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A B S T R A C T

Tree shape statistics based on peripheral structures have been utilized to study evolutionary mechanisms
and inference methods. Partially motivated by a recent study by Pouryahya and Sankoff on modeling the
accumulation of subgenomes in the evolution of polyploids, we present the distribution of subtree patterns
with four or fewer leaves for the unrooted Proportional to Distinguishable Arrangements (PDA) model. We
derive a recursive formula for computing the joint distributions, as well as a Strong Law of Large Numbers and
a Central Limit Theorem for the joint distributions. This enables us to confirm several conjectures proposed
by Pouryahya and Sankoff, as well as provide some theoretical insights into their observations. Based on
their empirical datasets, we demonstrate that the statistical test based on the joint distribution could be more
sensitive than those based on one individual subtree pattern to detect the existence of evolutionary forces such
as whole genome duplication.
1. Introduction

Tree shape indices have been providing a useful tool for statistical
analysis in phylogenetic studies, including testing evolutionary models,
assessing the impact of selection, understanding tumor evolution (see,
e.g. a recent book by Fischer et al. (2023) and the references therein).
One general approach is to compare the distribution of a given tree
shape index calculated from real datasets with that computed from ran-
dom tree generating models, typically as a null model associated with
the evolutionary processes under investigation. For instance, in a recent
study Pouryahya and Sankoff (2022) adopted this approach to deci-
pher the evolution history of multiple polyploidizations of flowering
plants, with a focus on understanding the sequence of polyploidization
events leading to the accumulation of current genomes. To this end,
the authors proposed a null hypothesis based on the following two
postulates: first, each increment in genome ploidy from 𝑁 − 1 to
𝑁 is the result of adding a complement set of chromosomes to the
𝑁 − 1 copies already present; secondly, this subgenome addition is
modeled as attaching a new edge to a randomly chosen branch of the
existing phylogeny, which will be referred to here as the ‘‘one-at-a-
time’’ model on unrooted trees. To test this hypothesis, they developed
several statistical tests based on shape indices derived from counting
peripheral subtree patterns, partially motivated by the rationale that
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these peripheral structures might represent events that occurred more
recently and hence less subject to obscuration imposed by subsequent
evolutionary processes.

Although various distributional properties are known for subtree
patterns of rooted phylogenetic trees in which a specific node is des-
ignated as the root (see, e.g. McKenzie and Steel, 2000; Rosenberg,
2006; Chang and Fuchs, 2010; Disanto and Wiehe, 2013; Hagen et al.,
2015; Wu and Choi, 2016; Plazzotta and Colijn, 2016), relatively less
is known for unrooted trees. One subtle difference here is that a rooted
tree inherits an intrinsic temporal direction derived from the root, and
hence can be analyzed in a recursive manner, which is not available for
unrooted trees. Furthermore, the differences between distributions of
shape statistics from rooted trees and those from unrooted trees could
also be intrinsically related to the tree generating models (Choi et al.,
2020).

The starting point of this paper is to notice that the ‘‘one-at-a-
time’’ model used by Pouryahya and Sankoff is closely related to the
well-known uniform random tree model, which is also known as the
Proportional to Distinguishable Arrangements (in short, PDA) model in
phylogenetic analysis. Indeed, both models induce the same probability
distribution on the tree shapes of a given number of leaves, when
the taxon labels of trees sampled from the PDA model are ignored.
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Furthermore, the peripheral subtree patterns they studied are those
with four or fewer leaves. For two leaves, there is a unique pattern
termed by Pouryahya and Sankoff as paired terminals which is also
commonly known as cherries. For three leaves, there is also a unique
pattern termed as triples and often known as pitchforks. However, there
are two types of subtree patterns with four leaves: one contains two
cherries which was termed as quadruples of type I and will be referred
to as balanced quartet subtree here; the other contains precisely one
cherry which was called quadruples of type II and will be referred to
as asymmetric quartet subtree here. Using the first letters from their
names, we let 𝐴𝑛, 𝐵𝑛, 𝑃𝑛 and 𝐶𝑛 denote, respectively, the numbers of
asymmetric quartets, balanced quartets, pitchforks, and cherries in a
random unrooted tree with 𝑛 leaves sampled from the PDA model. Since
these numbers depend only on tree shapes, but not on the taxon labels,
they have the same probability distributions as the subtree patterns in
the one-at-a-time model. Based on recurrence relations, Pouryahya and
Sankoff (2022) computed the probabilities of these random variables
for small 𝑛 which enabled them to conduct their tests, which also
motivated them to make several conjectures regarding the asymptotic
mean and variance of these random variables, see Conjectures 2.2, 2.3,
3.2, 3.3, 4.2, 4.3, 4.5 and 4.6 in their paper.

Instead of focusing on the behavior of random variables for the
frequency of individual subtree patterns, here we are interested in the
random vector 𝐪𝑛 = (𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛) which will be referred to as the
4-subtree vector. By coupling this vector with an extended Pólya urn
model associated with edge types of uniform random trees, we derive
a recurrence relation of the joint probability mass function (pmf) of
these vectors, which enables us to deduce the exact formula for their
mean and variance–covariance matrices, and hence show that all the
conjectures mentioned in the last paragraph are true. Furthermore,
based on some recent results on the limiting distributions of extended
Pólya urn models, we also derive a law of large numbers and a central
limit theorem for the random vector 𝐪𝑛: the first can be regarded
as a stronger version of some conjectures mentioned above, the later
explains the bell-shape curves of the four figures observed in Pouryahya
and Sankoff (2022). Finally, we also demonstrate that statistical tests
based on distributions of this random vector could be more sensitive
than those based on its individual components, such as the detection
of the possible existence of the whole genome duplication.

The rest of this paper is organized as follows. In the next section,
we present some definitions concerning phylogenetic trees and the PDA
processes. In Section 3, we describe an urn model associated with the
PDA process. This enables us to obtain the exact distribution of the 4-
subtree vector 𝐪𝑛 in Section 4. We next derive the central limit theorem
and the law of large numbers for 𝐪𝑛 in Section 5. We conclude this
paper in the final section with a discussion on statistical tests and some
open problems.

2. Preliminaries

In this section, we present some basic notation and background con-
cerning phylogenetic trees and the PDA random tree model. Through-
out this paper, 𝑛 is a positive integer greater than or equal to eight
unless stated otherwise.

2.1. Phylogenetic trees

A tree 𝑇 = (𝑉 (𝑇 ), 𝐸(𝑇 )) is a connected acyclic graph with vertex
set 𝑉 (𝑇 ) and edge set 𝐸(𝑇 ). A vertex is referred to as a leaf if it has
degree one, and an interior vertex otherwise. An edge incident to a leaf
is called a pendant edge. All trees considered in this paper are unrooted
and binary, that is, each interior vertex has precisely three neighbors.

In this paper, a phylogenetic tree on a finite set 𝑋 is an unrooted
binary tree with leaves bijectively labeled by the elements of 𝑋. The
set of phylogenetic trees on {1, 2,… , 𝑛} is denoted by 𝑛. See Fig. 1 for
examples of trees in  and  . Given an edge 𝑒 in a phylogenetic tree
2

8 9
𝑇 on 𝑋 and a taxon 𝑥′ ∉ 𝑋, let 𝑇 [𝑒; 𝑥′] be the phylogenetic tree on
𝑋 ∪ {𝑥′} obtained by attaching a new leaf with label 𝑥′ to the edge
𝑒. For instance, in Fig. 1, tree 𝑇2 = 𝑇1[𝑒12; 9] is obtained from 𝑇1 by
attaching leaf 9 to the edge 𝑒12. We simply use 𝑇 [𝑒] instead of 𝑇 [𝑒; 𝑥′]
when the taxon name 𝑥′ is not essential.

Removing an edge in a phylogenetic tree 𝑇 results in two connected
components; each of which is referred to as a subtree of 𝑇 , also com-
monly known as a fringe subtree or a peripheral subtree. A subtree is
called a cherry if it has two leaves, and a pitchfork if it has three leaves.
Furthermore, a subtree with four leaves is referred to as a quartet
subtree and there are two types of quartets: an asymmetric quartet
contains one cherry while a balanced quartet contains two cherries. For
instance, the two subtrees of 𝑇1 resulting from removing 𝑒11 in Fig. 1
are both quartets: the one with leaf set {1, 4, 5, 8} is a balanced quartet
while the other one is an asymmetric quartet. Furthermore, a cherry
is referred to as independent if it is not contained in any pitchfork or
quartet subtree. Similarly, a pitchfork is called independent if it is not
contained in any quartet subtree. Finally, let 𝐴(𝑇 ), 𝐵(𝑇 ), 𝑃 (𝑇 ) and 𝐶(𝑇 )
denote, respectively, the number of asymmetric quartets, the number of
balanced quartets, the number of pitchforks, and the number of cherries
for a given phylogenetic tree 𝑇 .

2.2. The PDA processes

Let 𝑛 be the set of unrooted phylogenetic trees with 𝑛 leaves.
In this subsection, we introduce the Proportional to Distinguishable
Arrangements (PDA) process.

Under the PDA process, a random phylogenetic tree 𝑇𝑛 in 𝑛 is
enerated as follows.

(i) Start with a uniformly chosen unrooted tree with eight leaves
which are labeled with the taxon set {1, 2,… , 8};

(ii) for 8 ≤ 𝑘 ≤ 𝑛, uniformly choose a random edge 𝑒 in 𝑇𝑘 and let
𝑇𝑘+1 = 𝑇𝑘[𝑒; 𝑘 + 1].

Generally, the PDA process is initialized with an unrooted tree with
three or four leaves, but for the purpose this paper it is easier to start
with eight leaves, which does not change the distribution of sampled
trees in 𝑛 for 𝑛 ≥ 8. Furthermore, the above process could be used to
generate unlabeled trees, also referred to as tree shapes, when the leaf
labels of the resulting phylogenetic tree are discarded. In this context,
the PDA process is equivalent to the ‘one-branch-at-a-time’ model as
described in Pouryahya and Sankoff (2022) in that both models give
the same probability distribution of binary unrooted unlabeled trees
with 𝑛 ≥ 8 leaves. In particular, there are only four tree shapes with
eight leaves, as illustrated in Fig. 2.

For 𝑛 ≥ 8, let 𝐪𝑛 = (𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛) be the random vector consisting of
andom variables 𝐴(𝑇 ), 𝐵(𝑇 ), 𝑃 (𝑇 ), and 𝐶(𝑇 ) for a random tree 𝑇 in 𝑛
ampled from the PDA process, which will be referred to as the 4-subtree
ector in this paper. The probability distributions of 𝐪𝑛 are referred to as
-subtree distributions (for nontrivial subtrees with four, three or two
eaves). In this paper, we are interested in the distributional properties
f 𝐪𝑛, such as the mean E(𝐴𝑛) and the variance V(𝐴𝑛) of 𝐴𝑛, and the
ovariance 𝐶𝑜𝑣(𝐴𝑛, 𝐵𝑛) between 𝐴𝑛 and 𝐵𝑛 etc.

. An urn model from edge types

To study the 4-subtree vector (𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛) in this section, we
briefly describe a Pólya urn model with 8 colors that is associated
with the PDA model (see, e.g. Choi et al., 2021; Kaur et al., 2023
for more details about a general urn model). Our starting point is the
following edge typing scheme (as illustrated in Fig. 3) which assigns a
type 𝑗 ∈ {1,… , 8} for each edge in a phylogenetic tree with eight or
more leaves. Specifically,

E1): pendant edges in unbalanced quartet subtrees that are not con-
tained in a pitchfork;
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Fig. 1. Examples of phylogenetic trees. 𝑇1 is an (unrooted) phylogenetic tree on {1,… , 8}; 𝑇2 = 𝑇1[𝑒12] is a phylogenetic tree on 𝑋 = {1,… , 9} obtained from 𝑇1 by attaching a
ew leaf labeled 9 to the edge 𝑒12. The shape of a tree when the labeling of the leaves are ignored is also referred to as an unlabeled tree.
Fig. 2. The four tree shapes with eight leaves. Note that (ii) is the tree shape of 𝑇1 in Fig. 1 obtained by removing all leave lables. Furthermore, two distinct phylogenetic trees
ay have the same tree shape.
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Table 1
Frequency vectors and distributions for the four tree shapes
with eight leaves as presented in Fig. 2. The column below
𝐪(𝑇 ) contains the 4-subtree vectors for the four tree shapes.
The probability distribution below P(𝑇 ) are computed under
the PDA model. The columns below PS and ASTRAL are,
respectively, the counts of the four tree shapes among 10 to-
tal empirical tree shapes obtained by Pouryahya and Sankoff
(2022) in their Table 3 and Table 4, which will be further
discussed here in Section 6.

𝐪(𝑇 ) P(𝑇 ) PS ASTRAL

(i) (0,0,2,3) 8/33 6 5

(ii) (1,1,1,3) 8/33 1 0

(iii) (0,2,0,4) 1/33 3 3

(iv) (2,0,2,2) 16/33 0 2

E2): pendant edges in unbalanced quartet subtrees that are not in a
cherry and not of type 1;

E3): edges in balanced quartet subtrees;
E4): pendant edges in independent pitchforks that are not contained

in a cherry;
E5): edges contained in or incident with independent pitchforks that

are not of type 4;
E6): edges contained in or incident with independent cherries;
E7): pendant edges that are contained in neither a cherry nor a pitch-

fork;
E8): edges that are not of type 1–7.

For 1 ≤ 𝑗 ≤ 8, let 𝐸𝑗 (𝑇 ) be the set of edges of type 𝑗. Then each edge
𝑒 in 𝑇 belongs to one and only one 𝐸𝑗 (𝑇 ) when 𝑇 has eight or more
eaves. Furthermore, consider the characteristic map 𝜒 that maps each
dge in 𝑒 in 𝑇 to the 𝑗th canonical row vector with 8 dimensions if 𝑒 is
ontained in 𝐸𝑗 (𝑇 ). For instance, for each edge 𝑒 contained in 𝐸2(𝑇 ), we
ave 𝜒(𝑒) = (0, 1, 0, 0, 0, 0, 0, 0). Finally, let 𝛽(𝑇 ) =

(

|𝐸1(𝑇 )|,… , |𝐸8(𝑇 )|
)

be the type vector associated with 𝑇 , where |𝐸𝑗 (𝑇 )| counts the number
3

of type 𝑗 edges in 𝑇 . Then, we have the following observation. e
Fig. 3. A phylogenetic tree with edge types indicated. The type of an edge is indicated
by the number next to it. For the eight edges in gray representing type 8, the number
8 is omitted for simplicity.

Lemma 1. Suppose that 𝑇 is a phylogenetic tree with 𝑛 ≥ 8 leaves with
its associated 4-subtree vector 𝐪(𝑇 ) = (𝑎, 𝑏, 𝑝, 𝑐). Then, we have

𝛽(𝑇 ) = (𝑎, 𝑎, 6𝑏, 𝑝 − 𝑎, 4(𝑝 − 𝑎), 3(𝑐 − 𝑝 − 2𝑏), 𝑛 − 2𝑐 − 𝑝 − 𝑎, 𝑛 + 4𝑎 − 𝑝 − 𝑐 − 3) .

(1)

Proof. Each asymmetric quartet subtree contains precisely one edge
of type 2 and one edge of type 3, so |𝐸1(𝑇 )| = |𝐸2(𝑇 )| = 𝑎. As each
balanced quartet subtree contains six edges, we have |𝐸3(𝑇 )| = 6𝑏.

ext, a pitchfork is not independent if and only if it is contained in
n asymmetric quartet subtree. Hence, there are 𝑝 − 𝑎 independent
itchforks, each of which contributes one type 4 edge and four type
edges. Thus we have |𝐸4(𝑇 )| = 𝑝−𝑎 and |𝐸5(𝑇 )| = 4(𝑝−𝑎). Next, each

herry that is not independent is contained in either a pitchfork or a
alanced quartet subtree. This implies |𝐸6(𝑇 )| = 3(𝑐 − 𝑝 − 2𝑏) as each
ndependent cherry contributes to three type 6 edges. Furthermore,
here are 𝑛 pendant edges, which are independent if it is not contained
n a cherry or a pitchfork or an asymmetric quartet subtree. This implies
𝐸7(𝑇 )| = 𝑛 − 2𝑐 − 𝑝 − 𝑎. Finally, since there are 2𝑛 − 3 edges in 𝑇 , we
ave

𝐸8(𝑇 )| = (2𝑛 − 3) −
∑

1≤𝑗≤7
|𝐸𝑗 (𝑇 )| = 𝑛 + 4𝑎 − 𝑝 − 𝑐 − 3. □

Now consider a PDA process starting with an unrooted tree 𝑇8 with

ight leaves. Then, we associate it with an urn {𝑍𝑚}𝑚≥0 with balls of 8
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Table 2
The difference 𝐪(𝑇 [𝑒]) − 𝐪(𝑇 ) of the 4-subtree vectors according to
the type of 𝑒. For each type 𝑖 of 𝑒, this difference is given by the
corresponding column below 𝑖 in the head row. For instance, if 𝑒 is
of type 1, then the difference is (−1, 0, 0, 1).

1 2 3 4 5 6 7 8

𝑎 −1 −1 0 0 1 0 0 0

𝑏 0 1 −1 1 0 0 0 0

𝑝 0 −1 1 −1 0 1 0 0

𝑐 1 1 0 1 0 0 1 0

different colors containing 𝑍0,𝑗 = |𝐸𝑗 (𝑇8)| balls of color 𝑗 ∈ {1, 2,… , 8}
at time 0. In the associated urn, at each time step, a ball is drawn
uniformly at random and returned with some extra balls, depending
on the color selected and the replacement scheme 𝑅 as below:

𝑅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 −1 0 1 4 3 0 −4
−1 −1 6 0 0 0 1 −3
0 0 −6 1 4 3 0 0
0 0 6 −1 −4 0 0 1
1 1 0 −1 −4 0 0 5
0 0 0 1 4 −3 0 0
0 0 0 0 0 3 −1 0
0 0 0 0 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

More precisely, if a ball with color 𝑖 is drawn, then we return the
selected ball along with additional 𝑅𝑖𝑗 balls of color 𝑗, for every 𝑗 ∈
{1, 2,… , 8}. For instance, when a ball of color 3 is drawn, we return
the selected ball, add one ball of color 4, four balls of color 5, three
balls of color 6, and remove six balls of color 3. Note that at time
step 𝑘, the number 𝑍𝑘,𝑗 of color 𝑗 balls in our urn counts the number
of type 𝑗 edges in the tree 𝑇8+𝑘. Furthermore, the number of type 𝑗
edges in tree 𝑇 [𝑒], which is obtained from 𝑇 = 𝑇8+𝑘 by attaching
an extra leaf to edge 𝑒 of type 𝑖, is precisely 𝑍𝑘,𝑗 + 𝑅𝑖,𝑗 . In other
words, the urn model is ‘coupled’ with the PDA model in the sense
that the dynamic of the edge count vector 𝛽(𝑇𝑛) associated with the
PDA process {𝑇𝑛}𝑛≥8 is precisely described by the associated urn model
{𝑍𝑘,𝑗}𝑘≥0,1≤𝑗≤8. Moreover, we have the following observation, which
can be verified directly by checking each type of the selected edge, and
hence the proof is omitted.

Lemma 2. Suppose that 𝑇 is a phylogenetic tree with eight or more leaves.
Then we have

𝛽(𝑇 [𝑒]) = 𝛽(𝑇 ) + 𝜒(𝑒)𝑅. (3)

Furthermore, note that the urn models constructed here are tenable,
that is, at each step it is always possible to add or remove balls
according to the replacement matrix 𝑅.

4. Exact distributions

In this section, we study the exact distribution of the 4-subtree
vector 𝐪𝑛 = (𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛), a random vector counting the different
types of subtrees with four or fewer leaves. To this end, we start with
deriving a recursion for computing the probability distribution of this
random vector based on the urn model described in Section 3.

Recall that the edge type vector 𝛽(𝑇 ) associated with a tree 𝑇 is
closely related to the 4-subtree vector 𝐪. More precisely, the number
of asymmetric quartet trees is given by 𝐸1(𝑇 ) = 𝐸2(𝑇 ), and that of
balanced quartet subtree by 𝐸3(𝑇 )∕6, the pitchfork by 𝐸1(𝑇 ) + 𝐸4(𝑇 ),
and the cherries by 𝐸1(𝑇 ) + 𝐸3(𝑇 )∕3 + 𝐸4(𝑇 ) + 𝐸6(𝑇 ). Therefore, from
the replacement matrix 𝑅 in (2) we can construct the following table
detailing the changes of 4-subtree vector 𝐪(𝑇 [𝑒])−𝐪(𝑇 ) according to the
type of 𝑒.

Using Table 2, we now derive the following recursive formula on
4

the probability distributions of the random 4-subtree vector under the
PDA model. Note that similar formulas have been derived for subsets
of the entries in the random vector (see, e.g. Theorem 1 in Choi et al.,
2020 and Propositions 4.2 in Pouryahya and Sankoff, 2022).

Theorem 1. Let 𝜎𝑛(𝑎, 𝑏, 𝑝, 𝑐) = P(𝐪(𝑇𝑛) = (𝑎, 𝑏, 𝑝, 𝑐)) under the PDA model.
Then for 𝑛 ≥ 8 we have

𝜎𝑛+1(𝑎, 𝑏, 𝑝, 𝑐) =
𝑎 + 1
2𝑛 − 3

𝜎𝑛(𝑎 + 1, 𝑏, 𝑝, 𝑐 − 1) + 𝑎 + 1
2𝑛 − 3

𝜎𝑛(𝑎 + 1, 𝑏 − 1,

𝑝 + 1, 𝑐 − 1) + 6𝑏 + 6
2𝑛 − 3

𝜎𝑛(𝑎, 𝑏 + 1, 𝑝 − 1, 𝑐)

+
𝑝 − 𝑎 + 1
2𝑛 − 3

𝜎𝑛(𝑎, 𝑏 − 1, 𝑝 + 1, 𝑐 − 1) +
4(𝑝 − 𝑎 + 1)

2𝑛 − 3

× 𝜎𝑛(𝑎 − 1, 𝑏, 𝑝, 𝑐) +
3(𝑐 − 𝑝 − 2𝑏 + 1)

2𝑛 − 3
𝜎𝑛(𝑎, 𝑏, 𝑝 − 1, 𝑐)

+
𝑛 − 𝑎 − 𝑝 − 2𝑐 + 2

2𝑛 − 3
𝜎𝑛(𝑎, 𝑏, 𝑝, 𝑐 − 1)

+
𝑛 + 4𝑎 − 𝑝 − 𝑐 − 3

2𝑛 − 3
𝜎𝑛(𝑎, 𝑏, 𝑝, 𝑐). (4)

oreover, 𝜎8(𝑎, 𝑏, 𝑝, 𝑐) is 8∕33 if (𝑎, 𝑏, 𝑝, 𝑐) = (0, 0, 2, 3) or (𝑎, 𝑏, 𝑝, 𝑐) =
1, 1, 1, 3), 16∕33 if (𝑎, 𝑏, 𝑝, 𝑐) = (2, 0, 2, 2), 1∕33 if (𝑎, 𝑏, 𝑝, 𝑐) = (0, 2, 0, 4),
nd 0 otherwise.

roof. For 1 ≤ 𝑖 ≤ 8, let 𝜖𝑖 be the row vector constructed from the
olumn under 𝑖 in Table 2 and 𝜖′𝑖 = (𝑎, 𝑏, 𝑝, 𝑐)− 𝜖𝑖. For instance, we have
1 = (−1, 0, 0, 1) and 𝜖′1 = (𝑎+ 1, 𝑏, 𝑝, 𝑐 − 1). Let {𝑇𝑘}𝑘≥8 be a sample path
f the unrooted tree sampled from the PDA process. Let 𝑒 be the edge
ampled at time point 𝑛, that is, 𝑇𝑛+1 = 𝑇 [𝑒]. Then we have

𝑛+1(𝑎, 𝑏, 𝑝, 𝑐) = P
(

𝐪(𝑇𝑛+1) = (𝑎, 𝑏, 𝑝, 𝑐)
)

=
8
∑

𝑖=1
P(𝐪(𝑇𝑛)

= (𝑎, 𝑏, 𝑝, 𝑐) − 𝜖𝑖, 𝜒(𝑒) = 𝐞𝑖)

=
8
∑

𝑖=1
P(𝜒(𝑒) = 𝐞𝑖 ∣ 𝐪(𝑇𝑛) = 𝜖′𝑖 )P(𝐪(𝑇𝑛) = 𝜖′𝑖 )

=
8
∑

𝑖=1

|𝐸𝑖(𝑇𝑛)|
|𝐸(𝑇𝑛)|

P(𝐪(𝑇𝑛) = 𝜖′𝑖 ). (5)

When 𝑖 = 1, from Lemma 1 and Table 2 the corresponding summation
factor for index 1 in the last summation of (5) is given by

|𝐸1(𝑇 )|
|𝐸(𝑇 )|

P(𝐪(𝑇𝑛) = (𝑎, 𝑏, 𝑝, 𝑐) − 𝜖1) =
𝑎 + 1
2𝑛 − 3

P(𝐪(𝑇𝑛) = (𝑎 + 1, 𝑏, 𝑝, 𝑐 − 1))

= 𝑎 + 1
2𝑛 − 3

𝜎𝑛(𝑎 + 1, 𝑏, 𝑝, 𝑐 − 1).

Now the theorem follows by using a similar approach to work out
each term corresponding to index 𝑖 ∈ {2,… , 8} in the last summation
of (5). □

For two positive integer 𝑛 and 𝑘, we define the falling factorial 𝑛𝑘
and the double falling factorial 𝑛𝑘 as

𝑛𝑘 =
𝑘−1
∏

𝑖=0
(𝑛 − 𝑖) = 𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑘 + 1), and

𝑘 =
𝑘−1
∏

𝑖=0
(𝑛 − 2𝑖) = 𝑛(𝑛 − 2)(𝑛 − 4)… (𝑛 − 2𝑘 + 2).

It is known that under the unrooted PDA model (see, e.g. Choi et al.,
2020), for 𝑛 ≥ 6 we have

E(𝑃𝑛) = 𝑛3

2(2𝑛 − 5)2
, E(𝐶𝑛) =

𝑛2

2(2𝑛 − 5)
,

E(𝑃 2
𝑛 ) =

𝑛(𝑛5 − 7𝑛4 − 19𝑛3 + 229𝑛2 − 480𝑛 + 276)

4(2𝑛 − 5)4
,

E(𝑃𝑛𝐶𝑛) =
𝑛(𝑛4 − 6𝑛3 + 5𝑛2 + 12𝑛 − 12)

3
, E(𝐶2

𝑛 ) =
𝑛2(𝑛2 − 𝑛 − 8)

2
.(6)
4(2𝑛 − 5) 4(2𝑛 − 5)
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Theorem 2. Under the PDA model, for 𝑛 ≥ 8 the random vector 𝐪𝑛 =
(𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛) has the mean

E(𝐪𝑛) =
(

𝑛4

2(2𝑛 − 5)3
, 𝑛4

8(2𝑛 − 5)3
, 𝑛3

2(2𝑛 − 5)2
, 𝑛2

2(2𝑛 − 5)

)

, (7)

nd the following entries in the variance–covariance matrix:

V(𝐴𝑛) =
3𝑛4(12𝑛6 − 384𝑛5 + 5013𝑛4 − 34006𝑛3 + 125715𝑛2 − 238730𝑛 + 181125)

2(2𝑛 − 5)3(2𝑛 − 5)6
,

𝐶𝑜𝑣(𝐴𝑛, 𝐵𝑛) =
−𝑛4(28𝑛6 − 768𝑛5 + 8401𝑛4 − 46782𝑛3 + 139891𝑛2 − 214170𝑛 + 132300)

8(2𝑛 − 5)3(2𝑛 − 5)6
,

𝐶𝑜𝑣(𝐴𝑛, 𝑃𝑛) =
𝑛4(4𝑛4 − 90𝑛3 + 736𝑛2 − 2520𝑛 + 2905)

2(2𝑛 − 5)2(2𝑛 − 5)5
,

𝐶𝑜𝑣(𝐴𝑛, 𝐶𝑛) =
−𝑛4(𝑛2 − 5𝑛 − 5)

2(2𝑛 − 5)(2𝑛 − 5)4
,

V(𝐵𝑛) =
3𝑛5(76𝑛5 − 1924𝑛4 + 18833𝑛3 − 88641𝑛2 + 199546𝑛 − 171360)

32(2𝑛 − 5)3(2𝑛 − 5)6
,

𝐶𝑜𝑣(𝐵𝑛, 𝑃𝑛) =
−3𝑛4(2𝑛4 − 33𝑛3 + 188𝑛2 − 432𝑛 + 350)

4(2𝑛 − 5)2(2𝑛 − 5)5
,

𝐶𝑜𝑣(𝐵𝑛, 𝐶𝑛) = 3𝑛6

8(2𝑛 − 5)(2𝑛 − 5)4
,

V(𝑃𝑛) =
3𝑛3(4𝑛4 − 76𝑛3 + 527𝑛2 − 1555𝑛 + 1610)

4(2𝑛 − 5)2(2𝑛 − 5)4
,

𝐶𝑜𝑣(𝑃𝑛, 𝐶𝑛) =
−3𝑛3(𝑛 − 5)

2(2𝑛 − 5)(2𝑛 − 5)3
,

V(𝐶𝑛) =
𝑛2(𝑛 − 4)2

2(2𝑛 − 5)(2𝑛 − 5)2
,

where V(𝐴𝑛) denotes the variance of 𝐴𝑛, and 𝐶𝑜𝑣(𝐴𝑛, 𝐵𝑛) the covariance
etween 𝐴𝑛 and 𝐵𝑛.

The proof of this theorem is rather technical. For better flow of
resentation of our results, it is presented in the Appendix. We end
his section by noting that this theorem provides affirmative answers
o the conjectures (i.e. Conjectures 2.2, 2.3, 3.2, 3.3, 4.2, 4.3, 4.5 and
.6) of Pouryahya and Sankoff (2022), whose proof is straightforward
nd hence omitted.

orollary 1. Under the PDA model, we have

lim
→∞

(

E[𝐴𝑛]
𝑛

,
E[𝐵𝑛]
𝑛

,
E[𝑃𝑛]
𝑛

,
E[𝐶𝑛]
𝑛

)

=
( 1
16

, 1
64

, 1
8
, 1
4

)

,

nd

lim
→∞

(

V[𝐴𝑛]
E[𝐴𝑛]

,
V[𝐵𝑛]
E[𝐵𝑛]

,
V[𝑃𝑛]
E[𝑃𝑛]

,
V[𝐶𝑛]
E[𝐶𝑛]

)

=
( 9
16

, 57
64

, 3
8
, 1
4

)

.

. Limiting distributions

Consider the Urn model 𝑍𝑛 = (𝑍𝑛,1,… , 𝑍𝑛,8) associated with the
DA model as discussed in Section 3. Then the limiting distribution
f the 4-subtree counting vector can be deduced from the limiting
istribution of the urn model. To this end, we recall some standard
otation in linear algebra. That is, for a vector 𝑍, let 𝑍⊤ denote the
ranspose of 𝑍; for a matrix 𝑈 is a matrix, let 𝑈−1 denote the inverse
f 𝑈 . Next, we notice that the replacement matrix 𝑅 as in (2) has the
ollowing eigenvalues (counted with multiplicity)

1 = 2, 𝜆2 = 𝜆3 = 𝜆4 = 0, 𝜆5 = −2, 𝜆6 = −4, 𝜆7 = 𝜆8 = −6,

(8)

here 𝜆1 = 2 will be referred to as the principal eigenvalue. Fur-
hermore, the replacement matrix 𝑅 also satisfies the following four
echnical conditions:
5

m

(A1) Tenable: It is always possible to draw balls and follow the re-
placement rule, that is, we never get stuck in following the rules
(see, e.g. Mahmoud, 2009, p.46).

(A2) Small: That is, by the eigenvalues in (8) it follows that all
eight eigenvalues of 𝑅 are real; the maximal eigenvalue 𝜆1 =
2 is positive and 𝜆1 > 2𝜆 holds for each of the other seven
eigenvalues 𝜆 of 𝑅.

(A3) Strictly Balanced: The column vector (1, 1,… , 1)⊤ (whose entries
are all one) is a right eigenvector of 𝑅 corresponding to 𝜆1 and
𝐯1 =

1
64 (3, 2, 2, 2, 8, 9, 10, 28) is a left eigenvector corresponding to

𝜆1 is a stochastic vector.
(A4) Diagonalizable: 𝑅 is diagonalizable over real numbers.

To see that condition (A4) holds, consider the diagonal matrix
𝛬 = diag(2, 0, 0, 0,−2,−4,−6,−6) whose non-diagonal elements are 0
and diagonal elements are the eigenvalues 2, 0, 0, 0,−2,−4,−6,−6. Then
𝑅 is diagonalizable as

𝑈−1𝑅𝑈 = 𝛬

holds with

𝑈 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −18 0 −1 −3 −5 −6 −1
1 0 0 1 −3 −9 −34 −5
1 −1 0 0 1 5 29 4
1 −3 −4 0 −3 −9 −35 −4
1 0 1 0 1 1 0 1
1 −1 0 0 1 5 35

3 0
1 −3 0 0 −3 −5 −7 0
1 3 0 0 1 1 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (9)

and

𝑈−1 = 1
192

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6 6 9 6 24 27 30 84

−8 −8 −12 −4 −16 0 20 28

8 8 −36 −44 16 0 28 20

−40 152 180 28 112 0 −140 −292

36 36 54 0 0 −90 −120 84

−24 −24 −36 12 48 72 36 −84

6 6 9 −6 −24 −9 −6 24

−26 −26 9 26 104 −9 26 −104

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(10)

The theorem below describes the asymptotic behavior of 𝛽(𝑇𝑛),
which enables us to deduce the asymptotic properties of the distribu-
tion of the 4-subtree vector which consists of the numbers of quartet
subtrees, pitchforks and the cherries for the PDA model in Corollary 2.
Here

𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←←←→ means almost sure convergence; while

𝑑
←←←←←←←←←←←←←←→ means convergence

in distribution, also known as weak convergence (see, e.g. Grimmett and
Stirzaker, 2001, Section 7.2 for more details on these two modes of
convergence).

Theorem 3. Suppose that 𝑇𝑚 is an arbitrary phylogenetic tree with 𝑚
leaves with 𝑚 ≥ 2, and that 𝑇𝑛 is a tree with 𝑛 leaves generated by the PDA
rocess starting with 𝑇𝑚. Then we have

𝛽(𝑇𝑛)
𝑛

𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←←←→ 2𝐯1 and

𝛽(𝑇𝑛) − 2𝑛𝐯1
√

𝑛

𝑑
←←←←←←←←←←←←←←→  (𝟎, 𝛴) , (11)

s 𝑛 → ∞, where 𝐯1 = (3, 2, 2, 2, 8, 9, 10, 28)∕64 and  (𝟎, 𝛴) is the
ultivariate normal distribution with mean vector 𝟎 and covariance matrix
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𝛴 = 1
1024

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

36 36 −42 −20 −80 −54 −20 144
36 36 −42 −20 −80 −54 −20 144
−42 −42 513 −30 −120 −81 −30 −168
−20 −20 −30 52 208 −18 −44 −128
−80 −80 −120 208 832 −72 −176 −512
−54 −54 −81 −18 −72 657 −114 −264
−20 −20 −30 −44 −176 −114 308 96
144 144 −168 −128 −512 −264 96 688

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(12)

Proof. Consider the PDA process {𝑇𝑛}𝑛≥8 starting with an initial
hylogenetic tree 𝑇8 with eight leaves. Let 𝑍𝑘 = 𝛽(𝑇𝑘+8) for 𝑘 ≥ 0. Then
𝑘 = (𝑍𝑘,1,… , 𝑍𝑘,8), where 𝑍𝑘,𝑖 = |𝐸𝑖(𝑇𝑚+𝑘)| for 1 ≤ 𝑖 ≤ 8, is the urn
odel with 8 colors derived from the edge partition of the PDA process.
herefore, it is a tenable model with 𝑍0 = 𝛽(𝑇8) and replacement matrix
as given in (2).
Since (A1)–(A4) are satisfied by the replacement matrix 𝑅, by

Theorem 1 in Choi et al. (2021) and the fact that 𝜆1 = 2 it follows
hat

𝑍𝑘
𝑘

𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←←←→ 2𝐯1 with 𝑘 → ∞, and hence

𝛽(𝑇𝑛)
𝑛

=
(𝑛 − 8)

𝑛
𝑍𝑛−8
(𝑛 − 8)

𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←←←→ 𝐯1 with 𝑛 → ∞.

For 1 ≤ 𝑗 ≤ 8, let 𝐞𝑗 denote the 𝑗th canonical row vector whose 𝑗th
ntry is 1 while the other entries are all zero. Considering the matrix 𝑈
n (9), then 𝐮𝑗 = 𝑈𝐞⊤𝑗 denote the 𝑗th column of 𝑈 , and 𝐯𝑗 = 𝐞𝑗𝑈−1 the
th row of 𝑈−1. Then by Theorem 2 in Choi et al. (2021) and 𝑘 = 𝑛− 8
e have

𝑍𝑛−8 − 2(𝑛 − 8)𝐯1
√

𝑛 − 8
=

𝑍𝑘 − 2𝑘𝐯1
√

𝑘

𝑑
←←←←←←←←←←←←←←→  (𝟎, 𝛴), (13)

here

=
8
∑

𝑖,𝑗=2

𝜆𝑖𝜆𝑗𝐮⊤𝑖 𝑑𝑖𝑎𝑔(𝐯1)𝐮𝑗
1 − 𝜆𝑖 − 𝜆𝑗

𝐯⊤𝑖 𝐯𝑗 (14)

s presented in (12). Therefore, we have

𝛽(𝑇𝑛) − 𝑛𝐯1
√

𝑛
=

𝑍𝑛−8 − (𝑛 − 8)𝐯1
√

𝑛
+

8𝐯1
√

𝑛

=

√

𝑛 − 8
√

𝑛

𝑍𝑛−8 − (𝑛 − 8)𝐯1
√

𝑛 − 8
+

8𝐯1
√

𝑛

𝑑
←←←←←←←←←←←←←←→  (𝟎, 𝛴) .

□

By Theorem 3, it is straightforward to obtain the following result
on the distribution of the 4-subtree vector. Note that the strong law of
large numbers in (15) below proves a stronger version of Conjectures
2.2, 3.2, 4.2 and 4.5 of Pouryahya and Sankoff (2022). Moreover, the
central limit theorem in (16) implies that the limiting distribution of
{(𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛) − E(𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛)}∕

√

𝑛 is multivariate normal, which
xplains the bell-shape curves of Figures 2, 6, 8 and 10 observed
n Pouryahya and Sankoff (2022).

orollary 2. Under the PDA model, for the distribution of 4-subtree vector
𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛), we have

1 (𝐴 ,𝐵 , 𝑃 , 𝐶 )
𝑎.𝑠.

←←←←←←←←←←←←←←←←←←←←←→
( 1 , 1 , 1 , 1

)

, (15)
6

𝑛 𝑛 𝑛 𝑛 𝑛 16 64 8 4 m
nd

(𝐴𝑛, 𝐵𝑛, 𝑃𝑛, 𝐶𝑛) − 𝑛
(

1
16 ,

1
64 ,

1
8 ,

1
4

)

√

𝑛

𝑑
←←←←←←←←←←←←←←→ 

⎛

⎜

⎜

⎜

⎜

⎝

𝟎, 1
4096

⎡

⎢

⎢

⎢

⎢

⎣

144 −28 64 −64
−28 57 −48 48
64 −48 192 0
−64 48 0 256

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

,

(16)

as 𝑛 → ∞.

Proof. Consider the PDA process {𝑇𝑛}𝑛≥8 starting with a tree 𝑇8 with
ight leaves. Denote the 𝑖th entry in 𝛽(𝑇𝑛) by 𝛽𝑛,𝑖 for 1 ≤ 𝑖 ≤ 8. Then
he corollary follows from Theorem 3 by noting that we have 𝐴𝑛 = 𝛽𝑛,1,
𝑛 = 𝛽𝑛,3∕6, 𝑃𝑛 = 𝛽𝑛,1 + 𝛽𝑛,4, and 𝐶𝑛 = 𝛽𝑛,1 + 𝛽𝑛,4 + (𝛽𝑛,3 + 𝛽𝑛,6)∕3. □

By Corollary 2, it follows that under the PDA model 𝐴𝑛∕𝐵𝑛, the ratio
f the number of asymmetric quartet trees and that of the balanced
uartet trees, converges to 4 almost surely as 𝑛 → ∞. In other words,
symptotically among all the quartet trees contained in a random PDA
ree, four fifths are asymmetric. This is in line with the following
euristic reasoning: under the PDA model a quartet tree is formed by
dding an edge uniformly to one of the five edges in or incident with
pitchfork, and only in one edge out of these five edges, the quartet

ree formed is of balanced type.

. Discussion

Pouryahya and Sankoff (2022) studied the polyploidization history
f the genome of a variety of sugarcane, Saccharum officinarum. This
enome consists of 80 chromosomes, which can be partitioned into
0 sets of eight ‘homeologous’ chromosomes, also known as homoe-
logous chromosomes (see, e.g. Glover et al., 2016) . For each set
f 𝑛 (𝑛 = 8, in this study) homeologous chromosomes, based on the
ene trees inferred from the paralogous genes on each of these chro-
osomes, the authors proposed a method of constructing a consensus
nrooted binary tree having 𝑛 leaves. In total, 10 consensus trees are
btained via their method, six of which is of Shape (i) in Fig. 2, one
f Shape (ii), and three of Shape (iii) (see also Table 1 where the
rofile is referred to as PS. See also Section 5 in Pouryahya and Sankoff
2022) for details, and their method can be applied to other polyploid
enomes). Furthermore, they also obtained another set of tree shapes
sing the well-known ASTRAL III package (Zhang et al., 2018), which
s referred to as ASTRAL in Table 1. Based on the distributions of
he number of four subtrees discussed here, we conducted the exact
ultinomial test using the R-package EMT (R. Core Team, 2021) of the
ull hypothesis that these consensus trees are generated under the PDA
odel: one for each of the four types of subtrees and an additional

ne for the joint distributions. The 𝑝-values of these five statistical
ests are presented in Table 3. All tests are concordant in concluding
o reject the hypothesis using a threshold of 𝑝-value of 0.05. This is
n line with the conclusion in Pouryahya and Sankoff (2022), that is,
he accumulation of subgenomes in Saccharum officinarum is unlikely
o be ‘‘one at a time’’. Indeed, the 𝑝-values based on individual subtree
tructures in our Table 3 agree well with those obtained in Tables 3
nd 4 in Pouryahya and Sankoff (2022). However, our 𝑝-value based on
he joint distribution has a smaller value than any of the four 𝑝-values
btained using the distribution of individual subtrees, indicating that
he statistic based on the joint distribution is more sensitive than those
ased on individual ones.

The results obtained in this paper also naturally lead to several
road questions for future study. First, in this paper we investigated
ubtree frequencies for unrooted trees under the PDA model. It would
e interesting to extend the results obtained here to random rooted
rees, and also to other tree generating models, such as Ford’s alpha

odel which includes both the PDA model and the Yule model (see,
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o
𝐴
𝐪
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(

Table 3
𝑝-values of five statistical tests using the PDA model as the null hypothesis and the data
from Pouryahya and Sankoff (2022). The column below 𝐪 contains the 𝑝-values based
n the distribution of the 4-subtree vector 𝐪8 = (𝐴8 , 𝐵8 , 𝑃8 , 𝐶8), and the ones below
, 𝐵, 𝑃 , 𝐶 contain those based on the distributions of the corresponding components of
8.

𝐪 𝐴 𝐵 𝑃 𝐶

PS 0.0000156 0.00004512 0.004341 0.004341 0.00007994

ASTRAL 0.0002672 0.002287 0.001453 0.001453 0.001625

e.g. Coronado et al., 2018; Kaur et al., 2023). Next, in addition to
subtree patterns up to four leaves, it is of interest to study more
general subtree patterns, such as 𝑘-caterpillars and 𝑘-pronged nodes
as mentioned in Rosenberg (2003), Fuchs (2008). Finally, it would be
interesting to study shape statistics for other random structures pro-
posed for modeling evolution, such as distributions of branch lengths
by Ferretti et al. (2017), ranked trees by Kim et al. (2020), and shape
statistics in phylogenetic networks (see, e.g. Bienvenu et al., 2022;
Stufler, 2022; Fuchs et al., 2024).
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Appendix. Proof of Theorem 2

Proof. Let 𝜑 be an arbitrary function R4 → R. By Theorem 1, under
the PDA model for 𝑛 ≥ 8 we have

(2𝑛 − 3)E(𝜑[𝐪𝑛+1]) = E(𝐴𝑛𝜑[𝐪𝑛 + (−1, 0, 0, 1)])

+ E(𝐴𝑛𝜑[𝐪𝑛 + (−1, 1,−1, 1)]) + 6E(𝐵𝑛𝜑[𝐪𝑛 + (0,−1, 1, 0)])

+ E((𝑃𝑛 − 𝐴𝑛)𝜑[𝐪𝑛 + (0, 1,−1, 1)])+

+ 4E((𝑃𝑛 − 𝐴𝑛)𝜑[𝐪𝑛 + (1, 0, 0, 0)])

+ 3E((𝐶𝑛 − 2𝐵𝑛 − 𝑃𝑛)𝜑[𝐪𝑛 + (0, 0, 1, 0)])

+ E((𝑛 − 2𝐶 − 𝑃 − 𝐴 )𝜑[𝐪 + (0, 0, 0, 1)])
7

𝑛 𝑛 𝑛 𝑛 1
+ E((𝑛 + 4𝐴𝑛 − 𝑃𝑛 − 𝐶𝑛 − 3)𝜑[𝐪𝑛]). (17)

Substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑎 in (17) and using E(𝑃𝑛) in (6), we have

2𝑛 − 3)E(𝐴𝑛+1) = (2𝑛 − 9)E(𝐴𝑛) + 4E(𝑃𝑛) = (2𝑛 − 9)E(𝐴𝑛) +
2𝑛3

(2𝑛 − 5)2
.

Solving the last recurrence equation with the initial condition E(𝐴8) =
40∕33 shows that E(𝐴𝑛) = 𝑛4∕[2(2𝑛 − 5)3] holds for all 𝑛 ≥ 8.

Similarly, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑏 in (17) leads to

(2𝑛 − 3)E(𝐵𝑛+1) = (2𝑛 − 9)E(𝐵𝑛) + E(𝑃𝑛) = (2𝑛 − 9)E(𝐵𝑛) +
𝑛3

2(2𝑛 − 5)2
.

Solving the last recurrence equation with the initial condition E(𝐵8) =
10∕33 shows that E(𝐵𝑛) = 𝑛4∕[8(2𝑛 − 5)3] holds for all 𝑛 ≥ 8.

To establish the result on the variance–covariance matrix 𝐾(𝐪𝑛,𝐪𝑛) =
E(𝐪𝑇𝑛 𝐪𝑛) − E(𝐪𝑛)𝑇E(𝐪𝑛), it suffices to show that E(𝐪𝑇𝑛 𝐪𝑛) is equal to (see
Eq. (18) given in Box I).
To this end, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑎𝑐 in (17) and using (6), we
have

(2𝑛 − 3)E(𝐴𝑛+1𝐶𝑛+1) = (2𝑛 − 11)E(𝐴𝑛𝐶𝑛) + (𝑛 − 2)E(𝐴𝑛) + 4E(𝑃𝑛𝐶𝑛)

= (2𝑛 − 11)E(𝐴𝑛𝐶𝑛) +
𝑛3(3𝑛2 − 11𝑛 − 6)

2(2𝑛 − 5)3
.

Solving the last recurrence equation with the initial condition E(𝐴8𝐶8) =
8∕3 shows that for all 𝑛 ≥ 8, we have E(𝐴𝑛𝐶𝑛) = 𝑛4(𝑛2 − 5𝑛 − 2)∕[4(2𝑛 −
5)4].

Next, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑎𝑝 in (17) and using (6), we have

(2𝑛 − 3)E(𝐴𝑛+1𝑃𝑛+1) = (2𝑛 − 13)E(𝐴𝑛𝑃𝑛) + 3E(𝐴𝑛𝐶𝑛) + E(𝐴𝑛) + 4E(𝑃 2
𝑛 )

= (2𝑛 − 13)E(𝐴𝑛𝑃𝑛) +
𝑛3(𝑛 − 4)(7𝑛2 − 8𝑛 − 159)

4(2𝑛 − 5)4
.

Solving the last recurrence equation with the initial condition E(𝐴8𝑃8) =
24∕11 shows that for all 𝑛 ≥ 8, we have E(𝐴𝑛𝑃𝑛) = 𝑛4(𝑛3 − 7𝑛2 −
22𝑛 + 166)∕[4(2𝑛 − 5)5]. Next, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑏𝑐 in (17) and
sing (6), we have

2𝑛 − 3)E(𝐵𝑛+1𝐶𝑛+1) = (2𝑛 − 11)E(𝐵𝑛𝐶𝑛) + 𝑛E(𝐵𝑛) + E(𝑃𝑛𝐶𝑛) + E(𝑃𝑛)

= (2𝑛 − 11)E(𝐵𝑛𝐶𝑛) +
𝑛3(3𝑛2 − 𝑛 − 48)

8(2𝑛 − 5)3
.

Solving the last recurrence equation with the initial condition E(𝐵8𝐶8) =
32∕33 shows that for all 𝑛 ≥ 8, we have E(𝐵𝑛𝐶𝑛) = 𝑛4(𝑛2−𝑛−24)∕[16(2𝑛−
5)4].

Next, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑏𝑝 in (17) and using (6), we have

(2𝑛 − 3)E(𝐵𝑛+1𝑃𝑛+1) = (2𝑛 − 13)E(𝐵𝑛𝑃𝑛) + 3E(𝐵𝑛𝐶𝑛) − 6E(𝐵𝑛)

+E(𝑃 2
𝑛 ) − E(𝑃𝑛)

= (2𝑛 − 13)E(𝐴𝑛𝑃𝑛) +
7𝑛6

16(2𝑛 − 5)4
.

Solving the last recurrence equation with the initial condition E(𝐵8𝑃8) =
8∕33 shows that for all 𝑛 ≥ 8, we have E(𝐵𝑛𝑃𝑛) = 𝑛7∕[16(2𝑛 − 5)5].

Next, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑎𝑏 in (17) and using (6), we have

(2𝑛 − 3)E(𝐴𝑛+1𝐵𝑛+1) = (2𝑛 − 15)E(𝐴𝑛𝐵𝑛) + E(𝐴𝑛𝑃𝑛) + 4E(𝐵𝑛𝑃𝑛) − E(𝐴𝑛)

= (2𝑛 − 15)E(𝐴𝑛𝐵𝑛) +
𝑛7

2(2𝑛 − 5)5
.

Solving the last recurrence equation with the initial condition E(𝐴8𝐵8) =
8∕33 shows that for all 𝑛 ≥ 8, we have E(𝐴𝑛𝐵𝑛) = 𝑛8∕[16(2𝑛 − 5)6].
Similarly, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑎2 in (17) and using (6), we have

(2𝑛 − 3)E(𝐴2
𝑛+1) = (2𝑛 − 15)E(𝐴2

𝑛) + 8E(𝐴𝑛𝑃𝑛) − 2E(𝐴𝑛) + 4E(𝑃𝑛)

= (2𝑛 − 15)E(𝐴2
𝑛) +

𝑛3(2𝑛4 − 8𝑛3 − 206𝑛2 + 1613𝑛 − 3141)

(2𝑛 − 5)5
.

Solving the last recurrence equation with the initial condition E(𝐴2
8) =

24∕11 shows that for all 𝑛 ≥ 8, we have E(𝐴2
𝑛) = 𝑛4(𝑛4 − 6𝑛3 − 133𝑛2 +

374𝑛 − 3450)∕[4(2𝑛 − 5)6].



Journal of Theoretical Biology 584 (2024) 111794K.P. Choi et al.

(

4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑛4(𝑛4−6𝑛3−133𝑛2+1374𝑛−3450)

4(2𝑛−5)
6

𝑛8

16(2𝑛−5)
6

𝑛4(𝑛3−7𝑛2−22𝑛+166)

4(2𝑛−5)
5

𝑛4(𝑛2−5𝑛−2)

4(2𝑛−5)
4

𝑛8

16(2𝑛−5)
6

𝑛4(𝑛4+42𝑛3−1069𝑛2+7410𝑛−16320)

64(2𝑛−5)
6

𝑛7

16(2𝑛−5)
5

𝑛4(𝑛2−𝑛−24)

16(2𝑛−5)
4

𝑛4(𝑛3−7𝑛2−22𝑛+166)

4(2𝑛−5)
5

𝑛7

16(2𝑛−5)
5

𝑛(𝑛5−7𝑛4−19𝑛3+229𝑛2−480𝑛+276)

4(2𝑛−5)
4

𝑛(𝑛4−6𝑛3+5𝑛2+12𝑛−12)

4(2𝑛−5)
3

𝑛4(𝑛2−5𝑛−2)

4(2𝑛−5)
4

𝑛4(𝑛2−𝑛−24)

16(2𝑛−5)
4

𝑛(𝑛4−6𝑛3+5𝑛2+12𝑛−12)

4(2𝑛−5)
3

𝑛2(𝑛2−𝑛−8)

4(2𝑛−5)
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (18)

Box I.
Finally, substituting 𝜑[(𝑎, 𝑏, 𝑝, 𝑐)] = 𝑏2 in (17) and using (6), we have

2𝑛 − 3)E(𝐵2
𝑛+1) = (2𝑛 − 15)E(𝐵2

𝑛 ) + 2E(𝐵𝑛𝑃𝑛) + 6E(𝐵𝑛) + E(𝑃𝑛)

= (2𝑛 − 15)E(𝐵2
𝑛 ) +

𝑛3(𝑛4 + 38𝑛3 − 769𝑛2 + 4252𝑛 − 7362)

8(2𝑛 − 5)5
.

Solving the last recurrence equation with the initial condition E(𝐵2
8 ) =

∕11 shows that for all 𝑛 ≥ 8, we have E(𝐵2
𝑛 ) = 𝑛4(𝑛4 + 42𝑛3 − 1069𝑛2 +

7410𝑛 − 16320)∕[64(2𝑛 − 5)6].
Together with (6), this concludes the computation of all entries

in (18), and hence completes the proof of the theorem. □
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