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Quantifying fitness is important to understand adaptive evolution. Reproductive values are useful for making fitness comparisons 
involving different categories of individuals, like males and females. By definition, the reproductive value of a category is the expected 
per capita contribution of the members of that category to the gene pool of future generations. Life history theory reveals how repro-
ductive values can be determined via the estimation of life-history parameters, but this requires an adequate life-history model and 
intricate algebraic calculations. Recently, an alternative pedigree-based method has become popular, which estimates the expected 
genetic contribution of individuals to future generations by tracking their descendants down the pedigree. This method is versatile 
and intuitively appealing, but it is unknown if the method produces estimates of reproductive values that are accurate and precise. To 
investigate this, we implement various life-history scenarios (for which the “true” reproductive values can be calculated) in individual-
based simulations, use the simulation data to estimate reproductive values with the pedigree method, and compare the results with the 
true target values. We show that the pedigree-based estimation of reproductive values is either biased (in the short term) or imprecise 
(in the long term). This holds even for simple life histories and under idealized conditions. We conclude that the pedigree method is not 
a good substitute for the traditional method to quantify reproductive values.

Key words: fitness in a life history context, individual-based simulations, individual reproductive value, life-history model.

INTRODUCTION
Quantifying fitness is important to understand how natural selec-
tion affects evolution. Estimating fitness in the wild is, however, a 
difficult task. Studies often measure survival, recruitment rate, or 
the number of  offspring reaching independence as a proxy for fit-
ness. In some well-monitored populations, lifetime reproductive 
success can be determined. Expected lifetime reproductive success 
is often a good proxy for fitness (Brommer et al. 2004), but even 
this measure is incomplete as it does not account for the rate of  
reproduction and the fact that different types of  offspring (e.g., fe-
males and males; different size classes) cannot just be added up, as 
they have a different potential for spreading their genes to future 
generations.

Reproductive value (RV) (Fisher 1930) is a comprehensive fitness 
measure that copes with these problems. The reproductive value 
of  a certain class of  individuals is defined as the expected con-
tribution of  an individual in that class to the future gene pool of  
the population (Grafen 2006). Reproductive values are influenced 
by all kinds of  life-history decisions, like age at first reproduction, 
trade-offs between survival and fecundity, risk-taking behavior, or 

the kind of  offspring produced (e.g., sons or daughters). RVs are 
a particularly useful tool in behavioral ecology, as they allow for 
the quantification of  the evolutionary costs and benefits of  fitness-
relevant individual decisions. For example, Tinbergen and Daan 
(1990) used an RV approach to predict the optimal clutch size in 
passerine birds on the basis of  the trade-off between current and 
future reproduction. Reproductive values also play an important 
role in predicting the optimal sex ratio (Pen and Weissing 2002) 
and in the evolutionary theories of  senescence (Hamilton 1966; 
Baudisch 2005).

While the definition of  reproductive value is straightforward, its 
measurement is not. As briefly reviewed below, RVs can be derived 
from a life-history model by solving an eigenvector equation that 
contains all relevant life-history parameters (Caswell 1982). In line 
with this, most applications of  RVs in empirical systems first make 
a life-history model, then estimate the parameters of  this model, 
and finally obtain RVs by inserting these parameters in the eigen-
vector equation (Leverich and Levin 1979; Schulman and Chapais 
1980; Tinbergen and Daan 1990; Newton and Rothery 1997; Pen 
et al. 1999; Bonduriansky and Brassil 2002; van de Pol et al. 2007; 
Bouwhuis et al. 2012). Hereafter, we will call the RVs thus obtained 
“model-based reproductive values” (mRV). Obtaining a good 

D
ow

nloaded from
 https://academ

ic.oup.com
/beheco/article/34/5/850/7205604 by U

niversity of East Anglia user on 05 April 2024

mailto:m.j.borger@rug.nl
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6622-0669
https://orcid.org/0000-0002-9241-0124
https://orcid.org/0000-0001-7226-9074
https://orcid.org/0000-0003-3281-663X


Borger et al. • The estimation of  reproductive values from pedigrees

estimate of  reproductive values along these lines can, however, be 
difficult in natural systems, since it requires a good understanding 
of  all relevant life-history transitions and because life-history 
parameters can often only be estimated with limited accuracy and 
precision.

Recently, reproductive values have been estimated with a more 
intuitive method, based on genetic pedigree data (Barton and 
Etheridge 2011; Chen et al. 2019; Hunter and Slate 2019; Hunter 
et al. 2019; Reid et al. 2019; Alif  et al. 2022). In this method, the 
average per capita number of  descendants of  the members of  a cer-
tain class of  individuals (e.g., immigrants into the population) down 
the pedigree is used as an estimate of  the reproductive value of  
that class. Hereafter, we will call the RVs thus obtained “pedigree-
based reproductive values” (pRV). The pRV method closely reflects 
Fisher’s definition of  reproductive value. This method requires the 
availability of  sufficiently deep and complete pedigrees, but if  such 
pedigrees are available, it has the big advantage that no detailed 
knowledge of  the underlying life-history model or estimates of  life-
history parameters are required. Therefore, the pRV method could 
potentially be a useful substitute for the mRV method. However, 
it still has to be determined whether the pRV method yields ac-
curate and precise estimates of  fitness differences when applied to 
field data.

In this theoretical study, we will investigate the performance of  
the pedigree method when applied to organisms with a relatively 
simple life history. To this end, we use individual-based simula-
tions to produce several generations of  individuals on the basis of  a 
life-history model. The simulation data can be used to construct a 
pedigree (complete or incomplete) and to estimate life-history data 
such as survival probabilities and fecundities. Subsequently, repro-
ductive values can be estimated by both methods (mRV and pRV) 
and compared with the “true” reproductive values (which are well-
defined for the simulated populations). This allows us to judge the 
accuracy and precision of  both estimates and to address questions 
like: how deep and complete must a pedigree be in order to get 
a reliable pRV estimate? How well must the life-history model be 
known, and how well do we need to know the life-history param-
eters in order to get reliable mRV estimates?

Before approaching the estimation problem, we first give some 
theoretical background by briefly reviewing some basal insights of  
life history theory.

THEORETICAL CONSIDERATIONS: WHY 
ARE REPRODUCTIVE VALUES USEFUL?
In a population with discrete, non-overlapping generations and 
only one type of  individual (e.g., no sex differences), expected life-
time reproductive success (ELRS) is an adequate fitness measure, 
as alleles that enhance the lifetime reproductive output of  their 
bearers have a selective advantage. The situation is different in 
populations with different classes of  individuals (e.g., females and 
males; breeders and helpers; workers, soldiers, and reproductives). 
In such cases, alleles inducing their bearers to produce a maximal 
number of  offspring throughout their lifetime are not necessarily 
favored by selection. The reason is that different types of  offspring 
may differ in the efficiency with which they spread genes to future 
generations. For example, in a population with a 4:1 female-biased 
sex ratio (four females per male), the reproductive success per male 
is on average four times greater than the reproductive success per 
female (because each offspring has one mother and one father). 
Therefore, an allele inducing the lifetime production of  two sons 

has a lower ELRS than an allele inducing the lifetime production 
of  four daughters, but a higher “fitness”: it spreads more efficiently 
to future generations, as the expected reproductive success of  two 
sons is twice the expected reproductive success of  four daughters 
(for the given sex ratio). Similarly, adding up potential offspring 
does not result in a suitable fitness measure when generations are 
overlapping and different age classes coexist. In this situation, the 
timing of  reproduction matters: for example, it may be advanta-
geous to produce offspring as early in life as possible (even if  this 
leads to a lower lifetime production of  offspring), as early-born off-
spring can more quickly contribute to the spread of  their parental 
genes.

Quantifying fitness in a life-history context (i.e., in a population 
with different categories of  individuals) is therefore not an easy task. 
Fortunately, life-history theory is a well-developed branch of  evolu-
tionary biology (Roff 1992; Stearns 1992; Caswell 2001). For sim-
plicity, we here focus on the special case of  a discrete time structure 
(i.e., time is proceeding in discrete steps from one life-history event 
to the next) and a finite number of  categories of  individuals (e.g., 
males and females). In this case, a typical life-history model starts 
with a life-cycle graph (see Figure 1 for examples) that includes all 
life history “stages” (e.g., all age classes) and the transitions between 
these stages (e.g., survival to the next age class; production of  off-
spring of  age one). This graph can be translated into a “stage tran-
sition matrix” which in the case of  three stages looks like this:

A =

Ö
a11 a12 a13
a21 a22 a23
a31 a32 a33

è

 (1)

Matrix element aij is the per capita contribution of  a member 
of  stage j to the number of  individuals in stage i in the next time 
step. For example, the stage transition matrix of  an age-structured 
population with three age classes has the special form of  a “Leslie 
matrix”:

A =

Ö
F1 F2 F3
P1 0 0
0 P2 0

è

.

 (2)

Here, P1 is the probability to survive from age class 1 to age 
class 2, P2 is the probability to survive from age 2 to age 3, and 
F1, F2, and F3 are the expected numbers of  surviving offspring 
(surviving till age class 1) produced per individual of  the three age 
classes.

Life-history matrices are a very useful tool, as they determine the 
dynamics of  a stage-structured population (Stearns 1992). In most 
cases, such a population will converge to a “stable stage distribu-
tion” (in the case of  an age-structured population: a stable age dis-
tribution; in the case of  a population with two sexes: a stable sex 
ratio), that is, to a state where the ratio between the number of  in-
dividuals in the stages (n1 : n2 : n3) does not change anymore. Once 
the stable stage distribution is reached, the population as a whole 
grows with a characteristic “population growth factor λ.” When λ 
= 1, the population size will stay constant over time, while the pop-
ulation size will increase exponentially when λ > 1 and decrease 
exponentially when λ < 1.

The population growth factor λ is the most fundamental fit-
ness measure in a stage-structured population (Brommer 2000): 
if  we consider a population with transition matrix A and corre-
sponding λ, a mutant inducing a slightly different transition matrix 
Am with growth factor λm can be expected to successfully invade 
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the population if  λm > λ, while mutants with λm < λ will go ex-
tinct. Mathematically, λ is the “dominant eigenvalue” of  the stage-
transition matrix A, and there are recipes to calculate λ for a given 
matrix A. Unfortunately, the eigenvalue equation determining λ 
is an “implicit” equation (in case of  an age-structured population 
the so-called “Euler-Lotka equation”; Otto and Day 2007), which 
even for simple life histories can only be solved numerically and 
does not provide much insight into the factors governing evolution. 
It is therefore useful to look out for an alternative way to quantify 
fitness.

At this point reproductive values come into play. Conceptually, 
the “reproductive value” of  a certain type of  individuals (e.g., im-
migrants) is the expected genetic contribution of  an individual of  
this type (e.g., of  an immigrant) to the gene pool of  future gen-
erations (Grafen 2006). Here, we will mainly apply the concept 
to situations where the “type” of  an individual corresponds to a 
stage of  a life-history model: the reproductive value vi of  stage i 
is the expected genetic contribution of  a member of  stage i to 
the gene pool of  future generations. We will argue later that our 
results are of  broader relevance than this. Mathematically, the 

vector vT = (v1, v2, v3) of  reproductive values satisfies the equa-
tion vT · A = λ · vT , which means that it is a “left eigenvector” 
with respect to the dominant eigenvalue λ. Reproductive values 
are useful for making evolutionary predictions in two different 
ways. First, in many life-history contexts, including those of  age-
structured populations, natural selection tends to maximize the 
reproductive value of  each age class (Schaffer 1974). This is the 
basis of  dynamic programming (Houston and McNamara 1999), 
a powerful technique for solving difficult problems in behav-
ioral ecology, such as finding the optimal allocation of  resources 
to various activities, like growth and reproduction. Second, and 
more important for us, the reproductive values in a given “resi-
dent” population can be used to calculate the “selection gradient” 
∂λ/∂x, which tells us whether the population growth factor λ (the 
most fundamental measure of  fitness) will increase or decrease 
with a change in a (behavioral) strategy x. In other words, the 
selection gradient tells us the direction of  selection: if  ∂λ/∂x is 
evaluated at the strategy x* of  the resident population, a positive 
selection gradient indicates that larger values x > x∗ are selec-
tively favored, while smaller values x < x∗ are favored in the case 
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Figure 1
The four life-history scenarios considered in this study. (a) A two-stage life cycle with two age classes. One-year-old individuals survive to their second year 
with probability P1, second-year-old individuals die after reproduction. F1 and F2 denote the expected number of  offspring (surviving to their first year) 
produced by 1- and 2-year-old individuals, respectively. (b) A three-stage life cycle with three age classes. Only 2- and 3-year-old individuals can reproduce 
(with expected fecundity F2 and F3), and 1- and 2-year-old individuals survive to the next year with probabilities P1 and P2, respectively. (c) A three-stage life 
cycle with behavioral stages. A juvenile can either stay juvenile for another time unit (probability Pj), promote to helper status (probability Thj), promote to 
breeder status (probability Tbj), or die. A helper can either stay a helper for another time unit (probability Ph), promote to breeder status (probability Tbh), or 
die. A breeder can stay a breeder (probability Pb) or die. Both helpers and breeders can reproduce with expected fecundity (number of  offspring surviving to 
the juvenile stage) Fh and Fb, respectively. (d) A four-stage life cycle including differences between sexes. Young females and young males survive to become 
an adult with probabilities Pfy and Pmy, respectively. Adult females and adult males survive to the next year (and stay in the same state) with probabilities Pfa 
and Pma, respectively. Young females and adult females have expected fecundities of  Ffy and Ffa. They randomly pick a mate from the population of  males. A 
newly produced offspring becomes a male with probability s and a female with probability 1-s, where s is the primary sex ratio.
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of  a negative gradient. Although λ is very difficult to calculate as 
a function of  x, the sign of  the selection gradient can relatively 
easily be determined by the following equation (Taylor 1990; 
Taylor and Frank 1996; Brommer 2000; Pen and Weissing 2000b, 
2002; Otto and Day 2007; Lion 2018):

sign
Å
∂ λ

∂ x

ã
= sign

Ñ
∑
i,j

vi·
∂ aij
∂ x

· nj

é
.

 (3)

Here, the vi and the ni are the reproductive values and the rel-
ative abundances of  the various stages in the resident population 
(at demographic equilibrium) and the derivatives are evaluated at 
x = x∗.

Why is an equation like this useful? Assume that we want to 
know whether, in an age-structured population, selection will favor 
an increase in the reproductive effort at age i. To this end, let x de-
note a behavioral strategy that enhances the reproductive output at 
age i with a rate ∂ Fi/∂x = b but reduces survival to the next age 
with a rate ∂ Pi/∂x = −c, where b and c indicate the “benefit” and 
the “cost” of  an increase in x. Now the sum on the right-hand side 
of  (3) has only two terms, and the sign of  the selection gradient is 
readily obtained

sign
Å
∂ λ

∂ x

ã
= sign

Å
v1
∂ Fi
∂ x

ni + vi+1
∂ Pi
∂ x

· ni
ã
= sign (b v1 − c vi+1) . 

(4)
Hence, the selection gradient is positive if  b v1 > c vi+1, or 

equivalently:

b/c > vi+1/ v1.  (5)

This inequality is known as the “asset protection principle”: 
the age classes with the highest future fitness expectation vi+1 
(i.e., those age classes that have “much to lose”) should be least 
inclined to take the survival risks associated with increasing the re-
productive effort (see Wolf  et al. 2007 for various implications of  
this principle). We will apply this principle in one of  our examples 
below.

As illustrated by these calculations, reproductive values are useful 
tools in translating intricate fitness considerations into transparent 
cost-benefit comparisons (see Pen and Weissing 2000a, 2000b, 
2002 for other examples). Cost-benefit considerations are further 
simplified by the fact that reproductive values are relative attributes 
that are only determined up to a constant factor. This implies 
that they can be normalized in the most convenient manner, for 
example by equating one of  the reproductive values to one (e.g., 
v1 = 1, which would simplify Equation 5) or by equating the sum of  
all reproductive values to one.

Finally, we would like to remark that classical life history 
theory is ecologically not consistent, in that its models predict ex-
ponential population growth (when λ > 1) or exponentially pop-
ulation decline (when λ < 1). To cope with this problem, density 
dependence needs to be incorporated into a life history model. 
This has to be done in an explicit manner, as the form of  density 
dependence can have major implications for the course and out-
come of  evolution (Mylius and Diekman 1995; Pen and Weissing 
2000b). Below we illustrate how to introduce density dependence 
in a life-history model. Rather than complicating the model, this 
actually simplifies calculations, as the inclusion of  density de-
pendence has two benefits: (1) it allows the assumption that λ = 
1 at ecological equilibrium and (2) it reduces the dimensionality 
of  the parameter space (thus making it easier to classify the evo-
lutionary outcomes).

METHODS
Individual-based simulations and the estimation of 
pRVs

All individual-based simulations were based on a specific life-
history scenario. Each scenario is specified by a set of  parameters 
(such as the age-dependent survival probabilities Pi and fecundities 
Fi characterizing an age-structured population). For a given state 
X, all individuals in that state have the same state-specific param-
eters. Accordingly, all individuals in that state have the same (ex-
pected) state-specific reproductive value. Time proceeds in discrete 
steps, where one time step corresponds to a reproductive season. 
During a time step t, each individual is in a certain state (either an 
age class or a breeding state), which can change from one time step 
to the next. Reproduction takes place at the start of  each time step. 
If, according to the life history scenario, FX is the expected fecun-
dity in state X, the individuals in that stage produce FX offspring on 
average, while the actual number of  offspring produced per indi-
vidual is drawn from a Poisson distribution with mean FX, reflecting 
a standard assumption in population genetics (Crow and Kimura 
1970). For simplicity, we assumed asexual reproduction and hap-
loid individuals in most of  our simulations; yet see scenario 4 for 
sexual reproduction with diploid individuals. Offspring enter the 
population at time t+1, and they belong to age class 1 in the age-
based scenarios and to the juvenile state in the breeder-helper sce-
nario. After reproduction, all individuals present at time t change 
their state stochastically (including death and staying in the same 
state), according to the probability assigned to their state by the life-
history model. Each simulation was repeated for a fixed number 
of  time steps T (typically T = 100, of  which the first 20 time steps 
are shown in the figures). For each life-history scenario, simulations 
were run for various parameter combinations, and in each case the 
simulations were repeated at least 100 times. To ensure that our 
results were not biased by start-up effects, we initialized all popu-
lations in demographic equilibrium. Our results are therefore not 
examples of  “transient dynamics” (Hastings 2004; Hastings et al. 
2018). This was confirmed by additional simulations that were first 
run for thousands of  time steps (thus ensuring equilibration) before 
the measurements were started.

We used a “gene-dropping” approach (MacCluer et al. 1986) to 
estimate pRVs. At the start of  the simulation (t = 0), every indi-
vidual is endowed with a unique marker (corresponding to a unique 
allele at a locus with infinite alleles). To ensure that gene dropping 
happened in demographic equilibrium, we first let each simulation 
run for 100 time steps (from t = −100 until t = −1) before gene 
dropping was initiated (at t = 0). At each reproduction event, the 
offspring inherit their marker from their parent. This allowed us to 
identify the descendants of  each individual of  the initial population 
in all future time steps. For each life history state X and each time t, 
we determined the average per capita number of  descendants at time 
t for those individuals in the initial population that started in state 
X. We interpret this number, pRVX (t), as the pedigree-based esti-
mate of  the RV of  individuals in state X: according to the definition 
of  RV (“expected per capita contribution to the gene pool of  future 
generations”) pRVX (t) should, for large t, approximate the “true” 
reproductive value of  state X. We then normalize all reproductive 
values so that the RV of  the “first” state (age class 1 in the age-
structured scenarios; juvenile state in the helper-breeder scenario; 
young female in the sex-and-age-structured scenario) is scaled to 
1. To achieve this, the values pRVX (t) were divided by pRV1(t)
, the estimated reproductive value of  the first state. As shown in 
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Supplementary Appendix A, the expected value of  pRVX (t) can be 
calculated mathematically.

To prevent exponential growth or exponential decline of  the 
simulated populations, we made the reasonable assumption that 
population sizes are kept in check by density dependent processes. 
Therefore, we added density regulation by assuming that fecundity 
is density dependent:

FX (N ) =
FX ,0

1+ αN
,  (6)

Where FX ,0 is the baseline fecundity in state X, N is population 
size and α indicates the intensity of  density dependence. In other 
simulations (not shown), we also implemented other forms of  den-
sity regulation (via density-dependent fecundity of  only a single 
state or via density-dependent survival of  one or all states); in all 
cases, the results agreed with those shown below. Unless indicated 
otherwise, we chose the parameter α in such a way that the popula-
tion size of  the resulting stationary population was N = 1,000. Note 
that this means that about 1,000 individuals are present at every 
time step. If  T is the depth of  the pedigree and E is the life ex-
pectancy of  individuals, this implies that the pedigree encompasses 
about (T /E) · 1, 000 individuals. Thus, in all our simulations with 
a time horizon T = 20 at least 10,000 individuals were included in 
the simulation-based pedigree.

Estimation of mRVs

For the model-based estimation of  reproductive values (mRV), the 
life-history parameters were estimated from the life-history events 
(survival, death, state transition, offspring production) observed in 
the same simulations from which the pRV estimates were derived. 
To estimate mRVX (t) for a certain time t, we used all events ob-
served on individuals in state X up to time t to estimate the life-
history parameters relevant for that state by averaging. For example, 
the fecundity Fx in state X was estimated by the average number of  
offspring produced in state X (per time step) by all individuals that 
had ever been in state X until time t. Subsequently, the mRVX (t) 
were estimated by calculating the left eigenvector of  the matrix 
A(t) that is characterized by all parameter estimates up to time t. 
Obviously, a longer time horizon t provides a better estimate of  the 
reproductive value of  state X. However, it turned out that in all 
scenarios considered already in the first time step (i.e., in a single 
year) all life history parameters could be estimated sufficiently well 
to make mRVX (1) an excellent estimate of  the RV of  state X.

Four scenarios

In this manuscript, we focus on four life history scenarios, which 
will be described in detail below. The life-cycle graphs of  these 
scenarios can be found in Figure 1 and the transition matrices and 
calculations on reproductive value can be found in Supplementary 
Appendix B.

Scenario 1—A population with two age classes
This simple scenario, with only two life-history states and three 
life-history parameters, is characterized by Figure 1a. Both 1- and 
2-year-old individuals can reproduce (with fecundity F1 and F2). 
One-year-old individuals survive to their second year with proba-
bility P1; all individuals die after their second year. A simple cal-
culation (see Supplementary Appendix B) reveals that a stationary 
population (λ = 1) is only achieved if  the life-history parameters 
satisfy the requirement:

F1 + P1 · F2 = 1.  (7a)

This equation makes intuitive sense: the left-hand side corres-
ponds to the expected lifetime production of  surviving offspring, 
which needs to be 1 in a stationary population. Condition (7a) for 
“ecological consistency” will not be satisfied for arbitrary values of  
the life-history parameters. However, it will eventually be satisfied, 
as, according to Equation 6, the fecundities decline with population 
density.

As shown in Supplementary Appendix B, the “true” reproduc-
tive values are given by:

v1 = 1, v2 = F2.  (7b)

Scenario 2—A population with three age classes
This scenario, with three life-history states and four life- history 
parameters, is described in Figure 1b. Two- and three-year-old 
individuals can reproduce (with fecundity F2 and F3). One- and 
two-year-old individuals can survive to their next year (with prob-
abilities P1 and P2); all individuals die after their third year. Now, the 
condition for a stationary population and the reproductive values in 
that population are given by:

P1 · (F2 + P2 F2) = 1  (8a)

v1 = 1, v2 = F2 + P2 F3, v3 = F3.  (8b)

Ecological consistency (a stationary population) is ensured by 
Equation 6.

Scenario 3—A population with three behavioral classes
This scenario, which is characterized by Figure 1c, includes three 
life-history states (juveniles, helpers, breeders) and a full set of  nine 
life-history parameters. All newly produced individuals start as ju-
veniles. A juvenile either stays in juvenile state for another time pe-
riod (with probability Pj ), or it becomes a helper (with probability 
Thj ) or a breeder (with probability Tbj ), or it dies (with probability 
1− Pj − Thj − Tbj ). Likewise, a helper either stays in the helper 
state for another period (probability Ph), or it becomes a breeder 
(probability Tbh), or it dies. A breeder either stays in the breeding 
state for another time step (probability Pb), or it loses its position 
and becomes a helper (probability Thb), or it dies. Helpers and 
breeders can both produce offspring (fecundities Fh and Fb per time 
step).

Scenario 4—A population with both sex and age classes
This scenario, which is characterized by the life-cycle graph in 
Figure 1d, contains four life-history states: young females, young 
males, adult females, and adult males. Newly produced individuals 
start as young females or young males. The sex of  an offspring is as-
signed at random, where the probability s of  becoming a male cor-
responds to the primary sex ratio. The parameter s is the same for 
all individuals and constant throughout time. Young females survive 
to become adults with probability Pfy, and young males survive to 
become adults with probability Pmy. Adult females and males sur-
vive to the next time step with probabilities Pfa  and Pma, respectively. 
Both young and adult individuals can reproduce. We assume that 
each young female and each adult female produces on average Ffy 
and Ffa  offspring per time step, where these fecundities are density 
dependent according to Equation 6. The realized number of  off-
spring per female is drawn from a Poisson distribution. We assume 
that mating is at random and that, irrespective of  its age, each male 
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has the same probability of  siring any given offspring: whenever an 
offspring was produced, a father was drawn at random from the set 
of  all (young and adult) males.

Technical note

Simulations were ran in Visual Studio Enterprise 2019 (version 
16.8). Figures were made using R 3.4.1 (R Core Team 2021), with 
the packages ggplot2 (Wickham 2016) and cowplot (Wilke 2020).

RESULTS
Importance of stochasticity

For the case of  a population with three age classes, Figure 2 illus-
trates various sources of  stochasticity and the implications thereof  
for the estimation of  reproductive values. Figure 2a shows that, 
within a single simulation, stochasticity in individual reproductive 
success is extensive. In each age class, the majority of  individuals 
does not leave any descendants after ten time steps, while the few 
other individuals leave a large number of  descendants. In a popu-
lation of  constant size, this is not surprising, but it is important to 
keep the huge variation in individual reproductive success in mind. 
For evolutionary considerations, estimating RV based on single in-
dividuals is therefore not very meaningful: these values mainly re-
flect stochasticity in realized long-term reproductive success, rather 
than the individuals’ capability of  spreading their genes to future 
generations. It is, however, meaningful to estimate the RV of  in-
dividuals having a certain property in common, such as age, sex, 
migration status, or personality. For the pRV method, this means 
that the reproductive success (down the pedigree) is averaged for 
a sufficiently large number of  individuals sharing this property. 
For the property “age,” the result is shown in Figure 2b. The three 
panels illustrate that there is still substantial variation across repli-
cate simulations, even though all individuals have exactly the same 
life-history parameters, all simulations start in demographic and 
ecological equilibrium, and mean reproductive success in each age 
class is based on averaging hundreds of  individuals. As a field study 
on a single population is comparable to a single simulation, one 
should therefore expect considerable variation across populations, 
even if  these populations are living under similar conditions.

Estimation of pRVs in Scenario 2

Figure 2c illustrates the implications of  stochasticity on the 
pedigree-based estimation of  reproductive values. In the first ten 
time steps, the median pRV estimates of  100 simulations approach 
the “true” values (horizontal dashed lines) in a “zig-zag” manner. 
As shown in Supplementary Appendix A, this is not caused by 
short-term deviations from demographic equilibrium (“transient 
dynamics”; Hastings 2004; Hastings et al. 2018), but an intrinsic 
property of  the inheritance dynamics in a class-structured popula-
tion. Although the zig-zag pattern is to be expected in life-history 
models (see Supplementary Appendix A), it has the unfortunate im-
plication that, in a short-time perspective, the pRV estimates de-
viate strongly and systematically from the true reproductive values. 
These “true” RVs (which in Scenario 2 are given by equation 8b) 
are asymptotic values, and we will see below that only these as-
ymptotic values are relevant for evolutionary considerations. On a 
longer-term perspective (here: after about ten time steps), the me-
dian of  the pRV estimates converges to the true RVs, but the indi-
vidual estimates tend to differ considerably from the true values. 
In other words, the pRV estimates are systematically biased (and 

hence inaccurate) on a short-term perspective and imprecise on a 
longer-term perspective.

Estimation of mRVs in Scenario 2

For the same simulations as in Figure 2c, Figure 2d illustrates the 
traditional model-based way of  estimating RVs. To this end, the 
life-history parameters are estimated from the (simulation) data, 
and the mRVs are subsequently obtained by plugging in these esti-
mates in equation 8b. Figure 2d reveals two things: First, the mRV 
estimates are highly accurate and precise. In other words, a single 
simulation (corresponding to a single field population) is sufficient 
to accurately derive reproductive values. Second, the mRV method 
is not “data hungry”: the data of  a single time step are sufficient to 
obtain a rather accurate RV estimate. However, the mRV method 
crucially depends on the availability of  a “correct” life-history 
model. We will later investigate a situation where the life-history 
model is incomplete.

Estimation of pRVs in Scenario 1 (two age 
classes)

Figure 3 shows that the conclusions drawn above also hold for the 
simplest life-history scenario considered in our study. On a short-
term perspective, a similar zig-zag pattern is observed, leading to a 
biased estimate of  the “true” asymptotic RV v2. On a longer-term 
perspective, the pRV estimates of  different simulations differ sub-
stantially from each other, implying that a single simulation (or, cor-
respondingly, a single population in a field study) may give a wrong 
impression of  the intensity and direction of  selection.

Estimation of pRVs in Scenarios 3 and 4

Figure 4 illustrates that the problems with pRV estimation also arise 
in other life-history scenarios. In Scenario 3 (Figure 4a), the pRV 
estimates can be two or even three times as large as the true RVs 
in a considerable percentage of  the simulations. Although the ini-
tial zig-zag pattern observed in Scenarios 1 and 2 does not appear 
in Scenario 4 (Figure 4b), pRV remains an biased estimator of  the 
true (asymptotic) RV in the initial period; in fact, the systematic bias 
in this estimate only disappears after a long period (in this case 10 
time steps). Hence, the simulations in Figure 4 confirm our earlier 
conclusions: in an initial time period, the pRV values (including 
their median) differ substantially and systematically from the true 
RVs. On a longer time horizon, the accuracy of  pRV increases (the 
median pRVs approach the true RVs), but now the estimates are 
very imprecise, as the individual simulations differ considerable 
from each other. This results in the unfortunate conclusion that 
pedigree-based estimation of  RVs is either inaccurate (in case of  a 
shallow pedigrees including relatively few time steps) or imprecise 
(in case of  deep pedigrees), even if  the study population is relatively 
large (N = 1,000 in the simulations shown thus far), well-mixed, and 
in demographic and ecological equilibrium.

Effects of population size and time scale

In Supplementary Appendix C, we also show the effects of  pop-
ulation size and a longer time horizon on pRV estimates. When 
population sizes are small, pRV estimates are strongly affected by 
demographic stochasticity. After a while, all individuals present at a 
later time step are descendants of  just one individual of  the initial 
population. Accordingly, in each simulation, eventually pRV is equal 
to zero for all but one of  the categories considered. Therefore, in 
small populations, the median pRV of  100 simulations converges to 
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Figure 2
Stochasticity in the simulation outcomes. Example simulations based on Scenario 2 (three age classes) illustrate stochasticity within and across simulations. (a) 
Variation within a simulation. The number of  descendants (down the pedigree) of  25 randomly chosen individuals per age class within the same simulation. 
There is considerable variation between individuals, but as it is purely caused by stochastic events (all individuals in an age class have the same life-history 
parameters), it is not meaningful from an evolutionary perspective. (b) Variation across simulations. The average number of  descendants per age class in 25 
randomly chosen simulations. Despite the fact that averages are based on hundreds of  individuals per age class, there is still considerable variation across 
simulations. (c, d) Graphs summarizing the estimates of  pRV and mRV for the same 100 replicate simulations. In both cases, RV1 was normalized to 1. For 
the parameter values of  the simulation (P1 = 0.25, P2 = 0.25, F2 = 2, and F3 = 8), the “true” reproductive values of  age classes 2 and 3 are v2 = 4 and v3 = 
8 (see equation 8b); dashed horizontal lines in the graphs). The dots connected by solid lines indicate the median value of  the simulations, the dark shades 
indicate the 50% central values and the lighter shades indicate the 90% central values of  the simulations. (c) The pRV estimates are based on the average 
number of  descendants per age class. (d) The mRV estimates are based on equation 8b, where the age-dependent survival probabilities and fecundities were 
estimated from the simulation data. Already after a single time step, the mRV estimates are quite accurate and precise.
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Pedigree-based estimates of  RV in two more complex scenarios. Summary graph of  the (normalized) pRV estimates in 100 replicate simulations based on (a) 
Scenario 3 (juvenile-helper-breeder), and (b) Scenario 4 (young and old males and females in a sexually reproducing population). The inserts show the life-
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while red and blue represent the RV values of  adult females and males, respectively. Parameter values (a): Fj = 0, Fh = 0.05, Fb = 12.5, Thj = 0.15, Ph = 0.2, Thb 
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zero relatively rapidly (Supplementary Figure C1(a)). Furthermore, 
the variation of  the pRV estimates across simulations increases 
with the time horizon (Supplementary Figures C1 and C2). In 
other words, the precision of  pRV decreases with the depth of  the 
pedigree.

Evolutionary predictions based on RV

Above, we have seen that reproductive values are very useful for 
predicting the course and outcome of  life history evolution. One 
might speculate that the large variance of  pRV values that we ob-
served in replicate simulations is associated with a corresponding 
variance in evolutionary outcomes. To check this, we added an 
evolving parameter x (corresponding to reproductive effort) to our 
Scenario 1 model with two age classes. To this end, we added a 
gene locus to the model, with a continuum of  alleles x, ranging 
from x = 0 to x = 1. Depending on allele x, individuals have the 
parameters P1(x) = P1,0 · (1− 1

2γx
2), F1(x) = F1,0 · (1+ βx), and 

F2(x) = F2,0 = constant , where β and γ are positive. Hence, 1-year 
olds with a larger reproductive effort x have a higher reproductive 
output F1, but a lower survival probability P1. We assume that x 

is transmitted from parent to offspring, subject to rare mutations 
with small effect size (mutation rate 0.01, mutational variance 
0.0025; see Netz et al. 2022). In the course of  the generations, x 
should evolve to a value that optimizes the balance between cur-
rent and future reproduction. With the help of  reproductive values, 
the optimal reproductive effort can easily be calculated. At evolu-
tionary equilibrium, the selection gradient is zero, which according 
to Equation 4 corresponds to the equation b/c = v2/v1, where 
b = F1′(x) = F1,0β  and c = −P1′(x) = P1,0 γx , while v2/v1 = F2,0, 
in view of  equation 7b. Inserting all these terms and solving for x, 
we obtain the optimal reproductive effort

xopt =
F1,0

P1,0 · F2,0
· β
γ
.

 (9)

Figure 6 demonstrates that, for a set of  parameters yielding the 
optimal value xopt = 0.5, individual-based simulations do indeed 
converge to this value, and that they stay close to this value, ir-
respective of  whether the pedigree-based estimate pRV2/pRV1 of  
v2/v1 is much larger or much smaller than the “true” value F2,0.  
We conclude that (1) reproductive values are indeed useful for 
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Figure 5
Evolutionary predictions based on pRVs. (a) Evolution of  reproductive effort x in Scenario 1 (two age classes) in two sets of  100 individual-based simulations; 
one set starting at x = 0 and the other starting at x = 1. The solid lines indicate the median x-values of  these simulations. The 50% (resp. 90%) central 
values of  x are represented by the darker (resp. lighter) shaded areas around the medians. The dashed line indicates the reproductive effort xopt = 0.5, which, 
according to Equation 9, is evolutionarily optimal for the parameter setting P1,0 = 0.25, F1,0 = 0.5, F2,0 = 2, β = 0.5, γ = 1. (b) Although the values 
of  pRV2 estimates differ by orders of  magnitude across simulations (horizontal axis), the average x-value evolved in these simulations at time step t = 1000 
approaches xopt = 0.5 quite closely in all simulations (vertical axis). The regression line through the data is almost identical with the line x = 0.5. In other 
words, the pRV estimates do not predict the outcome of  evolution. (c) and (d) show two example simulations from (b), which both start at xopt = 0.5. The 
evolutionary trajectories of  x stay close to this equilibrium value (dashed line), while the pRV ratio pRV2/pRV1 either overestimated (b1) or underestimated 
(c1) the “true” RV ratio v2/v1 (dashed line).
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making evolutionary predictions; but that (2) pedigree-based es-
timates are too imprecise to be reliable predictors of  the evolu-
tionary outcome.

Estimating RVs when the life-history model is 
wrong or incomplete

Until now, we had to conclude that the traditional model-based es-
timation of  reproductive values is clearly superior to the pedigree-
based method. However, the model-based method obviously relies 
on the existence of  a good life-history model. In natural popula-
tions, it is often very difficult to decide which traits need to be taken 
into consideration, and how different life-history decisions relate to 
each other. In a situation like this, the “model-free” pedigree-based 
estimation of  RVs may provide an outcome, as it has the potential 
to estimate reproductive values (and hence “fitness”) for all kinds 
of  traits of  interest. This way, a pedigree-based approach may be 
capable to pick up signals that certain traits are fitness-relevant and 
should be incorporated in a life-history model. Here, we illustrate 
this by reconsidering our model in Scenario 1 (two age classes) and 
assuming that, for a given population, this model is incomplete as it 
neglects “personality” differences, while such differences are fitness-
relevant (e.g., Wolf  et al. 2007; Réale et al. 2009; Cole and Quinn 
2014; Ward-Fear et al. 2018). Is the pedigree method able to quan-
tify the effect of  personality on RVs?

To investigate this, we extended the life-history model of  Scenario 
1 in such a way that the individuals had either a “bold” or a “shy” 
personality (see Supplementary Appendix D for details). Researchers 
can notice these differences, but it is not known to them how bold-
ness and shyness affect the life-history parameters. However, they 
can determine the number of  descendants of  bold and shy indi-
viduals down a pedigree, hoping to find out whether there is selec-
tion on personality. We, as the designers of  the simulation program, 

know that bold individuals have a higher fecundity at both ages, that 
shy individuals have a higher survival probability from age 1 to age 
2, and that the personality of  an individual is randomly determined 
at birth (with m being the probability of  being bold). We can also 
calculate that the RV of  bold individuals is about twice as large as 
the RV of  shy individuals. Figure 6 shows that, despite this large 
difference, the inherent stochasticity of  the pedigree method does 
not easily allow to pick up the signal. We conclude that large sample 
sizes (i.e., large pedigrees) are needed to reliably determine fitness 
differences and selection differentials, and that differences in pRV 
values need to be interpreted with care.

DISCUSSION
Reproductive values are a very useful theoretical tool, as they can 
help to answer evolutionary questions like: what is the optimal 
clutch size (Tinbergen and Daan 1990)? What is the optimal in-
vestment in male versus female offspring (Fisher 1930; Pen and 
Weissing 2002)? Under which circumstances should offspring stay 
on their natal territory and help their parents raise additional off-
spring (Pen and Weissing 2000c)? However, we need to be able esti-
mate RVs with accuracy and precision if  we are to use them to test 
evolutionary predictions.

Reproductive values are increasingly estimated by making use 
of  pedigree information from long term studies (e.g., Barton and 
Etheridge 2011; Chen et al. 2019; Hunter and Slate 2019; Hunter et 
al. 2019; Reid et al. 2019; Alif  et al. 2022). In essence, the per capita 
number of  descendants of  the members of  a certain life-history 
stage is used to estimate the reproductive value of  that stage. This 
method is intuitively appealing, as it closely reflects Fisher’s (1930) 
definition of  “reproductive value.” However, our study clearly re-
veals that the method has important drawbacks when used to 
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Number of  descendants for individuals differing in a personality trait. The number of  descendants of  (a) 1-year-old and (b) 2-year-old individuals that are 
either bold (light color) or shy (dark color) in an illustrative simulation. Twenty-five randomly chosen individuals per age class and personality were followed. 
The underlying life-history model (which may be unknown to the researcher) has the parameters: F1s = 0.2, F1b = 0.5, F2s = 0.8, F2b = 1.8, P1s = 0.7, P1b = 0.5, 
m = 0.3. Hence, bold individuals have a lower survival, but a higher fecundity. The corresponding “true” RVs are: v1s = 1, v1b = 1.8, v2s = 1.1 and v2b = 2.3. 
Hence, bold individuals have a higher reproductive value than shy individuals. However, this difference is not apparent from the numbers of  descendants in 
(a) and (b). The inspection of  other simulations led to the same conclusion.
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estimate fitness, even if  the pedigree includes many individuals (hun-
dreds or even thousands) per time step. The analytical arguments 
(Supplementary Appendix A) and simulations outlined in the results 
show that pedigree-based estimates are strongly and systematically 
biased when estimating asymptotic RVs (which are the relevant 
entities in evolutionary considerations) if  the pedigree encompasses 
a short time horizon (say, t < 10). On a longer time horizon, the me-
dian pRVs of  100 replicate simulations match the “true” asymptotic 
RVs reasonably well, but the individual simulations tend to diverge 
considerably from each other with increasing “depth” of  the pedi-
gree. As one simulation corresponds to one field study, this implies 
that the pedigree-based estimate of  RV is typically way “off target” 
if  it is only based on one, or a small number of, field studies.

Our findings concur with the patterns reported in natural popu-
lations. In both Soay sheep (Ovis aries, Hunter et al. 2019) and 
Florida Scrub-Jays (Aphelocoma coerulescens, Chen et al. 2019) esti-
mates of  RV based on individuals did not stabilize, just as in our 
simulations. Moreover, the pedigree-based estimates showed a sim-
ilar initial “zig-zag” pattern as in our study (e.g., Figures 2c, 3, 4a). 
Last, but not least, when the estimation was repeated for the same 
population by applying the gene-dropping method to different co-
horts, the RV estimates obtained varied a lot (Hunter et al. 2019).

Our study confirms that the traditional, model-based calcu-
lation of  reproductive values on the basis of  estimates of  the life-
history parameters has more desirable statistical properties. In all 
our simulations, we found that already after one or two time steps, 
the life-history parameters could be estimated sufficiently well to 
estimate asymptotic RVs with high accuracy and precision. The 
mRV method has the additional advantage that a sensitivity anal-
ysis (Caswell 2019) can reveal how parameter uncertainty affects the 
precision of  the estimate. In the field, such uncertainty can be con-
siderably larger than in our simulations. For example, we assumed 
that all stage transitions, including death, can be observed in the 
study population. In real populations, the estimation of, say, sur-
vival probabilities will often be unprecise and/or biased, as mortality 
cannot always be distinguished from emigration. However, the mRV 
method has the major drawback that it relies on a sound life-history 
model, including all fitness-relevant aspects, which in practice will 
often not be available. We have the impression that in the literature 
the pRV method is often used to fill this gap, as it allows to estimate 
reproductive values of  states or traits that are not (yet) incorporated 
in an established life-history model. Although this may be a useful 
first step, the results of  such a pedigree-based analysis should not be 
overinterpreted. As illustrated in Figure 6, the stochasticity inherent 
in the estimation of  pRVs makes it very difficult to draw reliable 
conclusions on fitness differences and selection gradients.

We would like to emphasize that our disappointing conclusions 
on the pRV method mainly relate to evolutionary considerations, 
which are usually based on asymptotic reproductive values. In 
other contexts, a pedigree analysis based on gene dropping can be 
a useful tool, for example to understand whether frequencies of  
certain rare diseases are caused by founder effects (O’Brien et al. 
1988), to better understand genetical processes in rare species to 
improve conservation management (Caballero and Toro 2000), or 
to study the effect of  demography on the dynamics of  short term 
genetic contributions (our “zig-zag” patterns).

We purposely kept our model assumptions as simple as possible. 
We focused on very simple life-histories, assuming that estimation 
issues that arise in simple scenarios will most likely be even worse in 
more complex life-histories. We assumed that our populations are 
closed (no emigration or immigration), that pedigree information 

is complete, and that the life-history parameters remained constant 
over time. Again, it is likely that RV estimates get worse when the 
situation is less ideal (as is the case for most field studies). Most of  
our simulations assume asexual reproduction. This has the advan-
tage that pRV estimates can directly be based on the number of  
descendants, as in this case, it is equivalent to the expected genetic 
contributions (“the expected number of  copies of  an allele that an 
individual leaves in distant future generations, conditional of  its 
pedigree of  descendants,” Barton and Etheridge 2011). However, in 
sexual populations, these two quantities differ slightly. Yet, as shown 
in Figure 3b, our conclusions also apply to populations with sexual 
reproduction and different sexes. However, they are not necessarily 
representative for more complicated situations, such as kin inter-
actions, inbreeding or inbreeding avoidance, and sexual selection. 
But again, we would argue that methods that do not work well in a 
simple context will most likely also fail in more intricate situations. 
Additionally, we would like to point out that the definition of  indi-
vidual reproductive value is not straightforward, as seemingly subtle 
differences exist in the literature (e.g., Engen et al. 2009 vs. Barton 
and Etheridge 2011), which seem to be used for different purposes 
and could lead to vastly different conclusions when mixed up.

Life-history theory is one of  the most advanced branches of  
evolutionary biology, with sophisticated tools and methods and a 
well-established fitness concept (Brommer 2000). Individual-based 
simulations are rarely used in life-history studies, perhaps because 
analytical techniques are readily available. Yet, such simulations 
can provide valuable additional information. First, simulation 
models are very flexible and can easily be tailored to the intrica-
cies encountered in real-world situations. For example, it is quite 
difficult to include sex- and age-structure, non-random mating, and 
kin interactions in a life history model without compromising ana-
lytical tractability, while this is straightforward in a simulation ap-
proach. Second, running replicated simulations gives researchers 
a good idea on the kind and degree of  variation to be expected. 
Individual-based simulations are therefore a useful tool for judging 
the validity of  empirical methods, such as the pedigree-based esti-
mation of  reproductive values.
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