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SUMMARY
The development of cancer is an evolutionary process involving the sequential acquisition of genetic alter-
ations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually
invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through
the application of three separate classificationmethods, each designed to investigate a different aspect of tu-
mor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise
from divergent evolutionary trajectories, designated as the Canonical and Aalternative evolutionary disease
types.We therefore propose the evotypemodel for prostate cancer evolutionwherein Alternative-evotype tu-
mors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations
associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular
observations, providing a powerful new framework to investigate prostate cancer disease progression.
INTRODUCTION

Tumor evolution is a dynamic process1 involving the accumula-

tion of genetic alterations that disrupt normal cellular processes,

leading to pathological phenotypes.2While some cancers can be

categorized into subtypes, often utilizing pronounced genomic

or transcriptomic differences, the evolutionary processes that
This is an open access article under the C
give rise to this variation are complex and not well understood.3

However, it has been shown that the order of events in some he-

matological malignancies can be related to prognosis and treat-

ment susceptibility.4–7

In prostate cancer, subtyping schemes have been proposed

based on the presence of specific molecular alterations,8 combi-

nations of alterations,9 or gene expression profiles.10 However,
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detailed investigations by ourselves11 and others12,13 have

shown substantial heterogeneity between tumors that presents

challenges for simple or consistent subtype assignments.14

Studies investigating evolutionary differences between prostate

cancer disease types by categorizing molecular events as

‘‘early’’ or ‘‘late’’ have been shown to be informative in early-

onset15 and aggressive disease,16 and the temporal order of ge-

netic alterations has also been shown to be related to the ETS

subtype.11 However, the evolutionary factors that drive the emer-

gence of prostate cancer subtypes remains largely unexplored.

To investigate how evolutionary behavior manifests in the vari-

ation observed in prostate cancer genomes, we performed three

separate analyses, each of which probes different aspects of tu-

mor evolution. In each analysis, we classified the tumors in an

unsupervised fashion and subsequently identified sets of tumors

that shared the same classes across the analyses. Through this

approach, we can identify tumors that display consistent evolu-

tionary properties and use this information to identify likely

mechanisms driving prostate cancer evolution.

RESULTS

Data collection and pre-processing
We compiled a dataset from 159 patients with intermediate or

low-risk prostate adenocarcinoma sampled after radical prosta-

tectomy, who were otherwise treatment naive (87 published pre-
2 Cell Genomics 4, 100511, March 13, 2024
viously11). These were whole-genome sequenced (target depth:

503) along withmatched blood controls (target depth: 403), and

123 summary measurements were generated (STAR Methods;

Figure S1).

We adapted an unsupervised neural network with a single hid-

den layer to perform feature learning on this dataset, identifying

associations between inputs to obtain a reduced-dimension set

of 30 features (STARMethods). Using the trained neural network,

we can recast the data for each sample in terms of these features

into a form known as the feature representation. Reconstructing

the original inputs from the feature representation gave a recon-

struction error of z12%, indicating that these features, and the

inputs to which they correspond, contain a substantial propor-

tion of the information in the original data. Our approach is a

white-box method, meaning we can identify which inputs

contribute to each feature, and so we labeled each feature

with a brief descriptor of the associated genomic aberrations

(Figure S2). We can perform analysis on the feature representa-

tion itself while allowing comparison with the results of other an-

alyses using a selection of the original inputs that correspond to

the features (STAR Methods).

Classifying tumors by patterns of co-occurring genomic
features
Despite the reduced dimensionality of the feature represen-

tation, application of standard clustering methods remains
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Figure 1. Co-occurrence of genetic alterations distinguishes three metaclusters

After performing feature extraction, we calculated a discrimination score quantifying the relevance of each feature in predicting relapse (green heatmap). Fourteen

features (red) were used as inputs for k-medoid clustering with 11 clusters. The medoids of each cluster were used as inputs to hierarchical clustering using all

features, which revealed three main metaclusters, MC-A, MC-B1, and MC-B2, with different profiles as indicated by the dendrogram. The main heatmap shows

the medoid feature values for the patients in each cluster, ordered by the hierarchical clustering (scale to right). The number of samples in each cluster is given

below the corresponding cluster medoid. Metacluster colors are denoted by the text above the dendrogram.
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problematic due to the high dimension of features (30) relative to

the sample size (159). To mitigate this, we adopted a two-stage

clustering method utilizing a discrimination score we calculated

for each feature that quantified the value of each feature in pre-

dicting disease relapse (STAR Methods). In the first stage, we

applied k-medoid clustering to the feature representation of

those features with a high discrimination score (STAR Methods).

In the second stage, we performed hierarchical clustering on the

cluster centers (medoids) returned in the first stage. The results

are shown in Figure 1.

We identified two distinct metaclusters that were charac-

terized by different sets of aberrations. Metacluster A (MC-A)

showed a high probability of features corresponding to intra-

chromosomal structural variants (SVs), SPOP mutations, chro-

mothripsis, and loss of heterozygosity (LOH) in regions 5q15–

5q23.1 (spanning CHD1) and 6q14.1–6q22.32 (MAP3K7,

ZNF292). MC-B showed more frequent ETS fusions, as well as

LOH, affecting 17p (TP53) and regions 19p13.3–13.2 and

22q11.21–22q11.22. The dendrogram indicated additional dif-

ferences within MC-B, and so we further divided it into sub-
classesMC-B1 andMC-B2, with MC-B2 displaying near-ubiqui-

tous TP53 LOH and exhibiting higher probability of ETS fusions,

inter-chromosomal chained SVs (cSVs), and LOH at 10q23.1–

10q25.1 (PTEN) and 5q11.1–5q14.1 (IL6ST, PDE4D).

Classifying tumors by mechanism of DNA double-strand
breaks
We investigated the influence of androgen receptor (AR) on

the DNA breakpoints in these samples. AR is known to precip-

itate DNA double-strand breaks (DSBs) in conjunction with

topoisomerase II-beta,17 and AR-associated breakpoints are

frequent in early-onset prostate cancer.15,18 Furthermore, it

has also been shown that AR binding behavior can be altered

by CHD1 deletion.19 We used a permutation test (STAR

Methods) to classify tumors based on whether breakpoints

occurred significantly more (labeled as Enriched) or less

(Depleted) often proximal to AR-binding sites (ARBSs) than ex-

pected if they were independent of AR or Indeterminate tu-

mors that displayed no statistically significant association

(Figure 2A).
Cell Genomics 4, 100511, March 13, 2024 3



Figure 2. Classification by proximity of DNA breakpoints to ARBSs reveals common genetic alterations

(A) The proportion of DNA breakpoints within 20 kilobases (kb) of an ARBS for each patient, normalized by the number of proximal breakpoints expected by

chance (vertical axis). Tumor samples are ordered according to this normalized proportion (horizontal axis). Classeswere determined based onwhether the tumor

displayed more (Enriched) or fewer (Depleted) proximal breakpoints than expected or there was no statistical significance (Indeterminate).

(B) Heatmaps of genomic features for each patient, ordered as above. Statistically significant relationships for the three classes are shown in the relationship

column, where E, D, and I indicate the Enriched, Depleted, and Indeterminate classes, respectively. Braces indicate no relationship between the enclosed classes

but that they both display significant differences to the remaining class. Relationships are ordered so the leftmost class(es) are those showing a significantly

greater proportion of the corresponding genetic alteration. For Bernoulli variables, significancewas determinedwith chi-squared test followed by a Fisher’s exact

test for each pairwise relationship; for continuous variables, a Kruskal-Wallace test with Tukey’s honestly significant difference (HSD) was used (false discovery

rate [FDR]-adjusted p < 0.05 for all tests).
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Investigating the ARBS groups in conjunction with the genetic

alterations associated with the features (Figure 2B), we found

that Depleted tumors had the highest percentage genome

altered and the highest frequency of multiple copy-number alter-

ations (CNAs), chromothripsis, kataegis, and SPOP mutations

(relationship column, Figure 2B). Enriched and Indeterminate tu-

mors displayed no significant differences for any CNAs, but both

showed higher frequencies of CNAs covering PTEN and TP53

than the Depleted group (relationship column, Figure 2B). In

the case of ETS fusions and inter-/intra-chromosomal cSV ratio,

the Enriched group showed greater amounts than the Intermedi-
4 Cell Genomics 4, 100511, March 13, 2024
ate group, which in turn showed greater enrichment than the

Depleted group. Both Enriched and Depleted tumors displayed

higher numbers of breakpoints than Indeterminate tumors. We

identified these ARBS groups in two additional datasets: a set

of low-intermediate risk tumors from the Canadian Prostate Can-

cer GenomeNetwork13 and high-risk tumors from theMelbourne

Prostate Cancer Research Group in Australia (unpublished).

Clustering these groups by CNA proportions showed that

groups classified as Depleted clustered together (Figure S3),

confirming the association between these CNAs and ARBS-

distal breakpoint prevalence.



Figure 3. Samples can be differentiated by order of genetic alter-

ations

Phylogenetic trees from individual tumors were used to estimate two ordering

profiles using a Plackett-Luce (P-L) mixture model. Tumors were assigned to

Ordering-I (top) or Ordering-II (bottom). Horizontal box and whisker plots (5th/

25th/75th/95th percentiles) represent the spread of bootstrap estimates of the

negative P-L coefficient (ai ) for the ith genetic alteration (x axis). Here, the lower

the value of ai, the earlier the genetic alteration is likely to occur. The y axis

shows the proportion of samples in the mixture component in which the ge-

netic alteration was observed. Colors of the box and whiskers denote the

chromosome on which the aberration occurred. Genetic alterations were an-

notated if they were identified as an ETS fusion, occurred with a proportion

above 0.25, or were identified in the earliest 5 events; these have chromosomal

regions given, with notable driver genes in the region given in brackets where

applicable. Other genetic alterations were not annotated and are displayed

with reduced transparency.
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Classifying tumors through the evolutionary order of key
events
The order in which genetic alterations generally occur in tumor

evolution, subsequently referred to as the ‘‘ordering profile,’’

can be inferred using the estimated proportion of tumor cells

that display each genetic alteration in each sample.11 We adapt-
ed a Plackett-Luce mixture model20 to create a probabilistic

model for the relative order of genomic aberrations given the

relative subclonal fractions of SPOP mutations and the key

CNAs that were identified in our feature extraction (STAR

Methods). As a mixture model, it can be used to extract distinct

ordering profiles within the population. Inference with this model

was performedwith differing numbers of clusters, and the results

used in Bayesian model selection determined that two ordering

profiles was optimal (STAR Methods). We therefore defined

two classes, Ordering-I and Ordering-II, and each tumor was as-

signed to one of these classes by their mixture weights (Figure 3).

The two profiles displayed notable differences. Tumors corre-

sponding to Ordering-I frequently experienced an early 8p LOH

(spanning NKX3.1) and ETS fusions. Less frequent LOH of re-

gions covering the RB1, BRCA2, CDH1, TP53, or PTEN gene

could also occur. This profile occasionally displayed a very early

LOH of 1q42.12–42.3. Tumors of Ordering-II consistently dis-

played early LOH events covering MAP3K7 and 13q (EDNRB,

RB1, BRCA2). However, the earliest events, a mutation of the

SPOP gene and LOH covering CHD1, were less frequent.

Ordering-II also displayed more frequent copy-number gains.

Both orderings showed late gains of chromosome 19. When

comparing the occurrence of aberrations between individuals

within each ordering, we found that the relative order of alter-

ations was highly variable, indicating that they arise stochasti-

cally (Figure S4; STAR Methods).

Integrating analyses reveals disease types
distinguished by their evolutionary trajectories
Establishing the concordance of these three classification

methods (Figure 4A) revealed a remarkable relationship: MC-A

is largely a subset of the Depleted group (22/27), and both are

almost entirely subsets of Ordering-II (26/27 and 30/32, respec-

tively). Quantifying the strength of the pairwise associations us-

ing Cramer’s V statistic gives metaclusters and ARBS groups

(V = 0.69), metaclusters and orderings (V = 0.58), and ARBS

and orderings (V = 0.62). These values indicate a strong associ-

ation between cluster assignments in these three groups (STAR

Methods). We can therefore infer that there exists a subset of

tumors that exhibit all the corresponding properties: an

evolutionary trajectory (Ordering-II), a breakpoint mechanism

(ARBS:Depleted), and characteristic patterns of aberrations

(metacluster:MC-A). We therefore propose the evotype model

for prostate cancer evolution (Figure 4B), in which canonical

AR DNA binding is disrupted, through the effect of genetic alter-

ations or other causes, coercing tumor evolution along an alter-

native trajectory that results in a distinct form of the disease. We

can therefore classify tumors by which path a tumor ismost likely

to adhere to, which we refer to as its evotype. To perform this

classification, we adopted amajority-vote approach and defined

tumors that were assigned to at least two of MC-A, Depleted, or

Ordering-II as belonging to the Alternativ-evotype (n = 34) to

distinguish them from Canonical-evotype (n = 125) tumors that

evolve via the standard route. Each evotype is characterized

by a different propensity for certain aberrations (Figure 4C), but

we found that no single aberration was either necessary or suffi-

cient for assignment to either evotype. However, there were

several pairwise combinations of genetic alterations that did
Cell Genomics 4, 100511, March 13, 2024 5



Figure 4. Integrating results reveal multiple evolutionary trajectories converging to two disease types with different prognoses

(A) A comparison of how tumors were classified in each of the three previous methods. Each side of the triangle corresponds to a classification method, wherein

each bar in the triangle denotes a group identified by that method. Values at the intersections of each bar show the number of tumors that were consistent with

both classes. Values outside the main triangle denote the total number of tumors in that class. Colors are those used in previous figures.

(B) A schematic of the evotype model for prostate cancer evolution.

(C) The prevalence of each genetic aberration in each evotype, as determined using the majority consensus of the three classifiers. Aberrations with significant

differences between evotypes are colored by the evotype displaying the highest proportion (FDR-adjusted p < 0.05, Fisher’s exact test).

(D) A surface plot showing the probability density of a tumor being assigned to the canonical evotype relative to the number of aberrations. Common modes of

evolutionary progression follow regions of high density as the number of aberrations increases. Exemplars of such routes are indicated by black dashed lines.

These are labeled according to their likely evotype, a behavioral descriptor, and notable driver genes affected by aberrations that are prevalent in the areas along

the path to convergence (Figures S7 and S8).
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result in fixation to one of the evotypes (Figure S5). There were no

statistically significant associations (p = 0.05) between the evo-

types and tumor stage, Gleason grade, or prostate-specific an-

tigen (PSA) levels (Figure S6).

The lack of consistent genetic alterations indicates that there

may be multiple individual routes of progression for each evo-

type. We investigated these trajectories in more detail by devel-

oping a stochastic model of the acquisition of genetic alterations

and tracking the probability of assignment to each evotype as

the aberrations accumulate (Figure 4D; STAR Methods). Initially

the probability density is concentrated at z0.78, the proportion

of Canonical-evotype tumors in our sample set. As the number of

aberrations increases, the density diverges to accumulate at 1

(corresponding to unambiguous assignment to the Canonical-

evotype) and 0 (Alternative-evotype). In this model, an individual

tumor will follow a trajectory through this probability landscape,

dependent on the type and order of aberrations. Due to random-

ness in the occurrence of genetic alterations, there are an enor-

mous number of possible routes, but investigating patterns of

aberrations in areas of high probability density reveals common

modes of behavior (Figures S7 and S8). Exemplars for these

modes are given by the dashed lines in Figure 4D. Notably,

when an SPOP mutation occurs first, it confers high probability

(z0.91) of progression to the Alternative-evotype (Alternati-

ve:Rapid). Other routes to the Alternative-evotype involve the

accumulation of multiple individual LOH events involving genes

such as MAP3K7, CHD1, or EDNRB (Alternative:Incremental) in

any order. LOH of IL6ST or gain of region 8p23.3–8p22 strongly

influences convergence after a number of aberrations have
6 Cell Genomics 4, 100511, March 13, 2024
already accumulated (Alternative:Abrupt). Conversely, fixation

to the Canonical-evotype is dependent on a few key aberrations.

Early TP53 loss or ERG gene fusion promotes almost certain fix-

ation to the Canonical-evotype (Canonical:Rapid). Alternatively,

loss of regions covering PTEN or CDH1 can coerce a relatively

quick progression toward this evotype, but these are rarely the

final convergent event in the trajectory (Canonical:Moderate).

Indeed, there are aberrations that are often the last step in

convergence to the Canonical-evotype, particularly LOH of

19p13.3–19p13.2 or 22q11.21–22q11.22 or gains of chromo-

some 19 or region 22q11.1–22q11.23 (Canonical:Punctuated).

The lack of a single genetic alteration unique to the alternative

evotype indicates that there may bemultiple mechanisms for ac-

quired AR dysregulation that we observe in prostate cancer. We

therefore investigated potential mechanisms of AR dysregula-

tion. It has previously been shown that CHD1 protein is involved

in AR binding, which causes DNA loops that can precipitate

DSBs (Figure 5A, adapted from Metzger et al21). As LOH of the

CHD1 locus is significantly associated with the Alternativ-votype

(Figure 4C) and is an early event in tumor evolution (Figure 3), we

hypothesized that loss of CHD1 in these tumors would be asso-

ciated with fewer DSBs precipitated through the DNA loop

mechanism. We therefore tested whether pairs of adjacent

ARBSs required for DNA loops to form by this mechanism are

significantly more or less frequently close to DSBs, dependent

on CHD1 status (STAR Methods). We found that CHD1 wild-

type (WT) tumors more frequently displayed DSBs close to pairs

of ARBSs than tumors that displayed a CHD1-associated LOH

(Figure 5B; p = 0.00025). Extrapolating our hypothesis to the



Figure 5. Frequency of AR-induced DNA loops associated with DSBs is associated with CHD1 loss and evotype status

(A) A simplified schematic of AR binding to ARBSs, where CHD1 protein is part of a complex that induces DNA loop formation and subsequent DSBs, denoted by

the red X.

(B) A notched box and whisker plot shows that adjacent proximal ARBS pairs that are required for DNA loops to form were observed less frequently in the vicinity

of breakpoints in CHD1-deficient tumors than CHD1 wild-type tumors.

(C) DSB-associated ARBS pairs occurred less frequently in tumors of the Alternative-evotype than the Canonical-evotype.

(D) DSB-associated ARBS pairs occurred less frequently in CHD1 wild-type tumors of the Alternative-evotype than the Canonical-evotype. All p values were

determined through a one-sided Mann-Whitney U test.
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evotypes, we found a significant difference between Canonical-

and Alternative-evotype tumors (Figure 5C; p = 4.913 10�9. This

relationship also holds in CHD1-WT tumors of both evotypes

(Figure 5D; p = 0.00015). These results indicate that CHD1

LOH can drive AR dysregulation in prostate cancer but that other

mechanisms also exist in Alternative-evotype tumors.

DISCUSSION

Taken together, our findings reveal prostate cancer disease

types that arise as a result of divergent trajectories of a stochas-

tic evolutionary process in which specific genetic alterations can

tip the balance toward convergence to either route. Unlike the

evolution of species, which involves ongoing adaptation to a

perpetually changing environment, tumor evolution has a defin-

able endpoint—a disease state that leads to the death of the

host. It follows that the more ‘‘evolved’’ tumors are closer to
this endpoint, which has obvious implications for risk stratifica-

tion. We therefore proposed that our evolutionary model implied

two factors associated with risk, the evotype itself and the de-

gree of progression relative to that evotype. We investigated

this principle using follow-up information based on time to

biochemical recurrence (serum PSA >0.2 ng/mL for two consec-

utive measurements) after prostatectomy.

Initially, we found that classifying by evotype alone provides a

significant association with time to biochemical recurrence (Fig-

ure 6A; p = 0.026), displaying a higher hazard ratio (HR = 2.30)

than stratification by well-known genetic alterations such as

PTEN loss (HR = 1.42, p = 0.336; Figure S9A), TP53 loss (HR =

2.03, p = 0.0497; Figure S9B), or ETS status (HR = 1.64,

p = 0.179; Figure S9C). However, it performed worse than other

metrics known to be associated with outcome, such as tumor

mutational burden (TMB), which led to HR = 4.50 and p =

0.000110 (Figure 6B), or histopathological grading via the ISUP
Cell Genomics 4, 100511, March 13, 2024 7



Figure 6. Utility of evotype model in survival analysis

Kaplan-Meier plots for (A) the evotypes; (B) 20 tumors with greatest tumor mutational burden (high-TMB) against the remainder (low-TMB); (C) ISUP Gleason

grade; (D) 10 tumors with highest TMB for each evotype (high-TMB alternative and high-TMB canonical) against the remainder (low-TMB combined); (E) the ISUP

Gleason gradeR3 tumors in the high-TMB evotype classes (Evo-TMB-Gleason high) and the remainder (Evo-TMB-Gleason low); (F) Alternativ-evotype tumors in

MC-A (MC-A/Alternative) and Canonical-evotype tumors in MC-B2 (MC-B2/Canonical) and the remainder (MC-B1/combined); and (G) ISUP Gleason gradeR3

tumors of either MC-A/Alternative or MC-B2/Canonical (MC-A/B2-Gleason high combined) against the remainder (MC-A/B1/B2-Gleason low combined). For

each comparison, we provide the hazard ratio (HR) and p value calculated with the Cox proportional hazard test; p values were adjusted for Gleason grade, TMB,

and age at diagnosis if they were not used to create the sets used in the comparison (padj) and Harrell’s C-index. In (D) and (F), these values are given for the

denoted class in comparison to the remainder only. Endpoint is time to biochemical recurrence.
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Gleason grade score, which gave HR = 4.69 and p = 0.0000629

(Figure 6C).

To illustrate how information on the evolutionary path might

improve risk stratification, we adopted two approaches to deter-

mine which tumors were themost advanced relative to their evo-

type. In the first,we classified the 10 tumorsof both evotypeswith

the highest TMBasadvanced (denoted high-TMBalternative and

high-TMBcanonical) and compared these to all other tumors.We

found that high-TMB tumors of both evotypes displayed high

HRs (Figure 6D;HR>6) compared to all previousmetrics, notably

outperforming the 20 high-TMB tumors when evotype was not

used (Figure 6B; HR = 4.50). To investigate how this risk determi-

nantmight be used in conjunction with current clinical prognostic

methods, we compared the 10 high-TMB tumors of both evo-

types that were also ISUP Gleason grade R3 with all other

tumors, which further improved performance (HR = 7.28, p =

5.16 3 10�7; Figure 6E). In the second approach, we hypothe-

sized that metaclusters MC-A and MC-B2 were representative

of advanced tumors of the Alternative-evotype and Canonical-

evotype, respectively, as these tumors displayed many of their

characteristic genetic alterations (Figure 1). Stratifying by tumors

belonging to bothMC-A and the alternative evotype yielded HR=

3.64andp=0.00363,with those inMC-B2and thecanonical evo-

type giving HR = 6.14 and p = 4.603 10�5, in comparison to the

tumors that were in neither group (Figure 6F). These relationships

were still significant when adjusted for TMB, Gleason grade, and
8 Cell Genomics 4, 100511, March 13, 2024
age at diagnosis (adjusted p values [padj] = 0.00913 and

0.000492), showing that TMB itself is not driving this result. As

before, we compared these advanced tumors that were also

ISUP Gleason grade R3 to all other tumors, which provided

even better performance (HR = 7.66, p =2.843 10�8; Figure 6G).

The findings in Figures 6E and 6G indicate that Gleason grade

and evolutionary progression provide complementary informa-

tion on prognosis. Note that these findings are illustrative, as a

robust optimization of thresholds or sets of genetic alterations

for risk evaluation requires full validation with an independent da-

taset and therefore remains outside the scope of this study.

Furthermore, the evotype model provides additional context

to relationships between individual aberrations reported in previ-

ous studies. Co-occurring genomic alterations that have been

identified previously can be related to particular evotypes. For

the Canonical-evotype, this includes LOH events affecting

PTEN andCDH22 orPTEN and TP53.23 Conversely,CHD1 losses

have previously been observed in conjunction with SPOP muta-

tions,24,25 as has LOH affectingMAP3K726 and 2q2227; all these

aberrations are associated with the Alternative-evotype. The

most widely used basis for genomic prostate cancer subtyping

is the ETS status, where tumors are classified by the presence

or absence of an ETS gene fusion into ETS+ and ETS�, respec-

tively.1,8,9,11 We found that 94% of Alternative-evotype tumors

were ETS�, and indeed, alterations such as SPOP mutations

and CHD1 LOH that are characteristic of this evotype have
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previously been associated with ETS� tumors.11,28 Conversely,

the Canonical-evotype exhibits both ETS+ (66%) and ETS�
(34%) tumors. When removing Alternative-evotype tumors

from the ETS classification, we found that there were no signifi-

cant differences in risk (Figure S9D) or prevalence of any of the

genomic features between ETS+ and ETS� tumors of the Ca-

nonical-evotype (Figure S9E). This is consistent with its definition

as a distinct disease type independent of ETS status.

Classification by evotype could have epidemiological implica-

tions. For instance, non-White racial groups display an increased

incidence of many Alternative-evotype aberrations29–31 and may

therefore have a higher predisposition for this disease type.

Conversely, cancers arising in younger patients have enrichment

for ARBS-proximal breakpoints18 and are reported to develop

via a similar evolutionary progression to the Canonical-evo-

type.15,18 It may also be possible to tailor treatment strategies

to each evotype. In particular, cancers with aberrations found

more commonly in the Alternativ-votype have been shown to

be susceptible to ionizing radiation24 and have a better response

to treatment with PARP inhibitors32 and androgen ablation.25

Our evolutionary model for prostate cancer disease types pro-

vides a conceptual framework that unifies the results of many

previous studies and has significant implications for our under-

standing of progression, prognosis, and treatment of this dis-

ease. As evolution through the sequential acquisition of synergis-

tic genetic alterations is a process common to many tumors, the

principles, analytical approach, and conceptual framework out-

lined here are widely applicable, and we anticipate them leading

to insights into disease behavior in other cancer types.

Limitations of study
In this study, we present evidence supporting the existence of at

least twodistinct evolutionary paths in prostate cancer,whichun-

derpins the concept of classifying these cancers into evotypes.

However, theprecise criteria that differentiateCanonical-evotype

tumors from those of the Alternative-evotype remain to be rigor-

ously defined. Our statistical classification may therefore have

incorrectly assigned some tumors to an evolutionary path that

does not reflect their true nature. Additionally, there is the possi-

bility that a single prostatemaycontain tumor cell subpopulations

following both trajectories. Although there was no evidence for

this in the datasets we analyzed, the most appropriate way to

classify such cases remains undetermined. It is also likely that

thereareotherevolutionarypathsyet tobediscovered,andsoas-

signing these tumors to either of the two evotypes we describe

here is incorrect. Another caveat is that our patient cohort pre-

dominantly consists of men of White-European ancestry treated

in theUK,Australia, andCanadaand thereforedoesnot represent

the global population. Therefore, while our findings are robust

within the context of our study population, caution is warranted

when extrapolating these results to other ethnic groups.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Quant-iT OicoGreen dsDNA Assay Kit ThermoFisher Cat#P7589

Deposited data

DNA BAM files This paper EGA accession: EGAS00001000262.

Software and algorithms

Burrows-Wheeler Aligner Li and Durbin33 https://bio-bwa.sourceforge.net/

CGP core WGS analysis pipelines Cancer Genome Project https://github.com/cancerit/dockstore-cgpwgs

Battenberg Nik-Zainal et al.34 https://github.com/Wedge-lab/battenberg

SeqKat https://doi.org/10.1101/287839 https://github.com/cran/SeqKat

ChainFinder Baca et al.35 N/A

Telomerecat Farmery et al.36 https://github.com/cancerit/telomerecat

PLMIX Mollica and Tardella20 https://cran.r-project.org/web/packages/PLMIX/

PlackettLuce Turner et al.37 https://cran.rstudio.com/web/packages/PlackettLuce/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, David C.

Wedge, Ph.D. (david.wedge@manchester.ac.uk).

Materials availability
There are no tangible materials produced by this study that are available for distribution.

Data and code availability
Sequencing data generated for this study have been deposited in the European Genome-phenome Archive with accession code

EGAS00001000262. Processed data and code used in this manuscript is available at https://github.com/woodcockgrp/

evotypes_p1/and via https://doi.org/10.5281/zenodo.10214795.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cancer samples from radical prostatectomy, and matched blood controls, were collected from 205 patients treated at the Royal

Marsden NHS Foundation Trust, London, at the Addenbrooke’s Hospital, Cambridge, at Oxford University Hospitals NHS Trust,

and at Changhai Hospital, Shanghai, China, as described previously.38,39 Ethical approval was obtained from the respective local

ethics committees and from The Trent Multicentre Research Ethics Committee. All patients were consented to ICGC standards.

159 of the samples passed stringent quality control for copy number profiles and structural variants, and were used in this study.

METHOD DETAILS

DNA preparation and DNA sequencing
DNA from frozen tumor tissue and whole blood samples (matched controls) was extracted and quantified using a ds-DNA assay (UK-

Quant-iT PicoGreen dsDNAAssay Kit for DNA) following themanufacturer’s instructionswith a FluorescenceMicroplate Reader (Bio-

tek SynergyHT, Biotek). Acceptable DNA had a concentration of at least 50 ng/ml in TE (10mM Tris/1mM EDTA), and displayed an

optical density 260/280 (OD260 / OD280) ratio between 1.8 and 2.0. Whole Genome Sequencing (WGS) was performed at Illumina,

Inc. (Illumina Sequencing Facility, San Diego, CA USA) or the BGI (Beijing Genome Institute, Hong Kong), as described previ-

ously,38,39 to a target depth of 50X for the cancer samples and 30X for matched controls.38 The Burrows-Wheeler Aligner33 (BWA)

was used to align the sequencing data to the GRCh37 reference human genome.
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Generation of summary measurements
Wegenerated 123 summarymeasurements from theWGSdata using a number previously published algorithms, sowe briefly outline

those below. These are grouped into measurements that were generated with similar or related algorithms; default parameters were

used unless otherwise stated. The processed data is given alongside the code at https://github.com/woodcockgrp/evotypes_p1/.

Numbers of SNVs, indels and structural variants - 10 fields

SNVs, insertions and deletions were detected using the Cancer Genome Project Wellcome Trust Sanger Institute pipeline as

described previously.38 In brief, SNVs were detected using CaVEMan with a cut-off ‘somatic’ probability of 0.95. Insertions and de-

letions were called using a modified version of Pindel.40 Variant allele frequencies of all indels were corrected by local realignment of

unmapped reads against the mutant sequence. Structural variants were detected using Brass.38 Total numbers of SNVs, indels and

rearrangements per sample were calculated (1 field each), as were types of indel (3 fields: insertion, deletion and complex) and struc-

tural variants (4 fields: large insertions or deletions, tandem duplications and translocations).

Percentage genome altered - 3 fields

This was calculated as the percent total of the genome that is affected by CNAs.41 We also recorded the percentage affected by

clonal and subclonal CNAs (i.e., CNAs with CCF = 1 and CCF < 1 respectively).

Ploidy - 1 field

We adopt the same approach as detailed previously,11 where whole genome duplicated samples were those which had an average

ploidy, as identified with the Battenberg algorithm, greater than 3. These samples were designated as tetraploid and assigned a value

of 1 in our dataset, otherwise the sample was diploid (assigned 0).

Kataegis - 1 field

Kataegis was identified using SeqKat https://github.com/cran/SeqKat. The datum was set to 1 if kataegis was identified and 0 if not.

ETS status - 1 field

A positive ETS status was assigned if a DNA breakpoint involving ERG, ETV1, ETV3, ETV4, ETV5, ETV6, ELK4, or FLI1 and partner

DNA sequences was detected and the fusion was in-frame. The datum was set to 1 if there was ETS fusion detected or 0 if not.

Gene fusions - 2 fields

We reported the number of in-frame gene fusions in the sample (counts) and if there was a gene fusion affecting the TMPRSS2/ERG

genes (1 or 0).

Breakpoints - 14 fields

Breakpoints were identified with Chainfinder35 version 1.01. Total number of breakpoints, total number of chained breakpoints (i.e.,

where the breakpoints are interdependent), number of chains, the number of breakpoints in the longest chain, the number of break-

points involved in the chained events, and the maximum number of chromosomes involved in a chain were recorded as integer

counts (6 fields). We also calculated the proportion of all breakpoints that were in chained events (1 field - ½0;1�) and the average,

median and maximum number of chromosomes involved in a chain (3 fields - ½0;N�). Information about the type of breakpoint

was also recorded, including the number of deletion bridges, intra-chromosomal and inter-chromosomal events (3 fields - counts)

and the inter-chromosomal to intra-chromosomal ratio (1 field - ½0;N�, set to zero if there were no intra-chromosomal breakpoints).

Mutated driver genes - 26 fields

A set of driver genes were identified from our previous publication.11 Using the CaVEMan output, we determined any non-synony-

mous mutations in the exonic regions of these genes as a mutated driver gene; the corresponding field was assigned a value 0 if no

such mutations were identified and 1 if there were.

Copy number alterations - 60 fields

We followed our previous approach11 to identify consistently aberrant regions. A permutation test was developed where CNAs de-

tected from each sample were placed randomly across the genome and then the total number of times a region was hit by each type

of CNA in this random assignment was compared to the number of times a region was hit in the actual data. This process was

repeated 100,000 times and recurrent (or enriched) regions were defined as having a false discovery rate (FDR) of less than 0.05.

This was performed separately for gains, loss of heterozygosity (LOH) and homozygous deletions (HD). We identified small regions

initially and these were amalgamated into larger regions defined as the regions between chromosomal positions when the difference

between the number of CNAs identified in the data and expected frequency (if this process were uniformly random) dropped to zero.

For each sample, if a breakpoint corresponding to a gain, LOH or HD occurred in each region, then the respective datumwas set to 1,

and 0 otherwise.

Telomere lengths - 1 field

Telomere lengths were estimated as described in our previous publication.36 A mean correction was applied to batches to compen-

sate for the effects of a change in chemistry during the project, therefore the value is continuous in the range ½0;N�.
Chromothripsis - 4 fields

The identified copy number breakpoints were segmented in inter-breakpoint distance along the genome using piecewise constant

fitting (pcf from the R package copynumber v1.22.0). Regions with a density higher than 1 breakpoint per 3Mb were flagged as high-

density regions. A chromothripsis region was then defined as a high-density region with a number of copy number breakpoints N>

15; a non-random segment size distribution (Kolmogorov-Smirnov test against the exponential distribution, P< 0:05); at most three

allele-specific copy number states covering more than minð1; � 0:006N + 1:1Þ fraction of the region; and the proportion of each type

of structural variant is randomwith equal probability PTD = PDel = PH2Hi = PT2Ti = 0:25 (multinomial test P> 0:01), where TD = tandem
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duplication, Del = deletion, H2Hi = head-to-head inversion and T2Ti = tail-to-tail inversion. We recorded the presence or absence of

chromothripsis (1 or 0 respectively), the proportion of all breakpoints in chromothripsis events (½0;1�), the number of chromothripsis

events in each sample (counts) and the size of the largest chromothripsis region (counts).

QUANTIFICATION AND STATISTICAL ANALYSIS

In this section we aim to provide a largely non-technical overview of each of ourmethodswe used to perform the analysis in the study,

followed by more technical description for those who wish to fully understand and reproduce our methodology.

Statistics
Prior to the study we predetermined we would use Fisher’s Exact Test for 2x2 contingency tables and Chi-squared test for contin-

gency tables of greater dimensionality and this is applied throughout. Associations between genetic alterations and ARBS clusters

was identified using one-tailed Fisher Exact Test with p< 0.05, corrected formultiple testing using the False Discovery Rate. Relation-

ships were determined dependent on the variable type: for Bernoulli variables, significance was determined with Chi-squared test

followed by a one-tailed Fisher exact test for each pairwise relationship; one-tailed tests were used as a two-tailed test would not

have revealed the direction of the relationship. For continuous variables a Kruskal-Wallace test with Tukey’s HSDwas used (adjusted

p< 0.05 for all tests). Significance of Depleted groups across countries clustering together was determined using the Approximately

Unbiased Multiscale Bootstrap procedure. Associations between evotypes and individual genetic alterations was conducted with a

two-tailed Fisher Exact Test, corrected for multiple testing using the False Discovery Rate. The associations with ARBS pairs were

established with a one-sided Mann-Whitney U-test with p< 0.05. Statistics associated with the Kaplan-Meier plot were calculated

using log rank methods, and significance level was set at 0.05. Cramer’s V statistic was used to determine the strength of the asso-

ciations in between the cluster assignments. As we only claim an association between patients assigned to MC-A (Metaclusters), the

Depleted group (ARBS) andOrdering II, we combinedmetaclustersMC-B1 andMC-B2 into one class and the Enriched andDepleted

ARBS groups into one class for this comparison.

Unsupervised feature extraction
The summary measurements detailed above form the dataset for further analysis. However, it contains a number of different data

types (binary, proportions, continuous, integer counts), it is high dimensional relative to the number of patients, and it undoubtedly

contains highly correlated, cooccurring or equivalent events that may confound the analysis. To address this we performed a feature

extraction preprocessing step prior to the analysis. As our downstream analysis will be investigating genomic patterns that are indic-

ative of evolutionary behavior, it is critical that the results of these analyses can be easily interpreted. This necessitates methodology

where the links between input variables that correspond to the features are identifiable. We therefore opted for a latent feature

approach as the basis of our feature extraction as these can provide an interpretable representation of the relationships between

the inputs.42 Latent feature (or latent variable) analysis provides a way of reformulating the data into a reduced set of features that

encapsulate the underlying relationships between the original inputs. The data can be recast in terms of these latent features, which

is known as the latent feature representation, and the downstream analysis performed directly on this.

There have been many latent feature models proposed, each with associated inference methods for the features (a process called

feature learning). These included methods such as non-negative matrix factorization,43 Bayesian non-parametric methods44 and

neural networks.45 However, none of these were able to fulfill all of our requirements above. We therefore created a bespoke method

for feature extraction on this dataset.

Neural networks for feature extraction
We utilized a Restricted BoltzmannMachine46 (RBM) neural network as the basis of our feature learning method. We chose to use an

RBM as it is extensible to multiple data types47,48 and can provide interpretable hidden units, with appropriate modifications.49 An

RBM is functionally similar to another type of neural network architecture called an autoencoder.45 Autoencoders are a class of

network types that compress (encode) the data into a transformed representation (the code), and then decompress (decode) in

an attempt to reconstruct the original data. A measure of the error between the reconstruction and the original data is used to update

the parameters through backpropagation. Typically the code layer contains fewer units than the input/output layers and this bottle-

neck means that the learning process attempts to compress the information in the dataset into a more a compact representation in

the code.

In contrast, the basic RBM unit consists of only two layers, known as the visible and the hidden layers. The RBM is formulated as a

probabilistic network, meaning each unit represents a random variable rather than a fixed value. As such, the hidden layer performs a

similar function to the code layer in the autoencoder, albeit with a probabilistic representation. It has been shown that the RBM is

equivalent to the graphical model of factor analysis50 and so each hidden unit can be interpreted as a latent feature. Another distinc-

tion from the autoencoder formulation is that there is only one weight matrix, which used to update both the visible and hidden layers.

This means that the information on the transformation from visible units (input representation) to the hidden units (feature represen-

tation) is encapsulated in this matrix. Hence we also refer to it as the input-feature map.
Cell Genomics 4, 100511, March 13, 2024 e3
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The restricted boltzmann machine
The standard RBM formulation46 consists of Bernoulli random variables for all visible v = fvig and hidden units h = fhig, where vi;

hj ˛ f0;1g, with respective biases a = faig;b = fbjg; ai;bj ˛ ð� N;NÞ, and a matrix of weights, W;wij ˛ ð� N;NÞ. Training of an

RBM is based on minimizing the free-energy of the visible units, as a low free-energy corresponds to a state where the data is ex-

plained well through the model parameterization. Energy-based probability distributions take the form

Pðv;hÞ =
e�Eðv;hÞ

Z
; (Equation 1)

where Eðv;hÞ is the energy function and Z is a normalizing factor. This is the probability of observing the joint v;h pair. The energy

function in an RBM is given as

Eðv;hÞ = � aTv � bTh � vTWh: (Equation 2)

In this formulation,

Z =
X
v

X
h

e�Eðv;hÞ; (Equation 3)

which is difficult to calculate due to the number of possible combinations of v and h.

As we want training to be conducted with respect to the energy at the visible units, we need to marginalize over h in Equation 1 to

calculate the likelihood of observing the visible unit corresponding to a single data sample dk from dataset D = fdk ;k = 1;2;.;Kg.

Lðqjv = dkÞ =
1

Z

X
h

e�Eðdk ;hÞ; (Equation 4)

where q˛ ffaig; fbjg; fwijgg is the full parameter set. To simplify notation, we write Lðqjv = dkÞ as LðdkÞwith no loss of generality. To

perform training through gradient descent, we need to calculate the gradient of the negative log likelihood for each parameter wewish

to update, vð� log LðdkÞÞ=vq. The partial derivative of the logarithm of Equation 4 takes the form

v

vq
ð � log LðdkÞÞ =

v

vq

 
log
X
h

e�Eðdk ;hÞ
!

� v

vq

 
log
X
v

X
h

e�Eðv;hÞ
!

(Equation 5)
=
X
h

Pðhjv = dkÞ vEðdk ;hÞ
vq

�
X
v

X
h

Pðv;hÞ vEðv;hÞ
vq

: (Equation 6)

We then calculate the expected values using the entire training set

ED

�
v

vq
ð � log LðdkÞÞ

�
= EPðhjDÞ

�
vEðv;hÞ

vq

�
� EPðv;hÞ

�
vEðv;hÞ

vq

�
; (Equation 7)

which can be used to update the model parameters via gradient descent. The EPðhjDÞ term corresponds to the expected energy state

invoked from observing the data samples, and the EPðv;hÞ is the expected energy state of themodel configurations, both contingent on

the current model parameters. As such, they are often called Edata and Emodel respectively. Calculating the partial derivatives with

respect to the parameters gives

v

vwij

ð � log LðdkÞÞ = E½vihj

��v = dk � � E½vihj�; (Equation 8)
v

vai
ð � log LðdkÞÞ = E½vijv = dk � � E½vi�; (Equation 9)
v

vbj

ð � log LðdkÞÞ = E½hj

��v = dk � � E½hj�; (Equation 10)

which are used to construct the update equations

Wnew )Wold + n
�
Edata

�
vTh

� � Emodel

�
vTh

��
; (Equation 11)
anew )aold + hðEdata½v� � Emodel½v�Þ; (Equation 12)
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bnew )bold + hðEdata½h� � Emodel½h�Þ; (Equation 13)

for learning rates n and h. The Edata values can be estimated easily by taking the arithmetic mean.

The Emodel terms are generally difficult to calculate as they involve summation over all possible configurations of v and h. An alter-

native is to perform Gibbs sampling using the conditional probabilities as these are far easier to calculate due to the conditional in-

dependence between units in the same layer.We can estimate the conditional probability of values of the hidden layer from the visible

layer and vice versa thus

PðhjvÞ =
Y
j

Pðhj

��vÞ; (Equation 14)
PðvjhÞ =
Y
i

PðvijhÞ: (Equation 15)

The form of Pðhj
��vÞ and PðvijhÞ depends on the activation function. This function that inputs the products of the units in one layer

and their corresponding weights, and outputs a probability that a unit is active. In this study, we use a logistic sigmoid (or simply ‘‘sig-

moid’’) function, which is given by

sðxÞ =
1

1+e� x
; (Equation 16)

where x is dependent on the layer we are sampling, and so the individual hidden and visible probabilities can be written as

Pðhj

��vÞ = s

 
bj +

X
i

viwij

!
; (Equation 17)
PðvijhÞ = s

 
ai +

X
j

hjwij

!
: (Equation 18)

A sample is drawn by setting the corresponding unit to 1 with probability given by the value for Pðhj
��vÞ or PðvijhÞ as appropriate.

These can then be used to calculate estimates for PðvÞ and PðhÞ by marginalization over the conditional variable. In practice a full

Gibbs sample every update iteration would be prohibitively slow and so we used an approximation called contrastive divergence,46

in which the Gibbs sampler is initialized using the input data and a limited number of Gibbs steps are performed. In our implementa-

tion we use one contrastive divergence step (i.e., CDð1Þ), and so the data (or mini-batches of the data) is presented as a matrix and

used to sample the hidden unit values, which are then used to update the values of the visible units. These values are used to update

the network parameters using stochastic gradient descent (SGD).51

During training, the results of these updates are stored in three matrices that correspond to the weights as well as the network rep-

resentation of the tumor data at the visible and hidden layers. These matrices correspond to the network reconstruction of the data

(visible layer, V) the latent feature representation of the data (hidden layer, H), and the input-feature mapping (weights,W). When the

network is trained, these can be extracted and utilized in the analysis.

Modifications to the base RBM
Wemade a number of simplemodifications to the base RBMdescribed above to ensure the feature representation was interpretable,

generalizable, stable and reproducible. These modifications are described below.

Data integration

Our data consisted of multiple different modalities; unlike conventional multiomics approaches which have a large number of a data

points from a small number of sources, we have a small number of data points from a large number of sources. As such, data inte-

gration needed to be carefully considered. The RBMcan bemodified to incorporate inputs of multiple modalities, sometimes through

modification of the energy function.52,53 However, we decided to avoid this complication and standardize all our inputs by ranking all

integer and continuous variables prior to rescaling to ½0;1�. Specifically, our transformations were

(1) Binary – set as f0;1g,
(2) Integer – rank and scale to ½0;1�,
(3) Continuous – rank and scale to ½0;1�.

For the integer and continuous cases we used ranking as this decouples the value from the distribution of the inputs and after

scaling to ½0;1�, the new value can be interpreted as the probability that the corresponding visible unit is active. As such, all inputs
Cell Genomics 4, 100511, March 13, 2024 e5
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are treated equally in the machinations of the RBM. These transformations do not affect the hidden units, which remain a Bernoulli

random variable, hi ˛ f0;1g.
Non-negative weights

Neural networks are considered as black-box approaches as the transformations they perform are highly complex. To improve inter-

pretability of the network machinations we imposed a non-negativity constraint to the weight updates, specifically by penalizing

negative values. We use an approach in which a quadratic barrier function is subtracted from the likelihood for each negative

weight.49 Mathematically, this is written as

LðdkÞnonneg = LðdkÞ � a

2

X
i

X
j

fðwijÞ; (Equation 19)

where a denotes the strength of the penalty, and

fðxÞ =

	
x2; if x < 0;
0; otherwise:

(Equation 20)

This leads to the update rule

Wnew )Wold + n


Edata

�
vTh

� � Emodel

�
vTh

� � aWf�g
�
; (Equation 21)

whereWf�g is amatrix containing the negative entries ofW, with zeros elsewhere. This formulation is equivalent to a L2-norm penalty

on the negative weights, and so penalizesmore strongly negative weights to a greater degree. When used in the training scheme, this

coerces network weights to non-negative solutions, simplifying the interpretation of the input-feature map. This can be considered to

be a non-linear extension of non-negativematrix factorization,43 and similarly can be used to represent the underlying structure of the

data by its parts, which is synonymous with latent features here.

As weights can no longer trade off against each other with counteracting weights of opposing signs, this means that the lowest

free-energy state corresponds to a state with minimal redundancy and so during training the hidden units compete to convey infor-

mation about a single input.54 This means that the input will only be represented in small number of latent variables, so when the initial

number of hidden units is of similar order to the number of data inputs, this results in some of the biases or weights converging to a

negligible value, and the corresponding hidden layer activations converge to an arbitrary fixed value. The latter are then called dead

units. This is of fundamental importance to our method as it can be used as an estimate of the intrinsic dimensionality of the data.

Hidden unit pruning

During training, we prune the dead units to improve the speed of the algorithm. However determining dead units is not straightforward

in a probabilistic network such as the RBM as the values in the network at each state will vary stochastically. To circumvent this, we

apply an L1=2-norm penalty on the hidden unit activations, which penalize a non-zero activation value.55 This coerces the values for all

patient samples to be zero, rather than some arbitrary value, and these can then be easily identified and removed with a thresholding

approach. This penalty function is calculated over all training data samples, so for consistency with Equation 4 we can formulate the

likelihood for each sample as

LðdkÞactiv = LðdkÞ � b

K

X
k

k fðykÞk1=2; (Equation 22)

where fðykÞ = PðhjvkÞ and b is a parameter describing the strength of this penalty. We calculate the gradient of the additional likeli-

hood term with respect to each of the hidden unit biases, which is given as

Db
ðL1=2Þ
j =

1

K

v
P

k k PðhjvkÞk1=2
vbj

; (Equation 23)
=
1

2

X
k

exp
�� bj �

P
i vikwij

�
��1+exp �� bj �

P
i vikwij

���3=2 : (Equation 24)

We can then write the vector of gradients for all hidden unit biases asDbðL1=2Þ. The corresponding update rule can therefore be writ-

ten as

bnew )bold + hðEdata½h� � Emodel½h�Þ � bDbðL1=2Þ: (Equation 25)

In our training algorithm, we prune dead units every 50 iterations after the first 1000 iterations.
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Sparsity

Sparsity is a desirable property for latent space representations, as it means that the information is conveyed in a concise form. The

penalty measure defined in Equation 22 introduces sparsity as it penalizes hidden units which are highly active thus coercing the

network toward a sparse configuration.55 Further sparsity measures were not used in training as the weight matrix, which defines

the input to feature mapping, will be filtered at a later stage.

Overfitting

A concern with any neural network formulation is the tendency to overfit the data, which in this application would lead to a feature set

that was not representative of the true underlying structure, and therefore not generalizable. To mitigate this, we employed a number

of countermeasures, namely

(1) DropConnect,

(2) Max-norm regularization,

(3) Bootstrap aggregating,

(4) Early Stopping.

With DropConnect,56 a predetermined proportion of weights in the network are randomly set to zero with uniform probability at

each training iteration. This helps prevent overfitting by temporarily disrupting correlations between features, so they are more likely

to learn features that are independent of the state of other features.

When using max-norm regularization,57 we set an absolute value on the norm of each weight vector that form the input to a single

hidden unit. If a vector becomes too large then we rescale the vector so that it obeys the constraint. It is possible for non-negative

weights to continue increasing throughout training as the binary nature of some inputs means that when present they were already in

the maximal output of the sigmoid activation function so the precise value is irrelevant. Max-norm regularization prevents this occur-

rence and facilitates comparison between weight matrices of different runs.

For bootstrap aggregating58 (bagging), multiple networks with the same initial architecture were trained on subsets of the data and

the outputs amalgamated. In our feature learning representation, we extracted the weight matrix from each of the networks and

merged them according to the cosine distance between features.

Finally, when implementing early stopping59 we need to compare the performance of the network on the training set to the perfor-

mance on an unseen validation set. If the network performs similarly on the training and validation sets then it is a good indicator that it

will return generalizable outputs. Beginning with the subsets extracted for ensemble learning, we use data omitted when the subset

was sampled as the validation set, which is propagated through the network. As the RBM is formulated as an energy-based model,

early stopping is predicated by comparing the free energy in the training set to that in the validation set.60 In general overfitting-miti-

gation strategies, the free energy (or reconstruction error in error-based networks) is monitored and if the free energy in the training

set decreases while the free energy in the validation set increases, that indicates overfitting is occurring and training is stopped. We

adopted a more stringent approach in which the samples in the training set are randomly assigned to subsets of equal size to the

validation set and so the free energy values are directly comparable. During training, if the free energy of the validation set increases

above the largest free energy of the training subsets for an extended period (10 iterations) then training is stopped and the entire run is

discarded and training repeated. This means that the network is able to model unseen data (the validation set) as well as it does the

training set when accounting for variation in energy values resulting from sampling the validation set. If overfitting is suspected, the

entire run is discarded and another training run performed; as our main objective is to derive the input-feature mapping via the weight

matrix, this avoids the situation inwhichwe retain aweight matrix that has not had time to converge to a solution consistent with those

runs that completed without interruption.

Convergence to global solution

As we are training multiple networks and amalgamating the results, it is important that each network converges to the global solution

or the results will be incongruous. Furthermore, as the RBM is trained by stochastic gradient descent, it is possible that the algorithm

may get stuck in a local optima. To minimize the chance of this occurrence, we used the cyclical learning rate scheme,61 in which

learning rates for each of the variables oscillates between zero and amaximal value throughout training. Themaximal value is subject

to decay so that the maximal training rate will diminish throughout training to zero. This approach has been shown to help conver-

gence to the global solution and has the advantage that the learning rate parameters do not need to be tuned.61
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Amalgamation of feature matrices
Each individual network run provides a similar, but not identical, weight matrix. As such, weight matrices from each network run were

amalgamated and filtered to form the final input-feature map. Numbers of features, the inputs they represent, their magnitude and

order would not necessarily occur the same in each network and so we constructed an algorithm based on the cosine similarity, is

which depicted in Figure S10, and outlined in Algorithm 1. Note that Low magnitude weights were those less than 50% of the

maximum weight value for each hidden unit.

Synthetic data
To investigate whether our RBMnetwork can identify true associations in data ofmultiple types, we trained the network on a synthetic

dataset with known associations and data generationmethods. The values in the synthetic dataset were generated from function that

encapsulated simple relationships when applied to binary latent variables; we also utilized various statistical distributions on top of

these relationships tomodel types like proportions and counts that wemight find in the real dataset. The synthetic data is constructed

in seven ‘blocks’ to aid interpretation. In the first six blocks, 5 latent variables are mapped to 10 observed variables in exactly the

same way. The difference between the blocks is the statistical distributions used to generate the values in the data. The final block

consists of latent variables mapped to distributions from all the previous types. In total there were 72 ‘observed variables’ generated

from 34 ‘latent variables’. To generate the data for a single synthetic sample, the 34 binary latent variables were sampled uniformly

with probability of the latent variable being 1 set at 0.5. This was done for 200 synthetic samples to create the synthetic dataset.

Latent variable to observed variable mappings
Wedenote the ith simulated observed variables by vi and the jth latent variables as lj. The first block consists of a simple binarymapping

designed to determine if the network can extract the correct relationships with no sources of noise. These relationships are written as

v1 = l1 # a one to one map (Equation 26)
½v2; v3; v4; v5� = l2 # a one to many map (Equation 27)
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½v6; v8� = l3 # one to many map that shares v8 with l4 mapping (Equation 28)
½v7; v8� = l4 # one to many map that shares v8 with l3 mapping (Equation 29)
v9 = l5 # one to one map that is inverse of v10 ði:e: 1 � v10Þ (Equation 30)
v10 = 1 � v9 # one to one map that is inverse of v9ði:e: 1 � v9Þ (Equation 31)

From this we model several different types of unambiguous relationships as described on the right, including logical relationships

AND ðv2;v3;v4;v5Þ, OR ðv8Þ and NOT ðv10Þ.
We build the next five blocks on exactly the same relationships. Block 2 utilizes introduces noise into the mapping, requiring a uni-

formly sampled random value Unifð½0;1�Þ to be greater than a threshold t = 0:25 as well as the latent variable being equal to 1 for the

relationship to be passed through to the observed variable(s). Unifð½0;1�Þ> t returns 1 if the condition if fulfilled and 0 otherwise. Block

2 mappings can be written thus:

v11 = l6 � ðUnifð½0;1�Þ > tÞ (Equation 32)
½v12; v13; v14; v15� = l7 � ðUnifð½0;1�Þ > tÞ (Equation 33)
v16 = l8 � ðUnifð½0;1�Þ > tÞ (Equation 34)
v17 = l9 � ðUnifð½0;1�Þ > tÞ (Equation 35)
v18 = ðl8 = 1 OR l9 = 1Þ � ðUnifð½0;1�Þ > tÞ (Equation 36)
v19 = l10 = 1 � ðUnifð½0;1�Þ > tÞ (Equation 37)
v20 = 1 � v19 (Equation 38)

Note that where the latent variable maps to many observed variables, a random value is sampled separately for each observed

value so they are correlated rather than identical.

Block 3 reflects binary to continuous value [0,1] relationships in which the observed value(s) are zero if the latent value is zero but

take a uniformly distributed random value [0,1] if the latent variable is 1. The mappings therein can be written as:

v21 = l11 � Unifð½0; 1�Þ (Equation 39)
½v22; v23; v24; v25� = l12 � Unifð½0; 1�Þ (Equation 40)
v26 = l13 � Unifð½0; 1�Þ (Equation 41)
v27 = l14 � Unifð½0; 1�Þ (Equation 42)
v28 = ðl13 OR l14Þ � Unifð½0;1�Þ (Equation 43)
Cell Genomics 4, 100511, March 13, 2024 e9



Please cite this article in press as: Woodcock et al., Genomic evolution shapes prostate cancer disease type, Cell Genomics (2024), https://doi.org/
10.1016/j.xgen.2024.100511

Article
ll

OPEN ACCESS
v29 = l15 � Unifð½0; 1�Þ (Equation 44)
v30 = 1 � v29 (Equation 45)

Block 4 introduces sampling from a parametric probability distribution, namely the beta distribution Betaða;bÞ, to reflect propor-

tions and other continuous values bounded by 0 and 1. Here we aim to model situations where there are generally lower or higher

values depending on the status of the latent variable. Therefore the main difference between this block and previous ones is that

the observed value is sampled from one of two differently parameterized beta distributions depending if the latent variable is 1 of

0. The mappings are:

v31 = l16 � Betað5;1Þ+ ð1 � l16Þ � Betað1;5Þ (Equation 46)
½v32; v33; v34; v35� = l17 � Betað5;1Þ+ ð1 � l17Þ � Betað1; 5Þ (Equation 47)
v36 = l18 � Betað5;1Þ+ ð1 � l18Þ � Betað1;5Þ (Equation 48)
v37 = l19 � Betað5;1Þ+ ð1 � l19Þ � Betað1;5Þ (Equation 49)
v38 = ðl18 OR l19Þ � Betað5;1Þ+ ð1--l18ORl19Þ � Betað1; 5Þ (Equation 50)
v39 = l20 � Betað5;1Þ+ ð1 � l20Þ � Betað1;5Þ (Equation 51)
v40 = 1 � v39 (Equation 52)

Block 5 is similar to block 3, where the observed value(s) are zero if the latent feature is zero. However, when the latent feature is 1

then the observed value is sampled from a Poisson distribution to simulate count data. All observed variables are rescaled by the

maximum of ~vi = vi=maxðviÞ, but we leave this step out of the mapping equations below for simplicity and to aid comparison

with the other blocks. We therefore write the mappings as:

v41 = l21 � Poissð10Þ (Equation 53)
½v42; v43; v44; v45� = l22 � Poissð10Þ (Equation 54)
v46 = l23 � Poissð10Þ (Equation 55)
v47 = l24 � Poissð10Þ (Equation 56)
v48 = ðl23 OR l24Þ � Poissð10Þ (Equation 57)
v49 = l25 � Poissð10Þ (Equation 58)
v50 = maxðv49Þ � v49 (Equation 59)
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In Block 6 we aim to model the situation where a perturbation to a cellular process elicits different levels of counts (such as gene

expression in mRNA data for instance). The format is similar to block 4 but with Poisson distributions used instead of beta distribu-

tions. We adopt the same rescaling scheme as used in block 5.

v51 = l26 � Poissð30Þ+ ð1 � l26Þ � Poissð10Þ (Equation 60)
½v52; v53; v54; v55� = l27 � Poissð30Þ+ ð1 � l27Þ � Poissð10Þ (Equation 61)
v56 = l28 � Poissð30Þ+ ð1 � l28Þ � Poissð10Þ (Equation 62)
v57 = l29 � Poissð30Þ+ ð1 � l29Þ � Poissð10Þ (Equation 63)
v58 = ðl28 OR l29Þ � Poissð30Þ+ ð1 � l28ORl29Þ � Poissð10Þ (Equation 64)
v59 = l30 � Poissð30ÞÞ+ ð1 � l30Þ � Poissð10Þ (Equation 65)
v60 = maxðv59Þ � v59 (Equation 66)

Finally we include latent variables that are mapped to generating functions of more than one of the types in the blocks above. Simu-

lated count data is again rescaled as before. The maps are given as

½v61; v62� = l31 � ½1; ðUnifð½0;1�Þ > tÞ� � ð1 � l31Þ � ½0; 0� (Equation 67)
½v63; v64� = l32 � ½Unifð½0; 1�Þ;Betað5;1Þ�+ ð1 � l32Þ � ½0;Betað1;5Þ� (Equation 68)
½v65; v66� = l33 � ½Poissð10Þ;Poissð30Þ�+ ð1 � l33Þ � ½0;Poissð10Þ� (Equation 69)
½v67; v68; v69; v70; v71; v72� = l34 � ½1; ðUnifð½0;1�Þ > tÞ;Unifð½0;1�Þ;Betað1;5Þ;Poissð10Þ;Poissð30Þ�
+ ð1 � l34Þ � ½0;0; 0;Betað5;1Þ; 0;Poissð10Þ� (Equation 70)
RBM results on synthetic data
We trained 2000 networks using 80%of the synthetic data as the training set (chosen uniformly at random). The remainder of the data

was used as a validation set for early stopping using the procedure described above. To investigate if overfitting occurs and if our

early stopping procedure could identify potential overfitting, we allowed training to continue if overfitting was suspected and moni-

tored the behavior of the free energy.We found that overfitting was suspected in 123/2000 (6.15%) of the training runs and early stop-

ping would have been invoked in these cases. We investigated what occurred by plotting the free energy of the training sets along

with that of the validation set. We provide an example of a well-behaved profile (Figure S11A) and some examples of training runs that

would have been stopped in Figures S11B–S11D. We observe that the free energy values oscillate with the periodicity of the cyclical

learning rate described above and in the second half of training there are iterations where the free energy values decrease signifi-

cantly across all sets, which corresponds to removal of dead hidden units in network pruning. In the samples where overfitting

was not suspected, the free energy of the validation set decreased at the same rate at the free energy values of the training sets,

remaining below the maximum value set by the training sets. This is exactly how wewould expect the free energies to behave if there

were no overfitting.

In training runs where overfitting was suspected, we found that this was generally because the free energy of the validation set had

increased to a slightly higher value than the maximum value of the training sets; this always occurred during the latter half of training

when network pruning was taking place (as in Figures S11B and S11C). This could indicate the network is starting to overfit. Occa-

sionally there would be runs where the free energy of the validation set was notably higher than themaximum of the training sets (e.g.,

Figure S11D), which is more concerning and could indicate a higher degree of overfitting. However in every case we noted that in the

general trend of the free energy of the validation set was to decrease until training stopped at the maximum number of iterations; this
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actually indicates that the data is not being overfit as we would expect the free energy to increase if the model was losing general-

izability by incorporating aspects only present in the training sets. Therefore it is inconclusive whether these runs are actually overfit.

Nonetheless, our early stopping procedure is very conservative andwould have caught and removed these suspect runs, leaving only

indisputably non-overfit runs, and so we are confident that overfit networks will not contribute to the final results.

We next performed training with early stopping enforced to investigate how well the network captures known relationships in the

data. When training was complete, we amalgamated the weight matrices using the procedure described in Figure S10 and the final

input feature encoding is given in Figure S12.

We can use the direct binary mappings of Block 1 to investigate how the RBM attempts to encode the relationships provided in the

hidden data. The algorithm unambiguously identifies the one-to-one mapping of feature 1 to input 1 of this block, as well as the one-

to-many mapping from feature 2 to inputs 2, 3, 4 and 5. In features 3 and 4, the algorithm can identify that input 6 and 8 arise from the

same feature, as do inputs 7 and 8, but inputs 6 and 7 are not directly associated. The algorithm cannot identify the inverse relation-

ship between inputs 9 and 10 and encodes them in two separate features (5 and 6). This is consistent with the way our approach is

constructed as a positive weight matrix can only encode relationships in which a feature is active leading to inputs that are active

rather than inactive feature giving rise to active inputs.

A similar pattern is seen in blocks 2–6, where the algorithm is generally able to extract the correct (or logical) associations encapsu-

lated in the features. There are two exceptions to this, whichwehave highlighted by annotations A andB. AnnotationA shows a different

encoding of the situation in which the original features both map to the same input (as in features 3 and 4 in block 1). Here, these are

encoded as three inferred featureswhere the first two encode a strong association with each input exclusive to each feature and aweak

association with the shared input and the third feature encodes a strong association with the shared input with weak associations to

both of the exclusive inputs. It is important to note that although this encoding does not precisely replicate the original input mapping,

the network has still learned a logical way of encoding this relationship. Therefore, we do not consider this encoding incorrect. Anno-

tation B shows inputs that are not assigned to any feature. Both of these are one-to-one mappings in block 6 (Poisson low/high) indi-

cating that these relationships in this data typemight be too subtle for the algorithm to distinguish. Note the one-to-onemapping of the

9th input in the block and the one-to-manymapping are identified correctly. In block 7, the block consisting of one-to-manymappings of

data of multiple types, the algorithm identifies the correct number of features (4) and the correct inputs are assigned to each feature.

These results provide empirical evidence that our RBM algorithm can extract relationships across a number of data types.

Consistency of results
There are several sources of variation between runs on the same dataset: the RBM is intrinsically a probabilistic network, training it is

a stochastic process and we are using different sets of data in each run. However, although variation between the features extracted

in each run is inevitable, it is important that they are consistent as an ensemble sowe can be confident that the result is stable and the

final amalgamated weights reflect the true relationships in the data.

To quantify the consistency between feature sets, we use an approach based on the Hamming distance. If we describe a latent

feature as a binary string that is equal to 1 with a non-zero weight is present and zero elsewhere, we can then calculate the Hamming

distance between individual features, which returns the number of input mappings, m, that are not shared between those features.

We can use this to identify which feature in set Fj is equivalent to a given feature in set Fi (as that has theminimumHamming distance)

and then identify the feature in set Fi that is most incongruous to their equivalent feature (as this has the maximum Hamming dis-

tance). We write the Hamming distance of the incongruous feature as ~mi;j, which can be expressed as

~mi;j = max
i

min
j

�
DhammingðFi;FjÞ

�
(Equation 71)

We can use this metric to assess how the input/feature mapping differs between runs. We randomly sampled w = 1000 weight

matrices (without replacement) from the 2000matrices generated by networks trained on the synthetic data and amalgamated these

as described above.We repeated this 100 times to give 100 feature sets, and then we calculated ~mi;j for all pairwise combinations of i

and j. Of the 10,000 resulting comparisons, the greatest number of differences between equivalent features was 2, which occurred 72

times (0.72% of the time). Figure S13 shows the histogram of the ~mi;j values for w = 1000, which reveals that the most common

difference was 1, which occurred 6001 times (60.01%). There was no difference in the feature maps in 39.27% of the runs. This is

remarkably consistent given the aforementioned sources of variation.

Network training on real data
We used the real data to train various versions of the networks across a number of runs to obtain distinct outputs for use in the anal-

ysis. The goal of the first run was to extract the amalgamated weight matrix that describes the input to feature mapping (Figure S2).

We used this to determine the latent feature representation used in the clustering (MP Figure 1) by training a new network run with the

weight matrix initialized to the amalgamated weight matrix and setting the weight learning rate to zero. Learning of the biases was

enabled, as these may be different from the biases in the previous networks due to the removal of low magnitude weights. Once

the remaining network parameters have converged during training, taking further iterations is equivalent to sampling the hidden

units/feature representation for each patient. We therefore averaged the hidden unit values taken every 10 iterations during the final

1000 iterations to obtain the final feature representation.
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The input-feature map was used to extract an informed subset of genetic alterations from the original inputs - these were used to

determine associations in the ARBS analysis (MP Figure 2), as well as the inputs for the Ordering Analysis (MP Figure 3).

Two-stage clustering
The dimensionality of the feature representation is still quite large for conventional clustering techniques. Therefore we adopted a

two-stage approach where we first clustered by those features that were most informative of clinical outcome, calculated the

centroids of these first-stage clusters for all features, and then clustered these in the second-stage of clustering to produce MP Fig-

ure 1. Here we provide more details on identification of informative features using a discrimination score and the clustering

methods used.

Discrimination score
There have been several methods proposed for quantifying the relative importance of the units of a neural network.62 However, most

of these are generally formulated to discover the inputs that are important in discerning the output.63,64 In our application, we wish to

quantify the discriminative capacity of each of the features (hidden layer) with respect to the clinical outcome. As we utilize non-nega-

tive weights to determine the relevance of the inputs to the hidden units in the feature extraction, for consistency we adopt a similar

strategy to determine the relevance of the hidden units to adverse clinical outcome as determined by biochemical relapse.

To obtain the discrimination scores for each feature, we modified the architecture of the base RBM so that it was similar to

ClassRBM.65 This adds an extra classification layer, which is fully connected to the hidden layer, the units of which contain the values

of the classes. In ClassRBM, there is another set of weights that denote the strength of the connection between the hidden and clas-

sification layers, and these are trained in the same bi-directional fashion as the input weights.

However, in our application we wish to uncover underlying relationships in the data (encapsulated by the features) in an unbiased

way and then determine how relevant these features are to determining the clinical outcome. We therefore performed the learning of

the latent feature representation and the discrimination scores separately to ensure that learning the classification weights to ensure

that the latent representation remains unbiased by the knowledge of the clinical outcome, and the algorithm for feature learning

described above can still be considered as unsupervised. This was done by fixing the input weights to the amalgamated weight ma-

trix described above but then training the class weights using contrastive divergence as described above.

We also enforced a non-negative constraint on these class weights, similar to the input weights. To get our discrimination score, we

take the absolute value of the weights corresponding to relapse minus the weights corresponding to no-relapse, s. This can be ex-

pressed mathematically as

s = jcr � cr0 j; (Equation 72)

were cr are the class-weights associated with relapse, and cr0 are those associated with no relapse.

These s values can be considered as heuristic quantity relating importance of the corresponding feature to the clinical output,

similar to how the component loadings quantify the explained variance of the corresponding principal component in principle compo-

nent analysis (PCA). As there is no set rule for determining the number of features, so we followed a similar approach to that conven-

tionally used in PCA and selected the number of features using the cumulative distribution. We chose a cut off of 0.9 of the total cu-

mulative discrimination score, which resulted in 14 out of 30 features being selected for the initial clustering phase.

Clustering
Clustering of tumors was performed on the latent feature representation in a two-stage process to facilitate the identification of

clusters that were relevant to clinical outcome. As the feature representation for each patient can be considered as a vector con-

taining the probabilities that the corresponding feature is active, it is appropriate to use a distance measure that quantifies the

distance between probabilities. As such, we calculated the mean Jensen-Shannon (J-S) divergence66 between tumors in a pair-

wise fashion.

For a pair of patientsA andB, represented by the latent feature representation in hidden layers hA and hB, themean J-S divergence

can be written as

JSDðhA k hBÞ =
1

2K

XK
i = 1

�
hA;i log

�
hA;i

mi


+ hB;i log

�
hB;i

mi

�
; (Equation 73)

wherem = 1
2 ðhA +hBÞ; is themidpoint of hA and hB. The additive terms in the square brackets in Equation 73 represent the Kullback-

Leibler divergence between each element of the latent feature representation for either patient and the corresponding element of the

midpoint vector, m.

As we are not using a Euclidean distance metric, clustering through k-means is not appropriate and so we used k-medoid clus-

tering for the first stage; this is similar to k-means but selects a representative data point (medoid) as the centroid for each cluster

instead of the mean. Using the silhouette method,67 we determined that 11 clusters was optimal. For the second stage of clustering,

we used hierarchical clustering to cluster the medoids themselves (again using the J-S divergence), and this was used to generate

and order clusters by the dendrogram MP Figure 1.
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DNA breakpoint proximity to androgen receptor binding site
To examine the proximity of DNA breakpoints to androgen receptor binding sites (ARBS), we designed a permutation approach that

quantifies the departure from a random distribution of the breakpoints across the genome. We downloaded processed ChIP-seq

data targeting AR for 13 primary prostate cancer tumors from Gene Expression Omnibus (GEO: GSE70079)68 and amalgamated

themfor useas theARBS locations.For eachofour 159samples,wesimulated the scenariowherebybreakpointswere randomlydistrib-

utedacross thegenome.Thesimulationofbreakpointswasperformedchromosome-wise.For eachchromosomewesimulate1000sets

ofNbreakpointpositions,whereN is thenumberofbreakpointsweobservedon that chromosome.Thesepositions are randomlydistrib-

uted (with a uniformdistribution) across the full chromosome. Therefore the simulations intrinsically take intoaccount the sizeof thechro-

mosomes. We used the R package RegioneR69 with genome assembly GRCh37, masked for assembly gaps (AGAPSmask) and intra-

contig ambiguities (AMB mask) to keep the possible chromosomal locations consistent with what could be observed in the real data.

To detect significant departure from a uniform random distribution, we calculated the proportion of breakpoints within 20,000 base

pairs (bp) of an ARBS for the observed and permuted data (Bobs and Bperm, respectively). If Bobs > p97:5%ðBpermÞ, the tumor was clas-

sified as Enriched, else ifBobs < p2:5%ðBpermÞ, the tumor was classified as Depleted. Otherwise the difference is not significant and the

tumor was classified as Indeterminate. The level of enrichment or depletion of breakpoints in the proximity of ARBS used in MP Fig-

ure 2A was estimated according to the following formula:

D = Bobs � ~Bperm: (Equation 74)

To check the method was not inherently biased, we performed the analysis on the breakpoints derived from the UK dataset (as in

MP Figure 2) and compared these to the classes derived if the position of the AR-binding sites was distributed uniformly across the

genome (Figure S14). As expected, we find that almost all tumors in the randomized set were classed as Indeterminate, in stark

contrast to the real data.

The agglomerative hierarchical clustering of the ARBS groups across Australian, Canadian and UK datasets was generated using

the R package pvclust70 v2.0.0 using theward.D2 clusteringmethodwith squared Euclidean distance (100,000 iterations). This pack-

age also enabled the estimation of the Approximately Unbiased Multiscale Bootstrap (AU) p values for the Depleted group. These

clustering results were confirmed by a partitional clustering approach using the R packages cluster v2.1.0 and factoextra v1.0.5.

ARBS pairs required for DNA loop formation
In MP Figure 5 we investigated the role of AR in the formation of DNA loops that can precipitate DNA double-strand breaks (DSBs).

For each ARBS that was previously identified as proximal to a DNA breakpoint in each patient, we determined the proportion that

were also proximal to another ARBS, as required by the mechanism for DNA loop formation described previously21 and depicted

in MP Figure 5A. As it has been shown that the two ARBS involved in the DNA loop involved in the TMPRSS2/ERG fusion are sepa-

rated by 19972 base pairs,21 we set the threshold for the second proximal ARBS as 30,000 base pairs in the direction away from the

DNA breakpoint. p values were determined as before.

In all boxplots the red line denotes the median, the blue box encapsulates the interquartile range, and the black dashed lines

denote the range of data not considered outliers; outliers (red dots) are as defined in the MATLAB boxplot() function default settings.

The size of the angular ‘notch’ corresponds to a confidence interval around the median, such that if two notches are not overlapping

then there is approximately 95% confidence that themedian of the two groups differ. The folded notch in MP Figure 5D indicates that

the notch extends past the interquartile range by the folded amount.

Ordering
We previously estimated consensus ordering of events by estimating phylogenetic trees from the cancer cell fraction (CCF) that con-

tained each aberration, and applying the Bradley-Terry model to determine the most consistent order of events.11 We recently

released a study71 that improves this approach using a Plackett-Luce model,72,73 which we also utilize in this study. We provide a

complete description of the method for reproducibility.

There are a number of sources of uncertainty when attempting to determine the order of events from bulk DNA sequencing. In

particular, we often cannot infer the true phylogenetic tree for each patient, and furthermore it is impossible to determine the relative

timing of events on parallel branches. However, we can estimate the set of possible trees using the relative cancer cell fractions

(CCFs) of the genomic aberrations involved, and from these we can estimate a set of possible orderings. Therefore we created an

algorithm where we (sampled) a single possible tree from the data, and using this we sampled a viable order of events for each pa-

tient. This is repeated multiple times so that the uncertainty in these estimates is encapsulated in the output distributions. Algorithms

of this type are called Monte Carlo simulations to emphasise the use of randomness in the procedure.

We adopted the Plackett-Lucemodel72,73 to construct a probability distribution over the relative rankings of a finite set of items, the

parameters of which can then be estimated from a number of individual rankings. This can be used to quantify the expected rank of

each item relative to the others across the population. In our application, an item corresponds to an event, namely the emergence and

fixation of a novel copy number alteration (CNA) identified in the extracted features. Ranking these events therefore relates to the

order in which they would be expected to occur. We also utilized a Plackett-Luce mixture model,20 which allow us to determine

whether there are subpopulations in the data with different orderings.
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The Plackett-Luce model
Given a set of CNA occurrences for each patient with associated subclonality, wewould like to infer the order which these events gener-

ally occur. To do this we used a Plackett-Luce model, which is formulated as a ranking method, and returns a value quantifying the

ranking preference. We use a different interpretation, namely the ordering, which is defined as the inverse of the ranking pref. 74 Like

the Bradley-Terry model, the Plackett-Luce model does not return any temporal information outside the expected order of events.

We have a set of N copy number events we are interested in,

C = fc1; c2;.; cNg; (Equation 75)

then we can apply Luce’s choice axiom,72 which states that the probability of selecting one event over another from a set of events is

independent of the presence or absence of the other events in the set. We can therefore write the probability of observing event i as

PðcijCÞ =
aiP
jaj

; (Equation 76)

where faig are the coefficients that quantify the relative probability of observing the ith event. To reflect the ordering aspect of our

application we refer to this value as the proclivity. Plackett73 used this formalism to construct a generative model in which allN events

are randomly sampled fromCwithout replacement (i.e., a permutation). If we letL correspond to a permutation of the setC such that

lk ˛C and l13l23.3lN, then we write the probability density of a single ordering as

PðLÞ =
YN
k

alkP
j˛LðkÞaj

; (Equation 77)

where alk is the proclivity associated with event lk , and LðkÞ = flk ; lk+1;.; lNg is the set of possible events after k � 1 events have

occurred.

Plackett-Luce mixtures
We hypothesized that there may be more than one set of copy number orderings present in our population, and so analysing all

events in one ordering scheme may not be appropriate. Furthermore, the inhibition of AR-associated breakpoints implies that

some CNAs may be found more frequently with a select set of others, which is in violation of Luce’s choice axiom. We therefore im-

plemented amixture modeling approach,20,74 which reinstates Luce’s choice axiom as the selection of each CNA can be considered

as independent conditional on the mixture component. Such a finite mixture model assumes that the population consists of a num-

ber, G, of subpopulations. In this setting the probability of observing the ordering Ls for the sth sample is

PðLsÞ =
XG
g

ugPgðLsÞ; (Equation 78)

where ug are the weight parameters (not to be confused with the weight matrix in the RBM) that quantify the probability that sample s

belongs to subgroup g. The appropriate parameter values can be determined using maximum likelihood estimation via an EM algo-

rithm.20 The number of mixture components can be chosen using the Bayesian Information Criterion (BIC) estimation, which is given

by

BIC = N logðMÞ � 2lðQMLÞ; (Equation 79)

where QML is the parameter set that maximizes the log likelihood lð $Þ, N is the number of parameters, and M is the number of

samples.

Implementation
The general formulation of the Plackett-Luce model takes a matrix containing the sequence of events for each patient as its input.

However, we do not know the order in which these events occurred, only the presence and cancer cell fraction (CCF) of each

CNA for each patient. As such, we first estimate the phylogenetic trees for each patient, and then determine the order of events

from this. As we only have one tissue sample for each patient, there is often uncertainty in the tree topology and the possible

sequence of events, and so we use a Monte-Carlo sampling scheme in which we sample the trees and sequence of events, and

use these to estimate the distribution of possible orderings through the Plackett-Luce model. Samples with 0 or 1 CNA were not

used in this analysis.

Another issue arises due to censoring, which occurs when the sample is taken before all aberrations that would occur have

occurred, resulting in missing data. These are called partial-orderings in the Plackett-Luce framework, and the general approach

to addressing this is to reformulate the model so that all missing events are implicitly ranked lower than the observed data.20,37

This may not be appropriate for our analysis as we may have multiple subgroups, and we anticipate that distinct aberrations may

have similar or equivalent effects in each subtype and thuswill rarely co-occur despite being indicative of the same type. For instance,

the absence of a very early aberration may be due to the occurrence of another less frequent aberration, so including it at the bottom

of the order would bias the rankings toward more frequent aberrations. As such, our algorithm works in two phases.
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(1) Determine the number of mixture components and assign patients to each component,

(2) Estimate the ordering profiles of each component.

These are distinct as we treat the creation of the phylogenetic trees in a slightly different way in each of these processes to account

for censoring. When estimating the number of components, we calculate trees only using the observed CNAs. However, when esti-

mating the full ordering profiles, we introduce another sampling step into ourMonte-Carlo schemewhere we explicitly sample a num-

ber of additional CNAs with probability proportional to the subclonality of the aberration in tumors of each mixture component. Sam-

pling in this way reduces the bias toward more frequent aberrations.

Assign samples to mixture components
In the first phase, we

(1) Sample phylogenetic trees for each patient,

(2) Sample sequence of events for each patient that are consistent with trees,

(3) Calculate Bayesian Information Criterion (BIC) for 1–10 mixture components,

(4) Repeat steps 1–3 1000 times,

(5) Determine number of mixture components which consistently had lowest BIC score,

(6) Assign patients to mixture components.

The phylogenetic trees are created by initially sorting the CNAs of each patient in descending order of CCF obtained from the

output of the Battenberg algorithm, iterating through them and sampling the possible parents with uniform probability. The CCF

of a parent cannot be greater than the sum of the CCF of their children, so viable parents are defined as ones where their CCF is

greater than that of their current children plus the CCF of the CNA under consideration. The position in the sequence when the

CNA occurred is sampled as any position after the parent, with uniform probability. The ordering estimates and assignment to the

mixture components using the R package PLMIX as this incorporates mixture models and partial rankings (so the absence of a

CNA from a sequence would not penalize its position in the ordering). A vector of assignments was retained for each sample run,

and the final assignment was determined by the most frequent assignment over the course of 1000 runs.

Estimate ordering profiles of each component
In the second phase, we

(1) Sample phylogenetic trees for each patient,

(2) Sample sequence of events for each patient that are consistent with trees,

(3) Augment sequence with additional CNAs to alleviate censorship bias,

(4) Calculate ordering profiles for each mixture component,

(5) Repeat steps 1–4 1000 times,

(6) Amalgamate results to determine final ordering profiles of each mixture component.

The phylogenetic trees and sequence of events were initially determined as before. However, instead of utilizing partial rankings in

the PL model, we explicitly augmented the data with additional CNAs to account for those unobserved due to censorship. The prob-

ability of CNA being added to the sequence of events is equal to the proportion of subclonal occurrences relative to the total number

of occurrences in the subpopulation defined by the mixture component. This can be written as

P
�
~cig

�
=

Nsub

�
cig

�
Ntot

�
cig

� ; (Equation 80)

whereNsubð $Þ andNtotalð $Þ denote the number of subclonal and total occurrences respectively of CNA ci in mixture component g. As

events that are predominantly subclonal have a higher chance of being unobserved due to censorship, this sampling scheme will

mitigate this to a degree. Conversely, events that are predominantly clonal (i.e., early) may be unobserved due to factors other

than censoring, and these have a reduced chance of being imputed. Calculating these values using the patient samples for each

mixture components rather than the entire population means that only CNA subclonality relevant to each subpopulation are consid-

ered. Imputation is performed by drawing a uniform random number, r, for each patient and including the CNA in the set of additional

CNAs for each patient if Pð~cigÞ< r. The set of additional CNAs for each patient are shuffled uniformly and added to the sequence. We

then calculate the ordering for each mixture component individually using the Plackett-Luce model without partial ranking. This pro-

cess is repeated 1000 times and the proclivity for each CNA is calculated and used to create an empirical distribution for proclivity for

each CNA, which are used to create the box-plots in MP Figure 3.

Synthetic data
We generated a synthetic dataset to evaluate our method.We simulated two subpopulations, A andB that each had exclusive sets of

5 ‘early’ and 5 ‘late’ CNAs as well as common sets of 5 early and 5 late CNAs. These can be written as
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EA = fc1; c2; c3; c4; c5g; (Equation 81)
EB = fc6; c7; c8; c9; c10g; (Equation 82)
LA = fc11; c12; c13; c14; c15g; (Equation 83)
LB = fc16; c17; c18; c19; c20g; (Equation 84)
EC = fc21; c22; c23; c24; c25g; (Equation 85)
LC = fc26; c27; c28; c29; c30g: (Equation 86)

We used these sets to simulate the order of the events in each tumor, and then created a set of CCF values consistent with this

order. The main principle in the simulation is that early events will generally occur before late events, but there is no intrinsic order

in the sets of early and late events themselves.

To obtain the set of events for each simulation, Y, we first sampled howmany events occurred by the time of sampling from a Pois-

son distribution, e � Poissð10Þ followed by the subpopulation S to draw from, with pðS = AÞ = pðS = BÞ = 0:5. To reflect the

early/late ordering and exclusive/common nature of the CNAs, we first sampled 5 events (or e events if e< 5) from the pooled set

of common and early events for that subpopulation, PE = fES WECg, without replacement, that is YE4PE ; jYE j = 5. If e> 5, we

then pooled the events that had not been sampled from PE already, denoted here as P0
E , with the set of late events PL =

fLS WLCg and sampled the remaining e � 5 events from this set, YL4fP0
E WPLg. We then randomly sampled the order in which

the events in YE occurred, followed by those in YL. We then sampled how many of these events were clonal, ec, uniformly at random

as assigned these a CCF of 1. To obtain the CCFs values of the subclonal population we ranked the subclonal events, rs ˛ f1;2;.;

esg, and assigned a CCF value as a linear function of their rank CCFk = 1 � rs=ðes + 1Þ.
We created synthetic CCF values for 200 tumors and used these as inputs into our algorithm described above. The BIC scores are

shown in Figure S15A, where twomixture components has the lowest BIC score and so the algorithm has identified the correct num-

ber of subpopulations. These subpopulations were used in to establish ordering profiles, which are shown in Figures S15B and S15C.

We find that the algorithm has correctly identified all of the unique early and late events for each subpopulation, as well as the com-

mon early and late events.

BIC scores for real data
Bayesian Information Criterion (BIC) scores were determined for each mixture component for each of the 1000 runs are shown in

Figure S16. The BIC score was lowest for two mixture components for every sampled ordering, and so this was taken as the value

to use in subsequent analysis.

Statistical model of evotype convergence
We created a statistical model describing how the probability of convergence to the Canonical or Alternative evotypes changes as

genetic alterations accumulate (MP Figure 4D). We assume that the accumulation of such aberrations in each individual tumor fol-

lowed a stochastic process in which the order and relative timing of the aberrations occurred with some degree of randomness/sto-

chasticity. Similar to the Ordering analysis, we utilized a statistical algorithm in which we simulated a number of possible aberrations

consistent with the possible phylogenetic trees, and then estimated the probability that tumors with these aberrations converged to

the Canonical-evotype (the probability of convergence to the Alternative-evotype is 1 minus the probability of convergence to the

Canonical-evotype). As many of the genetic alterations will occur clonally (i.e., with CCF = 1) there is considerable uncertainty in

the order in which they would have occurred. We incorporate this uncertainty into our approach using a method akin to propagation

of errors through Monte Carlo simulation,75 in which we sample (with uniform probability) from the space of possible trees for each

tumor and calculate the probability of tumors with those genetic alterations converging to the Canonical-evotype. Repeating this

random sampling many times provides a distribution of outputs that incorporates the uncertainty arising from our inputs in a princi-

pled fashion, enabling downstream analysis.

Our algorithm is outlined in Figure S17. The algorithm iterates through an increasing number of aberrations (Loop i), performing

several Monte-Carlo repeats of ordering samples (Loop j).

As individual evolutionary trajectories involve the stochastic accumulation of multiple genomic aberrations, is it impossible to

specify each evolutionary route. However, we can determine common modes of evolution by tracking the genetic alterations
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prevalent in tumors at the point of convergence to either evotype in our model. Through this we can identify paths in the probability

density surface plot that correspond to the accumulation of these genetic alterations (black dashed lines, MP Figure 4D), and the

aberrations that distinguish them from each other.

Modeling the stochastic accumulation of genomic aberrations
Wemodel the accumulation of aberrations in a tumor as a Poisson process.76 For each iteration of Loop i we update the mean num-

ber of aberrations xi, this is then used as the input parameter to a Poisson random number generator to draw the number of aber-

rations to be sampled, n, in each iteration of Loop j. We then identified those tumors with sufficient aberrations and selected one with

uniform probability, and used the data for these to sample a phylogenetic tree using the relative CCFs of the aberrations. We then

used the phylogenetic trees to sample an order of occurrence for the aberrations, and retained the first n. The aberrations used

were the SPOP mutations and the CNAs identified in the feature extraction; inter-intra chromosomal breakpoints, ETS status and

chromothripsis are not included as these do not have associated CCFs and therefore cannot be used to determine the order of

events.

We again use the data to calculate probability that tumors with the set of aberrations will be assigned to the Canonical-evotype. For

a set of sampled aberrations, Aj = fa1;a2;.;ang, we identified the patients for which Aj4Pk , where Pk denotes the full set of aber-

rations present in patient k. We can then identify which of these were assigned to the Canonical-evotype. We can now calculate the

probabilities

pðAjÞ =
NðAj4PkÞ
NðPkÞ ; (Equation 87)
pðCanonicalXAjÞ =
NðCanonicalXðAj4PkÞÞ

NðPkÞ ; (Equation 88)

where Nð $Þ denotes the number of tumors that obey the condition in brackets. We can now calculate the conditional probability

pðCanonical��AjÞ =
pðCanonicalXAjÞ

pðAjÞ : (Equation 89)

We performed 100,000 samples and thus obtained 100,000 values for each pðCanonical��AjÞ. We input these values into a nonpara-

metric density estimation scheme usingGaussian kernels with bandwidth 0.025. As we are estimating the probability density function

of a set of probabilities, which are bound at ½0;1�, we ensured support only over this interval using the reflection method.77 We per-

formed this sampling step for xi ˛ f0;0:01;0:02;.;10g; i˛ 1;2;.;1000.

Identifying genetic alterations in the convergent evolutionary trajectories
We used our model simulations to investigate the common evolutionary trajectories involved in convergence to each evotype (black

dashed lines MP Figure 4D) as well as the aberrations that characterize them. In the modeling process, we recorded the order of

genetic alterations for each of the trajectories used to calculate the pdf. We extracted each trajectory that had converged to the Ca-

nonical or Alternative evotypes (i.e., had a pðCanonical��AjÞ = 0 or 1) and assigned these into sets by the number of genetic alterations

in the trajectories i.e., fA1g; fA2g;.; fA10g. We than ran a filtering step for each set where we removed any trajectories that had

occurred in sets corresponding to fewer genetic alterations, meaning we were left with trajectories that only converged to either evo-

type with the final genetic alteration for each set. We can then identify the position and frequency of occurrence of each genetic alter-

ation in each set. The results of this are plotted in the bottompane in Figures S7 andS8 for Canonical- and Alternative-evotype tumors

respectively. Using this information we can calculate the pdf values for frequent combinations of genetic alterations in order, and use

these to create the representative paths through the probability density (black dashed lines; MP Figure 4D).
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