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Abstract: In this paper, a novel Multi-Objective Hypergraph Particle Swarm Optimization 

(MOHGPSO) algorithm for structural health monitoring (SHM) systems is considered. This algo-

rithm autonomously identifies the most relevant sensor placements in a combined fitness function 

without artificial intervention. The approach utilizes six established Optimal Sensor Placement 

(OSP) methods to generate a Pareto front, which is systematically analyzed and archived through 

Grey Relational Analysis (GRA) and Fuzzy Decision Making (FDM). This comprehensive analysis 

demonstrates the proposed approach’s superior performance in determining sensor placements, 

showcasing its adaptability to structural changes, enhancement of durability, and effective manage-

ment of the life cycle of structures. Overall, this paper makes a significant contribution to engineer-

ing by leveraging advancements in sensor and information technologies to ensure essential infra-

structure safety through SHM systems. 

Keywords: structural health monitoring; Multi-Objective Hypergraph Particle Swarm Optimization; 

Optimal Sensor Placement; Grey Relational Analysis; Fuzzy Decision Making 

 

1. Introduction 

The introduction section provides an overview of structural health monitoring 

(SHM) and its importance in assessing and diagnosing infrastructure health. It highlights 

the advancements in sensor and information technologies that have revolutionized SHM. 

The section also introduces the novel Multi-Objective Hypergraph Particle Swarm Opti-

mization (MOHGPSO) algorithm proposed in this paper. 

The practice of developing and implementing strategies and procedures for the on-

going assessment and upkeep of an edifice’s structural integrity is termed SHM. The sub-

stantial costs associated with repairing and rehabilitating bridges and high-rise buildings 

underscore the importance of advancing structural reliability and integrity monitoring. 

Integrating SHM technologies can significantly prolong the lifespan of a structure, en-

hance security, and reduce restoration expenses. While the deterioration of system con-

duction is inevitable, it can feasibly be reversed, however, structural failure or loss of func-

tionality can be prevented. 
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Non-destructive techniques (NDTs) are employed to detect local deterioration in Re-

inforced Cement Concrete (RCC) structures, such as the formation of fractures and corro-

sion. RCC is a type of concrete that contains reinforcement materials, such as steel bars, to 

enhance its strength and durability in structural applications. 

SHM assesses the structure’s oscillations through damage detection schemes. Dam-

aged structures exhibit different mass, stiffness, and damping values, affecting modal 

structure, strain energy, and inherent frequency [1]. The selection of appropriate sensor 

types and damage detection techniques is based on these features [2]: considering eco-

nomic, environmental, and operational constraints [3]. SHM allows for the collection of 

intermi�ent or real-time continuous data, enabling the estimation of a building’s current 

health and future performance, and facilitating be�er preventative maintenance [4]. 

SHM is a multi-stage process reliant on prior stages for progression. Traditional wired 

systems use coaxial wires for data transport, ensuring data reliability and security on central 

servers. However, their cost-effectiveness is limited to smaller buildings or specific location 

studies. The overall cost of a wired network is determined by the size of the data collection 

system, leading to increased installation costs for large-scale structures [5]. To address this, 

there is a motivation to transition from wired to wireless structural monitoring. 

The implementation of Wireless Sensor Nodes (WSNs) in structural health monitor-

ing introduces various challenges, with each component in Figure 1 of SHM representing 

a research area. Effective sensor placement requires an in-depth understanding of the 

structure and the qualities gathered by the sensors, potentially involving optimization 

techniques, or drawing conclusions based on similar structures. Despite increased instal-

lation, maintenance, and weight costs, sensors on a structure can enhance the durability 

of an SHM system in case of crucial sensing node failures [6]. The efficiency of data col-

lection and visualization relies on optimal sensor placement to conserve sensor nodes’ 

energy. Therefore, this article focuses on the positioning of sensor nodes as a key objective. 

The major contributions of this work, following the outlined motivation, are: 

 A novel optimization algorithm with the concept of a hypergraph is developed for 

the optimal sensor’s placement in the structure. 

 Multiple structural objectives are incorporated to decide the location preference, and 

a Pareto front with the non-dominated solutions in the archive is developed. 

 A novel relational analysis is developed to determine the new solution’s entry in the 

archive of the Multi-Objective Hypergraph Particle Swarm Optimization algorithm. 

 Fuzzy decision-making is used to obtain the single optimal solution from the archive. 

 A spring–mass system and fixed wing of an airplane are used for the analysis. 

The remainder of this paper consists of a study of the relevant literature in Section 2, fol-

lowed by a discussion of the methodology being proposed in Section 3. In Section 4, we dive 

deeper into the multi-objective HGPSO and the innovative archive solution. Section 5 presents 

the analysis of the structural items, and Section 6 draws a conclusion based on this study.  

 

Figure 1. SHM’s major components. 
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2. Literature Review 

The literature review section discusses previous studies and research related to SHM 

systems. It mentions the use of automated sensor-based data-gathering strategies and 

storage module approaches for extracting sensor data and determining the extent of dam-

age. It also highlights the development of OSP techniques for specific structures. 

SHM is an advanced system that employs advanced sensing technology and auto-

mated data collection procedures to help predict the deterioration of a structure at an early 

stage. It is possible for businesses and researchers to apply this predictive study to gain a 

be�er understanding of the structure’s nature, standards, and bearing capacity under 

static and dynamic load conditions. The dynamic load of a structure can be calculated in 

addition to the static load resulting from its design or from the interactions between the 

structure and its environment. Dynamic loads can be calculated using a variety of meth-

ods, such as model identification using natural frequencies, time history analysis, or re-

sponse spectra, among others. Olivera Lopez et al. [7] carried out a real-time examination 

of a 14-story structure in dynamically stressed conditions near the coastal region of Chile. 

In order to assess whether or not the structure could sustain a tsunami, Yanet et al. [8] 

identified that in order to more evenly distribute the weight and increase the sensor’s 

lifespan, the structure should be equipped with more sensors. The researchers conducted 

an analysis of the sensor’s lifespan. This strategy is referred to as the “communication 

technology load” in the industry. 

Roghaei et al. [9] employed a static evaluation with SAP2000 software v17.0.0 and 

FEMA356 documentations while analyzing stress and deformation in a steel triple-story 

hospital construction. Zhou et al. [10] employed vibration analysis to detect damage, em-

ploying a more precise method known as the “hysteresis loop approach” to achieve their 

results (HLA). Using a 12-story reinforced concrete frame building to evaluate stiffness 

fluctuations, they discovered that the pinched technique was the most accurate because it 

properly predicted changes in cardinal frequencies close to 0.05 Hz.  

Pierdicca et al. [11] used an operational model analysis (OMA) approach in conjunc-

tion with a finite element model (FEM) for numerical simulation to analyze the dynamic 

behavior of a reinforced concrete school building; their findings were satisfactory in terms 

of both cost savings and accuracy, as demonstrated by their one-year monitoring. 

Antunes et al. [12] found that the stiffness of an adobe masonry building decreased 

when the fundamental frequency dropped. The fundamental frequency of the test was 

found to have decreased by 48%. Sajedi et al. [13] conducted an experiment that employed 

44 shaking tables. With the aid of OpenSees software (version 3.0.2), a three-story RC mo-

ment frame construction framework model with 180 ground motions and a 5400-time his-

tory analysis was produced. According to the simulation results, the incidence, location, 

and severity of damage were all predicted with 96, 87, and 90% accuracy. In the lab, dam-

age classes could be predicted with a high accuracy of 92%. With the help of piezo mate-

rials, Gao et al. [14] conducted an experiment in which they recorded the time of arrival, 

carried out impedance analysis, and performed sweep frequency investigations through 

the demonstration of an embeddable tubular smart aggregate (TSA). For 2D concrete 

buildings, the outcomes were satisfactory. 

Chatzis et al. [15] used an accelerometer to compute the intensity and determine the 

site of damage in a laboratory experiment involving shake tables. To determine the extent 

and location of damage, they used an improved T-SSID method using an unscented Kalman 

filter (UKF). The Bayesian time domain and the n4sid algorithm were used to compare T-

SSID with UKF to determine which was better. Because of its quick approach to damage 

prediction, the UKF method was preferred above other damage prediction techniques. 

Soltaninejad et al. [16] compared the short-time matrix pencil method (STMPM) with 

the discrete wavelet transform to produce a simulation for two neighboring structures to 

anticipate thumping under a unary-degree-of-freedom setup considering 36 cases. In fact, 

the data showed that STMPM was able to predict less severe damage rather than being 

affected by the size of the associated harm. The tool also helped in the prediction of sensor 
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damage in both low- and high-resolution applications. The results of a one-month study 

conducted on the Sciri tower in Italy by Garca-Macas et al. [17] included the use of 12 

accelerometers, and integrated ambient noise deconvolution interferometry, i.e., ANDI, 

along with multichannel optical analysis (OMA) to assess three frequency levels, esti-

mated in the ranges of 200, 1000, and 5000 Hz. It was discovered that temperature fluctu-

ations cause distortions, and the mode of wave propagation was investigated as a result. 

Sun et al. [18] used three methods to determine the combined height of two buildings: 

system identification, wave propagation analysis using interferometry, and wave-based 

damage detection. They used the combined height of the two structures to present a model 

of a skyscraper, for example, the Al Harma Tower in Kuwait, which has 86 floors and a 

height of about 413 m. The dead weight of the building and the seismic response caused 

significant deformations in the structure. Morales-Valdez et al. [19] employed a microe-

lectromechanical system (MEMS)-based accelerometer sensor (model code ADXL203E) to 

assess the disfigurement in a five-story building with dimensions of 60 × 50 × 180 cm by 

employing a wave propagation method to measure the force applied to the accelerometer 

sensor. According to the findings, the wave technique outperformed the modal analysis 

method in terms of stiffness reduction when only two factors were used: the minimal 

shear wave velocity and the Kelvin damping coefficient. 

Valinejadshoubi et al. [20] focused on the purpose of extracting sensor data and de-

termining the extent of the damage, and created the building information modeling (BIM). 

They used an automated sensor-based data-gathering strategy as well as a storage module 

approach in order to do this. Pachón et al. [21] developed a fine-tuned element model to 

forecast transient characteristics, such as mechanical vibrations and model classification, 

for an OSP technique for the Monastery of San Jeronimo de Buenavista in Seville, Spain. 

The OSP functions mentioned in the sources are the methods or algorithms used to 

calculate and optimize the sensor placements in SHM systems. The MOHGPSO algorithm 

introduced in this paper utilizes six established OSP methods to generate a Pareto front of 

sensor placements, which is then analyzed using GRA and FDM techniques. The OSP func-

tions aim to maximize the performance of the SHM system by considering factors such as 

modal strain energy, mode shapes, and the spatial relationships of model shapes. These 

functions play a crucial role in autonomously determining the relevant sensor placements 

without artificial interventions, ensuring the effectiveness and efficiency of the SHM system. 

The energy matrix rank optimization techniques (SEMRO, KEMRO) and the con-

structive autonomy of target mode forms (EFIwm and EFI) serve as the foundation for 

four methodologies for analyzing the dynamic behavior of buildings: SEMRO, KEMRO, 

EFIwm, and EFI. KEMRO had a larger level of error in modal identification, but EFI had 

a lower level of error in the natural frequency. For the Italian Consoli Palace, Garca-Macas 

and Ubertini [22] used an automated anomaly detection system to foretell harm. Three 

models were taken into consideration: PCA, autoregression with an extrinsic input model 

(ARX), and multiple linear regression (MLR), in order to analyze local and global damage 

depending on the amplitude and resonant frequency. 

To summarize, SHM utilizes advanced sensors and automated data collection to pre-

dict early-stage deterioration in structures. These systems aid in comprehending structure 

characteristics, standards, and load-bearing capacities under static and dynamic conditions. 

Dynamic loads are assessed through model identification, time history analysis, and re-

sponse spectra. Real-time examination under dynamic stress allows the assessment of struc-

tures’ resilience to events like tsunamis. Increasing sensor deployment enhances weight dis-

tribution and extends sensor lifespan. Nonlinear static evaluation and vibration analysis de-

tect stress, deformation, and damage. OMA and FEM analyze dynamic behavior, while pi-

ezomaterials and smart aggregates record arrival times and investigate frequency. Accel-

erometers and methods like the unscented Kalman filter compute intensity, locate damage, 

and predict it swiftly. Techniques such as the short-time matrix pencil method and discrete 

wavelet transform simulate impacts and predict damage to nearby structures. BIM and au-

tomated sensor-based data gathering extract sensor data for damage extent determination. 
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3. Methodology 

The methodology section describes the proposed MOHGPSO algorithm and OSP. It ex-

plains the concept of a hypergraph and how it is incorporated into the algorithm. This section 

also mentions the use of GRA and FDM to analyze and archive the generated Pareto front. 

The study presented in this paper demonstrates the utility of precursory ambient vi-

bration test outcomes incorporated into material parameter uncertainties, providing a rig-

orous framework for comparing various OSP approaches for developing cost-effective, 

protracted monitoring systems. Among the FEM-based OSP methodologies examined, the 

EfI methods offer a solution that allows for the detection of fundamental frequencies with 

lesser inaccuracy while also ensuring a significantly low dispersion in the solutions. The 

sensor configurations obtained using the Driving Point Residue (DPR) method provide 

more information about the mode shapes, which aids in the prediction of a uniform sensor 

distribution throughout the edifice. The procedures in the average driving point residue 

(ADPR) and EfI-DPR methods augment this advantage on a larger scale. The Eigenvalue 

Vector Product (EVP) approach ensures the identification of invariance principles and un-

dertakes a least square error analysis of data. The mode shape summation plot (MSSP) 

expediently identifies the highest deformation for the quickest assistance of the damage 

diagnostics. In our study, the required number of sensors is deduced, deploying the EfI-

DPR method to find the optimal organization in each case. Then, EVP is deployed, which 

takes into account both a posited strain energy dispersion template and a surmised con-

nectivity to form a well-established linear least squares problem involving the elemental 

stiffness matrix eigenvalues obtained. For the analysis of the reliance on the OSP solution, 

the results of the ambient vibration tests are employed. 

3.1. Problem Statement 

The limited supply of sensors and the conspicuous complexities of the typical issues 

in the contemplation project have extensive mutual incompatibility. Nearly all the pro-

posed solutions are classifiable into two predominant approaches: one evinces single-ob-

jective optimization, while the other delineates a multi-objective viewpoint. However, sin-

gle-objective methods typically do not reflect all performances of mode testing. This pro-

vokes the overlooking of certain potential optimal sensor placement methods in almost 

all such cases, and consequently, the respective methods are deemed ineffective in deter-

mining the aspired placement structure. Thus, it transpires as a prominent rationale be-

hind the preference for multi-objective optimization in SHM over the single-objective ap-

proach. Just to augment this annotation, the subsequently generated respective series of 

solution sets, i.e., the Pareto front, require a trade-off of the distinct objectives, which is 

achieved to a greater degree by multi-objective optimization algorithms, as compared to 

single-objective techniques. 

Notwithstanding the multi-objective optimization approaches, perforce presumes 

high auxiliary calculation costs. As a result, there are numerous proposals for improving 

the practical implications of multi-objective development techniques for OSP situations. 

The most promising suggestions propose transforming the multi-objective problem into a 

suitable single-objective conceptualization. Even the most basic mathematical operations, 

such as logarithm, product, exponent, or even summation, can realize various congre-

gated OSP fitness methods with improved results. Nonetheless, such processes have a 

hidden proclivity to cause order discrepancies among the separate OSP methods. The fo-

cal strategies used to actualize the enhanced multi-objective optimal sensor placement 

techniques involve the diametrical transformation of the multiple objectives into a rele-

vant single-objective format, which is either maneuvered according to determined weight 

factors (representation of the significance of each objective from the perspective of a deci-

sion maker) or is realized through the use of Pareto front optimization procedures. 

The weight-factor-oriented strategy is simple and does not require algorithm adjust-

ments because, following the aggregation step, a single-objective algorithm is used to 
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identify the optimal solutions. In the absence of a decision-making paradigm, a Pareto 

optimum set can be formed by reiterating the single objective method with different 

weights. However, such an artificial se�ing may disturb the intrinsic characteristics of 

myriad methods in integrated optimization. Two noteworthy limitations become inevita-

ble with this method. The normalization of each aim, first and foremost, demands assign-

ment with a certain weight factor, or else the priority disparity and computational inac-

curacies cannot be eliminated. Furthermore, in the absence of a supported computation 

or reference, the weight factor determinations are deemed arbitrary. In such cases, revis-

ing the weight factors for the combination of the objectives stipulates another function, 

requiring recalculation of the overall optimization and inflicting high computational costs. 

The pivotal drawback of this approach is that even symmetrically distributed sets of 

weight parameters may precipitate an asymmetrically dispersed collection of Pareto opti-

mal solutions. Additionally, finding non-convex neighborhoods among the Pareto opti-

mal front becomes unfeasible due to the summation of objectives using positive weights.  

On the contrary, an alternative bracket of multi-objective contingent escalation tech-

niques utilizing interactive approaches makes it easier to incorporate decision-making 

preferences during optimization. The multi-objective formulation is preserved in this 

technique, but the programmed execution is interrupted to retrieve the decision-maker’s 

preferences. This strategy aids in avoiding the survey of undesired search space regions 

or the Pareto optimal front. Nonetheless, it requires human intervention and is therefore 

intrinsically protracted as compared to the aggregation or a posteriori algorithm. Conver-

gence, i.e., the accuracy and speed of an approach in modeling Pareto optimal solutions, 

and coverage are two critical goals for ascertaining the Pareto optimal front employing a 

posteriori approach. As a result, extra weights or aggregation are rendered obsolete. As a 

result, the Pareto optimal solution set is determined in just one run, emphasizing the typ-

ical need for distributing solutions over the objectives to reinforce decision-making with 

multiple possibilities. 

The ultimate goal of these propositions is to find a precisely explicit Pareto optimal 

solution set with as li�le participation in function evaluation as possible. This entails as-

signing Pareto optimum solutions to all objectives. As a result, a constructive algorithm is 

predicted to locate a symmetrically dispersed Pareto optimal front from a large number 

of different designs. However, the main constraint here is that coverage and convergence 

seem to be in contradiction, and so an approach is required to effectively counterbalance 

both in order to solve real-world multi-objective problems. 

3.2. Proposed Methodology 

SHM systems based on Operational Modal Analysis (OMA) and damage diagnostics 

are now authorized non-destructive techniques for assessing the real-time integrity of any 

architecture. OMA has the capacity to identify a building’s modal qualities. Modal update 

approaches aim to reduce disparities between practically inferred modal features and nu-

merical model estimations, often based on the Finite Element Method (FEM), by fi�ing 

specific modal parameters. 

Generally, SHM assemblies aim at controlling the structural performance of a build-

ing while recognizing any disfigurement and facilitating a condition-based conservation 

management system. To realize this particular objective, OSP methods provide prolific 

assistance by furnishing an efficient design of the optimized sensor orientation for an ac-

curate determination of vibrational properties with fewer measurement points. The min-

imization of sensor count is a critical problem in this approach since it suggests protrusive 

diagnosis and has no impact on the building’s structural integrity. One of the crucial pa-

rameters of the design in diagnostics is the sensor placement for the efficient identification 

of the condition data. 

Using data from sensors placed at the respective optimal configuration in the case of 

each of the OSP methods, the respective modal properties are determined, which are then 

treated as a vector of decision variables represented as: 
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�  = [��,  ��,   …  ,  ��]� (1) 

Using this vector, the General Multi-Objective Optimization Problem (MOP) has 

been deduced in the form of the following vector function:  

�(�)  =  [��(�),  ��(�),   …  ,  ��(�)]� (2) 

Here, ��(�) represents the EfI function, ��(�)—the DPR, ��(�)—the ADPR, ��(�)—

the EfI-DPR, ��(�)—EVP, and finally ��(�) demonstrates the MSSP methods. The objec-

tive of this approach is to find the particular vector that can be represented as, 

�
∗

= [��
∗,  ��

∗,   …  , ��
∗ ]� (3) 

which satisfies the following � inequality constraints: 

��(�)  ≥  0       � = 1,  2,   …  ,  � (4) 

and also complies with the given � equality constraints: 

ℎ�(�)  =  0       � = 1,  2,   …  ,  � (5) 

and thus, it can effectively optimize the respective deduced vector function �(�), i.e., the 

current MOP in consideration. 

In the context of evolutionary Multi-objective Optimization (EMO), the focal point lies 

in enhancing the efficiency of algorithms and data structures for storing non-dominated 

vectors. This involves sustaining diversity, reducing population size, and employing data 

structures for navigating unconstrained external archives of particles. The primary purpose 

of the external archive is to track non-dominated vectors or optimal position configurations 

discovered during the search process. Comprising an archive controller and a grid, the ar-

chive controller evaluates each vector in the primary population, incorporating only non-

dominated ones based on Pareto dominance, while discarding dominated solutions. The 

proposed method introduces a novel archive controller utilizing GRA for this data compar-

ison. When the external population exceeds the permissible capacity, an adaptive grid tech-

nique is invoked, creating space through hyper-cubes or hyper, depending on objective 

function range scaling. The objective parameter space in the archive is partitioned into these 

regions, uniformly distributed among the hyper-cubes/hyper-parallelepipeds. If the current 

insertion surpasses the grid’s constraints, a recalculation is performed, necessitating the re-

location of individuals. The adaptive grid’s advantage lies in its significantly lower opera-

tional cost compared to niching, if not equivalent. 

Thus, the accumulated position configurations are analyzed using the Pareto domi-

nance tenets and incorporated into an enhanced HGPSO Algorithm that involves the 

amalgamation of Multi-Objective Optimization, i.e., MOHGPSO. This approach stands 

sui generis through variegation of the search proportions and also circumvents the pre-

cipitous convergence of particles. Here, the fitness eigenvalues of the obtained position 

orientations are calculated by a hypergraph. The concerning system has been presup-

posed to be a single cluster of all particles, where all particles are mutually interconnected. 

In a dynamic search space, each particle is treated as a node of the graph. Additionally, to 

aid in the realization of the aforementioned presumptions, a new term, namely, spectral 

cognition, has been introduced into the picture. 

In Figure 2, the outline of the described methodology has been demonstrated in the 

form of a block diagram, which is further assisted by the following Algorithm 1. 



Sensors 2024, 24, 1423 8 of 28 
 

 

 

Figure 2. A schematic block diagram of the proposed methodology to optimally place the sensor nodes. 

Algorithm 1: Coarser pseudocode for the proposed methodology 

Input: structure information from the FEM analysis, number of sensors � 

Output: optimal locations of the sensors 

1. Get the random binary matrix for the sensor’s placement ���[�,�]
� , � =

1,2 … ������� 

2. Calculate the multi-objective functions �� from the structural analysis 

3. Store the ���[�,�]
�  and �� in the external archive when � = 1 

4. Update the particle’s position using the hypergraphed PSO 

5. Repeat the step 2 and 3 for � = 2 

6. Use the Grey relation analysis (GRA) on the archived particles to select the non-

dominated solution 

7. Update the archive 

8. If iterations are finished 

a. Stop 

9. Else 

b. Repeat step 2 and 3 

10. End 

11. Select the single solution from the final archive using Fuzzy Decision modelling 

(FDM) 

4. Proposed Solution 

This section provides a detailed explanation of the proposed MOHGPSO algorithm 

and its application in determining the most relevant sensor placements. It discusses the 



Sensors 2024, 24, 1423 9 of 28 
 

 

incorporation of multiple structural objectives and the generation of a Pareto front with 

non-dominated solutions. The section also mentions the use of a novel relational analysis 

to decide new solutions’ entries in the archive. 

4.1. Sensor Nodes’ Placement’s Objective Function 

Generally, contrasting objectives are triggered when the rudimentary supply of sen-

sors is faced with the incompatible complexity of routine multi-objective problems at 

hand. This provokes the generation of a series of solution sets, i.e., the Pareto front. These 

non-dominated fitness functions delineate a barter of the conflicting objectives, which is 

be�er obtained through multi-objective optimization algorithms, as compared to the sin-

gle-objective ones [23]. 

Nevertheless, multi-objective optimization problems customarily demand high cal-

culation costs [24]. Furthermore, choosing one or some of the optimal fitness functions 

from any of the optimum solution sets at or around the Pareto front is a diabolical task in 

and of itself. As a result, advancement has become a requirement for the practical utility 

of multi-objective optimization algorithms in OSP challenges. 

The transition of multi-objective problems into single-objective problems is effective, 

but two restrictions are unavoidable [23]. To begin, each objective’s normalization must 

be assigned a weight factor, otherwise the priority discrepancy and computation errors 

cannot be eliminated. Second, if there is no supported analysis or reference, the weight 

factor decisions become arbitrary. In such circumstances, altering the weight factors for 

the combination of the objectives specifies another function, causing recalibration of the 

total optimization, and incurring large operational expenses.  

Nominating the analogous high-energy sensor orientations helps refine the ratio of 

signals regarding noise. On the other hand, subjugating the consequence of excessive or 

insufficient internal energy has been shown to be useful in process optimization. In the 

big picture, the traditional goals of optimizing sensor placements focus on three common 

perspectives: linear independence, energy, and average energy, and there are certain Op-

timal Sensor Placement approaches that show promise in achieving these.  

4.2. EfI Method 

Effective Independence has been perceived as an iterative approach that ranks can-

didate sensor locations according to their contribution to the linear independence of the 

target modal partition. The EfI function strains upon the escalation of linear independence 

[25]. It is an adroit approach to �(�), centered on the modal superposition theory, which 

is obtained via N mode shapes as: 

�(�) = Φ�(�) + � = ∑ ��
�
��� ��(�)  (6) 

Here,  

Φ: n x n matrix of modal shapes 

��: its i-th order 

n: candidate sensor positions count 

N: order number 

�(�): the generic modal coordinates 

��(�): its i-th order 

�: noise vector  

Generally, the inverse operation of Equation (7) is used through the modal identifi-

cation process [26] to recover the associated modal responses Φ from the system vibration 

signal �. When an efficient neutral interpolation is applied to �, the covariance of the 

erroneous outcome � is determined as follows: 

� = �[(� − �)(� − �)�] = �
�

�� Φ�Φ�
��

= ���  (7) 

Here, � is the Fisher Information Matrix (FIM), generally expressed as 
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� =
�

�� Φ�Φ =
�

�� ��  (8) 

In order to achieve the optimum estimation, ��  needs to be maximized. Further-

more, �� is calculated as: 

�� = Φ�Ψ���(ΦΨ)�� = Φ(Φ�Φ)��Φ�  (9) 

Here, Ψ and � are the analogous eigenvector and eigenvalue of ��, respectively. Fol-

lowing a reiterative template, the minimal term in ��  is rejected after each iteration while 

matching entities are deleted from the mode forms until the desired sensor count, m, is 

reached. The contributions of sensor sites to structural mode independence have been ob-

served to be proportional to the value of ��. 

4.3. Driving Point Residue (DPR) 

The DPR strategy [27] has promising prospects for determining a specific sensor po-

sition. It can be represented as an equivalence to modal participation factors, which assess 

the level of excitation or participation of each mode value in the overall response. The 

amplitudes of the resonance spikes in the frequency response function of a driving point 

are proportional to the magnitudes of the driving point residues. This is an energy-ori-

ented OSP approach, and when DPR values increase, sensor placements become more 

constant. It has been established that: 

��� = Φ  ⊗  ΦΩ�� (10)

Here, ⊗  is term-by-term matrix multiplication, and Ω denotes the circular fre-

quency matrix. Each element of the DPR matrix represents the driving point residue con-

tribution of that degree of freedom in a particular target mode. 

4.4. Average Driving Point Residue (ADPR) 

The Average Driving Point Residue [28] approach dispenses the measure of a point’s 

contribution to global performance. It is effective in reducing the effect of the zero-motion 

point. The ADPR in the i-th DOF for all N mode shapes can be determined using the equation: 

����� =
�

�
∑ �����

�
���   (11)

Here, ����� is the measure of participation of i-th DOF, and ����� determines the 

i-th DOF associated with the j-th mode order. 

4.5. EfI-DPR Method 

The EfI function achieves noteworthy efficiency in maximizing the lineal autonomy of 

the delegated modes. Notwithstanding, it does not take into account the energy of the whole 

assembly. Suboptimal sensor placements make mode detection harder in circumstances 

with a weak signal-to-noise ratio. The EfI-DPR [29] method has been demonstrated to over-

come these shortfalls. The effective independence driving-point residue (EfI-DPR) method 

delivers an efficacious approach for optimal sensor placement applications, in which the EfI 

metrics are weighed, including the associated DPR, as shown below: 

��  ��� = ��  ⊗  ��� (12)

Thus, this approach effectively balances both independence a�ributes and energy. 

4.6. Eigenvalue Vector Product (EVP) 

The eigenvalue vector product (EVP) [30] is a further energy-oriented OSP function, 

based on an empirically obtained flexibility matrix being projected out onto the strain en-

ergy redistribution in regional or local super elements. It takes into account both a posited 

link and a presumed strain energy distribution pa�ern while constructing a well-estab-
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lished linear least squares problem involving elemental stiffness matrix eigenvalues. Indi-

vidual element or super element stiffness is proportional to these eigenvalues. This meth-

odology incorporates the construction of modal degrees of freedom as derivatives of rec-

orded sensor degrees of freedom to account for position offsets in practical sensor data. 

The following is the implementation: 

���� = ∏ �Φ����
���   (13)

Sensors are placed at locations with the largest EVP values to ensure the maximum 

vibration energy. 

4.7. Mode Shape Summation Plot (MSSP) 

The mode shape summation plot (MSSP) method for OSP can be perceived as an 

approach similar to the EVP. As demonstrated in [31], its implementation may involve the 

calculation of the sum of a set or subset of (target) modes, and for a given set of modes 

and within the selected modes (assembly or component), a user-specified number of 

modes with the highest (summed) deformation will be grouped. It is also an energy-based 

OSP method. Its customary utility is to select sensors in the initial case by deleting the 

low-energy positions, as follows: 

����� = ∑ �Φ����
���   (14)

Here, MSSP values for the i-th case are calculated by considering the mode values Φ��  

in the target subset for each element from j = 1 to N specified by the user. 

4.8. Multi-Objective OSP to Relational Objectives 

The whole perception of GRA is pivoted on a specific concept of information. In this 

technique, situations with no information are supposed to be defined as black, while those 

with perfect information are deemed white. Nevertheless, both scenarios act as the idealized 

extrema, and the practical issues at hand are somewhat between them with partial infor-

mation and are denominated as grey, hazy, or fuzzy. Thus, it can handle both quantitative 

and even qualitative data quite proficiently. This very a�ribute transpires as a legitimate 

advantage of GRA, making it a stark and more flexible and reliable strategy as compared 

to the other contemporary approaches that operate through heuristics or subjective judge-

ments and can work with data given only in a certain format. 

The grey relational analysis involves three concise steps for decision-making: 

Step 1. Finding the grey relational grade. 

A normalized matrix of fitness values is constructed to circumvent distortions caused 

by larger sample values of any element. The fitness value ��(��) of an individual particle, 

having six a�ributes ��∈(��){���(��),  ���(��),   …  ,  ���(��)} as calculated by applying the ob-

jective function to its position vector, is then used in Algorithm 2 and is used to generate 

a comparable matrix for relational matrix generation as: 

��� =
�������(���)

���(���)����(���)
  (15)

Step 2. Figuring out the grey relational coefficient. 

The grey relational coefficient determines the value of closeness between ���  and 

���, i.e., the higher the value of the coefficient, the closer the two samples will be. It can be 

computed as: 

�(���,  ���)  =  
���� � �����

Δik � �����
  (16)

Here, � is the grey relational coefficient between ��� and ���. � is the distinguishing 

coefficient, a random value between zero and one, which regulates the expansion and 

compression of relational coefficient. Using the values Δ��  =  |���  −  ���|, Δ���  and Δ��� 

are calculated as: 
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����  =   �������� (17)

 ����  =   �������� (18)

Step 3. Employing the grey relational coefficient in decision making. 

Using the equation grey relational coefficient from (16), the grey relational reward is 

calculated, which is used to select the higher relational samples. In our case, the between-

ness degree �(�) is calculated to generate a graph. The higher the value of g(v) for a sen-

sor orientation, the higher its optimality. This concept is used to aid the tenets of the Pareto 

dominance implemented in the methodology and finally figure out the desired sensor ori-

entation OSP. The process is depicted in the following Algorithm 2. 

Algorithm 2: Optimality collation of sensor orientations using Grey Relational Analysis 

Input: Fitness value matrix �  

(1) Normalize the matrix � using Equation (15) 

(2) For �  =  1 :  �  

(3)        a. For �  =  1 :  �  

(4)             i. Calculate the grey relational coefficient ��� using Equation (16) 

(5)        b. end for 

(6) end for  

(7) Generate a graph object from ��� 

(8) Calculate the between �(�) for each element 

(9) ������� = ��� � (�) 

4.9. Multi-Objective Hypergraph Particle Swarm Optimization (MOHGPSO) Algorithm 

MOHGPSO is a novel algorithm introduced in this paper for OSP in SHM systems. 

It combines the concepts of MOO and PSO to address the challenges of sensor placement 

effectively. The algorithm employs six established OSP methods to generate a Pareto front, 

which represents a set of optimal solutions. The MOHGPSO algorithm utilizes a hyper-

graph to calculate the fitness eigenvalues of the obtained position orientations. This hy-

pergraph represents a single cluster of interconnected particles, where each particle is 

treated as a node in the graph. The algorithm incorporates a dynamic search space where 

each particle’s fitness value is compared to others, and the difference is considered an edge 

between them in the hypergraph. The MOHGPSO algorithm autonomously determines 

the most relevant sensor placements in the combined fitness function without artificial 

interventions, showcasing its superior performance in optimizing sensor placements for 

SHM systems. 

The following section of this paper includes a detailed overview of the proposed ap-

proach through a brief introduction to all the terminologies and concepts implemented. A 

brief synopsis of the PSO is followed by inception of the MOHGPSO algorithm. Thereaf-

ter, the decision-making methodology has been delineated, and finally, a summarizing 

algorithm has been provided to demonstrate the whole process. 

PSO is among the stellar examples of bio-inspired evolutionary algorithms. Having 

very few hyperparameters makes it a candid approach in searching for an optimal solu-

tion in a given search space. The feature that distinguishes it from other optimization al-

gorithms is that even the only objective function needed is independent of the gradient or 

any differential form of the objective. In spite of these noteworthy edges, PSO faces certain 

prominent shortcomings which entail modifications. Firstly, conventional PSOs are prone 

to the impulsive convergence of particles, i.e., far from the expected outcome of the objec-

tive function, thus compromising the efficiency and accuracy of the algorithm. Secondly, 

there is inadequate diversity, which affects the global search performance due to the large 

number of iterations required to find the globally optimal low value of cost function. 
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In recent years, hypergraphs have been widely used in some fields of computer sci-

ence, such as image segmentation [32], data mining [33], and social network analysis [34]. 

A hypergraph is a generalization of an ordinary graph model where each hyperedge con-

nects to an arbitrary number of hypervertices instead of only two. Thus, the hypergraph 

model facilitates designing group relations instead of only binary ones, i.e., it is applicable 

to problems with more than two variables or objects. The expediency of hypergraphs is 

associated with their higher connectivity as compared to their traditional counterparts. 

A hypergraph-based particle swarm optimization has been validated to efficiently 

solve the problem of premature convergence in traditional PSOs and also to improve the 

diversity and global search performance of traditional PSOs through a reduction in the 

relevant number of iterations. This could be achieved through the introduction of a new 

direction vector to the position update in the exploration process of a vanilla PSO. The 

velocities of PSO in the case of a sequence optimization problem are defined as a series of 

swap operations based on a probabilistic update rule for the current position update. 

Each particle has two a�ributes: velocity and location, represented as vectors �� and 

��, respectively. The fitness value ��(��) of a particle is calculated by applying the objec-

tive function to its position vector (location). The computed fitness values are then com-

pared with their own previous locations or other particles’ locations, in order to obtain 

their respective individual personal best position �
�
and the global best position �. Then, 

the individual velocity and position of each particle are updated as follows: 

��,���  =  � × �� + ���� × ��
�,�

− ��,�� + ���� × ��
�,�

− ��,�� (19)

and,   ��,���  =  ��,� + ��,���  (20)

Here, � , ��   and ��  represent constant weighting factors; the term �
�,�

  is the per-

sonal best location at time � ; the term �
�,�

 represents the global best position of all parti-

cles, obtained through comparison of fitness values of particles with each other. The terms 

��  and �� are two independent random variables in the range [0, 1]. 

Equation (19) represents the exploration step of the PSO and is modified in the hy-

pergraph PSO (HGPSO) approach. A new fourth parameter is added to the equation, as 

shown in Equation (21): 

��,���  =  � × �� + ���� × ��
�,�

− ��,�� + ���� × ��
�,�

− ��,�� + ���� × �ℎ�,� − ��,�� (21)

Here, ℎ�,� is the centroid of the particles in the hypergraph generated by the current 

fitness values of the particles. The update process of HGPSO is shown in Figure 3. 

 

Figure 3. Particles’ positions update in Hypergraphed Particle Swarm optimization. 
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Here, the concept of hypergraph generation is inspired by TTM clustering in hyper-

graph theory. An adjacency matrix of � × � is used to obtain the weights of each particle’s 

connection to another. The particle’s fitness in any iteration is a vector quantity, and it has 

to be converted into an adjacency matrix using the nearest neighbor calculation scheme. 

��×� = ������������(��),   …  ,  ��(��)�  (22)

where, � is the adjacency matrix of the vector of costs of the particles in the swarm, then 

a hypergraph � is calculated for � to obtain an eigenvector using equation (23) as: 

����∈{�, … , �} =
�

�!
�������  ×�  �(�)�

  ×�  �(�)�
  …   ×�  �(�)�

�  (23)

Here, ×�   is the model- �  product and  �(�)�
 ,  �(�)�

 �(�)�
,   …  ,  �(�)�

  ∈  ℝ�×�  which 

represents the number of CMs connected to each node �� for each vertex ��∈{�, �, … , �} as: 

�� =
�

∑ ��(��) �
 

  (24)

The centroid of � is calculated using k-means clustering. 

In the proposed methodology, the congregated position orientations are maneuvered 

using the Pareto dominance tenets and incorporated into an enhanced Hypergraph Parti-

cle Swarm Optimization Algorithm which involves the coalescence of Multi-Objective Op-

timization, i.e., MOHGPSO. Certain terminologies, which have been implemented later in 

the study, are described briefly: 

(i) Global Minimum: For a given function � :  Ω  ⊆  ℝ�  →  ℝ,  Ω  ≠  ∅,  if �  ∈  Ω , and, 

more importantly, ∀�  ∈  Ω :  ���
∗
�  ≤  �(�), the global minimum is estimated to be 

given by 

�∗  ≜  ���
∗
�  >   − ∞ (25)

Here, �
∗
 represents the global minimum solution, �—the objective function, and Ω is 

the set representing the feasible region (Ω  ∈  �), where, � includes the entire search space. 

(ii) Pareto Dominance: If two vectors, one represented by �  =  (��,  ��,   …  ,  ��) and the 

other by �  =  (��,  ��,   …  ,  ��), respectively, are mutually related such that the objec-

tive values of � are no worse than those of �, and are strictly be�er than the la�er 

for at least one of the obtained solution elements, for any given objective, then vector 

� is said to dominate vector �. In a nutshell: �  ≼  �, i.e., 

∀�  ∈  {1,  2,   …  ,  �},  ��  ≤  ��        ∧        ∃�  ∈  {1,  2,   …  ,  �},  ��  <  �� (26)

(iii) General Multi-Objective Optimization Problem (MOP) and Pareto Optimal Set: The 

objective of this approach is to find a vector represented by, 

�
∗

= [��
∗,  ��

∗,   …  , ��
∗ ]� (27)

such that, it satisfies the following � inequality constraints 

��(�)  ≥  0       � = 1,  2,   …  ,  � (28)

and also complies with the given � equality constraints 

ℎ�(�)  =  0       � = 1,  2,   …  ,  � (29)

and thus, effectively optimizes the vector function 

�(�)  =  [��(�),  ��(�),   …  ,  ��(�)]�  (30)

Here, � represents the vector of decision variables and is computed as 

�  = [��,  ��,   …  ,  ��]� (31)

For a given MOP �(�), the Pareto optimal set (�∗) is estimated as: 

�∗ : =  ��  ∈  Ω  :  ¬∃��  ∈  Ω �(��)  ≼  �(�)� (32)
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(iv) Pareto Front: 

A Pareto front represents a set of optimal solutions that cannot be improved in one 

objective without sacrificing performance in another objective. In the context of sensor 

placement for SHM systems, achieving a Pareto front is significant because it allows deci-

sion-makers to evaluate and select sensor placements based on multiple criteria simulta-

neously. By generating a Pareto front using the MOHGPSO algorithm, the proposed ap-

proach in this paper enables the identification of sensor placements that offer a balance 

between different objectives, such as maximizing data collection efficiency, conserving 

sensor nodes’ energy, and enhancing the durability of the SHM system. The comprehen-

sive analysis of the Pareto front using GRA and FDM provides insights into the relative 

performance of different sensor placements, allowing decision-makers to make informed 

choices without artificial interventions. Ultimately, achieving a Pareto front in sensor 

placement optimization helps maximize the effectiveness and efficiency of SHM systems, 

ensuring the safety and longevity of critical infrastructure. 

Usually, it is non-viable to realize an inquisitive linear or superficial expression con-

taining nondominated values. The routine process of inducing the Pareto front is through 

the computation of the workable points Ω with the analogous �(Ω). With a substantial 

count, the determination of the aspired points becomes feasible. For a given MOP �(�) 

and Pareto optimal set �∗, the Pareto front (��∗) is defined as: 

��∗ : =  ��  =  �  =  ���(�),   …  ,  ��(�)� :  �  ∈  �∗� (33)

(v) Pareto Optimality: Conventionally, it is evaluated apropos the whole decision varia-

ble space (unless otherwise specified). For a point represented by �
∗
  ∈  Ω to be Pa-

reto optimal, it is imperative that there exists no realizable vector that can decrease 

some criterion without causing a simultaneous increase in at least one other criterion. 

Thus, for every �
 

∈  Ω and �  =  {1,  2,   …  ,  �} 

that either    ∀�∈� ���(�)  =  ����
∗
�� (34)

or ∃�  ∈  � such that,   ��(�)  >  ����
∗
� (35)

Pareto optimal solutions are often also referred to as noninferior, admissible, or effi-

cient solutions, while their analogous vectors are called nondominated. 

The optimal placement of WSN depends on several factors. These objectives can be 

achieved by optimal placement, either by weighing all problems or by Pareto’s optimal 

solution as a multi-objective problem. The MOHGPSO is a novel proposed optimization 

algorithm that diversifies the solution search and avoids the premature convergence of 

particles. To continue with the MOHGPSO, the velocity update of the conventional PSO 

has to be studied first. The velocity in a conventional PSO is updated as: 

��
� =  ��

��� + �� × ���� × (������
��� − �������

���) + �� × ���� × (������
��� − �������

���)  (36)

Where, � ��� � represent the current iteration and j-th particle. The ����� and ����� are 

the local and global positions of the particles in the PSO. The first term in the above Equa-

tion (36) adds momentum to the particle. The second term is the cognitive term, which 

motivates the particle to move towards the local best position, and the last term is the 

collective term, which enhances the search capability nearer to the global best particle’s 

position. 

To improve the convergence and avoid the local minima problem of MOPSO, we 

hereby introduce Hypergraph PSO. In HGPSO, the eigenvalues of the fitness values of all 

particles in an iteration are calculated by a hypergraph. Considering a single cluster of all 

particles, every particle is connected to another. Considering the arrangement of PSO’s in 

the dynamic search space, each particle is considered a node of the graph. The difference 

in fitness value between two particles is considered the edge between them, as shown in 

Figure 4. 
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Figure 4. Hypergraph representation of PSO particles. 

Hypergraphs are greatly pivoted on the dynamic evolution process, substantiating 

the exploration of the dynamic analysis of complicated networks. The further advantage 

of the hypergraph theory involves ensuring point and edge uniformity. Finally, they aid 

in clearly expressing the relationship between the nodes and edges. 

In MOHGPSO, the external repository is maintained at the end of every iteration, 

which houses the best particles so far. It comprises the archive controller and the grid. The 

archive controller examines each vector, found in an iteration in the primary population 

of the algorithm, and compares it to the existing contents of the repository individually 

on the basis of Pareto dominance—to append only the nondominated ones. Conversely, 

if the archive holds solutions that are dominated by the new element they are canonically 

discarded. The unique archive controller in the proposed method deploys Grey Relational 

Analysis (GRA) for this collection of data. Eventually, when the external population sur-

mounts the allowable capacity, the implementation of the adaptive grid procedure is ini-

tiated, which in fact is a space formed by hyper-cubes or hyper-parallelepipes, depending 

on whether the ranges of the objective functions are scaled or not, respectively. In the re-

pository, objective parameter space is partitioned into these regions, which are dispersed 

uniformly among the greatest number of hyper-cubes or hyper-parallelepipes possible. 

The repository size is defined by the hit-and-trial scheme. We consider here that 10 parti-

cles can be housed in the repository. 

This repository’s best fitness value for each objective (since it is a multi-objective 

problem) is extracted and subtracted from each population’s fitness value. The adjacency 

matrix is thus created, and hyperspectral clustering is performed to obtain the centroid of 

the population. This centroid keeps the position of each particle nearer to the best values 

in the repository. So, we add a fourth term in Equation (1) as: 

��
� =  ��

��� + �� × ���� × �������
��� − �������

���� + �� × ���� × �������
��� − �������

����

+ �� × ���� × (����������
��� − �������

���) 
(37)

This fourth term is called the spectral-cognition term. 

The steps to calculate the spectral-cognitive term in MOHGPSO are as follows: 

(a) The particles in the repository that are best so far and the current position of all parti-

cles and their corresponding fitness values are used. 

(b) Calculate the best fitness value for each objective in the multi-objective from the re-

pository. 

(c) Subtract that best value from each particle’s fitness value. 

(d) Generate the adjacency matrix by following the nearest neighbor approach 

(e) Use the hypergraph calculation of eigenvalues. 
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(f) Find the centroid position among all particles by the k-means clustering of eigenval-

ues calculated in step 5. 

Subtract the centroid position from each of the particle’s current positions with a 

weighted value as in Equation (37). 

In the proposed method, GRA is preferred over sorting based on domination level. 

One of the pivotal causes behind this is that the la�er approach, although it promotes 

extrapolation, compromises with the quality of the grade of the non-dominated solutions. 

However, GRA ensures a noteworthy reduction in the probability of damaging the non-

dominated solutions during optimization. The best non-dominated solutions are main-

tained even while abruptly updating the variables using several operators. This approach 

effectively supports superior exploration and convergence. 

In the conclusive steps of MOHGPSO optimization, a set of optimal solutions will be 

accumulated in the external archive. Each component class has a number of properties 

that are deemed important in the decision-making process. Furthermore, there are some 

critical properties that are not well understood yet which are essential for the component 

to operate. Thus, fuzzy decision-making is used to direct the decision-making workflow 

towards finding the desired answer without imposing any required precondition of ex-

tensive understanding of the component type (FDM). 

The process involves establishing an understanding of the needs in the respective 

decision-making, in our case, the optimality of the solutions. Then, the construction of the 

membership functions. Each functional optimization metric is interpolated in the range of 

0–1 during the FDM process. As in Equations (38) and (39), the best orientation index is 

determined by the min–max of the normalized values. 

��� =  

⎩
⎨

⎧
1, ∀ �� ≤ ��

��� 
(��

������)

(��
������

���)
 ∀ ��

��� <  �� >  ��
��� 

0, ∀ �� ≥  ��
���

  (38)

�������� = max�min���,  ��,  ��,  ��,  ��,  ���� (39)

where, ��  linear fuzzy membership for ���  optimality metric where, � ∈

{1,  2,  3,  4,  5,  6} , ��
��� , and ��

���  are the minimum and maximum of ���  optimality 

metric. The best optimal solution index is computed as in Equation (37), and that orienta-

tion is returned from the archive to present as the expected outcome. 

Following this, GRA was used to obtain the improved non-dominated set of this rela-

tively recently established multi-objective model. The key to the desired answer, however, 

has been agreement among the analyzed metrics. It could be used to highlight how far a 

solution is from the group’s preferred solution. To compensate for uncertainty in preference, 

robustness is proposed as a gauge of the capacity to cope with change in preference. As a 

result, the suggested approach takes both consensus and robustness into account. 

4.10. Combination of HGPSO with GRA and FDM for Generating a Pareto Front 

The MOHGPSO algorithm combines classical algorithms, such as the Hypergraph Par-

ticle Swarm Optimization (HGPSO), with Grey Relational Analysis (GRA) and Fuzzy Deci-

sion Making (FDM) to generate a Pareto front for optimal sensor placement. HGPSO, as a 

component algorithm, contributes to the overall performance of the MOHGPSO algorithm 

by leveraging the concepts of particle swarm optimization to explore the search space and 

find optimal solutions. GRA is used to systematically analyze and archive the Pareto front 

obtained from the OSP methods, providing insights into the relative performance of differ-

ent sensor placements. FDM is employed to make fuzzy decisions based on the analyzed 

Pareto front, allowing decision-makers to determine the most relevant sensor placements in 

the combined fitness function without artificial interventions. The combination of HGPSO, 

GRA, and FDM enhances the algorithm’s ability to autonomously determine optimal sensor 
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placements and generate a Pareto front, showcasing its superior performance in optimizing 

sensor placement for Structural Health Monitoring systems. 

The proposed method has been summarized into certain fundamental steps in the 

form of Algorithm 3. 

Algorithm 3: SHM Analysis using MOHGPSO, deploying GRA and FDM 

Input: structure information from the FEM analysis, number of sensors �.  

Output: optimal locations of the sensors. 

(1) Get the random binary matrix for the sensor’s placement ���[�,�]
� , � = 1,2 … ������� 

(2) Calculate the multi-objective functions �� form the structural analysis 

(3) Store the ���[�,�]
�  and �� in the external archive when � = 1 

(4) Update the particle’s position using HGPSO 

Input: epoch size, swarm size �, �, �, �2, �3 

Initialize: initial position of the swarm  

(a) Calculate �, �, �, �(��) for the initial positions 

(b) do  

(i) for each sequence x in the swarm do  

(ii) Update the velocity using ��,� =  ��,���(�, �, �, �, �, ��, ��, ��) 

(iii) Calculate new position �̅�,� to update particle’s position  

(iv) If �(�̅)  Is better than �(�) then   

(1) �(�) = �(�̅)  

(2) � = �̅ 

(v) end_if 

(vi) If �(�̅)  Is better than �(�) then   

(1) �(�) = �(�̅)  

(vii) End_for  

(viii) Calculate �̅ for current epoch and particle positions  

(ix) If (�̅ Is better than �) 

(1) � = �̅ 

(x) end_if  

(xi) while (number of epochs are not satisfied)  

(5) Repeat the steps 2 and 3 for � = 2 

(6) Use the Grey relation analysis (GRA) on the archived particles to select the non-

dominated solution  

(a) Input: Calculated Fitness value matrix �  using �� 

(b) Normalize the matrix � using Equation (15) 

(c) For �  =  1 :  �  

(i) For �  =  1 :  �  

(1) Calculate the grey relational coefficient ��� using Equation (16) 

(ii) end for 

(d) end for  
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(e) Generate a graph object from ��� 

(f) Calculate the betweenness �(�) for each element 

(g) ������� = max � (�) 

(7) Update the archive with the obtained value, if needed 

(8) If iterations are finished 

(a) Stop 

(9) Else 

(a) Repeat steps 2 and 3 

(10) End 

(11) Select the single solution from the final archive using Fuzzy Decision modelling 

(FDM) as described through Equations (38) and (39) 

5. Results and Discussions 

The results and discussions section presents the analysis of structural items using the 

proposed algorithm. It discusses the outcomes obtained through different OSP methods 

and highlights the superior performance of the proposed approach. This section also in-

cludes figures and tables to support the findings. 

5.1. Evaluation Parameters 

After obtaining the conclusive results of the sensor orientations through the different 

OSP methods, five sensor placement benchmarks were to be verified to check the all-

round performances vis-à-vis the sensor distribution, orthogonality, linear independence, 

energy, and redundant configuration. 

5.1.1. Determinant (DET) of FIM 

The determinant is used as an evaluation approach for the coupling of mode shapes 

in OSP methods. The performance of a particular OSP method is directly proportional to 

the value of the determinant, which is calculated based on the spatial relationship of 

model shapes. The higher the determinant value, the be�er the performance of the OSP 

method in terms of coupling mode shapes and resistance against noise. The determinant 

is a measure of structural stiffness and plays a crucial role in assessing the performance 

and effectiveness of sensor placements in SHM systems. In a limited set of coordinates, 

the FIM determinant represents the trustworthiness of the data. By maximising the deter-

minant, the EfI technique chooses the OSP configuration. Because it has the same rele-

vance as a reiterative format, it is also effective to use a determinant to test the accuracy of 

the sensor locations as follows: 

��� = det (�) (40)

The performance of the particular OSP is directly proportional to the value of the DET. 

5.1.2. Mean Value of Off-Diagonal Entries of MAC 

It is an effective evaluation approach for the coupling of mode shapes utilizing the 

spatial relationship of model shapes, which is expressed as follows: 

����� =  
(��

���)�

(��
���)(��

���)
  (41)

where, �� and �� are the i-th and j-th column in Φ. 

Here, ����� demonstrates the cosine of the angle formed by the measured modes’ 

two vectors. Because a bigger space angle implies more obvious shape vectors, optimal 
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sensor sites are acquired by lowering the proportions of the maximal off-diagonal MAC, 

generally derived by averaging the off-diagonal aspects. 

��� =  
�

�(���)
∑ ∑ �����

�
���

�
���
���

  (42)

Optimality of the configuration is inversely proportional to the MAC measure. 

5.1.3. Modal Strain Energy (MSE) 

The modal strain energy (MSE), i.e., energy associated with sensor arrangement, is used 

to augment the weak signal-to-noise ratio in the OSP scenario, which is described as follows: 

��� =  
�

�
∑ ��

���
��� ��  (43)

where, � is the matrix accounting for the structural stiffness. The higher the MSE meas-

ure, the higher the resistance against noise. 

5.1.4. SDI 

Notwithstanding its widespread use, the EfI approach has several significant flaws, 

including cluster orientations that repeatedly arise when the sensor count surpasses that of 

the recorded modal shapes, which can lead to spatial correlation and significant resource 

waste. As a result, the following SDI is shown to indicate the dispersed sensor placement: 

��� =  
� ∑ ��� ��� 

�
���

��
  (44)

where, � is the mean distance between all the sensors and their center, defining the dis-

persion, min (���) represents the separation of each sensor from its nearest neighbor, and 

� represents the structural area diagnosed, and dispersion in the distribution is directly 

proportional to the value of SDI, i.e., the higher the value, the lesser the redundancy in-

formation. Nevertheless, the indices particularly deliver the geometry dispersion data, 

overlooking any dynamic contributions. 

The ratio of similar positions (RSP), achieved through comparison of various OSP 

functions. 

The lack of an evaluation index for the eventual sensor orientation outcomes 

achieved through the various OSP approaches necessitates the establishment of this last 

criterion for RSP comparison. 

��� =  
∑ ��

�
���

��
  (45)

where, �� is the number of identical sites attained by one method and another. The more gen-

eral the sensor position sets in the similar OSP approaches, the higher the value of this index. 

5.1.5. Analysis 

During the course of simulation, a two systems spring–mass system and the fixed 

wing of an aeroplane are presented for optimal sensor placement by the proposed multi-

objective methodology. 

5.2. Spring–Mass System 

The proposed set-up can be perceived to be analogous to a spring–mass system with, 

let us say, n = 20 DOFs. As for the case, the parameters are considered to be ��  =  1000 �/� 

and �� = 1 ��,  (� = 1,2,3,   …  ,  20) . Keeping one-side fixed to realise the marginal con-

straints, each node with a DOF can be considered to hold the sensors. A brief overview can 

be seen in Figure 5. The first three frequencies and modes can be seen in Table 1 and are also 

demonstrated in Figure 6. These were deduced considering the MOHGPSO load, and a qui-

nary sensor set was planted in the inceptive manifestation. The attribute setup of the posited 

MOHGPSO was achieved by deploying GA as follows: the community length was set to 
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approximately 49 ∼ 501  while constraining the maximal generation count to 99 ∼ 999 . 

Maintaining a stochastically uniform selection procedure and keeping tolerance near about 

10�� ∼ 10�� , the dispersed crossover method was adjusted to 0.9 ∼ 0.99.  The Gaussian 

mutation assignment was kept around 0.009 ∼ 0.09. The delineated setup can be resolved 

through the forth mentioned entities: the structural DOF count, the sensor population con-

sidered, and most crucially, the intricacy of the OSP scenario. 

 

Figure 5. A spring–mass setup demonstrating 20 degrees of freedom. 

Table 1. Frequencies implemented in the demonstrated examples. 

 1st 2nd 3rd 

Spring–mass system 0.387 cycles/s (Hz) 1.14 cycles/s (Hz) 1.93 cycles/s (Hz) 

Fixed Wing 24.3 cycles/s (Hz) 84.1 cycles/s (Hz) 141 cycles/s (Hz) 

 

Figure 6. Depicted modal shapes of the spring-mass system. 

In the discussed methodology, the iterative process is deployed to pick out the most 

optimal sensor placement orientation among the Pareto front solutions obtained from the 

analysis of the combined multi-objective problem through the proposed MOHGPSO, as pre-

sented in Figure 7a,b. Six sensor placement functions have been evaluated, focusing on the 

single point of significance in the first step of the initial case. Corresponding to the advance-

ment in the iterative step, each function is assessed consecutively. However, the combined 

fitness function is dominated by the OSP methods of EfI, EVP, and MSSP, whereas the in-

fluence of the remanent methods on the MOHGPSO is considerably recessive. 

Superiority has been visualised mostly through counterpoised performance and 

overall effectiveness. As a result, the sensor orientations determined by the proposed 
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method were not always the best in all categories, but they may have been be�er than 

those acquired by other individual generic OSP methods. The proximal convergence of 

the fitness values for the groups of functions coplo�ed, as shown at the top of Figure 7a,b, 

reinforces the credibility of the proposed approach in determining the best fitness value. 

It is noteworthy that the iterative process required only seven steps, but that is greatly 

a�ributed to the fewer DOFs in the system considered. Thus, the upper hand of this pro-

posed optimization algorithm is divulged in the form of reflexive determination of the 

most relevant sensor placement configurations in the combined fitness function without 

any artificial interruptions. 

 

Figure 7. (a) Outcomes obtained through ADPR, EVP, and MSSP coplo�ed. (b) Outcomes obtained 

through EFI, DPR, and EFI-DPR coplo�ed. 

The forenamed five OSP criteria in Section 5.1 are employed in the evaluation of the 

optimality of the sensor orientations corresponding to their respective metrics. The result-

ant placements achieved through the aforementioned OSP functions in the posited 

MOHGPSO algorithm are registered in the form of Table 2. Apart from the DPR and its 

averaged counterpart, ADPR, the outcomes achieved through remanent OSP functions are 



Sensors 2024, 24, 1423 23 of 28 
 

 

contrasting. The final sensor orientations approved are the result of a synthetic combina-

tion of the output of the previously discussed six classical methods, i.e., the one that pro-

jects maximum concordance. They are further testified through the implementation of 

GRA imposed in the external archive, described in Section 3.2. Furthermore, for the sensor 

outputs acquired through the sextet of OSP functions, the 5th, 11th, and 20th DOFs are 

observed to occur more routinely in cases of the Effective Independence and Mode Shape 

Summation Plot functions, in proportion with the optimization metrics of all the OSP 

functions. These three positions have greater relevance to the optimum solution, which is 

further reflected in the effect of the combination. The EfI method has been distinguished 

by exhibiting the finest performance vis-à-vis the indices of the DET of FIM, along with 

MAC. Nevertheless, the results are entirely unalike the remaining sensor positions sub-

stantiated through the RSP. The outcomes of EfI-DPR, along with the MSSP approaches, 

are the closest to the others. Nonetheless, the remnant necessities were inadequate. In 

these criteria, the remaining classes of sensor orientation outcomes could obtain only su-

perior or inferior. 

Table 2. Assessment of the sensor orientations achieved through the set of OSP functions consider-

ing the discussed criteria in the spring–mass setup. 

 Sensor Positions DET MAC MSE SDI RSP 

Effective Inde-

pendence 
5, 6, 12, 13, 20 0.031 0.003 489.814 0.343 0.366 

Driving Point Res-

idue 
16, 17, 18, 19, 20 0.000 0.786 77.774 0.255 0.568 

Average DPR 16, 17, 18, 19, 20 0.000 0.786 77.774 0.255 0.568 

EFI-DPR 12, 17, 18, 19, 20 0.000 0.571 254.940 0.481 0.599 

Eigenvalue Vector 

Product 
10, 11, 18, 19, 20 0.001 0.437 258.365 0.203 0.534 

Mode Shape Sum-

mation Plot 
5, 11, 18, 19, 20 0.021 0.292 445.806 0.637 0.601 

Novel Sensor 

Placement Algo-

rithm [23] 

5, 6, 11, 12, 20 0.030 0.014 490.155 0.332 0.433 

MOHGPSO (pro-

posed) 
12, 17, 4, 1, 6 0.031 0.013 491.009 0.331 0.431 

The phenomenon of primary significance has been that the ADPR, EVP, and MSSP 

in collaborative fitness methods, as depicted in Figure 7a, emerge with most of the sensor 

counts. Consequently, it is perceived as an outcome of using the distinctive OSP functions. 

It partially accentuates the fact that the maximal contribution of the EfI, merged with DPR 

for the quinary set of sensors, has been the occurrence of the 5th, 6th, 12th, and 20th positions 

in the conclusive outcomes. This particular detection is accredited to the cumulative after-

math of the varying multiple objectives in combined fitness. The performance of the DET 

has been observed to be proportional to the number of sensors involved. A larger number 

of sensors demonstrating a denser configuration can induce irrelevant recurrence in the 

sensor configuration data. Comparison between the sensor locations achieved through the 

OSP functions and distinct sensor counts reveals that the Ratio of Similar Position pointer 

manifests a superior collective outcome, as per estimations, approximately 68% of the RSP 

can be seen as analogous to their respective sensor orientations obtained through 

MOHGPSO. This algorithm was augmented through the combination of classical algo-

rithms, viz., the HGPSO, along with the GRA and some concepts of FDM, to artificially 

counterbalance and scrutinize all OSP conduction metrics, as demonstrated in Table 2. Its 

performance can be wholly a�ributed to the collective execution of the aforementioned 
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OSP methodologies in addition to the component algorithms, collaboratively pivoted over 

the achievement of the sensor placement criteria, as discussed in Section 5.1. Relatively 

exemplary performance has been registered apropos of the MSE. Thus, from a general 

viewpoint, the posited MOHGPSO can be said to perform effectively. 
Based on the data in Tables 2 and 3, it appears that the proposed method in this paper 

may have limited advantages compared to the EFI method and the Novel Sensor Place-

ment Algorithm method. The proposed method’s performance, as indicated by the eval-

uation criteria in Table 2, is similar to or slightly be�er than the EFI method in terms of 

DET, MAC, MSE, and SDI. However, it is important to note that the results achieved by 

the proposed method are inferior to those of the Novel Sensor Placement Algorithm 

method in terms of DET, SDI, and RSP. 

Table 3. Assessment of the sensor orientations achieved through the set of OSP methods based on 

the discussed criteria in the fixed wing. 

Features DET (×���) SDI RSP 

Effective Independence 1.301 0.684 0.432 

Driving Point Residue 0 0.144 0.784 

Average DPR 0 0.144 0.784 

EFI-DPR 0 0.143 0.784 

Eigenvalue Vector Product 0 0.144 0.784 

Mode Shape Summation Plot 0 0.144 0.784 

Novel Sensor Placement Algorithm 1.268 0.144 0.784 

(Proposed) MOHGPSO 1.266 0.143 0.786 

The reason for this discrepancy in performance could be a�ributed to several factors. 

It is possible that the proposed method may not fully capture the complexities and nu-

ances of the sensor placement problem, leading to suboptimal results compared to the 

Novel Sensor Placement Algorithm method. Additionally, the proposed method may 

have limitations in terms of its optimization approach, or the specific criteria used for 

evaluating sensor orientations. 

Further analysis and explanation from this paper would be required to fully under-

stand the reasons behind the observed performance differences and to provide a more 

comprehensive assessment of the proposed method’s advantages and disadvantages com-

pared to other methods. 

5.3. Fixed Wing 

An aeroplane is undoubtedly an intricate complex of numerous integrated systemic 

constituents, each meticulously designed to manoeuvre a predetermined section as its 

purpose. These structural subsystems are vulnerable to the risk facets involved in the 

flight undertakings, particularly the wings, which are subjected to severe circumstances 

encompassing myriad reverberations and vibratory jolts. For the examination of the ro-

bustness and structural coherence of the wings, a specified wing of precisely two and one-

half meters in gauge, comprising ribs, skins, and spars, was selected as a further paradigm 

to evaluate the posited MOHGPSO. The marginally constrained FE model, i.e., with a riv-

eted pinion at the core, has been exemplified in Figure 8. Expecting an expedient evalua-

tion, specifically the out-of-plane DOF directions were considered as nominal sensor po-

sitions in Particle Swarm. Additionally, the modes and frequencies in Table 2, and also 

demonstrated in Figure 9, were used as the HGPSO load, while placing the ten considered 

sensors within the depicted wing framework. During MOHGPSO’s convergence at the 

9th step, the contributions of the EfI and EVP are perceived to have an overall dominance. 
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Figure 8. The fixed wing’s determinate entity model. 

 

Figure 9. The fixed wing modal shapes. 

The evaluation parameters in the fixed-wing aircraft experiment may be inconsistent 

with the spring–mass system due to the differences in the nature and complexity of the 

two systems. The fixed-wing aircraft is a complex system with numerous integrated com-

ponents, such as wings, ribs, skins, and spars, designed to withstand various flight condi-

tions and vibrations. The evaluation parameters for the fixed-wing aircraft experiment 

may focus on factors specific to aircraft structures, such as robustness, structural coher-

ence, and the ability to withstand reverberations and vibratory jolts. On the other hand, 

the spring–mass system is a simplified model used to study the dynamics of a mass at-

tached to a spring, which may have different evaluation parameters, such as natural fre-

quency, damping ratio, and mode shapes. The inconsistency in evaluation parameters be-

tween the fixed-wing aircraft experiment and the spring–mass system may be due to the 

different objectives and requirements of the two systems. 

The fitness function cumulatively approaches estimations of 0.79 with advancements 

in step. A sensor orientation computed through the conglomeration of all the OSP meth-

ods is seen to be collectively focused mostly on terminal sections of the wing. Regarding 

the quantification procedure of these methods, this finding ensures a considerable MSE 

influence. 

5.4. Optimized Sensor Positions in Fixed Wing Aircraft Experiments 

Optimized sensor positions in fixed-wing aircraft experiments can be determined us-

ing advanced optimization techniques and algorithms. One approach is to use the 

MOHGPSO algorithm, which considers multiple objectives and constraints to find the op-

timal sensor positions. OSP methods can also be employed to identify the most effective 
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locations for sensors on the aircraft structure. These methods take into account factors 

such as the structure’s vulnerability to risk factors, the efficiency of data collection, and 

the conservation of sensor nodes’ energy. The optimized sensor positions can be deter-

mined by analyzing the results of the optimization algorithms and selecting the positions 

that provide the best performance in terms of structural health monitoring and the dura-

bility of the aircraft. 

Sensor orientation determined by all OSP techniques is primarily focused on wing 

terminals. This indicates a significant MSE effect on these approaches’ quantification. The 

MOHGPSO has six visible sensor orientations at the wing’s front and back. Three neigh-

boring sensors acquired using EfI functions have totally distributed locations, demonstrat-

ing the hypothesized combined processes’ effectiveness and the possibility of recurrence 

improvement. This supports the consideration of Table 3’s criteria. Even slight decreases 

in the DET of the FIM index of the proposed algorithm increase SDI performance by im-

proving sensor orientations, proving its practicality. 

Using data from sensors placed at the respective optimal configuration in the case of 

each OSP method, the respective modal properties are deduced and then treated as a vec-

tor of decision variables. During the course of the simulation, two systems, the spring–

mass system and the fixed-wing of the airplane, are presented for optimal sensor place-

ment by the proposed multi-objective methodology. It shows the frequency of the three 

vibrational modes calculated for the system’s spring–mass and fixed wing. These modes 

are calculated for 20 degrees of freedom. These values were deduced by considering a 

MOHGPSO load and a sensor set considered for inspection. After this, at the various sen-

sor positions, the MOHGPSO dispenses six visibly dispersed sensor orientations placed 

at the frontal and rear extremities of the wing framework. Through the EfI functions, the 

three neighbouring sensors obtained have thoroughly sca�ered positions, projecting the 

efficacy of the posited combined functions while indicating the feasibility of recurrence 

improvement. This finding can account for the evaluation of the aforementioned criteria 

as listed in Table 3. Even trivial reductions in the DET of the FIM index of the proposed 

algorithm improved the performance of SDI by enhancing the sensor orientations, indi-

cating the feasibility of the presented method. 

6. Conclusions and Future Work 

This paper addresses the challenges of a novel MOHGPSO algorithm for optimal sen-

sor placement in SHM systems. It employs six established OSP methods to generate a Pareto 

front, which is systematically analyzed and archived through GRA and FDM. The proposed 

approach autonomously determines the most relevant sensor placements in the combined 

fitness function without artificial interventions, highlighting its superior performance. The 

study’s findings have implications for decision-makers in the engineering domain, provid-

ing comprehensive insights into the operation, design, and management of structures 

throughout their lifetimes. By achieving a Pareto front, the study enables decision-makers 

to evaluate and select sensor placements based on multiple criteria simultaneously, maxim-

izing the effectiveness and efficiency of SHM systems. It also contributes to the preference 

of multi-objective optimization in SHM over the single-objective approach, as it allows for a 

trade-off of distinct objectives and avoids overlooking potential optimal sensor placement 

methods. The MOHGPSO algorithm’s convergence and coverage in modelling Pareto opti-

mal solutions contribute to the efficient determination of the Pareto optimal solution set 

without the need for extra weights or aggregation. The method requires the assignment of 

weight factors to each aim, which can be arbitrary in the absence of supported computation 

or reference. Revising the weight factors for a combination of objectives incurs high compu-

tational costs. The proposed method aims to find a precisely explicit Pareto optimal solution 

set with minimal function evaluation. However, there is a trade-off between coverage and 

convergence, requiring an effective approach to counterbalance these factors. Results from 

assessments on a spring–mass system and fixed-wing subsystem highlight MOHGPSO’s 

superiority over generic methods, demonstrating reflexive determination of relevant sensor 
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configurations. Future suggestions include synchronized recombination of OSP functions 

and leveraging Artificial Intelligence and Big Data analytics for optimal solutions, enhanc-

ing efficiency and accuracy. Multi-objective optimization algorithms, like MOHGPSO, are 

acknowledged for achieving a superior trade-off in addressing distinct objectives compared 

to single-objective methods. 
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