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Abstract

Considering the influence of structural types and environmental conditions on the operation of floating

structures, studying the nonlinear effects of their motion responses is a necessary prerequisite for conduct-

ing characteristic analyses, comprehensive risk assessment, motion control, et al. In this paper, an approach

to separating nonlinear motion components is proposed to examine the nonlinear effects on the motion

responses. To quantitatively analyze these nonlinear effects, a relationship between the operational en-

vironment and the structural responses is established to separate nonlinear components independently of

structural model information. The main contributions of this study are listed as follows: (1) the memory

depth of the nonlinear model is comprehensively determined by the Akaike-Bayesian joint information cri-

terion; (2) an improved Kalman filtering method is developed to improve the identification effectiveness and

accuracy of nonlinear kernel functions. Two numerical examples, including a nonlinear polynomial and a

semi-submersible platform, are used to verify the correctness and applicability of the proposed method for

the separation of nonlinear components. Results demonstrate that good agreement between the separated

components obtained by the proposed method and the theoretical solutions is achieved at a degree of more

than 98%, with the maximum normalization error marked in millimeters. Finally, physical experiment of

a semi-submersible platform subjected to regular and irregular waves is carried out to further validate the

proposed approach. Experimental results show that the proposed approach can effectively separate and e-

valuate the nonlinear components from the motion responses of the floating structures under operational

states, paving the way for the development of efficient quantitative techniques to assess nonlinear effects

widely present in various ocean engineering applications.

Keywords: Floating structure; Nonlinear kernel function; Nonlinear effect; Separation; Quantitative

evaluation
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1. Introduction

As the key equipment in the process of deep-sea resource exploration, floating structures are mainly

used to provide operational platforms and living places, whose safe operation is related to the stability of the

entire system and the life safety of staff members [1]. Floating structures are typical nonlinear systems with

multi-scale and fully coupled characteristics, their motion responses show significantly large deformation

and nonlinear characteristics, such as the nonlinear deformation of ultra-slender structures [2], the heave

coupling of deep-sea floating platforms [3], the large slow drift behavior of the compliant platform [4], and

the large sway and capsizing in the longitudinal wave [5], etc. These complex nonlinear behaviors will

significantly affect the dynamic performance of floating structures, including motion control [6], response

prediction [7], and feature extraction [8] under various operational processes, thereby threatening the safety

and stability of floating structures [9].

To study the nonlinear effects in the motion response of floating structures, the traditional approach is to

simplify the nonlinear response based on nonlinear equations and then analyze the nonlinear characteristics

by numerical calculation. Low and Langley [10] investigated a simplified two-degree-of-freedom model

representing the surge motion of floating structures, along with the fundamental vibration mode of the

mooring lines to understand the coupling of the wave-frequency dynamics of the mooring line and the

low-frequency motion of the floating structure from a physical standpoint. Wang et al. [11] established a

single-degree-of-freedom (SDOF) model for the parametric roll motion of floating structures to study the

influence of wave group height and length factors on the roll motion. Liu et al. [12] established a nonlinear

motion equation of the floating vertical axis wind turbine considering the aerodynamic loads of stall and

floating base motion and solved it numerically to analyze the wave-heave-pitch motion. However, the above

methods need to simplify complex nonlinear responses in the analysis process, and the analytical solution

becomes tedious or even invalid when applied to high-order and strong nonlinear systems [13].

To examine the impact of nonlinear effects on the motion response of floating structures under actual

complex sea conditions, many scholars have carried out relevant research. Li et al. [14] developed a coupled

aero-hydro-elastic numerical model to investigate the transient response of a SPAR-type floating offshore

wind turbine in scenarios with fractured mooring lines, which comprised a blade-element-momentum model

for aerodynamics, a nonlinear model for hydrodynamics, a nonlinear restoring model of SPAR buoy, and

a fully nonlinear dynamic algorithm for intact and fractured mooring cables. Wang et al. [15] employed
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a numerical method to investigate the vortex-induced vibration of a circular cylinder elastically supported

elastically by linear and cubic springs at low Reynolds numbers, considering the nine dimensionless cubic

stiffness nonlinearity strength values. Ai et al. [16] created a three-dimensional non-hydrostatic model for

the prediction of the interaction between nonlinear waves and fixed floating structures. Kim et al. [17]

numerically analyzed mooring lines with or without the consideration of surge-pitch or sway-roll coupling

stiffness using the linear spring method and discussed the effect of coupling stiffness of the mooring system.

Although the above numerical methods can be used to analyze the nonlinear motion response of float-

ing structures during the numerical simulation stage, they are not suitable for real-time evaluation of the

operational status of in-service structures [18]. To solve this problem, the analytical method based on the

empirical model has been proposed. This method does not entail rigorous mathematical formula deriva-

tion; rather, it establishes the mathematical model of the system based on the input and output data of the

structure, and then analyzes the nonlinear characteristics by identifying the model parameters. Currently,

two empirical models for characterizing nonlinearity have been widely used, including the nonlinear au-

toregressive moving average (NARMAX) model [19] and the Volterra model [20]. Ji et al. [21] utilized

the NARMAX model to identify the hydrodynamic system of heave damping plates, which were common-

ly installed on the spar platform. Huang et al. [22] introduced a modified Particle Swarm Optimization

(PSO)-adaptive lasso algorithm to enhance the accuracy of the NARMAX model under the impulse ham-

mer excitation, and then derived a novel algorithm to estimate the nonlinear output frequency response

functions under rectangular pulse excitation. Liu et al. [23] accurately identified the pitch motion response

of the platform based on the NARMAX model. However, analytic results of the NARMAX model diverged

when the input and output data of the system were not stationary.

Compared to the NARMAX model, the Volterra model considers the memory effect of floating struc-

tures and presents a unique representation of the nonlinear system [24]. The current and historical input and

output information of the system is used to construct nonlinear system models. Yazid and Ng [25] proposed

an identification method to identify the time-varying linear and nonlinear impulse response functions of a

spar platform based on the Volterra model and Cuckoo search optimized Kalman smoother. The obtained

results had a higher level of time resolution than that of the conventional frequency domain Volterra model.

Tiao [26] used the nonlinear Volterra model to numerically calculate the force components over the hul-

l’s instantaneous wetted surface with the nonlinearities based on the strip method. The advantage of this

method is systematically converting the contributions of high-order harmonics excited by regular waves
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into the response predictions of irregular waves. Although the Volterra model is applied in the analysis

of nonlinear characteristics of floating structures, the results largely depend on the accurate expression of

structural models and the correct identification of kernel coefficients [27, 28].

This paper develops a novel quantitative method for the evaluation of nonlinear effects using the com-

ponent separation technique to explore the influence mechanism of nonlinear components on the motion

response of deep-sea floating structures. The following three challenging issues are addressed: (1) separat-

ing the nonlinear components of floating structural response by establishing a state-space model based on

the relationship between the environmental action and the structural response; (2) improving the identifica-

tion accuracy of the nonlinear model kernel coefficients through adaptive optimization of initial parameters

based on the improved Kalman algorithm; and (3) quantitatively evaluating the nonlinear effects in the

motion response of floating structures by introducing the comprehensive evaluation index. The rest of this

paper is structured as follows: The characterization model of the nonlinear response for floating structures

is introduced in Section 2. Then, the proposed nonlinear effects separation and quantitative evaluation

method are described in Section 3. Its correctness is verified by two numerical examples, including a non-

linear polynomial and a semi-submersible platform, in Sections 4 and 5. Finally, the physical model of

the semi-submersible platform under the action of regular and irregular waves in Section 6 is examined to

demonstrate the potential application and feasibility of the proposed method.

2. Preliminaries: Characterization model for the nonlinear response of floating structures

For a nonlinear single-input single-output system, the relationship between the input x(t) and the output

y(t) can generally be characterized by the functional series of the input x(t) as [29]:

y(t) = y0 +

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
ηq(τ1, τ2, · · · τq)

q∏
i=1

x(t− τi)dτ1dτ2 · · · dτq (1)

where y0, q, and ηq represent the constant term, the model order, and the kernel coefficients of the system,

respectively.
∏q

i=1 x(t − τi) represents the ith order regression vector composed of the input x(t) of the

system. Then, Eq. 1 can be rewritten in a discrete form as:

y(k) = y0 +
M∑

m1,mq=1

ηq(m1, · · · ,mq, k)

q∏
i=1

x(k −mi) (2)

where M and k represent the memory depth of the model and the discrete-time index, respectively.
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It can be found that when q = 1, the model can represent a linear system as:

y(k) = y0 +

M∑
m1=1

η1(m1, k)x(k −m1) (3)

And when q = 2, Eq. 2 represents a second-order nonlinear model as:

y(k) = y0 +

M∑
m1=1

η1(m1, k)x(k −m1) +

M∑
m1=1

M∑
m2=1

η2(m1,m2, k)x(k −m1)x(k −m2) (4)

where η1 and η2 represent the first- and second-order kernel coefficients of the nonlinear system, respective-

ly. In addition, Eq. 2 can be expanded into a high-order nonlinear model when q ≥ 3. Since the nonlinear

motion response of most floating structures can be modeled up to the second-order Volterra model [30, 31],

Eq. 4 will be used as an example for nonlinear quantitative evaluation in the following analysis.

To separate the nonlinear components in the response of in-service floating structures, the wave surface

elevation and the structural response (denoted as x(t) and y(t)) are used as the input and output of the

system, respectively. By substituting the input and output into Eq. 4, the equation can be converted into the

form of a matrix:

y(k) = y0(k) +



x2(k) x(k)x(k − 1) · · · x(k)x(k −M + 1)

x(k − 1)x(k) x2(k − 1) · · · x(k − 1)x(k −M + 1)

...
...

...
...

x(k −M + 1)x(k) x(k −M + 1)x(k − 1) · · · x(k −M + 1)x(k −M + 1)



T



η2(0, 0, k) η2(0, 1, k) · · · η2(0,M − 1, k)

η2(1, 0, k) η2(1, 1, k) · · · η2(1,M − 1, k)

...
...

...
...

η2(M − 1, 0, k) η2(m− 1, 1, k) · · · η2(M − 1,M − 1, k)


+



x(k)

x(k − 1)

...

x(k −M + 1)



T 

η1(0, k)

η1(1, k)

...

η1(M − 1, k)



(5)

Taking the advantage of the symmetry of the quadratic nonlinear term in Eq. 5, only the upper triangular

part is used for identification. Thus, Eq. 5 can be simplified as the product of the regression vectors and the

5



kernel coefficients of the system, as shown in Eq. 6:

y(k) =



1

x(k)

x(k − 1)

...

x(k −M + 1)

x2(k)

x(k)x(k − 1)

...

x(k)x(k −M + 1)

x2(k − 1)

...

x(k)x(k −M + 1)

...

x2(k −M + 1)



T 

η0(k)

η1(0, k)

η1(1, k)

...

η1(M − 1, k)

η2(0, 0, k)

η2(0, 1, k)

...

η2(0,M − 1, k)

η2(1, 1, k)

...

η2(1,M − 1, k)

...

η2(M − 1,M − 1, k)




Linear components



Nonlinear components

(6)

3. Quantitative evaluation of nonlinear responses based on wave surface elevation and structural

response

Under the joint action of the complex marine environment, as well as ancillary structures such as moor-

ings and risers, the nonlinear effect will have an important influence on the actual motion of floating struc-

tures. Therefore, it is highly beneficial to develop a nonlinear effect evaluation model for the motion re-

sponse of floating structures during operation. However, two main problems arise in addressing this issue:

1) How to identify the model characteristics of nonlinear floating structures and establish the mathemati-

cal relationship between the environment and the structural response? 2) How to accurately separate the

nonlinear components from the structural response and evaluate their impact on real-time motions?

3.1. Nonlinear separation model in state space model

It’s evident that Eq. 6 consists of two distinct parts: The first part comprises terms such as 1, x(k),

x(k − 1), ..., x(k −M + 1), each with their corresponding kernel coefficients. These terms collectively

represent the linear components of the structural response; The second part encompasses terms such as

x2(k), x(k)x(k − 1), ..., x(k)x(k −M + 1), x2(k − 1), ..., x(k)x(k −M + 1), ..., x2(k −M + 1), along

with their corresponding kernel coefficients. These terms represent the nonlinear components. Then, to
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determine the total number of kernel coefficients Nk, we can eliminate zero coefficients using the following

equation:

Nk =
(q +M)!

q!M !
(7)

In the above equation, it is important to note that the default zero kernel coefficient corresponds to the

first term in Eq. 6, thereby affecting the calculation of the total number of kernel coefficients. Specifically,

the total number of kernel coefficients can be calculated as Nk = (q+M)!
q!M ! − 1 when y0 = 0. Throughout the

above analysis, it becomes evident that the accuracy of the established nonlinear model is closely linked to

the memory depth M . An improper selection of M can lead to inaccuracies in mapping between input and

output information. To determine the optimal memory depth of nonlinear models, the Akaike Information

Criterion (AIC) [32] and Bayesian Information Criterion (BIC) [33] are simultaneously considered. These

criteria, defined in Eq. 8, provide a quantitative framework for selecting the most appropriate model com-

plexity while penalizing over-fitting. By constraining and adjusting the bounds of the memory depthM and

applying the joint criteria, the optimal memory depth can be determined.AIC(k) = 2k − 2ln(L)

BIC(k) = kln(k)− 2ln(L)
(8)

where L denotes the maximum likelihood function, and N represents the number of sampled signals. Then,

Eq. 6 can be further simplified as follows:

y(k) = φ(k)Tθ(k) (9)

where T represents the transposition of corresponding matrix, φ(k)T and θ(k) represent the regression

vector composed of the input data and the vector kernel coefficients for the nonlinear model, respectively.

Eq. 9 relates the regression vector φ(k)T to the system parameter θ(k), which can be estimated recursively

assuming that θ(k) follows a stochastic process. Using the random walk model with a normal distribution

[34], Eq. 9 can be expanded as:θ(k) = Aθ(k − 1) + ω(k)

y(k) = φ(k)Tθ(k − 1) + ν(k)
(10)

where A is the state transition matrix from time step k − 1 to k, ω(k) and ν(k) are independent zero-

mean Gaussian random noises, which represent the state noise and measurement variances of the system,

respectively.
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3.2. Adaptive identification of the kernel coefficients

To accurately estimation the kernel coefficients in Eq. 10, the Kalman filter algorithm is employed. This

algorithm integrates the Kalman filter [35] and smoothing equations for recursive equation update, ensuring

robust estimation even amid noise and uncertainty. The recursion process consists of two phases: the time

update phase and the measurement update phase. In the time update phase, the state vector θ(k|k − 1) and

state covariance matrix P (k|k − 1) are recursively updated from time step k − 1 to k using Eq. 11 as θ(k|k − 1) = Aθ(k − 1|k − 1)

P (k|k − 1) = AP (k − 1|k − 1)AT +Q
(11)

whereQ denotes the covariance matrix of ω(k). Define a Kalman gain vector denoted asG(k):

G(k) = P (k|k − 1)φ(k)T [φ(k)P (k|k − 1)φ(k)T +R]−1 (12)

where R represents the covariance matrix of ν(k). Then, the optimal state vector θ(k|k) and state covari-

ance matrix P (k|k) are computed by substitutingG(k) into the measurement update stage as follows:θ(k|k) = θ(k|k − 1) +G(k)[y(k)− φ(k)Tθ(k|k − 1)]

P (k|k) = [I −G(k)φ(k)T ]P (k|k − 1)
(13)

As Eqs. 11 and 13 are recursively forward from the time step k = 2 to k = N , delay errors will

be generated in the identification process. To enhance the identification accuracy, the Kalman smoothing

equation is introduced for deriving the delay and variance of kernel coefficients through backward recursion

from the time step k = N − 1 to k = 1. The smoothing equation can be established by introducing a

smoothing matrix J(k) as:
J(k) = P (k|k)ATP (k + 1|k)

θs(k|k) = θ(k|k) + J(k)[θs(k + 1|k + 1)− θs(k + 1|k)]

P s(k|k) = P (k|k) + J(k)[P s(k + 1|k + 1)− P s(k + 1|k)]JT (k)

(14)

where θs(k|k) and P s(k|k) represent the corresponding parameters updated iteratively using the Kalman

algorithm.

After presenting the Kalman smoothing equation, it becomes evident that determining appropriate ini-

tial values for parameters such as A, Q, R, P (1|1), and θ(1|1) poses a significant challenge. Improper

initializations not only slow down the adaptation speed of the algorithm but also hinder the convergence of

the identified results. To address this issue and enhance accuracy, the PSO algorithm [36] is employedVid = µVid + C1random(0, 1)(Pid −Xid) + C2random(0, 1)(Pid −Xid)

Xid = Xid + Vid ‘
(15)
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where id = 1, 2, ..., NS , and NS is the total number of particles. C1 and C2 are the learning factors. Vid,

Xid, and µ represent the current velocity, the position of the particles, and the inertial factor.

Despite the rapidity with which the PSO algorithm can identify approximate solutions, its search process

is prone to getting stuck in local optimum, leading to significant errors. Therefore, the dynamic linear

decreasing weight is introduced to address this issue by the optimization process as follows:

µ(t) =
(µini − µend)(Ni − g)

Ni
+ µend (16)

where Ni denotes the total number of iterations, with µini and µend representing the weight values of

the initial inertia and the maximum number of iterations. Typically, µini = 0.9, µend = 0.4. To assess

the accuracy of the identified kernel function, the mean square error (MSE) is employed as the objective

function:

MSE =
1

N

N∑
k=1

|y(k)− ȳ(k)|2 (17)

where ȳ(k) represents the output results by the proposed algorithm, and when the value of MSE reaches

the minimum, the optimal parameters are achieved. Subsequently, the kernel coefficients of the established

model can be determined using the Kalman smoothing equation (Eq. 14), leveraging the optimized param-

eters obtained through the PSO algorithm.

3.3. Quantitative evaluation for the nonlinear components

By convolving the obtained kernel coefficients with the corresponding regression vector, the linear and

nonlinear components in the output response can be separated:

ylinear(k) =



1

x(k)

x(k − 1)

...

x(k −M + 1)





η0(k)

η1(0, 1)

η1(1, k)

...

η1(M − 1, k)


(18)

9



and

ynonlinear(k) =



x2(k)

x(k)x(k − 1)

...

x(k)x(k −M + 1)

x2(k − 1)

...

x(k − 1)x(k −M + 1)

...

x2(k −M + 1)





η2(0, 0, k)

η2(0, 1, k)

...

η2(0,M − 1, k)

η2(1, 1, k)

...

η2(1,M − 1, k)

...

η2(M − 1,M − 1, k)



(19)

To quantitatively evaluate the impact of both linear and nonlinear components on floating structures,

a judgment matrix R is formulated based on the evaluation of m samples across n evaluation indices as

follows:

R =


r11 · · · r1n

...
. . .

...

rm1 · · · rmn

 (20)

Xj = (r1j , r2j , ..., rmj)
T (21)

where rij (i = 1, 2, 3, ...,m; j = 1, 2, 3, ..., n) represents the jth index evaluation value vector of m sam-

ples, and m is set to be 1 and 2 for the separated linear and nonlinear components; Xj is the jth index

evaluation value vector of m samples.

Meanwhile, the energy distribution [37], the variance contribution rate [38] and the energy entropy [39]

are introduced to comprehensively evaluate the nonlinearity of structural motion response from multiple

aspects, i.e.

Vj =
νj
ν

=

∑N
k=1(yj − ȳj)2∑N
k=1(y − ȳ)2

(22)

Dj =

∑N
k=1 y

2
j (k)∑N

k=1 y
2(k)

(23)

Qj = Dj lnDj (24)

where Vj , Dj , and Qj represent the variance contribution rate, the energy distribution, and the energy en-

tropy of the jth components, respectively; ν depicts the variance of corresponding sequence. The variance
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contribution rate, denoted as Vj , quantifies the proportion of variance attributed to the jth component rel-

ative to the total variance of the entire sequence. This measure provides valuable information about the

relative importance of each component in contributing to the overall variability of the motion response. On

the other hand, the energy distribution, represented by Dj , assesses the energy distribution across the dif-

ferent components of the motion response. This metric offers insights into the relative magnitude of energy

associated with each component. Lastly, the energy entropy, denoted as Qj , captures the level of disor-

der or uncertainty in the energy distribution of the jth component. This measure provides a quantitative

assessment of the concentration or dispersion of energy across the different components. By considering

these metrics collectively, a more comprehensive understanding of the nonlinear behavior can be obtained,

facilitating informed decision-making regarding the performance and behavior of floating structures under

varying conditions.

Additionally, to ensure consistency and comparability across different evaluation indexes, a normaliza-

tion technique is utilized to scale each index evaluation value into a standardized range. This normalization

process entails calculating the proportion Pij of the ith evaluation value under the jth index, as depicted in

Eq. 25:

Pij =
rij −min(Xj)

max(Xj)−min(Xj)
(25)

where Pij , max(Xj) and min(Xj) represent the proportion of ith evaluation under jth index, the maximum

and the minimum values in element of vector Xj . By standardizing the evaluation values in this manner,

the influence of scale differences between indexes is mitigated, allowing for a more objective and consistent

assessment of the performance of the floating structures across various evaluation criteria.

3.4. Scheme of the proposed method

This approach to the separation and evaluation of nonlinear components can be summarized into four

distinct steps:

• Step 1 - Establishment of a nonlinear model for floating structures: Utilizing the wave surface eleva-

tion x(t) and the motion response y(t) as the input and output parameters, respectively, a nonlinear

representation model for the floating structure is constructed. The model is formulated using the

regression vector
∏q

i=1 x(t− τi) and the nonlinear kernel coefficients ηq, as defined in Eq. 1.

• Step 2 - Transformation of the nonlinear model into a state-space representation: The nonlinear model

is transformed into a state-space representation, leveraging the symmetry of the quadratic kernel co-
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Fig. 1: The flowchart of the proposed method.

efficients as outlined in Eq. 6. The optimal memory depth of the system is determined by considering

the AIC-BIC joint criteria from Eq. 8. Finally, the state-space model is established based on Eq.10.

• Step 3 - Adaptive separation of nonlinear components: The improved Kalman filtering algorithm is

employed to solve for the kernel coefficients using Eq. 14. To account for the unknown parameters,

the PSO algorithm, combined with the dynamic linear decreasing weights (Eqs. 15 and 16), is utilized

to ensure optimal parameter estimation.

• Step 4 - Quantitative evaluation for the nonlinear effects: The linear and nonlinear components are

evaluated using the comprehensive evaluation index defined in Eqs. 22, 23, and 24. This allows for

a comprehensive examination of the nonlinear effects on motion responses, providing insights into

their impact on floating structures.

The flowchart of this novel separation and quantitative evaluation method has been shown in Fig. 1.

4. Numerical Study: A nonlinear polynomial model

To demonstrate the calculation process and verify the accuracy of the proposed approach for the sep-

aration and evaluation of nonlinear components, a nonlinear polynomial model with pre-defined kernel
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Fig. 2: The input and output of the polynomial system.

coefficients has been established in this section.

4.1. Introduction to the nonlinear polynomial

A nonlinear polynomial is formulated as a sum of linear and nonlinear models, as follows:

y(n) = y0 + y1(n) + y2(n) (26)

where y0, y1(n), and y2(n) represent the constant, linear, and nonlinear terms, respectively. To satisfy Eq. 2,

y1(n) and y2(n) are defined as:y1(n) = ax(n) + bx(n− 1) + cx(n− 2) + dx(n− 3) + ex(n− 4)

y2(n) = fx2(n) + gx(n)x(n− 1) + hx(n)x(n− 2) + px(n− 2)x(n− 3) + rx(n− 3)x(n− 4)
(27)

where [a, b, c, d, e, f, g, h, p, r] and y0 are assigned in the set [0.22, 0.46,−0.3, 0.75, 0.7, 0.66, 0.1,−1.2, 0.2,−0.64]

and 0.25, respectively. To obtain the output of the system, the white noise is selected as x(n), and the output

y(n) can be calculated by Eq. 26, as shown in Fig. 2.

4.2. Identification of the kernel coefficients

To identify the kernel coefficients of the nonlinear polynomial system, an appropriate memory depth

must be determined first. Figure 3 (a) shows the results of the AIC-BIC joint criteria calculated using Eq. 8.
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Fig. 3: (a) Determination of memory depth by the AIC-BIC joint criteria; (b) Comparison of the optimal iteration curve.

It is worth noting that the joint information criteria effectively ascertain the memory depth of the system,

and the outcomes are in agreement with the designated value (which is equivalent to 5, as a result of the

preassigned five terms within the linear y1(n) framework). Once the memory depth is determined, the

Kalman filter algorithm can be applied to discern the kernel coefficients of the system. Given the unknown

initial parameters in the standard Kalman algorithm, a series of manual debugging steps are required in the

analytical phase, aiming to obtain the optimal parameters for the standard Kalman algorithm. Nevertheless,

manual procedures are time-consuming in nature, and are susceptible to notable inaccuracies. Consequently,

the PSO algorithm is introduced to streamline the process, offering a method for deriving the optimal initial

parameters in an efficient manner.

In the solution process, an additional notable concern may arise, namely that the conventional PSO

method could potentially converge to local optima due to variables such as on-site testing conditions and

noise inherent in the application to measured data. These factors can result in inaccuracies in the identi-

fication of kernel functions. To address this issue, a dynamic linear decreasing weight value in Eq. 16 is

introduced to enhance the optimization process. The outcomes of this approach are illustrated in Fig. 3 (b).

Examination of the results shows that in the case of the fixed inertia weight method, PSO stops the updating

after four iterations. When the dynamic linear decreasing weight method is employed, the updating con-

verges after 14 iterations, yielding a better value than that obtained through the fixed inertia weight method.

This results indicates that the dynamic linear decreasing weight method has the capability to reduce the
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Fig. 4: Identified kernel coefficients by the PSO-based Kalman filter.

risk of the optimization process getting struck in local minima during the iterative update process. Figure 4

illustrates the outcomes of the PSO-based Kalman filter identification. It becomes evident that the identified

results harmonize with the set values rapidly.

4.3. Separation and quantitative evaluation of nonlinear components

By convolving the identified kernel coefficients with the regression vector composed of the input data

using Eqs. 18 and 19, the linear and nonlinear components in the output response can be separated, as depict-

ed in Fig. 5. To quantitatively evaluate the separated results, the reference solution is taken as a benchmark

example. Also, the Pearson correlation coefficient and maximum normalized error are introduced. The

Pearson correlation coefficient is utilized to ascertain the similarity between the original components yo(t)

and separated components ys(t) as:

ep = | 1

N − 1

N∑
k=1

(
yo(i)− ȳo

σyo
)(
ys(i)− ȳs

σys
)| (28)

where σyo and σys represent the standard deviation of yo and ys; N denotes the signal length; ȳo and ȳs

represent the mean values of yo and ys; yo(i) and ys(i) represent the ith point in signal yo and ys. According

to Eq. 28, the value of ep varies between 0 and 1, and a larger value indicates a better correlation. Since

a large value of ep can be obtained even for signals with different amplitudes, it is also important to keep
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Fig. 5: Comparison of the separated (a) linear and (b) nonlinear components, and (c) the reconstructed results.

track of the difference between the peaks of the signals. Thus, the maximum normalized error is introduced

as:

em = |max[yo(i)− ys(i)]
max[yo(i)]

| (29)

where yo(i) and ys(i) represent the ith point in signal yo and ys. A value close to 0 indicates that the

difference between the amplitudes of the two signals is small. After calculation, the Pearson correlation

coefficient and the maximum normalized error of the separated nonlinear components and their correspond-

ing theoretical solutions are 99.9998% and 1.6235−14%, which validates the correctness of the proposed

method for the separation of nonlinear components.

Furthermore, to verify the accuracy of the memory depth determined by the comprehensive indicators

AIC-BIC joint criteria, Fig. 6 (a) illustrates the temporal-domain results of the isolated nonlinear compo-

nents by varying the selected memory depths (ranging from 1 to 9). Significantly, the decomposition results

at a memory depth of 5 (depicted as the red curve) show the highest degree of correspondence to the the-

oretical values of the nonlinear components (illustrated by the black curve). Meanwhile, Eqs. 28 and 29

were used to provide a quantitative assessment of these findings, as graphically depicted in Fig. 6 (b). In

this graphical representation, the height of each histogram bar represents the degree of similarity in results,
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while the error bars indicate the maximum normalized error. It is noted that the criteria proposed accurately

identifies the appropriate memory depth, consequently producing the most precise results in the process of

decomposition.

To evaluate the nonlinear effect in the output response of the polynomial, the energy entropy is used to

quantitatively assess the influence mechanism of nonlinear components on the total responses and quantify

the relative changes of linear and nonlinear components in the output response. To quantitatively assess the

nonlinear effects, Eqs. 22, 23, and 24 are used to calculate the variance contribution, energy distribution,

and energy entropy of the separated nonlinear component, respectively. The comprehensive evaluation area

is formed according to the maximum and minimum values of the results, as shown in Fig. 7. Then, the

final comprehensive evaluation results are obtained by calculating the mean values of the upper and lower

boundaries of the comprehensive evaluation domain, as shown in Fig. 7. It is noted that within the first

5s, the evaluation results are unstable due to insufficient information, and the information entropy tends to

stabilize as time increases. The results indicate that the proportion of nonlinear components in the output

response is more than 0.7, which is consistent with the amplitudes of the linear and nonlinear components
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Fig. 7: Quantitative evaluation results for the nonlinear effects of the nonlinear polynomial.

shown in Fig. 5, demonstrating the correctness of the evaluation results.

5. Numerical Study: A numerical platform

To further verify the feasibility of the proposed method for the nonlinear effect evaluation of float-

ing structures, a semi-submersible platform modelled by Orcaflex has been used to obtain the linear and

nonlinear dynamic response under the consideration of linear wave action and second-order wave action.

Following that, the accuracy of the separation of nonlinear components by the proposed method has been

discussed, and the feasibility of the proposed evaluation method has been verified.

5.1. Introduction to the semi-submersible platform

The semi-submersible platform consists of 2 buoys and 4 columns, as shown in Fig. 8. The exterior

surface comprises shell elements, and the interior is supported by various forms of steel structures. Detailed

parameters are presented in Table 1. The mooring system is divided into four groups symmetrically dis-

tributed along the x− and y− axes, and each group comprises two cables, as shown in Fig. 8. The properties

of the mooring lines and the coordinates of the fairleads and anchor points are depicted in Table 2.
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Fig. 8: Numerical model of the semi-submersible platform and schematic diagram of the mooring arrangement.

Table 1: Parameters of the numerical platform.

Platform

Designation Unit Value Designation Unit Value

Length m 124.21 The radius of gyration, roll m 35.60

Breadth m 89.00 The radius of gyration, pitch/yaw m 34.53

Depth m 45.30 Center of gravity from keel m 28.90

Draft m 23.00 Roll natural period wetted s 59.00

Displacement m3 74270.80 Heave natural period wetted s 22.00

Waterline area m2 1517.00 Pitch natural period wetted s 57.00
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Table 2: Parameters and coordinates of the numerical mooring system.

Mooring

Designation Unit Value Designation Unit Value

Equivalent diameter m 0.127 Wet weight per unit length kg/m 643.64

Dry weight per unit length kg/m 739.78 Axial stiffness N/m 1.29E+05

Coordinates

Fairlead (m)

(37.734, 44.776, -2.232) (-37.734, -44.776, -2.232)

Anchor (m)

(4655.78, 3588.33, -1500) (-4655.78, -3588.33, -1500)

(30.766, 44.776, -2.232)) (-30.766, -44.776, -2.232) (2941.23, 5085.84, -1500) (-2941.23, -5085.84, -1500)

(-30.766, 44.776, -2.232) (30.766, -44.776, -2.232) (-2941.23, 5085.84, -1500) (2941.23, -5085.84, -1500)

(-37.734, 44.776, -2.232) (37.734, -44.776, -2.232) ((-4655.78, 3588.33, -1500) (4655.78, -3588.33, -1500)

5.2. Separation of second-order response components

Based on the linear wave theory, the dynamic response of a semi-submersible platform is linear under

the action of the first-order wave force, and it becomes a combination of linear and nonlinear components

after considering the second-order wave force. Therefore, with the significant wave height Hs = 4.8m,

spectral period Tp = 10.4s, and spectral peak enhancement parameter γ = 1.0 of the JONSWAP spectrum,

the dynamic response of the structure under the action of linear wave force and considering the second-

order wave force is calculated by the Orcaflex software, respectively. During the calculation process, the

Newmark-β algorithm and the concentrated mass method are used to calculate the responses of the platform

and mooring lines, respectively. The calculated structural surge response is shown in Fig. 9 (b). It can be

seen that the action of the second-order wave force will increase the amplitude of the structural motion.

The wave surface elevation and structural response calculated by the Orcaflex are used as the input

and output data to establish the nonlinear model of the system, and the memory depth of the nonlinear

system is comprehensively determined based on the AIC-BIC joint criteria, as shown in Fig.10 (a). After

a comprehensive analysis of the calculation results of the three criteria, the memory depth is determined to

be 10. Then, the optimal initial parameters of the Kalman algorithm can be calculated by the PSO. In the

optimization process, the iteration number is set to 20, and the obtained iteration curve is shown in Fig. 10

(b). It can be seen that the optimal solution is obtained after 4, and the estimated parameters at this time are

taken into the Kalman algorithm for the identification of the kernel coefficients.

After obtaining the kernel coefficients of the system, the linear and nonlinear components can be sep-

arated through convolution with the regression vector composed of the input data. To verify the accuracy

of the separation, the dynamic response under the action of linear waves is taken as the true value of linear

components, and the differences between the response under the action of linear waves and the response
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Fig. 9: Simulation results by the Orcaflex: (a) Wave surface elevation; (b) Response under the action of linear wave and the wave

considering the second-order effect.
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Fig. 11: Separated results by the proposed method: (a) linear components; (b) nonlinear components.

considering the second-order wave force are taken as the true value of the nonlinear components. Figure 11

shows the separated results of the decomposed linear and nonlinear components by the proposed method.

Similarly, the Pearson correlation coefficient and the maximum normalization error are used to evaluate

the accuracy of the separation results. By calculation, the correlation coefficients between the separated

components and their calculated results are 98.7589% (linear components) and 98.1283% (nonlinear com-

ponents), and the maximum normalized errors are 2.0186% (linear components) and 2.6152% (nonlinear

components). The analysis results show that the separated linear and nonlinear components are in good

agreement with the corresponding calculation results obtained using the software. It is also proved that

the proposed method can be applied to the separation of nonlinear components in the response of floating

structures.

5.3. Quantitative evaluation of the separated components

Once the linear and nonlinear components in the motion response are obtained, the influence of non-

linear effects on the motion response can be quantitatively evaluated. Figure 12 illustrates the evaluation

results. It can be seen that under the influence of second-order wave forces, the impact of nonlinear effects

on the structural motion response exceeds more than half. From the amplitude comparison results of the

linear and nonlinear components decomposed in Fig.11, it can be seen that the ratio of the two is indeed
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Fig. 12: Quantitative evaluation results for the nonlinear effects of the numerical platform.

close to 1:1, which is consistent with our analysis results. This also verifies the accuracy of the evaluation

results of the proposed method, and proves the feasibility of applying the proposed method to evaluate the

nonlinear effects of floating structure motion response.

6. Experiment study: A semi-submersible platform

To verify the correctness of the proposed method from an experimental point of view, an experiment

of the semi-submersible platform in Fig. 8 under the excitation of regular waves and irregular waves was

carried out. In theory, the structural motion response under the action of regular waves exhibits harmonic

motion characteristics, which can be used to verify the correctness of the proposed method when applied

to actual marine engineering structures. On this basis, irregular wave test data under different working

conditions are analyzed to discuss the influence of nonlinear effects on the structural motion response under

working conditions.

6.1. Detailed introduction to the experiment

The semi-submersible platform model was scaled down to a 1:100 ratio and placed in the wave flume

of the Ocean University of China. Twelve mooring cables, composed of pure steel wire and springs, with a
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Fig. 13: Schematic diagram of the test device layout.

pretension of 100g, a dry weight of 332.28g/m, an equivalent diameter of 0.00149m, and an elongation of

3.5cm/kg, were utilized to enable the platform to move within a specific range. The dimensions of the wave

tank are 60m×36m×1.5m, and it is equipped with a piston wave generator and a wave dissipating board at

the ends. In the test, five wave gauges with a sampling frequency of 50Hz were installed in the wave flume,

with three placed upstream, one placed near the platform, and one placed downstream. The motion of the

model is measured by a 3D optical motion tracking system with a sampling frequency of 50Hz, which

comprises of one onboard marker and two onshore base stations. Figures 13 and 14 illustrate the layout

and employed equipment in the experiment, respectively. Constrained by the simulation range of the wave

generator, a total of 50 sets of operating conditions, including regular wave conditions and irregular wave

conditions, were tested. The specific environmental parameters in the experiment are shown in Table 3.

6.2. Case 1: regular waves

Considering regular waves with a wave height of 0.12m and a period of 2s, Fig. 15 shows the measured

wave surface elevation by the wave gauge 1 in Fig. 13 and the response in the surge direction of the structure.

It is noted that the structure starts to move at the 20th second under the action of waves and tends to
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Fig. 14: The physical model of the platform and sensor arrangement.

Table 3: The operational conditions performed in the experiment

Conditions Parameters

Regular waves
Wave heights Wave periods

0.04m, 0.06m, 0.08m, 0.10, 0.12m 1.2s, 1.6s, 2.0s, 2.4s, 2.8s

Irregular waves (JONSWAP)
Significant wave heights Spectral peak periods

0.04m, 0.06m, 0.08m, 0.10, 0.12m 1.2s, 1.6s, 2.0s, 2.4s, 2.8s
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Fig. 15: Measured (a) wave surface elevation and (b) response of the platform under regular waves.

be stable after 30s. The reason for this phenomenon is that the initial stage of the structure motion is a

typically unstable response, which does not conform to the motion behaviour of structures subject to the

action of regular waves. With the increase in time, the motion of the platform gradually stabilizes and stops

after 350s. Therefore, in the following analysis, the response in the relatively stable stage of the structural

motion (between 100s and 300s) has been selected for data analysis.

By using the normalized wave surface elevation and the structural response to construct the nonlinear

motion response separation model of the platform, the memory depth is determined based on the AIC-BIC

joint criterion (here M = 7). Using the PSO algorithm to select the initial parameters of the Kalman

algorithm, the nonlinear components in the measured response can be separated, as shown in Fig. 16 (a).

It can be observed that the amplitude of the separated nonlinear response under regular waves is very

small, with the linear response being dominant. Figure 16 (b) presents the reconstructed response using

the separated linear and nonlinear components. It can be seen that the reconstructed response is in good

agreement with the measured results, which also validates the correctness of the separation results.

After the linear and nonlinear components are separated, the results can be quantitatively evaluated

by introducing information entropy, as shown in Fig. 17. As can be observed in the figure, the linear

components occupy more than 98% of the structural response under the action of regular waves. The reason
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Fig. 16: Comparison of (a) the measured response, the separated linear and nonlinear components; (b) the measured and recon-

structed response.

for this phenomenon is that the structural response under the action of regular waves should be purely

linear in theory. However, in practical experiments, due to the interference of environmental noise and the

influence of test equipment, the emergence of nonlinear components in the structural response cannot be

avoided.

6.3. Case 2: irregular waves

Meanwhile, the proposed approach has been examined using floating structures under the consideration

of irregular waves. In the experiment, the JONSWAP spectrum is employed to simulate an irregular wave

with a peak period of 2 s and a significant wave height of 0.12 m. Figures. 18 and 19 illustrate the separation

and evaluation results of nonlinear effects using the proposed method. It can be seen that under the action of

irregular waves, the influence of nonlinear effects on structural motion will significantly increase, which is

significantly greater than the result under the action of regular waves (as shown in Fig. 17). This is because

under the combined action of irregular waves and ancillary structures such as mooring systems, the structure

undergoes large amplitude and large period drift motion, which also includes second-order nonlinear motion

responses. This also proves the feasibility of applying the proposed method to the evaluation of nonlinear

effects of floating structures under the action of irregular waves.
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Fig. 17: Quantitative evaluation results for the nonlinear effects of the physical platform under regular waves.
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Fig. 18: Comparison of the separated (a) linear and (b) nonlinear components with the measured response.
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Fig. 19: Quantitative evaluation results for nonlinear effects of the physical platform under irregular waves.

6.4. Case 3: comparative study of different working conditions

To investigate the impact of varying sea conditions on the nonlinear effects within the response of ma-

rine engineering structures, statistical measures including the mean value, variance, and quartile value are

employed to concisely represent the analytical results derived from different sets of experimental data. The

assessment results regarding nonlinear effects in the case of regular wave conditions are visually presented

in Fig. 20 (a). Although the dynamic response of floating structures is theoretically linear under the consid-

eration of regular waves, the experimental conditions show a visible presence of nonlinearity, consistently

around 2.5%. A notable observation is that the influence of nonlinearity becomes more prominent when the

structures are exposed to waves characterized by increased wave heights and reduced periods, as exempli-

fied by scenarios like a 0.12m wave height combined with a 1.2s wave period. This increase in nonlinear

effects can be attributed to the fact that more extreme sea states cause deviations in the structural motion

response from the regular baseline. This phenomenon is illustrated through the comparative analysis of

time-domain profiles, as shown in Figs.20 (b) and (c), where the structural motion response under the in-

fluence of a wave configuration with a 0.12m wave height and a 1.2s wave period, in contrast to that with a

0.04m wave height and a 2.8s wave period, highlights the significant influence of nonlinearity in cases with

higher wave heights and shorter periods.
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Fig. 20: (a) Statistical results of nonlinear effects under regular wave conditions; Measured response under different conditions:

(b) wave height of 0.12m and wave period of 1.2s, and (c) wave height of 0.04m and wave period of 2.8s.

Similarly, the statistical results regarding nonlinear effects are presented in Fig.21 for a specific analysis

of structural responses in the case of irregular waves. It becomes evident that in comparison to the findings

derived from regular wave conditions, the intensity of nonlinearity within the structural motion response

is enhanced when exposed to irregular wave conditions, resulting in a notable increase of more than 20%.

Further observation through comparative analysis indicates that under the influence of irregular waves, both

significant wave height and spectral peak period have a notable influence on the degree of nonlinear effects

within the structural motion response. While keeping the significant wave height constant, a decrease in the

spectral peak period leads to an increase in the nonlinearity of the structural motion response. Similarly,

maintaining a constant spectral peak period while increasing the significant wave height results in a concur-

rent amplification of nonlinear effects within the structural motion response. An interesting insight emerges

when focusing on cases featuring small spectral peak periods and large significant wave heights, such as

a 0.12m significant wave height combined with a 1.2s spectral peak period. In such cases, the nonlinear

effect within the structural motion response grows, exceeding the 40% threshold, thus having a significant

influence on the overall operational safety of the structure. Another notable observation relates to cases

where the spectral peak period is short (1.2s), resulting in a substantial variation in the evaluation result-
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Fig. 21: Statistical results of nonlinear effects under irregular wave conditions.

s. This observation demonstrated the instability of outcomes under these specific conditions, triggering a

pre-warning of operational conditions of floating structures.

7. Conclusions

This paper has proposed a nonlinear component separation method based on wave surface elevation and

structural response to quantitatively evaluate the nonlinear effects of floating structural motion response.

In this method, the state-space model has been utilized to establish the mathematical connection between

the input (wave elevation) and output (structural response) of floating structures, and thus the separation

and quantitative evaluation of nonlinear components in the motion response have been realized by adaptive

identifying the kernel coefficients of the nonlinear system. The analysis results of a nonlinear polynomial

indicate that the proposed method can be used for the separation and evaluation of nonlinear effects in

nonlinear systems. Simulation results of a semi-submersible platform using Orcaflex with the consideration

of the second-order wave force have shown that the similarity and the maximum amplitude error between

the proposed approach and Orcaflex are more than 98% and less than 3%, respectively, indicating the

correctness of the proposed evaluation method.

To further verify the feasibility of the proposed approach in complex floating structures, a 1:100 model
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of the semi-submersible platform has been carried out in a wave tank, and the dynamic responses of the

structure under the action of regular and irregular waves have been analyzed respectively. The analysis

results have demonstrated that the proposed approach can separate and quantitatively evaluate the nonlin-

ear components in the motion response of floating structures and has great potential in a wider range of

applications in floating marine engineering.

Additionally, considering other factors like temperature, turbulence, internal waves, high-frequency

operating equipment, the interaction of multiple bodies, structure resonance, and structural aging or degra-

dation can greatly enhance our understanding of the nonlinear dynamics of floating structures. Analyzing

these parameters may require adjustments to the nonlinear model, extension of the monitoring period, and

incorporation of additional monitoring factors. Similarly, conducting comprehensive and extensive statisti-

cal analysis is crucial for evaluating the complex relationship between environmental factors and nonlinear

effects. Employing methods that enable continuous tracking of nonlinear dynamic alterations in the motion

response of floating structures can offer significant benefits in this regard. By continuously monitoring and

analyzing the nonlinear dynamics, researchers can gain deeper insights into the behavior of floating struc-

tures under various environmental conditions. This can lead to more robust design methodologies, improved

safety measures, and enhanced operational efficiency for marine structures.
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