
Automating the Annotation of Data through
Machine Learning and Semantic Technologies

Lorcán Anthony Karel Pigott-Dix

A thesis presented for the degree of Doctor of Philosophy

University of East Anglia

School of Biological Sciences

&

Earlham Institute

September 2023

© This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognise that its copyright rests with the author and that use of any

information derived there-from must be in accordance with current UK Copyright

Law. In addition, any quotation or extract must include full attribution.

Abstract

The ever-increasing scale and complexity of scientific research is surpassing our

means to assimilate newly produced knowledge. Computer tools are necessary

for the organisation, retrieval, and interpretation of new scientific knowledge and

data. The efficacy of such tools requires that research outputs are described by rich

machine-readable metadata. Ontologies provide the framework to unambiguously

describe the meaning of knowledge and data, so that it may be re-used or com-

bined to synthesise new knowledge. However, manually annotating research with

ontology terms, a process called semantic annotation, is also infeasible due to the

aforementioned scale.

This thesis describes research to develop deep learning-based tools for semantic

annotation. The approaches described explore different methods for exploiting the

domain knowledge encoded into ontologies to avoid the need to manually curate

training corpora. They also take advantage of the inherent integrative capabilit-

ies of ontologies, to leverage combinations of heterogeneous knowledge to improve

annotation performance and model interpretability. Several models exceeded pre-

vious benchmarks for semantic annotation in the bio-medical domain. This thesis

concludes with a discussion of the strengths and limitations of the methods, and

the implications for multi-domain ontology semantic annotation and for explainable

artificial intelligence.

i

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.

Contents

Abstract i

Contents ii

Dedication v

Acknowledgements vi

List of Acronyms and Abbreviations vii

List of Figures xvi

List of Tables xvii

1 Introduction 1

1.1 Problem statement . 1

1.1.1 The scale and complexity of modern science 1

1.1.2 Ontologies and annotation . 1

1.2 Thesis overview and contributions 2

2 Background 4

2.1 Probabilistic Artificial Intelligence and Deep Learning 4

2.1.1 Teaching machines to learn 4

2.1.2 Convolutional Neural Nets: Demonstrating the Utility of Deep

Learning . 16

2.1.3 Processing sequences . 24

2.1.4 Large Language Models . 44

2.1.5 Graph Neural Nets . 47

2.1.6 Autoencoders . 49

2.2 Semantic Technology and Ontologies 51

2.2.1 Realising the Semantic Web 51

2.2.2 Linked Data and the Life Sciences 53

2.3 Combining symbolic and neural architectures 56

2.4 Related work . 60

ii

Lorcán Anthony Karel Pigott-Dix

2.4.1 Semantic table interpretation 60

2.4.2 Named Entity Recognition and Biomedical Concept Recognition 62

2.5 Evaluation metrics . 65

3 Heuristic Training Data Creation for Distantly Supervising Se-

mantic Annotators 67

3.1 Beyond string-matching . 67

3.1.1 Reducing the cost of training data annotation 68

3.1.2 Contribution . 71

3.2 Methodology . 71

3.2.1 Generating a noisy training dataset with heuristic labelling . 71

3.2.2 The vanilla Named Entity Recognition Model 71

3.2.3 Incorporating a Discriminative Autoencoder 72

3.2.4 Employing a dimensionality-driven learning strategy 74

3.2.5 Training . 75

3.2.6 Evaluation . 76

3.3 Results . 76

3.4 Discussion . 76

4 Augmenting Neural Dictionaries with Attention for Multiple-

Ontology Semantic Annotation 79

4.1 Introduction . 79

4.1.1 Neural Dictionaries . 79

4.1.2 Attention . 80

4.2 Contribution . 82

4.3 Methodology . 82

4.3.1 Neural Concept Recogniser adapted to use ELMo Word Em-

beddings . 82

4.3.2 Squeeze-and-Excitation . 85

4.3.3 Multi-Scale Self Attention (MSSA) 86

4.3.4 Ontologies . 90

4.3.5 Training . 91

4.3.6 Evaluation . 92

4.4 Results . 92

4.4.1 Identifying Human Phenotype Ontology Terms 92

4.4.2 Influence of the scale regime and the number of self-attention

blocks on MSSA performance 93

4.4.3 Exploring the concept embeddings 93

4.4.4 Impact of ontology concept properties 93

4.5 Discussion . 97

4.5.1 Ontology-based concept extraction 97

iii

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

4.5.2 Adapting transformer-based architectures for training-data-

poor scenarios . 99

5 Incorporating More Sophisticated Symbolic Information into

Neural Dictionaries 100

5.1 Knowledge graphs as model architecture 100

5.1.1 Contribution . 102

5.2 Related Work . 103

5.3 Methods . 105

5.3.1 Data . 108

5.3.2 SAE CNN classifier . 109

5.3.3 Walk-validity classifier . 109

5.3.4 SAE CNN classifier with Meta-Path Encoder 115

5.3.5 SAE CNN classifier and Walk Validity classifier sharing a

Meta-Path Encoder . 119

5.3.6 Training . 119

5.3.7 Evaluation . 121

5.4 Results . 121

5.5 Discussion . 122

6 Critical Assessment of Work 126

6.1 Overview and chapter summaries . 126

6.1.1 Summary of chapters . 126

6.2 Assessment of results . 127

6.3 Conceptual contributions . 128

6.3.1 Interpretability and the validity of assumptions 128

6.3.2 Limitations of architectures 129

Bibliography 132

A Appendix 157

A.1 Chapter 5 . 157

iv

Dedication

This work is dedicated to my mum, Catherine. And of course, to all the haters.

v

Acknowledgements

Foremost, I would like to express my profound gratitude to the Biotechnology and

Biological Sciences Research Council and the UKRI-BBSRC Norwich Research Park

Biosciences Doctoral Training Partnership. Their financial backing has been instru-

mental to my research.

For their advice, support, and encouragement, my appreciation goes to my su-

pervisors: Robert Davey, Felix Shaw, Tony Bagnall, and Wilfried Haerty. Special

mention must also be made of Lowell O’Mard from Research Computing. His ex-

pertise and assistance have been crucial.

Furthermore, I would like to extend my sincere thanks to lab members past

and present: Jazz Urog, Aaliyah Providence, Martin Ayling, Daniel Olvera, Nicola

Soranzo, Simon Tyrell, Anil Thanki, Alice Minotto, Evanthia Samota, Catherine

Knox, Emily Delva, Xingdong Bian, and Toni Etuk. I would also like to thank

the other students at the Earlham Institute. In particular, Becky Shaw, Dasha

Golubova, Sofia Kudasheva, Jess Peers, and Kamil Hepak.

Lastly, I would like to thank my mum for listening to me whinge down the phone

throughout the pandemic, and I would like to thank Mia for listening to me whinge

in person, and neither of them getting sick of me and my whinging.

vi

List of Acronyms and

Abbreviations

ADAGRAD ADAptive GRADient algorithm

ADALINE ADAptive LInear NEuron

ADAM Adaptive Moment Estimation

AGI Artifical General Intelligence

AI Artificial Intelligence

BERT Bidirectional Encoder Representations from Transformers

BGD Batch Gradient Descent

Bi-LSTM Bidirectional Long Short-Term Memory

Bi-RNNs Bidirectional Recurrent Neural Network

BPE Byte Pair Encoding

BPTT Back Propagation Through Time

ChEBI Chemical Entities of Biological Interest

CL Cell Ontology

CNN Convolutional Neural Net

CRF Conditional Random Field

cTAKES Clinical Text Analysis and Knowledge Extraction System

CTC Connectionist Temporal Classification

DAML DARPA Agent Markup Language

DDL Dimensionality-Driven Learning

DisGeNET Disease-Gene Network

vii

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

DO Disease Ontology

ELMo Embeddings from Language Models

GCN Graph Convolutional Network

GELU Gaussian Error Linear Unit

Gene-Disease Association

GloVe Global Vectors for Word Representation

GNN Graph Neural Net

GO Gene Ontology

GO-BP Gene Ontology Biological Process

GPT Generative Pre-trained Transformer

GPU Graphics Processing Unit

GRE Graduate Record Examination

GTN Graph Transformer Network

HGT Heterogeneous Graph Transformer

HMM Hidden Markov Model

HPO Human Phenotype Ontology

ID3 Iterative Dichotomiser 3

LER Label Error Rate

LID Latent Intrinsic Dimensionality

LReLU Leaky Rectified Linear Unit

LRP Layerwise Relevance Propagation

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory

MeSH Medical Subject Headings

MHSA Multi-Headed Self-Attention

MPO Mammal Phenotype Ontology

MPT Meta-Path Transformer

viii

Lorcán Anthony Karel Pigott-Dix

MSMSA Multi-Scale Multi-headed Self-Attention

MSSA Multi-Scale Self-Attention

NCBI National Center for Biotechnology Information

NCBO National Center for Biomedical Ontology

NCE Noise Contrastive Estimation

NCR Neural Concept Recogniser

NER Named Entity Recognition

NLM National Library of Medicine

NLP Natural Language Processing

OBO Open Biological and Biomedical Ontologies

OHPI Ontology of Host-Pathogen Interactions

OIL Ontology Infrastructure Language

PATO Phenotype Attribute and Trait Ontology

PCA Principal Component Analysis

PReLU Parametric Rectified Linear Unit

RAM Recurrent Attention Model

RDF Resource Description Framework

ResNet Residual Networks

RLHF Reinforcement Learning from Human Feedback

RMSProp Root Mean Square Propagation

RNN Recurrent Neural Network

SAE Squeeze-and-Excite

SASA Scale-Aware Self-Attention

SAT Scholastic Assessment Test

SGD Stochastic Gradient Descent

SHAP SHapley Additive exPlanations

SNP Single Nucleotide Polymorphism

ix

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

SPARQL SPARQL Protocol and RDF Query Language

SRNN Simple Recurrent Neural Network

TDNN Time Delay Neural Network

UMLS Unified Medical Language System

URI Unique Resource Identifier

VAE Variational Autoencoder

XML Extensible Markup Language

x

List of Figures

2.1 Overview of the simple neural net. 8

2.2 An illustration of the forward pass to compute the model outputs.

For W1, i represents the element index. For W0, j represents the

column index. 9

2.3 An illustration of the backward pass to compute the gradients for

each weight. For W1, i represents the element index. For W0, i and

j represent the row and column indices respectively. 11

2.4 An illustration of gradient descent using the ADAM optimiser for a

toy neural net which has a two-parameter hidden layer. The yellow-

to-blue surface represents the error surface over the parameter values

w0 and w1. The red arrows represent the direction of the parameter

updates between each iteration. 15

2.5 An illustration of how a CNN-based neural classifier works. A A

set of 4×4 filter kernels, indicated by the coloured matrices, pass it-

eratively pixel-by-pixel across the image. They produce a series of

feature maps which indicate the strength of interaction between each

filter and specific the positions on the image. B These feature maps

are downsampled. Here only the maximum value from each non-

overlapping region of 2×2 pixels is retained. C The downsampled

feature maps are flattened and combined into a single vector, which

is multiplied by a set of parameter weights. Then typically a sigmoid

or softmax activation function is applied to the resultant values to

convert them into classification probabilities. The activation func-

tions have been omitted from this figure for simplicity. 17

2.6 Plots of the Sigmoid, Tanh, ReLU, Leaky ReLU, and their respective

derivatives for values of x between −5 and 5. Here the Leaky ReLU

has an α parameter set to 0.01. 20

xi

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

2.7 An illustration of dropout applied to A neuron activations (as de-

scribed in Hinton et al. [91]) and B parameter weights (Wan et al.

[225]). Black circles depict dropped neuron activations; white circles,

active neurons. Lines between neurons indicate active connections

between neurons. 21

2.8 An illustrative example of an affine transformation in two-dimensional

space of the original shape (blue) into the transformed shape (red).

Differences between areas along the x-axis are accentuated, while

those along the y-axis are compressed. The transformation has also

induced skewness in the shape leading to a change in orientation. This

change in orientation can be understood as a transfer of some of the

variance between dimensions. 41

2.9 The GELU activation function and its derivative. 46

3.1 An overview of the heuristic data generation process. An owl format

ontology and a text document of sentences divided by newline char-

acters are input into the pipeline. The pipeline extracts the ontology

class labels and then matches them to occurrences in the text sen-

tences. Class labels from the ontology that are present in the sen-

tences are then tagged as entities. Note that the data generated is

noisy - only one of the gene names present is correctly tagged. 69

3.2 The architecture of the CNN-Bi-LSTM-CRF Named Entity Recogni-

tion model prior to any modifications. 70

3.3 An overview of the proposed changes to the model: A Indicating

which representations will be used as the inputs to the modifications;

B A visualisation of the error reconstruction method; and C a visu-

alisation of the Latent Intrinsic Dimensionality method. 78

xii

Lorcán Anthony Karel Pigott-Dix

4.1 Overview of the scaled-attention encoder. Each attention block

comprises two layers, a Multi-Scale Multi-headed Self Attention

(MSMSA) layer and a feed-forward (FF) layer. A Inside the MSMSA

layer, the scaled attention heads extract composite semantic signals

from interactions between each token and its context in the input

sequence (see figure 4.2 for an illustration of the operation of the at-

tention heads). Each attention head attends to different regions of se-

mantic space. These composite embeddings are linearly transformed

and then added to the original input to enrich the original embed-

dings with contextual information. B The MSMSA outputs are then

fed into the FF layer. The FF layer allows the outputs of the MSMSA

to be projected non-linearly, and adds these non-linear projections to

the MSMSA output to further enrich the embeddings. These atten-

tion blocks can be stacked multiple times. The intuition here being

that more blocks allows for greater abstraction, as further composite

signals can be extracted from the interactions between embeddings

enriched with composite signals. C After the final block, the en-

riched embeddings are amalgamated into a single vector by summing

element-wise across each dimension, and then scaling the resulting

vector by the square root of the length of the token sequence (ex-

cluding padding tokens). D A final feed-forward (FinalFF) network

non-linearly transforms the semantics of this vector into the semantic

space of the ontology concept embeddings. 83

4.5 The scaling parameter combinations used by the blocks in different

scaling regimes. Each regime was tested by starting with just the first

blocks alone then progressively stacking further layers until finally all

three blocks were together. This was to understand the influence

that the synergy between the scaling parameters and the depth of the

model had upon model performance. Figure originally published in

Pigott-Dix & Davey [172] and reproduced here with permission. . . . 91

5.1 Schema of the merged Human Phenotype Ontology and Gene Disease

Associations, including corresponding Genes and Proteins, from the

DisGeNET knowledge graph. The reified edge Gene Disease Associ-

ation has been simplified into an Associated with edge, rather than

being represented by two edges and a vertex as in the knowledge

graph. 106

5.2 Graph of combined HPO terms (blue), their associated genes (green),

and the proteins (red) that the genes encode for. Plotted using the

Python package igraph (version 0.10.5) [50]. 106

xiii

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

5.3 The frequency of specific edge-type associations between individual

vertices in the graph. Reading from left to right, top to bottom: A

tally of the number of genes associated with each HPO concept, the

number of HPO terms associated with each gene, proteins associated

with genes, genes with proteins, the number of parents an HPO term

has, the number of children an HPO terms has. 107

5.4 Overview of the Squeeze-and-Excite Convolutional Neural Net text

classifier architecture. 109

5.5 The Walk Validity architecture. Vertex embeddings are sampled us-

ing a random walk through the graph, preceded by a special [CLS]

embedding. Adjacency matrices for this subset of the graph are con-

structed for each edge-type. Both the vertex embeddings and their

adjacency matrices are passed to a multi-headed meta-path attention

layer, which updates the embeddings using message passing along

multi-hop meta-paths (this is illustrated by figures 5.6 and 5.7). These

are further transformed using a feed-forward network, and then passed

to a conventional multi-headed self-attention layer, again followed by

a feed-forward network. The embedding corresponding to the special

[CLS] embedding is extracted and passed to the final classification

layer, returning a one if the walk is valid or a zero if it is invalid. Layer

normalisation and the addition of residuals are omitted for simplicity 110

5.6 An illustration of the adjacency matrix selection using soft-selection.

A The softmax scales the kernel elements so that they sum to one.

B The 1D CNN uses this soft-attention kernel to get the weighted

sum of the corresponding elements form each adjacency matrix. C

An illustration of the filter kernel being applied sequentially across

each corresponding element, producing an aggregated matrix. D

Multiple aggregated matrices are combined together into meta-paths

using matrix multiplication. Prior to this combination, each softly se-

lected aggregated matrix is normalised by its row-wise inverse degree

matrix. This normalisation is omitted from this figure for simplicity. 112

xiv

Lorcán Anthony Karel Pigott-Dix

5.7 An illustration of how the multi-headed meta-path attention layer

uses the softly-selected meta-path adjacency matrix to replace the

functionality of the self-attention. A As in the self-attention heads

a parameter matrix linearly transforms the input embeddings into a

different representational subspace. B The adjacency matrices are

combined into a multi-hop meta-path adjacency matrix via soft se-

lection (as illustrated by figure 5.6). C The meta-path adjacency

matrix is used to pass messages between the subspace embeddings,

as opposed to the attention scores computed as the softmax of the

dot-product of the Query and Key matrices in typical Self attention.

D The resultant embeddings outputted by each head are then con-

catenated together before being linearly transformed by a parameter

matrix. 113

5.8 An illustration of the SAE CNN text classifier and a walk validity

classifier sharing graph vertex embeddings. The SAE CNN text clas-

sifier has its dot-product and softmax computed against the entire

set of vertex embeddings, while the walk validity classifier is trained

using sub-samples of the graph, created using random walks. 116

5.9 An illustration of the Squeeze-and-Excite Convolutional Neural Net

(SAE CNN) text classifier, incorporating Meta-Path attention, at

training time. A The SAE CNN architecture extracts signals from the

sequence of word embeddings that represent the natural language de-

scription of a vertex. B The Meta-Path Attention architecture passes

messages between vertices within N -hops of the vertex represented

by the text embeddings. These messages are passed through specific

multi-hop meta-paths, enriching the vertex embeddings with context

encoded by the structure of the knowledge graph. 117

5.10 A walk validity and text classifiers sharing vertex embeddings, the

meta-path attention layer, and its subsequent feed-forward network.

Both models retain their separate graph sampling algorithms. . . . 120

5.11 The softmax of the filter kernels from a single meta-path attention

head after the completion of the text classifier training, with no walk-

validity training. 123

5.12 The softmax of the filter kernels from a single meta-path attention

head after the conclusion of simultaneous walk validity and text clas-

sification training. 123

5.13 The softmax of the filter kernels from a single meta-path attention

head after the conclusion of A pre-training on the walk validity task,

and B the same kernels after the subsequent text classifier training. 123

xv

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

A.1 Histograms tallying the number of unique vertices reachable within

N -hops of every vertex in the graph. The bin size for every plot is 32. 158

A.2 Histograms tallying the number of unique vertices reachable within

N -hops of every Human Phenotype Ontology concept vertex in the

graph. The bin size for every plot is 32. 159

A.3 The softmax of the filter kernels learned by the Meta-path trans-

former, following training on the text classification task. 160

A.4 The softmax of the filter kernels learned by the Meta-path trans-

former, following pretraining on the walk validity task. 161

A.5 The softmax of the filter kernels learned by the Meta-path trans-

former, after both pretraining on the walk validity task and then

training on the text classification task. 162

A.6 The softmax of the filter kernels learned by the Meta-path trans-

former, after being trained simultaneously on the walk validity and

text classification tasks. 163

xvi

List of Tables

3.1 Gold-standard validation metrics for the control and discriminative

autoencoder models. 76

4.1 Ontology combinations used to train models. 91

4.2 The evaluation metrics for each NCR and SAE model benchmarked

on the HPO annotation dataset. The bold font indicates the highest

score for each metric. Table originally published in Pigott-Dix &

Davey [172] and appears here with permission. 93

4.3 The evaluation metrics for each MSSA model benchmarked using the

HPO annotation dataset. The best score for each metric are high-

lighted with bold font. Please note that the first blocks of the 3rd and

5th scale regimes were identical to the first block of the 2nd. 95

5.1 Performance metrics for each model on the HPO concept recognition

on benchmark corpus. The highest score for each metric is indicated

by the bold font. 121

A.1 Metrics for the walk-validity pre-training of the Meta-Path Transformer.164

xvii

Chapter 1

Introduction

1.1 Problem statement

1.1.1 The scale and complexity of modern science

The amount of scientific literature published has been increasing exponentially -

with volumes doubling every 15 years [65]. This surge in productivity has been

accompanied by an ever-increasing deluge of data that is progressively both hetero-

geneous and complex. For example, genomic data includes genetic sequence data

[46], protein structure and function information [47], and phenotype descriptions

[187]. Manually sifting through this heterogeneous data is an insurmountable task.

Computer-based tools that can rapidly find and interpret data promise a remedy.

However, their usefulness depends on the richness of the metadata describing these

data [3].

Metadata is most broadly described as “data about data” [184], it provides

context to a data point, and can be used to combine relevant data to derive new

insights that would be impossible from each data-source in isolation. For example,

Jiang et al. [101] combined heterogeneous biomedical data from different domains

using their metadata to train a machine learning model for predicting molecular

function. Zitnik et al. [256] integrated protein-protein and drug-protein interaction

data to train a model that predicts adverse outcomes from drug combinations. The

integration required domain-specific metadata that ensures that the data sources

were joined using compatible attributes. If the data sources integrated in those

works were not richly described they may not have been combined at all, or may

have been misinterpreted - depriving researchers of the opportunity to derive new

insights or train more powerful models.

1.1.2 Ontologies and annotation

In the last two decades, domain experts in the life sciences have codified their ex-

pertise into ontologies [9, 45, 58, 48, 105, 211, 205]. These ontologies are a type

1

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

of semantic technology, and they describe a particular domain of knowledge using

a formal, unambiguous, machine-readable “structured vocabulary” [61]. They de-

scribe concepts, their properties, and their relationships with other concepts in the

ontology. These ontologies are intended to be used as metadata to describe research

artefacts. Ontology-based metadata clarifies what the data represents, within a

common framework, reducing the friction involved with the reuse and integration

of data. For example, the Human Phenotype Ontology (HPO) describes hered-

itary diseases and phenotypic abnormalities, organising them via super-class and

subclass relations [187]. These relations can be used to disambiguate terms - say

two abnormalities can be shown to be conceptually related. Ontologies provide a

rich vocabulary to annotate research artefacts and knowledge. These annotations

describe and contextualise research outputs for future end-users.

Annotating artefacts with ontology terms is a process known as semantic an-

notation [104]. The ontology term annotations make implicit context explicit [231,

156]. Many proteins share names with the genes that encode them. An annotation

of a name mention can specify whether it is referring to the gene rather than the

protein or vice versa, as complementary genes and proteins often share the same

name [104]. This explicit contextualisation allows computer-agents to behave more

like expert human-agents and “interpret” the semantics of a dataset. To this end,

research funding bodies have begun to require data stewardship plans in grant ap-

plications [26]. This has coincided with efforts to introduce data management best

practices such as the FAIR principles [231]. Introduced by Wilkinson et al. [231]

in 2016, the FAIR principles provide a set of guidelines that knowledge producers

should aim to adhere to when publishing research artefacts to make them findable,

accessible, interoperable, and reusable. These guidelines are heavily centred around

describing artefacts with accurate domain-relevant metadata.

Unfortunately, efforts to annotate datasets have not been as fruitful as those pro-

ducing the data itself. Mons et al. [155] identified a lack of incentive as the cause

of the data annotation “bottleneck”. Measures, such as the guidelines like those

described by Wilkinson et al. [231], do not address this “bottleneck”. Not only

is a high level of domain expertise necessary to annotate datasets to the required

standard, but the scale of the data annotation task far surpasses the capacity of do-

main experts. Especially so when considering that ontologies are works-in-progress

and are continually updated and amended. Even if the task was better incentivised,

computer tools must be developed to automate, or at least expedite, the semantic

annotation process.

1.2 Thesis overview and contributions

This section provides a brief overview of the research undertaken in this thesis, and

outlines its contributions. The aim of the work described in this thesis was to develop

2

Lorcán Anthony Karel Pigott-Dix

deep learning models that could identify ontology terms in literature and tabular

data. Specifically, models that could be easily re-trained to incorporate ontology up-

dates, avoiding as much manual training data labelling as possible. In chapter 2, I

describe the development of deep learning and semantic technologies, followed by an

overview of previous semantic annotation tools. Chapter 3, details the exploration

of using heuristic labelling to create a noisy labelled training corpus. This corpus

was used to train deep learning models which were adapted to exploit the pattern

of noise inherent to the heuristic labels. Chapter 4, describes the development of

deep learning models that exploit the contents of multiple ontologies to train a clas-

sifier without the need for the additional training corpora. This work also explored

how different ontology combinations and architectural modifications influenced the

efficacy of a model. Chapter 5, explores how heterogeneous data sources can be

integrated to improve semantic annotator performance. This chapter also describes

the development of a semantic annotation architecture that can learn to selectively

exploit heterogeneous data, with implications for explainable artificial intelligence.

Finally, chapter 6 provides a discussion of all of the research together, covering its

limitations and advantages. Future work is proposed, with consideration for the

rapid changes that have occurred in the realms of artificial intelligence and text

processing over the course of the last four years.

This work produced novel, relatively low-cost models for ontology-based semantic

annotation which exceeded previous benchmarks. Insights were derived into how

the combination of various domain ontologies can impact model performance, with

implications for multi-ontology semantic annotation. The final empirical chapter

demonstrated how ontology-annotated integrated data can be leveraged to build

a priori interpretability into a deep neural architecture - which greatly enhances

model explainability.

3

Chapter 2

Background

2.1 Probabilistic Artificial Intelligence and Deep Learn-

ing

2.1.1 Teaching machines to learn

In their 1975 Turing Award Lecture, Newell and Herbert [160] described symbols as

being to intelligence as cells are to biology. They argued that qualitative structure

is ubiquitous in science, citing examples from fields as diverse as plate tectonics in

geology, to the germ theory of disease in epidemiology. They termed their position

“the Physical Symbol System Hypothesis”, which posits that symbolic structure is

both the “necessary and sufficient” basis of intelligent behaviour. Further to this,

they characterised intelligence as a search over the space of symbolic representation.

An agent’s ability to learn is considered central to its intelligence [189]. Like

human learning, machine learning is restricted by assumptions, both explicit and

implicit, known as inductive biases [195]. These inductive biases influence, and are

influenced by, how knowledge is represented and can result in some generalisations

being more forthcoming in some contexts and less so in others [195].

It has been argued that Human learning conforms to the symbolic artificial

intelligence (AI) paradigm [115], and that symbolic structures are conducive to rep-

resenting and reasoning over knowledge [159]. However, others have appealed to the

biological plausibility of probabilistic methods inspired by the networks of neurons

that make up the nervous system [188, 66, 115, 196]. This divide, between these

two schools of thought, is no more apparent than in the field of machine learning

[204]. As a result, symbolic methods were more common in early machine learning

research, before greater computational power allowed for the development of more

effective statistical methods.

Symbolic learning Quinlan [178] noted that research into machine learning had

either explored adaptive systems that respond to changes in performance by adjust-

4

Lorcán Anthony Karel Pigott-Dix

ing their parameters, or had characterised learning as a process of building structured

symbolic knowledge. Systems that build structured symbolic knowledge have the

advantage of being much more comprehensible for humans [147]. In the 1980s sym-

bolic knowledge-based systems called “expert-systems” had been devised and had

commercial success [147, 178]. These systems operated using structured knowledge

representations, however Quinlan [178] notes that such representations are time-

consuming and expensive to produce, and refers to the discrepancy between their

production and their demand as a “knowledge acquisition bottleneck”.

To address this, Quinlan introduced the Iterative Dichotomiser 3 (ID3) algorithm

for learning decision trees from data [178]. The algorithm builds features from-the-

top-down, splitting samples using the attribute that provided the largest “Inform-

ation Gain Criterion”. This measure, taken from information theory, indicates the

level of mixture between the classes of the samples divided into two groups by a

given feature. The algorithm recursively selects features that provide the least class

mixture to split the samples of each branch, until all terminal branches contain a

single class or all attributes have been exhausted. This approach creates a classific-

ation model that makes predictions in a structured and interpretable way. However,

the authors note that the more complicated a model, the more “unintelligible to

human experts” it is [178].

Another model, RIPPERk, developed by Cohen [43], leverages both categorical

and continuous scalar features for rule induction. Training data is split 2:1 into

“growing” and “pruning” sets respectively. First, the model progressively adds new

rules, Boolean (true or false) values based upon categorical features or on thresholds

in the scalar features. Like in Quinlan’s ID3 algorithm, a new rule is added depend-

ing upon which provides the greatest information gain criterion, and new rules are

added until every sample in the growing set has been correctly classified, or that the

rule set exceeds a predetermined size which is related to the smallest possible rule

set (the minimum description length). Additionally, the model is prevented from

learning any rule where a relevant attribute is missing from a subset that is being

split, such that it only creates rules where the specified attribute is present for each

sample in the subset in question.

Following the growing phase, the algorithm explores if removing any rule will

improve classification accuracy on the pruning set. Specifically it deletes any rule

from the end of a branch of rules that maximises a function of the proportion of

accurately classified examples in the set. This is repeated, starting from the most

recently added rule working backwards, until pruning does not improve classification

accuracy on the pruning set. This pruning process improves the model’s ability to

generalise to unseen samples.

After the initial growing and pruning phases, the algorithm then optimises the

rule set further. Iterating through the rules, in the order that they were learned, two

new sets of rules are grown and then pruned from each rule, with the objective of

5

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

minimising error over the entire rule set. The rule set with the shortest description

length is chosen from the original and two additional rule sets. This can be repeated

multiple times over the rule set. The authors reported that this approach has better

generalisability and is much more efficient at training than previous rule induction

models [43].

Biologically inspired learning Arguing that the probabilistic view of cogni-

tion seemed more plausible than the symbolic, Rosenblatt [188] introduced a simple

probabilistic model of a neuron, the Perceptron. The Perceptron models neurons

as binary linear classifiers, where the importance of input stimuli are adaptively

weighted through negative/positive feedback stimuli during an iterative learning

process. Rosenblatt [188] suggested that multiple Perceptrons could be combined

together to solve complex tasks. Further to this, he posits that representations could

be distributed across the entire set of neurons, such that the system is afforded a

level of redundancy. The neurons would not depend on specific neuronal pathways,

so that when neurons are lost the entire systems performance is degraded, rather

than that of a specific task.

Similarly, in their 1960 paper (declassified in the late 1970s), Widrow and

Hoff [230] outlined an early approach for machine learning called ADAptive LIn-

ear NEuron (ADALINE). The algorithm iteratively adjusts the model parameter

weight vector to minimise the mean squared error between the model predictions

and the ground truth. It adjusts the weights based upon the correlation between

each element of the input and the error signal, which although not explicitly de-

scribed in this way in the paper, is effectively a form of gradient descent. The

correlation between the error and the inputs is calculated by computing the partial

derivatives of each weight with respect to the mean squared error. These derivatives,

or gradients, are used to update the vector weights. However, like the Perceptron,

as ADALINE was linear and only had a single layer, it could not map complex

non-linear functions.

Inspired by the self-organised development of biological neurons, in particular

retinal neurons, Fukushima developed the Neocognitron [66] (expanded in [67])

which was devised to classify handwritten numerals. The Neocognitron is a multi-

layer, hierarchical image classifier, that can learn to extract features from input im-

ages, combining their signal in higher layers, ending with a classification layer. The

architecture is comprised of three types of “cells”: Simple cells (S-cells), complex

cells (C-cells), and variable inhibitory cells (V-cells). S-cells extract the features,

C-cells aggregate the feature signals of their connected S-cells while also providing

a degree of spatial invariance, while V-cells, added in the 1988 paper [67], ensure

feature extraction specificity. The architecture is explicitly designed to inhibit re-

dundancy in the network and encourage specificity in the features, which stands in

contrast with the generalisability Rosenblatt [188] intended for the Perceptron.

6

Lorcán Anthony Karel Pigott-Dix

Fukushima described two training methods for the Neoconitron, the first being

described as “without a teacher” [66], and the later expansion included a second

“with a teacher” method [67]. Both use a process called “reinforcement of maximum-

output cells”. Here the S-cells perform a local weighted sum of patches of the input.

The connections between the S- and C-cells that produce the largest output are

boosted while the other connections are left unchanged. The author posits that,

in a process similar to Hebb’s rule of neuronal organisation [86], as a connection

becomes stronger, the feature tends to become more specific [67]. According to

Hebb’s rule, often described by the maxim “cells that fire together, wire together”,

frequent simultaneous activation of connected neurons tends to increase the degree

of their connections [86]. Although in the case of the Neocognitron, this specificity

comes at the expense of other feature signals [67], which may not be the case in

biological neurons.

In both training methods, the V-cells are fed an aggregate of the mean feature

signals from all the S-cells connected to a particular C-cell. If the mean features reach

a relative value compared with the maximum feature signal, the C-cell is inhibited

from increasing any connections to the S-cells, thereby promoting the extraction of

specific features. The “with a teacher” method introduces manual control of the

V-cells so that the feature specificity can be adjusted [67].

S-cells and C-cells are conceptually similar to what would become known as

convolutional neural nets [196] - in particular the degree of positional invariance,

the local feature extraction, and global aggregation. Although the network was

deep, the learning algorithm used to train the model is not backpropagation.

In 1986 Rumelhart, Hinton, and Williams [189] published their seminal paper

“Learning representations by back-propagating errors”. This paper, like Widrow

and Hoff, and Rosenblatt before, describes a network of neurons with a learning

procedure for iteratively updating parameter weights of a model to minimise the

difference between the vector of values representing the ground truth and the output

of the model. This iterative learning process consists of two passes. The first, or

forward pass, is the calculation of the output values of the model. The difference

between the model output and the ground truth is computed. For the second,

backward pass, the partial derivative of the error with respect to each weight is

calculated. Each partial derivative is a gradient that represents the sensitivity of

the error between the output and ground truth to a change in the parameter weight.

The chain-rule is then used to recursively calculate the gradient for the weights

in each layer all the way back to the first. While the authors acknowledge that

this method does not conform to “a biologically plausible model for learning in

the brain” [189] (this implausibility has been disputed [115]), it does have some

interesting properties. Chiefly, that it allows a model to represent novel features,

that represent task-specific regularities, within its hidden layers [189]. The type of

architecture used in this paper came to be called a feed-forward network. Feed-

7

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

h0 h1

y

x0 x1

W1
0 W1

1

W0
0,0 W0

1,0 W0
0,1 W0

1,1

Figure 2.1: Overview of the simple neural net.

forward networks are architectures that model fixed-sized inputs to outputs through

an acyclical series of parameter weights [122]. The single-layer Perceptron [188] is

a simple feed-forward network, but typically modern feed-forward networks have

multiple layers of parameter weights [122].

Shavlik et al. [204] compared both the Perceptron [188] and ID3 decision tree

induction [178] against backpropagation [189], across five varied classification tasks.

They found that the backpropagation model tended to outperform both ID3 decision

tree induction and the Perceptron. Backpropagation was more robust to noise, and

its performance was less effected by reduced training data [204].

The modern deep learning paradigm has rested upon backpropagation [196, 122],

which in fact had been discovered independently multiple times throughout the 1970s

and 1980s [122]. This methodology is central to this thesis so I will now describe

the process in more detail using an example.

Consider a simple toy neural network, consisting of one hidden layer, with inputs

of two dimensions. For simplicity this is a completely linear neural net without any

activation functions. This can be described as follows:

h = W0 · x (2.1)

y = W1 · h (2.2)

Where x ∈ R2 is the input vector, W0 ∈ R2×2 and W1 ∈ R1×2 are parameter

weights, h ∈ R2 is the vector of hidden representations, and y ∈ R is the output .

Please see figure 2.1 for a visualisation of the network architecture. To reflect the

8

Lorcán Anthony Karel Pigott-Dix

h0 h1

y

x0 x1

Figure 2.2: An illustration of the forward pass to compute the model outputs. For
W1, i represents the element index. For W0, j represents the column index.

network architecture of figure 2.1 we can reformulate equations 2.1 and 2.2 like so:[
h0

h1

]
=

[
W0

0,0 W0
0,1

W0
1,0 W0

1,1

]
·

[
x0

x1

]
(2.3)

y =
[
W1

0 W1
1

]
·

[
h0

h1

]
(2.4)

Here each element of the parameter matrices represents a specific connection between

two nodes of the network, while each element of the input and hidden layer vectors

represents a specific node. On the forward pass the model output y is computed

during the forward pass, like so:

h0 =
∑
j

W0
0,j · xj = W0

0,0 · x0 +W0
0,1 · x1 (2.5)

h1 =
∑
j

W0
1,j · xj = W0

1,0 · x0 +W0
1,1 · x1 (2.6)

y =
∑
i

W1
i · hi = W1

0 · h0 +W1
1 · h1 (2.7)

This process is visualised on the network in figure 2.2. The error between the

ground truth and the model output is then calculated. For this example the mean

9

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

squared error has been chosen as the error function. This is due to its simplicity to

differentiate. It is defined like so:

E =
1

2
(y − ytrue)

2 (2.8)

Once the model outputs are calculated, we need to measure the sensitivity of

the error to changes in the output of the neural network. To do this we calculate

the gradient of the error function with respect to all the parameter weights in the

network. Firstly, the partial derivative of the error with respect to the model outputs

is computed. This partial derivative, or gradient, tells us how changing the model

output y influences the error. If the gradient is positive, then increasing y will lead

to an increase in the error, decreasing y will decrease the error. If the gradient is

negative, then increasing y will lead to a decrease in the error, while decreasing y

will increase the error. The chain rule is then used to backpropagate the gradient,

layer-by-layer, back through the network to the inputs.

First we compute the partial derivative of the error with respect to y, which is

given by:
∂E

∂y
= y − ytrue (2.9)

Then to measure how a change in the values of W1 influence y, we need to compute

the partial derivative of the error with respect to each weight in W1. To do this we

use the chain rule, which states that given a composite function, such as y = f(x)

and z = g(y), then the derivative of x with respect to x can be expressed as the

product of the derivatives of x with respect to y and of y with respect to z [72]. So

we calculate the product of the partial derivatives of the error E with respect to y

and of y with respect to the parameter weights W1, like so:

∂E

∂W1
i

=
∂E

∂y

∂y

∂W1
i

= (y − ytrue)hi (2.10)

Then to understand how a change to the parameter weights W0 will influence the

error, we need to calculate the partial derivative of each weight in W0 with respect

to the gradient of the weights in W1. Again using the chain rule:

∂E

∂W0
i,j

=
∂E

∂y

∂y

∂hi

∂hi

∂W0
i,j

= (y − ytrue)W
1
i xj (2.11)

Here i and j correspond to the row and column indices respectively. This is illus-

trated alongside the network in figure 2.3 To minimise the error function, which is

the difference between the output y and the ground truth ytruth, the model then up-

dates the value of each weights. The weights are iteratively adjusted during training,

reducing the value if the weight’s gradient is positive, increasing if negative. The ex-

tent to which the weights are updated by is typically controlled by a scalar learning

10

Lorcán Anthony Karel Pigott-Dix

h0 h1

y

x0 x1

Figure 2.3: An illustration of the backward pass to compute the gradients for each
weight. For W1, i represents the element index. For W0, i and j represent the row
and column indices respectively.

rate parameter [245].

Optimisers The process to apply back propagation to train a neural network

used by Rumelhart et al. [189] is called Batch Gradient Descent (BGD). Here the

gradients are computed using the entire training dataset. There are a few limitations

to this approach. If the error surface, or landscape, is highly curved and has many

saddle points, or local minima, a model may not find a globally optimal solution

[123]. Additionally, it may lead to problems when datasets begin to exceed the

memory capacities of the machines training them, which became the case in the

2000s when deep learning methods were increasing in popularity [30].

Stochastic Gradient Descent (SGD), first introduced by Robbins and Monro

[186], was shown to effectively limit memory capacity issues during training [123,

30]. This approach calculates the gradients and updates the parameter weights

iteratively for every example in the training dataset, and is essentially the same as

BGD but for single examples. This approach is noisy due to the updates being the

result of single randomly selected examples, hence the name. However, as it makes

more frequent updates per the number of seen training examples, it can converge

more quickly than BGD, and is much more memory efficient. It has also been

observed to allow the learning process to escape local minima to find deeper minima

11

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[123].

A medium between these two approaches is called Mini-Batch Gradient Descent

[123]. Here the training set is split into batches of randomly selected samples, and the

algorithm updates its weights after seeing each batch. The stochasticity of the batch

samples provides the learning process with some capacity to escape sub-optimal local

minima, while the grouping of samples provides more stability.

Other methods have sought to optimise the learning process through use of

momentum [176] or use previous gradient values to scale weight updates [60, 245].

Momentum was first introduced to the optimisation of iterative methods by Polyak in

1964 [174]. In the context of neural net learning optimisation, momentum adapts the

weight updates so that previous updates have a continued but steadily diminishing

influence on the latest updates. Rather than scaling the gradient by the learning

weights, momentum updates incorporate the current gradients scaled by the learning

rate and a fraction of the previous iteration’s weight update [176]. The parameter

weight updates with momentum can then be described as follows:

vi = βvi−1 + α▽L(wi−1) (2.12)

wi = wi−1 − vi (2.13)

Where vi is the momentum for the current iteration i, scaled by the momentum

coefficient β, α is the learning rate, and ▽L(wi−1) represents the gradient of the loss

function with respect to the parameter weights w for the previous iteration i − 1.

Using momentum has been shown to reduce the noisy learning exhibited by SGD

and to lead to faster convergence than SGD.

The ADAptive GRADient algorithm (ADAGRAD) introduced by Duchi et al.

[60], individually updates each parameter weight during training, by adjusting the

learning rate for each particular weight based upon its historic gradient. To do this

the learning rate is divided by the square root of the sum of all the previous gradients

squared. This can be represented as follows:

Gt =

√√√√ t−1∑
i=0

(▽L(wi))
2 (2.14)

wt+1 = wt −
α

Gt + ε
▽L(wt) (2.15)

Where Gt is the square root of the cumulative sum of squared gradients up to

iteration t − 1 for parameter w, and ε is a small constant to prevent division by

zero. ▽L(wt) is the gradient of weight w at iteration t. This Gt term adaptively

scales the learning rate so that weights that received large gradients, which indicates

stronger beneficial signals, have their updates scaled so they have smaller updates

and change less. Meanwhile parameters with smaller gradients, and thus weaker

signals, receive relatively larger updates, which may encourage them to move from

12

Lorcán Anthony Karel Pigott-Dix

sub-optimal local minima. One limitation is that the Gt term also results in the

learning rate becoming smaller over time, which may lead to a decay in the learning

weights which prevents learning [245]. Another, is that the algorithm must store a

memory of all previous gradients for each parameter, which may become prohibitive

for large models.

Hinton et al. introduced the optimiser Root Mean Square Propagation (RM-

SProp) [90]. Unlike ADAGRAD before, it uses the exponential moving average of

each weight’s squared gradient, rather than the square root of the sum of the squared

gradients of the parameter from all the previous elements to scale the learning rate.

The moving average of the squared gradients for parameter weight w at iteration t

can be formalised as follows:

E[▽L(wt)
2] = ρE[▽L(wt−1)

2] + (1− ρ)▽L(wt)
2 (2.16)

Where E[▽L(wt−1)
2] is the exponential moving average of the previous squared

gradients up to the previous iteration, and ▽L(wt)
2 is the squared gradient for the

parameter weight at the current iteration. The parameter ρ determines the import-

ance the model gives to the previous gradients, as it determines the proportion of

the current exponential moving average that comes from either the previous moving

average or the current gradients. This is used to scale the weight updates like so:

wt−1 = wt −
α√

E[▽L(wt)2] + ε
▽L(wt) (2.17)

Where α is the learning rate, and ε is a small constant to prevent division by zero.

This is intended to prevent continuously large updates for parameters with consist-

ently large gradients, while scaling up the updates for parameters with consistently

small gradients, without requiring to store all previous gradients for each individual

weight in memory. The scaling mitigates the decay problem of ADAGRAD. Addi-

tionally, the decay parameter ρ, which is similar to the β parameter used in mo-

mentum, makes the memory act like a moving window of previous gradients and

weight changes. At each successive iteration older values become less influential,

and as each weight only stores two memory values for each parameter, the memory

footprint is smaller than that of ADAGRAD.

ADADELTA (not an acronym) [245] was developed as an extension of AD-

AGRAD which, like RMSProp, mitigates the weight decay effect by restricting the

scaling of the gradients to a fixed window of previous gradients. This time however,

the scaling is a function of information on previous weight updates in addition to

previous gradients, doing away with the requirement for a learning rate parameter

entirely. This means that the model should learn the optimal learning rate for each

parameter without requiring tuning. The moving average of the squared gradients

is as described in equation 2.16.

13

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

In a similar fashion, ADADELTA also captures the exponential moving average

of the previous squared weight updates for each weight, like so:

E[∆w2
t−1] = ρE[∆w2

t−2] + (1− ρ)∆w2
t−1 (2.18)

Where ∆w2
t−1 is the squared change to the parameter weight at the previous itera-

tion. Instead of scaling a learning rate, both of these exponential moving averages of

the past squared gradients and weights are used to scale the update of the weights,

as follows:

∆wt = −

√
E[∆w2

t−1] + ε√
E[▽L(wt)2] + ε

▽L(wt) (2.19)

wt+1 = wt +∆wt (2.20)

Where ∆wt is the change in the parameter weight, ε is small constant to prevent

division by zero, and ▽L(wt) is the derivative, or gradient, of the loss with respect

to the parameter weight wt at iteration t. If the recent gradients were large but the

weight changes have been small, the algorithm scales the weight update so that it

is smaller. Otherwise if the weight updates have been large but the gradients small,

the weight updates are relatively larger. This should help the model to find better

minima, by allowing it to make large updates to the weights if necessary, but also

preventing it oscillating around minima due to overshoot.

Kingma and Ba introduced Adaptive Moment Estimation (ADAM) [108], which

incorporates the exponential moving average of the past gradients with the expo-

nential moving average of past square gradients. The former, works like momentum

capturing the direction of the gradients, while the latter captures the variability

of the gradient which can indicate if the parameter is oscillating. The algorithm

estimates the exponential moving average of the gradients and squared gradients as

follows:

mt = β1 ·mt−1 + (1− β1) · E[▽L(wt)] (2.21)

m̂t =
mt

1− βt
1

(2.22)

vt = β2 · vt−1 + (1− β2) · E[▽L(wt)
2] (2.23)

v̂t =
vt

1− βt
2

(2.24)

The parameters β1 and β2 are the exponential decay rates for exponential moving

average estimates of the gradients and squared gradients respectively. m̂t and v̂t are

the bias corrected estimates. The bias is corrected to mitigate the effect of the initial

value of the exponential moving averages being zero. Over the course of training the

influence of the bias correction reduces and the influence of the initial zero values

14

Lorcán Anthony Karel Pigott-Dix

Figure 2.4: An illustration of gradient descent using the ADAM optimiser for a
toy neural net which has a two-parameter hidden layer. The yellow-to-blue surface
represents the error surface over the parameter values w0 and w1. The red arrows
represent the direction of the parameter updates between each iteration.

diminishes. These bias corrected terms are then used to update parameter weight

scaled by the learning rate α.

wt+1 = wt − α · m̂t√
v̂t + ε

(2.25)

Where ε is a small constant to prevent division by zero. The authors compared

the effect of using either ADAGRAD, RMSProp, SGD, and ADAM on deep learn-

ing architectures for various tasks, finding that ADAM consistently lead to faster

convergence across the tasks. The authors attribute the superior performance of

ADAM to its abilities to scale-up the gradients for parameters with infrequent up-

dates (similar to ADAGRAD) and to adapt to changes in the error landscape (akin

to RMSProp). Please see figure 2.4 for a visualisation of gradient descent over an

error landscape using ADAM with a toy neural net that has a two-parameter hidden

layer.

15

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

2.1.2 Convolutional Neural Nets: Demonstrating the Utility of

Deep Learning

In the decade following the Neocognitron, LeCun et al. [120] devised an architec-

ture that was also designed for the classification of handwritten digits. Regarded

as being one of the first practical, commercially viable, applications of deep learn-

ing [196]. This three layer model contained many of the attributes we would come

to associate with the Convolutional Neural Net (CNN). The first two layers com-

prised of applying sets of shared weights across the plane of their inputs, spatially

sub-sampling the input using a local receptive field. These proto-CNN layers were

designed to be able to learn specific geometric patterns associated with characters,

while also being invariant to their absolute position within an input image. These

proto-CNNs produce what the authors called a feature map, which is a representa-

tion of the interaction between the shared invariant weights and the inputs. These

two proto-CNN layers were followed by a fully connected layer and an output layer.

Each layer had a scaled hyperbolic tangent function applied to their outputs, as it

was believed to lead to faster model convergence. Once trained the model achieved

a 95% classification accuracy.

In 1998, the paper “Gradient-Based Learning Applied to Document Recognition”

by LeCun et al [121] heralded a step-change in the adoption of Deep Neural Nets over

classical ML techniques. The authors argued that automatic feature learning can

outperform engineered features in pattern recognition tasks, and when coupled with

weight regularisation can be prevented from over-fitting to the training data. They

proposed LeNet-5, a seven layer CNN-based architecture for image classification and

document recognition. The intention was that the CNNs would extract useful local

features automatically, with later layers combining these local features into global

features for classification [121]. This architecture outperformed contemporaneous

optical character recognition methods significantly.

It has been argued that parameter sharing and specific architectural design of

CNNs and their pooling layers make their architecture less prone to gradient vanish-

ing [21]. The convolutional filters are applied across all the possible positions of an

input. When the gradient is calculated for a convolutional filter (or kernel) it is the

sum of all gradients for each position of the input. Additionally, the max pooling

layer ensures that the only the strongest signals from each feature map inform the

calculation of the gradient, mitigating the risk of vanishing gradients. Figure 2.5

provides an illustration of the operation of a CNN, with sliding filters being passed

over an image, with dimensionality reduction using a maxpooling function, leading

to a classification layer.

AlexNet, introduced by Krizhevsky et al. [114], a CNN-based model that is

regarded as the first large deep learning model. Comprised of eight layers: five

convolutional layers, some with max pooling, followed by two fully connected layers

16

Lorcán Anthony Karel Pigott-Dix

Figure 2.5: An illustration of how a CNN-based neural classifier works. A A set
of 4×4 filter kernels, indicated by the coloured matrices, pass iteratively pixel-by-
pixel across the image. They produce a series of feature maps which indicate the
strength of interaction between each filter and specific the positions on the image. B
These feature maps are downsampled. Here only the maximum value from each non-
overlapping region of 2×2 pixels is retained. C The downsampled feature maps are
flattened and combined into a single vector, which is multiplied by a set of parameter
weights. Then typically a sigmoid or softmax activation function is applied to the
resultant values to convert them into classification probabilities. The activation
functions have been omitted from this figure for simplicity.

and finally a classification layer. This paper exceeded all previous attempts at the

ImageNet [55] classification task, and in doing so popularised many techniques now

ubiquitous across the field of deep learning, namely: the use of rectified linear units

(ReLU) as an activation function; dropout during training; and the use of Graphical

Processing Units (GPUs) [122].

Innovation in initialisation, activation, and regularisation The rapid im-

provements in the efficacy of neural nets during this time [196, 122], CNNs at image

recognition in particular, led to a growing interest into deep learning research. In

this period, Glorot and Bengio [70] investigated why deep feed-forward architec-

tures do not have the efficacy of other deep neural architectures. Additionally they

wanted to investigate why models with an unsupervised pre-training phase had been

observed to perform better than those that do not, such as those in the work by

Jaret et al. [99]. Their experiments revealed that the characteristics of activation

functions coupled with the weight parameter initialisation can have a big impact on

the ability of a feed-forward network to learn useful task-related features.

They note that the sigmoid activation function can saturate with low or high

inputs with low and high inputs tending towards asymptotic values [70]. When this

is combined with the common weight initialisation procedure of setting random val-

ues close to zero, this can lead to the vanishing gradient problem. As the error is

backpropagated through the parameter weights the gradient gets diminished with

each consecutive multiplication of the gradients. This results in lower layers being

unable to learn useful features. The authors find that changing the activation func-

17

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

tion to one that does not saturate at zero, such as a hyperbolic tangent function,

can somewhat mitigate this phenomena [70]. Please see figure 2.6 for a plot of the

sigmoid activation function and its derivative.

Glorot and Bengio [70] also postulate that the observed benefit of pre-training

largely derives from understanding the process as a form of weight parameterisation

that avoids the vanishing gradient problem. Pre-training locates the parameters

near “good local minima” that are non-random and have a greater inductive bias so

the model can better learn lower-level features. The authors propose a new weight

initialisation that scales the initial parameter weights proportionally to the number

of input and outputs to a neuron in the layer. This initialisation (later called “Glorot

initialisation”) mitigates the relative advantage given by an expensive pre-training

regimen.

The introduction of rectified non-linear activation functions have been key to

the development of deep learning, in particular CNNs for image classification tasks

[99, 71, 140, 114, 84, 122]. Jarret et al. [99] wanted to understand how different

non-linear functions influence the accuracy of different object recognition models,

that either had hand-crafted, random, or learned feature extraction kernels. They

discovered that the use of activation functions inspired by biological neurons, rec-

tified non-linearities, were the biggest factor in model performance. Additionally,

they found that these type of activations are necessary to adequately learn suitable

feature extraction kernels. The authors argue that this is because the “polarity of

features are often irrelevant to recognise objects” [99].

Rectified non-linearities are defined by their property of rectifying all values

below zero to zero. The simplest rectified non-linearity activation is the Rectified

Linear Unit (ReLU) activation, given by f(x) = max(0, x). Its derivative is either

one when x > 0, or zero. This means that the error is either backpropagated

as-is or not at all, as the derivative of 0 and x with respect to x are 0 and 1

respectively. This mitigates the vanishing gradient effect. In contrast, the sigmoid

function σ(x) = 1
1+e−x has the derivative σ′(x) = σ(x)(1 − σ(x)). The maximum

derivative of the sigmoid function is 0.25 when x = 0.5. This results in an error signal

backpropagated through a sigmoid activation being reduced by at least a quarter -

significantly contributing to gradient vanishing. Nair and Hinton [158] and Maas et

al. [140] found that using ReLU as an activation function led to better performance

on several tasks, when compared with those that used a sigmoid activation. Both

studies also found that as ReLU mitigated the vanishing gradient problem somewhat,

and caused their models to reach convergence much more quickly.

Maas et al. [140] however, noted that there are limitations to using ReLU activa-

tion functions. As mentioned previously, ReLU does not allow the backpropagation

of errors through neurons with negative activations. This means that if a neuron

is always negative during training it will not learn any useful representations and

will not contribute at all to a model [140]. Maas et al. [140] developed a version of

18

Lorcán Anthony Karel Pigott-Dix

ReLU, that came to be called Leaky ReLU (LReLU). LReLU alters ReLU such that

f(x) = αx when x < 0, where α is some small fixed parameter (e.g. 0.01). This

means that negative neuron activations are kept close to zero, while also allowing

for the backpropagation of the error through these neurons. Please see figure 2.6 for

a visualisation of the Sigmoid, Tanh, ReLU and Leaky ReLU activation functions

and their derivatives. Note that the Leaky ReLU appears very similar to the ReLU

activation function except that the derivative for x < 0 is not zero.

He et al. [84] further developed the LReLU so that each neuron had its own

α parameter. This Parametric ReLU (PReLU) adaptively learns the α parameters

for each neuron for the rectifier, optimising them for model performance. Their

experiments showed that lower layers tended to learn a value of α that made the

activations more linear, while deeper layers had smaller values, tending to be more

non-linear. The authors postulate that for feature detection, such as edge detection

or texture detection, negative features can be useful, however later layers need to

discriminate between non-linear combinations of extracted features. The authors

noted that the Glorot initialisation [70] assumes that the weight activations are linear

which is invalid in the case of rectified non-linear activation functions [84]. They

proposed a new weight initialisation, that came to be known as He initialisation,

where weights were sampled from a zero-mean Guassian distribution with a standard

deviation based upon the number of input connections to the layer. Together these

innovations enabled their model to exceed human performance on the ImageNet [55]

dataset [84].

Another important innovation popularised by AlexNet is dropout. Hinton et al.

[91] made the observation that deep neural nets tend to overfit to the training data,

which inhibits their ability to generalise leading to poor performance on predictions

on inputs from outside of the training data. Their proposed solution is a technique

inspired by sexual reproduction [212]. Sexual reproduction is a process whereby two

organisms combine random subsets of their genes. As a result each gene must have

some level of redundancy so that it provides some fitness benefit given various gene

set contexts, reducing the chance that organisms develop complicated fragile gene

processes. This process is emulated by dropout. At each step during training, the

output of a neuron is randomly set to zero with a certain probability. These neurons

are removed or “dropped out” for that training iteration. The remaining neurons’

outputs are scaled proportionally to the inverse of the dropout probability, to main-

tain the absolute magnitude of the input to the next layer. The model is forced to

learn many configurations of neurons, distributed across its architecture, to make a

certain prediction, as opposed to relying on specific neurons for the prediction. Con-

ceptually, the model now behaves like an ensemble of many smaller models, with the

final prediction being an average of all the models’ contributions. Hinton and his

colleagues report that dropout improved the performance of multiple architectures

across different tasks. The models were more robust to noise and could generalise

19

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Figure 2.6: Plots of the Sigmoid, Tanh, ReLU, Leaky ReLU, and their respective
derivatives for values of x between −5 and 5. Here the Leaky ReLU has an α
parameter set to 0.01.

better to data unseen during training [91].

Wan et al. [225] introduced a version of dropout that instead of dropping entire

neurons, drops the parameter weights for fully connected layers, which link the

neurons of one layer to those of another. This means that certain neurons only

receive information from a fraction of the neurons in the previous layer. This has

the effect of helping the model to generalise, while ensuring that each neuron is likely

to be involved with the prediction of each pass. The difference in the character of the

network thinning between dropout applied to the parameter weights versus dropout

applied to neuron activations is illustrated in figure 2.7.

Putting the “Deep” into Deep Learning: Normalisation and residuals

The deeper a network becomes, the more small changes to early parameters can be

20

Lorcán Anthony Karel Pigott-Dix

A B

Figure 2.7: An illustration of dropout applied to A neuron activations (as described
in Hinton et al. [91]) and B parameter weights (Wan et al. [225]). Black circles
depict dropped neuron activations; white circles, active neurons. Lines between
neurons indicate active connections between neurons.

amplified by later layers, as they significantly influence the inputs of the layers that

follow [98, 12]. This phenomenon, where each proceeding layer has to continually

adjust to changes to the distribution of their inputs, is known as covariate shift [98].

Ioffe and Szegedy [98] state that each layer in a neural network benefits from their in-

puts having a consistent distribution, so that the layers learn useful transformations

of the input rather than also compensating for any shifts in its distribution.

As a way of addressing internal covariate shift, Ioffe and Szegedy [98] proposed

batch normalisation. It works by making the outputs of a layer have a mean of zero

and a unit variance (the variance is one), by doing the following: Given a batch, the

mean and variance are calculated for each feature. Each feature corresponds to, for

an image, the same element in a matrix of pixels across all channels and all samples

in the batch. For a batch containing sequences of vectors, then each corresponding

element across all vectors. These batch statistics are an estimate of the global mean

and variance. Each feature then has the mean subtracted, and is then divided by the

21

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

standard deviation (the square root of the variance), which standardises the input.

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
(2.26)

Where x̂(k) is the standardised input for layer k, x(k) is the original input for layer k,

and Var[x(k)] is its variance and E[x(k)] its mean. The model then learns parameters

to scale (γ) and shift (β) the standardised inputs as follows:

y(k) = γ(k)x̂(k) + β(k) (2.27)

With y(k) being the final inputs for layer k. The authors added this learned scaling

and shifting to prevent the inputs of a sigmoid activation being held at the linear

section of the function and thus enforcing linearity. These parameters also allow

the layer to unlearn the normalisation if it is beneficial. During training the model

records average feature means and variances over the entire training set. At infer-

ence time these global feature mean and variance values are substituted into the

standardisation process.

Ioffe and Szegedy [98] applied batch normalisation to an image classification

model, and exceeded the state-of-the-art performance for a non-ensemble model on

the ImageNet [190] dataset. Batch normalisation reduces the influence of the scale

of parameters on the gradients, and reduces the dependence between parameters

and their initial values and makes training more stable. It was found to mitigate

the insensitivity caused by saturating non-linearites such as sigmoid and hyperbolic

tangent. Finally, as parameter changes are less likely to be amplified into sub-optimal

changes to gradients, the learning rate can be increased speeding up training.

Ba et al. [12] noted that batch normalisation has some limitations. Firstly, that

batch normalisation is dependent on the batch size. When the batch size is small the

mean and variance of the features in a batch can vary dramatically when compared

with larger batch sizes which tend to have more stable means and variances. This

impacts use cases where the batch size is small due to memory constraints. Secondly,

having inputs that represent sequences of varying lengths may cause inconsistency

in the application of batch normalisation.

To prevent covariate shift while mitigating the limitations of batch normalisa-

tion in those contexts, Ba et al. [12] proposed layer normalisation. For a given

hidden layer, and the vector of summed inputs of each neuron in the layer a, layer

22

Lorcán Anthony Karel Pigott-Dix

normalisation can be described as followed:

µ =
1

H

H∑
i=1

al (2.28)

σ =

√√√√ 1

H

H∑
i=1

(a− µ)2 (2.29)

Where H is the number of hidden units in the layer, and µ and σ are the mean and

standard deviation of the hidden units of the layer, respectively. While the batch

norm, equation 2.26, computes statistics across corresponding features or hidden

units in the batch, layer normalisation normalises each feature independently. With

layer normalisation each vector in a sequence of vectors, or that each feature map

in an image dataset, is normalised to have a mean of zero and a unit variance. This

makes it invariant to batch size, and running global mean and variance values do

not need to be stored during training.

Ba et al. [12] tested layer normalisation on numerous benching tasks finding

that, for tasks that involve sequence processing, layer normalisation results in faster

training and better performance. However, when compared to batch normalisation in

CNNs for image processing, layer normalisation is sub-optimal and does not perform

as well as batch normalisation.

The depth of neural nets had always been constrained by the observed phenom-

ena of “degragation” whereby deeper networks do not produce as optimal solutions

as shallower networks [85]. He and colleagues [85] argued that if we have two net-

works, one shallow and another deep, the solution found by the shallower network

could be constructed into a deep model by adding layers that behave as an identity

mapping, whereby their input is identical to their output. The implication is that,

hypothetically, a deep model should be able to learn the solution of a shallower

model.

The authors proposed a solution they christened “Residual Connections” [85].

Given the desired underlying mapping of H(x), they describe the stacked non-linear

layers as F(x) := H(x) − x, and so reformulate the layer to H(x) = F(x) + x. In

practice this is achieved by adding the input values of a layer to its outputs. With

this explicit formulation the non-linear layer then learns the difference, or residual

mapping, between its input and outputs. The authors posit that in an exaggerated

case, if the identity mapping did not need to be changed to produce the best output,

then it would be much more convenient for the model to learn to make the outputs

of the layer closer to zero than it would be to learn to reproduce an identity mapping

through a non-linear layer [85].

These residual connections were incorporated into image classification CNNs of

varying depth, called Residual Networks (ResNets), and compared against the same

architectures minus the residuals [85]. A ResNet with 110 non-linear layers achieved

23

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

the best ever score for the CIFAR-10 image classification task [113]. While a ResNet

with 152 layers achieved the best score in the ImageNet image classification chal-

lenge [190] 2015, and a ResNet model achieved 1st place in the Microsoft Common

Objects in Contexts (COCO) object detection challenge [126] 2015 - successfully

demonstrating that residual connections enable deeper models to effectively learn

better solutions than shallower models. ResNets saw wide adoption following their

inception [221, 171].

2.1.3 Processing sequences

Capturing the order in which events happen has long been an interest to probabilistic

AI researchers [189, 62]. While Rumelhart and colleagues’ [189] backpropagation

algorithm made a great contribution to training feed-forward networks, they had

limitations when applied to sequence data [232]. The Recurrent Neural Network

(RNN), and the Back Propagation Through Time (BPTT) algorithm to train it,

were developed to address these limitations [232, 228]. The RNN, as described by

Williams and Zipser [232], is similar to the sequence processing approach suggested

by Rumelhart et al. [189] but without the requirement for a growing memory to

capture information on previous network states. Here the state of the model at

each timestep t is a function of the previous timestep’s input and the outputs of the

timesteps preceding that. The network state, or model output, at timestep t + 1

(yt+1) can be computed like so:

yt+1 = σ (W · concatenate([yt,xt])) (2.30)

Where xt is the model inputs at timestep t, W is the matrix of trainable parameter

weights, and σ represents the logistic sigmoid activation function. This arrangement

prevents the input at time t from influencing the state of the network until time t+1.

Williams and Zipser [232] trained their model starting with the first timestep of

a sequence and progressing iteratively until the last. The partial derivatives of the

weights with respect to the error of each individual timestep were calculated. These

derivatives are used to update the weights. This means that the error of the more

immediate timesteps will tend to dominate the weight updates [20]. In a BPTT-

like setting this can lead to the “vanishing gradients” problem, where the error

signal from previous timesteps diminishes as the sequence progresses - hindering the

learning of long range dependencies [20].

Elman [62] proposed the Simple Recurrent Neural Net (SRNN). The SRNN

consist of input and output layers, and an internal hidden layer that is connected

to a hidden context layer which stores the hidden layer from the previous timestep.

The input layer transforms the input of a timestep into the representational space

of the hidden layer. The hidden layer passes information to the context layer, while

the context layer passes task specific information, from the previous timestep, back

24

Lorcán Anthony Karel Pigott-Dix

to the hidden layer. Finally the output layer converts the hidden representation into

the output space. The sequential processing of inputs combined with the context

layer, which behaves as a memory, allows the model to learn to capture beneficial

contextual information and transmit it between timesteps. The architecture can be

defined as follows:

ht = f (Wh · ht−1 +Wx · xt) (2.31)

yt = g (Wy · ht) (2.32)

Where ht is the hidden state vector, ht−1 the context vector, xt the vector of inputs,

and yt is the vector of outputs all at time t. Both f(.) and g(.) are non-linear

activation functions. Wh, Wx, and Wy are the trainable parameter weights for

passing information from the context vector to the hidden layer, the current input

vector to the hidden vector, and the hidden vector to the output respectively.

Elman’s [62] experiments showed that the model could be used to predict the

next word in a sequence, and was sensitive to dependencies between timesteps as

demonstrated by the model appearing to learn grammatical structure. These find-

ings brought attention to the value of capturing temporal context in neural networks

designed for sequential data. Although the SRNN can capture dependencies between

different elements in a sequence, they still struggle with longer range dependencies

as the more numerous short range dependencies tend to dominate the gradients [20].

In 1997, expanding on the RNN, Hochreiter and Schmidhuber [92] introduced the

Long Short-Term Memory (LSTM) architecture. Prior to this, using back propaga-

tion to train RNNs tended to result in the gradients “blowing up” (becoming so

large as to swamp any meaningful weight updates) or “vanishing”. The reasons for

this become clear if you conceptualise an RNN as a very deep network, that uses

the same layer repeatedly, with the first timestep’s input passed to the second layer,

the second output passed to the third layer with the previous layer’s information

through the context layer and so on. As a result, prior sequence processing models

would struggle to maintain representations of useful information for later steps in a

sequence.

The LSTM mitigates this problem by using a system of memory cells and gates

that control the flow of information into, and out of, the cells [92]. These gates

consist of: an input gate which determines how much of the current step’s input

representation should be permitted into the memory cell; and an output gate which

determines how much of the current memory cell’s internal state should be passed

to the next layer of the LSTM. I will now formally define the architecture. Firstly,

the input gate, it, at time t:

it = σ(Wi · concatenate([ht−1,xt]) + bi) (2.33)

25

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

The new memory cell, ĉt:

ĉt = tanh(Wc · concatenate([ht−1,xt]) + bc) (2.34)

To update the cell state, ct:

ct = it ⊙ ĉt (2.35)

The output gate, ot:

ot = σ(Wo · concatenate([ht−1,xt]) + bo) (2.36)

Finally to update the hidden state, ht:

ht = ot ⊙ tanh(ct) (2.37)

Where ⊙ signifies element-wise multiplication, the W matrices are the trainable

parameter matrices and b the biases for each specific function. xt is the vector of

inputs at time t. tanh(.) and σ(.) represent the hyperbolic tangent and sigmoid

activation functions respectively. Depending on the task either the hidden repres-

entation for the final timestep is, or some function of all timesteps are, passed to a

further classification layer.

The results of Hochreiter and Schmidhuber’s experiments [92] showed that the

LSTM outperformed traditional RNNs on a number of sequence processing tasks.

This is likely due to the LSTM’s ability to more effectively remember previous

timesteps. Although the LSTM is good at ordering timesteps relative to each other,

it struggles with capturing information on the specific hops between timesteps. The

authors posit that the memory cells ensure that, although the error is not back-

propagated across timesteps, error signals can be held indefinitely [92]. The series of

gates allows the model to limit the influence of both irrelevant inputs on the hidden

state and of irrelevant memories on the output, while also mitigating the vanishing

and exploding gradient problems associated with previous RNN models [69].

Gers et al. [69] identified another shortcoming of the LSTM: the memory cell

vector has been observed to grow linearly from the start of the first sequence it

is exposed to during training and onward [69]. This means that the activation

functions of various gates can become saturated as the values grow, even if a new

sequence is passed to the LSTM. Eventually, the saturation of the memory cell

effectively prevents it from influencing the processing of the sequence. Gers et al.

[69] proposed the “forget gate” so that the LSTM can learn to flush the contents of

the memory cell when their contents becomes irrelevant. Their forget gate, f(t) at

time t, can be described thusly:

ft = σ(Wf · concatenate([ht−1,xt]) + bf) (2.38)

26

Lorcán Anthony Karel Pigott-Dix

They also amend the memory cell update:

ct = ft ⊙ ct−1 + it ⊙ ĉt (2.39)

Gers and colleagues’s experiments [69] showed that the LSTM could now effectively

reset its memory cell at the beginning of a new sequence without being informed by

some hand crafted cue or external intervention. The LSTM with a forget gate could

solve problems that an LSTM without a forget gate could not, in particular those

involving continual prediction such as predicting the next token in a sequence [69].

Schuster and Paliwal [199] introduced Bidirectional RNNs (Bi-RNNs), which

comprise a combination of a forward and a backward RNN. Given an input sequence,

both the forward (timestep 0 to T) and backward (T to 0) RNNs compute outputs

for each timestep in the sequence. The hidden states of the positive RNN are

not seen by the negative and vice versa. However, their output representations

are concatenated together. This means that at inference time the output encodes

information from across the entire sequence. Although the RNNs do not see each

other’s hidden states, the backpropagation along the separate RNNs is informed by

a loss that takes account of the entire sequence. When tested on a synthetic task,

plus phoneme classification and speech recognition tasks, the Bidirectional RNNs

out performed single-directional RNNs. This demonstrated that past and future

information can be leverage to improve model performance.

A study by Graves and Schmidhuber [74] explored different architectures for the

task of phoneme classification, including one incorporating a Bidirectional LSTM

(Bi-LSTM), a typical LSTM, feed-forward networks, a type of network called a Time

Delay Neural Network (TDNN), RNNs, and Bi-RNNs. The Bi-LSTM is similar to

the approach outlined for RNNs by Schuster and Paliwal [199], however the authors

here also stacked Bi-LSTMs on top of one another so that there were multiple

hidden layers, with the first LSTM processing the inputs, and subsequent LSTMs

processing the outputs of the previous LSTM [74]. They also did the same with

the Bi-RNNs. Audio data was split into frames and the architectures classified the

sequences of frames into different phoneme types. The Bi-LSTM outperformed the

other architectures significantly, and converged to a solution an order of magnitude

more quickly than the next best performing architecture the Bi-RRN. The authors

also found that training a Bi-LSTM twice, once with a weighted error function and

then again with typical cross-entropy error, improved the performance of the model.

The authors believe this helps the model to climb out of local minima. Additionally,

the wider the context window that the model had access to, the better the models

performed.

A limitation of sequencing labelling algorithms, including RNNs and LSTMs, is

that they often require the sequence to be segmented appropriately prior to labelling,

which in turn requires some understanding of which input features correspond to

27

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

output features, a process called alignment [75]. Acquiring the necessary information

to align the segments may not be trivial, limiting the applicability of these models

[75]. Graves and colleagues [75] identified that this limitation arises due to the loss

being computed independently for each step in the series, rather than simultaneously

with respect to each others labels. This means that dependencies between labels that

may be inherent in the sequence data may not be learned. The authors proposed a

remedy to this limitation, Connectionist Temporal Classification (CTC) [75], which

treats the model outputs as a probability distribution over all possible sequences of

labels given an input sequence. This allows the model to learn implicit associations

between the labels of a sequence without the need for the sequence data to be

segmented prior to learning.

The authors [75] formulate the problem like so: Given a set of training examples

S comprising the vectors of input features X and the set of labels Z. The samples

in S are pairs of input sequences and label sequences (x, z). The input sequence is

at least as long as the label sequence but usually longer, so the sequences cannot be

aligned practically a priori. Given a test set S′, containing examples not included

in the set S, the authors define an error function, the Label Error Rate (LER). This

function can be described as a length normalised edit distance between predicted

and ground truth labels:

LER(h, S′) =
1

|S′|
∑

(x,z)∈S′

ED(h(x), z)

|z|
(2.40)

Where h(.) is the sequence classification model, and |S′| and |x| are the number

of samples in the test set and the number of steps in a sequence respectively.

ED(h(x), z) represents the edit distance between the model outputs and the ground

truth labels, which is a count of the minimum number of individual changes to

transform the output of the model into the ground truth.

During training the raw outputs of each step in the model are converted into

probabilities over all possible segment labels using the softmax function. The prob-

ability of a label k at a given step t is P (k|t), which is computed as the softmax over

the network outputs at step t for the index of label k. Additionally, the algorithm

learns the total probability of observing the label sequence preceding and including

step t and its label k, and the analogous probability for the remainder of the la-

bel sequences from s and k onward. How CTC incorporates the probability of the

preceding sequence of labels using recursive functions can be simplified as follows:

αt(s) = αt−1(s) + αt−1(s− 1) (2.41)

Ct =
∑
s

αt(s) (2.42)

ˆαt(s) =
αt(s)

Ct
(2.43)

28

Lorcán Anthony Karel Pigott-Dix

Where s represents the index of the output label sequence. Here αt−1(s) represents

the probability of the previous step in the input t − 1 and the current input step t

both aligning with the same output index s, while αt−1(s− 1) is the probability of

the current and previous steps aligning to different labels in the output sequence.

Similarly, the probability of the sequence of labels for the remainder of the sequence

can also be simplified as:

βt(s) = βt+1(s) + βt+1(s− 1) (2.44)

Dt =
∑
s

βt(s) (2.45)

ˆβt(s) =
βt(s)

Dt
(2.46)

Iteratively dividing by the sum of probabilities for each possible output label at

step t is meant to ensure that the probabilities do not become vanishingly small

when they are multiplied together recursively - to avoid underflow. Finally the total

probability of a set of output labels given a model output is defined as followed:

P (z|x) =
∑
t

α̂t(s) · β̂t(s) · P (k|t) (2.47)

Which is the combined probabilities of the label, given the preceding and proceeding

labels, and the model outputs, at step t.

In experiments they compared a CTC RNN and a CTC LSTM, which were

trained on unsegmented data, against both a Hidden Markov Model and one com-

bined with a Bi-LSTM, trained on segmented data [75]. These models were evalu-

ated on a phonetic labelling task, which is a type of speech recognition task. The

best CTC models performed as well as the best performing Hidden Markov models,

however they did not require the input data to be manually segmented. This work

demonstrated that neural models can classify raw sequence data directly without the

need for manual feature engineering, learning to implicitly segment the data dur-

ing training. This is particularly valuable in task such as handwriting recognition

or speech recognition, where specific boundaries between the features represented

across multiple steps can be ambiguous.

Neural Language Modelling Sequence-based neural networks developed in tan-

dem with neural representations of language [22, 151, 152, 214]. Earlier models of

language typically centred around modelling the conditional probabilities between

n-grams, n-length sequences of co-occurring words, and the next word in a sequence

[22]. Bengio et al. [22] noted that these models soon face problems due to the

“curse of dimensionality”. This was illustrated by an example they gave: If using

these approaches to model the joint distribution of 10 words in a sequence, with a

vocabulary of 100 000 words, then there may be as many as 1050−1 model paramet-

29

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

ers [22]. Additionally, these models cannot compute any probabilities for a sequence

containing words from outside the fixed vocabulary.

As a solution, the Bengio and colleagues [22] proposed a neural network-based

language model. For a given vocabulary V , and a training set comprised of word

sequences {w1, ..., wT } where wt ∈ V . The model can be defined as:

f(wt, ... , wt−n) = P̂ (wt|wt−1
1) (2.48)

Where f(.) is the learned model, and P̂ (wt|wt−1
1) is log probability of the word wt

given the preceding sequence wt−1
1 .

The authors divide this function f(.) into two parts: Firstly, a function for

mapping each word in the vocabulary to a distributed feature vector. This vector,

or embedding, represents the semantics of the word as a point in continuous vector

space. Secondly, a function for computing the probabilities of each word in the

vocabulary being the next word in the sequence. In this case, the function is a

feed-forward network.

In essence, the model takes an input of word embeddings and outputs a vector.

This vector is compared with all the embeddings of the words in the vocabulary

by computing the dot-product between this vector and the embeddings. The log-

softmax of the resultant vector of dot-product logits converts it into a vector of log

probabilities, where the ith element of the probability vector corresponds to the

probability of the ith word in the vocabulary. During training the model aims to

maximise the log probability of the correct word by learning to produce a vector

that is in close vicinity to the embedding of the correct word. Out of vocabulary

words are represented by averages of the known words in the sequence. The authors’

experiments [22] showed that this neural language model could predict the next word

in a sequence with more accuracy than a contemporaneous n-gram-based method.

Mikolov et al. [151] applied the Elman RNN [62] to the task of language mod-

elling, replacing the feed-forward networks used in previous works like Bengio et al.

[22]. The RNN has some noted advantages over the feed-forward network. Whereas

for the feed-forward one needs to determine the size of the layer that transforms

words into dense embeddings, the size of the hidden representations, and the size

of the context window. For an RNN, only the hidden representation size needs to

be considered. The authors also note that it took six hours to train the RNN im-

plementation on a dataset for which it took Bengio’s feed-forward network 113 days

[151].

In their experiments, Mikolov et al. [151] found that RNN-based language models

significantly outperformed the contemporary state of the art - even when the other

models were trained with a hundred-times greater volumes of data. This, the authors

argue, shows that language models can be improved through architectural changes

rather than just collecting more training data. Which, they add, aligns language

30

Lorcán Anthony Karel Pigott-Dix

modelling more closely with the machine learning field.

Mikolov and colleagues [152] later proposed various improvements to the RNN

language model. One of the improvements centred around categorising words in the

vocabulary into classes. Here, each word is assigned to one class, and the model

is adapted to produce a vector for representing the class the word belongs to, in

addition to the vector representing the predicted word. Each class is represented

with an embedding, and is associated with particular indices of the matrix of word

embeddings, representing the words that belong to this class. This means that the

model can estimate the probability over classes given the context, and then estimate

the probability over the words in that class, given the context. This is known as a

hierarchical softmax, where the probability of a word given its context becomes:

P (wi|context) = P (cj |context)P (wi|cj , context) (2.49)

Where cj is the jth class, and wi is the ith word in the vocabulary of the jth

class. This means that at prediction time the model only has to compute the most

similar class from a reduced number of class embeddings, and then look up the

most similar word embedding from that class’ subset of the vocabulary. This could

potentially greatly reduce computational complexity, with Mikolov and colleagues’

[152] experiments showing that there were trade offs between model performance

and prediction latency. A greater number of word classes lead to better model

performance, while after a certain number of classes it increased the time taken to

compute a prediction.

Another improvement involved the creation of an ensemble of RNN models. Here

the outputs of multiple RNN models were linearly interpolated. This means that the

predictions of each model were combined using a weighted sum, where the coefficients

of each models prediction were learned parameters. Linear interpolation resulted in

significant improvement in model performance [152]. This work demonstrated again

the importance of architectural design on model performance.

Sundermeyer et al. [214] also used a type of recurrent network for language

modelling. However noting the limitations of the RNN, the authors opted to use

an LSTM which incorporated a forget-gate as in Gers et al. [69]. The LSTM

was incorporated into an architecture that included a set of trainable parameter

matrices: an input projection matrix, a word class classification matrix, and a word

classification matrix. The separate word class and word classification matrices are

to compute a hierarchical softmax as in Mikolov et al. [152]. Their model also used

one-hot encoding vectors to represent each word in the vocabulary. These one-hot

encodings are vectors which have a dimensionality equal to the vocabulary lengths.

They are all zeros except for a one at the index that corresponds to the index of the

specific word in the vocabulary.

The input matrix linearly projects the context words’ one-hot encodings into a

31

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

dense vector space. In practice, this means that the rows of the input projection

matrix, at the indices that correspond to the index of each context word in the

vocabulary, are extracted. Each row of the parameter matrix represents a word’s

embedding. The dense vectors of the context words are iteratively fed into the LSTM

to compute the hidden layer representation of the step corresponding to the word

to be predicted. This hidden representation is then multiplied by the word class

classification matrix followed by a softmax function. The resultant vector repres-

ents a probability distribution over the classes. The same hidden representation is

then multiplied by the word classification indices corresponding to the correct class,

and again the outputs are passed to a softmax function so that they represent a

probability function over the word in that class.

During training, the model learns to maximise the probability of the correct

word, given the correct class and the preceding words. The author’s experiments

showed that the LSTM language models, as for other tasks, see improvement over

the performance of typical RNNs at language modelling [214].

Mikolov et al. [150] noted that training a neural language model also leads to the

learned representations of words in continuous vector space, or word embeddings.

These word representations can be used to great effect as inputs for other unrelated

tasks. Mikolov and colleagues investigated how these word embeddings captured the

syntactic and semantic patterns that made them so useful for downstream tasks.

To understand the syntactic patterns, they tested the word embeddings from an

RNN language model using a series of analogy questions. These analogy questions

comprised the form “a is to b what c is to ”, comparing simple adjectives with their

comparative and superlative forms, singular nouns with their plurals, possessive

nouns with their non-possessive versions, and simple present tense verbs with their

third-person and past tense forms. To test the semantic information encoded into

the word embeddings, the authors use another analogy task from the second task of

SemEval-2012 [185]. This time the semantic similarity of word pairs is used to rank

them in the order that the word-pair relationship analogy holds.

For both of these tasks, the authors assume that a simple vector offset suffices

to capture the relationship between two words. Whereby all embeddings are nor-

malised to a unit absolute sum, and they compute y = xb − xa + xc, where y is

the representation of the word we expect to best answer the analogy question, and

xb represents the word embedding for word b and so on. As y does not precisely

represent the answer, the cosine similarity is used to find the most similar word

embedding out of the entire matrix of word embeddings xw like so:

xd = argmaxw

(
xwy

||xw|| ||y||

)
(2.50)

The cosine similarity is a measure of angular distance. The argmax is a function

which returns the index of the element with the highest vector, indicating the vocab-

32

Lorcán Anthony Karel Pigott-Dix

ulary index of the most similarly represented word. The embeddings produced by

the RNN model performed as well as the next best method for the syntactic analogy

task, while they far outperformed all other methods for the semantic analogy task,

despite not being trained for this task [150]. This paper demonstrated the utility

of unsupervised training for creating rich dense vector embeddings of words, that

reliably capture the syntactic and semantic relationships required for downstream

tasks.

After previously establishing the usefulness of language models and their word

embeddings, Mikolov et al. [149] noted that RNN-based language models tended to

be computationally expensive to train. So they explored if architectural design could

be altered to improve computational efficiency of training, without compromising on

embedding quality, so that models could feasibly be trained on much larger corpora.

Both models are a simplification of the Neural Language Model by Bengio et al.

[22].

Here they introduced the Continuous Bag-of-Words model and the Continuous

Skip-gram model [149]. The Continuous Bag-of-Words model is trained to predict a

word from its context. It does this by first representing every word in the vocabulary

as a hot-hot encoding. As in Sundermeyer et al. [214], these are used to retrieve

the context words’ embeddings. These embeddings are then averaged into a single

vector. The dot product of this vector and the classification parameter matrix is

computed, transforming the vector so it has a dimensionality equal to the vocabulary

size. This vector is passed to a softmax classifier to compute the probability of each

word in the vocabulary. This outputted probability of the correct class is then used

to calculate the loss.

The Continuous Skip-Gram model runs this process in reverse [149]. To train

this model a word’s context is predicted from that word. As before, the one-hot

encoding is used to extract the word’s embedding from the input parameter matrix.

Then, for each word in the context, this vector is transformed into a vector that has

the dimensionality equal to the vocabulary size using a separate parameter matrix.

These are then transformed into probability distributions using the softmax function,

and the probability of each word in the context is separately used to calculate the

loss.

These training processes produce word embeddings whose semantic and syn-

tactic properties exceeded that of those learned by RNN language models. These

embeddings were used for tasks as described before in Mikolov et al. [150], with both

models significantly outperforming previous approaches. These approaches would

come to be know as word2vec [168].

Mikolov et al. [148] further improved the word2vec algorithms. As an alternative

to the hierarchical softmax they proposed instead to use a negative sub-sampling al-

gorithm based upon the Noise Contrastive Estimation (NCE) algorithm by Gutman

and Hyvärinen [79].

33

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

NCE converts a multiclass classification problem into a binary classification task,

simplifying the learning process [79]. During training with the NCE algorithm the

log-softmax of the sub-sample is calculated and then weighted by the sample probab-

ility of each class in the sub-sample. This weighted log-softmax is used to calculate

the loss. In this subsample, one class is correct while the others are incorrect. The

model thus learns to distinguish between the positive class and the “noise” (the

negative samples). Gutman and Hyvärinen [79] showed that the sample log-softmax

approximates the full softmax scores of a sub-sample of the total classes, with more

samples in a sub-sample leading to a better approximation.

Mikolov and colleagues [148] realised that they did not need to approximate the

full softmax across all classes, as ultimately they were not training a classification

model. Instead they just needed the model to learn to distinguish the true positive

classes from the negatives. Their Negative Sampling algorithm simplified the NCE

algorithm so that the model just learned a binary classification task without approx-

imating the full softmax. In the continuous skip-gram case, rather than comparing

the predicted context words against all the word classes, the predicted words were

compared against a subset that included the positive class and sampled negatives.

These negatives were sampled with proportions inversely related to their frequency

in the training corpus, with rarer words more likely to be sampled.

Word2vec was extended by Le and Mikolov to create doc2vec [119]. Doc2vec

adapts both the skip-gram and continuous bag of words methods so that they also

generate vector representations of documents in the same space as the words, regard-

less of the document length. A vector is learned for each document in the training

corpus. During training the document vector is included in the context of each

prediction, either using the context words’ vectors plus the document vector to pre-

dict the missing word, known as distributed memory (DM), or by a method which

uses a word vector and the document vector to predict the context words, called

distributed bag of words (DBOW). After the conclusion of training, a previously

unseen document can have its embedding inferred by fixing the word embeddings

but adjusting a new document vector so that the model makes the correct word

predictions. The document vectors can be used for document similarity, clustering,

or classification tasks.

Pennington et al. [168] introduced the Global Vectors for Word Representation

(GloVe) model, aimed at combining context window-based language models, like

the word2vec algorithm [149], with those that rely on global word co-occurrence

statistics, such as Latent Semantic Analysis (LSA) [53]. Firstly, a global word co-

occurrence matrix C is computed. Here Cij is a count of the number of times word

j appears in the context of word i in the corpus. The GloVe algorithm works by

carrying out a kind of matrix decomposition. It tries to learn word embeddings that

satisfy this expression:

w⊤
i · w̃j + bi + b̃j = log(Cij) (2.51)

34

Lorcán Anthony Karel Pigott-Dix

Where wi is the ith word’s embedding from embedding matrix W, and w̃j is the jth

word’s embedding from the separate W̃ embedding matrix. Both b are bias terms

for their corresponding words and embedding matrices. To do this, during training

the loss function is given by:

L =
V∑

i,j=1

f(Cij) · (w⊤
i · w̃j + bi + b̃j − log(Cij))

2 (2.52)

Where V is the number of words in the vocabulary, and f(.) is a weighting function

which scales the influence of rare word co-occurrences on the loss value L. So

rather than decomposing the co-occurrence matrix into two matrices directly, the

model learns word embeddings that capture global co-occurrence statistics, while

also learning the statistical properties of words and their local contexts. When

applied to the same word analogy and similarity tasks as the word2vec skip-gram

and bag-of-words models, GloVe embeddings performed significantly better [168].

Bojanowski et al. [27] noted that as neural language models tend to treat words

as atomic objects, ignoring sub-word morphology, they are not well predisposed to

representing languages that have lots of noun cases or where verbs have multiple

forms. Additionally, these models have difficulty representing out of vocabulary

words. The authors outlined a sub-word-aware word embedding model, based on the

skip-gram word2vec algorithm of Mikolov et al. [149]. Here, each word is represented

by the character n-grams it contains. Each word also has word boundary markers

< and > appended to the start and end of each word respectively. For example the

word apple would be represented by the character n-grams, when n = 3, by <ap,

app, ppl, ple, le>, and finally by a special <apple> token. The authors specify that

they split a each word in to character n-grams for n ∈ {3, ... , 6}. Each of these

tokens is represented by a vector embedding, and the full word is the represented

by the sum of the embeddings of the sub-word tokens it contains [27]. Otherwise,

the training procedure is the same as described in Mikolov et al. [148] and uses

both the skip-gram and bag-of-words algorithms from Mikolov et al. [149]. Again,

the word embeddings produced by the model are evaluated with word similarity

and analogy tasks, and compared against the original word2vec implementations.

The model achieved the state of the art performance on both tasks[27]. The model

demonstrated particular improvement on representing rare words, and in languages

with greater sub-word morphology.

Word embedding models typically only have one representation per word [22,

151, 149, 168, 27]. However, the meaning of a word can change depending on the

context. A word with multiple meanings is polysemous. Peters et al. [171] proposed

a language model, with contextualised word embeddings, called Embeddings from

Language Models (ELMo), which also captures sub-word information. The model

consists of a character-level CNN extracts sub-word features from the words, these

35

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

features are passed to a two-layer Bi-LSTM with residual connections. During train-

ing the objective function is to predict a word given the rest of the sequence, with

one LSTM looking backwards, the other forwards.

Once the model is trained, the Bi-LSTM and character-level CNN weights are

frozen. The model can then be used to produce contextualised embeddings for

downstream tasks. These contextualised embeddings consist of the character-level

features extracted by the CNN concatenated with the weighted sum of the hidden

representations from both layers of both LSTMs for each token. The weights for the

weighted sum are trainable parameters that can be tuned for downstream tasks.

When applied to various downstream tasks, ELMo improved error rates from

between 6 and 20%. These tasks included question answering, textual entailment,

semantic role labelling, co-reference resolution, named entity extraction, and senti-

ment analysis. The author’s analysis suggested that the lower hidden representa-

tion captured more syntactic information, while the upper representation captured

greater semantic information [171].

Machine Translation LSTMs were found to be particularly suited for language

translation [215, 41]. Sutskever et al. [215] used a model comprising of four stacked

LSTMs to the task of language translation. The input sequence would be followed by

the target sequence separated by a special end of sentence token. The model learns

to iteratively generate the correct next word from the inputs plus the previously

generated words. At inference time the model employed a beam search. This means

that at each step the model generates the k most likely outputs, selecting the most

likely sequence once the maximum length or the end of the sentence token has been

generated for all the sequences.

Cho et al. [41] incorporated an explicit encoder and decoder structure, where by

one RNN encodes the input text sequence into a single latent vector representation

and another decodes this into the output sequence. Specifically the final hidden

layer of the encoder RNN, corresponding to the end of sequence token, is taken as

the latent representation of the entire sequence, known as a “context vector”. The

decoder RNN’s outputs are then conditioned on the encoded latent representation,

the current hidden representation of the decoder, and the last output of the decoder.

Bahdanau et al. [14] argued that the compression of a sequence into a single

vector representation is a bottleneck that hampers translation ability, especially for

longer sequences. To address this, Bahdanau and colleagues [14] adapted an bi-

directional RNN-based translation model so that the decoder employs an attention

mechanism. The bidirectional RNNs encode the entire input sequence to produce a

sequence of hidden representations, and then a mechanism to selectively attend to

all hidden representations at once is used to iteratively decode the output sequence

from these hidden representations. When the model is decoding the hidden states

into the output sequence, it dynamically computes a context vector for each output

36

Lorcán Anthony Karel Pigott-Dix

step using a weighted aggregate of the hidden states. The mechanism calculates the

relevance of each hidden representation to the current step, given the state of the

decoder. These relevance scores are used to create the context vector for this step,

aggregating a weighted sum of all the hidden representations. The context vector is

then used, along with the previous output and the current state of the decoder, to

generate the current output word.

Given the decoder state vector st and the matrix of concatenated pairs of hidden

states from the Bi-directional RNN H ∈ {h1, ... , hT }, the attention mechanism

aggregates hidden states into a context vector ct like so:

et = s⊤t ·Wa ·H (2.53)

at,i =
exp(et,i)∑T
i=1 exp(et,i)

(2.54)

ct = at ·H (2.55)

Where the matrixWa is a trainable parameter weight which learns to capture signals

from the hidden representations. The dot product of these captured signals and the

transpose of the decoder state vector produces raw logits which signify relevance

between specific steps of the hidden state and the current decoder state. These are

turned into attention scores, which sum to one, using the softmax function. Finally

the attention scores are used to aggregate a weighted sum of all of the hidden

state vectors determined by their relevance to the decoder state. As this attention

mechanism attends to across the entire input and combines input features using

weights that sum to one, it is regarded as a “soft” attention mechanism. The authors

found this approach to significantly outperform previous methods, particularly for

the translation of longer sequences [14].

Gehring et al. [68] adapted this soft-attention method so that the encoding

LSTM was replaced with a CNN. The CNN filters capture signals from across the

input sequence, which are then decoded using soft-attention and an LSTM. The

CNN variant was faster to train and achieved competitive performance with LSTM

variants.

Language translation necessitates computing the probabilities of words over at

least two large vocabularies. This can be very expensive and led to the development

of techniques to represent words in more efficient ways, such as Byte Pair Encoding

(BPE) [201]. Byte pair encoding is a data compression algorithm, it works by

splitting large vocabularies into a fixed set of sub-words - as opposed to learning a

representation for every overlapping sub-word as in FastText [27]. To generate the

required sub-word set size, the algorithm iterates through a vocabulary, merging

the most frequently occurring sequences of characters from within words, until the

sub-word vocabulary size is met. This algorithm reduces vocabulary size while

allowing words from outside the vocabulary to be represented by the sub-words that

37

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

it contains. Experiments incorporating BPE into Bahdanau et al.’s achitecture [14]

showed that it improves translation performance, particularly in rare word scenarios

[201].

Attention Around the time of the work by Bahdanau et al. [14], other researchers

had started to experiment with models that selectively attend to parts of a sequence

or image rather than being limited to remembering information between steps [73,

154] in what became called attention models.

Attention mechanisms were designed to emulate human attention. If a human

were classifying a passage of text they would pay more attention to parts of the text

that provide relatively more relevant information. For example, to decide whether

the phrase “the husky loved going for long walks” referred to dogs or not, the

words “the” and “loved” provide less relevant information than “husky” and “walks”.

Additionally, the meaning of a word can change depending upon its context. The

word “husky” is polysemous, being both a breed of dog, an adjective to describe a

voice, and to describe a person’s build. In neural networks, attention mechanisms are

specific trainable weights, that learn to augment the model by increasing the signal

of task-relevant features, while diminishing those of less relevant features [221].

Graves [73] developed a model that selectively attends to different areas of a

sequence to generate handwriting by modelling sequences of pen positions on a

plane of two-dimensions. However, in this case it can be described as selectively

attending to all possible areas of output space rather than across inputs. To do this

it captures previous pen coordinates from a sequence using an RNN and then samples

the output probabilities over a mixture of multiple two-dimensional Gaussians. The

parameters for each Gaussian are created dynamically using the outputs of the

RNN. Specifically, the hidden layers of the RNN are passed through a series of

linear transformations to produce a set of parameters for each mixture of Gaussians:

a coefficient to weight it relative importance, its mean and standard deviations in

both x and y dimensions, and a correlation coefficient between these planes. These

Gaussians are sampled to produce the next likely pen position. This process is

repeated iteratively to generate sequences of handwritten characters. The model is

trained by comparing the next true point with the predicted point, minimising the

negative log-likelihood of the data given the Guassian mixture models. As a result

the model learns to produce the correct Gaussian distributions to sample in order

to generate sequences of human-like handwriting with subtle variations in form that

one would expert from human writing.

Mnih et al. [154] introduced the Recurrent Attention Model (RAM) which uses

an RNN to iterative take a fixed number of “glimpses” of an image. Following the

first glimpse the model selectively attends to specific regions of the image, given the

previous glimpse, in order to make a classification following the final glimpse. So

rather than sliding a series of convolutional filters over an image, the model learns to

38

Lorcán Anthony Karel Pigott-Dix

focus on the most salient regions of an image in order to make a classification. This

is regarded as a “hard” attention mechanism as the model does not attend to to the

whole of the feature space, but instead selects a subset. As it is not deterministic

it cannot be trained directly using differentiation and must use a reinforcement

learning procedure. This method outperformed CNNs at digit classification tasks

containing cluttered images and could perform tasks in dynamic environments, such

as object tracking in videos [154].

Chorowski et al. [42] applied a soft-attention mechanism to a speech recogni-

tion architecture. The authors recognised that speech recognition is a sequence-

to-sequence generation task much like translation. However, they also noted that

speech recognition is more challenging due to the larger scale of the data and its

inherent noise. The model they proposed consisted of a CNN to encode the audio

data into feature vectors, an LSTM with attention mechanism to aggregate relev-

ant information between the vectors, and a final layer to transform the aggregated

vectors into word pieces or phonemes.

Insights derived from their experiments included that the model required a period

of pre-training, without the attention mechanism, for some time prior to introducing

it to ensure improved performance [42]. Additionally the model had a tendency of

skipping regions of the input data, to mitigate this the authors encoded location-

based features into the data. This was found to help the attention model properly

attend to all features across the input. The authors also manipulated the attention

scores with a temperature parameter, with a higher temperature softening the scores

by scaling them so that the relative difference between the highest and lowest scores

are reduced. Overall, the model outperformed previous speech-to-text algorithms,

without requiring the development of hand-crafted features.

Building on the work by Bahdanau et al. [14] using soft attention for machine

translation, Luong et al. [137] introduced global and local attention mechanisms.

With global attention the mechanism attends to all features across a sequence, ag-

gregating the signals from the whole sequence. Luong and colleagues argue that this

may result in the attention mechanism capturing a lot of noise. Particularly so if

the sequence is long, as words tend to become less relevant to each other the further

apart from one another they are in a sequence.

To mitigate this, Luong et al. [137] introduce local attention. Reminiscent of

the hard attention of the RAM [154], a local attention mechanism only attends to

a subset of the source sequence located around an alignment point. This alignment

point pt ∈ [0, S], within an S-length source sequence for target step t, is dynamically

predicted by the model as follows:

pt = S · σ(v⊤
p tanh(Wp · ht)) (2.56)

Where ht is the hidden state of the LSTM for the target at step t, and σ repres-

39

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

ents the sigmoid activation. Wp and vp are trainable parameters which learn to

predict the optimal alignment point. This point is used as the mean of a Gaussian

distribution over the source sequence. While the global attention scores are calcu-

lated across the sequence, they are then scaled by the Gaussian centred on pt with

either a pre-defined or learned variance. This means that source representations

in close proximity to the alignment point are relatively more influential when the

model aggregates the hidden source representations into a context vector ct, with

distant source representations having a negligible effect. This effectively creates a

context window around the point pt, which reduces the noise from words not in close

proximity. The reduction in noise and scale improves the discriminatory effect of

the softmax which makes the model more effective at handling long sequences [137].

The authors also explored different ways to compute attention scores between the

target hidden representation and the source hidden representations, either through

the direct computation of the dot product between hidden representations or with

intermediate transformations by trainable parameters. They found that attention

incorporating intermediate transformations outperformed those using direct dot-

products of the hidden representations [137].

Hu et al. [94] developed the squeeze-and-excite attention mechanism. Here

an attention mechanism was used to augment a CNN architecture, emphasising or

diminishing the maximum feature signals by modelling dependencies between the

average signals of the convolutional filters. This allows the model to capture a greater

variability from its feature maps, improving performance, while only increasing the

computational overhead by a negligible amount.

Transformers In 2017, Vaswani et al. [221] introduced the Transformer. The

Transformer is a sequence-to-sequence model, initially designed for machine transla-

tion. Unlike the previously mentioned attention architectures, this model is entirely

based on attention mechanisms and does not use attention to augment another ar-

chitecture. The transformer model consists of multiple layers of encoder and decoder

blocks. The key component of both encoder and decoder blocks is a soft attention

mechanism, called a multi-headed self-attention (MHSA) layer.

MHSA explicitly models the semantic dependencies between steps in a sequence,

in order to compute updated representations of each step. For instance, when ap-

plied to a sequence of word embeddings, it learns to capture the composite semantics

of words that interact within a sequence, and then uses these composite semantics

to update the representations of the words. This is particularly useful for model-

ling contextual polysemy in language. For example, the phrase “kick the bucket”

represents very different semantics to the words “kick”, “the” and “bucket” in isola-

tion. A transformer modifies the embeddings of “kick” and “bucket” to more readily

represent the composite semantics. Multi-headed attention is comprised of multiple

“heads”. Each head has a fraction of weights proportional to the number of heads.

40

Lorcán Anthony Karel Pigott-Dix

Figure 2.8: An illustrative example of an affine transformation in two-dimensional
space of the original shape (blue) into the transformed shape (red). Differences
between areas along the x-axis are accentuated, while those along the y-axis are
compressed. The transformation has also induced skewness in the shape leading to
a change in orientation. This change in orientation can be understood as a transfer
of some of the variance between dimensions.

Different sets of attention weights attend to different representational subspaces and

sequence positions [221]. The intuition here is that the heads learn to pay atten-

tion to different task relevant signals to one another. This mechanism is an integral

part of state-of-the-art transformer models [221]. However, Schlag et al. [194] dis-

puted the stated intuition that different attention heads attend to different areas

of representational space. Instead they argued that each head performed an affine

transformation on the entire representational space of the input, preserving all the

input’s information as opposed to just a subset. For an illustration of an affine

transformation please see figure 2.8.

To understand how the transformer works in practice the model must be de-

scribed. In the encoder blocks the attention mechanism aggregates information

between each vector in a sequence. Given a matrix representing a sequence of vec-

tors, X ∈ Rn×d, each attention head within the MHSA layer can be defined as

41

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

follows [221]:

Q = X ·WQ (2.57)

K = X ·WK (2.58)

V = X ·WV (2.59)

Z = softmax

Q ·K⊤√
d
h

 ·V (2.60)

Where d is the dimensionality of the input vectors, n the length of the input sequence.

The matrices WQ|K|V ∈ Rd× d
h , where h denotes the number of attention heads, are

trainable parameters. They transform the input sequence, X, into the Query (Q),

Key (K), and Value (V) representations, respectively.

The dot product of Q and the transpose of K captures the relative task-specific

importance of every position with respect to each position in the sequence X. This

dot product is scaled by d
h to stabilise the gradients, which is important if the dot

product produces large values. These scaled values are turned into attention scores

by passing them through a softmax function. These attention scores are used to

aggregate a weighted sum of the V values. The aggregated output Z captures task-

specific information deriving from interactions between vectors from the original

sequence X.

Each head has its own parameter weights and produces a different aggregate of

X. Each head’s aggregate is concatenated together and then linearly transformed

by a parameter matrix W0. The linear transformation serves to rotate or scale the

combined aggregate signals so that they update to conform to the representation

space of the inputs. This linear transformation is followed by a residual connection,

which explicitly encourages the attention heads to learn useful aggregate inform-

ation without also having to capture the identity function. Residual connections

are integral to training deeper networks, as found by He et al. [85] and discussed

previously.

X̂ = concat (Z0, ... , Zh) ·W0 +X (2.61)

The residual connection is followed in turn by a feed-forward network, consisting

of a non-linear transformation followed by a linear transformation. After the feed-

forward network there is another residual connection.

Ẑ = W2 · ReLU(W1 · X̂+ b1) + b2 + X̂ (2.62)

Where each W and b are sets of trainable parameters. While the attention mech-

anism captures fine-grained dependencies between positions in a sequence, it is pre-

dominantly a linear process. The ReLU activation in the feed-forward network

42

Lorcán Anthony Karel Pigott-Dix

introduces non-linear transformations to the information aggregated through these

dependencies. This non-linearity allows the model to capture complex functions.

The feed-forward transforms each row of the matrix identically, so therefore learns

transformations that are beneficial across all positions in a sequence. Again, the re-

sidual function ensures that the feed-forward network explicitly learns useful trans-

formations and not the identity function.

The decoder blocks are similar to the encoder blocks but contain an additional

layer. The first layer is a self attention layer, as in the encoder, but this is followed

by a cross-attention layer. Here the K and V are transformations of the previous

encoder’s output, while theQ value is a transformation of the outputs of the decoders

self attention layer. The cross-attention layer is intended to capture dependencies

between the aggregated signal of the input and output sequences. The output of the

cross-attention layer is passed to a feed-forward network. Multiple pairs of encoder

decoder block pairs can be stacked on top of each other. Finally the last decoder

outputs pass to a classification layer.

To train a transformer for language translation, the inputs to the encoder would

be a sequence of embeddings from one language, and the decoder inputs would be the

semantically equivalent sequences of text from the target language. Although the

transformer was intended for sequence-to-sequence tasks it has no inherent ability to

capture the order of sequences. Instead the inputs have to be encoded with features

which indicate the position of each part of the sequence, prior to being passed to first

the encoder-decoder layer. This encoding can be either relative or absolute. During

training the decoder would be iteratively masked so that each position in the target

sequence can only attend to positions up to and including its own position. The

outputs of each position of the final decoder layer are passed to the classification

layer, usually a linear transformation followed by a softmax, to predict the true

next word in the sequence. At deployment the model takes text to be translated

as an input, and the output inputs are initially a special start token. The model

then iteratively generates the next word in the sequence given the input plus the

previously generated output word.

Since their introduction in 2017, models based upon the original transformer

have become the state-of-the-art for many natural language processing (NLP) and

computer vision tasks, from machine translation [221] and text classification [5] to

object detection [38]. Transformer-based applications have found success in many

domains outside of computer science, including drug-target classification [218] and

mapping gene networks in single cell expression data [138]. Thafar et al. [218]

exploited a pre-trained transformer-based amino acid sequence model combined with

gene expression data to predict novel cancer drug targets for seven cancer types.

Embeddings representing protein structure were created along with gene expression

statistics for the corresponding gene per cancer type. These embeddings were used

as inputs to train a deep neural classifier which out performed previous methods

43

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

for predicting the efficacy of drugs for five out of seven cancer types. The use of

the amino acid sequence embeddings explicitly represent structure, which in turn

implicitly represents protein function, allowing researchers to sidestep the scarcity

of protein interaction profile data. Ma et al. [138] used a transformer to learn

aggregated representations of cells and their genes from gene expression data. These

representations were found to improve the clustering of single cell data, and aid in

the construction of biological networks capturing gene-gene and cell-cell interactions.

Despite their success, transformer models have noted limitations: they require

large volumes of training data to be effective [78]. Guo et al. [78] argues that this

is because self-attention models have a poor inductive bias, and instead rely heavily

on these large volumes in order to generalise well. This has implications for models

that are trained on limited datasets, such as the text provided by an ontology, rather

than a large corpus containing millions of examples.

2.1.4 Large Language Models

Following the success of the transformer, many models incorporating its architecture

were developed [179, 56, 131]. The Generative Pre-trained Transformer (GPT-1),

developed by OpenAI, is one such model [179]. GPT-1 consists of 12 layers of

transformer decoder blocks, with a total of 117 million parameters. It used BPE

[201] to tokenise sequences, which all start with a special start-of-sequence token,

end with a special end-of-sequence token, and with multiple sequences in an input

separated with a special delimiter token [179]. Each token in an input sequence is

represented by a semantic embedding summed with a positional embedding which

indicates the absolute position of the token in the sequence.

Like the transformer, GPT-1 is trained to predict the next token in a sequence

given the inputs and the previous model outputs. However, this generative next

token prediction task is used as a general pre-training stage prior to task spe-

cific fine-tuning. For all downstream tasks the hidden representation of the special

end-of-sequence token in the final layer is passed to a classification layer. GPT-1

achieved state-of-the-art or competitive results across many natural language pro-

cessing tasks.

Two further transformer-based models, Bidirectional Encoder Representations

from Transformers (BERT) [56] were introduced, doing away with the decoder block.

One, called BERTBASE, consisted of 12 layers of stacked transformer encoder blocks

with 12 attention heads each, and 110 million trainable parameters in total. The

other, called BERTLARGE, had 24 encoder layers with 16 attention heads, and 340

million parameters in total. The models were pre-trained using two distinct training

objectives, followed by task-specific fine-tuning. All input sequences begin with a

special “[CLS]” token, and with each element in the sequence being represented in

the model by the element-wise sum of its token embedding, its segment embedding,

44

Lorcán Anthony Karel Pigott-Dix

which indicates which sentence the token belongs to, and its position embedding,

which represents the absolute position index of a token within the sequence.

The primary training objective was to predict masked tokens. This differs from

the masked next token prediction task used to train the generative transformer

for sequence-to-sequence translation in Vaswani et al. [221]. The reasoning here

is that directional masking would not allow the model to learn deep bidirectional

contextual representations, either limiting attention to one direction or to relying on

“shallow concatenation” [56]. Accordingly, during training 15% of sequence tokens

were randomly masked by replacing them with a special “[MASK]” token. As this

special token would not be seen outside of training, 10% of these mask tokens were

replaced with random tokens from the word-piece vocabulary, and a further 10%

would be left unchanged. The model would then be trained to predict the correct

tokens.

The secondary training objective was next sentence prediction. Here, the model

would classify whether one input sentence is followed by another input sentence, sep-

arated by a special “[SEP]” token. To do this, the special “[CLS]” token embedding

would be extracted from the model outputs and passed to a binary classification

layer. The intention here is that the model would learn long range dependencies

useful for question-answering tasks [56].

After pre-training the model can then be fine-tuned for various downstream tasks,

with token-level representations being used for tasks such as sequence tagging, and

the special “[CLS]” embedding can represent the entire sequence for classification

tasks. BERT was evaluated on a number of downstream tasks including question an-

swering (where the model has to extract an answer from a passage given a question),

sentiment classification, and paraphrase identification. BERT achieved state-of-the-

art results across the tasks it was benchmarked against [56].

BERT adopted a Gaussian Error Linear Unit (GELU) activation function to

replace the activation functions used in the original transformer [56]. Introduced by

Hendryks and Gimpel [88], GELU is inspired by the ReLU activation but intended to

weight activation outputs by their magnitude rather than just their sign. It can also

mitigate the risk of having dead neurons, which can occur with the ReLU activation

[140, 15]. GELU was found to improve transformer performance [56, 15]. Figure

2.9 is a visualisation of both the activation function and its derivative, for values of

between −6 and 6.

Large transformer models like BERT can be difficult to train effectively [131].

Liu et al. [131] explored how design choices and parameter selection influence the

performance of BERT models. Their experiments demonstrated that model training

stability, and thus performance, is improved by increasing the scale of training.

Such measures as increasing the batch size during training, increasing the size of

the training sequences, and extending the duration of training, all contributed to

improved performance. Additionally, the authors found that removing the next-

45

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Figure 2.9: The GELU activation function and its derivative.

sentence prediction task from training also improved performance.

GPT-1 and BERT ushered in a new paradigm of large language models [29], in-

volving large parameter models trained using large-scale general pre-training regimes

followed by more accessible task-specific fine-tuning. Since then, transformer-based

large language model architectures have been applied to domains outside of Nat-

ural Language Processing. For example, BERT has been fine-tuned for predicting

drug-target interactions [106]. BERT has also been pre-trained on predicting the

next protein in a protein sequence and predicting Gene Ontology (GO) function an-

notations to create a large contextualised model of proteins and protein sequences

for downstream tasks [34]. Lee et al. [124], took a pre-trained BERT architecture

and continued to pre-train it using a corpus of biomedical texts to create BioBERT.

This model exceeded the vanilla BERT model at identifying disease, chemical, gene,

protein, and species names in text.

Recently, Meta [219] released a suite of open source large language models called

Llama 2. These models use the transformer architecture from Vaswani et al. [221]

but have between 7 billion to 70 billion parameters [219]. The Llama 2 models are

pre-trained using a self-supervised masked-token objective like the original trans-

former, but on a massive text corpus of 2 trillion tokens, using 2000 80Gb NVIDIA

A100 GPUs. The authors evaluated the model at the end of pre-training on cod-

ing tasks (where the model would be asked to generate code with a specific func-

tionality), commonsense reasoning, world knowledge, reading comprehension, and

mathematics tasks, among other Artificial General Intelligence (AGI) benchmarks.

The 70 billion parameter Llama 2 achieved near-human performance at these tasks

and achieved the best open-source large language model performance to date. Addi-

tionally, the authors reveal that after the pre-training, having seen all the 2 trillion

tokens, the losses of each Llama 2 model had yet to saturate, which suggests that

they may be capable of even better performance given more training. A system of

reinforcement learning from human feedback (RLHF) was then used to incorporate

46

Lorcán Anthony Karel Pigott-Dix

Llama 2 into a chat-bot assistant program.

In 2017, Lake et al. [115] noted that previously language modelling has not been

considered of high importance by the AGI community. While today large language

models are central to contemporary discussion about AI [253, 36]. The latest closed

source models, trained using volumes of data and with a number of parameters

without precedent, such as OpenAI’s GPT-4 [165], have achieved expert-human

level performance on professional and academic exams, such as: code generation and

code understanding [36, 165], the bar exam [107, 165], university entrance exams

(SAT and GREs [165], and Brazilian examinations [164]), and university exams

ranging from chemistry to statistics [165]. Additionally, OpenAI’s technical report

for GPT-4 [165] made the observation that large language model performance scales

predictably with compute.

Closed-source models have been applied in Bio-Medical contexts. Liu et al.

[130] adapted the chat-bot version of the closed-source 175 billion parameter GPT-

3.5 model developed by OpenAI, ChatGTP, to the task of clinical decision support.

They experimented by asking a panel of medical experts to score a selection of clinical

alert suggestions, generated by ChatGPT and clinical experts. The AI generated

alerts achieved scores comparable to those made by the human medical experts.

There have also been efforts to create open-source domain specific large language

models for biomedical applications [206, 237]. Sin et al. [206] created BioMegatron, a

domain-specific model for bio-medical natural language processing tasks, developed

in partnership with NVIIDIA. It achieved state-of-the art performance at question

answering, relation extraction, and named entity recognition tasks involving dis-

ease and chemical term identification. Yang et al. [237] introduced GatorTron,

a large language model for bio-medical applications, also developed in partnership

with NVIDIA. Although the large version of this model only contained 8.9 billion

parameters, it excelled at clinical concept and medical relation extraction, with the

authors also finding that the larger the model, the more effective it is. Large lan-

guage models, whether closed- or open-source require vast computational resources

to train and run, and are prone to hallucination [165, 219]. Hallucination describes

when a large language model generates factually incorrect outputs that have the

form of an authoritative, correct output.

2.1.5 Graph Neural Nets

The first graph neural net Another important area of deep learning research

is that of graph neural nets (GNNs). First introduced by Scarselli et al. [193], who

observed that lots of tasks could be modelled using graphs, and that neural networks

could be used to model graphs. The components of the GNN are vectors to repres-

ent each vertex state, a function for transferring task-specific information between

nodes, and an output function. The model iteratively passes information from a

47

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

vertex’s neighbouring vertices to the vertex, updating its state vector. The iterative

information transfer function allows message passing between nodes in undirected

or directed graphs, and even cyclical graphs. Once the aggregated vertex represent-

ations converge, the final representations can be passed to an output function for

inference. The GNN was applied successfully to node classification, edge prediction,

graph classification, web-page ranking, and even image classification. The authors

note that, although other architectures may outperform the GNN at these tasks, the

GNN is a more general architecture that can be applied to a wide variety of tasks.

Graph convolutional nets Kipf and Welling [110] adapted the CNN to be ap-

plied to graphs, introducing the Graph Convolutional Network (GCN). Their mo-

tivation was to create a more scalable neural net for semi-supervised learning on

graph structured data. A convolutional layer creates an aggregate representation

of a vertex using signals from the vertex and its immediately neighbouring vertices,

using an adjacency matrix with self-connections Â = A + I, where A is the adja-

cency matrix and I is the identity matrix which connects a vertex to itself. The

aggregate vertex feature vectors Z can computed from the original vertex features

X as follows:

Z = σ
(
D− 1

2 ÂD− 1
2XW

)
(2.63)

Where W is a matrix of parameter weights learned during training, σ is some activ-

ation function, and D− 1
2 is the inverse square-root of the degree matrix. The degree

matrix represents the number of edges a vertex is connected to. Multiplying the ad-

jacency matrix row- and column-wise by the inverse square-root of the degree matrix

normalises message passing between vertices, preventing highly connected vertices

from dominating the aggregation process. The aggregated representations can be

passed through more graph convolutional layers or to a classification layer. The

GCN can be trained on a partially labelled graph in a semi-supervised setting. The

authors’ experiments showed improvements over the state-of-the-art for node clas-

sification, which suggests that the model learns both useful vertex representations

while also encoding graph structure [110].

Inductive graph neural nets Hamilton et al. [82] developed an inductive graph

neural network, GraphSAGE, which can compute representations of a previously

unseen vertex based upon aggregate features of the a fixed-size sample of the ver-

tex’s neighbourhood. The way GraphSAGE aggregates signals between vertices

differs from that of the GCN or the GNN. The aggregation methods used are mean

aggregation, LSTM aggregation, and a pooling aggregator. The mean aggregator

takes the element-wise mean of every vertex vector from a sample of the neighbour-

hood of a vertex, and concatenates this mean representation with that of the vertex.

48

Lorcán Anthony Karel Pigott-Dix

The concatenated vectors are passed to a non-linear transformation to compute the

layers output representation. The LSTM aggregator processes a vertex’s neighbour-

hood sample sequentially using an LSTM. The sequence of neighbouring vertices is

created in a random order. This sequence’s embeddings are passed to the LSTM,

and the final hidden representation is taken to represent the neighbours. This final

hidden representation is concatenated with the original vertex embedding, before

being non-linearly transformed into the layer output for this vertex. The pooling

aggregator applies a non-linear transformation to each of the vertex embeddings in

a vertex’s neighbourhood sample, and then takes the mean or the maximum value

of each element across the transformed embeddings.

The different aggregators were evaluated for vertex classification on social media

data and scientific paper citation data, where the initial representations of abstracts

or posts were averages of their GLoVE [168] embeddings. The models were also eval-

uated on a protein role classification task using a combination of molecular features

and GO labels. These experiments showed that the LSTM and pooling aggregators

were the best performers. However, the LSTM is a more complex architecture so it

took twice as long to train.

Another inductive graph neural net was proposed by Veličković et al. [222],

the Graph Attention Network. As the name suggests, this method adapts a multi-

headed self-attention architecture to a graph context. Specifically, attention scores

are calculated between connected vertices to weight the task-specific importance

of edges, and use these weighted edges to update vertex representations. Due to

the multiple attention heads the model can learn multiple edge weight parameters

for the same relationship, allowing for more nuanced feature aggregation. This

model was evaluated against GraphSAGE for a number of tasks, achieving a superior

performance. The authors note that implicitly learning edge importance with a

graph lends itself to greater interpretability than other types of graph neural nets.

2.1.6 Autoencoders

Autoencoders typically transform input features into some latent representation

space and then transform them back into the input space, and are trained to re-

construct the inputs so that the latent representations capture essential features

[89, 223, 109]. The soft-attention encoder-decoder machine translation models by

Bahdanau et al. [14] and by Gehring et al. [68], discussed previously, are similar to

autoencoders. Here, I will describe the development and function of autoencoders

in more detail.

Hinton and Salakhutdinov [89] showed how to effectively train autoencoders us-

ing backpropagation, and demonstrated that they are powerful tools for compressing

high-dimensional data into lower-dimensional spaces. Autoencoders use an encoder

to compress high-dimensional data into a lower-dimensional space, before recon-

49

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

structing the high-dimensional data from the compressed data using a decoder. The

encoders and decoders can be composed of multiple layers of transformations, it-

eratively reducing, or increasing, the dimensions of the representational space. To

train the autoencoders, the authors used a series of unsupervised individual-layer

pre-training followed by a compression-reconstruction learning objective. Without

the pre-training stage the autoencoders did not perform well.

Hinton and Salakhutdinov’s experiments [89] demonstrated that autoencoders

could more effectively reconstruct images of hand-written digits, and produced more

informative visualisations, compared with Principal Component Analysis (PCA) [6].

Additionally, the experiments showed that text document retrieval using the low-

dimensional representations learned by the autoencoder outperformed those using

the representation created by LSA [53].

Vincent et al. [223] were the first to explore denoising as a training strategy

for autoencoders. To learn to denoise the input data, autoencoders were trained to

reconstruct an an image using a corrupted version of it as the input to the encoder.

Here each layer of the encoder and decoder corresponding to the alternate dimension

transformation are trained together, with the next encoder and decoder using the

compressed layers as inputs. The corruption of the inputs enforces a form of sparsity

on the data, which encourages the autoencoder to generalise to the most informative

features of the training data, rather than memorising specific reconstruction pat-

terns. The authors show that the autoencoders trained with the denoising strategy

could learn local edge detection features and grating filters, which capture periodic

patterns, capturing sophisticated patterns without the need for hand-engineered fea-

tures. The authors argue that this suggests that the low-dimensional projections of

data learn to capture the characteristic features of the original representations. In

their experiments, autoencoders outperform other non-neural image reconstruction

methods.

Kingma et al. [109] introduced the variational autoencoder (VAE), as the gen-

erative component of a wider generative-discriminative framework. Here an autoen-

coder is used to meaningfully capture the features of the training data in a low-

dimensional latent space, and reconstruct, or generate, the inputs from this latent

space. The VAE is also used to train a discriminative model, devised for semi-

supervised image classification tasks. These models are trained simultaneously. The

discriminative model learns to classify an image based upon its latent representation.

The objective function is a combination of the reconstruction error and the loss of

the classifier. The unsupervised VAE training can benefit from training on unla-

belled data, while the supervised classifier training benefits from more refined latent

representations that result from the unsupervised training. The authors showed that

this approach leads to improved performance over other methods, with particular

improvement for cases where labelled data is limited.

50

Lorcán Anthony Karel Pigott-Dix

2.2 Semantic Technology and Ontologies

2.2.1 Realising the Semantic Web

Originating in philosophy, Ontologies started to become popular with computer sci-

entists in the early 90s [77]. They sought to create ontologies as actionable symbolic

representations for computer systems. The idea is that these would provide the

conceptual framework for interoperability between machine agents, in a format in-

terpretable by machines. This occurred during the period of rapid development and

expansion of the World Wide Web which started in the 1990s.

By 2001, Tim Berners-Lee, James Hendler, and Ora Lassila laid out their vision

for “The Semantic Web” in their homonymous paper [23]. In which, they described

a world wide web that was described in such a manner as to make it navigable by

machine agents, not just humans. The authors noted that while Extensible Markup

Language (XML) had allowed people to create annotations to describe web pages,

these descriptions have arbitrary structure and do not necessarily represent mean-

ing. The key to machine navigability is providing a structure that can be reliably

interpreted by machines, as a proxy for understanding meaning. The core of the

semantic web is knowledge representation. The transformation of the information

on the web into a machine actionable format has since been described as a “one of

key challenges of computer science” [11].

To create a semantic web of machine interpretable and actionable meaning, the

authors called for the use of ontologies in concert with the Resource Description

Framework (RDF) [23]. In the context of knowledge representation, ontologies are

structured machine interpretable taxonomies of a domain of knowledge which have

formally defined relationships between the entities represented. These ontologies

can be used as a framework for machine reasoning, enabling sophisticated querying.

Introduced by Brickley et al. [35] and Lassila and Swick [118], RDF is a model

for meaningful data exchange on the web [146]. Specific entities receive their own

unique identifiers known as Unique Resource Identifiers (URIs) and with expressions

comprised of subject-predicate-object triples it allows for the definition of machine

interpretable statements about entities.

Berners-Lee et al. [23] argued that the main benefit of the semantic web will be

the development of autonomous computer agents that can process machine readable

content. The semantic web has the potential to enable what came to be called the

internet of things [143]. They also envision that the semantic web will enable highly

precise data integration and powerful knowledge management systems. Ontologies

will allow the precise semantic descriptions required to combine heterogeneous data

into new forms of knowledge. RDF is intended to allow these structures of knowledge

to be queried at scale.

In order to create this semantic web, ontologies would need to be constructed

to describe various knowledge domains, and to do this would require standards to

51

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

specify how ontologies should be constructed. In 2000, Hendler and McGuinness

[87] built a markup language, on top of XML, RDF and RDF Schema, called the

DARPA Agent Markup Language (DAML) which included an ontology language

DAML-ONT. Influenced by knowledge representation frameworks, it extended the

RDF schema to allow for the greater expression required to build an ontology, with

the express aim of using these ontologies to enable autonomous machine agents on

the web. It was also influenced by formal description logics. Classes with multiple

inheritance and structured hierarchies can be described using DAML-ONT.

Separately, Fensel et al. [64] proposed OIL an Ontology Infrastructure Language,

a description logic. Again, this was inspired by previous knowledge representation

frameworks and adapted from RDF schema into a framework for describing classes,

sub-classes, properties and sub-properties.

OIL was combined with DAML into DAML+OIL by McGuiness et al. [145]. The

intention was to capture the best features from both: the description logics from

OIL into an Ontology markup language. Eventually these developed into the Web

Ontology Language (OWL) [146]. Comprised of three sub-languages with OWL-

lite providing the framework for classification hierarchies, OWL-DL is a description

logic version of OWL where all reasoning is guaranteed to be computable, and OWL-

full which provides no guarantees but is a maximally expressive extension of RDF.

OWL provides further vocabulary to describe properties and classes beyond those

contained in RDF, to specify relationships between classes, describe the cardinality

of relationships, and to characterise properties.

With these frameworks in place, domain ontologies and resources to curate do-

main knowledge for re-use could be developed [162]. One such repository is DBpedia,

a large community project to create structured machine interpretable representations

of the Wikipedia encyclopedia [11]. The wealth of structured knowledge captured by

DBpedia has been leveraged in knowledge graphs for question answering applications

[57] and for information retrieval.

The story of ImageNet [55] showcases the value of richly described data annota-

tion. Released in 2009, ImageNet is a hierarchically structured database of labelled

images, described by its authors as an “image ontology”. The foundation of Im-

ageNet is WordNet [153], a structured database of synonym sets connected to one

another through various semantic relationship types, such as hyponyms, holonyms,

antonyms, and entailment. WordNet was converted into a linked data resource by

van Assem et al. [10]. To create ImageNet, for each of the 80 000 synonym sets

in WordNet, between 500 to 1000 images were collated [55]. These images were

retrieved using search-engines and then cleaned manually by curators, who would

ensure that the image contains the subject of the synonym set. This dataset formed

the basis of the “ImageNet Large Scale Visual Recognition Challenge”, and is widely

regarded as a major catalyst to the rapid advances in computer vision from 2010

onward [190, 84], in particular AlexNet [114] and ResNet [85].

52

Lorcán Anthony Karel Pigott-Dix

2.2.2 Linked Data and the Life Sciences

The Gene Ontology Since the inception of the semantic web there have been

initiatives to represent biological knowledge with structured, machine-interpretable

linked data [9, 54, 187, 16, 205]. One of the first of these was the GO [9], which was

developed in response to the perception that sequencing was outstripping the scale

with which biologists were describing shared biological entities with concepts, and

the lack of interoperability between genomic databases that this caused.

The GO is actually comprised of three separate ontologies: Biological Process,

which describes the networks of gene products in different biological functions; Mo-

lecular function, which describes cellular activities at the scale of single molecules;

and cellular component, which describes the structures within a cell which the mo-

lecules and biological processes take place in or in proximity to. These sub-ontologies

allow for within- and cross-species comparisons of genes and gene products, and

interoperability with other ontologies and linked data. Links between between con-

cepts in the GO and gene products are called annotations [97]. The GO was initially

use to describe the gene products for model organism databases, such as the Sacchar-

omyces Genome Database, but by 2004 its use had expanded to all major genomic

repositories [45].

In 2004, Boyle et al. [33] introduced GO::TermFinder, a method for annotating

genes with functional information. Using a simulation, it computes the probability

of a GO term being associated with a set of genes. Bonferroni correction is used

to adjust the probabilities to control for false discovery. These probabilities are

then used to determine the most likely annotations that indicate the biological and

molecular functions, and cellular components of the gene set.

Hong et al. [93] expanded the Saccharomyces Genome Database to also allow

the annotation of gene products with evidence from outside traditional individual

gene function experimental studies. This reflected not only the expanding scale of

genomic analyses and the rise of high throughput comparative sequence and genomic

studies, but also the scalability and flexibility of the GO to accommodate such a

change. By 2014, 99% of annotations made by the Uniprot GO Annotation Project

were created automatically, this automation expands knowledge on the function of

gene products from model species to less well studied species [97].

The GO is a dynamic and evolving ontology. The scientific knowledge represen-

ted by the ontology can be updated in light of new data and discoveries [97]. The

hierarchical nature of the GO, and the constraint that all ancestor terms must apply

to child terms, means that changes to the ontology can greatly influence the inferred

annotations that are made [97].

Yon et al. [240] argued that the GO is often used incorrectly, with scientists

treating different types of evidence equally when experimentally validated knowledge

should take precedence. In a review of computational gene function prediction,

53

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Padlidis and Gillis [167] noted that there was increasingly more integration between

GO annotation and protein interaction networks. The authors were worried that,

rather than generating new knowledge, scientists end up retrieving existing data.

They argued that scientists should ensure that they are aware of the biases and

drawbacks of the data they use.

Open Biological and Biomedical Ontologies (OBO) Foundry Along with

the GO, other linked data resources were created in the life sciences [25]. These

include: PubChem [28], a repository of experimentally confirmed small molecule

functional information; Reactome [103], a curated linked data graph of biological

pathways; and Chemical Entities of Biological Interest (ChEBI) [54], a repository

of molecular entities and their attributes. Other data sources have been adapted to

incorporate linked data. The Universal Protein Resource (UniProt) [47], a database

of protein sequences and functions became a linked data resource. The PubMed

search engine from the United States National Library of Medicine (NLM) has also

adopted linked data [25].

By 2007, the use of ontologies in the life sciences had become so commonplace

that the large number of different ontologies was actually posing problems for data

integration, as opposed to alleviating them [211]. Smith et al. [211] cite the Uni-

fied Medical Language System (UMLS) as an example. The UMLS is collection of

machine readable biomedical and clinical vocabularies. Smith et al. [211] argued

that while the UMLS has been shown to be useful for information retrieval, the

vocabularies it contains do not share a common architecture so different concepts

cannot easily conform to a single system.

As a response to these observed issues, the Open Biological and Biomedical Onto-

logies (OBO) foundry was formed to coordinate ontology efforts [211]. The imitative

aims to create and maintain a set of non-overlapping but inter-operable biomedical

ontologies. These ontologies are to be written in a common shared format, and

made freely available. The OBO foundry has since been responsible for the de-

velopment and maintenance of many OBO ontologies, including: the development

and curation of the Human Phenotype Ontology (HPO) [187], an ontology to de-

scribe all phenotypic abnormalities stemming from genetic mutations; the curation

of the Cell Ontology [17], which hierarchically categorises cell types across proka-

ryote, fungi, animal, and plant kingdoms; and the development and curation of the

Disease Ontology (DO) [198].

Other ontologies have been created using the concepts contained within others.

For example, the Epidemiology Ontology [170] was constructed along OBO guid-

lines, reusing a combination of elements from the DO, Symptom Ontology, Vaccine

Ontology, and the Pathogen Transmission Ontology, combined with novel concepts.

The Ontology for Biomedical Investigations [16], reuses parts of the GO, ChEBI,

and Phenotype Attribute and Trait Ontology (PATO).

54

Lorcán Anthony Karel Pigott-Dix

Platforms, such as BioPortal [163], use the OBO ontologies as the backbone

of the data retrieval and integration services. More recently, the Monarch Initiat-

ive [205] has sought to reconcile all species phenotype ontologies. By combining

ontologies and annotated databases into an integrative platform for genotype-to-

phenotype knowledge across species, they authors hope to bridge the gap between

clinical and basic research, creating a “Monarch Knowledge Graph” - A structured

heterogeneous-domain genotype-to-phenotype knowledge representation. Know-

ledge graphs are increasingly recognised as the most prevalent form of knowledge

representation [132].

Applications of Knowledge Graphs and Ontologies in the Life Sciences

Organising data and domain expertise into knowledge graphs can be leveraged to

derive new insights [255, 157, 63, 207, 132]. Zhu et al. [255] explored using se-

mantic technologies to identify candidates for breast cancer drug repositioning. They

constructed linked data profiles of breast cancer drugs using information from the

PharmaGKB (pharmacogenomics knowledge base). This knowledge base (or graph)

contains structured clinical, genomic, and phenotype information curated from phar-

macogenomics research. From this drug-drug, drug-gene, drug-SNP, gene-disease,

disease-SNP, and gene-gene associations were extracted. Additionally, chemical

structure similarity was computed between drugs - with those over a threshold linked

with an “is structurally similar to” relationship. A meta-ontology was defined to

describe the types of entity classes and their relationships. Then sets of axioms

were used to identify candidate chemical compounds that are structurally similar

to recognised breast cancer drugs. The authors stressed that while this work was

preliminary, semantic technologies had shown promise for the purposes of drug re-

positioning. They predicted that greater volumes of semantically annotated data

would lead to greater volumes of candidates.

Myneni et al. [157] devised an ontology-based framework for building interact-

ive support apps for young cancer survivors. An application ontology was made to

model knowledge regarding after care plans, capturing information including patient

marital status, age, gender, treatment information, and the details of their care pro-

viders. This ontology was used as the basis for personalising content, with SPARQL

queries used to extract answers for patients questions regarding their care. However

the authors manually created the ontology, and note that there is not a particular

taxonomy for consumer engagement let alone heath-specific engagement, but hope

that advances in NLP could lead to scalable ontology generation.

Esteban-Gil et al. [63] also built an application on top of linked data. The

authors argue that off-the-shelf cancer registry databases are not amenable to integ-

rating with other data sources. In this work a simulated cancer registry represent-

ing 207 190 patients was generated. It was then transformed into RDF using OBO

best practices, reusing the Semanticscience Integrated Ontology and the Ontology

55

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

for Biomedical Investigations. An application with a graphical user interface was

constructed over the RDF registry. Again the authors note that one of the limita-

tions to work like this is that it requires a more comprehensive ontology to capture

greater granularity, which is labour intensive. This is made more difficult by the

ever evolving scientific and legal frameworks around cancer research and treatment.

A review by Silva et al. [207] explored a plethora of knowledge graph applications

in the realm of cancer biology. They note that ontologies provide terminology and

structure that can form the skeleton of a knowledge graph, or provide the vocabulary

for NLP data mining. The semantics encoded into ontologies allows for machine

reasoning, which can be used for interfaces or for error detection and data validation.

2.3 Combining symbolic and neural architectures

Lake et al.’s highly influential paper [115] discussed advances in statistical (connec-

tionist) AI and how they relate to symbolic AI in the context of building a human-like

intelligence. The authors note that human learning and intelligence exhibits facets

aligned with both points of view. They state that humans learn in a way that seems

to align with the symbolic AI paradigm, but concede that while humans learning

from analogy appears to be facilitated by symbolic representation, the statistical

methods seem better suited to capture more abstracted and complex relationships

from unstructured noisy data. However, the transfer of the rules captured by stat-

istical machine learning cannot easily be transferred to the more easily intelligible

format of symbolic representation [195].

Although not specifically defined by Lake and colleagues [115] as neuro-symbolic

AI, the authors suggest that a deep integration, not a mere combination, of both

statistical and symbolic AI, may provide a framework for developing machines that

learn and reason like humans. A survey of recent neuro-symbolic and statistical re-

lational learning AI, Deraedt et al. [180] posited that neuro-symbolic architectures

tend to be more data-efficient, and can be used to learn numeric vector representa-

tions for symbolic representations. They also note that they can learn the structure

of the symbolic systems and use this to their advantage.

Onto2Vec by Smaili et al. [209] and OPA2Vec by Smaili et al. [210] both model

symbolic knowledge, in the form of ontologies, by learning dense vector represent-

ations. Onto2Vec trains a skip-gram word2vec model [148, 149] on a corpus of

sentences constructed from the information encoded within an ontology (e.g. Class

rdfs:label Label). OPA2Vec is an extension of Onto2Vec that also incorporates a

word2vec model. However in this case it is pre-trained on a corpus of PubMed

abstracts prior to further training on a corpus of sentences constructed from the

natural language annotations, the inferred annotations, and the structural informa-

tion contained in an ontology. Both of the embeddings produced by these methods

were evaluated by using them as the basis for predicting protein-protein interactions,

56

Lorcán Anthony Karel Pigott-Dix

with favourable results, particularly for the richer OPA2Vec embeddings.

Althubaiti et al. [4] applied OPA2Vec to learn embeddings for the entities in

an integrated knowledge graph for use in predicting potential cancer drivers. The

knowledge graph comprised experimental data from cell growth assays, functional

data from model organisms, and several ontologies such as the Cellular Microscopy

Phenotype Ontology and the Mammalian Phenotype Ontology. They built vari-

ous iterations of this knowledge graph, with various combinations of ontologies and

data. Model performance was significantly influenced by the makeup of the know-

ledge graph that was embedded, with the combined use of all of the data sources

leading to the best performance. Consistent with previous research, their predicted

cancer driver genes had higher somatic mutation rates, and were functionally related

to known cancer drivers. The authors go on to argue that although incomplete, bio-

medical ontologies form a “comprehensive web” of domain knowledge, and are a rich

resource to be exploited by machine learning algorithms.

There have also been other attempts to embed the vertices and edges of know-

ledge graphs using transformer-based language models. Zhang et al. [250] used

a pre-trained BERT model to generate embeddings for vertices using their natural

language descriptions. These embeddings were transformed into a smaller represent-

ational subspace and then used to train a typical knowledge embedding algorithm

(subject + predicate − object ≈ 0) which imbues transformed embeddings with

structural information from the knowledge graph. The authors demonstrated that

this method leads to improved performance in low-resource settings and posit that

this is due to the language model imbuing the knowledge graph embeddings with

information from its “world model”.

A similar approach was explored by Yao et al. [238], who instead represented

knowledge graph subject-predicate-object triples as sequences of their natural lan-

guage descriptions separated by special “[SEP]” tokens, and fine-tuned a BERT

model with a binary classification task predicting triple validity. Again, the authors

found improvements in low-resource scenarios.

Wang et al. [227] explored approaches for combining language modelling and

knowledge graph embedding with a single transformer model. Masked language

modelling was used to learn language while a series of knowledge embedding ap-

proaches were explored. The knowledge embedding methods all used the subject

+ predicate − object ≈ 0 framework, but either used vertex natural language de-

scriptions as embeddings, vertex and edge descriptions as embeddings, or vertex

embeddings conditioned on edges. This joint training objective allowed the model

to learn to embed new entities into the graphs representational space even if they

did not feature in the training set.

Explainable AI Deep learning models are commonly referred to as “black boxes”

[208, 112]. A review by Novakovsky et al. [161] discusses the explainable AI and

57

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

its particular relevance for genomics. Here the authors argue that the distillation

of mechanistic insight into the biological processes that neural models capture, will

only become more necessary as the scale of biological data and the complexity of

the relations they represent increases.

As of yet, most explainable AI approaches are post hoc [161], this means that an

explanation is generated by examining the influence of features on model predictions

after training. One of the most influential explainable AI methods is SHapley Ad-

ditive exPlanations (SHAP) by Lundberg and Lee [135]. SHAP calculates feature

importance, or SHAP values, in such a way that the importance it assigns to each

feature can be characterised as the average marginal contribution of a feature over

all possible combinations of features. For each prediction, the sum of the SHAP val-

ues assigned to all the features equals the difference between the model prediction

and the average prediction across all instances. Each feature is assigned a SHAP

score that indicates its relative contribution to a given prediction. An average of

these SHAP values provides a global insight into feature importance, however the

real utility of an explanation tool lies within its prediction-level explanations, which

indicate the contribution of features for a single output [183]. Prediction-level im-

portance measures help to derive insight into complex interactions between features,

which may be missed on the global level.

SHAP is not without its criticisms however, as it assumes that features are in-

dependent of each other [191]. This means that the importance of features that

vary co-linearly may not be correctly accounted for by the model, or that these fea-

tures can cause instability in model explanations. Slack et al. [208] exploited these

aspects to show that SHAP was susceptible to being fooled by synthetic features.

These synthetic features, while not directly co-linear with or proxies for sensitive

characteristics, were constructed to induce the effects of sensitive features on model

predictions. When SHAP was applied to explain models trained using these syn-

thetic features it attributed model predictions to these features rather than the

true discriminatory ones. In general, post hoc model explanation approaches may

be inconsistent and unreliable - and different explanation tools may even disagree

substantially [112].

Although the previously mentioned neuro-symbolic methods leverage structured

knowledge to improve model performance, they are not explainable nor interpretable.

Conard et al. [44] define “interpretable” to mean that the parameters of a model

correspond to functional concepts, and “explainable” to mean having parameters

that can be used to account for the model predictions. Neuro-symbolic models do

have the potential to form the basis of explainable/interpretable models and are

slowly starting to find application in bioinformatics [32, 44]. This is largely due to

their utility in creating explainable and interpretable systems [44].

DeepGONet, created by Bourgeais et al. [32], is a type of feed-forward network

where each neuron represents a GO Biological Process (GO-BP) concept. The first

58

Lorcán Anthony Karel Pigott-Dix

layer extracts gene activation levels from gene expression data and assigns them to

specific biological functions. The concepts represented by the subsequent layers be-

come more and more abstracted. Each of the neurons in one layer are fully connected

with the following layer but the connections are constrained by a custom regular-

isation function. The regularisation function effectively penalises the optimiser for

passing signals between concept-neurons that are not connected in the GO-BP. The

strength of this regularisation is weighted by a scalar parameter. A ReLU activation

function is applied following every hidden layer, this is to represent the presence or

absence of a particular phenotype, and to model its significance.

This model was trained and validated using two different datasets, one for a

binary cancer/not-cancer classification task, the other for a multi-class cancer-type

classification task. The model achieved similar performance to other state-of-the-

art un-explainable methods, while penalising connections not in the GO-BP and

conserving signals along valid GO-BP connections.

The authors explored how the concept-neurons were contributing to predictions

using Layerwise Relevance Propagation (LRP) and hierarchical clustering of the hid-

den layers. LRP showed that only a small number of layer neurons contribute to

each layer output. It also revealed that, despite the custom regularisation function,

some relationships between phenotypes not represented by the GO-BP contribute

to classification. This reflects the incompleteness of the ontology, suggesting the

presence of some yet to be described biological process. The clustering revealed

that earlier neurons capture tissue specific signatures, with deep layers represent-

ing more general cancer signals. This suggests that the model had captured both

tissue-specific and universal cancer features. The authors believe that tools such as

DeepGONet can be utilised for personalised medicine.

Bourgeais and colleagues [31] also created GraphGONet. This time the model

represents every concept in the GO with a neuron, however links between neurons

are strictly constrained by the relationships present in the GO. Each neuron receives

an input from its child neurons. If a neuron has no child neurons, then it receives

an input of relevant gene expression data. The activations of each neuron in the

graph are computed, progressing from the most specific to the most general. Once

calculated, a proportion of the neurons with the highest activations are then used as

inputs for the classification layer. A vector representing all the neurons is computed,

with the elements corresponding to outside of the top activations being masked to

zero. A softmax is then applied to the vector and then passed to the classification

layer. As it trains the model learns to associate particular neuron activations with

certain classes. This model achieves comparable performance to state of the art

“black-box” models when compared on the same tasks as DeepGONet, while the

subset of activated neurons can be used to explain the model predictions. The

authors found that these interpretations are stable - other iterations of the model

with different initial parameterisations learned similar explanations for the same

59

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

classes.

In a variation on this theme, Lotfollahi et al. [134] developed expiMap, an in-

terpretable gene program mapper. It uses an unconstrained encoder to non-linearly

transform the cell expression data into a latent representation of the cell. However,

the decoder is linear and constrained by domain knowledge. A binary matrix repres-

enting the genes associated with specific gene programs is used to softly constrain the

decoder. Whereas, with DeepGONet [32], a custom regularisation function penalises

connections between genes and gene programs not represented by the symbolic do-

main knowledge, the binary matrix. This soft constraint results in expiMap learning

a mapping of one gene program to each element of the latent variable, while also al-

lowing it to capture associations outside of the domain knowledge. A Group-LASSO

regression is used to select only the most informative gene programs for a cell atlas.

Group-LASSO learns to select all of the variables in a group or none of them.

Lotfollahi and colleagues’ [134] expiMap is trained on a reference dataset. To map

further datasets to this reference a form of transfer learning is employed. Weights

corresponding to the known gene products are frozen, but a number of new trainable

latent variables are added to the model. These new latent variables learn new im-

portant features that are not present in the reference set, while also representing the

new data in the same space as the reference set. The authors tested their approach

by removing certain gene programs from the training data set and then seeing if

the transfer learning could identify them in a new set of data. The model learned

specialised gene programs corresponding to those removed, while also identifying

gene-program-to-gene associations not defined in the binary matrix. A statistical

measure of variable independence demonstrated the exclusivity of these new lat-

ent representations. The model only learns new pathways as necessary due to the

regularisation constraint silencing surplus connections.

Pan et al. [166] explored the many ways that large language models could be

combined with knowledge graphs. The idea being that the generalisability of gener-

ative large language models would be enhanced by the accuracy and explainability

supplied by structured knowledge graphs, with the knowledge graph providing a

guardrail.

2.4 Related work

2.4.1 Semantic table interpretation

To realise the semantic web, heterogeneous data needs to be incorporated into a

linked data format [251, 216, 224, 49]. The task of transforming tabular data into

linked data is called Semantic Table Annotation [251]. It involves assigning relevant

semantic classes, from either a knowledge graph or an ontology, to the elements,

rows, or columns of tabular data. This is typically done by matching columns to

60

Lorcán Anthony Karel Pigott-Dix

known semantic model, which are subsets of the knowledge graph known to represent

tabular data [251, 216]. These annotations allow the data to be integrated into a

wider knowledge graph, and provide unambiguous machine-readable context which

allows machine agents to reason on the contents of the table.

Taheriyan et al. [216] approached the task of semantic data annotation by map-

ping ontology terms to dataset attributes, and then using the properties of known

semantic models to link the terms together. This mapping was represented as a

“semantic network” or graph, where the ontology classes were the nodes, and the

model relations the edges between them. Dataset attributes were mapped to can-

didate ontology terms using either text embeddings with vector similarity measures

for textual attributes, or distribution analysis for numerical attributes. The known

semantic networks were then overlaid upon the candidate nodes. The weights of

the edges in common between semantic models were increased. Candidate semantic

networks were then generated to represent the dataset by computing the minimal

known networks that encompass the attributes. These candidate networks were then

scored by a function of graph size and edge weightings, with more common patterns

being preferred.

This approach was adapted by Vu et al. [224] to incorporate a probabilistic

graphical model. Again, a weighted directed graph of known semantic models was

used to represent the possible links between nodes. Then a “transition function” was

used to generate all of the possible connecting paths between each data attribute

and the leaves and root of the tree. All of the candidate paths were scored using a

Conditional Random Field (CRF) which has been trained on the known semantic

models.

Zhang [251] developed TableMiner+, where subject column detection is followed

by an iterative process which alternates between a learning stage and an update

stage. In the learning stage, TableMiner+ compares contents of table cells against

the concepts in the knowledge graph, scoring the relevance of the concepts, and

retaining those with the highest scores. Then during the update stage, a domain

representation bag-of-words is created using the highest scoring concepts for each

cell. Each of the concepts assigned to represent the columns are compared against

the domain representations. To do this the definitions of each concept are turned

into a bag-of-words which are used to compute the similarity of the definition with

the domain representation. These similarity scores are used to determine whether a

column concept is updated. If the column annotation is updated then the annota-

tions for the individual cells are updated. This process is repeated until the concepts

stabilise and no further updates are made.

Cremaschi et al. [49] created an automatic annotation tool, MantisTable, where

a knowledge graph plays a role similar to the known semantic models in both Taher-

iyan et al. [216] and Vu et al. [224]. A knowledge graph is an abstraction used for

integrating information from multiple sources or domains. Much like an ontology it

61

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

represents knowledge as a graph of nodes and edges, with the nodes again represent-

ing concepts and the edges relationships. In this case the knowledge graph provides

the context required to infer the semantics of the dataset instead of a collection of

known semantic models.

All of these models depend on how accurately dataset attributes can be mapped

with the correct ontology terms. Which, due to polysemy, is a non-trivial problem

[104]. As these methods use exact string matching approaches [216, 224, 251, 49],

this may pose an acute challenge.

2.4.2 Named Entity Recognition and Biomedical Concept Recog-

nition

Although a dataset may not contain enough information to disambiguate its se-

mantics, the paper that accompanies it should. By reading a publication, a human-

agent can identify concepts and infer semantics. Machine agents could be used

to identify specific concepts and relationships from text, and construct a machine

readable graph. This graph can function as a proxy of the text’s semantics.

The first step in transforming unstructured text into a meaningful graph is to

recognise the relevant concepts it contains. Extracting concepts from unstructured

text is a natural language processing task called Named Entity Recognition (NER)

[24]. NER is a classification task where words or phrases corresponding to entities

or concepts of interest are identified within text. State-of-the-art models can achieve

F1 scores in excess of 90% on standard NER datasets. However, this level of per-

formance depends on the availability of high quality annotated data which can be

prohibitively expensive to produce [24] - particularly if expert annotation is required

[252].

Bikel et al. [24] introduced one of the first Named Entity Recognition models,

IdentiFinder. The model started by extracting handcrafted word features. These

features included letter capitalisation, whether the word was the first in a sentence

and if the word was a specific numerical pattern such as a date. Another feature ex-

tracted represented whether two words occurred frequently together, such as “New”

and “York”. A Hidden Markov Model (HMM) was trained to maximise the joint

probabilities of the correct sequence of labels given an input sequence of text and

their extracted features.

Bender et al. [19] also devised an approach to NER that incorporated dependen-

cies between words in sentences, this time using a Maximum Entropy model. Again,

the presence or absence of certain word features were used as the inputs to the model.

The model learned to predict labels for a word given its features and those within a

fixed context window of the word. Both this work and IdentiFinder demonstrated

the importance of word structure and context to NER.

McCallum and Li [144] applied a Conditional Random Field (CRF) model to

62

Lorcán Anthony Karel Pigott-Dix

NER, as an alternate approach to probabilistic models such as HMMs and Max-

imum Entropy. The CRF layer learns the conditional probabilities of all the se-

quence of labels given the entire sequence of input words. It takes into account both

the individual labels for words, and the transition relationships between labels of

consecutive words (For example the label “surname” following “firstname”). They

also devised a method for the automatic induction of features by combining multiple

handcrafted features. This is an iterative process when candidate feature combina-

tions are used to train a model on a subset of the training data. If the new features

increase the log probability of the correct labels the new feature is retained. These

feature combinations were found to lead to better model performance than including

the total set of around one million possible features.

Lample et al. [116] combined a Bi-LSTM with Conditional Random Fields (Bi-

LSTM-CRF) for NER. The model considers both word morphology and semantics.

It does this by applying a character-level CNN to the input words and concatenat-

ing its output with the word’s embedding from a pre-trained word2vec model. The

concatenated vector is passed to the Bi-LSTM which captures contextual informa-

tion between words in the sequence. The Bi-LSTM outputs are passed through a

linear transformation, reducing the dimensionality to that of the number of classes.

Finally these are passed to the CRF layer, which behaves as in McCallum and Li

[144], assigning join probabilities given the individual class probabilities. Due to

the character-level CNN, the Bi-LSTM-CRF model does not require hand-crafted

features. However, it still requires a corpus, manually annotated with labels of

interest.

Yan and Wong [236] created a text classifier to identify cancer hallmark mentions

in biomedicine literature for the purposes of annotation. Firstly text was prepro-

cessed into lemmatised bags of words, noun bi-grams, named entities, grammatical

relations, and verb classes. It used ABNER [202] to detect the presence of gene,

protein, and cell type entities in text. Then MetaMap [8] was used to detect Uni-

fied Medical Language System (UMLS) entity terms. Synonymous entities were

combined using the related concept relationship terms from the Medical Subject

Headings (MeSH) structured vocabulary. Each feature was then represented with

a binary presence-absence matrix. Around 200 000 features were crafted, while the

average abstract contained between only 250 to 450. To reduce the dimensionality

of the data various feature scoring mythologies were used, including a score based

on decision tree feature importance measures. These scores were used to sort the

features, with the top h features for each class being selected, followed by selecting

the top k of this set.

A random forest classifier was then trained on the selected binary features, along-

side other classical machine learning methods. The random forest performed best

of all, with feature selection greatly influencing performance. The decision tree in-

fluence scoring outperformed all other feature selection methods, by excluding the

63

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

most frequent and infrequent terms, leaving the most informative. This method

relied on string matching and on heavy feature selection.

Other methods have been designed specifically to extract ontology terms, typic-

ally in biomedical contexts, these are typically used to annotate electronic medical

records [104]. One of the earliest biomedical semantic annotators was MetaMap [8],

a tool for identifying UMLS terms in unstructured text. Firstly, MetaMap tokenises

and then normalises the input text by removing stop words and lemmatising and

stemming words. Variants of tokens are generated by looking up synonyms of tokens.

Sets of tokens are used to look up UMLS terms using fuzzy string matching. Each

match is then scored based upon each input phrase’s similarity with the matched

UMLS term. A disambiguation process resolves any exactly overlapping terms. The

user can define the rules and parameters of the term disambiguation.

Clinical Text Analysis and Knowledge Extraction System (cTAKES) [192] is

a clinical information extraction system that leverages both machine learning and

rule-based models. The model works by first splitting text into sentences, and then

tokenising each sentence based upon rules based upon token types. These tokens are

then normalised (lemmatised or stemmed) prior to a machine learning-based parser

determining phrase chunks. Then a string-matching UMLS term dictionary being

applied to these phrases to look-up specific concept matches. Heuristic rules are used

to detect negations in the vicinity of identified terms and to deal with overlapping

matches. cTAKES returns the identified UMLS terms and can process both plain

text and XML format files. Both MetaMap [8] and cTAKES [192] are designed for

identifying UMLS terms.

Whetzel et al. [229] introduced the Annotator Web Service as part of the Na-

tional Center for Biomedical Ontology (NCBO) web services. The annotator works

by tokenising text and then using exact string matching to match words to the

names of ontology concepts and their synonyms. Once a positive match is made

the section of text is annotated with the matching concept. This process may be

followed by further steps to disambiguate terms - in case of multiple matches for the

same span of text. Another web service tool, Whatizit [181], which provides sep-

arate modules for the semantic annotation of terms from SwissProt (the manually

reviewed part of UniProt), ChEBI, MedlinePlus (disease names), UMLS, DrugBank,

NCBI taxonomy (species names), and GO. The GO terms are annotated using an

exact-matching process that also matches word stem variations of words. It also has

functionality for the identification of relations between terms.

NOBLE Coder [220] is a string-matching-based semantic annotator. It can match

concepts from any given vocabulary, which means that it can be supplied with user

defined terms. It uses a greedy strategy to capture all matches in a supplied text,

followed by heuristics to disambiguate.

Neji [37] is a biomedical annotator that uses a system of modules: those for

reading in text, modules for tokenising and normalising the inputs, and those for

64

Lorcán Anthony Karel Pigott-Dix

performing concept recognition. The concept recognition modules may be a diction-

ary string-matching approach or a machine learning using a CRF system. Following

concept recognition, heuristics are used to resolve overlap. Here longer spans are

favoured, while overlapping matches from different dictionaries are allowed. There

is also some functionality for abbreviation resolution.

2.5 Evaluation metrics

Throughout this thesis the models developed are assessed against benchmark data-

sets using measures that indicate the types of errors in the model predictions. A

model’s predictions can be classified as being either true positives, false positives,

true negatives, or false negatives. The true positives represent the correct positive

predictions, the false positives represent the incorrect positive predictions, while the

true negatives and the false negatives correspond to the correct negative and the

incorrect negative predictions respectively.

Accuracy Accuracy is a metric that captures both the negative and positive clas-

sification rates [175]. It is given as follows:

Accuracy =
true positives + true negatives

true positives + false positives + true negatives + false negatives

(2.64)

Precision Precision represents the proportion of true positive predictions in the

total number of predictions [175]. It can be computed as follows:

Precision =
true positives

true positives + false positives
(2.65)

Recall Recall, sometimes referred to as the sensitivity or true positive rate, rep-

resents the proportion of the true positives predicted in the total number of actual

positives [175]. It is calculated like so:

Recall =
true positives

true positives + false negatives
(2.66)

F1-score The F1-score, or f-score, is the harmonic mean of both precision and

recall [175]. It can be calculated as follows:

F1 =
2× Precision× Recall

Precision + Recall
(2.67)

F1 =
2× true positives

2× true positives + false positives + false negatives
(2.68)

65

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

It is a composite of both metrics but the harmonic mean tends towards the lower

of the two, so that it more strongly reflects any trade-off between them than an

arithmetic mean does.

Precision, recall and f-score do not capture any information about the true neg-

ative rate [175]. However, as in the case of semantic annotation there are potentially

thousands of true negative classes, we are much more concerned with the rates of

positive predictions rather than the true negatives.

66

Chapter 3

Heuristic Training Data

Creation for Distantly

Supervising Semantic

Annotators

3.1 Beyond string-matching

As described in the previous chapter, the majority of tools developed for ontology-

based concept recognition have been rule-based [102, 220]. Rule-based methods

typically identify potential concepts within text using string matching, to identify

candidate concepts, coupled with heuristics, to refine these candidates. These heur-

istics usually comprise mechanistic rules for concept subsumption, word order, and

word overlap. However, these methods cannot identify synonyms of words if they

are not written as explicitly defined in the ontology, or have the stems of the words

as they are found in the ontology. As a consequence, these methods tend to have

high precision but low recall scores [136].

This synonym-gap can be partially addressed by transforming words into numer-

ical vectors that represent their semantics, known as word embeddings. Embeddings

of words that have similar meanings are closer to one another in semantic space [149,

119, 27]. These embeddings can be used as inputs for neural networks for a variety

of tasks such as classification, language translation, and named entity recognition

(NER).

Recently, Ontology-based concept recognition methodologies have begun to in-

corporate neural nets, typically employing RNNs [18, 59], as they can learn depend-

encies between words in sequences. However, these methods rely on substantive

manual annotation or noisy heuristic data generation. For example, Batbaatar and

Ryu [18] used an ontology to heuristically label a training corpus, while Dong et

67

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

al. [59] relied on manual annotation carried out by medical specialists. Manual

annotation of a corpus by a small group of experts may result in inconsistent model

performance, as common concepts are likely to be more readily identified than those

under-represented in the training corpus.

3.1.1 Reducing the cost of training data annotation

Researchers have explored ways of mitigating the cost of manual expert annotation,

usually through distant supervision [252, 1]. Zhi et al. [252] merged a number of

partially annotated datasets. The tags from each dataset were propagated to the

others, in order to extend the coverage of each set of gold-standard annotations.

To generate a noisy training dataset for low-resource language NER, Adelani et al.

[1] used heuristic rules to tag entities that matched, preceded, or followed specific

patterns. For example, lists of names were used to label matches from text. However,

the dataset this produces will contain a high proportion of false negatives - where

positive entity mentions are left untagged. To mitigate this they estimated a “noise

channel” using a small set of gold-standard data. This noise channel was then

leveraged to clean the labels of the larger dataset. While these methods produce

NER models that perform nearly as well as those trained on large gold-standard

datasets, they still require some expertly-annotated data.

Outside the realm of NER, unsupervised techniques have been developed to train

image classifiers using noisy-label training data [2]. Xia et al. [234] constructed an

image dataset by inputting keywords into an image search engine, labelling the

returned images with the keywords. The dataset is noisily labelled, as although

most of the results returned by the search engine are likely in the correct semantic

class, an unknown proportion of the images are not. A variational autoencoder is

trained to reconstruct the images. The reconstruction error of the autoencoder is

then used to discriminate between true positive and false positive labels in the noisily

labelled dataset. The intuition here is that the image vectors of the true positives

represent the same semantic concept - be it a cat or a yacht - therefore their vectors

will be situated in close proximity to one another in semantic space or contain

similar features. Conversely, the false positives will be outliers scattered around the

semantic space, or may contain different features to those of the true positives. When

an autoencoder reconstructs a vector, the reduction of dimensionality between the

hidden and input layers causes a bottleneck. To minimise the reconstruction error

of an image dataset, the autoencoder has to find the signals that best represent the

statistical regularities of the dataset. As the positive samples are clustered close to

one another in semantic space, the autoencoder will learn to better reconstruct the

features of these samples. Thus the reconstructions of the true positives have much

less reconstruction error than the false positives. A deep neural classifier can then

be trained on the augmented dataset. The authors found that expanding a training

68

Lorcán Anthony Karel Pigott-Dix

*.owl

Class labelsOntology

This is an example sentence with two gene names, CD106 and CSIF

CD106

O O O O O O O B O B O O
This is an example sentence with two gene names, CD106 and CSIF

… the label strings are matched to the
input sentence strings...

… and the matched labels are tagged as
entities, using the BIO tagging format.

Class labels are extracted from
.owl format ontologies...

Figure 3.1: An overview of the heuristic data generation process. An owl format
ontology and a text document of sentences divided by newline characters are input
into the pipeline. The pipeline extracts the ontology class labels and then matches
them to occurrences in the text sentences. Class labels from the ontology that are
present in the sentences are then tagged as entities. Note that the data generated
is noisy - only one of the gene names present is correctly tagged.

dataset with this method improved the performance of the classifier when evaluated

against a gold standard dataset.

Ma et al. [139] recognised two distinct phases of deep neural classifier training:

Dimensionality compression, and dimensionality expansion. During dimensionality

compression the low-dimensional subspaces of the representation space are closely

modelled on the elementary distribution of the data. This means that the model

tries to learn the smallest number of variables needed for a minimal representation

of the data - it learns to generalise. This is followed by dimensionality expansion,

where the model learns to overfit to the less general features of the dataset. When

the training data has noisy labels, the classifier overfits to the noise. The Latent

Intrinsic Dimensionality (LID) of the deep representational subspaces can be es-

timated, so that these distinct phases can be differentiated. The authors devise a

training strategy, called “dimensionality-driven learning” (DDL), to recognise the

transition between stages and prevent overfitting to the noisy labels. Not only do

these methods demonstrate marked improvements to image classifiers trained with

noisy data but they also require limited supervision, eliminating the need for further

expert annotation [234, 139].

69

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Figure 3.2: The architecture of the CNN-Bi-LSTM-CRF Named Entity Recognition
model prior to any modifications.

70

Lorcán Anthony Karel Pigott-Dix

3.1.2 Contribution

This work attempted to translate methodologies developed for distantly-supervised

image classification to NER. First, a noisy training dataset was created. Class

labels were extracted from the Cell Ontology (CL) and used to heuristically label the

relevant ontology concepts within a large corpus of PLOS papers. The PLOS corpus

was used as it is covered by a permissive Creative Commons Attribution (CC-BY)

license and may be reused for any purpose [200]. This noisy-labelled dataset was used

to train three NER architectures: an unmodified CNN-Bi-LSTM-CRF NERmodel, a

CNN-Bi-LSTM-CRF incorporating discriminative autoencoders, and one integrating

the DDL strategy. The models were evaluated against the expertly-annotated gold-

standard CRAFT dataset [13] to ascertain which model best recreated the expert

annotations.

Of the three models, qualitative assessment found the model that responded to

changes in dimensionality to be defective. The remaining two models (the discrimin-

ative autoencoder and the unaltered NER model) were found to produce inadequate

results (F1 scores of ∼6.5%). Following the results, the implications and future work

are discussed. The scripts for the work undertaken in this chapter can be found here:

https://github.com/lorcanpd/TagOntoText.

3.2 Methodology

3.2.1 Generating a noisy training dataset with heuristic labelling

The heuristic data generation process begins with the extraction of label strings

from the domain ontology. Sentence strings from the raw training text are searched

for ontology label string matches. When a match is found the words that match are

tagged appropriately using the BIO format. Once all matches in a given sequence are

found, all the words that were not matched are tagged as belonging to the negative

class. Figure 3.1 contains an illustration of the process.

To build a training corpus, label strings were extracted from the CL [58] and

matched to sentences from a collection of 263 548 PLOS papers. Of the 19 267 249

sentences in the PLOS dataset, 9 315 552 sentences contained at least one CL term.

3.2.2 The vanilla Named Entity Recognition Model

The unaltered NER model is a Character-CNN-Bi-LSTM-CRF like that described

by Lample et al. [116] (see figure 3.2 for an overview of the architecture). The model

incorporates embeddings to represent both the semantic meaning and the character

morphology of the sequence tokens. To create the word embeddings, a word2vec

[149] model was trained on the PLOS papers. The word2vec was parameterised

with a context window of five tokens, and had a minimum word frequency of seven.

The NER model learns word-morphology-specific character embeddings as it trains,

71

https://github.com/lorcanpd/TagOntoText

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

using a character-based CNN. Each token’s pairs of character and word embeddings

are concatenated and fed into a Bi-LSTM layer. The Bi-LSTM consists of a for-

ward and a backward layer, which are used to learn order dependence between the

word representations. The outputs of both the forward and backward LSTM are

concatenated for each token. Each of these vectors are passed to a dense neural

layer that compresses the LSTM representation into the same number of nodes that

there are classes. The output of this layer is fed into a Conditional Random Field

(CRF) classifier. The CRF classifier predicts the most probable sequence of labels

for a sentence given the current configuration of model weights.

The CRF prediction is scored using a combination of the raw outputs from the

dense layer and the transition values from the CRF transition matrix. For each

word there are raw values corresponding to each label class. The higher the raw

value for a label class the more likely the model will predict that label for a word.

The predicted labels are compared to the training labels by summing together the

raw values of the correctly labelled tokens. So if incorrect labels are predicted, the

resultant sequence scores will be lower.

The transitions between each label in the sequence are scored using a transition

matrix. The transition matrix provides a value that reflects the likelihood of a

particular label succeeding another in a sequence. The more likely the transition

is, the closer its matrix value is to 1. The less likely the transition, the closer the

value is to zero. For example, it learns from the training labels that an “I” label

cannot follow an “O” label. If an “O” label follows an “I” label in a predicted

sequence this transition is awarded a zero. The transition values and values of the

correct sequence labels are summed together and normalised to create the sequence

score. This score is then converted into a negative log-likelihood loss. The model

learns to use a word’s morphology, semantic representation, context, and the most

probable labels of neighbouring words, to predict which words in a sequence are

named entities.

3.2.3 Incorporating a Discriminative Autoencoder

The discriminative autoencoder methodology, as originally described, was used to

clean the labels of a training set prior to training an image classifier [234]. The

cleaning was an iterative process with two steps: Discriminative labelling, and re-

construction learning. During discriminative labelling, true positives are estimated

from the noisy dataset based upon their current reconstruction errors. During re-

construction learning, the autoencoder is trained on the samples labelled as true

positives in the discriminative labelling step. Initially the network parameters are

randomly initialised, so the reconstruction error is not discriminative. However, after

a few iterations the error distributions start to become more separable, and the la-

belling process produces fewer false positives. In turn, this makes the autoencoder

72

Lorcán Anthony Karel Pigott-Dix

better at reconstructing true positives. As the process continues, the reconstruction

errors become ever more separable, and the labels gradually become stable between

iterations. Once the labels are fixed the training is stopped.

There are reasons why, in this NER case, using an autoencoder as a pre-

processing step is not ideal. In the NER model, each word in a sequence is represen-

ted by both a semantic vector and a word morphology vector. The word morphology

vectors are randomly initialised but change as the model fits. If the autoencoder

were used to correct the labels prior to the NER training, it would not be provided

with morphological information - which can be important for classifying words that

are not covered by the word embedding model. Instead the autoencoder can be

incorporated into the training process of the NER.

At each training iteration, the concatenated semantic and morphology vectors

for each word in the batch are passed through the autoencoder. The reconstruction

error for all of the vectors is clustered into two groups using the Jenk’s natural

breaks optimisation algorithm [100]. This algorithm minimises the variance within

each group while maximising the variance between them, and returns a value that

best demarcates the two clusters. Vectors that have a reconstruction error below

this value are considered to be true positives, and those above to be true negatives.

Here, the CRF scoring function is amended so that if a word is labelled as negative

in the training set, yet has a reconstruction error in the lower cluster, then the

CRF score for this word is multiplied by −1. This effectively penalises the model

for contradicting the discriminative autoencoder proportionally to the magnitude of

disagreement. At the end of the training iteration, the vectors of all of the words

predicted to be positive by the NER model are used to train the autoencoder.

The intuition is that the heuristic dataset likely contains a far greater proportion

of false negative labels than false positive [1]. False positives are likely to have

broadly similar semantics and/or word morphology to true positives from the same

domain (For example, words beginning with the prefix “phyto-”). Preventing the

NER model from learning negative labels for possible false negatives, while learning

the positive labels for semantically/morphologically similar true positives should

result in the model relying on a word’s in-sentence context to predict its label. If

a word’s context suggests that it is a positive sample, and it has similar semantic

meaning or similar morphology to a positive sample, it should be more likely to be

labelled as a positive sample - even if it is negative in the training data.

It is important to note that this adaptation of the methodology does not re-label

these potential false negatives as positives. Rather, it is intended to discourage

learning negative labels for these false positives. This is because NER in the BIO

form is always a multi-class classification problem, even if there really is only one

positive class. Deciding which positive class the false negative should belong to is

complex in an unsupervised setting. Even in the “single” positive class case, the

algorithm must decide between two positive labels “B” (beginning of entity) and

73

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

“I” (inside an entity).

3.2.4 Employing a dimensionality-driven learning strategy

Dimensionality-driven learning measures the latent intrinsic dimensionality (LID)

of a model’s representational subspaces to identify when it begins to overfit to the

training data. In the original paper, Ma et al. [139] evaluated the strategy in a

CNN architecture for image classification, with the penultimate neural layer being

the representational subspace measured.

Computing the LID for an entire dataset with respect to a sample is prohibitively

expensive [139]. Instead the LID of a training sample is estimated from its k-nearest

neighbours, within its training batch, randomly selected from the entire dataset.

The LID estimate, ˆLID, for a sample x is given by:

ˆLID(x, XB) = −(
1

k
Σk
i=1 log

ri(g(x), g(XB))

rmax(g(x), g(XB))
)−1 (3.1)

Where XB is the sample batch. The function g(x) is the output of the second-

to-last layer of the network for sample x. The expression ri(g(x), g(XB)) is the

distance between the outputs of the second-to-last layer for the sample point x and

its k nearest neighbours from the batch XB. While rmax(g(x), g(XB)) represents the

radius from sample x, or the greatest distance found between x and the samples in

XB. The LID score that would have been calculated using the full dataset can be

estimated reliably, as long as the batch size is sufficient to ensure that the k-nearest

neighbours of x at the second-to-last output layer remain in the vicinity of x in

representational space [139].

The LID score for each epoch is approximated by computing the ˆLID for each

sample within a batch, for each batch, and then averaging them. The ˆLID score is

used to calculate a factor α that updates at the end of every training epoch:

α = exp(−λ
ˆLIDi

mini−1
j=1

ˆLIDj

) (3.2)

Where λ = i/T , i is the epoch, and T is the total number of epochs. mini−1
j=1

ˆLIDj

is the lowest LID score of the previous epochs. This factor serves as a weighting

that represents decreasing confidence in the raw labels when the training is in the

dimensionality expansion stage. This factor is used to compute adaptive LID-based

labels, which are used to “reduce the effect of noisy labels on learning the true data

distribution”:

y∗ = αiy + (1− αi)ŷ (3.3)

Where y is the raw label, ŷ is the predicted label, and y∗ is the corrected label. Once

the LID score of the present epoch is greater than two standard deviations of the

mean LID score of the w preceding epochs, the model is rolled back to the state of

74

Lorcán Anthony Karel Pigott-Dix

the previous epoch, and the loss is transformed from a cross-entropy loss to this:

L = − 1

N

N∑
n=1

∑
y∗n

y∗nlogP (y∗n|xn) (3.4)

Where N is the number of training samples, and P (y∗n|xn) is the predicted class

probability of y∗n given the sample xn.

To adapt the dimensionality-driven learning strategy to NER, two changes were

required. The first change was to which layers are extracted to have their LID es-

timated. The outputs of the Bi-LSTM layers were chosen. This representational

layer encodes information about the word semantics, morphology, and the depend-

encies between words. Only the LIDs of Bi-LSTM elements corresponding to words

were estimated. This (as opposed to all 100 elements of the Bi-LSTM) ensures that

the semantic-morphology-dependence space does not represent any out-of-sequence

tokens. Out-of-sequence tokens would skew any estimate of the LID in a manner

highly dependent on the length of sequences in a batch. For example, when there

are shorter sentences there are more out-of-sequence tokens. As these tokens occupy

the same semantic space this would result in a lower LID estimation.

An additional change was made to the CRF scoring function. The scoring func-

tion had to be altered to incorporate the policy factor. The scoring of a sequence

was transformed into a two step process: Firstly the normal CRF label scoring is

calculated for the sequence. Secondly, the score is calculated again, but as if the

labels predicted were correct, that is the highest scoring raw values for each element

were used to score the algorithm. These two scores are input into equation 3.3,

where the scores are apportioned, depending on the policy factor, into an aggregate

score. This resultant aggregate score is transformed into the loss used for training.

The policy factor does not affect the training of the CRF transition parameters,

so while increasing confidence is given to the predictions of the model, the correct

transition rules are still learned. See figure 3.3 for an illustration of both of the

proposed changes to the algorithm.

3.2.5 Training

The 9 315 552 heuristically tagged sentences were divided into 60-20-20 training-

test-validation split. This resulted in 5 589 332 sentences for training, and 1 863 110

for testing and validation. The models were trained over two epochs, using a batch

size of 300 sequences. The control and DDL models all achieved >98.7% precision

and recall on the heuristically generated test data at the end of the second training

epoch.

75

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Table 3.1: Gold-standard validation metrics for the control and discriminative au-
toencoder models.

Model Precision % Recall % F1 %

Standard NER (control) 4.0 19.5 6.6

Discriminative Autoencoder 3.9 19.2 6.5

3.2.6 Evaluation

The trained models were evaluated using the gold-standard annotated CRAFT cor-

pus [13]. The CRAFT corpus consists of 97 documents that have been annotated

with occurrences of concepts from nine biomedical ontologies (the CL, the Chemical

Entities of Biological Interest ontology, the NCBI Taxonomy, the Protein Onto-

logy, the Sequence Ontology, entries of the Entrez Gene database, and the three

sub-ontologies of the GO. For this study only the CL annotations were used. The

annotations in the craft corpus were transformed into the BIO format and the pre-

dicted labels compared with those from the corpus.

3.3 Results

Table 3.1 displays the validation metrics for the control and discriminative autoen-

coder models. Qualitative assessment of the trained models found the DDL model

to be defective. It produced series of alternating positive and negative tags that had

no apparent relation to the sequence being classified. As a result it has not been

included in the results table.

3.4 Discussion

As shown in table 3.1, both functioning models performed poorly. As indicated by

the recall, fewer than a fifth of concepts were correctly tagged as positive by the

models. The precision shows that the positive predictions made by both models

were incorrect in excess of 95% of the time. The models appear to replicate the

heuristic tagging process.

The inclusion of the discriminative autoencoder in the model training did not

improve the performance of the model. The assumption that the autoencoder from

the image-dataset cleaning task could be straightforwardly translated to an LSTM

model was false. While, the autoencoder used to clean image datasets only had

to identify one class, the ontology terms comprise many semantic classes in vari-

ous combinations. The relatively simple autoencoder architecture used here, likely

lacked the parameter space to encompass the required signals to reliably reconstruct

the multiple semantic classes. This was also likely compounded by the limitations

discussed earlier in subsection 3.2.3.

76

Lorcán Anthony Karel Pigott-Dix

A key limitation of LSTM-CRF-based NER models, using BIO labelling, in an

ontology-based concept recognition scenario is that they do not map text to specific

concepts [203] but to spans of text. Further work should explore other methodologies

that map text to specific ontology terms, and avoid the need for noisy datasets or

distant supervision. For example, doc2vec [119] learns vector representations for

words and documents in a corpus. Firstly, the vocabulary is represented by a matrix,

where each row corresponds to a unique word. During training the model tries to

predict a word from its context, using the concatenation of the context words’ vectors

as input features. To learn representations of documents, the model alters the word

representation process. It can do this using two different algorithms: Distributed

Memory (DM), or Distributed Bag of Words (DBOW). For DM, each document in

the training corpus is represented by a vector. This vector is added to the feature

inputs for word prediction for words in that document. This vector behaves as a

memory of words that had previously appeared in the document. This extends the

context beyond the immediate context window of the current word. DBOW, like

DM, represents documents with a vector, but ignores the context words. Instead

words are randomly sampled from the document and the document vector is used

as the feature input to predict the words. Once trained, either iteration of doc2vec

model can be used to infer a vector for a novel document.

I trained a doc2vec model using the corpus of PLOS papers. The trained model

was used to infer a document vector for each ontology concept using the text string

contained within its associated “<owl:AnnotationProperty>”. Vectors were also in-

ferred for strings of text that described or contained references to ontology concepts.

I then calculated the cosine similarity between the vectors of the sentences and the

ontology terms to find the ten most similar ontology terms for each sentence. The

sentences and the best matching terms were qualitatively assessed. On inspection,

it was found that the top ten ontology terms returned when using the DBOW al-

gorithm were more accurate. This suggests that word order is not a decisive factor

in this scenario, and that the combination of semantic signals contained in text are

more important.

If the semantic content alone is the best feature to use for this task then a CNN

could be used to identify concepts in a sequence. As a CNN uses filters to search for

particular numerical features, and it would not be affected by additional words in

the way that the inferred word vector would be. The CNN would learn to quantify

the strength of the task-appropriate semantic features.

77

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Figure 3.3: An overview of the proposed changes to the model: A Indicating which
representations will be used as the inputs to the modifications; B A visualisation
of the error reconstruction method; and C a visualisation of the Latent Intrinsic
Dimensionality method.

78

Chapter 4

Augmenting Neural Dictionaries

with Attention for

Multiple-Ontology Semantic

Annotation

Portions of the work detailed in this chapter were published as a peer-reviewed

conference paper [172] and have been reproduced with permission.

4.1 Introduction

4.1.1 Neural Dictionaries

Simultaneously addressing the synonym gap while avoiding the training corpus is-

sues, Arbabi et al. [7] created a method that exploits semantic word embeddings and

which only requires an ontology for training: the Neural Concept Recogniser (NCR).

The NCR is a “neural dictionary”: a type of deep neural net that learns to behave

like a lookup hash or dictionary - given a key an appropriate value is returned. The

NCR uses a simple convolutional neural net (CNN) to learn associations between

sequences of word embeddings and concept embeddings. Instead of searching based

on exact or partial text matches, the neural dictionary converts signals from the

input text into the semantic representation space of the concepts and finds the most

similar concept embeddings. The NCR shares semantic features between related

concepts using a “concept ancestry” matrix, where the semantic features of parent

concepts are “inherited” by its children. Arbabi et al. [7] found that pooling se-

mantic information between related concepts using the ancestry matrix improved

model performance.

One advantage of the NCR is that, unlike the RNN- or LSTM-based models, it

requires no manual or heuristic annotation for training. Additionally, the model can

79

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

be applied to any domain for which there is an OBO format ontology. No further

domain expertise beyond that already contained in the ontology is required. While

the simple CNN architecture allows the model to exploit semantic embeddings, word

order dependency information is lost. When the NCR model was evaluated against

a Gold-Standard Corpus [133] of text annotated with concepts from the Human

Phenotype Ontology (HPO), the Neural Concept Recognition model achieved micro

and macro F1 scores of 70.2% and 73.9% respectively.

Luo et al. [136] combined a string matching approach with a neural classifier

for the task of Human Phenotype Ontology concept recognition, “PhenoTagger”.

A string matching dictionary of concepts names, synonyms, and their lemmatised

forms was created from an ontology. This dictionary was then used to create a

distantly supervised training dataset, where an ontology term’s labels were used to

create positive samples associated with the concept ID, and negative samples were

sampled from a biomedical text corpus and associated with a “none” ID. The neural

classifier employed was a pre-trained BioBERT language model [124], a transformer-

based language model, which uses attention to modify the word embeddings of tokens

based on their context. The pre-trained BioBERT model was trained further to

associate the samples with their respective tags. In deployment, PhenoTagger uses

the string-matching dictionary to identify likely terms from text and BioBERT to

classify the text with the most likely ID. PhenoTagger achieves a “document-level”

f-score of 75.7% - the current state-of-the-art for neural dictionary methods.

4.1.2 Attention

Arbabi et al. [7] mention that attention mechanisms were tried as an alternative to

the simple convolutional layer, but that they were found to not be as effective. This

may be explained by either the conjunction of poor inductive bias and the limited

training data, or the relative efficacy of CNNs at local feature extraction.

Hu et al. [94] developed an attention-based technique for augmenting a CNN,

called Squeeze-and-Excitation. This technique moderates the maximum feature sig-

nals using the average signals of the feature maps. To do this, a vector of all the

average signals of each feature map is passed to a neural network consisting of two

transformations: a non-linear transformation to reduce the dimensionality of the

data, followed by another non-linear transformation back to the size of the aver-

age signal vector. The final vector is then used to scale the maximum signal vector

element-wise. The bottleneck caused by the dimensionality reduction encourages the

model to learn dependencies between average features allowing it to selectively at-

tend to different maximum signals. The authors found this technique to significantly

improve the performance of CNN-based classifiers at image recognition tasks.

Guo et al. [78] describe an alternative configuration of multi-headed self-

attention, meant to address the transformer’s poor inductive bias, called Scale-Aware

80

Lorcán Anthony Karel Pigott-Dix

Self-Attention (SASA). With SASA, each attention head attends to a variable scale.

The variable scale restricts attention to within a certain neighbourhood of each se-

quence position. The intuition here is that words that are in close proximity within

a sentence are more likely to contain contextual information relevant to each other.

In addition, this forces the attention heads to attend to a smaller set of features, so

the relative differences between the remaining features are more pronounced. Atten-

tion is focused on words more likely to provide relevant context and the signals from

these words are also relatively stronger, providing an improved inductive bias. This

technique was found to exceed the state-of-the-art, or was at least competitive for

a number of NLP tasks, while simultaneously requiring far fewer training examples

than more conventional attention-based models.

As transformer models have many parameters, they have a propensity to overfit

to training data, preventing the model from generalising. To remedy this, different

drop-out techniques have been proposed. Zhou et al. [254] applied a structural

dropout mechanism, DropHead, to prevent overfitting. During training, DropHead

randomly drops entire attention heads. The model may no longer be able to rely

on a particular attention head to attend to a certain region of feature space, so

all attention heads must also attend to overlapping areas of feature space. This

prevents a minority of attention heads from dominating the model while the other

heads contribute little.

Wu et al. [233] describe UniDrop, which combines multiple dropouts to fur-

ther improve the transformer’s ability to generalise: “feature dropout”, “structure

dropout”, and “data dropout”. Feature dropout consists of applying dropout at

various points within the attention mechanism: to the attention weights, activation

layer, to the query, key, and value matrices, and to the output features prior to the

linear transformation. In this case structure dropout alters the architecture so that

an entire attention layer can be dropped during training. Data dropout refers to

randomly removing a proportion of tokens from the input sequence. UniDrop was

found to improve the performance of transformer models without additional training

data or computational power.

Transformers, as originally described [221], also require a learning rate warm-

up in order to train properly. During the warm-up, the learning rate is gradually

increased from a small value to a maximum, over a set number of training iterations.

Xiong et al. [235] argue that as the architecture applies layer normalisation after

the residual blocks, the output parameters’ expected gradients are always large at

initialisation. This impacts the stability of training when a large learning rate is

used. The warm-up period results in “well-behaved” gradients, but also in a longer

training process and the addition of sensitive hyper-parameters that require tuning.

Xiong et al. [235] show that moving the layer normalisation inside the residual blocks

removes the need for a warm-up period, as the gradients are smaller at initialisation.

81

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

4.2 Contribution

The work described in this chapter achieves a new state-of-the-art for ontology-based

concept recognition. The performance of the CNN neural dictionary architecture is

improved by using higher-quality word embeddings and incorporating an attention

mechanism that models dependencies between convolutional filters. Unlike previ-

ous approaches, this neural dictionary can incorporate multiple domain ontologies

at once, with the model leveraging multiple ontologies comprised of more diverse

domains performing best of all. This work also adds further credence to modi-

fications enabling transformer-based architectures to perform competitively with

CNNs, when training data is limited. The code for this chapter can be found here:

https://github.com/lorcanpd/adorNER.

4.3 Methodology

The models described here build upon the work of Arbabi et al. [7] and adapt the

NCR architecture.

4.3.1 Neural Concept Recogniser adapted to use ELMo Word Em-

beddings

The NCR model broadly consists of two parts: the concept embeddings, and the

CNN encoder. All of the concepts in the ontology are represented by a matrix of

embeddings, H, where each row on the matrix corresponds to a concept and each

column represents a dimension of feature-space. The NCR does not learn H directly.

Instead, it learns the matrix H̃, where H̃c are the semantic features of concept c that

are “novel” compared with the concept’s parents. This can be thought of as a local

embedding, positioning a concept relative to its parents in feature space. The global

representations, H, are derived by calculating the product of H̃ and the ancestry

matrix A (H = AH̃). Each element Ai,j is non-zero only if the concept j is an

ancestor of i (this includes i = j). Each row of the ancestry matrix is calculated as

follows:

Ai = OneHot(i) +
1

|parents(i)|
∑

j∈parents(i)

Aj (4.1)

This results in a concept’s ultimate embedding being the average of its parents’

embeddings summed to its own unique “raw” embedding (Hc = Hpc + H̃c). This

incorporation of taxonomic structure from the ontology means that when a concept’s

raw embedding is updated, the global embeddings of its ancestor concepts are also

updated.

The CNN encoder projects text into a numerical representation that positions

the input phrase in the semantic space of the concept embeddings. To do this, first

the text is encoded into a sequence of fixed-length semantic embeddings. Unlike

82

https://github.com/lorcanpd/adorNER

Lorcán Anthony Karel Pigott-Dix

(γ((γ())))

Z�

W₁
W₂

D

N

(γ())

()

block(X,Ω)

FF(X)

MSMSA(X,Ω)
head1(X,ω1) head2(X,ω2) headh(X,ωh)

(, , ... ,)

 , , ... ,

concat

norm

norm

X D

N

N

D
D

D N

D

N

D
D

D

NN N

D

N

N

�N�N

�N

D

N

Z� Zh Z

Z

D/h D

N

X

X X
b₁

b₂

WO

FinalFF(z)

D

N

·j

z D

D

�D

norm
�DD

�D

�D

�Dz
W₁ b₁

W₂

b₂

�D

norm

C

D

A

B

Input

Figure 4.1: Overview of the scaled-attention encoder. Each attention block com-
prises two layers, a Multi-Scale Multi-headed Self Attention (MSMSA) layer and
a feed-forward (FF) layer. A Inside the MSMSA layer, the scaled attention heads
extract composite semantic signals from interactions between each token and its
context in the input sequence (see figure 4.2 for an illustration of the operation of
the attention heads). Each attention head attends to different regions of semantic
space. These composite embeddings are linearly transformed and then added to the
original input to enrich the original embeddings with contextual information. B The
MSMSA outputs are then fed into the FF layer. The FF layer allows the outputs
of the MSMSA to be projected non-linearly, and adds these non-linear projections
to the MSMSA output to further enrich the embeddings. These attention blocks
can be stacked multiple times. The intuition here being that more blocks allows
for greater abstraction, as further composite signals can be extracted from the in-
teractions between embeddings enriched with composite signals. C After the final
block, the enriched embeddings are amalgamated into a single vector by summing
element-wise across each dimension, and then scaling the resulting vector by the
square root of the length of the token sequence (excluding padding tokens). D A
final feed-forward (FinalFF) network non-linearly transforms the semantics of this
vector into the semantic space of the ontology concept embeddings.

83

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

WQ

WK

WV

X D

N

D

D/h

K

V

Q
D/h

N

VKQ

Zi,j

j j
j+ω

j-ω

1

2

Qj
Cj (K,ω)T Cj (V,ω)

3

headi (X,ωi)

Not
long
until
he
kicks
the
bucket

Not
long
until
he
kicks
the
bucket

softmax()

______________________kicks

un
til

he ki
ck

s
th

e
bu

ck
et

0.
01 0.
17 0.
51

0.
01 0.
30

√(D/h)

0.
01 0.
17 0.
51

0.
01 0.
30 until

he
kicks
the
bucket

until he kicks the bucket

softmax()

√(D/h)

4

until
he
kicks
the
bucket

A B

1

2

3

4

Figure 4.2: A A scaled attention head. B An illustration of the how an attention
head weighs semantic signals. [1] The input matrix X represents the D-dimensional
embeddings of an N -length sequence of tokens. The input matrix is multiplied
separately by three different parameter matrices W{Q,K,V } to produce query Q, key
K, and value V matrices. These multiplications linearly transform the sequence of
tokens into different representational subspaces. They also reduce the dimensionality
of the representational space, causing bottlenecks. Bottlenecks reduce the number
of signals so that only the more relevant signals are retained. Q and K retain
signals that interact to provide indications of semantic relevance between tokens
in the sequence. While V retains the semantic signals that are to be combined
into the composite embeddings. [2] The context extraction function, described in
equation 4.7, is iteratively applied to the K and V matrices to extract the within-
ω-tokens context of the j-th row, while only the j-th row is extracted from Q. [3]
Self-attention scores are calculated for each token using the iteratively extracted
segments of Q, K, and V. The outputs corresponding to the j-th token in the
sequence are calculated using only the representations of tokens within ω tokens of
j. This means that only the self-attention scores of the within-ω context tokens of
the j-th token are calculated with respect to the j-th token. [4] These self-attention
scores are then used to weight the signals from the context of the j-th token in V,
combining them into the composite-signal output vector Zi,j . For each attention
head, each token’s output is concatenated together to represent the entire sequence,
Zi.

84

Lorcán Anthony Karel Pigott-Dix

the original NCR, which used 100-dimensional word embeddings from a pre-trained

FastText [27] model, this work instead used 512-dimensional ELMo [171] embed-

dings from a pre-trained model to encode the input text. Only the character-CNN

embeddings were used from the ELMo model. This was necessitated by a compiler

incompatibility between FastText and Tensorflow 2.2. The filters of the encoder’s

convolutional layer then project the word embeddings into feature space as feature

maps. Max-pooling then concentrates the feature maps of a sequence into a single

vector by selecting the strongest signal from each feature map. This vector is then

passed to a fully-connected layer that projects the feature signals into the semantic

representation space of the concept embeddings. The dot product of the phrase’s

feature representation and the global concept embeddings are input into a softmax

classifier, represented by the following equation:

p(c|e) ∝ exp(Hce+ bc) (4.2)

Where bc is the bias term, and p(c|e) is the probability of the concept c being the

correct concept, given the phrase embedding e.

To train the model, the label and synonym text for each concept is paired with

the concept’s unique identifier. The objective of model training is to increase the

softmax score between the correct concept’s embedding and the representations of

the labels, output by the CNN. As the model trains, the weights of the CNN encoder

and the “raw” embedding values are updated through backpropagation. This results

in the ontology label representations produced by the CNN gradually becoming more

similar to those of the concepts they represent.

Once training is complete, the model can be used to perform concept recognition.

Input sentences are split into all of the possible n-grams they contain (n ∈ {1, ... , 7}).
These n-grams are filtered to only include candidates that have a concept-matching

softmax score that is greater than a predetermined threshold. A post-processing

step filters the remaining n-grams so that if two n-grams correspond to the same

concept, the smaller n-gram is retained. If the overlapping n-grams are matched

to different concepts, the shorter n-gram is dropped. This is to ensure that more

specific concepts are prioritised over more general ones.

4.3.2 Squeeze-and-Excitation

The NCR model is augmented to include a simple Squeeze-and-Excitation (SAE)

mechanism. A SAE mechanism uses information from the feature maps produced by

a convolutional layer to weight their importance. This work adapts the methodology

described in Hu et al. [94] to a one-dimensional CNN.

To “squeeze” the feature information, average-pooling is applied to each of the

NCR CNN’s output feature maps. The average-pooling distills the feature maps

into a single vector, z ∈ RF where F is the number of feature maps. Each element

85

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

of z is calculated thusly:

zf =
1

Nf

∑
uf (4.3)

Where zf is the statistic for the f -th filter, Nf is the number of non-zero elements

in the f -th filter, and uf is the f -th feature map vector.

The vector of all of the feature map statistics is then passed through the “excit-

ation” bottleneck, as follows:

s = σ(W2δ(W1z)) (4.4)

Where s is the vector of filter weights, W1 ∈ R
F
r
×F the parameter weights of the

compression transformation, W2 ∈ RF×F
r the parameter weights of the decom-

pression transformation, σ and δ are the sigmoid and ReLU activation functions

respectively, and r is the compression ratio. This “excitation” bottleneck function

captures non-linear dependencies between features, with no limit to the number of

features that can be enhanced. The feature maps are then multiplied filter-wise

by s to weight them prior to the max-pooling layer. As the model is trained, the

SAE mechanism learns to use global signals to help the model pay relatively more

attention to relevant features, improving discriminability.

4.3.3 Multi-Scale Self Attention (MSSA)

Architecture Here, the NCR model CNN architecture is replaced entirely by an

attention-based sentence encoding architecture, not unlike the Universal Sentence

Encoder [39]. This attention architecture is altered to attend to multiple fixed-scale

windows, as in Guo et al. [78].

Given an input of word embeddings X ∈ RN×D, where N represents the number

of embeddings and D their dimensionality, each attention head can be described like

so:

head(X, ω)i,j = softmax(
QijCij(K, ω)⊤√

D
h

)Cij(V, ω) (4.5)

Where ω is the scale parameter, i corresponds to the i-th head, and j to the j-th

element of the sequence. K, Q, V are the projections of X into N × D
h subspaces,

with h being the number of heads. The input X is multiplied separately by each

of the parameter matrices WQ, WK , and WV (all W ∈ RD×D
h), projecting the

input into the Key Query and Value subspaces. The multiplication by parameter

matrices reduces the dimensionality of the representational subspace. This causes a

bottleneck meaning that only the most relevant signals are retained.

Q = XWQ, K = XWK , V = XWV (4.6)

86

Lorcán Anthony Karel Pigott-Dix

Cij(X, ω) is the context-extraction function, where:

Cij(X, ω) = [xi,j−ω, ... , xi,j+ω] (4.7)

The context-extraction function dynamically pads the inputs with zeros if the iter-

ative context window extends beyond the first and last rows of the input. Please see

figure 4.2 for an illustration of how the self-attention mechanism is scaled using the

context extraction function.

The h heads are incorporated into a Multi-Scale Multi-headed Self-Attention

(MSMSA) block. The block consists of the attention layer and a feed-forward net-

work. The attention layer is computed as follows:

MSHSA(X,Ω) = norm([head1(X, ω1), ... , headh(X, ωh))]W
O +X) (4.8)

Where Ω ∈ {ω1, ..., ωh} is the set of scale parameters, WO is a parameter matrix and

norm is the layer normalisation function. A residual connection is applied by adding

the input to the transformed concatenated outputs of the attention heads. The

attention heads extract contextual cues regarding whether the strength of a token’s

semantic signals should be increased or decreased, and the linear transformation and

the residual connection serve to enrich the original embeddings with this information.

These enriched embeddings are then passed to the feed-forward (FF) layer. The FF

layer is computed thusly:

FF(X) = norm(γ(XW1 + b1)W2 + b2 +X) (4.9)

Where γ is the GELU activation function, Wn are the parameter matrices and bn

are their bias terms. The FF layer non-linearly transforms the signals from the

MSMSA output and a residual connection adds these transformed signals onto the

outputs of MSMSA to further enrich them. Therefore each MSSA block can be

described as:

block(X,Ω) = FF(MSMSA(X,Ω)) (4.10)

These blocks can be stacked multiple times, with varying sets of scale parameters.

The final output of the MSSA blocks is distilled into a single vector z by summing

each output vector element-wise. The resultant vector is normalised by dividing it

by the square-root of the sequence length.

z =

D∑
j=1

X·j

√
N

(4.11)

Where j is the j-th column vector in the output sequence. The average sentence

vector z is then transformed into the semantic space of the concept embeddings

87

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

using a final feed-forward layer. This layer comprises two consecutive non-linear

transformations, each with GELU activations and l2 normalisation, followed by a

final linear transformation with no activation layer. It can be computed as:

FinalFF(z) = norm(γ(norm(γ(zW1 + b1))W2 + b2)) (4.12)

Where W are parameter matrices and b are the bias terms for the final FF network.

As in the other FF network, γ is the GELU activation function. Please see figure

4.1 for an illustration of the architecture. As in the original NCR model, the output

embedding of the final feed-forward network is then multiplied by the global ancestry

matrix to obtain the dot product scores between the sentence representation and all

of the concept embeddings. The dot-product scores are then passed to a softmax

function, as described in equation 4.2, to approximate the probability of each concept

being correct given the output embedding.

Dropout regime See figure 4.3 for an illustration of the dropout regime for the

attention blocks and the final FF network. The first dropout is applied to the input

sequence. Within each batch, there is a 50% chance for dropout being applied

to the batch of input sequences. This input dropout removes entire embeddings

from a sequence with a probability of 20%. To reduce the chances of the total

degradation of useful signals for shorter sequences, sequences with fewer than three

tokens were exempt from the input dropout. The second dropout is a structural

dropout function. Here there is a 25% chance of an attention head being entirely

dropped out for an iteration. This is to prevent only a minority of heads being relied

on for predictions, while encouraging all the heads to learn useful representations

and to contribute to the model. The third dropout is a feature dropout applied

after the ReLU activation function within the attention block’s FF network. This

dropout function removes random elements from the matrix with a probability of

10%. The fourth dropout is the same as the third except that it is applied following

the ReLU activation function within the Final FF layer. Both of these dropouts

degrade the signal within the FF networks to promote generalisability.

There are further feature dropouts applied inside the scaled self-attention heads,

which are illustrated in figure 4.4. These are applied to the iteratively extracted sec-

tions of theQ, K, andVmatrices. A further dropout is then applied to the attention

scores, prior to them being scaled for the application of the softmax function.

Scale regimes The scale regime for the Multi-Scale Self-Attention in Guo et al.

[78] was designed for much larger sequences, while the NCR takes a maximum length

input of ten tokens. So a number of alternate scale regimes and block configurations

were tested. Please see figure 4.5 for an illustration of the different combinations of

self-attention head scaling parameters tested.

88

Lorcán Anthony Karel Pigott-Dix

norm(γ(γ())))

MSMSA(X,Ω)

Z�

b₂

D

W₁
W₂

N

(γ())

()

block(X,Ω)

FF(X)

head1(X,ω1) head2(X,ω2) headh(X,ωh)

(, , ... ,)

 , , ... ,

concat

norm

X D

N

N

D
D

D N

D

N

D
D

D

NN N

D

N

N

�N�N

�N

D

N

Z� Zh Z

Z

D/h D

N

X

X X
b₁

WO

FinalFF(z)

D

N

·j

z D

D

�D

norm
�DD

�D

�D

�Dz
W₁ b₁

W₂

b₂

�D

norm

1

2

3

4

Figure 4.3: The dropout mechanisms applied to the scaled self-attention architecture
during training. [1] Input dropout. Here there is a 50% chance of the sequences
in an input batch, longer than two tokens, being subjected to a dropout with a
probability of 20% (in effect a 10% dropout rate). This dropout replaces entire
embeddings with zeros rather than random elements across all embeddings. [2]
Attention head dropout. A structural dropout is applied to randomly replace entire
attention head outputs with zeros, with a 25% probability. [3] Attention block FF
dropout. A feature dropout, with a probability of 10%, is applied after the ReLU
activation function. [4] Final FF dropout. Again, a feature dropout probability of
10% is applied following the ReLU activation function.

89

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

WQ

WK

WV

X D

N

D

D/h

K

V

Q
D/h

N

VKQ

Zi,j

j j
j+ω

j-ω

Qj
Cj (K,ω)T Cj (V,ω)1

softmax()

√(D/h)

headi (X,ωi)

2

Figure 4.4: The feature dropouts applied inside the scaled self-attention heads during
training. [1] A feature dropout with a probability of 10% is applied to each of the
extracted context matrices. [2] Dropout, again with 10% probability, is applied to
the iteratively extracted rows from the Q, K, and V matrices.

Normalisation and training stability A version of the MSSA was developed

where, rather than applying a layer normalisation to the output of the addition of

residuals (post multi-head attention and post-FF network), it instead applies layer

normalisation to the inputs of the multi-head attention and FF network, as per

Xiong et al. [235].

4.3.4 Ontologies

This work also explored extending the NCR model to incorporate multiple ontologies

from various domains of knowledge. In particular, I wanted to see if the addition of

terms from other ontologies, and thus providing more training data, would improve

the performance of the model. I also wanted to understand if the semantic proximity

of the domain ontologies used in combination with the Human Phenotype Ontology

affected model performance. This was done by training the models using different

combinations of the following OBO ontologies: The Cell Ontology (CL), the Human

Phenotype Ontology (HPO), the Mammal Phenotype Ontology (MPO), and the

90

Lorcán Anthony Karel Pigott-Dix

ω = 4ω = 1 ω = 2 ω = 3

block 1
block 2
block 3

block 1
block 2
block 3

block 1
block 2
block 3

Regime 1 Regime 2

Regime 3 Regime 4

Regime 5 Regime 6

Figure 4.5: The scaling parameter combinations used by the blocks in different scal-
ing regimes. Each regime was tested by starting with just the first blocks alone then
progressively stacking further layers until finally all three blocks were together. This
was to understand the influence that the synergy between the scaling parameters
and the depth of the model had upon model performance. Figure originally pub-
lished in Pigott-Dix & Davey [172] and reproduced here with permission.

Table 4.1: Ontology combinations used to train models.

Ontologies Unique concepts Training examples

Human Phenotype Ontology 16 059 35 969

Human Phenotype Ontology and Mammal
Phenotype Ontology

29 370 75 298

Human Phenotype Ontology, Cell Ontology,
and Ontology of Host-Pathogen Interactions

29 662 59 175

Ontology of Host-Pathogen Interactions (OHPI). Please see table 4.1 for an overview

of the ontology combinations, the number of unique concepts represented, and their

total number of training examples.

One set just contained the HPO, another both the HPO and the similar-domain

MPO. The last set contains three semantically distinct ontologies: the HPO, the CL,

and the OHPI. The NCR algorithm was adapted to incorporate multiple ontologies,

and was trained to classify their terms. However, for the sake of evaluation on

the HPO dataset, it could only return predictions from the HPO. If two ontologies

shared any terms, they were merged into one, combining the concept’s properties

shared between the ontologies.

4.3.5 Training

Using Python 3.6.13 with TensorFlow 2.2.0 [142], 81 models were trained: 78 MSSA

and three NCR. Due to a compiler issue, FastText could not be used with TensorFlow

91

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

2, as was used in Arbabi et al.’s work [7]. Instead, pre-trained ELMo [171] (v3)

embeddings were incorporated via TensorFlow Hub.

Nine SAE models were trained using Python 3.9.12 and TensorFlow 2.9.1 due

to a bug in the earlier TensorFlow version affecting the calculation of the means of

only non-zero elements for each feature map.

Due to the memory constraints of the NVIDIA TITAN XP GPU, each training

batch contained 256 samples. Training ceased and reverted to the best parameters

for NCR and SAE models after five consecutive epochs where the loss had not

improved. However, MSSA models reduced their learning rate by a fifth and resumed

training under the same conditions. After the fifth learning rate change without

improvement, training was stopped.

Initial learning rates were set at 1
512 for both SAE and NCR models. MSSA

models had a warm-up period, with the learning rate linearly increasing to 1
512 over

the first 20 000 iterations.

4.3.6 Evaluation

Once the models were trained, the optimal classification thresholds for each of the

models were calibrated. To calibrate, 40 abstracts were randomly sampled from the

228 HPO Gold-Standard HPO-annotated PubMed abstract corpus, created by Lobo

et al. [133]. They were then annotated by each model with each of the following

confidence thresholds n ∈ {0.05, 0.10, ... , 0.95}. For each model, the threshold with

the highest sum of both macro and micro F-scores was then set as the threshold

parameter for the annotation of the remaining 188 abstracts.

To understand if there were any patterns or semantic themes shared between

the false positives, true negatives, and false negatives, the character of the annota-

tions predicted by the models, and the annotations that they failed to predict, were

inspected.

4.4 Results

4.4.1 Identifying Human Phenotype Ontology Terms

Tables 4.2 and 4.3 display the full results for each NCR and SAE model, and each

MSSA model respectively. In each table the best performing score for each metric

is indicated with bold font.

When the NCR model with ELMo embeddings is trained with the HPO alone,

the micro and macro F-scores are improved by no less than 4% when compared

with the scores of the NCR model with FastText embeddings reported in Arbabi

et al. [7]. However, the performance of the NCR model declines when additional

ontologies are used in combination with the HPO. The SAE model trained with the

more diverse combination of ontologies (HPO, CL and OHPI) accomplished a new

92

Lorcán Anthony Karel Pigott-Dix

Table 4.2: The evaluation metrics for each NCR and SAE model benchmarked on
the HPO annotation dataset. The bold font indicates the highest score for each
metric. Table originally published in Pigott-Dix & Davey [172] and appears here
with permission.

Micro Macro
Ontology Model Filters Threshold Precision Recall F-score Precision Recall F-score
HPO NCR 1024 0.5 78.72 72.75 75.62 82.16 74.78 78.29

SAE 1024 0.55 77.63 72.60 75.03 80.46 75.04 77.65
1536 0.55 80.81 70.89 75.53 83.07 73.49 77.99
2048 0.7 80.25 70.81 75.24 82.81 73.65 77.96

+ MPO NCR 1024 0.5 74.12 66.12 69.89 77.38 70.75 73.91
SAE 1024 0.85 82.28 52.20 63.87 84.28 57.09 68.07

1536 0.5 76.17 65.23 70.28 78.68 68.90 73.46
2048 0.5 74.62 61.73 67.56 76.78 66.19 71.10

+ CL NCR 1024 0.75 84.04 64.71 73.12 86.01 66.61 75.08
+ OHPI SAE 1024 0.6 83.05 70.07 76.01 85.13 72.82 78.50

1536 0.5 80.55 69.69 74.73 82.18 72.07 76.79
2048 0.65 82.94 65.15 72.98 86.12 66.96 75.34

state-of-the-art for neural dictionary methods. The best performing MSSA models

were competitive with the other models, again with the use of more diverse domain

ontologies as the training set leading to the better results.

Both tables 4.2 and 4.3 show that all models, when trained using the HPO and

MPO combined, see a decrease in performance when compared to those trained

using the either the HPO alone or jointly with the CL and OHPI.

4.4.2 Influence of the scale regime and the number of self-attention

blocks on MSSA performance

For MSSA models trained using only the HPO, two-block models with scale regimes

three and four performed better than the previous state-of-the-art. Of the MSSA

models trained using the HPO, CL, and OHPI, the single-block models with scale

regimes one, two, and three also performed better than the previous state of the art.

4.4.3 Exploring the concept embeddings

Figure 4.6 contains the density contour plots of the global concept embeddings for the

best-performing SAE models trained using each of the three ontology combinations.

4.4.4 Impact of ontology concept properties

The plot in figure 4.7 shows the relationship between the number of natural language

labels that a concept has, against its proportion of true positive, false positive,

and false negative predictions. Figure 4.8 shows the counts of the prediction error

classifications over the number of descriptions. There does not appear to be any

particularly strong relationship between the number of labels and the true/false

positives/negatives for concepts with fewer that nine descriptions. Concepts with

more that nine descriptions are not well represented in the union of the predicted

93

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

A
H
P
O

B
H
P
O

M
P
O

C
H
P
O

O
thers

F
igu

re
4.6:

D
en

sity
-co

n
to
u
r
p
lo
ts

of
th
e
co
n
cep

t
em

b
ed

d
in
gs

from
th
e
b
est-p

erform
in
g
S
A
E
m
o
d
els

train
ed

u
sin

g
[A

]
th
e
H
P
O

(1536
con

v
olu

-
tio

n
al

fi
lters),

[B
]
th
e
H
P
O

an
d
M
P
O

(1
536

fi
lters),

an
d
[C

]
th
e
H
P
O
,
C
L
,
an

d
O
H
P
I
(1024

fi
lters).

P
rin

cip
le

com
p
on

en
t
an

aly
sis

created
50

co
m
p
o
site

d
im

en
sion

s
from

th
e
origin

a
l
em

b
ed

d
in
g
d
im

en
sion

s,
th
en

a
tS
N
E
red

u
ced

th
ese

fu
rth

er
to

tw
o
d
im

en
sion

s.
T
h
e
ex
p
lain

ed
varian

ce
fo
r
ea
ch

set
o
f
em

b
ed

d
in
gs’

p
rin

cip
a
l
co
m
p
o
n
en
ts

w
ere

76
.02%

,
56

.05%
,
an

d
73.72%

resp
ectively.

F
igu

re
origin

ally
p
u
b
lish

ed
in

P
igott-D

ix
&

D
avey

[1
72]

an
d
ap

p
ears

h
ere

w
ith

p
erm

issio
n
.

94

Lorcán Anthony Karel Pigott-Dix

Table 4.3: The evaluation metrics for each MSSA model benchmarked using the
HPO annotation dataset. The best score for each metric are highlighted with bold
font. Please note that the first blocks of the 3rd and 5th scale regimes were identical
to the first block of the 2nd.

Scale Micro Macro
Ontology Reg. Blocks Threshold Precision Recall F-score Precision Recall F-score
HPO 1 1 0.55 77.96 69.02 73.22 79.76 71.74 75.54

2 0.65 80.82 65.90 72.60 83.91 68.25 75.27
3 0.5 77.16 64.41 70.21 79.33 66.39 72.29

2 1 0.55 78.38 66.94 72.21 80.90 68.94 74.44
2 0.55 78.77 69.62 73.91 81.06 70.89 75.63
3 0.65 79.78 64.33 71.23 81.48 66.80 73.41

3 1 - - - - - - -
2 0.55 78.91 69.10 73.68 81.43 71.32 76.04
3 0.4 71.96 64.41 67.98 75.33 67.77 71.35

4 1 0.5 76.11 70.22 73.04 78.15 73.08 75.53
2 0.45 75.04 71.63 73.30 78.16 74.08 76.06
3 0.45 76.72 68.73 72.51 79.21 71.66 75.25

5 1 - - - - - - -
2 0.55 75.39 68.21 71.62 77.83 69.98 73.70
3 0.2 55.84 55.55 55.69 59.20 58.02 58.60

6 1 0.5 75.71 69.17 72.30 78.66 71.29 74.79
2 0.65 80.30 64.04 71.25 82.08 65.97 73.15
3 0.45 75.45 68.21 71.65 77.86 70.25 73.86

HPO + 1 1 0.4 76.05 63.37 69.13 79.30 65.87 71.96
MPO 2 0.25 68.68 63.51 66.00 70.94 66.94 68.88

3 0.35 75.59 57.19 65.11 77.72 60.39 67.97
2 1 0.45 78.63 61.36 68.93 79.86 65.02 71.68

2 0.35 72.00 64.33 67.95 73.72 66.45 69.90
3 0.2 66.79 54.06 59.75 69.52 57.65 63.03

3 1 - - - - - - -
2 0.4 75.00 65.00 69.64 76.89 68.05 72.20
3 0.25 70.36 53.39 60.71 73.01 58.28 64.82

4 1 0.25 70.53 57.04 63.07 73.95 61.73 67.29
2 0.35 73.47 63.51 68.13 75.17 65.44 69.97
3 0.25 68.27 63.29 65.69 69.49 65.88 67.64

5 1 - - - - - - -
2 0.45 78.69 62.40 69.60 79.68 64.88 71.52
3 0.35 75.28 55.99 64.22 78.64 59.19 67.54

6 1 0.3 74.06 64.41 68.90 76.48 67.70 71.82
2 0.4 77.17 56.37 65.15 80.85 59.64 68.65
3 0.05 53.00 50.71 51.83 57.29 54.20 55.70

HPO + 1 1 0.45 79.13 69.47 73.99 81.25 71.95 76.31
CL + 2 0.65 84.44 65.08 73.51 86.19 67.50 75.70
OHPI 3 0.3 72.53 61.73 66.69 76.70 63.93 69.74

2 1 0.5 80.37 68.58 74.01 83.21 70.72 76.46
2 0.45 80.75 62.47 70.45 82.79 64.29 72.38
3 0.5 82.41 55.47 66.31 83.37 57.74 68.23

3 1 - - - - - - -
2 0.5 79.81 67.09 72.90 81.52 68.61 74.51
3 0.2 57.31 52.27 54.67 60.94 52.83 56.60

4 1 0.45 80.07 67.91 73.49 81.38 69.07 74.72
2 0.65 83.53 62.70 71.63 85.06 64.95 73.66
3 0.45 79.40 66.87 72.59 80.38 68.40 73.91

5 1 - - - - - - -
2 0.5 80.39 65.00 71.88 81.29 66.02 72.87
3 0.05 0 0 0 0 0 0

6 1 0.5 81.51 67.61 73.91 83.29 69.65 75.86
2 0.45 82.49 64.56 72.43 82.43 66.41 73.56
3 0.45 77.99 65.97 71.48 79.67 67.61 73.14

concepts and ground truth concepts.

A linear regression with log-transformation was used to fit the relationship

between the proximity of a concept’s nearest neighbour with its true positive rate.

If a concept in close proximity interferes with classification, we should expect to see

95

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Figure 4.7: A plot of the cumulative proportion of true positives, false positives, and
false negatives of all HPO concepts with each particular number of natural language
descriptions.

Figure 4.8: A plot of the cumulative counts of true positives, false positives, and
false negatives of all HPO concepts with each particular number of natural language
descriptions.

a positive relationship between the true positive rate and concept proximity. The

results of the regression rounded to three significant figures were as follows: Slope:

0.0221; Intercept: -0.355; R-squared: 6.16 × 10−5; p-value: 0.862. The p-value

96

Lorcán Anthony Karel Pigott-Dix

and R-squared value suggests that the regression does not classify this relationship

well. This suggests that there is not a strong link between concept proximity and

classification error.

4.5 Discussion

4.5.1 Ontology-based concept extraction

Concept overlap heuristics This work has highlighted that adjustments to both

the NCR annotation heuristics and architecture are required in order to accommod-

ate multiple domain ontologies. The current model annotation heuristics prevent

any annotations overlapping. While it was believed that it did not affect the current

assessment, as the model was prevented from tagging terms outside of the HPO,

Luo et al. [136] found that the gold-standard PubMed abstracts actually contained

instances of overlapping HPO concepts. As a result, the heuristics may have been ex-

cluding valid terms identified by the model, to the detriment of model performance.

In future, the heuristics should be adapted with a view to incorporating different

domains of knowledge by extracting all terms exceeding the confidence threshold

regardless of overlap.

Figure 4.7 shows that the proportion of true positives is higher for concepts

with more than three natural language descriptions. However, figure 4.8 illustrates

that concepts with more than eight descriptions are not well represented in the

benchmarking dataset and model annotations, which may mean that any error rates

for these concepts are unreliable. The regression carried out between true positive

rates and the number of natural language descriptions that an ontology term has

could not establish a relationship between the two.

Combining multiple ontologies Architectural issues arise as a consequence of

incorporating multiple ontologies together. Training models using combinations of

ontologies with overlapping domains appears to detrimentally impact model per-

formance, as demonstrated by the evaluation metrics in tables 4.2 and 4.3. In the

case of the HPO and MPO, neither ontology subsumes the other, and their terms do

not become combined. This means that parallel ancestry trees are represented in the

ancestry matrix, while a lot of the natural language descriptions are highly similar

for concepts in each ontology. This likely leads to Gordian parameter weights, as

the models try to reconcile concepts with near-identical natural language descrip-

tions that, due to their alternate networks of semantic inheritance, are positioned

far from each other in embedding space. In figure 4.6 panel B, it is apparent that

the concept embedding space is congested with lots of overlap between the HPO and

MPO concepts. For an illustration of the ancestry matrix influences the classification

of similar concepts from two different ontologies see figure 4.9.

97

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Figure 4.9: An illustration of how overlapping domains may be influencing classifier
performance. A The text encoder learns to create similar representations for sim-
ilar concepts from different ontologies. B However, the separate ancestry structure
aggregates information differently between the two ontologies, resulting in the final
representations being separated in representational space.

The explained variance percentages from the PCAs used to create this figure

suggest that to discriminate between these concepts the model needs to attend to

a greater number of features. This may be partially resolved by removing the an-

cestry matrix from the model when using such closely aligned domains. However,

this would also remove the benefits to performance of sharing semantic information

between related concepts, found by Arbabi et al. [7]. Additionally, Althubaiti et al.

[4] found that when creating ontology embeddings for a downstream classification

task, the combination of multiple ontologies led to superior performance.

The evaluation metrics in table 4.3 show that the MSSA model is improved by

being trained on a combination of ontologies with more diverse domains. This is

likely happening for two reasons. Firstly, transformer-based models benefit from

larger volumes of training data; although this extra training data may not be se-

mantically relevant to the HPO annotation task, the general syntactic patterns of the

language may well be. Secondly, the aforementioned distinctness between domains

limits the chance of semantic overlap between terms from different ontologies.

Considering its superior performance, relatively low number of parameters, relat-

ively quicker training times, and the simplicity of adding filter kernels and modifying

98

Lorcán Anthony Karel Pigott-Dix

the SAE mechanism, the SAE is likely the best architecture for continuing to develop

a multi-domain ontology-based text classifier.

4.5.2 Adapting transformer-based architectures for training-data-

poor scenarios

The combination of scaling and dropout regimes applied to the transformer-based

MSSA led to competitive performance when compared with the CNN architectures.

While typical transformers require millions of training examples, the work here cor-

roborates that of Guo et al. [78]: that they can be adapted to perform well with

orders of magnitude fewer training examples. This may have implications for trans-

formers used for machine translation in low-resource scenarios, such as Nepali or

Sinhala to English translation [80].

99

Chapter 5

Incorporating More

Sophisticated Symbolic

Information into Neural

Dictionaries

5.1 Knowledge graphs as model architecture

As mentioned at the start of the chapter 2, the field of AI research has long been

regarded as split between those that see knowledge representation as primarily sym-

bolic and those who view knowledge as distributed across neural structures [204,

115]. However, recently Neuro-Symbolic AI which combines the two paradigms, has

garnered interest, particularly in the bio-medical domain [32, 31, 134]. Bio-medical

research is well placed to take advantage of Neuro-Symbolic AI due to the extensive

work developing ontologies [9, 45, 211, 187, 17, 198, 170], linked data resources [28,

103], and the recent emphasis on combining linked data into knowledge graphs for

task-specific heterogeneous domain knowledge representation [205, 132]. Lobentan-

zer et al. [132] observed two key characteristics of knowledge graphs. Firstly, that

knowledge graphs explicitly model heterogeneous knowledge. Secondly, that they

can be built for specific tasks. As a result Lobentanzer and colleagues [132] argued

that they are particularly amenable to explainable AI applications. This develop-

ment was foreshadowed by LeCun and colleagues [121] who stated in 1998 that

“a good way to incorporate knowledge [into a deep neural network] is to tailor its

architecture to the task”.

Graph Neural Nets are statistical deep learning models that aim to model struc-

tured data or structured representations of knowledge. They have found broad ap-

plication across the life sciences, in particular towards drug discovery [246], predict-

ing drug-drug interaction [127], and bioinformatics [239]. These methods typically

100

Lorcán Anthony Karel Pigott-Dix

encode graph sequence information using random walks [169, 182], graph convolu-

tions [249, 241], or triple validity prediction [242], to aggregate structured symbolic

information into vertex and edge representations. A triple refers to an edge and two

vertices from a graph. Transformers can be regarded as graph neural nets as the

attention mechanisms model a fully connected graph between all the elements of a

sequence, and update their representations using a form of message passing between

the elements [194]. Recently, sophisticated attention-based transformer-style graph

neural nets have been increasing in prominence [226, 243, 95, 244].

Among them, Hu et al. [95] reformulated the transformer [221] to create the

“Heterogeneous Graph Transformer” (HGT). The original transformer architecture

was reformulated with sets of specific parameter weights for each source vertex-type,

target vertex-type, and edge-type. To calculate the attention scores, the source ver-

tex embeddings are transformed into a Key matrix and the target vertex embeddings

into a Query matrix. The attention scores are obtained with the dot product of the

Key and Query matrices, moderated by an edge-specific matrix. Rather than calcu-

lating the softmax within each head as is done in a typical transformer, the scores

from each head are concatenated together. Then the softmax is calculated across all

heads with respect to each target vertex. To pass messages between the source and

target vertices, the source-vertex-specific parameter weights transform the source

embedding into a value vector, that is further transformed by edge-specific weights.

Finally, the softmax scores are used to aggregate the messages before a target-specific

parameter weight transforms these aggregated messages into the target vertex rep-

resentation space. To pass messages over multiple hops requires the stacking of HGT

layers.

Yun et al. [243] (refined in [244]) proposed the “Graph Transformer Network”

(GTN) to represent heterogeneous graphs. Rather than passing information between

vertices along single-hop edges, or predefined combinations of edges (termed meta-

paths), this model uses a soft-attention mechanism to learn useful meta-paths. This

model was found to not only recreate expertly handcrafted meta-paths from previous

research, but also novel combinations of edges. For example, when classifying the

research areas of authors in a paper, conference, and author DBLP dataset, in

addition to the model learning the [author → paper → conference → paper →
author] meta-path, replicating typical hand-crafted meta-paths, it also learned a

novel [conference → paper → conference → paper → author] meta-path.

As discussed in the previous chapter, Arbabi et al. [7] created the Neural Concept

Recogniser (NCR), a neural dictionary model, for identifying ontology terms from

unstructured scientific literature. The NCR uses a CNN to extract semantic signals

from word embeddings representing unique ontology identifiers. The similarity of the

vector of the text input’s semantic signals was compared with the embeddings of the

concepts. Due to the limited number of natural language representations contained

within an ontology, the model used an hierarchical aggregation via an ancestry

101

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

matrix to pool representations between related concept embeddings. This pooling

of information was found to improve the performance of the model at semantic

annotation, when compared to the models without. The hierarchical aggregation of

concept representations via an ancestry matrix can be regarded as a simple GNN

which both statically models the relationships between concepts and passes messages

between them.

5.1.1 Contribution

While there has been research into “injecting” knowledge graph embeddings with in-

formation from the rich semantic implicit knowledge contained within large language

models [166, 250, 238, 227], the work in this chapter takes an alternate perspective,

and instead tries to inject the structure of a knowledge graph into a deep neural text

classifier. Here, the concept of augmenting neural architecture with symbolic know-

ledge representation, initially explored by Arbabi et al. [7], is expanded. In addition

to the data contained within the Human Phentotype Ontology (HPO), I incorpor-

ated information from a complementary knowledge graph. I used a subset of the

DisGeNET knowledge graph [177, 173], which represents gene-disease associations

and their related genes, genetic variants, and proteins. This subset included all

gene-disease associations linked to an HPO concept and their associated genes and

proteins. See figure 5.1 for a visualisation of the schema. I trialled three approaches

and compared them with a control.

• Squeeze-and-Excite (SAE) CNN Text Classifier (Control). This con-

trol method is a text classifier trained to identify HPO terms that correspond

to their natural language text labels. No symbolic information is incorporated

into the model.

• SAE CNN Text Classifier sharing embeddings with Meta-Path

Transformer (MPT) . In this setup, the SAE CNN text classifier is trained

as above, but the concept embeddings are shared by an MPT that is trained

to perform walk-validity classification.

• SAE CNN Classifier integrated with MPT. This approach involves in-

tegrating the MPT directly into the architecture of the SAE CNN text clas-

sifier. The intention is that the MPT will allow the text classifier to learn

useful structural information from the knowledge graph, providing additional

context for the classifier.

• SAE CNN Classifier with MPT and multi-task training. In this ap-

proach, the SAE CNN is integrated with the MPT and trained for text classi-

fication, but additionally, the MPT component is also trained to predict walk

validity.

102

Lorcán Anthony Karel Pigott-Dix

Both of the multi-task training versions were trained with two different regimes:

one, with the walk validity classification as a pre-training stage followed by training

on the text classification task; the other, with simultaneous walk validity and text

classification training objectives. These models were validated against Lobo et al.’s

[133] corpus of PubMed abstracts, annotated with HPO terms, which was used in

the previous chapter.

Pre-training the concept embeddings used by the SAE CNN text classifier, by

training the MPT on the walk validity-task, led to a slightly improved performance

over the SAE CNN classifier without pre-training, and achieved the best performance

metrics overall. The text classifiers that incorporated the MPT did not perform as

well.

Investigation of the multi-hop meta-paths learned by the MPT suggested that

the DisGeNET knowledge graph was not an optimal structure for learning graph

message passing for the task of concept identification in text. However, this in-

vestigation demonstrated the utility of designing architectures so that they have

in-built a priori interpretability. The code for this chapter is available here: ht-

tps://github.com/lorcanpd/MetAnn.

5.2 Related Work

Combining language models and structured knowledge representation.

TransR by Lin et al. [128] was the first knowledge graph embedding method to

explicitly model entities and relations in different representational subspaces. Here,

head and tail entity embeddings were transformed from the entity space into a

separate relation space. Then relation arithmetic is applied to the transformed rep-

resentations before being transformed back into entity space. This was a divergence

from the typical h + r ≈ t formulation of knowledge graph embedding arithmetic,

where h, r, and t represent the head entity, relation and tail entity embeddings

respectively. Instead it was formulated as (hM+ r)M−1 ≈ t. In addition, a vari-

ation of the model, CTransR, clustered the valid head-tail entity pairs into groups

and then learned specific transformation parameter weights for each cluster. Both

methods (CTransR in particular), outperformed previous methods at triple validity

classification and link prediction tasks.

Che et al. [40] took a similar approach. They created a knowledge graph com-

pletion model that learned to transform the embedding of a head vertex into the

embedding of a tail vertex from a valid ⟨head, edge, tail⟩ triple. As in the previously

mentioned work, the vertices were embedded in one space, however the neural net-

work parameters were regarded to represent the edges between them instead of the

relations having embeddings themselves. Conceptually, Hu et al. [95] and Yun et

al. [243, 244] are essentially more complex iterations of this theme. Inspired by the

wildly successful transformer, a version of the self-attention mechanism aggregates

103

https://github.com/lorcanpd/MetAnn
https://github.com/lorcanpd/MetAnn

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

edge-specific information to vertices’ embeddings through edge-specific transforma-

tions.

Zhang et al. [250] used a transformer-based BERT model to imbue knowledge

graph entity and relation embeddings with semantic information. This was done

by transforming text descriptions of relations and entities into embeddings using

BERT. These embeddings were then converted into the knowledge graph embed-

ding space with a non-linear transformation, as a part of a pre-training process

where the distance between the sum of the head entity and relation embeddings and

the tail entity embedding was minimised, the typical embedding arithmetic training

objective. The pre-training process is followed by using BERT and the trained non-

linear transformation to create embeddings for all of the entities in the knowledge

graph. Then the knowledge graph is trained using a typical knowledge graph embed-

ding process, whereby the embeddings are used to train a classifier that determines

whether a triple is valid or not. This is intended to capture structural information

inside the knowledge graph embeddings. This pre-training methodology was incor-

porated with previous knowledge graph embedding methods and found to improve

performance on benchmarking tasks, especially in low resource settings.

Yao et al. [238] also employed a BERT model for knowledge graph embedding.

However, this model used sentences representing relation triples in the case of the

triple validity task, and head-tail pairs for the relation classification task. This

comprised a special [CLS] token followed by tokenised knowledge graph entity text

descriptions, separated by special separation tokens ([SEP]), and with the addition

of a segment specific vector to encode the tokens with information on their particular

segment, like the positional encoding used by the original transformer. Both triple

validity and relation prediction tasks passed the [CLS] embedding from the output

layer to task specific classification layer. This model outperformed previous know-

ledge graph embedding models, again performing particularly well in low resource

settings. The authors suggest that the volume of external data contained within the

language model helps to mitigate the data sparsity of the knowledge graph.

KEPLER, by Wang et al. [227], is a transformer model trained with the joint

training objectives of knowledge graph embedding and masked language modelling.

Multiple approaches were explored for knowledge graph embedding. Zhang et al.

[250] encoded entity descriptions as embeddings using the transformer and had an

embedding for each relation type, or also encoding the relation descriptions using the

transformer. Yao et al. [238] jointly encoded the text of head-tail pair descriptions

and classified the relation type as the training objective. Additionally they trained

a transformer to predict the masked tokens in a sequence.

Using ontologies to enrich entity representations. Regarding specifically

enriching graph embeddings with information from ontologies, D’Amato et al. [52]

extracted axioms from ontologies to “inject” further structured information into a

104

Lorcán Anthony Karel Pigott-Dix

knowledge graph in order to better embed a bioinformatics knowledge graph.

Smaili, Gao, and Hoehndorf developed OPA2Vec [210], a method for creating

numerical vector representations of ontologies. This works by transforming the in-

formation contained in an ontology into a corpus of text sentences, made up of on-

tology entity ids, relationship types, and natural language. Then a word2vec model

is trained on the corpus, creating embeddings for each token. This results in each

relationship, entity class and word in an ontology having a numerical representation.

OPA2Vec was used by Althubaiti et al. [4] to create feature representations to use

as inputs to train a classifier that determine whether genes were cancer drivers.

Exploiting graph structure for text classification tasks. A review of graph

neural networks applied to text classification tasks by Malekzadeh et al. [141] does

not discuss any methods that incorporate knowledge graph structure inside a clas-

sifier. In most cases text is converted into a graph and then the task is treated as

a node classification problem. Huang et al. [96] and Zhang et al. [248] did this by

representing co-occuring words with a graph. Liang et al. [125] created Sentic-GCN,

a graph convolution model for sentiment analysis. It builds a dependency graph of

a sentence, and uses word sentiment scores from SenticNet to weight the message

passing between nodes. Zhang and Qian [247] built lexical and syntactic graphs,

and then used them in combination with graph neural nets and pre-trained lan-

guage models for text sentiment classification. Tang et al. [217] created a sentiment

classification model that employed both a traditional transformer in concert with

a modification of the transformer. The modification replaced the attention scores

with an adjacency matrix based upon the word dependency graph. However, in

their discussion Tang et al. [217] alluded to the potential of incorporating domain

specific knowledge.

Explicitly incorporating knowledge graphs for text classification tasks.

Lan et al. [117] combined knowledge graphs with word co-occurrence graphs to

classify Chinese medical documents. Text in a document is matched to knowledge

graph entities to extract a subset of a medical knowledge graph. This knowledge

graph subset is combined with the word co-occurrence graph to create a joint graph,

which is then passed to a graph neural net for classification.

5.3 Methods

Here the training data construction is described, followed by the different types of

models and any applicable graph sampling algorithms. Finally, the training and

evaluation processes are described.

105

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Disease, Disorder or
Finding, represented
by Human Phenotype
Ontology ID

Has subclass

HPO Concept

HPO Concept

Has superclass

Encodes

Gene

Protein

Associated with

Figure 5.1: Schema of the merged Human Phenotype Ontology and Gene Disease As-
sociations, including corresponding Genes and Proteins, from the DisGeNET know-
ledge graph. The reified edge Gene Disease Association has been simplified into an
Associated with edge, rather than being represented by two edges and a vertex as in
the knowledge graph.

Figure 5.2: Graph of combined HPO terms (blue), their associated genes (green),
and the proteins (red) that the genes encode for. Plotted using the Python package
igraph (version 0.10.5) [50].

106

Lorcán Anthony Karel Pigott-Dix

Figure 5.3: The frequency of specific edge-type associations between individual ver-
tices in the graph. Reading from left to right, top to bottom: A tally of the number
of genes associated with each HPO concept, the number of HPO terms associated
with each gene, proteins associated with genes, genes with proteins, the number of
parents an HPO term has, the number of children an HPO terms has.

107

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

5.3.1 Data

Combining the HPO and DisGeNET A sub-set of the RDF triples that

represent Gene-Disease and Variant-Disease associations were extracted from the

DisGeNET [177] knowledge graph using the Python package RDFLib (version

6.3.2) [76]. This sub-set comprised all “Disease, Disorder, or Finding” vertices with

an associated Human Phenotype Ontology (HPO) ID, all “GeneDiseaseAssociation”

(GDA)vertices related to the HPO vertices, all “Gene” vertices referred to by these

GDA vertices, and all “Protein” vertices encoded by these “Gene” vertices. The

graph data was further enriched by the addition of subclass and super-class rela-

tionships from the HPO. For a visualisation of the schema of this subset see figure

5.1. Despite simplifying the schema to three edge-types, the graph is still large and

complex as can be observed in figure 5.2.

From this graph, parent-to-child dictionaries were created for each relation type.

These relation types were: ‘gene encodes protein’, ‘HPO term is a subclass of HPO

term’ and a single dictionary was used to represent the ‘GDA refers to HPO term’

and ‘GDA refers to gene’ relations as a single ‘HPO is associated with gene’ relation.

Dictionaries of the inverse relationships were also generated: ‘protein encoded by

gene’, ‘HPO term is a super-class of HPO term’, and ‘gene is associated with HPO ’.

As a disease may have many associated genes, and a gene may encode for more than

one protein, each parent-key may have multiple child-values. Figure 5.3 displays

the tallies of the total number of associations of each type for each source vertex.

This shows that almost every gene codes for a single protein in the graph, while

conversely proteins are more likely to be encoded by multiple genes. Similarly, the

tallies indicate that a HPO vertex is much more likely to have more children vertices

than parents.

For the purposes of efficiently sampling the graph, an all-relationship diction-

ary was constructed from the edge-type-specific dictionaries, and then the Python

package NetworkX (version 3.1) [81] was used to calculate the combined in- and

out-degree centrality of every vertex.

Text data As in the previous chapter, a training dataset was constructed from

the information contained within the HPO ontology. This dataset contained 39 766

pairs of HPO IDs with their name or one of their synonyms.

TensorFlow version 2.9 [142] no longer supports the use of the ELMo model from

TensorFlow-hub. I managed to build a compatible version of the FastText package,

and so this was used to produce the word embeddings used by all of the models in

this chapter.

108

Lorcán Anthony Karel Pigott-Dix

5.3.2 SAE CNN classifier

The text encoder replicates the Squeeze-and-Excite CNN from the previous chapter,

minus the ancestry matrix that was used for pooling information between related

HPO terms (Figure 5.4). Text sequences, represented by word embeddings, are fed

into a one-dimensional CNN. A number of filter kernels create activation map vectors

for each filter type. A maxpool layer distils each feature map into their strongest

signals. The average signals of the non-zero elements of each feature map vector

are also aggregated (Equation 4.3). These average signals are then compressed and

decompressed by a fully-connected layer with a ReLU activation after the first layer

(Equation 4.4). These re-expanded signals weight the strongest signals from the

maxpool, which in turn are multiplied against the matrix of vertex embeddings.

Finally, a softmax layer transforms logits into the classification probability for each

vertex in the graph.

Vertex
embeddingsD

N

Text sequence
embeddings

Feature maps

1D CNN MaxPool

AveragePool

⊙
Compress Expand

Strongest signals

Signal weightsMean signals

Dynamically
weighted signals

Dot
product

and
softmax

Figure 5.4: Overview of the Squeeze-and-Excite Convolutional Neural Net text clas-
sifier architecture.

5.3.3 Walk-validity classifier

The walk-validity model is comprised of two parts: an MPT block, and a classific-

ation layer. The MPT is comprised of a multi-headed Meta-Path Attention layer

followed by a row-wise feed-forward network, then by a multi-headed self-attention

layer, and finally another row-wise feed-forward network. See figure 5.5 for an illus-

tration of the walk validity architecture.

Multi-headed self-attention The self-attention layer is described again here, as

the meta-path attention layer is a direct modification of it. A self attention layer

is comprised of H attention heads. Given an input matrix of vertex embeddings

X ∈ Rl×d, where l is the maximum number of vertices in a sequence and d is the

dimensionality of the embeddings, an attention head projects the input into three

representational subspaces through linear transformations with parameter weights,

109

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Final em
beddings

V
ertex

em
beddings

R
andom

 w
alk

through graph
preceeded by
[C

LS
]

em
bedding

Sam
ple

vertices
w

ithin
N

-hops

D
ense

layer w
ith

sigm
oid

activation

0 if invalid w
alk

1 if true w
alk

Extract [C
LS]

em
bedding

G
enerate

adjacency
m

atrices

Edge-type adjacency
m

atrices and identity
m

atrix

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

Feed-forw
ard

netw
ork

M
ulti-headed m

eta-
path attention

Em
beddings

enriched w
ith

m
eta-path-

specific
inform

ation

S
elf-attention

head

S
elf-attention

head

S
elf-attention

head

S
elf-attention

head

Feed-forw
ard

netw
ork

M
ulti-headed self-

attention

F
igu

re
5.5:

T
h
e
W
alk

V
alid

ity
arch

itectu
re.

V
ertex

em
b
ed

d
in
gs

are
sam

p
led

u
sin

g
a
ran

d
om

w
alk

th
rou

gh
th
e
grap

h
,
p
reced

ed
b
y
a
sp
ecial

[C
L
S
]
em

b
ed

d
in
g.

A
d
ja
cen

cy
m
atrices

fo
r
th
is

su
b
set

of
th
e
grap

h
are

con
stru

cted
for

each
ed

ge-ty
p
e.

B
oth

th
e
v
ertex

em
b
ed

d
in
gs

an
d

th
eir

ad
jacen

cy
m
a
trices

a
re

p
assed

to
a
m
u
lti-h

ead
ed

m
eta-p

ath
atten

tion
layer,

w
h
ich

u
p
d
ates

th
e
em

b
ed

d
in
gs

u
sin

g
m
essage

p
assin

g
alon

g
m
u
lti-h

op
m
eta

-p
ath

s
(th

is
is
illu

strated
b
y
fi
gu

res
5.6

an
d
5.7).

T
h
ese

are
fu
rth

er
tran

sform
ed

u
sin

g
a
feed

-forw
ard

n
etw

ork
,
an

d
th
en

p
assed

to
a
con

ven
tio

n
a
l
m
u
lti-h

ea
d
ed

self-atten
tion

layer,
again

follow
ed

b
y
a
feed

-forw
ard

n
etw

ork
.
T
h
e
em

b
ed

d
in
g
corresp

on
d
in
g
to

th
e
sp
ecial

[C
L
S
]
em

b
ed

d
in
g
is

ex
tracted

a
n
d
p
assed

to
th
e
fi
n
al

classifi
cation

layer,
retu

rn
in
g
a
on

e
if
th
e
w
alk

is
valid

or
a
zero

if
it

is
in
valid

.
L
ay
er

n
orm

alisa
tio

n
an

d
th
e
ad

d
itio

n
of

resid
u
a
ls

a
re

om
itted

for
sim

p
licity

110

Lorcán Anthony Karel Pigott-Dix

WQ, WK , and WV (Wq|k|v ∈ Rl× d
H):

Q = XWQ,

K = XWK , (5.1)

V = XWV .

Self-attention scores, computed from Q and K, moderate the message passing

between the vertices of V:

Input:Q,K,V

Z = SelfAttention(Q,K,V) (5.2)

where:

Z = softmaxrow

QKT√
d
H

V (5.3)

The matrix product of Q and KT represents the pairwise interactions between ver-

tices. Subsequent scaling with a row-wise softmax function gives the attention scores.

The head output Z, the product of the attention scores and V, is a relevance-

weighted aggregation of messages between vertices, with respect to the recipient

vertices.

The output of each attention head is concatenated together and then linearly

transformed by the parameter weight W0:

SelfAttentionLayer(X, H) = concat ([head0(X), ... , headH−1(X)]) ·W0 (5.4)

Row-wise feed-forward network The row-wise feed-forward network (FFN) is

used to non-linearly transform the outputs of the attention layers. It applies the

same transformation identically to each column of a matrix but separately to each

row. It can be described as follows:

FeedForwardNetwork(X) = W2 · LayerNorm (γ (W1 ·X+ b1)) + b2 (5.5)

BothW are parameter matrices, both b are bias vectors, and γ represents the GELU

activation function [88].

Meta-path attention layer Here the Graph Transformer Network from Yun et

al. [243, 244] is reformulated in the style of the original transformer encoder from

Vaswani et al. [221]. The meta-path attention layer modifies the self-attention layer

to leverage multiple hops of a set of pre-defined edge matrices. An attention head

in this layer softly selects N adjacency matrices from the set of adjacency matrices

A ∈ R(r+1)×l×l, including an identity matrix in addition to the r edge-type matrices.

111

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Adjacency
matrices

() = softmax

1D filter
kernelA

(,) 1D CNN

B

C Weighted average of the
corresponding elements
of each matrix

Soft-attention
kernel

D
1st hop2nd hopNth hop

...

N-hop
adjacency
matrix

Figure 5.6: An illustration of the adjacency matrix selection using soft-selection. A
The softmax scales the kernel elements so that they sum to one. B The 1D CNN
uses this soft-attention kernel to get the weighted sum of the corresponding elements
form each adjacency matrix. C An illustration of the filter kernel being applied
sequentially across each corresponding element, producing an aggregated matrix. D
Multiple aggregated matrices are combined together into meta-paths using matrix
multiplication. Prior to this combination, each softly selected aggregated matrix
is normalised by its row-wise inverse degree matrix. This normalisation is omitted
from this figure for simplicity.

The identity matrix allows the meta-path attention layer to learn a meta-path that

is shorter than the allowed maximum number of hops. This selection is performed by

applying a softmax function to the N filter kernelsΦ ∈ R(r+1)×N of a 1D convolution

operation. See figure 5.6 for an illustration of this process.

The selected adjacency matrices are multiplied to produce the meta-path adja-

cency matrix Â ∈ Rl×l, as follows:

Â = D−1
N ·AN · ... ·D−1

1 ·A1 (5.6)

Where D−1
n is the inverse degree matrix for softly-selected adjacency matrix An.

Row-wise inverse degree normalisation of each softly selected matrix occurs prior to

each matrix being multiplied together into the final meta-path adjacency matrix Â.

This provides numerical stability by scaling signals to vertices with many incoming

112

Lorcán Anthony Karel Pigott-Dix

Random walk
embeddings

Adjacency
matrices

WV

V

Soft-
attention
selection

A B

C

Weighted average
of the
corresponding
elements of each
matrix

D

() concat

WV

All head
outputs

Output
embeddings

Head output

Figure 5.7: An illustration of how the multi-headed meta-path attention layer uses
the softly-selected meta-path adjacency matrix to replace the functionality of the
self-attention. A As in the self-attention heads a parameter matrix linearly trans-
forms the input embeddings into a different representational subspace. B The adja-
cency matrices are combined into a multi-hop meta-path adjacency matrix via soft
selection (as illustrated by figure 5.6). C The meta-path adjacency matrix is used to
pass messages between the subspace embeddings, as opposed to the attention scores
computed as the softmax of the dot-product of the Query and Key matrices in typ-
ical Self attention. D The resultant embeddings outputted by each head are then
concatenated together before being linearly transformed by a parameter matrix.

connections, and also prevents the signal vanishing due to the multiplication of

consecutive below-one valued matrices. This matrix replaces the attention scores

in the self-attention equation. Therefore the final output of a meta-path attention

head, Z, is given by:

Z = Â ·V (5.7)

The outputs of all heads are concatenated and linearly transformed to give the final

output of the layer:

MetaPathAttentionLayer(X,A, H) = concat ([head0, ... , headH−1]) ·W0 (5.8)

113

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Putting the model together For the walk validity classifier the components are

combined as follows:

X̂ = LayerNorm(X) (5.9)

Z = MetaPathAttentionLayer(X̂,A, H) + X̂ (5.10)

Ẑ = LayerNorm(Z) (5.11)

F = FeedForwardNetwork(Ẑ) + Ẑ (5.12)

S = LayerNorm(SelfAttentionLayer (F, H) + F) (5.13)

U = LayerNorm(FeedForwardNetwork (S) + S) (5.14)

The inputs of the meta-path attention and first feed-forward layer are layer-

normalised [12], while the self-attention layer and the second feed-forward network

are normalised after each addition of residuals. Shallow transformers that have en-

coders with pre-residual connection Layer Normalisation have been found to have

greater training stability than post-residual variants [129]. The self-attention layer

and second feed-forward network are essentially a decoder block. Liu et al. [129]

found no difference between pre- and post-residual connection Layer Normalisation

for decoder blocks.

Finally the first row of the output of the attention layers U, which always rep-

resents the special [CLS] token during the walk validity task, is extracted. This

[CLS] vector is passed to a modified version of the feed-forward network described

in equation 5.5. This feed-forward network outputs a single value, to which a sigmoid

activation function σ is applied:

Y = σ (FeedForward(U1,∗)) (5.15)

The sigmoid activation function bounds the output between zero and one. A one

represents a positive classification, while zero represents a negative.

Walk validity graph sampling Walk validity data was generated using the all-

relationship dictionary and the degree centrality information. Adjacency matrices

for each relationship were constructed for each walk using the individual edge-type-

specific relation dictionaries. Positive samples were created by sampling valid walks

from the graph. Negative samples, in contrast, were derived by perturbing random

walks, and accompanying them with the edge information from a separate walk

sample. This process is described by algorithm 1.

The process of sampling an individual random walk can be described accordingly:

Given a graph G = (V,E) with vertex set V and all relation type edge set E. Let

C(v) denote the degree centrality of vertex v ∈ V , which represents the number of

edges that this vertex has with other vertices in the graph, and N(v) the neighbours

of vertex v in G. Let p(v) be a probability distribution function defined over its

114

Lorcán Anthony Karel Pigott-Dix

neighbours N(v) such that:

p(v) ∝ 1

C(v)
(5.16)

The use of the inverse degree centrality reduces the influence of highly connected

vertices by making less connected vertices more likely to be sampled.

Define [CLS] to be a special vertex to represent the start of a walk sequence. Let

W[CLS] be a walk sequence initialised with [CLS] followed by a randomly selected

vertex v1 ∈ V . The walk sequence Wvi for a vertex vi is then recursively defined as:

Wvi =

Wvi−1 ∪ vi if vi has neighbours in G

Wvi−1 otherwise
(5.17)

Where, for i > 1:

vi ∼ p(vi−1) (5.18)

Here, ∪ denotes the concatenation operation, while the tilde ∼ denotes sampling

from a probability distribution. The walk sequence W of maximum sample size L

is given by W = WvL−2 . This process is described further by algorithm 2.

Algorithm 1 Sampling valid and generating invalid batches of samples of the Dis-
GeNET knowledge graph for the walk validity task. For details on the how the
individual random walks were sampled please see algorithm 2.

1: Initialise labels, batch walks, adjacency matrices, degree matrices
2: Sample starting vertex
3: for each starting vertex do
4: Perform and pad (if needed) a random walk
5: Compute and store the degree matrix for this random walk
6: if random value > negative sample rate then
7: Store adjacency matrices of the walk
8: Label as valid walk (1)
9: else

10: Replace some walk vertices with random vertices with probability of 10%
11: Compute adjacency matrices for a different random walk
12: Label as invalid walk (0)
13: end if
14: Store the walk in batch walks
15: end for
16: return labels, batch walks, adjacency matrices, degree matrices

5.3.4 SAE CNN classifier with Meta-Path Encoder

Architecture. Here parts of the walk validity architecture are incorporated into

the training of the text classifier. During training a depth-first search is used to

sample vertices within N -hops of the vertex corresponding to the text input. The

sampled vertices are enriched by being passed through the meta-path attention layer,

115

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Final em
beddings

V
ertex

em
beddings

R
andom

 w
alk

through graph
preceeded by
[C

LS
]

em
bedding

Sam
ple

vertices
w

ithin
N

-hops

D
ense

layer w
ith

sigm
oid

activation

0 if invalid w
alk

1 if true w
alk

Extract [C
LS]

em
bedding

G
enerate

adjacency
m

atrices

Edge-type adjacency
m

atrices and identity
m

atrix

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

Feed-forw
ard

netw
ork

M
ulti-headed m

eta-
path attention

Em
beddings

enriched w
ith

m
eta-path-

specific
inform

ation

S
elf-attention

head

S
elf-attention

head

S
elf-attention

head

S
elf-attention

head

Feed-forw
ard

netw
ork

M
ulti-headed self-

attention

D

N

Text sequence
em

beddings

Feature m
aps

1D
 C

N
N

M
axP

ool

A
verageP

ool

⊙
C

om
press

Expand

S
trongest signals

S
ignal w

eights
M

ean signals

D
ynam

ically
w

eighted signals

D
ot

product
and

softm
ax

F
igu

re
5.8:

A
n
illu

stra
tio

n
o
f
th
e
S
A
E
C
N
N

tex
t
classifi

er
an

d
a
w
alk

valid
ity

classifi
er

sh
arin

g
grap

h
vertex

em
b
ed

d
in
gs.

T
h
e
S
A
E
C
N
N

tex
t

cla
ssifi

er
h
as

its
d
ot-p

ro
d
u
ct

a
n
d
softm

ax
com

p
u
ted

again
st

th
e
en
tire

set
of

vertex
em

b
ed

d
in
gs,

w
h
ile

th
e
w
alk

valid
ity

classifi
er

is
train

ed
u
sin

g
su
b
-sa

m
p
les

of
th
e
grap

h
,
crea

ted
u
sin

g
ra
n
d
om

w
alk

s.

116

Lorcán Anthony Karel Pigott-Dix

T
he

 te
xt

in
pu

t v
er

te
x

eb
ed

di
ng

, t
hr

ee
 o

th
er

ra

no
m

ly
-s

am
pl

ed
 te

xt
-

ca
rr

yi
ng

 v
er

ti
ce

s,
 a

nd
 a

ra

nd
om

 s
el

ec
ti

on
 o

f
ve

rt
ic

es
 w

it
hi

n
N

-h
op

s
of

 th
es

e

Te
xt

 s
eq

ue
nc

e
em

be
dd

in
gs

 o
f

ve
rt

ex
 s

am
pl

ed

fr
om

 tr
ai

ni
ng

 s
et

Fe
at

ur
e

m
ap

s

1D
 C

N
N

M
ax

P
oo

l

A
ve

ra
ge

P
oo

l

⊙
C

om
pr

es
s

Ex
pa

nd

S
tr

on
ge

st
 s

ig
na

ls

S
ig

na
l w

ei
gh

ts
M

ea
n

si
gn

al
s

D
yn

am
ic

al
ly

w

ei
gh

te
d

si
gn

al
s

D
ot

pr

od
uc

t
an

d
so

ft
m

ax

Sa
m

pl
e

Em
be

dd
in

gs
 th

at

co
lle

ct
iv

el
y

re
pr

es
en

t t
he

ve

rt
ic

es
 o

f
th

e
en

ti
re

 g
ra

ph
.

G
en

er
at

e
ad

ja
ce

nc
y

m
at

ric
es

Ed
ge

-t
yp

e
ad

ja
ce

nc
y

m
at

ri
ce

s
an

d
id

en
ti

ty

m
at

ri
x

V
A

D
-1

M
et

a-
pa

th

at
te

nt
io

n
he

ad

V
A

D
-1

M
et

a-
pa

th

at
te

nt
io

n
he

ad

V
A

D
-1

M
et

a-
pa

th

at
te

nt
io

n
he

ad

V
A

D
-1

M
et

a-
pa

th

at
te

nt
io

n
he

ad

Fe
ed

-f
or

w
ar

d
ne

tw
or

k

M
ul

ti
-h

ea
de

d
m

et
a-

pa
th

 a
tt

en
ti

on

Em
be

dd
in

gs

en
ri

ch
ed

 w
it

h
m

et
a-

pa
th

-
sp

ec
ifi

c
in

fo
rm

at
io

n

A

B

F
ig
u
re

5
.9
:
A
n
il
lu
st
ra
ti
o
n
of

th
e
S
q
u
ee
ze
-a
n
d
-E

x
ci
te

C
on

vo
lu
ti
on

al
N
eu

ra
l
N
et

(S
A
E
C
N
N
)
te
x
t
cl
as
si
fi
er
,
in
co
rp
or
at
in
g
M
et
a-
P
at
h
at
te
n
ti
on

,
a
t
tr
a
in
in
g
ti
m
e.

A
T
h
e
S
A
E

C
N
N

a
rc
h
it
ec
tu
re

ex
tr
ac
ts

si
gn

al
s
fr
om

th
e
se
q
u
en

ce
of

w
or
d
em

b
ed

d
in
gs

th
at

re
p
re
se
n
t
th
e
n
at
u
ra
l
la
n
gu

ag
e

d
es
cr
ip
ti
o
n
o
f
a
ve
rt
ex
.
B

T
h
e
M
et
a
-P
a
th

A
tt
en
ti
on

ar
ch
it
ec
tu
re

p
as
se
s
m
es
sa
ge
s
b
et
w
ee
n
ve
rt
ic
es

w
it
h
in

N
-h
op

s
of

th
e
v
er
te
x
re
p
re
se
n
te
d

b
y
th
e
te
x
t
em

b
ed

d
in
gs
.
T
h
es
e
m
es
sa
g
es

ar
e
p
as
se
d
th
ro
u
gh

sp
ec
ifi
c
m
u
lt
i-
h
op

m
et
a-
p
at
h
s,

en
ri
ch
in
g
th
e
ve
rt
ex

em
b
ed

d
in
gs

w
it
h
co
n
te
x
t

en
co
d
ed

b
y
th
e
st
ru
ct
u
re

o
f
th
e
k
n
ow

le
d
g
e
gr
ap

h
.

117

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Algorithm 2 Random walk sampling algorithm for the walk validity task. The
probabilities used for the sampling of the related vertices of the current vertex are
inversely proportional to their degree centrality.

1: Initialise walk with special [CLS] token followed by input starting vertex
2: Set current vertex as input starting vertex
3: for each step up to sample size - 2 do
4: if current vertex exists in the relations then
5: Get related vertices from the relations of the current vertex
6: Select next vertex from related vertices based on sampling probabilities,

as in equation 5.16
7: Append next vertex to the walk
8: Set next vertex as current vertex
9: else

10: Break the loop
11: end if
12: end for
13: return walk

followed by a feed-forward network. The enriched vertex embeddings corresponding

to HPO terms are compared to the output vector of the SAE CNN. See figure 5.9

for an illustration.

At the end of training, a depth-first sample is taken for each HPO vertex, and

passed through the meta-path attention layer to create a final global representation

for each HPO vertex. The intuition here is that the meta-path layer will learn to

pass messages between vertices that are useful for the text classification task, with

the Gene and Protein vertices in common with other HPO terms behaving as a

“memory” for relevant shared information between HPO vertices.

Graph sampling for text classifier with meta-path attention. The graph

sampling for the text classifier with meta-path attention begins with the same pre-

liminaries as the walk validity graph sampling. A graph G = (V,E) is defined with

vertex set V and all relation type edge set E. The degree centrality of vertex v ∈ V

is represented again by C(v), and its neighbours in G are denoted by N(v). The

probability distribution function p(v) over neighbours N(v) is as defined by equation

5.16.

For this text classifier, however, the graph sampling procedure departs from

that of the walk validity sampling method. Given a vertex v0, which has a natural

language description (a vertex that represents an HPO term or a Gene), a random

walk begins from v0 and proceeds until it reaches a pre-specified maximum number

of hops away from v0. Upon reaching this threshold, a new random walk is initiated

from a randomly sampled vertex from the unsampled vertices within the closest

possible proximity to v0. This process is repeated until the maximum number of

unique vertices have been sampled, or all possible vertices within the defined hop

118

Lorcán Anthony Karel Pigott-Dix

maximum from v0 have been visited. All sampling from v0 is from the probability

distribution defined in equation 5.16.

5.3.5 SAE CNN classifier and Walk Validity classifier sharing a

Meta-Path Encoder

Here, the text and the walk validity classification architectures share parts of their

models: the meta-path attention layer and the subsequent feed-forward network.

The text classifier is as described in the previous section, and the walk validity

classifier is also as described previously.

5.3.6 Training

Model parameters All models were trained using the ADAM optimiser [108].

Training halted either after 200 epochs or if there was no loss improvement over five

consecutive epochs. Models using random walks from the graph sampled 128 vertices

per sample per batch, and a standard batch size of 1024 was used. However, the

dual-task meta-path model used a batch size of 512 due to GPU memory constraints.

For models with multi-headed attention layers, training began with a “burn-

in” period. The learning rate started at 1 × 10−6 and linearly increased with each

iteration to reach 5 × 10−4. These attention layers used eight heads and had a

whole-head dropout rate of 25%. The standalone SAE CNN classifier had a constant

learning rate of 5× 10−3.

The meta-path hop size was fixed at three for relevant models to manage com-

putational load and ensure a sample size of 128 captured a representative N-hop

neighbourhood. As N grows, the proportion of vertices sampled from the total

neighbourhood shrinks. See figures A.1 and A.2 in the appendices for more details

on vertex tallies based on hop sizes between two to seven.

Loss functions The training of the SAE CNN classifier either in isolation, or

while sharing embeddings with the walk validity classifier, used a softmax cross

entropy as the loss function. However, as it is computationally infeasible to use the

MPT to aggregate embeddings for every vertex in the graph, for each sample in a

batch at every iteration, the loss for the MPT text classifier had to be adapted to

operate on a sub-sample of the vertices. Gutman and Hyvärinen [79] developed an

algorithm, Noise-Contrastive Estimation, for approximating the softmax across all

possible classes when training using a subsample. During training the model learns

to discriminate between the true class and a sample of noise classes. As the noise

sample is drawn from the space of possible classes, the model indirectly captures the

relationships between the classes. At inference time the model will behave as if it

was trained on the full softmax as it has approximated the probability distribution

of the full softmax.

119

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Final em
beddings

V
ertex

em
beddings

R
andom

 w
alk through graph

preceeded by [C
LS

] em
bedding

Sam
ple

vertices
w

ithin
N

-hops

D
ense

layer w
ith

sigm
oid

activation

0 if invalid w
alk

1 if true w
alk

Extract [C
LS]

em
bedding

G
enerate

adjacency
m

atrices

Edge-type adjacency
m

atrices and identity
m

atrix

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

V
A

D
-1

M
eta-path

attention head

Feed-forw
ard netw

ork

M
ulti-headed m

eta-
path attention

Em
beddings

enriched w
ith

m
eta-path-

specific
inform

ation

S
elf-attention

head

S
elf-attention

head

S
elf-attention

head

S
elf-attention

head

Feed-forw
ard

netw
ork

M
ulti-headed self-attention

Text sequence
em

beddings

Feature m
aps

1D
 C

N
N

M
axP

ool

A
verageP

ool

⊙
C

om
press

Expand

S
trongest signals

S
ignal w

eights
M

ean signals

D
ynam

ically
w

eighted signals

D
ot

product
and

softm
ax

G
enerate

adjacency
m

atrices

V
ertices w

ithin
N

-hops of
correct vertex

Edge-type adjacency
m

atrices and identity
m

atrix

Sam
ple

random

w
alk

F
igu

re
5.10:

A
w
alk

valid
ity

a
n
d
tex

t
cla

ssifi
ers

sh
arin

g
vertex

em
b
ed

d
in
gs,

th
e
m
eta-p

ath
atten

tion
layer,

an
d
its

su
b
seq

u
en
t
feed

-forw
ard

n
etw

o
rk
.
B
oth

m
o
d
els

reta
in

th
eir

sep
a
ra
te

g
ra
p
h
sam

p
lin

g
algorith

m
s.

120

Lorcán Anthony Karel Pigott-Dix

To ensure that the MPT text classifier learns to differentiate between HPO terms,

every sample in the batch is compared against every other in the batch to train the

model. For each sample, the embedding in the first position always corresponds

to the correct HPO class. So after the MPT has produced the aggregated vertex

representations, the first aggregated embedding of each sample is concatenated with

a copy of every other first position embedding in the batch. Any occurrences of a

sample’s correct embedding in its copy of all the other embeddings is masked with

zeros. The dot-product is computed between each sample’s vector representation of

the input text in the batch and every vertex embedding in the batch. The loss is

computed using Noise-Contrastive Estimation.

For the walk validity task, a sigmoid cross entropy loss function was employed

to learn to distinguish between valid and invalid walks. The models trained with

both tasks simultaneously weighted the importance of the loss between each task so

that the text classification task was favoured by a ratio of 4:1.

5.3.7 Evaluation

As in the last chapter, all the models were evaluated using the 228 PubMed abstracts

which had been expertly annotated by domain experts [133]. 40 abstracts were used

to determine the optimum classification threshold for each model, with the remaining

188 used to score the models’ performance using each model’s best classification

threshold.

5.4 Results

Table 5.1: Performance metrics for each model on the HPO concept recognition on
benchmark corpus. The highest score for each metric is indicated by the bold font.

Model
Batch
Size

Threshold
Macro

Precision
Macro
Recall

Macro F1
Micro

Precision
Micro
Recall

Micro F1

SAE CNN 1024 0.9 0.425 0.414 0.405 0.464 0.724 0.566
+ shared emb. pre-train 1024 0.9 0.440 0.419 0.412 0.482 0.698 0.570
+ shared emb. sim. train 1024 0.1 0 0 0 0 0 0
SAE CNN w. MPT 1024 0.9 0.203 0.211 0.194 0.201 0.611 0.303
+ pre-train 1024 0.9 0.191 0.197 0.182 0.197 0.629 0.301
+ sim. train 512 0.8 0.187 0.172 0.167 0.257 0.381 0.307

Table 5.1 displays the results of the evaluation. The SAE CNN sharing embed-

dings with an MPT walk validity classifier trained sequentially, achieves the best

performance, with slightly higher f-scores than the SAE CNN alone. When the

models sharing embeddings were trained together, the model failed to train and

did not make any correct predictions. All of the SAE CNN models incorporating

an MPT performed poorly compared with the best performing shared embedding

model. The addition of the walk-validity task with the pre-training did not result in

much difference from the MPT-based model trained only on the text classification

121

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

task. The MPT simultaneously trained on both tasks achieved a similar f-score to

the other MPT models, except that its micro precision metric was higher while its

recall was lower.

Figures 5.11 to 5.13 display snapshots of the softmax filter kernels for the meta-

path attention heads used for soft-selection of the adjacency matrices. Specifically,

figure 5.11 shows the kernels after the end of training a model on the text classific-

ation task alone. Figure 5.12 are the kernels of a single head from a model trained

simultaneously on the walk validity classification and text classification tasks. Fi-

nally, figure 5.13 shows the kernels from the same attention head after being pre-

trained on the walk validity classification task (sub-figure A), and after subsequent

training on the text classification task (sub-figure B). See figures A.4 to A.6 to see

the softmax filter kernels learned by each MPT in full, including from those which

only shared embeddings with the SAE CNN text classifier.

5.5 Discussion

Impact of multi-task training In this work, the valid-walk pre-training object-

ive only led to an improvement in performance when an MPT was not incorporated

into the text classifier. Otherwise, pre-training with this task slightly inhibited

model performance. This agrees somewhat with Liu et al. [131], who found they

could improve BERT pre-training with the removal of the binary classification task.

Instead they trained their model using only the masked word prediction task.

Conversely, for the SAE CNN text classifier only sharing embeddings with the

walk validity classifier, pre-training did improve performance. Glorot et al. [70]

suggested that such an outcome indicates that the method used to set the initial

parameters of the vertex embeddings is sub-optimal. In this context the walk validity

pre-training may serve as an expensive initial parameterisation of the vertex embed-

dings. However it is not immediately clear which kind of initial parameterisation

would improve performance.

In the original GTN papers [243, 244] and the HGT paper [95], the models were

employed for vertex type classification. It may be that the binary classification

task did not optimally impart vertex-type and structure information into the em-

beddings. Perhaps replacing this with a vertex classification task would serve as

a more optimal, yet still expensive initial parameterisation, and explicitly impart

more useful vertex-type signals. However, in every instance where the walk-validity

classifier was used, whether for pre-training or simultaneous training, once trained

it consistently achieved accuracies in excess of 90%. See table A.1 in the appendices

to see the epoch-by-epoch walk validity classification accuracy for the MPT after

walk-validity pre-training. This suggests that there is something that does not work

with the MPT in the context of text classification.

Additionally, the MPT employed regularisation techniques, dropout in partic-

122

Lorcán Anthony Karel Pigott-Dix

Figure 5.11: The softmax of the filter
kernels from a single meta-path atten-
tion head after the completion of the
text classifier training, with no walk-
validity training.

Figure 5.12: The softmax of the filter
kernels from a single meta-path atten-
tion head after the conclusion of sim-
ultaneous walk validity and text clas-
sification training.

Figure 5.13: The softmax of the filter kernels from a single meta-path attention head
after the conclusion of A pre-training on the walk validity task, and B the same
kernels after the subsequent text classifier training.

123

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

ular, which were intended to encourage generalisability. Encouraging the model

to generalise may have inhibited the MPT heads from learning specific meta-paths

through the graph and specific signal transmission between vertices. The softmax

function being applied to a meta-path head adjacency matrix would only further

compound this issue. A MPT head which is trying to account for multiple meta-

paths is only able to increase the signal through one meta-path at the expense of

another.

Meta-path learning and explainability To gain insight into what is happen-

ing in the MPTs, we can explore the attention weights being used to construct

the multi-hop adjacency matrices. Figure 5.11 and figure 5.12 show a single head’s

softmax filter kernels from the Meta-Path text classifier, trained on the text classific-

ation task alone, and simultaneously trained on walk validity and text classification,

respectively.

Both heads are adapting to avoid learning meta-paths that terminate with a

HPO concept vertex, and to favour an initial hop from a parent HPO concept to its

children. Either the head is passing signals away from HPO vertices, or using self-

connections through the identity matrix. This is mirrored in figure 5.13.B, which

shows the final filter kernels following the conclusion of the walk validity pre-training

followed by the text classification training. Here, again the model has learned to

avoid terminating at an HPO term unless it is a single hop from parent to child and

even then favours self-connections.

When we look at this same set of filter kernels prior to the text classification

training, in figure 5.13.A, we can see that the head is simultaneously learning both

[gene → protein] [HPO → gene] and [HPO parent → HPO child → HPO parent]

meta-paths. This suggests that for the task of walk validity classification the MPT

can learn intuitive, meaningful meta-paths through the graph, and significantly, that

message passing between vertices in the graph is beneficial to model performance.

This contrasts with those trained for text classification. He et al. [85] hypothesised

that when a layer with residual connections could not improve a model it would

drive its contribution to zero so that the layer performed an identity function and

returned its inputs. We can observe that each model appears to be preventing signals

from being passed to HPO terms or only passing self-connections at the conclusion

of text classifier training.

As shown by figure 5.3, HPO concepts are much more likely to be linked to genes,

while genes are much more likely to be associated with fewer HPO concepts. A gene’s

association with multiple phenotypic disorders may be completely orthogonal to the

natural language descriptions of said disorders. A mutated gene may affect cells

from different tissues in different ways. Additionally, the HPO ontology is organised

so that, for example, disorders that affect the structure of one’s hands are similarly

named and categorised. It is not organised by the genes which influence these

124

Lorcán Anthony Karel Pigott-Dix

disorders. This, and the models appearing to avoid message passing, suggests that

message passing along the knowledge graph was not beneficial for text classification,

and that the DisGeNET knowledge graph was an inappropriate design choice for a

HPO term concept recognition system.

Although, the knowledge graph was not the best design choice, the a priori hard-

coded interpretability of the MPT allowed us to investigate and diagnose the model.

The graph with MPT approach has allowed us more insight toward what the model

is learning, and how it is aggregating features to make predictions. While a post

hoc explainability method like SHAP [135] would only indicate which input features

appear to influence model outputs the most. On the other hand, SHAP provides

single prediction explanations which the MPT-based classifier does not.

125

Chapter 6

Critical Assessment of Work

6.1 Overview and chapter summaries

The semantic annotation of scientific artefacts, such as literature and data, with

terms from controlled vocabularies is a non-trivial problem. Ontologies are up-

dated frequently [197, 111], which necessitates adaptable solutions. This means

that any deep learning-based annotation methods must either be general enough to

adapt without requiring expensive re-training, or be inexpensive to re-train. The

approaches explored in the work described here focused on developing tools that can

be retrained within a day, using limited computational resources. I later explored

the incorporation of a priori interpretability into neural architectures, motivated

primarily by concerns regarding the interpretability of deep learning systems.

This chapter provides a comprehensive overview of the research presented in

this thesis, putting it into a higher-level context. The work of the chapters is sum-

marised, and then followed by discussions of the results. Then a comparison of the

approaches with other methods is made, followed by an exploration of the conceptual

contributions of this work. Future avenues of research are suggested throughout.

6.1.1 Summary of chapters

Chapter 1 Here I provided the motivation for the project: the need for efficient

tools for categorising, indexing and collating scientific knowledge, that can help us

to keep pace with the ever increasing scale of scientific production. The chapter

ends with a brief summary of this thesis’s contributions.

Chapter 2 I described the evolution of artificial intelligence, with a particular

focus on deep neural machine learning and semantic technologies. I described how

work to emulate the function of biological neurons led to the development of artificial

neural nets and how these have led to computer agents outperforming human agents

in specific tasks. I also discussed the development of the semantic web and various

subsequent initiatives to describe domains of knowledge, biology in particular, with

126

Lorcán Anthony Karel Pigott-Dix

machine interpretable structures. I then gave an overview of efforts to combine

structured symbolic knowledge representation with deep learning, and concluded by

describing previous work towards the semantic annotation of literature and data.

Chapter 3 This chapter explored the use of heuristic annotation with neural error

correction methods. Specifically, I employed a string-matching dictionary method

to annotate a PLOS paper corpus with Cell Ontology terms. Then I devised various

models to exploit noise inherent to the annotations. Two models, including a control,

were evaluated against a benchmark. However, one approach failed to produce a

viable model, while the others performed poorly.

Chapter 4 I refined a neural dictionary-based concept recognition method, ex-

tending it to allow the incorporation of multiple ontologies, and examined the im-

pact of using different combinations of ontologies. The models were benchmarked

against a corpus of text annotated with Human Phenotype Ontology terms, and

diverse domain ontologies were found to improve performance, especially for models

with attention mechanisms. Domain overlap was identified as having a detrimental

effect on performance, and investigations into this phenomenon were carried out.

Chapter 5 I constructed a knowledge graph using subsets of UniProt, the Human

Phenotype Ontology, and the Disease Gene Association Network. I then developed

a neural dictionary concept recognition model that could incorporate this knowledge

graph into its architecture. Although these models did not compete with the state-

of-the-art, they provided insight into the role that structured domain knowledge can

have in deep learning, particularly in respect to providing constraints necessary for

model interpretability and explainability.

In summary The chapters proceed from an exploration of the foundational prin-

ciples of AI, including knowledge representation, and symbolic and statistical learn-

ing, to practical applications of deep learning for the semantic annotation of scientific

literature with ontology terms. Each chapter builds from the previous, culminating

in work to build interpretability into models, with all methods being reasonably

inexpensive to train.

6.2 Assessment of results

While the models of chapters 3 and 5 did not perform optimally, the work of chapter

4 produced models whose performance exceeded the state-of-the-art for neural dic-

tionary methods. Additionally these models were extended to operate across mul-

tiple domains. However, the generalisability of these approaches is not certain. I

had benchmarked my models using both the Cell Ontology segment of the Colorado

127

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Richly Annotated Full-Text (CRAFT) corpus and the version of the Gold Standard

Corpus (GSC) for Biomedical concept recognition, annotated with Human Phen-

otype Ontology Terms, released by Lobo et al. [133]. In particular, the work of

chapters 4 and 5 were benchmarked against the HPO annotated corpus. The data-

set of abstracts annotated with HPO terms came in a table format that is easy to

use for evaluating a model output, however it only covers a single ontology. The

Colorado Richly Annotated Full-Text (CRAFT) corpus, on the other hand, contains

annotations in 97 full journal publications for the Gene Ontology, Cell Type Onto-

logy, Sequence Ontology, Chemical Entities of Biological Interest Ontology, Protein

Ontology, NCBI Taxonomy, and the Uberon Ontology. However, until recently I

lacked the technical expertise to transform the linked data format of these annota-

tions into a table format amenable to my evaluation scripts. In future work the

models developed in chapter 4 should be trained using the ontologies covered by

the CRAFT corpus. Then these models can be evaluated against the corpus to

better gauge the generality of the improvements brought by combinations of diverse

domain ontologies and attention mechanisms.

Although some models excelled at semantic annotation, others did not. This

demonstrates the challenge of building broadly applicable deep learning-based tools

for semantic annotation, and the requirement for robust multi-domain testing.

6.3 Conceptual contributions

6.3.1 Interpretability and the validity of assumptions

The approaches devised and trialled in this thesis could be described as a progression:

from attempting to exploit assumptions with neural networks, to actively encoding

assumptions to constrain deep neural networks. The research presented in this thesis

demonstrates how complex and challenging it is to identify and validate assumptions

in deep learning.

In chapter 3, it was found that the assumption that an autoencoder architec-

ture could be straightforwardly transferred from the domain of image classification

to ontology-based concept recognition did not hold. Several factors, such as the

simplicity of the autoencoder or the nature of BIO sequence labelling, may have

led to the poor performance of the discriminative autoencoder. The discriminative

autoencoder approach for noisy image classification by Xia et al. [234] was applied

to one single positive class which composed the majority of samples. In the heur-

istic annotation case, the positive samples are in a minority and actually represent

a great diversity of semantic concepts. The tokens of a sequence labelled the begin-

ning of a sequence may not have much in common with other tokens with the same

classification. The same is true for the words labelled as negative cases. While I can

make post hoc explanations, these explanations remain speculative.

128

Lorcán Anthony Karel Pigott-Dix

Though in chapter 4 I was again left to make post hoc explanations, the ontology

structures were statically incorporated into the model architectures. These struc-

tures formed a conceptual scaffold with which to guide investigations into model

performance disparities, which allowed a more rational explanation of differences in

model performance.

In chapter 5, the assumption that domain specific structured information can

help improve model performance is explicitly encoded into the model, but the model

had flexibility over how it leverages this structure. This explicit encoding meant that

how the model was learning could be interpreted. It could be identified that for the

walk validity task the model was learning intuitive multi hop meta-paths through

the graph. In contrast, during the semantic annotation task it was actively forgoing

message passing through the knowledge graph structure - indicating that the graph

was detrimental to model performance.

To summarise, the explicit encoding of assumptions into a model provides a

greater degree of explanatory power. This allows us to better intuit why a model is

under-performing, and may also boost our confidence in their predictions when they

perform well. Given developments toward simplifying the production of high quality

task-specific knowledge graphs [132], it would be interesting to explore if there may

be a more suitable graph structure which may improve model performance. This

work could explore whether the architecture needs to take into account imbalances

in data, beyond the inverse degree normalisation used in chapter 5. Regarding

the vertices linked along a common meta-path, perhaps adaptive systems need to

weight the relative importance of each vertex sharing a meta-path terminating with

the same vertex.

6.3.2 Limitations of architectures

Incorporating graph structure into architecture Despite suggesting the

graph was sub-optimal, there is also the possibility that the meta-path transformer

architecture is not a suitable architecture for semantic annotation. Although the

knowledge graph contained tens of thousands of vertices, this does not approach

the volumes of data typically required by transformer architectures. The scaled-

transformer architecture used in chapter 4 did mitigate the need for vast quantities

of training data somewhat. However, the scaling is not straightforwardly compatible

with a transformer in a graph context because graph data is unordered. While the

scaled-transformer is intended to leverage the assumption that the order of words

in a sentence and their proximity to one another provides relevant signals, the same

assumption cannot be made in the case of an unordered set of vertices.

In chapter 4, post hoc analysis of the model embeddings and their proximity sug-

gested that different ancestry matrices from overlapping ontology domains hindered

model performance. Concepts with similar, or the same, natural language descrip-

129

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

tions had different aggregated representations due to signals passed through their

respective ancestry matrices. In future these concepts may be reconciled or combined

into the same concepts where necessary in the pre-processing steps. However, this

would require domain expertise, so perhaps overlapping domains should be avoided.

In this chapter it was also found that model performance may be heavily influenced

by heuristics, particularly when two concepts overlap. Additionally, all the models

devised in this thesis have no mechanism for dealing with negation. A passage could

be specifying that the work describes a particular process and not another. Large

language models have the capacity to make these distinctions and could be used to

develop expert systems for semantic annotation.

Generative large language models An alternative approach to semantic an-

notation entails the development of large-scale generalist models, such as generative

large language models capable of few-shot learning and question-answering formats,

like GPT-4 [165] and Llama 2 [219]. This would necessitate vast computational

resources, relative to those employed in this work.

For perspective, the GatorTron model developed by Yang et al. [237] required

992 state-of-the-art NVIDIA A100 80Gb GPUs and six days of computational time

for training. In contrast, the research for this thesis was conducted using a single

NVIDIA TITAN XP GPU for Chapters 3 and 4, and a single A100 80Gb GPU for

Chapter 5, with all models training for under 24 hours. GatorTron was applied to the

task of concept recognition, however it was used as the basis for a sequence labelling

problem, generating B-I-O format labels for each word in a sequence, rather than

returning specific concept IDs for spans of text, which semantic annotation requires.

Large language models are prone to hallucination, where the model outputs ap-

pear to correspond to bonafide facts but in reality only take the authoritative form

one would expect from a fact [165, 219]. This would make such a solution unac-

ceptable for the task of semantic annotation. Additionally, generative models have

a temperature parameter which means that the sequences they generate are not

deterministic [213]. Given an input of text, with higher temperature parameterisa-

tions the model may return various different outputs, and with a lower temperature

outputs may become repetitive. Both of which may compromise the suitability of

large language models for semantic annotation.

Recycling large language model components A different use of large lan-

guage models instead of generative question-answering is by recycling its components

rather than generating outputs. The Large Language Model BERT was incorporated

into a neural dictionary architecture Phenotagger [136] in this way. This method

side-steps the problem posed by non-deterministic outputs by using the hidden layers

of the language model as part of a deterministic classifier. This method still requires

the initial expense of training a large language model, but only the classifier layer

130

Lorcán Anthony Karel Pigott-Dix

would need to be retrained when an ontology is updated. The methods devised in

chapter 4 incorporated a much smaller ELMo pre-trained language model to reuse

its hidden components and outperformed Phenotagger on the HPO benchmark set.

Complementing the strengths of different approaches The field of natural

language processing is vast, and potential semantic annotation solutions vary from

simpler neural dictionaries to the sophisticated large language models - each with

their own advantages and limitations. Avenues of research combining various meth-

odologies may prove beneficial.

There has been work to develop approaches to ensure greater consistency and

trustworthiness of generative question-answering large language models. These typ-

ically involve the incorporation of vector databases or use knowledge graphs as

guardrails [51, 83]. For example, ChatLaw, introduced by Cui et al. [51], which

combined a Llama generative large language model with a BERT-based system for

extracting keywords and relevant laws from a database, for Chinese legal question

answering. There are two BERT systems which both use a vector similarity look-

up to either identify the most similar keywords or relevant laws from a database,

which are neural dictionary look-ups like the models explored in chapters 4 and 5.

The text describing these laws and the keywords are then provided to the Llama

model alongside the user query as context. The authors found that this significantly

reduced the model’s propensity to hallucinate.

If the resources were provided, it would be worthwhile to develop an open source

generative large language model for researchers, and build an expert system that uses

it for data annotation. This would likely be large collaborative project, with many

researchers involved in its development, and require an appropriate investment of

resources. Perhaps a system could be developed that uses a neural dictionary to look

up ontology concepts from within a passage of text, and even then use structured

knowledge to provide further context for these concepts. Then these concepts could

be used to augment a generative language model query that returns an updated set

of relevant ontology terms based upon the passage of text and the matched terms.

This would strike a balance between the consistency of the neural dictionary models

and the greater expressive power of the large language models.

131

Bibliography

[1] David Ifeoluwa Adelani et al. ‘Distant Supervision and Noisy Label Learning

for Low Resource Named Entity Recognition: A Study on Hausa and Yorùbà’.

In: (2020). doi: 10.48550/arXiv.2003.08370. arXiv: 2003.08370 [cs.CL].

[2] Görkem Algan and Ilkay Ulusoy. ‘Image Classification with Deep Learning in

the Presence of Noisy Labels: A Survey’. In: (2019). doi: 10.48550/arXiv.

1912.05170. arXiv: 1912.05170 [cs.LG].

[3] Basharat Ali and Peter Dahlhaus. ‘The Role of FAIR Data towards Sustain-

able Agricultural Performance: A Systematic Literature Review’. In: Agricul-

ture 12.2 (2022), p. 309. doi: 10.3390/agriculture12020309.

[4] Sara Althubaiti et al. ‘Ontology-based prediction of cancer driver genes’. In:

Scientific Reports 9.1 (2019), p. 17405. doi: 10.1038/s41598-019-53454-1.

[5] Artaches Ambartsoumian and Fred Popowich. ‘Self-Attention: A Better

Building Block for Sentiment Analysis Neural Network Classifiers’. In: (2018).

doi: 10.48550/arXiv.1812.07860. arXiv: 1812.07860 [cs.CL].

[6] ‘Analysis of a complex of statistical variables into principal components’.

In: Journal of Educational Psychology 24.6 (1933), pp. 417–441. issn: 1934-

00645-001. doi: https://doi.org/10.1037/h0071325.

[7] Aryan Arbabi et al. ‘Identifying Clinical Terms in Medical Text Using

Ontology-Guided Machine Learning’. In: JMIR Medical Informatics 7.2

(2019), e12596. doi: 10.2196/12596.

[8] Alan R Aronson. ‘Effective mapping of biomedical text to the UMLS Meta-

thesaurus: the MetaMap program’. In: Proceedings of the AMIA Symposium

(2001), pp. 17–21. url: https://pubmed.ncbi.nlm.nih.gov/11825149.

[9] Michael Ashburner et al. ‘Gene Ontology: tool for the unification of biology’.

In: Nature Genetics 25.1 (2000), pp. 25–29. doi: 10.1038/75556.

[10] Mark van Assem, Aldo Gangemi and Guus Schreiber. ‘Conversion of Word-

Net to a standard RDF/OWL representation’. In: Proceedings of the Fifth

International Conference on Language Resources and Evaluation (LREC’06).

Genoa, Italy: European Language Resources Association (ELRA), May 2006.

132

https://doi.org/10.48550/arXiv.2003.08370
https://arxiv.org/abs/2003.08370
https://doi.org/10.48550/arXiv.1912.05170
https://doi.org/10.48550/arXiv.1912.05170
https://arxiv.org/abs/1912.05170
https://doi.org/10.3390/agriculture12020309
https://doi.org/10.1038/s41598-019-53454-1
https://doi.org/10.48550/arXiv.1812.07860
https://arxiv.org/abs/1812.07860
https://doi.org/https://doi.org/10.1037/h0071325
https://doi.org/10.2196/12596
https://pubmed.ncbi.nlm.nih.gov/11825149
https://doi.org/10.1038/75556

Lorcán Anthony Karel Pigott-Dix

url: http://www.lrec-conf.org/proceedings/lrec2006/pdf/165_pdf.

pdf.

[11] Sören Auer et al. ‘DBpedia: A Nucleus for a Web of Open Data’. In: The

Semantic Web. Ed. by Karl Aberer et al. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2007, pp. 722–735. isbn: 978-3-540-76298-0. doi: 10.1007/978-

3-540-76298-0_52.

[12] Jimmy Lei Ba, Jamie Ryan Kiros and Geoffrey E. Hinton. Layer Normal-

ization. 2016. doi: 10 . 48550 / arXiv . 1607 . 06450. arXiv: 1607 . 06450

[stat.ML].

[13] Michael Bada et al. ‘Concept annotation in the CRAFT corpus’. In: BMC

Bioinformatics 13.1 (2012), pp. 1–20. doi: 10.1186/1471-2105-13-161.

[14] Dzmitry Bahdanau, Kyunghyun Cho and Yoshua Bengio. Neural Machine

Translation by Jointly Learning to Align and Translate. 2016. doi: 10.48550/

arXiv.1409.0473. arXiv: 1409.0473 [cs.CL].

[15] Yuhan Bai. ‘RELU-Function and Derived Function Review’. In: International

Conference on Science and Technology Ethics and Human Future (STEHF

2022). Vol. 144. SHS Web of Conferences. 2022, p. 02006. doi: 10.1051/

shsconf/202214402006.

[16] Anita Bandrowski et al. ‘The Ontology for Biomedical Investigations’. In:

PloS one 11.4 (2016), e0154556. doi: 10.1371/journal.pone.0154556.

[17] Jonathan Bard, Seung Y Rhee and Michael Ashburner. ‘An ontology for cell

types’. In: Genome Biology 6.2 (2005), pp. 1–5. doi: 10.1186/gb-2005-6-

2-r21.

[18] Erdenebileg Batbaatar and Keun Ho Ryu. ‘Ontology-Based Healthcare

Named Entity Recognition from Twitter Messages Using a Recurrent Neural

Network Approach’. In: International Journal of Environmental Research and

Public Health 16.19 (2019), p. 3628. doi: 10.3390/ijerph16193628.

[19] Oliver Bender, Franz Josef Och and Hermann Ney. ‘Maximum Entropy Mod-

els for Named Entity Recognition’. In: Proceedings of the Seventh Conference

on Natural Language Learning at HLT-NAACL 2003 - Volume 4. CONLL

’03. Edmonton, Canada: Association for Computational Linguistics, 2003,

pp. 148–151. doi: 10.3115/1119176.1119196.

[20] Y. Bengio, P. Simard and P. Frasconi. ‘Learning Long-Term Dependencies

with Gradient Descent is Difficult’. In: Transactions on Neural Networks 5.2

(Mar. 1994), pp. 157–166. issn: 1045-9227. doi: 10.1109/72.279181. url:

10.1109/72.279181.

133

http://www.lrec-conf.org/proceedings/lrec2006/pdf/165_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/165_pdf.pdf
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.48550/arXiv.1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://doi.org/10.1186/1471-2105-13-161
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/10.1051/shsconf/202214402006
https://doi.org/10.1051/shsconf/202214402006
https://doi.org/10.1371/journal.pone.0154556
https://doi.org/10.1186/gb-2005-6-2-r21
https://doi.org/10.1186/gb-2005-6-2-r21
https://doi.org/10.3390/ijerph16193628
https://doi.org/10.3115/1119176.1119196
https://doi.org/10.1109/72.279181
10.1109/72.279181

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[21] Yoshua Bengio. ‘Learning Deep Architectures for AI’. In: Foundations and

Trends in Machine Learning 2.1 (2009), pp. 1–127. issn: 1935-8237. doi:

10.1561/2200000006.

[22] Yoshua Bengio, Réjean Ducharme and Pascal Vincent. ‘A Neural Probabil-

istic Language Model’. In: Advances in Neural Information Processing Sys-

tems. Ed. by T. Leen, T. Dietterich and V. Tresp. Vol. 13. MIT Press, 2000.

url: https://proceedings.neurips.cc/paper_files/paper/2000/file/

728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf.

[23] Tim Berners-Lee, James Hendler and Ora Lassila. ‘The Semantic Web’. In:

Scientific American 284.5 (2001), pp. 34–43. issn: 00368733, 19467087. url:

http://www.jstor.org/stable/26059207.

[24] Daniel M Bikel, Richard Schwartz and Ralph M Weischedel. ‘An Algorithm

that Learns What’s in a Name’. In: Machine learning 34 (1999), pp. 211–231.

doi: 10.1023/A:1007558221122.

[25] Christian Bizer, Tom Heath and Tim Berners-Lee. ‘Linked Data - The Story

So Far’. In: International Journal on Semantic Web and Information Systems

(IJSWIS) 5.3 (2009), pp. 1–22. doi: 10.4018/978-1-60960-593-3.ch008.

url: https://EconPapers.repec.org/RePEc:igg:jswis0:v:5:y:2009:i:

3:p:1-22.

[26] Margreet Bloemers and Annalisa Montesanti. ‘The FAIR Funding Model:

Providing a Framework for Research Funders to Drive the Transition toward

FAIR Data Management and Stewardship Practices’. In: Data Intelligence

2.1-2 (Jan. 2020), pp. 171–180. issn: 2641-435X. doi: 10.1162/dint_a_

00039.

[27] Piotr Bojanowski et al. ‘Enriching Word Vectors with Subword Information’.

In: Transactions of the Association for Computational Linguistics 5 (June

2017), pp. 135–146. issn: 2307-387X. doi: 10.1162/tacl_a_00051.

[28] Evan E. Bolton et al. ‘Chapter 12 - PubChem: Integrated Platform of Small

Molecules and Biological Activities’. In: ed. by Ralph A. Wheeler and David

C. Spellmeyer. Vol. 4. Annual Reports in Computational Chemistry. Elsevier,

2008, pp. 217–241. doi: https://doi.org/10.1016/S1574- 1400(08)

00012-1.

[29] Rishi Bommasani et al. On the Opportunities and Risks of Foundation Mod-

els. 2022. doi: 10.48550/arXiv.2108.07258. arXiv: 2108.07258 [cs.LG].

[30] Léon Bottou. ‘Large-Scale Machine Learning with Stochastic Gradient Des-

cent’. In: Proceedings of COMPSTAT’2010. Ed. by Yves Lechevallier and

Gilbert Saporta. Heidelberg: Physica-Verlag HD, 2010, pp. 177–186. isbn:

978-3-7908-2604-3. doi: 10.1007/978-3-7908-2604-3_16.

134

https://doi.org/10.1561/2200000006
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
http://www.jstor.org/stable/26059207
https://doi.org/10.1023/A:1007558221122
https://doi.org/10.4018/978-1-60960-593-3.ch008
https://EconPapers.repec.org/RePEc:igg:jswis0:v:5:y:2009:i:3:p:1-22
https://EconPapers.repec.org/RePEc:igg:jswis0:v:5:y:2009:i:3:p:1-22
https://doi.org/10.1162/dint_a_00039
https://doi.org/10.1162/dint_a_00039
https://doi.org/10.1162/tacl_a_00051
https://doi.org/https://doi.org/10.1016/S1574-1400(08)00012-1
https://doi.org/https://doi.org/10.1016/S1574-1400(08)00012-1
https://doi.org/10.48550/arXiv.2108.07258
https://arxiv.org/abs/2108.07258
https://doi.org/10.1007/978-3-7908-2604-3_16

Lorcán Anthony Karel Pigott-Dix

[31] Victoria Bourgeais, Farida Zehraoui and Blaise Hanczar. ‘GraphGONet: a

self-explaining neural network encapsulating the Gene Ontology graph for

phenotype prediction on gene expression’. In: Bioinformatics 38.9 (Mar.

2022), pp. 2504–2511. issn: 1367-4803. doi: 10 . 1093 / bioinformatics /

btac147.

[32] Victoria Bourgeais et al. ‘Deep GONet: self-explainable deep neural network

based on Gene Ontology for phenotype prediction from gene expression data’.

In: BMC Bioinformatics 22.10 (2021), pp. 1–25. doi: 10.1186/s12859-021-

04370-7.

[33] Elizabeth I. Boyle et al. ‘GO::TermFinder—open source software for accessing

Gene Ontology information and finding significantly enriched Gene Ontology

terms associated with a list of genes’. In: Bioinformatics 20.18 (Aug. 2004),

pp. 3710–3715. issn: 1367-4803. doi: 10.1093/bioinformatics/bth456.

[34] Nadav Brandes et al. ‘ProteinBERT: a universal deep-learning model of pro-

tein sequence and function’. In: Bioinformatics 38.8 (Feb. 2022), pp. 2102–

2110. issn: 1367-4803. doi: 10.1093/bioinformatics/btac020.

[35] Dan Brickley, Ramanathan V Guha and Andrew Layman. Resource Descrip-

tion Framework (RDF) Schema Specification. Tech. rep. Technical report,

W3C, 1999. W3C Proposed Recommendation., 1998. url: http://www.w3.

org/TR/PR-rdf-schema.

[36] Sébastien Bubeck et al. Sparks of Artificial General Intelligence: Early ex-

periments with GPT-4. 2023. doi: 10.48550/arXiv.2303.12712. arXiv:

2303.12712 [cs.CL].

[37] David Campos, Sérgio Matos and José Luıs Oliveira. ‘A modular framework

for biomedical concept recognition’. In: BMC Bioinformatics 14.1 (2013),

pp. 1–21. doi: 10.1186/1471-2105-14-281.

[38] Nicolas Carion et al. ‘End-to-End Object Detection with Transformers’. In:

European Conference on Computer Vision. Ed. by Andrea Vedaldi et al.

Cham: Springer International Publishing, 2020, pp. 213–229. isbn: 978-3-

030-58452-8. doi: 10.1007/978-3-030-58452-8_13.

[39] Daniel Cer et al. ‘Universal Sentence Encoder’. In: (2018). doi: 10.48550/

arXiv.1803.11175. arXiv: 1803.11175 [cs.CL].

[40] Feihu Che et al. ‘ParamE: Regarding Neural Network Parameters as Relation

Embeddings for Knowledge Graph Completion’. In: Proceedings of the AAAI

Conference on Artificial Intelligence 34.03 (Apr. 2020), pp. 2774–2781. doi:

10.1609/aaai.v34i03.5665. url: https://ojs.aaai.org/index.php/

AAAI/article/view/5665.

135

https://doi.org/10.1093/bioinformatics/btac147
https://doi.org/10.1093/bioinformatics/btac147
https://doi.org/10.1186/s12859-021-04370-7
https://doi.org/10.1186/s12859-021-04370-7
https://doi.org/10.1093/bioinformatics/bth456
https://doi.org/10.1093/bioinformatics/btac020
http://www.w3.org/TR/PR-rdf-schema
http://www.w3.org/TR/PR-rdf-schema
https://doi.org/10.48550/arXiv.2303.12712
https://arxiv.org/abs/2303.12712
https://doi.org/10.1186/1471-2105-14-281
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.48550/arXiv.1803.11175
https://doi.org/10.48550/arXiv.1803.11175
https://arxiv.org/abs/1803.11175
https://doi.org/10.1609/aaai.v34i03.5665
https://ojs.aaai.org/index.php/AAAI/article/view/5665
https://ojs.aaai.org/index.php/AAAI/article/view/5665

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[41] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation. 2014. doi: 10.48550/arXiv.

1406.1078. arXiv: 1406.1078 [cs.CL].

[42] Jan K Chorowski et al. ‘Attention-Based Models for Speech Recogni-

tion’. In: Advances in Neural Information Processing Systems. Ed. by

C. Cortes et al. Vol. 28. Curran Associates, Inc., 2015. url: https :

/ / proceedings . neurips . cc / paper _ files / paper / 2015 / file /

1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf.

[43] William W. Cohen. ‘Fast Effective Rule Induction’. In: Machine Learning

Proceedings 1995. Ed. by Armand Prieditis and Stuart Russell. San Francisco

(CA): Morgan Kaufmann, 1995, pp. 115–123. isbn: 978-1-55860-377-6. doi:

10.1016/B978-1-55860-377-6.50023-2.

[44] Ashley Mae Conard, Alan DenAdel and Lorin Crawford. ‘A spectrum of ex-

plainable and interpretable machine learning approaches for genomic studies’.

In: Wiley Interdisciplinary Reviews: Computational Statistics (2023), e1617.

doi: https://doi.org/10.1002/wics.1617.

[45] Gene Ontology Consortium. ‘The Gene Ontology (GO) database and inform-

atics resource’. In: Nucleic Acids Research 32.suppl 1 (Jan. 2004), pp. D258–

D261. issn: 0305-1048. doi: 10.1093/nar/gkh036.

[46] International Human Genome Sequencing Consortium. ‘Initial sequencing

and analysis of the human genome’. In: Nature 409 (2001), pp. 860–921.

doi: 10.1038/35057062.

[47] The UniProt Consortium. ‘The Universal Protein Resource (UniProt)’. In:

Nucleic Acids Research 36.suppl 1 (Nov. 2007), pp. D190–D195. issn: 0305-

1048. doi: 10.1093/nar/gkm895.

[48] Laurel Cooper et al. ‘The Plant Ontology as a Tool for Comparative Plant

Anatomy and Genomic Analyses’. In: Plant and Cell Physiology 54.2 (2013),

e1–e1. issn: 0032-0781. doi: 10.1093/pcp/pcs163.

[49] Marco Cremaschi, Roberto Avogadro and David Chieregato. ‘MantisTable:

an Automatic Approach for the Semantic Table Interpretation’. In: (2019).

[50] Gabor Csardi and Tamas Nepusz. ‘The igraph software package for complex

network research’. In: InterJournal Complex Systems (2006), p. 1695. url:

https://igraph.org.

[51] Jiaxi Cui et al. ChatLaw: Open-Source Legal Large Language Model with

Integrated External Knowledge Bases. 2023. doi: 10.48550/arXiv.2306.

16092. arXiv: 2306.16092 [cs.CL].

136

https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.48550/arXiv.1406.1078
https://arxiv.org/abs/1406.1078
https://proceedings.neurips.cc/paper_files/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-Paper.pdf
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/https://doi.org/10.1002/wics.1617
https://doi.org/10.1093/nar/gkh036
https://doi.org/10.1038/35057062
https://doi.org/10.1093/nar/gkm895
https://doi.org/10.1093/pcp/pcs163
https://igraph.org
https://doi.org/10.48550/arXiv.2306.16092
https://doi.org/10.48550/arXiv.2306.16092
https://arxiv.org/abs/2306.16092

Lorcán Anthony Karel Pigott-Dix

[52] Claudia d’Amato, Nicola Flavio Quatraro and Nicola Fanizzi. ‘Injecting Back-

ground Knowledge into Embedding Models for Predictive Tasks on Know-

ledge Graphs’. In: The Semantic Web. Ed. by Ruben Verborgh et al. Cham:

Springer International Publishing, 2021, pp. 441–457. isbn: 978-3-030-77385-

4. doi: 10.1007/978-3-030-77385-4_26.

[53] Scott Deerwester et al. ‘Indexing by Latent Semantic Analysis’. In: Journal

of the American Society for Information Science 41.6 (1990), pp. 391–407.

doi: https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::

AID-ASI1>3.0.CO;2-9.

[54] Kirill Degtyarenko et al. ‘ChEBI: a database and ontology for chemical entit-

ies of biological interest’. In: Nucleic Acids Research 36.suppl 1 (Oct. 2007),

pp. D344–D350. issn: 0305-1048. doi: 10.1093/nar/gkm791.

[55] Jia Deng et al. ‘ImageNet: A large-scale hierarchical image database’. In:

2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009,

pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[56] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding. 2019. doi: 10 . 48550 / arXiv . 1810 . 04805.

arXiv: 1810.04805 [cs.CL].

[57] Dennis Diefenbach, Kamal Singh and Pierre Maret. ‘WDAqua-Core1: A

Question Answering Service for RDF Knowledge Bases’. In: Companion Pro-

ceedings of the The Web Conference 2018. WWW ’18. Lyon, France: Inter-

national World Wide Web Conferences Steering Committee, 2018, pp. 1087–

1091. isbn: 9781450356404. doi: 10.1145/3184558.3191541.

[58] Alexander D Diehl et al. ‘The Cell Ontology 2016: enhanced content, mod-

ularization, and ontology interoperability’. In: Journal of Biomedical Se-

mantics 7.44 (2016). doi: 10.1186/s13326-016-0088-7.

[59] Xishuang Dong et al. ‘Transfer bi-directional LSTM RNN for named entity

recognition in Chinese electronic medical records’. In: 2017 IEEE 19th In-

ternational Conference on e-Health Networking, Applications and Services

(Healthcom). IEEE. 2017, pp. 1–4. doi: 10.1109/HealthCom.2017.8210840.

[60] John Duchi, Elad Hazan and Yoram Singer. ‘Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization’. In: Journal of Machine

Learning Research 12.null (July 2011), pp. 2121–2159. issn: 1532-4435. url:

https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.

[61] Bastian Eine, Matthias Jurisch and Werner Quint. ‘Ontology-Based Big

Data Management’. In: Systems 5.3 (2017). issn: 2079-8954. doi: 10.3390/

systems5030045.

[62] Jeffrey L. Elman. ‘Finding Structure in Time’. In: Cognitive Science 14.2

(1990), pp. 179–211. doi: 10.1207/s15516709cog1402_1.

137

https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1093/nar/gkm791
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3184558.3191541
https://doi.org/10.1186/s13326-016-0088-7
https://doi.org/10.1109/HealthCom.2017.8210840
https://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://doi.org/10.3390/systems5030045
https://doi.org/10.3390/systems5030045
https://doi.org/10.1207/s15516709cog1402_1

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[63] Angel Esteban-Gil, Jesualdo Tomás Fernández-Breis and Martin Boeker.

‘Analysis and visualization of disease courses in a semantically-enabled can-

cer registry’. In: Journal of biomedical semantics 8 (2017), pp. 1–16. doi:

10.1186/s13326-017-0154-9.

[64] D. Fensel et al. ‘OIL: Ontology Infrastructure for the Semantic Web’. In:

IEEE Intelligent Systems 16.2 (2001), pp. 38–45. doi: 10 . 1109 / 5254 .

920598.

[65] Santo Fortunato et al. ‘Science of science’. In: Science 359.6379 (2018),

eaao0185. doi: 10.1126/science.aao0185.

[66] Kunihiko Fukushima. ‘Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position’. In:

Biological Cybernetics 36.4 (1980), pp. 193–202. doi: 10.1007/BF00344251.

[67] Kunihiko Fukushima. ‘Neocognitron: A hierarchical neural network capable

of visual pattern recognition’. In: Neural Networks 1.2 (1988), pp. 119–130.

issn: 0893-6080. doi: 10.1016/0893-6080(88)90014-7.

[68] Jonas Gehring et al. A Convolutional Encoder Model for Neural Machine

Translation. 2017. doi: 10.48550/arXiv.1611.02344. arXiv: 1611.02344

[cs.CL].

[69] Felix A. Gers, Jürgen Schmidhuber and Fred Cummins. ‘Learning to For-

get: Continual Prediction with LSTM’. In: Neural Computation 12.10 (2000),

pp. 2451–2471. doi: 10.1162/089976600300015015.

[70] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of train-

ing deep feedforward neural networks’. In: Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and Statistics. Ed. by Yee

Whye Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learn-

ing Research. Chia Laguna Resort, Sardinia, Italy: PMLR, 13–15 May 2010,

pp. 249–256. url: https://proceedings.mlr.press/v9/glorot10a.html.

[71] Xavier Glorot, Antoine Bordes and Yoshua Bengio. ‘Deep Sparse Rectifier

Neural Networks’. In: Proceedings of the Fourteenth International Confer-

ence on Artificial Intelligence and Statistics. Ed. by Geoffrey Gordon, David

Dunson and Miroslav Dud́ık. Vol. 15. Proceedings of Machine Learning Re-

search. Fort Lauderdale, FL, USA: PMLR, Nov. 2011, pp. 315–323. url:

https://proceedings.mlr.press/v15/glorot11a.html.

[72] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning. Adaptive Compu-

tation and Machine Learning series. MIT Press, 2016. isbn: 9780262337373.

url: https://books.google.co.uk/books?id=omivDQAAQBAJ.

[73] Alex Graves. Generating Sequences With Recurrent Neural Networks. 2014.

doi: 10.48550/arXiv.1308.0850. arXiv: 1308.0850 [cs.NE].

138

https://doi.org/10.1186/s13326-017-0154-9
https://doi.org/10.1109/5254.920598
https://doi.org/10.1109/5254.920598
https://doi.org/10.1126/science.aao0185
https://doi.org/10.1007/BF00344251
https://doi.org/10.1016/0893-6080(88)90014-7
https://doi.org/10.48550/arXiv.1611.02344
https://arxiv.org/abs/1611.02344
https://arxiv.org/abs/1611.02344
https://doi.org/10.1162/089976600300015015
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://books.google.co.uk/books?id=omivDQAAQBAJ
https://doi.org/10.48550/arXiv.1308.0850
https://arxiv.org/abs/1308.0850

Lorcán Anthony Karel Pigott-Dix

[74] Alex Graves and Jürgen Schmidhuber. ‘Framewise Phoneme Classification

with Bidirectional LSTM and Other Neural Network Architectures’. In:

Neural Networks 18.5 (2005). IJCNN 2005, pp. 602–610. issn: 0893-6080.

doi: 10.1016/j.neunet.2005.06.042.

[75] Alex Graves et al. ‘Connectionist Temporal Classification: Labelling Unseg-

mented Sequence Data with Recurrent Neural Networks’. In: Proceedings of

the 23rd International Conference on Machine Learning. ICML ’06. Pitt-

sburgh, Pennsylvania, USA: Association for Computing Machinery, 2006,

pp. 369–376. isbn: 1595933832. doi: 10.1145/1143844.1143891.

[76] Gunnar Aastrand Grimnes et al. RDFLib/rdflib: RDFlib 6.3.1. Version 6.3.1.

Mar. 2023. doi: 10.5281/zenodo.7748890.

[77] Thomas R. Gruber. ‘A translation approach to portable ontology specifica-

tions’. In: Knowledge Acquisition 5.2 (1993), pp. 199–220. issn: 1042-8143.

doi: 10.1006/knac.1993.1008.

[78] Qipeng Guo et al. ‘Multi-scale Self-Attention for Text Classification’. In: Pro-

ceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 05. 2020,

pp. 7847–7854. doi: 10.1609/aaai.v34i05.6290.

[79] Michael Gutmann and Aapo Hyvärinen. ‘Noise-contrastive estimation: A new

estimation principle for unnormalized statistical models’. In: Proceedings of

the Thirteenth International Conference on Artificial Intelligence and Stat-

istics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Proceedings of

Machine Learning Research. Chia Laguna Resort, Sardinia, Italy: PMLR,

13–15 May 2010, pp. 297–304. url: https://proceedings.mlr.press/v9/

gutmann10a.html.

[80] Francisco Guzmán et al. ‘The FLoRes Evaluation Datasets for Low-Resource

Machine Translation: Nepali-English and Sinhala-English’. In: (2019). doi:

10.48550/arXiv.1902.01382. arXiv: 1902.01382 [cs.CL].

[81] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart. ‘Exploring Network

Structure, Dynamics, and Function using NetworkX’. In: Proceedings of the

7th Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught

and Jarrod Millman. Pasadena, CA USA, 2008, pp. 11–15.

[82] Will Hamilton, Zhitao Ying and Jure Leskovec. ‘Inductive Representation

Learning on Large Graphs’. In: Advances in Neural Information Processing

Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. url:

https://proceedings.neurips.cc/paper_files/paper/2017/file/

5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

[83] Hangfeng He, Hongming Zhang and Dan Roth. Rethinking with Retrieval:

Faithful Large Language Model Inference. 2022. doi: 10.48550/arXiv.2301.

00303. arXiv: 2301.00303 [cs.CL].

139

https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.5281/zenodo.7748890
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1609/aaai.v34i05.6290
https://proceedings.mlr.press/v9/gutmann10a.html
https://proceedings.mlr.press/v9/gutmann10a.html
https://doi.org/10.48550/arXiv.1902.01382
https://arxiv.org/abs/1902.01382
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://doi.org/10.48550/arXiv.2301.00303
https://doi.org/10.48550/arXiv.2301.00303
https://arxiv.org/abs/2301.00303

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[84] Kaiming He et al. ‘Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification’. In: Proceedings of the IEEE Inter-

national Conference on Computer Vision (ICCV). Dec. 2015. url: https:

//openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_

Deep_into_ICCV_2015_paper.pdf.

[85] Kaiming He et al. ‘Deep Residual Learning for Image Recognition’. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). June 2016. url: https://openaccess.thecvf.com/content_

cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf.

[86] D.O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Ori-

ginally published in 1949. Taylor & Francis, 2005. isbn: 9781135631918. url:

https://books.google.co.uk/books?id=uyV5AgAAQBAJ.

[87] James Hendler, Deborah L McGuinness et al. ‘The DARPA Agent Markup

Language’. In: IEEE Intelligent systems 15.6 (2000), pp. 67–73. url: http:

//www-ksl.stanford.edu/pub/KSL_Reports/KSL-00-10.html.

[88] Dan Hendrycks and Kevin Gimpel. ‘Bridging Nonlinearities and Stochastic

Regularizers with Gaussian Error Linear Units’. In: CoRR abs/1606.08415

(2016). doi: 10.48550/arXiv.1606.08415. arXiv: 1606.08415.

[89] G. E. Hinton and R. R. Salakhutdinov. ‘Reducing the Dimensionality of Data

with Neural Networks’. In: Science 313.5786 (2006), pp. 504–507. doi: 10.

1126/science.1127647.

[90] Geoffrey Hinton, Nitish Srivastava and Kevin Swersky. Lecture 6.e-rmsprop:

Divide the Gradient by a Running Average of Its Recent Magnitude. Online

course. 2012. url: https : / / www . cs . toronto . edu / ~tijmen / csc321 /

slides/lecture_slides_lec6.pdf.

[91] Geoffrey E. Hinton et al. Improving neural networks by preventing co-

adaptation of feature detectors. 2012. doi: 10.48550/arXiv.1207.0580.

arXiv: 1207.0580 [cs.NE].

[92] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long Short-Term Memory’. In:

Neural Computation 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.

9.8.1735.

[93] Eurie L. Hong et al. ‘Gene Ontology annotations at SGD: new data sources

and annotation methods’. In: Nucleic Acids Research 36.suppl 1 (Nov. 2007),

pp. D577–D581. issn: 0305-1048. doi: 10.1093/nar/gkm909.

[94] Jie Hu, Li Shen and Gang Sun. ‘Squeeze-and-Excitation Networks’. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). June 2018, pp. 7132–7141. url: https : / / openaccess .

thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_

Networks_CVPR_2018_paper.pdf.

140

https://openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://books.google.co.uk/books?id=uyV5AgAAQBAJ
http://www-ksl.stanford.edu/pub/KSL_Reports/KSL-00-10.html
http://www-ksl.stanford.edu/pub/KSL_Reports/KSL-00-10.html
https://doi.org/10.48550/arXiv.1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.48550/arXiv.1207.0580
https://arxiv.org/abs/1207.0580
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1093/nar/gkm909
https://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf

Lorcán Anthony Karel Pigott-Dix

[95] Ziniu Hu et al. ‘Heterogeneous Graph Transformer’. In: Proceedings of The

Web Conference 2020. WWW ’20. Taipei, Taiwan: Association for Comput-

ing Machinery, 2020, pp. 2704–2710. isbn: 9781450370233. doi: 10.1145/

3366423.3380027.

[96] Lianzhe Huang et al. Text Level Graph Neural Network for Text Classification.

2019. doi: 10.48550/arXiv.1910.02356. arXiv: 1910.02356 [cs.CL].

[97] Rachael P Huntley et al. ‘Understanding how and why the Gene Ontology and

its annotations evolve: the GO within UniProt’. In: GigaScience 3.1 (Mar.

2014), pp. 2047-217X-3–4. issn: 2047-217X. doi: 10.1186/2047-217X-3-4.

[98] Sergey Ioffe and Christian Szegedy. ‘Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift’. In: CoRR

abs/1502.03167 (2015). doi: 10.48550/arXiv.1502.03167. arXiv: 1502.

03167.

[99] Kevin Jarrett et al. ‘What is the Best Multi-Stage Architecture for Object

Recognition?’ In: 2009 IEEE 12th International Conference on Computer

Vision. 2009, pp. 2146–2153. doi: 10.1109/ICCV.2009.5459469.

[100] George F. Jenks. ‘The Data Model Concept in Statistical Mapping’. In: vol. 7.

1967, pp. 186–190.

[101] Pengcheng Jiang et al. Bi-level Contrastive Learning for Knowledge-Enhanced

Molecule Representations. 2023. doi: 10.48550/arXiv.2306.01631. arXiv:

2306.01631 [cs.LG].

[102] Clement Jonquet et al. ‘NCBO Annotator: Semantic Annotation of Biomed-

ical Data’. In: International Semantic Web Conference, Poster and Demo

session. Vol. 110. Washington DC, USA. 2009.

[103] G. Joshi-Tope et al. ‘Reactome: a knowledgebase of biological pathways’. In:

Nucleic Acids Research 33.suppl 1 (Jan. 2005), pp. D428–D432. issn: 0305-

1048. doi: 10.1093/nar/gki072.

[104] Jelena Jovanović and Ebrahim Bagheri. ‘Semantic annotation in biomedicine:

the current landscape’. In: Journal of Biomedical Semantics 8.1 (2017). doi:

10.1186/s13326-017-0153-x.

[105] Simon Jupp et al. ‘A new Ontology Lookup Service at EMBL-EBI.’ In:

SWAT4LS. 2015, pp. 118–119. url: https://ceur- ws.org/Vol- 1546/

paper_29.pdf.

[106] Hyeunseok Kang et al. ‘Fine-tuning of BERT Model to Accurately Predict

Drug–Target Interactions’. In: Pharmaceutics 14.8 (Aug. 2022), p. 1710. issn:

1999-4923. doi: 10.3390/pharmaceutics14081710.

[107] Daniel Martin Katz et al. ‘GPT-4 Passes the Bar Exam’. In: Available at

SSRN 4389233 (2023). doi: 10.2139/ssrn.4389233.

141

https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.48550/arXiv.1910.02356
https://arxiv.org/abs/1910.02356
https://doi.org/10.1186/2047-217X-3-4
https://doi.org/10.48550/arXiv.1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.1109/ICCV.2009.5459469
https://doi.org/10.48550/arXiv.2306.01631
https://arxiv.org/abs/2306.01631
https://doi.org/10.1093/nar/gki072
https://doi.org/10.1186/s13326-017-0153-x
https://ceur-ws.org/Vol-1546/paper_29.pdf
https://ceur-ws.org/Vol-1546/paper_29.pdf
https://doi.org/10.3390/pharmaceutics14081710
https://doi.org/10.2139/ssrn.4389233

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[108] Diederik P. Kingma and Jimmy Ba. ADAM: A Method for Stochastic Optim-

ization. 2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980 [cs.LG].

[109] Durk P Kingma et al. ‘Semi-supervised Learning with Deep Generative

Models’. In: Advances in Neural Information Processing Systems. Ed. by

Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014. url: https:

/ / proceedings . neurips . cc / paper _ files / paper / 2014 / file /

d523773c6b194f37b938d340d5d02232-Paper.pdf.

[110] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph

Convolutional Networks. 2017. doi: 10.48550/arXiv.1609.02907. arXiv:

1609.02907 [cs.LG].

[111] Sebastian Köhler et al. ‘Expansion of the Human Phenotype Ontology (HPO)

knowledge base and resources’. In: Nucleic Acids Research 47.D1 (Nov. 2018),

pp. D1018–D1027. issn: 0305-1048. doi: 10.1093/nar/gky1105.

[112] Satyapriya Krishna et al. The Disagreement Problem in Explainable Machine

Learning: A Practitioner’s Perspective. 2022. doi: 10.48550/arXiv.2202.

01602. arXiv: 2202.01602 [cs.LG].

[113] Alex Krizhevsky, Geoffrey Hinton et al. ‘Learning Multiple Layers of Features

from Tiny Images’. In: (2009). url: http://www.cs.utoronto.ca/~kriz/

learning-features-2009-TR.pdf.

[114] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. ‘ImageNet Classi-

fication with Deep Convolutional Neural Networks’. In: Advances in Neural

Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran As-

sociates, Inc., 2012. url: https://proceedings.neurips.cc/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[115] Brenden M. Lake et al. ‘Building machines that learn and think like

people’. In: Behavioral and Brain Sciences 40 (2017), e253. doi: 10.1017/

S0140525X16001837.

[116] Guillaume Lample et al. Neural Architectures for Named Entity Recognition.

2016. doi: 10.48550/arXiv.1603.01360. arXiv: 1603.01360 [cs.CL].

[117] Ge Lan et al. ‘Knowledge Graph Integrated Graph Neural Networks for

Chinese Medical Text Classification’. In: 2021 IEEE International Confer-

ence on Bioinformatics and Biomedicine (BIBM). 2021, pp. 682–687. doi:

10.1109/BIBM52615.2021.9669286.

[118] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF)

Model and Syntax Specification. W3C Recommendation. Feb. 1999. url:

https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

142

https://doi.org/10.48550/arXiv.1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf
https://doi.org/10.48550/arXiv.1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.1093/nar/gky1105
https://doi.org/10.48550/arXiv.2202.01602
https://doi.org/10.48550/arXiv.2202.01602
https://arxiv.org/abs/2202.01602
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.48550/arXiv.1603.01360
https://arxiv.org/abs/1603.01360
https://doi.org/10.1109/BIBM52615.2021.9669286
https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Lorcán Anthony Karel Pigott-Dix

[119] Quoc Le and Tomas Mikolov. ‘Distributed Representations of Sentences and

Documents’. In: Proceedings of the 31st International Conference on Machine

Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of

Machine Learning Research 2. Bejing, China: PMLR, June 2014, pp. 1188–

1196. url: https://proceedings.mlr.press/v32/le14.html.

[120] Y. LeCun et al. ‘Backpropagation Applied to Handwritten Zip Code Recogni-

tion’. In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.

1989.1.4.541.

[121] Y. Lecun et al. ‘Gradient-based learning applied to document recognition’.

In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.

726791.

[122] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. ‘Deep learning’. In: Nature

521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539.

[123] Yann LeCun et al. ‘Efficient BackProp’. In: Neural Networks: Tricks of the

Trade. Ed. by Genevieve B. Orr and Klaus-Robert Müller. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1998, pp. 9–50. isbn: 978-3-540-49430-0. doi:

10.1007/3-540-49430-8_2.

[124] Jinhyuk Lee et al. ‘BioBERT: a pre-trained biomedical language represent-

ation model for biomedical text mining’. In: Bioinformatics 36.4 (2020),

pp. 1234–1240. doi: 10.1093/bioinformatics/btz682.

[125] Bin Liang et al. ‘Aspect-based sentiment analysis via affective knowledge

enhanced graph convolutional networks’. In: Knowledge-Based Systems 235

(2022), p. 107643. issn: 0950-7051. doi: 10.1016/j.knosys.2021.107643.

[126] Tsung-Yi Lin et al. ‘Microsoft COCO: Common Objects in Context’. In:

European Conference on Computer Vision 2014. Ed. by David Fleet et al.

Cham: Springer International Publishing, 2014, pp. 740–755. isbn: 978-3-319-

10602-1.

[127] Xuan Lin et al. ‘KGNN: Knowledge Graph Neural Network for Drug-Drug In-

teraction Prediction’. In: Proceedings of the Twenty-Ninth International Joint

Conference on Artificial Intelligence, IJCAI-20. Ed. by Christian Bessiere.

Main track. International Joint Conferences on Artificial Intelligence Organ-

ization, July 2020, pp. 2739–2745. doi: 10.24963/ijcai.2020/380.

[128] Yankai Lin et al. ‘Learning Entity and Relation Embeddings for Knowledge

Graph Completion’. In: Proceedings of the AAAI Conference on Artificial

Intelligence 29.1 (Feb. 2015). doi: 10.1609/aaai.v29i1.9491.

[129] Liyuan Liu et al. ‘Understanding the Difficulty of Training Transformers’. In:

CoRR abs/2004.08249 (2020). doi: 10.48550/arXiv.2004.08249. arXiv:

2004.08249.

143

https://proceedings.mlr.press/v32/le14.html
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/3-540-49430-8_2
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1016/j.knosys.2021.107643
https://doi.org/10.24963/ijcai.2020/380
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.48550/arXiv.2004.08249
https://arxiv.org/abs/2004.08249

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[130] Siru Liu et al. ‘Using AI-generated suggestions from ChatGPT to optimize

clinical decision support’. In: Journal of the American Medical Informatics

Association 30.7 (Apr. 2023), pp. 1237–1245. issn: 1527-974X. doi: 10.1093/

jamia/ocad072.

[131] Yinhan Liu et al. ‘RoBERTa: A Robustly Optimized BERT Pretraining Ap-

proach’. In: Computing Research Respository (CoRR) abs/1907.11692 (2019).

doi: 10.48550/arXiv.1907.11692.

[132] Sebastian Lobentanzer et al. ‘Democratizing knowledge representation with

BioCypher’. In: Nature Biotechnology (2023), pp. 1–4. doi: 10.1038/s41587-

023-01848-y.

[133] Manuel Lobo, Andre Lamurias and Francisco M Couto. ‘Identifying Human

Phenotype Terms by Combining Machine Learning and Validation Rules’. In:

BioMed Research International 2017 (2017). doi: 10.1155/2017/8565739.

[134] Mohammad Lotfollahi et al. ‘Biologically informed deep learning to query

gene programs in single-cell atlases’. In: Nature Cell Biology 25.2 (2023),

pp. 337–350. doi: 10.1038/s41556-022-01072-x.

[135] Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model

Predictions. 2017. doi: 10.48550/arXiv.1705.07874. arXiv: 1705.07874

[cs.AI].

[136] Ling Luo et al. ‘PhenoTagger: A Hybrid Method for Phenotype Concept

Recognition using Human Phenotype Ontology’. In: Bioinformatics 37.13

(July 2021), pp. 1884–1890. doi: 10.1093/bioinformatics/btab019.

[137] Minh-Thang Luong, Hieu Pham and Christopher D. Manning. Effective Ap-

proaches to Attention-based Neural Machine Translation. 2015. doi: 10 .

48550/arXiv.1508.04025. arXiv: 1508.04025 [cs.CL].

[138] Anjun Ma et al. ‘Single-cell biological network inference using a heterogeneous

graph transformer’. In: Nature Communications 14.1 (2023), p. 964. doi:

10.1038/s41467-023-36559-0.

[139] Xingjun Ma et al. ‘Dimensionality-driven learning with noisy labels’. In:

(2018). doi: 10.48550/arXiv.1806.02612. arXiv: 1806.02612 [cs.CV].

[140] Andrew L Maas, Awni Y Hannun, Andrew Y Ng et al. ‘Rectifier Nonlinear-

ities Improve Neural Network Acoustic Models’. In: Proceedings of the In-

ternational Conference on MAchine Learning. Vol. 30. 1. Atlanta, GA. 2013,

p. 3. url: http://robotics.stanford.edu/~amaas/papers/relu_hybrid_

icml2013_final.pdf.

144

https://doi.org/10.1093/jamia/ocad072
https://doi.org/10.1093/jamia/ocad072
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.1038/s41587-023-01848-y
https://doi.org/10.1038/s41587-023-01848-y
https://doi.org/10.1155/2017/8565739
https://doi.org/10.1038/s41556-022-01072-x
https://doi.org/10.48550/arXiv.1705.07874
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
https://doi.org/10.1093/bioinformatics/btab019
https://doi.org/10.48550/arXiv.1508.04025
https://doi.org/10.48550/arXiv.1508.04025
https://arxiv.org/abs/1508.04025
https://doi.org/10.1038/s41467-023-36559-0
https://doi.org/10.48550/arXiv.1806.02612
https://arxiv.org/abs/1806.02612
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf

Lorcán Anthony Karel Pigott-Dix

[141] Masoud Malekzadeh et al. ‘Review of Graph Neural Network in Text Clas-

sification’. In: 2021 IEEE 12th Annual Ubiquitous Computing, Electronics &

Mobile Communication Conference (UEMCON). 2021, pp. 0084–0091. doi:

10.1109/UEMCON53757.2021.9666633.

[142] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Distributed Systems. Software available from tensorflow.org. 2016.

doi: 10 . 48550 / arXiv . 1603 . 04467. arXiv: 1603 . 04467 [cs.DC]. url:

https://www.tensorflow.org/.

[143] Friedemann Mattern and Christian Floerkemeier. ‘From the Internet of Com-

puters to the Internet of Things’. In: From Active Data Management to Event-

Based Systems and More: Papers in Honor of Alejandro Buchmann on the

Occasion of His 60th Birthday. Ed. by Kai Sachs, Ilia Petrov and Pablo Guer-

rero. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 242–259. isbn:

978-3-642-17226-7. doi: 10.1007/978-3-642-17226-7_15.

[144] Andrew McCallum and Wei Li. ‘Early Results for Named Entity Recogni-

tion with Conditional Random Fields, Feature Induction and Web-Enhanced

Lexicons’. In: Proceedings of the Seventh Conference on Natural Language

Learning at HLT-NAACL 2003 - Volume 4. CONLL ’03. Edmonton, Canada:

Association for Computational Linguistics, 2003, pp. 188–191. doi: 10.3115/

1119176.1119206.

[145] D.L. McGuinness et al. ‘DAML+OIL: an ontology language for the Semantic

Web’. In: IEEE Intelligent Systems 17.5 (2002), pp. 72–80. doi: 10.1109/

MIS.2002.1039835.

[146] Deborah L McGuinness, Frank Van Harmelen et al. ‘OWL Web Ontology

Language Overview’. In: W3C recommendation 10.10 (2004). url: https:

//static.twoday.net/71desa1bif/files/W3C-OWL-Overview.pdf.

[147] Ryszard S. Michalski. ‘4 - A THEORY AND METHODOLOGY OF IN-

DUCTIVE LEARNING’. In: Machine Learning. Ed. by Ryszard S. Michal-

ski, Jaime G. Carbonell and Tom M. Mitchell. San Francisco (CA): Morgan

Kaufmann, 1983, pp. 83–134. isbn: 978-0-08-051054-5. doi: 10.1016/B978-

0-08-051054-5.50008-X.

[148] Tomas Mikolov et al. ‘Distributed Representations of Words and Phrases

and their Compositionality’. In: Advances in Neural Information Processing

Systems. Ed. by C.J. Burges et al. Vol. 26. Curran Associates, Inc., 2013.

url: https://proceedings.neurips.cc/paper_files/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[149] Tomas Mikolov et al. ‘Efficient estimation of word representations in vector

space’. In: (2013). doi: 10.48550/arXiv.1301.3781. arXiv: 1301.3781

[cs.CL].

145

https://doi.org/10.1109/UEMCON53757.2021.9666633
https://doi.org/10.48550/arXiv.1603.04467
https://arxiv.org/abs/1603.04467
https://www.tensorflow.org/
https://doi.org/10.1007/978-3-642-17226-7_15
https://doi.org/10.3115/1119176.1119206
https://doi.org/10.3115/1119176.1119206
https://doi.org/10.1109/MIS.2002.1039835
https://doi.org/10.1109/MIS.2002.1039835
https://static.twoday.net/71desa1bif/files/W3C-OWL-Overview.pdf
https://static.twoday.net/71desa1bif/files/W3C-OWL-Overview.pdf
https://doi.org/10.1016/B978-0-08-051054-5.50008-X
https://doi.org/10.1016/B978-0-08-051054-5.50008-X
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.48550/arXiv.1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[150] Tomáš Mikolov, Wen-tau Yih and Geoffrey Zweig. ‘Linguistic Regularities

in Continuous Space Word Representations’. In: Proceedings of the 2013

Conference of the North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies. Atlanta, Georgia: Asso-

ciation for Computational Linguistics, June 2013, pp. 746–751. url: https:

//aclanthology.org/N13-1090.

[151] Tomáš Mikolov et al. ‘Recurrent Neural Network Based Language Model’.

In: INTERSPEECH 2010, 11th Annual Conference of the International

Speech Communication Association, Makuhari, Chiba, Japan, September 26-

30, 2010. Ed. by Takao Kobayashi, Keikichi Hirose and Satoshi Nakamura.

ISCA, 2010, pp. 1045–1048. doi: 10.21437/Interspeech.2010-343.

[152] Tomáš Mikolov et al. ‘Extensions of Recurrent Neural Network Language

Model’. In: 2011 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). 2011, pp. 5528–5531. doi: 10.1109/ICASSP.

2011.5947611.

[153] George A. Miller. ‘WordNet: A Lexical Database for English’. In: Commu-

nications of the ACM 38.11 (Nov. 1995), pp. 39–41. issn: 0001-0782. doi:

10.1145/219717.219748.

[154] Volodymyr Mnih et al. ‘Recurrent Models of Visual Attention’. In: Ad-

vances in Neural Information Processing Systems. Ed. by Z. Ghahramani

et al. Vol. 27. Curran Associates, Inc., 2014. url: https : / /

proceedings . neurips . cc / paper _ files / paper / 2014 / file /

09c6c3783b4a70054da74f2538ed47c6-Paper.pdf.

[155] Barend Mons et al. ‘The value of data’. In: Nature genetics 43.4 (2011),

pp. 281–283. doi: 10.1038/ng0411-281.

[156] Barend Mons et al. ‘Cloudy, increasingly FAIR; revisiting the FAIR Data

guiding principles for the European Open Science Cloud’. In: Information

Services & Use 37.1 (Mar. 2017), pp. 49–56. doi: 10.3233/ISU-170824.

[157] Sahiti Myneni et al. ‘Towards an Ontology-driven Framework to Enable De-

velopment of Personalized mHealth Solutions for Cancer Survivors’ Engage-

ment in Healthy Living’. In: Studies in Health Technology and Informatics

216 (2015), p. 113. url: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC4946640/.

[158] Vinod Nair and Geoffrey E. Hinton. ‘Rectified Linear Units Improve Restric-

ted Boltzmann Machines’. In: Proceedings of the 27th International Con-

ference on International Conference on Machine Learning. ICML’10. Haifa,

Israel: Omnipress, 2010, pp. 807–814. isbn: 9781605589077.

146

https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
https://doi.org/10.21437/Interspeech.2010-343
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1145/219717.219748
https://proceedings.neurips.cc/paper_files/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://doi.org/10.1038/ng0411-281
https://doi.org/10.3233/ISU-170824
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946640/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946640/

Lorcán Anthony Karel Pigott-Dix

[159] Allen Newell. ‘Production Systems: Models of Control Structures’. In: Visual

Information Processing. Ed. by William G. Chase. Academic Press, 1973,

pp. 463–526. isbn: 978-0-12-170150-5. doi: 10.1016/B978-0-12-170150-

5.50016-0.

[160] Allen Newell and Herbert A. Simon. ‘Computer Science as Empirical Inquiry:

Symbols and Search’. In: Communications of the ACM 19.3 (1976), pp. 113–

126. doi: 10.1145/1283920.1283930.

[161] Gherman Novakovsky et al. ‘Obtaining genetics insights from deep learn-

ing via explainable artificial intelligence’. In: Nature Reviews Genetics 24.2

(2023), pp. 125–137. doi: 10.1038/s41576-022-00532-2.

[162] Natalya F Noy, Deborah L McGuinness et al. Ontology Development 101:

A Guide to Creating Your First Ontology. 2001. url: http://protege.

stanford . edu / publications / ontology _ development / ontology101 .

pdf..

[163] Natalya F. Noy et al. ‘BioPortal: ontologies and integrated data resources

at the click of a mouse’. In: Nucleic Acids Research 37.suppl 2 (May 2009),

W170–W173. issn: 0305-1048. doi: 10.1093/nar/gkp440.

[164] Desnes Nunes et al. Evaluating GPT-3.5 and GPT-4 Models on Brazilian

University Admission Exams. 2023. doi: 10.48550/arXiv.2303.17003.

arXiv: 2303.17003 [cs.CL].

[165] OpenAI. GPT-4 Technical Report. 2023. doi: 10.48550/arXiv.2303.08774.

arXiv: 2303.08774 [cs.CL].

[166] Shirui Pan et al. Unifying Large Language Models and Knowledge Graphs:

A Roadmap. 2023. doi: 10.48550/arXiv.2306.08302. arXiv: 2306.08302

[cs.CL].

[167] Paul Pavlidis and Jesse Gillis. ‘Progress and challenges in the computa-

tional prediction of gene function using networks: 2012-2013 update’. In:

F1000Research 2.230 (2013). doi: 10.12688/f1000research.2-230.v1.

[168] Jeffrey Pennington, Richard Socher and Christopher Manning. ‘GloVe:

Global Vectors for Word Representation’. In: Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP). Doha,

Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1532–1543.

doi: 10.3115/v1/D14-1162.

[169] Bryan Perozzi, Rami Al-Rfou and Steven Skiena. ‘DeepWalk: Online Learn-

ing of Social Representations’. In: Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. KDD

’14. New York, New York, USA: Association for Computing Machinery, 2014,

pp. 701–710. isbn: 9781450329569. doi: 10.1145/2623330.2623732.

147

https://doi.org/10.1016/B978-0-12-170150-5.50016-0
https://doi.org/10.1016/B978-0-12-170150-5.50016-0
https://doi.org/10.1145/1283920.1283930
https://doi.org/10.1038/s41576-022-00532-2
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf.
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf.
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf.
https://doi.org/10.1093/nar/gkp440
https://doi.org/10.48550/arXiv.2303.17003
https://arxiv.org/abs/2303.17003
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2306.08302
https://arxiv.org/abs/2306.08302
https://arxiv.org/abs/2306.08302
https://doi.org/10.12688/f1000research.2-230.v1
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/2623330.2623732

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[170] Catia Pesquita et al. ‘The epidemiology ontology: an ontology for the se-

mantic annotation of epidemiological resources’. In: Journal of Biomedical

Semantics 5 (1 2014). doi: 10.1186/2041-1480-5-4.

[171] Matthew E. Peters et al. ‘Deep Contextualized Word Representations’. In:

Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computa-

tional Linguistics, June 2018, pp. 2227–2237. doi: 10.18653/v1/N18-1202.

[172] Lorcán Pigott-Dix and Robert P. Davey. ‘Attention for Multi-Ontology

Concept Recognition’. In: 14th International Conference on Semantic Web

Applications and Tools for Health Care and Life Sciences (SWAT4HCLS

2023). Ed. by Atsuko Yamaguchi et al. Vol. 3415. CEUR Workshop Proceed-

ings. Basel, Switzerland, 2023, pp. 52–61. url: https://ceur-ws.org/Vol-

3415/paper-6.pdf.

[173] Janet Piñero et al. ‘The DisGeNET knowledge platform for disease genomics:

2019 update’. In: Nucleic Acids Research 48.D1 (Nov. 2019), pp. D845–D855.

issn: 0305-1048. doi: 10.1093/nar/gkz1021.

[174] B.T. Polyak. ‘Some methods of speeding up the convergence of iteration

methods’. In: USSR Computational Mathematics and Mathematical Physics

4.5 (1964), pp. 1–17. issn: 0041-5553. doi: 10.1016/0041-5553(64)90137-5.

[175] David M. W. Powers. Evaluation: from precision, recall and F-measure to

ROC, informedness, markedness and correlation. 2020. doi: 10 . 48550 /

arXiv.2010.16061. arXiv: 2010.16061 [cs.LG].

[176] Ning Qian. ‘On the momentum term in gradient descent learning algorithms’.

In: Neural Networks 12.1 (1999), pp. 145–151. issn: 0893-6080. doi: 10.1016/

S0893-6080(98)00116-6.

[177] Núria Queralt-Rosinach et al. ‘DisGeNET-RDF: harnessing the innovative

power of the Semantic Web to explore the genetic basis of diseases’. In: Bioin-

formatics 32.14 (Mar. 2016), pp. 2236–2238. issn: 1367-4803. doi: 10.1093/

bioinformatics/btw214.

[178] J. Ross Quinlan. ‘Induction of Decision Trees’. In:Machine Learning 1 (1986),

pp. 81–106. doi: 10.1007/BF00116251.

[179] Alec Radford et al. Improving Language Understanding by Generative Pre-

training. Tech. rep. OpenAI, 2018. url: https : / / cdn . openai . com /

research-covers/language-unsupervised/language_understanding_

paper.pdf.

[180] Luc De Raedt et al. From Statistical Relational to Neuro-Symbolic Artificial

Intelligence. 2020. doi: 10.48550/arXiv.2003.08316. arXiv: 2003.08316

[cs.AI].

148

https://doi.org/10.1186/2041-1480-5-4
https://doi.org/10.18653/v1/N18-1202
https://ceur-ws.org/Vol-3415/paper-6.pdf
https://ceur-ws.org/Vol-3415/paper-6.pdf
https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.48550/arXiv.2010.16061
https://doi.org/10.48550/arXiv.2010.16061
https://arxiv.org/abs/2010.16061
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1093/bioinformatics/btw214
https://doi.org/10.1093/bioinformatics/btw214
https://doi.org/10.1007/BF00116251
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.48550/arXiv.2003.08316
https://arxiv.org/abs/2003.08316
https://arxiv.org/abs/2003.08316

Lorcán Anthony Karel Pigott-Dix

[181] Dietrich Rebholz-Schuhmann et al. ‘Text processing through Web services:

calling Whatizit’. In: Bioinformatics 24.2 (Nov. 2007), pp. 296–298. issn:

1367-4803. doi: 10.1093/bioinformatics/btm557.

[182] Leonardo F.R. Ribeiro, Pedro H.P. Saverese and Daniel R. Figueiredo.

‘Struc2vec: Learning Node Representations from Structural Identity’. In: Pro-

ceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. KDD ’17. Halifax, NS, Canada: Association for

Computing Machinery, 2017, pp. 385–394. isbn: 9781450348874. doi: 10.

1145/3097983.3098061.

[183] Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. ”Why Should I Trust

You?”: Explaining the Predictions of Any Classifier. 2016. doi: 10.48550/

arXiv.1602.04938. arXiv: 1602.04938 [cs.LG].

[184] Jenn Riley. Understanding Metadata: What is Metadata, and What is it

For? Bethesda, MD: National Information Standards Organization (NISO)

Press, 2004. isbn: 978-1-937522-72-8. url: https://groups.niso.org/

higherlogic/ws/public/download/17446/Understanding%20Metadata.

pdf.

[185] Bryan Rink and Sanda Harabagiu. ‘UTD: Determining Relational Similarity

Using Lexical Patterns’. In: Proceedings of the First Joint Conference on Lex-

ical and Computational Semantics - Volume 1: Proceedings of the Main Con-

ference and the Shared Task, and Volume 2: Proceedings of the Sixth Interna-

tional Workshop on Semantic Evaluation. SemEval ’12. Montréal, Canada:

Association for Computational Linguistics, 2012, pp. 413–418. url: https:

//dl.acm.org/doi/10.5555/2387636.2387702.

[186] Herbert Robbins and Sutton Monro. ‘A Stochastic Approximation Method’.

In: The Annals of Mathematical Statistics 22.3 (1951), pp. 400–407. issn:

00034851. url: http://www.jstor.org/stable/2236626.

[187] Peter N. Robinson et al. ‘The Human Phenotype Ontology: A Tool for

Annotating and Analyzing Human Hereditary Disease’. In: The American

Journal of Human Genetics 83.5 (2008), pp. 610–615. issn: 0002-9297. doi:

https://doi.org/10.1016/j.ajhg.2008.09.017. url: https://www.

sciencedirect.com/science/article/pii/S0002929708005351.

[188] F Rosenblatt. ‘The Perceptron: A Probabilistic Model for Information Stor-

age and Organization in the Brain’. In: Psychological Review 65.6 (1958),

pp. 386–408. doi: 10.1037/h0042519.

[189] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams. ‘Learn-

ing representations by back-propagating errors’. In: Nature 323.6088 (1986),

pp. 533–536. doi: 10.1038/323533a0.

149

https://doi.org/10.1093/bioinformatics/btm557
https://doi.org/10.1145/3097983.3098061
https://doi.org/10.1145/3097983.3098061
https://doi.org/10.48550/arXiv.1602.04938
https://doi.org/10.48550/arXiv.1602.04938
https://arxiv.org/abs/1602.04938
https://groups.niso.org/higherlogic/ws/public/download/17446/Understanding%20Metadata.pdf
https://groups.niso.org/higherlogic/ws/public/download/17446/Understanding%20Metadata.pdf
https://groups.niso.org/higherlogic/ws/public/download/17446/Understanding%20Metadata.pdf
https://dl.acm.org/doi/10.5555/2387636.2387702
https://dl.acm.org/doi/10.5555/2387636.2387702
http://www.jstor.org/stable/2236626
https://doi.org/https://doi.org/10.1016/j.ajhg.2008.09.017
https://www.sciencedirect.com/science/article/pii/S0002929708005351
https://www.sciencedirect.com/science/article/pii/S0002929708005351
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/323533a0

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[190] Olga Russakovsky et al. ‘ImageNet Large Scale Visual Recognition Chal-

lenge’. In: International Journal of Computer Vision (IJCV) 115.3 (2015),

pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[191] Ahmed Salih et al. Commentary on explainable artificial intelligence methods:

SHAP and LIME. 2023. doi: 10.48550/arXiv.2305.02012. arXiv: 2305.

02012 [stat.ML].

[192] Guergana K Savova et al. ‘Mayo clinical Text Analysis and Knowledge Ex-

traction System (cTAKES): architecture, component evaluation and applic-

ations’. In: Journal of the American Medical Informatics Association 17.5

(Sept. 2010), pp. 507–513. issn: 1067-5027. doi: 10.1136/jamia.2009.

001560.

[193] Franco Scarselli et al. ‘The Graph Neural Network Model’. In: IEEE Trans-

actions on Neural Networks 20.1 (2009), pp. 61–80. doi: 10.1109/TNN.2008.

2005605.

[194] Imanol Schlag et al. ‘Enhancing the Transformer With Explicit Relational

Encoding for Math Problem Solving’. In: (2019). doi: 10.48550/arXiv.

1910.06611. arXiv: 1910.06611 [cs.LG].

[195] Ute Schmid and Emanuel Kitzelmann. ‘Inductive rule learning on the know-

ledge level’. In: Cognitive Systems Research 12.3 (2011). Special Issue on

Complex Cognition, pp. 237–248. issn: 1389-0417. doi: 10.1016/j.cogsys.

2010.12.002.

[196] Jürgen Schmidhuber. ‘Deep learning in neural networks: An overview’. In:

Neural Networks 61 (2015), pp. 85–117. issn: 0893-6080. doi: 10.1016/j.

neunet.2014.09.003.

[197] Lynn M Schriml et al. ‘Human Disease Ontology 2018 update: classification,

content and workflow expansion’. In: Nucleic Acids Research 47.D1 (Nov.

2018), pp. D955–D962. issn: 0305-1048. doi: 10.1093/nar/gky1032.

[198] Lynn Marie Schriml et al. ‘Disease Ontology: a backbone for disease semantic

integration’. In: Nucleic Acids Research 40.D1 (Nov. 2011), pp. D940–D946.

issn: 0305-1048. doi: 10.1093/nar/gkr972.

[199] M. Schuster and K.K. Paliwal. ‘Bidirectional Recurrent Neural Networks’. In:

IEEE Transactions on Signal Processing 45.11 (1997), pp. 2673–2681. doi:

10.1109/78.650093.

[200] Elizabeth Seiver, M Pacer and Sebastian Bassi. ‘Text and data mining sci-

entific articles with allofplos’. In: Proceedings of the 17th Python in Science

Conference. Ed. by Fatih Akici et al. 2018, pp. 61–64. doi: 10.25080/Majora-

4af1f417-009.

150

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.48550/arXiv.2305.02012
https://arxiv.org/abs/2305.02012
https://arxiv.org/abs/2305.02012
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1136/jamia.2009.001560
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.48550/arXiv.1910.06611
https://doi.org/10.48550/arXiv.1910.06611
https://arxiv.org/abs/1910.06611
https://doi.org/10.1016/j.cogsys.2010.12.002
https://doi.org/10.1016/j.cogsys.2010.12.002
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1093/nar/gky1032
https://doi.org/10.1093/nar/gkr972
https://doi.org/10.1109/78.650093
https://doi.org/10.25080/Majora-4af1f417-009
https://doi.org/10.25080/Majora-4af1f417-009

Lorcán Anthony Karel Pigott-Dix

[201] Rico Sennrich, Barry Haddow and Alexandra Birch. Neural Machine Trans-

lation of Rare Words with Subword Units. 2016. doi: 10.48550/arXiv.1508.

07909. arXiv: 1508.07909 [cs.CL].

[202] Burr Settles. ‘ABNER: an open source tool for automatically tagging genes,

proteins and other entity names in text’. In: Bioinformatics 21.14 (Apr. 2005),

pp. 3191–3192. issn: 1367-4803. doi: 10.1093/bioinformatics/bti475.

[203] George J. Shannon et al. ‘Comparative study using inverse ontology cogency

and alternatives for concept recognition in the annotated National Library

of Medicine database’. In: Neural Networks 139 (2021), pp. 86–104. issn:

0893-6080. doi: https://doi.org/10.1016/j.neunet.2021.01.018.

[204] Jude W Shavlik, Raymond J Mooney and Geoffrey G Towell. ‘Symbolic and

Neural Learning Algorithms: An Experimental Comparison’. In: Machine

Learning 6 (1991), pp. 111–143. doi: 10.1007/BF00114160.

[205] Kent A Shefchek et al. ‘The Monarch Initiative in 2019: an integrative data

and analytic platform connecting phenotypes to genotypes across species’. In:

Nucleic Acids Research 48.D1 (Nov. 2019), pp. D704–D715. issn: 0305-1048.

doi: 10.1093/nar/gkz997.

[206] Hoo-Chang Shin et al. BioMegatron: Larger Biomedical Domain Language

Model. 2020. doi: 10 . 48550 / arXiv . 2010 . 06060. arXiv: 2010 . 06060

[cs.CL].

[207] Marta Contreiras Silva et al. ‘Ontologies and Knowledge Graphs in Onco-

logy Research’. In: Cancers 14.8 (2022). issn: 2072-6694. doi: 10.3390/

cancers14081906.

[208] Dylan Slack et al. ‘Fooling LIME and SHAP: Adversarial Attacks on Post

Hoc Explanation Methods’. In: Proceedings of the AAAI/ACM Conference

on AI, Ethics, and Society. AIES ’20. New York, NY, USA: Association for

Computing Machinery, 2020, pp. 180–186. isbn: 9781450371100. doi: 10.

1145/3375627.3375830.

[209] Fatima Zohra Smaili, Xin Gao and Robert Hoehndorf. ‘Onto2Vec: joint

vector-based representation of biological entities and their ontology-based

annotations’. In: Bioinformatics 34.13 (June 2018), pp. i52–i60. doi: 10.

1093/bioinformatics/bty259.

[210] Fatima Zohra Smaili, Xin Gao and Robert Hoehndorf. OPA2Vec: combining

formal and informal content of biomedical ontologies to improve similarity-

based prediction. 2018. doi: 10.48550/arXiv.1804.10922. arXiv: 1804.

10922 [cs.CL].

[211] Barry Smith et al. ‘The OBO Foundry: coordinated evolution of ontologies to

support biomedical data integration’. In: Nature Biotechnology 25.11 (2007),

pp. 1251–1255. doi: 10.1038/nbt1346.

151

https://doi.org/10.48550/arXiv.1508.07909
https://doi.org/10.48550/arXiv.1508.07909
https://arxiv.org/abs/1508.07909
https://doi.org/10.1093/bioinformatics/bti475
https://doi.org/https://doi.org/10.1016/j.neunet.2021.01.018
https://doi.org/10.1007/BF00114160
https://doi.org/10.1093/nar/gkz997
https://doi.org/10.48550/arXiv.2010.06060
https://arxiv.org/abs/2010.06060
https://arxiv.org/abs/2010.06060
https://doi.org/10.3390/cancers14081906
https://doi.org/10.3390/cancers14081906
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1145/3375627.3375830
https://doi.org/10.1093/bioinformatics/bty259
https://doi.org/10.1093/bioinformatics/bty259
https://doi.org/10.48550/arXiv.1804.10922
https://arxiv.org/abs/1804.10922
https://arxiv.org/abs/1804.10922
https://doi.org/10.1038/nbt1346

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[212] Nitish Srivastava et al. ‘Dropout: A Simple Way to Prevent Neural Networks

from Overfitting’. In: The Journal of Machine Learning Research 15.1 (Jan.

2014), pp. 1929–1958. issn: 1532-4435. url: https://dl.acm.org/doi/10.

5555/2627435.2670313.

[213] Douglas Summers-Stay, Claire Bonial and Clare Voss. ‘What Can a Gen-

erative Language Model Answer About a Passage?’ In: Proceedings of the

3rd Workshop on Machine Reading for Question Answering. Punta Cana,

Dominican Republic: Association for Computational Linguistics, Nov. 2021,

pp. 73–81. doi: 10.18653/v1/2021.mrqa-1.7.

[214] Martin Sundermeyer, Ralf Schlüter and Hermann Ney. ‘LSTM Neural Net-

works for Language Modeling’. In: INTERSPEECH 2012, 13th Annual Con-

ference of the International Speech Communication Association, Portland,

Oregon, USA, September 9-13, 2012. ISCA, 2012, pp. 194–197. doi: 10.

21437/Interspeech.2012-65.

[215] Ilya Sutskever, Oriol Vinyals and Quoc V Le. ‘Sequence to Sequence Learn-

ing with Neural Networks’. In: Advances in Neural Information Processing

Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014.

url: https://proceedings.neurips.cc/paper_files/paper/2014/file/

a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

[216] Mohsen Taheriyan et al. ‘Learning the semantics of structured data sources’.

In: 37-38 (2016), pp. 152–169. issn: 1570-8268. doi: https://doi.org/10.

1016/j.websem.2015.12.003.

[217] Hao Tang et al. ‘Dependency Graph Enhanced Dual-transformer Structure

for Aspect-based Sentiment Classification’. In: Proceedings of the 58th An-

nual Meeting of the Association for Computational Linguistics. Online: As-

sociation for Computational Linguistics, July 2020, pp. 6578–6588. doi: 10.

18653/v1/2020.acl-main.588.

[218] Maha A. Thafar et al. ‘OncoRTT: Predicting novel oncology-related thera-

peutic targets using BERT embeddings and omics features’. In: Frontiers in

Genetics 14 (2023). issn: 1664-8021. doi: 10.3389/fgene.2023.1139626.

[219] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models.

2023. doi: 10.48550/arXiv.2307.09288. arXiv: 2307.09288 [cs.CL].

[220] Eugene Tseytlin et al. ‘NOBLE–Flexible concept recognition for large-scale

biomedical natural language processing’. In: BMC Bioinformatics 17.32

(2016). doi: 10.1186/s12859-015-0871-y.

[221] Ashish Vaswani et al. ‘Attention is All you Need’. In: Advances in Neural

Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran As-

sociates, Inc., 2017. url: https://proceedings.neurips.cc/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

152

https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://doi.org/10.18653/v1/2021.mrqa-1.7
https://doi.org/10.21437/Interspeech.2012-65
https://doi.org/10.21437/Interspeech.2012-65
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.websem.2015.12.003
https://doi.org/https://doi.org/10.1016/j.websem.2015.12.003
https://doi.org/10.18653/v1/2020.acl-main.588
https://doi.org/10.18653/v1/2020.acl-main.588
https://doi.org/10.3389/fgene.2023.1139626
https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1186/s12859-015-0871-y
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Lorcán Anthony Karel Pigott-Dix

[222] Petar Veličković et al. Graph Attention Networks. 2018. doi: 10.48550/

arXiv.1710.10903. arXiv: 1710.10903 [stat.ML].

[223] Pascal Vincent et al. ‘Stacked Denoising Autoencoders: Learning Useful Rep-

resentations in a Deep Network with a Local Denoising Criterion’. In: Journal

of Machine Learning Research 11 (Dec. 2010), pp. 3371–3408. issn: 1532-

4435. url: https://dl.acm.org/doi/abs/10.5555/1756006.1953039.

[224] Binh Vu, Craig Knoblock and Jay Pujara. ‘Learning Semantic Models of

Data Sources Using Probabilistic Graphical Models’. In: The World Wide

Web Conference. WWW ’19. San Francisco, CA, USA: Association for Com-

puting Machinery, 2019, pp. 1944–1953. isbn: 9781450366748. doi: 10.1145/

3308558.3313711.

[225] Li Wan et al. ‘Regularization of Neural Networks using DropConnect’. In:

Proceedings of the 30th International Conference on Machine Learning. Ed.

by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of Ma-

chine Learning Research 3. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013,

pp. 1058–1066. url: https://proceedings.mlr.press/v28/wan13.html.

[226] Xiao Wang et al. ‘Heterogeneous Graph Attention Network’. In: The World

Wide Web Conference. WWW ’19. San Francisco, CA, USA: Association

for Computing Machinery, 2019, pp. 2022–2032. isbn: 9781450366748. doi:

10.1145/3308558.3313562.

[227] Xiaozhi Wang et al. ‘KEPLER: A Unified Model for Knowledge Embedding

and Pre-trained Language Representation’. In: Transactions of the Associ-

ation for Computational Linguistics 9 (Mar. 2021), pp. 176–194. issn: 2307-

387X. doi: 10.1162/tacl_a_00360.

[228] P.J. Werbos. ‘Backpropagation Through Time: What It Does and How to Do

It’. In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560. doi: 10.1109/

5.58337.

[229] Patricia L. Whetzel and NCBO Team. ‘NCBO Technology: Powering se-

mantically aware applications’. In: Journal of biomedical semantics. Vol. 4.

suppl 1. BioMed Central. 2013, S8. doi: 10.1186/2041-1480-4-S1-S8.

[230] B. Widrow and M.E. Hoff. Adapative Switching Circuits. Tech. rep. Stan-

ford Electronics Laboratory, Stanford University, 1960. doi: 10 . 21236 /

AD0241531.

[231] Mark D Wilkinson et al. ‘The FAIR Guiding Principles for scientific data

management and stewardship’. In: Scientific Data 3.160018 (2016). doi: 10.

1038/sdata.2016.18.

153

https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://arxiv.org/abs/1710.10903
https://dl.acm.org/doi/abs/10.5555/1756006.1953039
https://doi.org/10.1145/3308558.3313711
https://doi.org/10.1145/3308558.3313711
https://proceedings.mlr.press/v28/wan13.html
https://doi.org/10.1145/3308558.3313562
https://doi.org/10.1162/tacl_a_00360
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1186/2041-1480-4-S1-S8
https://doi.org/10.21236/AD0241531
https://doi.org/10.21236/AD0241531
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[232] Ronald J. Williams and David Zipser. ‘A Learning Algorithm for Continu-

ally Running Fully Recurrent Neural Networks’. In: Neural Computation 1.2

(June 1989), pp. 270–280. issn: 0899-7667. doi: 10.1162/neco.1989.1.2.

270.

[233] Zhen Wu et al. ‘UniDrop: A Simple yet Effective Technique to Improve Trans-

former without Extra Cost’. In: arXiv preprint arXiv:2104.04946 (2021). doi:

10.48550/arXiv.2104.04946.

[234] Yan Xia et al. ‘Learning Discriminative Reconstructions for Unsupervised

Outlier Removal’. In: 2015 IEEE International Conference on Computer Vis-

ion (ICCV). 2015, pp. 1511–1519. doi: 10.1109/ICCV.2015.177.

[235] Ruibin Xiong et al. ‘On Layer Normalization in the Transformer Architec-

ture’. In: Proceedings of the 37th International Conference on Machine Learn-

ing. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine

Learning Research. PMLR, July 2020, pp. 10524–10533.

[236] Shankai Yan and Ka-Chun Wong. ‘Elucidating high-dimensional cancer hall-

mark annotation via enriched ontology’. In: Journal of Biomedical Informat-

ics 73 (2017), pp. 84–94. issn: 1532-0464. doi: 10.1016/j.jbi.2017.07.011.

[237] Xi Yang et al. ‘A large language model for electronic health records’. In: npj

Digital Medicine 5.1 (2022), p. 194. doi: 10.1038/s41746-022-00742-2.

[238] Liang Yao, Chengsheng Mao and Yuan Luo.KG-BERT: BERT for Knowledge

Graph Completion. 2019. doi: 10.48550/arXiv.1909.03193. arXiv: 1909.

03193 [cs.CL].

[239] Hai-Cheng Yi et al. ‘Graph representation learning in bioinformatics: trends,

methods and applications’. In: Briefings in Bioinformatics 23.1 (2022).

bbab340. issn: 1477-4054. doi: 10.1093/bib/bbab340.

[240] Seung Yon Rhee et al. ‘Use and misuse of the gene ontology annotations’. In:

Nature Reviews Genetics 9.7 (2008), pp. 509–515. doi: 10.1038/nrg2363.

[241] Donghan Yu et al. ‘Knowledge Embedding Based Graph Convolutional Net-

work’. In: Proceedings of the Web Conference 2021. WWW ’21. Ljubljana,

Slovenia: Association for Computing Machinery, 2021, pp. 1619–1628. isbn:

9781450383127. doi: 10.1145/3442381.3449925.

[242] Jinxing Yu et al. ‘MQuadE: A Unified Model for Knowledge Fact Embed-

ding’. In: Proceedings of the Web Conference 2021. WWW ’21. Ljubljana,

Slovenia: Association for Computing Machinery, 2021, pp. 3442–3452. isbn:

9781450383127. doi: 10.1145/3442381.3449879.

154

https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.48550/arXiv.2104.04946
https://doi.org/10.1109/ICCV.2015.177
https://doi.org/10.1016/j.jbi.2017.07.011
https://doi.org/10.1038/s41746-022-00742-2
https://doi.org/10.48550/arXiv.1909.03193
https://arxiv.org/abs/1909.03193
https://arxiv.org/abs/1909.03193
https://doi.org/10.1093/bib/bbab340
https://doi.org/10.1038/nrg2363
https://doi.org/10.1145/3442381.3449925
https://doi.org/10.1145/3442381.3449879

Lorcán Anthony Karel Pigott-Dix

[243] Seongjun Yun et al. ‘Graph Transformer Networks’. In: Advances in Neural

Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran

Associates, Inc., 2019. url: https://proceedings.neurips.cc/paper/

2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf.

[244] Seongjun Yun et al. ‘Graph Transformer Networks: Learning meta-path

graphs to improve GNNs’. In: Neural Networks 153 (2022), pp. 104–119.

issn: 0893-6080. doi: 10.1016/j.neunet.2022.05.026.

[245] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. 2012.

doi: 10.48550/arXiv.1212.5701. arXiv: 1212.5701 [cs.LG].

[246] Xiangxiang Zeng et al. ‘Toward better drug discovery with knowledge graph’.

In: Current Opinion in Structural Biology 72 (2022), pp. 114–126. issn: 0959-

440X. doi: https://doi.org/10.1016/j.sbi.2021.09.003.

[247] Mi Zhang and Tieyun Qian. ‘Convolution over Hierarchical Syntactic and

Lexical Graphs for Aspect Level Sentiment Analysis’. In: Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Online: Association for Computational Linguistics, Nov. 2020,

pp. 3540–3549. doi: 10.18653/v1/2020.emnlp-main.286.

[248] Yufeng Zhang et al. Every Document Owns Its Structure: Inductive Text

Classification via Graph Neural Networks. 2020. doi: 10.48550/arXiv.2004.

13826.

[249] Zhao Zhang et al. ‘Relational Graph Neural Network with Hierarchical At-

tention for Knowledge Graph Completion’. In: Proceedings of the AAAI Con-

ference on Artificial Intelligence 34.05 (Apr. 2020), pp. 9612–9619. doi: 10.

1609/aaai.v34i05.6508.

[250] Zhiyuan Zhang et al. ‘Pretrain-KGE: Learning Knowledge Representation

from Pretrained Language Models’. In: Findings of the Association for Com-

putational Linguistics: EMNLP 2020. Online: Association for Computational

Linguistics, Nov. 2020, pp. 259–266. doi: 10.18653/v1/2020.findings-

emnlp.25.

[251] Ziqi Zhang. ‘Effective and Efficient Semantic Table Interpretation Using Ta-

bleMiner+’. In: Semant. Web 8.6 (Jan. 2017), pp. 921–957. issn: 1570-0844.

doi: 10.3233/SW-160242.

[252] Shi Zhi et al. ‘Partially-Typed NER Datasets Integration: Connecting Prac-

tice to Theory’. In: (2020). doi: 10 . 48550 / arXiv . 2005 . 00502. arXiv:

2005.00502 [cs.LG].

[253] Ce Zhou et al. A Comprehensive Survey on Pretrained Foundation Models: A

History from BERT to ChatGPT. 2023. doi: 10.48550/arXiv.2302.09419.

arXiv: 2302.09419 [cs.AI].

155

https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://doi.org/10.1016/j.neunet.2022.05.026
https://doi.org/10.48550/arXiv.1212.5701
https://arxiv.org/abs/1212.5701
https://doi.org/https://doi.org/10.1016/j.sbi.2021.09.003
https://doi.org/10.18653/v1/2020.emnlp-main.286
https://doi.org/10.48550/arXiv.2004.13826
https://doi.org/10.48550/arXiv.2004.13826
https://doi.org/10.1609/aaai.v34i05.6508
https://doi.org/10.1609/aaai.v34i05.6508
https://doi.org/10.18653/v1/2020.findings-emnlp.25
https://doi.org/10.18653/v1/2020.findings-emnlp.25
https://doi.org/10.3233/SW-160242
https://doi.org/10.48550/arXiv.2005.00502
https://arxiv.org/abs/2005.00502
https://doi.org/10.48550/arXiv.2302.09419
https://arxiv.org/abs/2302.09419

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

[254] Wangchunshu Zhou et al. ‘Scheduled DropHead: A Regularization Method

for Transformer Models’. In: arXiv preprint arXiv:2004.13342 (2020). doi:

10.48550/arXiv.2004.13342.

[255] Qian Zhu et al. ‘Exploring the Pharmacogenomics Knoledge Base

(PharmGKB) for Repositioning Breast Cancer Drugs by Leveraging Wed

Ontology Language (OWL) AND Cheminformatics Approaches’. In: Biocom-

puting 2014, pp. 172–182. doi: 10.1142/9789814583220_0017.

[256] Marinka Zitnik, Monica Agrawal and Jure Leskovec. ‘Modeling polypharmacy

side effects with graph convolutional networks’. In: Bioinformatics 34.13

(June 2018), pp. i457–i466. issn: 1367-4803. doi: 10.1093/bioinformatics/

bty294.

156

https://doi.org/10.48550/arXiv.2004.13342
https://doi.org/10.1142/9789814583220_0017
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294

Appendix A

Appendix

A.1 Chapter 5

157

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Figure A.1: Histograms tallying the number of unique vertices reachable within N -
hops of every vertex in the graph. The bin size for every plot is 32.

158

Lorcán Anthony Karel Pigott-Dix

Figure A.2: Histograms tallying the number of unique vertices reachable within N -
hops of every Human Phenotype Ontology concept vertex in the graph. The bin
size for every plot is 32.

159

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

F
ig
u
re

A
.3:

T
h
e
so
ftm

a
x
o
f
th
e
fi
lter

kern
els

learn
ed

b
y
th
e
M
eta-p

ath
tran

sform
er,

follow
in
g
train

in
g
on

th
e
tex

t
classifi

cation
task

.

160

Lorcán Anthony Karel Pigott-Dix

F
ig
u
re

A
.4
:
T
h
e
so
ft
m
a
x
o
f
th
e
fi
lt
er

ke
rn
el
s
le
ar
n
ed

b
y
th
e
M
et
a-
p
at
h
tr
an

sf
or
m
er
,
fo
ll
ow

in
g
p
re
tr
ai
n
in
g
o
n
th
e
w
a
lk

va
li
d
it
y
ta
sk
.

161

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

F
igu

re
A
.5
:
T
h
e
softm

a
x
o
f
th
e
fi
lter

kern
els

learn
ed

b
y
th
e
M
eta-p

ath
tran

sform
er,

after
b
oth

p
retrain

in
g
on

th
e
w
alk

valid
ity

task
an

d
th
en

train
in
g
on

th
e
tex

t
cla

ssifi
cation

ta
sk
.

162

Lorcán Anthony Karel Pigott-Dix

F
ig
u
re

A
.6
:
T
h
e
so
ft
m
ax

of
th
e
fi
lt
er

k
er
n
el
s
le
a
rn
ed

b
y
th
e
M
et
a-
p
at
h
tr
an

sf
or
m
er
,
af
te
r
b
ei
n
g
tr
a
in
ed

si
m
u
lt
an

eo
u
sl
y
on

th
e
w
a
lk

va
li
d
it
y

an
d
te
x
t
cl
a
ss
ifi
ca
ti
o
n
ta
sk
s.

163

Autom. the Annot. of Data through Machine Learning & Semantic Tech.

Table A.1: Metrics for the walk-validity pre-training of the Meta-Path Transformer.

Epoch Training Loss Test Loss Test Accuracy
1 31.465 0.786 0.525
2 28.023 0.690 0.560
3 26.453 0.648 0.581
4 25.060 0.590 0.604
5 23.247 0.508 0.632
6 20.659 0.390 0.664
7 17.659 0.301 0.695
8 15.769 0.253 0.719
9 14.345 0.194 0.742
10 12.470 0.182 0.762
11 10.461 0.231 0.775
12 10.741 0.104 0.790
13 9.618 0.113 0.803
14 8.161 0.071 0.816
15 10.516 0.266 0.820
16 8.060 0.095 0.829
17 8.842 0.091 0.837
18 5.225 0.105 0.844
19 6.762 0.071 0.851
20 5.850 0.121 0.856
21 4.283 0.065 0.862
22 7.137 0.090 0.867
23 4.893 0.071 0.871
24 5.082 0.065 0.876
25 3.857 0.036 0.880
26 3.417 0.062 0.884
27 3.929 0.043 0.888
28 3.013 0.069 0.891
29 3.098 0.050 0.894
30 3.460 0.052 0.897
31 2.780 0.052 0.900
32 2.878 0.049 0.902
33 2.510 0.042 0.905
34 2.851 0.070 0.907
35 2.696 0.039 0.909
36 4.554 0.042 0.912
37 2.959 0.018 0.914
38 2.382 0.046 0.916
39 2.186 0.041 0.918
40 1.910 0.021 0.920
41 2.427 0.080 0.921
42 2.677 0.045 0.922
43 2.031 0.055 0.924
44 1.542 0.018 0.925
45 1.533 0.020 0.927
46 1.502 0.047 0.928
47 1.300 0.022 0.929
48 1.593 0.064 0.931
49 1.702 0.014 0.932
50 1.257 0.043 0.933
51 1.441 0.038 0.934
52 2.680 0.066 0.935
53 2.784 0.024 0.936
54 1.774 0.026 0.937
55 1.395 0.022 0.938

164

	Abstract
	Contents
	Dedication
	Acknowledgements
	List of Acronyms and Abbreviations
	List of Figures
	List of Tables
	Introduction
	Problem statement
	The scale and complexity of modern science
	Ontologies and annotation

	Thesis overview and contributions

	Background
	Probabilistic Artificial Intelligence and Deep Learning
	Teaching machines to learn
	Convolutional Neural Nets: Demonstrating the Utility of Deep Learning
	Processing sequences
	Large Language Models
	Graph Neural Nets
	Autoencoders

	Semantic Technology and Ontologies
	Realising the Semantic Web
	Linked Data and the Life Sciences

	Combining symbolic and neural architectures
	Related work
	Semantic table interpretation
	Named Entity Recognition and Biomedical Concept Recognition

	Evaluation metrics

	Heuristic Training Data Creation for Distantly Supervising Semantic Annotators
	Beyond string-matching
	Reducing the cost of training data annotation
	Contribution

	Methodology
	Generating a noisy training dataset with heuristic labelling
	The vanilla Named Entity Recognition Model
	Incorporating a Discriminative Autoencoder
	Employing a dimensionality-driven learning strategy
	Training
	Evaluation

	Results
	Discussion

	Augmenting Neural Dictionaries with Attention for Multiple-Ontology Semantic Annotation
	Introduction
	Neural Dictionaries
	Attention

	Contribution
	Methodology
	Neural Concept Recogniser adapted to use ELMo Word Embeddings
	Squeeze-and-Excitation
	Multi-Scale Self Attention (MSSA)
	Ontologies
	Training
	Evaluation

	Results
	Identifying Human Phenotype Ontology Terms
	Influence of the scale regime and the number of self-attention blocks on MSSA performance
	Exploring the concept embeddings
	Impact of ontology concept properties

	Discussion
	Ontology-based concept extraction
	Adapting transformer-based architectures for training-data-poor scenarios

	Incorporating More Sophisticated Symbolic Information into Neural Dictionaries
	Knowledge graphs as model architecture
	Contribution

	Related Work
	Methods
	Data
	SAE CNN classifier
	Walk-validity classifier
	SAE CNN classifier with Meta-Path Encoder
	SAE CNN classifier and Walk Validity classifier sharing a Meta-Path Encoder
	Training
	Evaluation

	Results
	Discussion

	Critical Assessment of Work
	Overview and chapter summaries
	Summary of chapters

	Assessment of results
	Conceptual contributions
	Interpretability and the validity of assumptions
	Limitations of architectures

	Bibliography
	Appendix
	Chapter 5

