal 

span in 

studies 

Urban surface 

parameterisation

used in studies 

Hadley 

Centre 

Regional 
Climate 

Model 

(HadRM3) 

(McCarthy et 

al., 2011) 

 

London 

(UK) 
25km 

(Not 

convection 

resolving but 
latest model 

is) 

Simulates 

2060 

scenario 

Bulk (Best, 

2005) 

Weather 

Research 

and 
Forecast 

(WRF) 

(Miao et al., 

2009; Chen 

et al., 2011; 
Georgescu et 

al., 2011; 

Argüeso et 
al., 2014; 

Tewari et al., 

2017; 

Salamanca 
and 

Mahalov, 

2019) 

Tokyo, 

Osaka, 

Nagoya 

(Japan) 

Phoenix, 

Tuscan 

(USA) 

Sydney 

(Australia) 

1 to 3km 

(Convection 

resolving 

(Chen et al., 

2011)) 

Used for 

present 

CUHI only  
in some 

studies 

Simulates 
to 2070 

scenario 

Single layer 

UCM 

(Kusaka et al., 
2001; Kusaka 

and Kimura, 

2004) 

 

Multilayer UCM 
(Salamanca et 

al., 2011)  

Advanced 
Regional 

Prediction 

Systems 

(ARPS) 

(Demuzere et 
al., 2008; 

Sarkar and 

de Ridder, 

2011; 
Wouters et 

al., 2013) 

Paris, 
Marseille 

(France) 

1km 

(Convection 

resolving) 

Only used 
to model 

present 

CUHI 

Bulk (De 

Ridder, 2006)  

ALARO, 

ARPEGE-

IFS system 

(Hamdi et 

al., 2014) 

 

Brussels 

(Belgium) 

4km 

(Convection 

resolving) 

Simulates  

2100 

scenario 

Single layer 

UCM (Masson, 

2000)  

 

Computational Fluid Dynamics 

Computational Fluid Dynamics (CFD) are a computational method of examining small scale 

UHI features. CFD models are used to capture complex physical processes to investigate their 

interactions with urban morphology, water bodies, vegetation and urban materials (Kubilay et 

al., 2020). The models allow for the most detailed understanding of the local scale, and this 

not only is useful for understanding local processes, but also can contribute to parameterisation 

schemes in lower resolution circulation models (GCMs and RCMs). The downside of these 
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models is that detailed knowledge of urban geometry and boundary conditions is needed, and 

they are computationally expensive (Toparlar et al., 2017). Often CFD models are coupled 

with building energy simulations to give measurements of the impact of aspects such as 

building height (Allegrini and Carmeliet, 2018) or CUHI mitigation methods (Kubilay et al., 

2020). A review of CFD studies finds two families of these models commonly employed, 

Reynolds-averaged Navier Stokes (RANS) equations or Large Eddy Simulations (LES). 

These refer to the representation of turbulence in the model. LES are considered more 

accurate, but have a higher computational expense then RANS (Toparlar et al., 2017). A LES 

model specifically for urban environments, uDALES, has been developed by Suter et al 

(2022).  

Lab-based scale modelling 

Lab based models, aiming to emulate the structure of an urban area, are used in experiments 

to examine the effect of geometry and urban roughness. These typically scrutinise processes 

in the microscale (Figure 2.2), looking at behaviours within urban canyons but can also be 

used to investigate local (Figure 2.2) scale processes in less detail (Oke et al., 1991; Uehara 

et al., 2000; Kim and Baik, 2001). For example, Oke (1981) uses 50 plywood blocks in a 

heating chamber to represent a city and the same volume of flat wood as a rural representation, 

in order to investigate the effect of geometry at a local scale. Uehara (2000) examines the wind 

speed and temperatures of a street canyon model in a wind tunnel, looking at processes on a 

microscale. This type of modelling is useful to verify and calibrate mathematical models but 

has drawbacks in terms of the ability to simulate certain processes, such as radiation, and is 

also expensive (Mirzaei and Haghighat, 2010).  

Influence of weather and climate 

Meteorological influence of the UHI 

Despite urban areas being known to reduce the wind flow due to urban roughness, they also 

create air flow in the form of country breezes, also known as urban breezes (Findlay and Hirt, 

1969). Analogous to this sea breeze, the country breeze gradient forms from cooler country 

air and relatively warmer urban air (Vukovich, 1971; Hidalgo et al., 2008). These country 

breezes supply cooler air to the urban area and are positively correlated with CUHI intensity; 

nocturnal hours where the CUHI intensity is greatest is when the country breeze occurs most 

frequently (Barlag and Kuttler, 1990).  

Alongside the country breeze effect, the UHI may be responsible for other changes in the local 

scale weather, with observational (Grady Dixon and Mote, 2003) and modelling (Nie et al., 

2017; Zhu et al., 2017) studies finding precipitation patterns are altered by the presence of a 

city. It is worth mentioning however, that there is still uncertainty as to whether this triggered 
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by the UHI. Zhu et al (2017) attribute the modifications to the urban comparative dryness to 

a rural area rather than the increased temperature. UHIs have also been linked to increased 

cloud cover over urban areas, attributed the warm rising air above urban surfaces feed moisture 

to the clouds. The authors attribute this persistence of cloud cover to the UHI rather than the 

increase in aerosols (due to pollution over cities) because of the cloud type. The type of cloud 

seen to persist is low and non-precipitating, which does not have its lifetime increased by 

aerosols (Theeuwes et al., 2019).  
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Table A.1.4 Studies examining the future SUHI based on climate change scenarios. Many studies use RCMs and focus on one or two cities. Findings noted on the table are related to 
the impacts of climate change on the CUHI magnitude. 

Reference  Cities Studied  Model used Model 

Resolution  

Climate Scenario Urban 

Expansion  

Findings 

(Oleson et 

al., 2011) 

Global Model  Urban parameterisation 

couple to community land 

model (CLM) 

(1.9 ° lat x 

2.5° lon) 

AR4 A2 (high 

emissions) 

None Slight decrease in the CUHI. 

Primarily due to different 

responses to increased long 

wave radiation due to 

atmospheric warming.  

(McCarthy 

et al., 2011) 

UK cities RCM (HadRM3 used to 

downscale HadCM3 

(GCM)) 

25 km SRES A1B 

(medium 

emissions) 

None The magnitude of the CUHI 

remains the same with 110 

climate change.  

(Hamdi et 

al., 2014) 

Brussels 

(Belgium) 

Urban parameterisation 

(SURFEX and TEB) with 

limited area model 

(ARPEGE-IFS) and 

atmospheric model 

(ALARO) 

 

1 km SRES A1B  

(medium 

emissions) 

None Decreases found in the daytime 

CUHI and either no change or a 

decrease in the nocturnal CUHI 

in the period 2017- 2100.  

(Argüeso et 

al., 2014) 

Sydney 

(Australia) 

RCM (WRF) with GCM 

(CSIRO)  

2 km SRES A2 (high 

emissions) 

Accounted 

for 

Future urbanization will have 

strong effect on minimum 

urban temperatures (little on 

maximum), in the period 2040-

2059.  

(Lauwaet et 

al., 2016) 

Brussels 

(Belgium)  

UrbClim (downscaled from 

COSMO-CLM) 

250 m RCP4.5 and 

RCP8.5 (medium 

and high 

emissions 

None The CUHI decreases slightly in 

2060-2069 period for both 

emissions pathways. Only the 
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summer months are 

investigated.   

(Tewari et 

al., 2017) 

Arizona and 

Tucson (USA) 

RCM (WRF) 1 km RCP8.5 (high 

emissions) 

Accounted 

for  

Increase in temperature in both 

cities due to urban expansion 

and climate change.   

(van der 

Schriek et 

al., 2020) 

Athens 

(Greece) 

RCM (EURO-CORDEX) 12 km RCP2.6, RCP4.5, 

and RCP8.5(low, 

medium, and high 

emissions) 

None Slight increase in summer 

CUHI in all RCP scenarios.   

The CUHI pushes the city 

temperatures to above 

heatwaves conditions, resulting 

in higher frequency of night-

time heatwaves in city only.  

(Allaga-

Zsebeházi, 

2021) 

Budapest 

(Hungary) 

RCM (HMS-ALADIN), 

SURFEX 

1 km RCP8.5 (high 

emissions) 

None Decrease in the CUHI intensity 

(most in Spring and Summer) 

by 2071 to 2100.  

(Keppas et 

al., 2021) 

Rome (Italy) 

and 

Thessaloniki 

(Greece) 

RCM (WRF) 2 km RCP 8.5 (high 

emissions) 

None No significant changes in CUHI 

magnitude in the periods 2016-

2050 or 2096-2100 

(Silva et al., 

2022) 

Lisbon 

(Portugal) 

RCM (WRF) 1km RCP 8.5 (high 

emissions) 

Accounted 

for 

Largest increase in the CUHI 

intensity by period 2081- 2100 

during the night due to more 

urban landcover and less 

greenspace 

(Andrade et 

al., 2023) 

Lisbon and 

Porto 

(Portugal) 

RCMs from EURO-

CORDEX without urban 

representations compared to 

UrbClim  

0.11 °x 

0.11 ° 

(UrbClim 

100m) 

RCP 8.5 (high 

emissions) 

None Summer daytime trends 

increase the most in to by 

period 2021-2050.  
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Table A.1.5 Studies which carry out SUHI analyses including large numbers of cities. The highest number of 
studies is in China, with seven studies in total.  

Reference Study area Aim 

(Tran et al., 

2006) 

18 Asian 

megacities  

Comparative assessment of SHI in temperate 

and tropical regions. 

(Imhoff et al., 

2010) 

38 most populous 

USA cities 

Assess the SUHI and its relationship with 

development intensity, size and ecological 

setting. 

(Schwarz et al., 

2011) 

263 European 

cities  

Examine the different indicators used to quantify 

the SUHI. 

(Peng et al., 

2012) 

419 Global cities Assessment of the diurnal and seasonal variation 

of the SUHI. 

(Clinton and 

Gong, 2013) 

Global Aims to identify the key factors that contribute 

to the SUHI. 

(Zhou et al., 

2013) 

All cities in Europe Investigate relationships of SUHII with cluster 

size and temperature of the surroundings. 

(Zhou et al., 

2014) 

32 Chinese cities Aims to quantify diurnal and seasonal SUHI, 

spatial patterns and drivers. 

(Schwarz and 

Manceur, 2015) 

Europe  Analysis of the urban form and its impact on 

SUHI. 

(Wang et al., 

2015) 

67 Chinese cities Assessment of seasonal and diurnal variations of 

the SUHI and relationships with social, 

economic and natural factors. 

(D. Zhou et al., 

2016) 

China Examine diurnal and seasonal cycles of SUHI 

intensity. 

(Ward et al., 

2016) 

70 European cities Investigate the causes of SUHIs and its change 

during heat waves.  

(Yang et al., 

2017) 

332 Chinese cities Assessment of the different landcover types on 

the SUHI.  

(Zhou et al., 

2017) 

Europe  Examine role of city size and urban form in the 

SUHI. 

(Fu and Weng, 

2018) 

US cities (~2000) Exploration of annual temperature cycles. 

(Peng et al., 

2018) 

285 Chinese cities Analyse the spatial temporal change of LST . 

(Li et al., 2019) 60 North American 

cities 

Analyses whether SUHI spatial variability is due 

to aerodynamics or imperviousness. 



Appendix 

 

216 
 

(Manoli et al., 

2019) 

Global Investigate relationships between SUHI and 

population and background climate. 

(Chakraborty 

and Lee, 2019) 

Global Developed algorithm to categorise SUHIs on 

global scale and examine vegetation control. 

(Wu et al., 

2019) 

44 South American 

cities 

Examination between SUHI intensity and 

influencing factors. 

(Chakraborty 

and Lee, 2019) 

9500 Global cities Development and testing of a new method of 

SUHI quantification.  

(Liu et al., 

2021) 

1288 Chinese cities Examination of how urban morphology impacts 

the SUHI intensity. 

(Ma et al., 2021) 3000 Chinese cities Investigation of the SUHI seasonal and diurnal 

variations and how various human and natural 

factors influence its intensity.  

(Mentaschi et 

al., 2022) 

9028 Global cities Investigation into the extreme values of SUHI – 

both spatially within the city and in the study 

time period.  



Appendix 

 

217 
 

A.2. DATA SUMMARY TABLES 

 

Table A.2.6 Datasets used for the city selection. 

Dataset Resolution Temporal 

characteristics 

Usage Reference 

United Nations 

population of 

urban 

Agglomerations 

Nearest 

thousand 

population 

Every 5 years 

from 1950 – 

2035 

To find cities 

across the globe 

with populations 

of between 

300,000 and 

1,000,000 

(United 

Nations, 

Department of 

Economic and 

Social Affairs, 

Population 

Division, 

2018) 

NASA Goddard 

Space Flight 

centre Ocean 

Color Group 

distance to 

nearest coastline 

0.01 degrees - To identify coastal 

cities 

(Stumpf, 

2012) 

 

GloboLakes: 

high- resolution 

global limnology 

dataset v1 

300m Static 

waterbodies 

between 2005 

and 2010 

To identify cities 

near lakes 

(Laura Carrea 

et al., 2015) 

Global Land One-

kilometer Base 

Elevation 

(GLOBE) Digital 

Elevation Model 

dataset 

1000m - To distinguish 

cities in hilly areas 

versus those on a 

plateau 

(Hastings et 

al., 1999) 
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Table A.2.7 Datasets used for the SUHI quantification.  

Dataset Resolution Temporal 

characteristics 

Usage Reference 

Terra Land Surface 

Temperature/ 

Emissivity 8-Day 

Global 

(MOD11A2) 

1000m Every 8 days 

from 2000-

2020  

Providing LST to 

calculate the 

Gaussian surface 

approximation 

(Wan et al., 

2015) 

Aqua Land Surface 

Temperature/ 

Emissivity 8-Day 

Global 

(MYD11A2) 

1000m Every 8 days 

from 2002-

2020 

Providing LST to 

calculate the 

Gaussian surface 

approximation 

(Wan et al., 

2015) 

ESA Land Cover 

Climate Change 

Initiative: Global 

Land Cover Maps, 

Version 2.0.7 

300m Each year 

between 1992 

and 2015 

Providing 

information on 

the land cover 

type to identify 

urban area 

(ESA Land 

Cover CCI 

project team; 

Defourny, 

2019) 

 

Table A.2.8 Datasets used for quantification of the model predictor variables. 

Dataset Resolution Temporal 

characteristics 

Usage Reference 

Climate 

Data: ERA-5 

9km Monthly from 1981 to 

present 

Climate predictor 

variables 

(Muñoz Sabater, 

2019) 

MODIS 

EVI: 

MYD13A2, 

MOD13A2 

1000m Every 16 days from 

2002 to 2020 

Vegetation 

predictor 

variables 

(National 

Aeronautics and 

Space 

Administration, 

2021c, 2021d) 

MODIS 

Albedo: 

MCD43A3, 

MCD43A2  

500m Daily from 2002 to 

2020 

Albedo predictor 

variables 

(National 

Aeronautics and 

Space 

Administration, 

2021b, 2021a) 

CMIP6 

ScenarioMIP 

Projections  

2.8°x 2.8°  Monthly from 1850 to 

2015 (historical) and 

2015 to 2100 

(ssp370) 

Climate and 

vegetation 

projections 

See Table 

A.2.10 and 

Table A.11 
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Table A.2.9 Global reanalysis datasets considered for this study. 

 

 

 

 

 

 

Reanalysis Dataset Horizontal resolution Temporal Reference 

ERA-5 0.1°x0.1° (Native 

resolution 9km) 

Coverage: 1981 to 

present 

Resolution: Monthly 

(also hourly product) 

(Muñoz Sabater, 

2019) 

MERRA-2 0.625°×0.5° Coverage: 1980 to 

present 

Resolution: Hourly 

(Gelaro et al., 

2017) 

JRA-55 1.25° × 1.25° Coverage: 1958 to 

present 

Resolution: 3 hours 

(Kobayashi et al., 

2015) 
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Table A.2.10 Information on the GCMs used to generate the changes in climate variables. 

Institution Country Model Centre ID Model Variant 

used  

Horizontal 

Resolution 

(lon x lat) 

Reference 

Chinese Academy of Sciences China CAS FGOALS-f3-L r1i1p1f1 1.3° x 1° (He et al., 2019) 

Canadian Centre for Climate Modelling and 

Analysis 

 

Canada CCCma CanESM5 r1i1p1f1 2.8° x 2.8° (Swart et al., 2019) 

Fondazione Centro Euro-Mediterraneo sui 

Cambiamenti Climatici 

 

Italy CMCC CMCC-CM2-

SR5 

r1i1p1f1 1.3° x 1° (Cherchi et al., 2019) 

CSIRO (Commonwealth Scientific and 

Industrial Research Organisation), 

ARCCSS (Australian Research Council 

Centre of Excellence for Climate System 

Science) 

 

Australia CSIRO-ARCCSS ACCESS-CM2 r1i1p1f1 1.9° x 1.3° (Bi et al., 2020) 

Deutsches Klimarechenzentrum 

 

Germany 

 

DKRZ MPI-ESM1-2-

LR 

r1i1p1f1 1.9° x 1.9° (Müller et al., 2018; 

Mauritsen et al., 

2019) 

EC-Earth-Consortium – Multiple Institutions 

(AEMET, BSC, CNR-ISAC,  

DMI, ENEA, FMI, Geomar,  

ICHC, ICTP, IDL, IMAU, IPMA, KIT, 

KNMI, Lund University, Met Eireann, 

NLeSC, NTNU,  

Oxford University, surfSARA,  

Europe EC-Earth-

Consortium 

EC-Earth3 r1i1p1f1 0.7° x 0.7° (Döscher et al., 2022) 
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SMHI, Stockholm University,  

Unite ASTR, University College Dublin 

University of Bergen, University of 

Copenhagen, University of Helsinki, 

University of Santiago de Compostela, 

Uppsala University, Utrecht University, Vrije 

Universiteit Amsterdam, Wageningen 

University) 

Institute for Numerical Mathematics 

 

Russia INM INM-CM5-0 r1i1p1f1 2° x 1.5° (Volodin et al., 2018) 

Institut Pierre Simon Laplace 

 

France IPSL IPSL-CM6A-

LR 

r1i1p1f1 2.5° x 1.3° (Boucher et al., 2020) 

JAMSTEC (Japan Agency for Marine-Earth 

Science and Technology), 

AORI (Atmosphere and Ocean Research 

Institute, The University of Tokyo), 

NIES (National Institute for Environmental 

Studies), 

R-CCS (RIKEN Center for Computational 

Science) 

 

Japan MIROC MIROC6 r1i1p1f1 1.4° x 1.4° (Tatebe et al., 2019) 

NorESM Climate modelling Consortium 

(CICERO (Center for International Climate 

and Environmental Research), MET-Norway, 

NERSC (Nansen Environmental and Remote 

Sensing Center), NILU (Norwegian Institute 

Norway NCC NorESM2-MM r1i1p1f1 1.3° x 1° (Seland et al., 2020) 
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for Air Research), University of Bergen, 

University of Oslo, UNI (Uni Research))  

 

National Oceanic and Atmospheric 

Administration 

 

USA NOAA-GFDL GFDL-ESM4 r1i1p1f1 1.3° x 1° (Dunne et al., 2020) 

CNRM (Centre National de Recherches 

Meteorologiques),  

CERFACS (Centre Europeen de Recherche 

et de Formation Avancee en Calcul 

Scientifique) 

France CNRM-CERFACS CNRM-CM6-1 r1i1p1f2* 1.4° x 1.4° (Voldoire et al., 

2019) 

Met Office Hadley Centre 

 

UK MOHC UKESM1-1-LL r1i1p1f2* 1.9° x 1.3° (Mulcahy et al., 

2022) 

Goddard Institute for Space Studies USA NASA-GISS GISS-E2-1-G r1i1p1f2* 2.5° x 2° (Kelley et al., 2020) 
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Table A.2.11 Information on the ESMs used to generate the changes in LAI. 

Institution Country Model Centre 

ID 

Model Variant 

used  

Horizontal 

Resolution (lon x 

lat) 

Reference 

Canadian Centre for Climate Modelling and Analysis 

 

Canada CCCma CanESM5 r1i1p1f1 2.8° x 2.8° (Swart et al., 

2019) 

CNRM (Centre National de Recherches 

Meteorologiques),  

CERFACS (Centre Europeen de Recherche et de 

Formation Avancee en Calcul Scientifique) 

France CNRM-

CERFACS 

CNRM-CM6-

1 

r1i1p1f2* 1.4° x 1.4° (Voldoire et al., 

2019) 

CSIRO (Commonwealth Scientific and Industrial 

Research Organisation), 

ARCCSS (Australian Research Council Centre of 

Excellence for Climate System Science) 

 

Australia CSIRO-

ARCCSS 

ACCESS-

ESM1-5 

r1i1p1f1 1.9° x 1.3° (Ziehn et al., 

2020) 

Institut Pierre Simon Laplace 

 

France IPSL IPSL-CM6A-

LR 

r1i1p1f1 2.5° x 1.3° (Boucher et al., 

2020) 

Met Office Hadley Centre 

 

UK MOHC UKESM1-1-

LL 

r1i1p1f2* 1.9° x 1.3° (Mulcahy et al., 

2022) 

*Note: Some GCMs/ESMs in the table do not have the ‘r1i1p1f1’ variant. UKESM1-1-LL and GISS-E2-1-G only have one variant available (r1i1p1f2) so this 

was used, and the same was chosen for CNRM-CM6-1. The variant ID is used by the modelling centres to distinguish between ensembles of model runs and 

having a different forcing index (the f1 or f2 at the end of the variant ID) does not necessarily mean the forcing versions are different. In UKESM1 for example, 

the f1 index is not used at all in the CMIP6 experiments. An essential aspect relating to variant ID however, is that the historical simulation used alongside the 

ScenarioMIP model outputs is the same variant.  
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A.3. ALTERNATIVE STATISTICAL MODELS EXAMINED  

This section outlines the additional statistical models which were fitted, but not selected as the 

final model.  

Generalised Additive Model (GAM) 

Linear Generalised Additive Models (GAMs) are the middle ground between MLR and more 

complex machine learning models, such as neural networks. They can model nonlinear 

relationships, capturing behaviour with smooth nonparametric functions which means no 

knowledge of the data distribution is required (Hastie and Tibshirani, 1986). These functions 

are weighted with a coefficient in the model, similarly to MLR, as shown in equation (1.1). 

As the model fits a function, it does not face the same issues as RFRs with regards to 

extrapolation. As long as the underlying relationship between input and output variables 

remain the same after for new datapoints, extrapolation is possible.  

 

 

𝑦 = 𝛽0 + 𝑠1(𝑥1) + 𝑠2(𝑥2) + ⋯ + 𝑠𝑘(𝑥𝑘) 

 

(1.1) 

where y is the target variable, x1, x2, … xk are the predictor variables, and s1(.), s2(.) … sk(.) 

are smooth functions (Hastie and Tibshirani, 1986).  

The most common basis function used is cubic splines (Buja et al., 1989). This is a curve, 

continuous in value and first and second derivatives, made up of sections of cubic polynomials 

joined together. The continuous nature of the functions renders them useful for interpolation 

(they have been proved to be the smoothest interpolator), and choosing a cubic function gives 

flexibility, but not so much the model will overfit (Wood, 2006).  

As with the RR model, the main disadvantage of the GAM in this case is that it is sensitive to 

multicollinearity, so can become unstable if there are predictor variables that can be 

represented by some function of others. Another disadvantage of GAMs is the risk of 

overfitting, and to prevent this the models can be regularised using a smoothing parameter, 

similarly to RR (section 3.5). Each spline term has the regularisation parameter (λ) applied to 

its 2nd derivative to penalise ‘wiggliness’ and make the function smoother. Each linear term 

has the parameter applied as a ridge penalty (as with RR) (Wood, 2017; Servén and Brummitt, 

2018). The nonlinear relationships fitted by the GAM also make it difficult to know whether 

or not the model will perform well under extrapolation cases. Cubic functions can lead to large 

changes in y for small changes in x, which is problematic if the behaviour of the function is 

to do so for the values towards the start or end of the data value range.  
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The model is fitted with cubic splines as the basis function, with each spline able to have a 

different choice for its value of λ, the smoothing parameter, which is calculated using the 

hyperparameter selection process as other models, outlined in section 3.5.  

Gaussian Process Regression (GPR) 

Gaussian Process Regression (GPR) is a modelling technique similar to RFR and GAM in that 

they are do not make any assumptions about the underlying relationships of the data (RR in 

contrast assumes the relationships are linear). GPR uses the current observations and 

interpolates from them in order to make a prediction, essentially determining the behaviour of 

a point based on how similar it is to other known points. Figure A.3.1 shows this difference in 

approach for a simple one-dimensional example. 

    

 

Figure A.3.1 The differences between a linear model and GPR. Here we want to predict y for x = 6, marked by the 

red dotted line on the plots. For a linear model, a function is drawn through the points, and using this function, a 

prediction for y can be made. GPR instead examines the nearby points, and makes a prediction based on how 

similar they are to points where the y- value in known. For example, the points with red lines drawn to them are 

similar to x = 6, so a predict of x can be generated from them. The further away in space (or less similar) a point 

is, the less influential it is in the value of the prediction.    



Appendix 

 

226 
 

 The intuition behind this is that the behaviour of a point is likely to be more similar to those 

of its neighbours, and less so to those far away from it. A prediction made from GPR is a 

combination of all the points in the training dataset, but with each giving a weighting based 

on similarity to the new point for which y is to be predicted. GPR assumes the distribution of 

each point is gaussian (normally) distributed, with a mean value (the most likely position of 

the point – the mean function) and a variance (the noise).  

As mentioned previously the functions must be smooth, with similar input points giving 

similar predictions. The equation for covariance of points x and y is shown in equation (1.2). 

If points x and y have a positive covariance, x will increase as y increases. If the covariance is 

0, then there is no relationship between the variables; knowing if x is increasing or decreasing 

tells us nothing about y.  

 𝑐𝑜𝑣(𝑥, 𝑦) =  
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑁
  (1.2) 

An essential step of the GPR is quantifying how similar a point is to another, and this is done 

by generating a function for covariance, known as a kernel. So, the kernel works by taking a 

pair of input points and returning a measure of how similar they are (Görtler et al., 2019).  

Specifying a suitable kernel requires both a combination of expertise and trial and error 

(Duvenaud et al., 2013). A suitable approach for finding a kernel is to select a few commonly 

used kernels and compare their marginal likelihood, choosing the kernel that optimises this. 

Expressions for some commonly used kernels can be seen in Table A.3.12.  

Table A.3.12 Table of common covariance functions, from (Rasmussen and Williams, 2006)  

Covariance function Expression 

Constant 𝜎0
2 

Linear 
∑ 𝜎𝑑

2𝑥𝑑𝑥′𝑑

𝐷

𝑑=1
 

Polynomial / Dot Product - (𝒙 ∙ 𝒙′ + 𝜎0
2)𝑝 

Squared Exponential (also known as 

Radial Basis Function)  exp (−
𝑟2

2𝑙2
) 

Matérn 1

2𝑣−1Γ(𝑣)
(

√2𝑣

𝑙
𝑟)

𝑣

𝐾𝑣 (
√2𝑣

𝑙
𝑟) 

Exponential exp (−
𝑟

𝑙
) 

γ-exponential (family including the 

Exponential and Squared Exponential) 
exp (− (

𝑟

𝑙
)

𝛾

) 
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Difference covariance functions can be related to different aspects of the data to be modelled. 

A common choice for kernels shown in the table is squared exponential kernels, also known 

as radial basis functions (RBFs). These are functions of r =|x – x’|, where x and x’ are the 

points for which the kernel is to be calculated. An example of where this kernel function could 

be useful is when modelling data with a smooth increasing trend. The Matérn kernel is related 

to this in that when the ν in its function (see Table A.3.12) tends to infinity, it becomes the 

squared exponential covariance function. This parameter (ν) limits the number of times the 

function can be differentiable (Rasmussen and Williams, 2006). 

Another well-known kernel is a dot product, also shown in Table A.3.12, by which are 

functions dependent on x∙x’. When the variance term, 𝜎0
2, of the kernel is set to zero, this 

kernel is also known as the linear kernel. These kernel functions are invariant to rotation of 

the two coordinates but not translation, with the variance term determining the offset of the 

kernel function (Rasmussen and Williams, 2006).  

A more complex covariance function can be created by combining these simpler covariance 

functions to provide a model with a superior fit. For example, the squared exponential kernel 

function can be differentiated infinite times, which gives the kernel the property of being very 

smooth. When using the model to predict real life processes, this smoothness may not be 

realistic, and the use of another kernel (for example Matérn) is required. An additional kernel 

function which can aid the modelling of non-idealised situations is the white noise kernel. This 

adds noise with constant variance to the kernel function, independently and normally 

distributed (Rasmussen and Williams, 2006). As with RR, a regularisation parameter, λ, is 

also added to the diagonal of the kernel matrix to prevent overfitting.  

Like GAMs, GPR is a machine learning technique that can handle non-linear relationships 

and aims to fit a smooth curve between points. It has the advantage of assigning uncertainty 

to its predictions, which becomes larger when the predicted output is far away from the sample 

dataset (this is its main advantage over using neural networks). GPR also has the benefit of 

being more suitable for smaller datasets, as methods such as neural networks require large 

datasets for training. As with the RFR model, the method is nonparametric, so does not assume 

the sample data has any particular distribution. The main disadvantage of GPR is that it is 

computationally intense for large datasets and it loses efficiency in high dimensional spaces. 

This means if too many variables are used in the model, it will take a very long time to run. 

The requirement of a kernel also adds in complexity, as a poor choice of this will make the 

function slow to converge. The ability of GPR to extrapolate is good if the covariance 

relationship described in the kernel function continues to hold for the new datapoint. However, 
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the further away the new point from the training data, the wider the confidence interval will 

be (Rasmussen and Williams, 2006).   

The main decision to be made with GPR model is the choice if the kernel. In order to take 

advantage of the properties of the different kernels, a sum kernel functions is used. These 

consist of the RBF (or squared exponential), Matèrn, dot product (polynomial) and white noise 

kernels.  

The kernel hyperparameter choices are optimised during the fitting process in scikit learn by 

maximising the log-marginal-likelihood (a measure of goodness of fit of the model to the 

training data), but the hyperparameter defining the number of different initial conditions 

investigated to find these hyperparameters is manually set before, known as the number of 

optimiser restarts.  Therefore, the regularisation the regularisation parameter (λ) and number 

of optimiser restarts are determined using 5-fold cross validation. 

Feature Importances  

Feature importances are mentioned in section 3.5 as a useful interpretation methodology for 

the RFR model. As they are not used in the main body of this thesis, the mechanisms behind 

them are outlined below.  

Feature importances are generated using a measure called average impurity reduction. When 

the data is split at a node by a variable, there will be a decrease in the sum of squared residuals. 

The impact of each variable in reducing the sum of squared residuals is calculated for each 

node, giving a value for each individual variable in a tree. This is then averaged across the 

entire forest, and scaled so the sum of importances is one (Nembrini et al., 2018). The higher 

the feature importance score, the higher its contribution to the predictive power of the model. 

Similarly with other variable comparison methodologies, care must be taken when using this 

approach with correlated variables. If two variables are closely related, they might be used 

interchangeably to reduce the sum of squared residuals and have a relatively low importance 

each when used in the model together. However, if only one was used as a single uncorrelated 

variable, its overall importance would rank higher. Additionally, the methodology is biased 

towards variables which have many points at which they split the data (for example, splitting 

the data via five nodes rather than just one), so should be used in complement with other model 

interpretation metrics to ensure a fair interpretation (Nembrini et al., 2018).  

Modelling the 13:30 SUHI 

This part of the section details the fitting, performance, and the inference that can be made 

from the additional statistical models.  
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For the RR model only, an extra variable selection step is applied. The model is given 

additional variables by means of taking squares and products of pairs of variables (section 

3.5). The result means while there are 8 ‘core’ variables identified in the variable selection 

process, there are 44 variables utilised in the model. To ensure the model contains the optimum 

number of variables, a stepwise selection process is used. This consists of fitting the model 

for all variables, removing the variable with the smallest coefficient value, and repeating until 

only one variable remains. The point where the adding additional variables into the model 

does not create a large amount of improvement in its performance statistics is used to 

determine the final variables included in the model. These can be seen in Table A.3.14.  

Table A.3.13 shows the performance statistics for the additional models, alongside the chosen 

model, REFR, for comparison. In terms of performance statistics, all models do a good job 

predicting the SUHI_MEAN. Despite RR having the lowest R-squared and RMSE, the model 

performs equally as well on the train and test datasets, indicating the model is capturing the 

relationships between predictors and target and not overfitting. Other models give an 

impressive performance on the training data, with a slightly worse (but still very good) 

performance on test data. This could indicate there is some overfitting, so using these models 

to extrapolate is done with caution. In terms of performance on test data, GPR and RERF are 

the best candidates. With consideration into the mechanisms behind the model, and given 

RERF has been shown to perform well in extrapolation circumstances (Zhang et al., 2019), 

this model was determined the best choice.  
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Table A.3.13 Summary of SUHI_MEAN performance statistics (R-squared and RMSE) for all models investigated. 

Training data is from odd years and test data even years. Hyperparameters selected using cross validation are 

shown, see section 3.5 and the current section for descriptions of these.  

Model  Train 

R-

squared 

Test R-

squared 

Train 

RMSE 

Test 

RMSE 

Hyperparameters Fit/ Cross 

Validation 

Time 

RR 0.79 0.79 1.10 1.10 λ = 50 ~ 1 second 

RFR  0.90 0.85 0.77 0.85 Maximum Tree Depth = 90 

Number of Trees = 200 

Minimum number of 

samples per leaf = 12 

Minimum number of 

samples to split a node = 15  

Number of features 

considered to split a node = 

6 

8 hours 

REFR 0.90 0.87 0.77 0.86 λ = 1000 

Maximum Tree Depth = 30 

Number of Trees = 100 

Minimum number of 

samples per leaf = 20 

Minimum number of 

samples to split a node = 8 

Number of features 

considered to split a node = 

6  

3 days 22 

hours 

GAM 0.81 0.80 1.05 1.06 λ EVI_U = 10 

λ EVI_D = 100 

λ LOG_AREA = 0.6 

λ WSA_D = 0.6 

λ ELEVATION_D = 0.6 

λ RH = 100 

λ TP = 0.6 

λ STD_ELEVATION_U = 0.6 

25 mins 

GPR 0.96 0.88 0.48 0.82 λ = 0.01 

Number of optimiser 

restarts = 0 

3 days 15 

hours 

 

ALE plots (section 3.5) are used to examine the behaviour of the models, and to ensure this is 

as expected, based on the known behaviours of SUHIs. RR ALE plots in this case are hard to 

interpret due to the interaction terms, so are not shown in this thesis. ALE plots for RFR, 

REFR, GAM and GPR are all plotted together as they use the same variables and can be seen 

in Figure 4.36. The REFR is included again in order to examine the differences between model 

predictions.  
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Figure A.3.2 13:30 SUHI_MEAN ALE plots for the RFR (blue), REFR (orange), GAM (green) and GPR (red). 

Details of ALE plots are given in section 3.5. The ALE plots were fit using test data. Training data ALE plots show 

the same relationships. 

Mostly the models agree about the impact of the predictor variables on the SUHI_MEAN, but 

some additional inference can be made. For example, the ALE plots for RFR and GPR for 

EVI_U and EVI_D suggest there could be some saturation for the variables, where EVI_U is 

so low, decreasing it further has little impact on the SUHI_MEAN. Both these models use the 

training data directly to make the prediction, rather than fitting a function or relationship, and 

this behaviour is therefore synonymous with the underlying mechanisms behind the models.   

WSA_D (urban – rural) impact on the models is where the highest discrepancies between 

models appears. The relationship is the same for the mid-range, where urban and rural albedo 

are similar, but when there is a larger difference, the impact of albedo is different based on the 

choice of model. The ALE plots for GAM show there are issues from using this model to 

extrapolate if variables fall outside of the training data range. For example, the plots for 
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EVI_U, LOG_AREA, WSA_D and STD_ELEVATION_U at the extreme ends have 

concerning behaviour for extrapolation, where a small change in the variable would produce 

a large change in the prediction of SUHI_MEAN.  

Although the RR model cannot be directly compared by the use of ALE plots, inference can 

be made using the coefficients. This is a benefit of the model fitting a function to the points 

rather than using the training data to make the predictions (done by RFR and GPR, and 

partially RERF). Table A.3.14 shows the coefficients for the RR model. As the model is linear, 

all the relationships here are linear. EVI_D (EVI_U – EVI_R) has the largest magnitude 

coefficient and is negative, so as the difference between EVI_U and EVI_U decreases, or 

EVI_U becomes larger than EVI_R, the SUHI becomes smaller or becomes more negative. 

Another thing to highlight from the table is the interactions. There are two coefficients 

involving RH, these are EVI_D x RH with coefficient 0.62 and EVI_U x RH with coefficient 

-0.28. So here the overall effect of RH on the RR prediction depends on the vegetation 

conditions of the city. If the city is in area with high EVI_R, so EVI_D (EVI_U – EVI_R) is 

below the mean (note the predictor variables are normalised before they are used in the model), 

an increase in RH will translate as a decrease on the RR SUHI_MEAN prediction. If the area 

has little vegetation (an arid desert environment), so EVI_R and EVI_U are both small, but 

EVI_U is larger than EVI_R, an increase in RH increases the RR SUHI_MEAN prediction.  

Table A.3.14 The predictor variables in the RR model and their coefficients for prediction of the SUHI_MEAN. A 

positive coefficient refers to the predictor variable have an increasing effect on the SUHI magnitude prediction as 

it increases, and a negative coefficient a decreasing effect as the predictor variable increases.  

RR Predictor Variable RR Coefficient 

EVI_D  -1.24 

EVI_U  0.80 

EVI_D x RH  0.62 

EVI_D x LOG_AREA  -0.76 

TP 0.32 

EVI_U x TP  -0.31 

LOG_AREA x TP  0.33 

EVI_U x LOG_AREA  0.32 

STD_ELEVATION_U2  -0.20 

WSA_D x STD_ELEVATION_U  0.29 

EVI_U x RH  -0.28 

ELEVATION_D x 

STD_ELEVATION_U  

-0.26 
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One of the benefits of using RFR is that feature importances can be used to make inference 

about the relationships between predictor and target variables. Figure A.3.3 shows the RFR 

feature importances for the 13:30 MEAN_SUHI as target variable. Here it can be seen that the 

highest ranked variable is EVI_D, which has a feature importance of 0.68.   

 

Figure A.3.3 RFR Feature Importances with target variable 13:30 Mean SUHI. The total feature importance is 

scaled so it sums to one. 

Modelling the 01:30 SUHI 

Model fittings were carried out via the same methodologies as for the 13:30 MEAN_SUHI 

but using the 01:30 MEAN_SUHI as the target variable. Table A.3.15 shows the performance 

statistics and model details.  
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Table A.3.15 Summary of 01:30 SUHI_MEAN performance statistics (R-squared and RMSE) for all models 

investigated. Training data is from odd years and test data even years. Hyperparameters selected using cross 

validation are shown, see section 3.5 for descriptions of these.   

Model  Train 

R-

squared 

Test R-

squared 

Train 

RMSE 

Test 

RMSE 

Hyperparameters Fit/ Cross 

Validation 

Time 

RR 0.47 0.45 0.60 0.62 λ = 1 ~ 1 second 

RFR  0.63 0.58 0.50 0.54 Maximum Tree Depth = 50 

Number of Trees = 100 

Minimum number of 

samples per leaf = 50 

Minimum number of 

samples to split a node = 

50  

Number of features 

considered to split a node = 

9 

8 hours 

REFR 0.73 0.67 0.43 0.48 λ = 10 

Maximum Tree Depth = 10 

Number of Trees = 100 

Minimum number of 

samples per leaf = 8 

Minimum number of 

samples to split a node = 

20 

Number of features 

considered to split a node = 

9 

2 days 22 

hours 

GAM 0.57 0.55 0.54 0.56 λ SSR_NO_SEASON = 100 

λ EVI_U = 0.6 

λ EVI_D = 100 

λ LOG_AREA = 0.6 

λ WSA_U = 0.6 

λ WSA_D = 0.6 

λ ELEVATION_D = 0.6 

λ RH = 100 

λ TP = 100 

λ STD_ELEVATION_R = 0.6 

18 hours 

GPR 0.7 0.65 0.45 0.49 λ = 1 

Number of optimiser 

restarts = 20 

3 days 15 

hours 

 

ALE plots for the models are shown in Figure A.3.4. For the majority of the predictor 

variables, the models agree on their impact on the MEAN_SUHI.  
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Figure A.3.4 01:30 SUHI_MEAN ALE plots for the RFR (blue), REFR (orange), GAM (green) and GPR (red). 

Details of ALE plots are given in section 3.5. The ALE plots were fit using test data. Training data ALE plots show 

the same relationships.   
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Figure A.3.5 shows the feature importances for the model with the SUHI_MEAN as the target 

variable. The variable deemed to contribute most to the prediction is RH, with a feature 

importance of 0.37. In comparison to the 13:30 SUHI_MEAN, which was found to have 

EVI_R as the highest ranked variable with importance of 0.68, the variable importance for the 

01:30 SUHI has more of a shared importance of variables than dominance of one.  

 

 

Figure A.3.5 RFR Feature Importances with target variable 01:30 Mean SUHI. The total feature importance is 

scaled so it sums to one.  

The RR model has the weakest performance in terms of R-squared and RMSE, with R-squared 

of 0.45 and RMSE of 0.62 for the test data. RERF here shows good performance, with 

performance statistics for the test data (R-squared 0.67 and RMSE 0.48K).  
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A.4. ALTERNATIVE SUHI QUANTIFICATION MEASURES 

EXAMINED 

 

Gaussian Surface Approximation SUHI (SUHI_PEAK_GSA) 

One of the methods of quantifying the SUHI is by means of a Gaussian surface approximation 

(GSA), modelling the SUHI as a smoothed Gaussian surface (Streutker, 2002). A schematic 

outlining the overall process can be seen in Figure A.4.6 and is outlined below, with numbers 

corresponding to those on the schematic.   

 

Figure A.4.6 An overview of the steps taken to fit a Gaussian Surface Approximation of a SUHI 

The parameters of the Gaussian Surface are calculated by the following (Anniballe and 

Bonafoni, 2015).  

1. Urban or rural classification is given to each pixel on the LST image, using the LULC 

dataset. The area of the city is then identified. Figure A.4.7 shows the layout of the 

city of Sao Jose Do Rio Preto, Brazil. The origin marks the city centre, identified using 

the coordinates of the city (United Nations, Department of Economic and Social 

Affairs, 2019) and units are in meters. The red box represents the area where urban 

pixels are classed as being part of the city.  
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Figure A.4.7 Sao Jose Do Rio Preto, Brazil Urban Areas. Yellow pixels represent the urban area, purple the rural 

area. The red box encloses urban pixels belonging to the city.  

2. The urban land (yellow pixels) outside of the city is then removed from the analysis. 

This is because the interest is in the SUHI; the difference between the city’s urban 

land and the rural land surrounding it, not in considering the influence any villages 

surrounding a city. In the example of Sao Jose Do Rio Preto, Figure A.4.7, these are 

the yellow pixels outside of the red box surrounding the city.  

A linear regression of LST, based on the distance from the city centre in the x and y 

directions is carried out in order to estimate the temperature of the area in the absence 

of the city. This involves fitting the rural LSTs to the form of equation (1.3).  

 𝑇𝑟𝑢𝑟𝑎𝑙 (𝑥, 𝑦) = 𝑇0 + 𝑎1𝑥 + 𝑎2𝑦 

 

(1.3) 

 

where T0 , a1, a2 are coefficients to be determined. 

3. This relationship is then used to estimate a rural ‘baseline’ temperature for the entirety 

of the area, giving the estimated temperature in absence of a city. The difference 

between this and the actual LST gives a value for the SUHI at each point, as outlined 

in equation (1.4). 
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 𝑆𝑈𝐻𝐼 = 𝐿𝑆𝑇 − 𝑇𝑟𝑢𝑟𝑎𝑙  

 

(1.4) 

 

The benefit of modelling the rural baseline as this planar surface, rather than taking a 

single mean and using this as the rural baseline, is that it accounts for different pixels 

in the city area having different temperatures if the influence of the city were removed. 

For example, if a rural area looked like that shown in Figure A.4.8. Examining the 

centre of this image, the left top of the central area would have a warmer temperature 

and the right bottom a lower one.  

 

Figure A.4.8 MODIS LST image of Vitoria da Conquista, Brazil. The dot in the middle of the plot marks the city 

centre. This LST heatmap demonstrates how there can be a temperature gradient in an area, which will be captured 

by a modelled baseline, but not by taking the mean of the rural area.  

4. The Gaussian surface approximation is then generated by fitting the surface to the 

curve in equation (1.5). The fit is constrained on x0 and y0 so it does not go outside of 

the city bounds. Initial guesses are set for (x0, y0) as the city centre (0,0), a0 as half the 

maximum SUHI, (ax, ay) as extent of the city bounds and ɸ as 0°.  
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𝑆𝑈𝐻𝐼(𝑥, 𝑦) =  𝑎0  × exp[−
((𝑥 − 𝑥0) cos 𝜑 + (𝑦 − 𝑦0) sin 𝜑) 2 

0.5𝑎𝑥
2

−
((𝑦 − 𝑦0) cos 𝜑 − (𝑥 − 𝑥0) sin 𝜑) 2 

0.5𝑎𝑦
2 ] 

(1.5) 

 

where, (x,y) represent the location of a pixel, (x0,y0) represent the location of the centre of the 

SUHI, a0 represents the SUHI peak magnitude,  ax and ay represent the spatial extent, and ɸ 

represents the angle of orientation. 

The peak magnitude, a0, will be referred to from now on as SUHI_PEAK_GSA. 

The GSA is advantageous when examining the SUHI as it allows more than simply the SUHI 

magnitude to examined. By fitting urban temperatures to a simplified spatial distribution, the 

approximation generates six parameters that can be used to characterise the SUHI of a 

particular city, which are seen in equation (1.5). Their benefits are described in Table A.4.16.  
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Table A.4.16 Description and uses of the parameters generated by fitting a GSA.  

GSA Parameter  

Peak SUHI 

magnitude (a0) 

(referred to as 

SUHI_PEAK_GSA) 

 

The peak intensity, where the SUHI magnitude is the greatest, 

unaffected by extreme values of temperature within the city. This 

gives more information than purely using the average throughout 

the entire city, as it differentiates between a city with an intense 

SUHI in one place and lower temperatures on the outskirts, versus a 

city with an overall even SUHI throughout. This is an important 

consideration in terms of the impact of the SUHI on city inhabitants, 

as it gives the SUHI magnitude in the areas of the city where it is 

felt the most. Peak magnitude also can be calculated by looking at 

quantiles (Flores R. et al., 2016).  

Spatial Extent of the 

SUHI (ax, ay)  

 

The spatial extents give an idea of the footprint of the SUHI, with ax 

showing the extent in the x direction, and ay the y direction. Yang et 

al (2019) notes a focus on magnitude in UHI research but little 

attention given to its spatial extent, an important aspect of the UHI. 

This aspect of the UHI gives an idea of the influence of the SUHI 

outside of the city, or if the SUHI is concentrated within the main 

area of a city. This can be particularly useful for examining the 

diurnal cycle, as the SUHI tends to be more spread out during the 

day and the night-time SUHI shows a more concentrated heating at 

the urban core (Tran et al., 2006).  

Centre of SUHI 

magnitude (x0, y0) 

 

These coordinates show where the most intense SUHI is located. 

This is useful to understand as to whether this is at the city core, or 

offset in a different area, perhaps the most build up or industrial 

region of the city. In terms of application of mitigation measures, 

knowing where the SUHI is at is peak is valuable, as it translates as 

knowledge of where cooling measures (for a strong positive heat 

island) such as green or blue spaces could be concentrated to keep 

the warmest areas cooler.   

 

Angle of orientation 

(φ) 

 

The angle of orientation gives the direction in which the SUHI 

extends the furthest. From this the eccentricity, a measure of how 

elliptical the city shape is, can be generated.  
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Alongside the advantages of the parameter generation, using an approximation to examine the 

SUHI surface has an additional benefit of being more resilient to gaps in the data due to cloud 

contamination. On cloudy days where an image has a lower number of good quality pixels, 

gaps in the data will result in less bias (Lai et al., 2021). This is due to the fit of a smooth 

temperature surface to the city, rather than taking the mean of all pixels. 

A drawback of using the GSA is that it requires the shape of the SUHI signature to be elliptical, 

meaning if the shape of a city is irregular, its characteristics will be misrepresented by the 

approximation. However, it is worth noting an ellipse can provide a better representation of 

an irregular surface in comparison to assuming a single uniform temperature (i.e., the 

SUHI_MEAN) or circular-only Gaussian surface. Another consideration is that the rural LST 

also may not be correctly represented by a plane, the consequence of which would mean the 

SUHI signature being modelled is distorted (Flores R. et al., 2016). The errors in fitting are 

screened to ensure goodness of fit using Pearson’s linear correlation (r) and root mean squared 

error (RMSE). Pearson correlation values range from -1 to 1, with 0 indicating no correlation 

and 1 a strong positive correlation. Therefore, values above 0.5 will show a moderate to good 

correlation or better. Based on this, for GSA fit made the correlation was calculated and if the 

correlation between the GSA prediction and observations was less than 0.5, the fit was deemed 

invalid. This approach is used in other studies, with the same threshold of under 0.5 indicating 

an unacceptable fit (Quan et al., 2014; Yang et al., 2019). RMSE (section 0) is used to ensure 

accuracy of the GSA by flagging fits with a RMSE above some threshold to be invalid. Some 

caution must be taken when choosing the threshold value in this scenario as RMSE is not a 

scaled value, meaning choosing a threshold value too low would tend to bias the successfully 

fitted images towards smaller SUHI magnitudes. Cities with higher SUHI magnitudes will 

have greater variations in the SUHI and therefore likely higher RMSE values. Examination of 

the results showed that this was indeed the case. Lai et al (2021) uses RMSE to assess GSA 

fit, with a 1.5K RMSE threshold, but due to the aforementioned justification, fits with RMSE 

greater than 2.5K were removed. The mean percentage of GSA fits that meet this criterion are 

76% for daytime images and 94% of night-time.  

SUHI_MEAN also is used to improve the results of the SUHI_PEAK_GSA. In the case that 

a SUHI does not exist, i.e., the LST of the urban and rural areas are the same, it is not possible 

to fit a GSA. In order to identify these situations, the SUHI_MEAN was consulted. Section 

3.2, outlining the LST data product used states the product was found to have an accuracy of 

greater 1K in in situ studies. Therefore, if mean SUHI is between -0.5K and 0.5K it is taken 

as confirmation the SUHI does not exist or is extremely weak, and the SUHI_PEAK_GSA 

was taken to be zero. Reasons for certain cities being more difficult to fit include being 
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bisected by a river (so there is a cooling effect through the middle), being a long stringlike 

shape, or containing large suburban areas and roads throughout the rural reference.  

Quantile Peak SUHI 

The quantile method, as with the GSA, aims to examine the peak SUHI intensity. This is useful 

to include as another method to confirm the validity of the SUHI_PEAK_GSA. Flores R. 

(2016) recommends this method as one complementary to using the SUHI_PEAK_GSA, 

useful for cities with more than one area of peak intensity and with a non-ellipsoidal shape. 

For the case of the cities investigated in this research, it is most likely there will only be one 

area of peak intensity however, as they are limited to small and medium sized cities.  

The quantile peak intensity was calculated by taking the 75th percent quantile LST pixel within 

the city area and subtracting the median LST pixel in the rural area, see equation (1.6). Flores 

R. (2016) proposes use of the 95th percent quantile, however taking into account the smaller 

size of some of the cities in this analysis (5km2 at the smallest) the lower threshold of 75th was 

used. 

 𝑆𝑈𝐻𝐼𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = 𝐿𝑆𝑇𝑢𝑟𝑏𝑎𝑛 75 − 𝐿𝑆𝑇𝑟𝑢𝑟𝑎𝑙 𝑚𝑒𝑑𝑖𝑎𝑛  

 

(1.6) 

 

This method is used as an additional check to ensure validity of the SUHI_PEAK_GSA and 

SUHI_MEAN. 

Comparison of SUHI_MEAN and SUHI_PEAK_GSA 

The daytime SUHI for both metrics has greater magnitude and more variation during the day 

than during the night. The SUHI_PEAK_GSA is greater in magnitude than the SUHI_MEAN, 

as would be expected, and has more variation. The magnitude of the negative SUHIs is 

generally smaller than the positive SUHI magnitudes for both SUHI_MEAN and 

SUHI_PEAK_GSA. Table A.4.17 gives a comparison of the means and standard deviations 

of the two metrics.  
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Table A.4.17 Summary of the mean and standard deviations of city SUHI metrics (averaged from cities not across 

entire dataset). Cities with a mean positive SUHI make up the positive SUHI columns and cities with a mean 

negative SUHI the negative SUHI. The groupings are done separately for day and night. 

 Positive SUHI Negative SUHI 

Metric 13:30 01:30 13:30 01:30 

SUHI_MEAN 2.2 ± 1.3 K 1.5 ± 0.6 K -1.1 ± 0.9 K - 

SUHI_PEAK_GSA 3.5 ± 1.9 K 2.7 ± 0.8 K -2.0 ± 1.7 K - 

 

Figure A.4.9 shows correlations between the day, night and two SUHI metrics. The 

SUHI_MEAN and SUHI_PEAK_GSA are highly correlated with a Pearson’s correlation 

coefficient of 0.9. During the daytime, when there exists a negative SUHI, a jump can be seen 

where the SUHI_PEAK_GSA becomes more negative than the SUHI_MEAN. This cannot be 

seen during the night as it is uncommon for there to be a negative SUHI. From this it can be 

induced that while the daytime mean SUHI can give a magnitude of close to zero, the 

SUHI_PEAK_GSA shows the SUHI does occur in certain parts of the city at higher intensity. 

This differentiates between cities with evenly spread weak urban heating versus cities with 

more intense central hotspots and cooler outskirts. For both SUHI_MEAN and 

SUHI_PEAK_GSA, the 13:30 and 01:30 SUHIs are not highly correlated, which is discussed 

for the SUHI_MEAN in section 4.2. 
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Figure A.4.9 Scatter plots showing correlations with Pearson correlation coefficient, r for a) SUHI_MEAN 13:30 

vs 01:30 overpasses b) SUHI_PEAK_GSA 13:30 vs 01:30 overpasses c) 13:30 SUHI_MEAN vs SUHI_PEAK_GSA 

d) 13:30 SUHI_MEAN  vs SUHI_PEAK_GSA. Each point represents one month from the period 2002-2020 with 

all cities included.  

Figure A.4.10 and Figure A.4.11 show maps of SUHI_MEAN and SUHI_PEAK_GSA at 

13:30 and 01:30, respectively. Here, it can be seen at 13:30, SUHIs both show more variation 

and larger magnitudes then they do at 01:30. Across cities and locations, the 01:30 SUHI is 

more similar in both its magnitude and its sign (being positive). This could be an indication 

that the properties that impact the SUHI during the day can fluctuate from city to city and by 

season, whereas the factors at night are less varied, as theorised in section 2.5.1.   
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Figure A.4.10 A comparison of the mean Annual SUHI magnitudes for the different quantification methods at 

13:30. The SUHI_PEAK_GSA has larger absolute magnitudes, and in some cases is positive whilst the 

SUHI_MEAN is negative.    

 

Figure A.4.11 A comparison of the mean Annual SUHI magnitudes for the different quantification methods at 

01:30. Both methods give only positive SUHIs during the night, with the SUHI_PEAK_GSA showing larger 

magnitudes.  
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Statistical Model Performance Predicting SUHI_PEAK_GSA 

Using the same methodology as for the MEAN_SUHI outlined in section 4.4, the optimum 

number of variables for the SUHI_PEAK_GSA as target variable was 9, show in Figure 

A.4.12.  

 

Figure A.4.12 Performance statistics (R-squared and RMSE) for the best performing models for each number of 

predictor variables, with SUHI_PEAK_GSA as target variable. The red line marks the ‘elbow’ of the plot, taken 

to be where the addition of further variables will not improve model performance. 

The variables selected as giving the best predictive performance for the SUHI_GSA_PEAK 

differ slightly from the SUHI_MEAN, which includes LOG_AREA, whereas 

SUHI_GSA_PEAK does not include LOG_AREA but has STD_ELEVATION_D and 

WSA_U instead. The plots also show how, for all the combinations of variables run, the 

performance statistics with SUHI_GSA_PEAK as the target variable show the model is less 

able to capture the behaviour of the SUHI quantified with this measure in comparison to the 

SUHI_MEAN.  
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A.5. ADDITIONAL CLIMATE PROJECTION PLOTS 

 

Figure A.5.13 Scatter plots to show the potential effects of coarser resolution RH and TP. For each city, the 
resolution was increased to the 100km area around the city and compared with the resolution used in the ML 
models. 
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Figure A.5.14 ESM absolute value of LAI change from historical pre-industrial LAI to 2°C mean global 

temperature projected LAI. The spread of the ESM projected changes is shown by a) the 10th Percentile, b) the 

50th Percentile (Median), c) the 90th Percentile. 
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Figure A.5.15 ESM RH change from historical pre-industrial RH to 2°C mean global temperature projected RH. 

The spread of the ESM projected changes is shown by a) the 10th Percentile, b) the 50th Percentile (Median), c) 

the 90th Percentile. 
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Figure A.5.16 ESM TP change from historical pre-industrial TP to 2°C mean global temperature projected TP. 

The spread of the ESM projected changes is shown by a) the 10th Percentile, b) the 50th Percentile (Median), c) 

the 90th Percentile. 
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Table A.5.18 Python Packages used.  

Application Function/ Package Reference  

Cross Validation, RR, 

RFR, GPR, Analysis 

Scikit-Learn (Pedregosa et al., 2011) 

RERF linear-tree https://github.com/cerlymarco/linear-

tree/tree/main 

Data Visualisation and 

Analysis 

Pandas (The pandas development team, 

2023) 

Data Visualisation and 

Analysis 

Geopandas (Jordahl et al., 2020) 

Data Visualisation Matplotlib (Hunter, 2007) 

Data Visualisation Seaborn (Waskom, 2021) 

Data manipulation and 

analysis 

Scipy (Virtanen et al., 2020) 

Loading data and 

analysis 

xarray (Hoyer and Hamman, 2017) 

Data manipulation Rasterio https://github.com/rasterio/rasterio 

Data Analysis Numpy (Harris et al., 2020) 

Data Analysis Earthpy (Wasser et al., 2019) 

Data Analysis Shapely (Gillies and Others, 2007) 

Data Visualisation and 

Analysis 

Cartopy (Elson et al., 2023) 

Re-gridding xESMF (Zhuang et al., 2021) 

Re-projecting  Pyproj (Snow et al., 2021) 

 


