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Abstract: The logistic regression model is a simple and classic approach to
binary classification, where in sparse high-dimensional settings, one believes
that only a small proportion of the predictive variables are relevant to the
response variable with nonnull regression coefficients. We focus on regular-
ized logistic regression models and the analysis is valid for a large group of
regularizers, including folded-concave regularizers such as MCP and SCAD.
For finite samples, the discrepancy between the estimated and true non-
null coefficients is evaluated by the false discovery and true positive rates.
We show that the false discovery rate can be described using a nonlinear
tradeoff function of power asymptotically using a system of equations with
six parameters. The analysis is conducted in an “average-over-components”
fashion for the unknown parameter and follows the conventional assump-
tions of the literature in the relevant field. More specifically, we assume
a linear growth rate n/p → δ > 0 covering not only the typical high di-
mensional settings where p ≥ n but also for n > p. Further, we propose
two applications of this tradeoff function that improve the reproducibil-
ity of variable selection: (1) a sample size calculation procedure to achieve
a certain power under a prespecified level of false discovery rate using the
tradeoff; (2) calibration of the false discovery rate for variable selection tak-
ing power into consideration. A similar asymptotic analysis for the model-X
knockoff, which provides a selection with a controlled false discovery rate, is
investigated to show how to compare two selection methods by comparing
the tradeoff curves. We illustrate the tradeoff analysis and its corresponding
applications using simulated and real data.
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1. Introduction

The classic maximum likelihood estimators (MLE) possess properties such as
asymptotic normality and consistency under regularity conditions in the fixed p,
n → ∞ setting. When p is considerably large and grows simultaneously with n
following a linear order, the MLE for a high dimensional logistic regression model
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was studied in [44, 42] when the parameter vector β ∈ Rp is unstructured (with-
out assuming it sparse, block-sparse, etc.). One of their findings is that the MLE
of the logistic regression coefficients is biased due to high dimensionality, and the
bias can be obtained by solving a system of nonlinear equations with three un-
known parameters relying on the approximate message passing (AMP) analysis.

However, the ratio n/p is often less than 1 and nonnegligible for high di-
mensional data, for which the regularized estimators are popular options. [40]
developed a system of equations with six parameters to characterize the limiting
behavior of the regularized logistic regression estimators. This work covers both
n > p and n ≤ p settings with structured parameter vectors, e.g., sparse, block-
sparse vectors. The system of equations with six parameters resembles the one
obtained by the AMP analysis in [44, 42], but was derived through an alternative
framework called convex Gaussian min-max theorem (CGMT) [27, 28, 45] in the
compressed sensing field. An attractive feature of the CGMT framework is that
the proof technique is less stringent on the i.i.d. Gaussian assumption on the
components of the design matrices compared to the AMP analysis. Literature
on the AMP analysis has attempted to relax such assumption mainly from two
aspects: (1) by generalizing the limiting analysis from i.i.d. Gaussian random
matrices to other random matrices, for example, [22, 24, 39, 38]. Although the
Gaussian distribution assumption can be relaxed, the i.i.d. assumption is more
challenging to handle; (2) incorporate a general Gaussian matrix X ∼ N(0,Σ)
with an arbitrary covariance matrix [14, 44, 56]. This is often performed by
assuming the covariance matrix Σ is nonsingular, the inverse of the covariance
matrix exists, and the parameter vector β is unstructured. The analysis is then
performed through (XΣ−1/2)(Σ1/2β), where Σ1/2 serves as a “preconditioner”
to reduce the correlations between predictive variables. However, precondition-
ing is far more complex for sparse high-dimensional regression, which is the main
topic of this paper. The issues were systematically discussed in [31] using de-
pendency graphs of the distributions of X. [31] first explained that it is possible
in theory to “precondition” X when the dependency graph of the distribution
of X has low treewidth. The treewidth describes the size of the largest subset
of connected Σij that is the smallest among all possible tree decomposition;
intuitively, it refers to the size of group correlated variables. The preconditioner
is constructed through a sparse Cholesky decomposition of Σ = Σ1/2(Σ1/2)�
to guarantee that both Σ1/2 and Σ−1/2 are sparse preserving. That is, the spar-
sity of the covariance matrix of the preconditioned XΣ−1/2 and the parameter
Σ1/2β are preserved. In practice, when Σ is unknown, the preconditioner can be
approximated by algorithms such as block Cholesky factorizations while care-
fully controlling errors from the factorization. “Precondition” for X with high
treewidth will fail for sure. One obvious reason is that the sparse structure
of β could hardly be kept after the transformation Σ1/2β, which intuitively
would cause regularization to fail. The limiting analysis in the CGMT frame-
work can be easily extended to random matrices with elliptical distributions or
isotropically random orthogonal matrices, which are row orthogonal satisfying
XX� = In, see [46, 45]. The generalization to other random design matrices



A tradeoff curve in sparse logistic regression 397

in the CGMT framework is natural and suitable for dealing with sparse high
dimensional regression when p > n. Abundant literature has been devoted to
using the AMP framework to analyze high-dimensional linear regression models.
One major research line is the asymptotic distribution-related work, including
bias correction and asymptotic mean squared error for linear regression [see for
example, 15, 4, 8, 57, 13, 12]. The AMP-based analysis for linear regression was
extended to evaluate the falsely selected null components of the Lasso estimator
in high dimensional linear regression models when p > n, see [41, 48, 49, 50].

Another research line investigating the property of variable selection mostly
has requirements on the sparsity, i.e., the number of nonnull coefficients satisfies
certain orders of p, n. For instance, this is the case for the selection consistency
of regularized estimators, which states that the nonnull coefficients are correctly
identified in probability [see for example 16, 19, 58, 55, 32]. Although asymptotic
selection consistency is mathematically elegant, it is hard to achieve for finite
samples, which motivates the study of the discrepancy between selected and
the true nonnulls, where the true positive rate (FDR) and false discovery rate
(FDR) play an important role.

In ultra-high dimensional settings, when the number of parameters p is much
larger than n, selection by regularization-based methods becomes unstable.
Then, auxiliary model-based variable screening methods are proposed, starting
from [17] for linear models using Pearson correlation to the subsequent serial
work such as [20, 18, 29, 51, 53]. Due to the concern for model-misspecification,
model-free screening methods attracted attention leading to methods such as
[33] using distance correlation, [35] based on Kolmogorov-distance for binary
classification, [37] using ball correlation.

Driven by the two concerns mentioned above, model-free variable selection
with simultaneous FDP control gradually became a new research interest. A pop-
ular FDP control approach builds on conditional independence, for instance,
[47, 34, 10, 11]. Especially, the model-X knockoff [11] will be compared in this
paper with variable selection by a regularized estimator. A variable is selected
when its feature statistic, which compares the importance of the original variable
and the contrast knockoff variables, exceeds a certain threshold. Furthermore,
the choice of the threshold is determined by controlling the estimated FDP. The
flexible choice of the feature statistic is a big advantage of the model-X knockoff
method. [2, 11] proposed several example options of the feature statistic such
as the Lasso Signed Max statistic and Lasso Coefficient Difference statistic; but
the potential choice is not only limited to these. This paper considers logistic
regression, where the predictive variables are correlated with the response vari-
able through the regression coefficient vector. We consider taking as the feature
statistic the Lasso Coefficient Difference statistic due to the connection with the
regularized logistic regression. Further, the model-X knockoff has been extended
to FDP control in hypothesis testing for the generalized linear model since one
can easily turn the variable selection into testing if the components of the re-
gression coefficient vector are nulls. Some selected references on FDP control in
the domain of hypothesis testing are [25, 5, 6, 23, 26], we refer to [25] for a more
thorough literature review since hypothesis testing is less the focus of this paper.
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In this paper, see Section 2, we follow the logic of [41, 48, 49, 50] by investi-
gating the true positive proportion (TPP) and false discovery proportion (FDP)
in the limit. In addition, we consider regularized logistic regression estimators,
which initiate future work on generalized linear models. The analysis is valid
for a wide class of regularization functions, and we showcase the �1-regularized
logistic regression for simplicity. We incorporate the modern data structure in
which the number of variables p is nontrivial compared to the sample size n by
assuming a ratio n/p → δ ∈ (0,∞). Especially our work includes the case where
n > p but p is nontrivial, where variable selection by regularized estimators is
often used in practice, but the selection performance is not thoroughly discussed
in the relevant literature. Based on the system of six equations in [40] using the
�1-regularizer, we obtain the limiting expressions of the TPP and FDP.

A tradeoff curve for �1-regularized logistic regression can be constructed using
the limiting expressions, clearly illustrating the nonlinear association between
TPP and FDP. Further, similar to classical hypothesis testing, the tradeoff curve
can be used to compare the selection power between multiple selection methods.
For comparing two selection methods, we consider an FDR-controlled selection
called model-X knockoff [11], see Section 3 since its construction is based on �1-
regularized logistic regression, which allows obtaining the limiting expressions of
FDP and TPP similarly, see also [49, 50] for a linear model. The tradeoff curve
is first utilized to investigate the impact of the averaged signal strength and the
sparsity on selection power for a given FDR level in Section 2.3. We propose
a sample size calculation based on the impact of the ratio n/p and FDR level
calibration. This is applied in Section 4 using the Wisconsin Breast Cancer
dataset for potential practical use of the tradeoff curves. The Appendix contains
the technical results.

2. High dimensional logistic regression

For a p-dimensional vector X = (X·1, . . . , X·p) consisting of p predictive vari-
ables X·j , j = 1, . . . , p, a binary response variable Y ∈ {0, 1} is modelled by a
logistic regression model using X as follows

P (Y = 1 | X) = ρ′
(
Xβ∗), (1)

where the function ρ′(t) = 1
1+e−t is the first derivative of the logistic link function

ρ(t) = log
(
1 + et

)
. (2)

The X·j ’s, with j = 1, . . . , p, are combined using the coefficient vector β∗ ∈ Rp,
where the absolute value |β∗

j | indicates the importance of X·j to Y . Due to
advances in data collection, we often obtain large datasets with excessive pre-
dictive variables, among which most are irrelevant to the response variable of
interest. Thus, we assume a sparse vector, i.e., β∗

j = 0 with probability 1 − s
to describe this scenario, see Assumption (A2) for details. The sample pairs
(Yi, Xi·), i = 1, . . . , n are i.i.d. copies of (Y,X) satisfying Assumption (A1).
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A strong point of this paper is that it investigates a linear growth framework
where n/p → δ ∈ (0,∞) when n, p → ∞ which covers both n > p and n ≤ p
cases. We state the following assumptions. However, see our introduction and
[31] for a possible extension of (A1) to correlated designs.

(A1) Standard Gaussian design: the vectors Xi· ∼ N(0, 1
pIp), i = 1, . . . , n are

independent and identically distributed (i.i.d.).
(A2) The components of the p-vector β∗ are i.i.d. samples of a random variable

B with signal strength E(B2) = κ2 and p.d.f

fB(β) = (1 − s) · δ0(β) + s · fB′(β),

where fB′ denotes the p.d.f. of the nonnull components B′ of B.

Further, we clarify the sparsity parameter s. The convention of such “average-
over-components” analysis does not address sparsity assumptions and often as-
sumes ‖β‖0/p → s when p → ∞. Unlike [58, 21], which discuss the performance
of the vector β̂ and impose assumptions on s in order to bound β̂ − β when
deriving theoretical results, the asymptotic results in the CGMT framework are
derived for the components of β on average and s is not involved in the deriva-
tion. In fact, the result in [1] is valid for general β where a sparse structure stated
in (A2) is a special case. This sparsity parameter simply indicates that we let a
small proportion of β be nonzero. We specifically choose the mixture distribution
in Assumption (A2) such that the impact of the sparsity level s can be visu-
alized. Also, Figure 2 shows that our theoretical analysis of the mean-squared
error still holds when s = 0.5. This obviously violates the sparsity assumptions
in [58, 21] but does not affect our analysis. The limiting performance analysis
based on the system of equations still holds when β is unstructured/dense when
s = 1 and the tuning parameter λ of the regularization term is set to zero. This
has been discussed in detail in [1, Section 4.1], and the results agree with [42]
in the AMP framework.

To estimate β∗, we consider regularized logistic regression estimators ob-
tained by solving a minimization problem as follows

β̂(λ) = arg min
β

1
n

n∑
i=1

{
ρ(Xi·β) − Yi(Xi·β)

}
+ 1

p

p∑
j=1

R(βj ;λ), (3)

where λ ∈ R+ is the tuning parameter for the regularizer R(·;λ).
Since we allow for a potential sparse structure of β∗, the following regularizers

are great examples for performing selection:

1. �1-regularizer: R�1(βj ;λ) = λ|βj |.
2. Bridge: RB(βj ;λ, a) = λ|βj |a, for a > 0.
3. Smoothly clipped absolute deviation (SCAD [16]):

RSCAD(βj ;λ, a) =

⎧⎪⎨⎪⎩
λ|βj | |βj | ≤ λ
2aλ|βj |−β2

j−λ2

2(a−1) λ < |βj | < aλ

λ2(a + 1)/2 |βj | ≥ aλ,
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for a > 0. The value a = 3.7 is suggested in [16].
4. Minimax concave penalty (MCP [54]):

RMCP(βj ;λ, a) =
{
λ|βj | − β2

j /2a |βj | ≤ aλ

aλ2/2 |βj | > aλ,

for a > 1 with recommended value a = 2 [54].

The SCAD and MCP regularizers are known to be “folded-concave”; that is, the
regularization functions are symmetric around zero and concave on R+ and R−.
They possess desirable properties such as “unbiasedness”, “sparsity”, and “con-
tinuity” [16]. The bridge regression, when a ∈ (0, 1), achieves “unbiasedness”
and “sparsity” but is less favored due to the discontinuity of the estimator as a
function of the data. Our investigation focuses on the variable selection proper-
ties of the regularizers. Thus, we do not discuss a > 1 for the bridge regularizer
since “sparsity” is not well achieved, implying that parameters for irrelevant
predictors might not be set to zero properly.

2.1. A system of nonlinear equations

We discuss a linear growth framework where n/p → δ ∈ (0,∞) when n, p → ∞;
meanwhile, Assumption (A2) gives the limiting representation of the compo-
nents of β∗ in an “average-over-components” sense. Since n, p grow simultane-
ously following a linear growth rate, we denote p, n → ∞ as pn → ∞ or simply
p → ∞ throughout this paper. The limiting behavior of the estimator β̂ in (3)
averaged over components is determined by the ratio δ, the signal strength
κ ∈ R+, and the tuning parameter λ. Given κ, δ, for any λ, [40] character-
izes the limiting performance of β̂ by a system of equations consisting of six
parameters (α, σ, γ, θ, τ, r). The equations incorporate the logistic link function
and the �1-regularizer separately by their corresponding proximal operators. For
any deterministic function f̃ , its proximal operator is defined as

Proxtf̃(x)(v) = arg min
x

{
1
2t‖x− v‖2

2 + f̃(x)
}
, (4)

where t is the parameter. The proximal operator guarantees unique minimizers
of the l2-regularized f̃ function, where f̃ can be non-differentiable. Since [40] im-
poses convexity on the function f̃ in (4), we consider investigating the adaptive
Lasso [58] which incorporates a weighting scheme for the regularizer by taking
R(βj ;λ) = wj(λ)|βj |. The rationale is as follows: the �1-norm guarantees that
the regularizer is convex, and it is obvious that the �1-regularizer is a special
case of the adaptive Lasso by taking equal weights wj(λ) = λ. Further, the
adaptive Lasso can be used to approximate nonconvex regularizers, including
the bridge, SCAD, and MCP, by the local linear approximation (LLA) algo-
rithm, see [21]. This linear approximation is achieved by taking the weights in
the adaptive Lasso to be the first derivative of the regularization functions. For
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sparse logistic regression, it was shown by [21] that the LLA algorithm converges
after two iterations to an oracle estimator with a high probability.

Specifically, the proximal operator for f̃(x) = w|x| with parameter t follows

Proxtw|x| = ηtw(x) = sgn(x)(|x| − wt)+. (5)

The tuning parameter w varies for each component of β. When approximating
the nonconvex regularizers, the weights take wj = R′(|βj |;λ) where R′ is the first
derivative of the regularizer R(|βj |;λ). In practice, we plug in an initial estimator
β, such as the �1-regularized estimator, to obtain the estimated weights.

Then, the weight vectors used to approximate the �1, SCAD, and MCP reg-
ularizers are as follows

1. (�1-regularizer) w�1(x) = λ.
2. (SCAD) wSCAD(x) = λI{x ≤ λ} + (aλ−x)+

a−1 I{x > λ}.
3. (MCP) wMCP(x) = (λ− x

a )+.

By (A2), the components of the weight vector, when assigned 1/p weight,
converge weakly to w(B) by continuous mapping theorem. While plugging in
an initial estimator in practice, the asymptotic analysis of the weight vector
is much more complicated and requires a second-stage analysis based on the
system of equations (6). However, the estimated weights ŵj = w(β̂j) can still
be expressed as a function of B in the limit as a composite function of w(·) and
the proximal operator of the regularization function of the initial estimator.

The system of equations is obtained by rewriting (3) as two min-max opti-
mization problems using the Lagrange multiplier method resulting in parameters
θ, r among (α, σ, γ, θ, τ, r). The Lagrange multiplier incorporates equality con-
straints in the optimization equations; see [40, Eq. (54) and above Eq. (45)] for
technical details.

Then the system of equations with six parameters (α, σ, γ, θ, τ, r) for the
regularized logistic regression [40], given δ, κ, λ, is as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ2α = E

[
B · ηw(B)στ

(
στ ·

(
θB + r√

δ
Z

))]
γ = 1

r
√
δ
E

[
Z · ηw(B)στ

(
στ ·

(
θB + r√

δ
Z

))]
κ2α2 + σ2 = E

[
ηw(B)στ

(
στ ·

(
θB + r√

δ
Z

))2]
γ2 = 2

r2E
[
ρ′(−κZ1) ·

(
καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2)

)2]
θγ = −2E

[
ρ′′(−κZ1) · Proxγρ(·)(καZ1 + σZ2)

]
1 − γ

στ = E
[
2ρ′(−κZ1) ·

(
1 + γρ′′

(
Proxγρ(·)(καZ1 + σZ2)

))−1]
,

(6)

where the first three equations involve the proximal operator of the regularizer
in (5), the last three expressions involve the proximal operator of the logistic
link function ρ in (2). The random variables Z,Z1, Z2 ∼ N(0, 1) are mutu-
ally independent and independent of B; and Z1, Z2 come from decomposing
(X1·, . . . , Xn·)� to orthogonal matrices [40, see p17 and later]. Importantly, the
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first three equations, when conditioning on B = β∗
j , provide an approxima-

tion for the components of the regularized logistic regression using the soft-
thresholding function [40, Eq. (90)]

β̂j = ηw(β∗
j )στ

(
στ ·

(
θβ∗

j + r√
δ
Z

))
, j = 1. . . . , p. (7)

The right-hand-side of (7) suggests that β̂j can be understood as a thresholded
random variable which is a convolution of the true signal B and a scaled standard
normal random variable Z. Then, the limiting performance of the regularized
logistic regression estimator can be investigated in an averaged-over-components
of β∗ fashion which will be stated in detail in Lemma 2.1.

The six parameters which are critical for describing β̂j in the limit, refer to

α: denotes the correlation and is relevant for the bias of the estimator β̂. It is
defined as in [40, Corollary 1], where P→ denotes convergence in probability,

1
‖β∗‖2

β̂β∗ P→ α. (8)

σ: relevant to the MSE. It is defined in [40, Corollary 2] using the following
expression 1

p‖
β̂
α − β∗‖2

2
P→ σ2

α2 .
γ: parameter of the proximal operator of the logistic link function ρ(·).
θ: Lagrange multiplier in [40, Eq. 54].
τ : part of the parameter (λστ) of the proximal operator of the regularizer.
r: square-root of the average of a Lagrange multiplier [40, see above Eq. (45)].

The six parameters depend on the tuning scheme w, but the dependence is not
explicitly indicated to simplify the notation. Specifically, when taking the tuning
function w(β;λ) = λ, the proximal operator in (5) corresponds to the soft-
thresholding operator and the system of equations in (6) can be used to analyze
the limiting performance of the �1-regularized logistic regression model. As a
clarification, we make a comparison of the above six equations to Conjecture 4.3
of [43], which states a set of four equations to characterize regularized estimation
in logistic regression models. Six equations are required to guarantee unique
solutions of the six parameters (α, σ, γ, θ, τ, r). The six parameters arise from the
proof technique in the CGMT framework. In contrast, Conjecture 4.3 is derived
from the AMP framework, where a set of four equations suffices. The reason for
considering the CGMT framework instead of AMP has been elaborated in the
Introduction section.

We present example curves of the fixed point solutions against the tuning
parameter λ for different ratios δ = 0.5, 1, 5 in Figure 1. We observe that the
fixed point solutions stabilize at 0 for large λ, which typically leads to β̂ with
all-zero components. By observing (8), it is reasonable that α converges to 0
when the components of β̂ are all zero since the inner product β̂β∗ = 0 in that
case. The MSE curves (see (9) for the definition) in the upper-left panel stabilize
at the true signal strength when β̂ has all-zero components.
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2.2. Limiting expressions of performance measures

The investigation of the limiting performance of the �1-regularized logistic re-
gression relies on [40, Theorem 1]. This theorem is similar to [3, Theorem 2] in
the sense that it provides a powerful tool to analyze the averaged performance
of the estimator β̂ in the limit. For the completeness of this paper, we state
Theorem 1 of [40] in Lemma 2.1. Convergence in probability is obtained by ap-
plying the strong law of large numbers on the β∗

j ’s and the Gaussian min-max
theorem [27, 28].

Lemma 2.1. Take β̂(λ) as in (3), where Xi· satisfies (A1) and the components
of β∗ satisfy (A2) with density function fB. Assume for given parameters κ, δ, λ,
that the system of equations in (6) has a unique solution for the six parameters
(α, σ, γ, θ, τ, r). Then, as p → ∞, for any locally-Lipschitz function Ψ : R×R→
R,

1
p

p∑
j=1

Ψ
(
β̂j , β

∗
j

) P→ EΨ
(
ηw(B)στ

(
στ ·

(
θB + r√

δ
Z

))
, B

)
,

where Z ∼ N(0, 1) is independent of B.

By choosing different functions Ψ, we are able to investigate various per-
formance measures in the limit. We introduce here two special choices of the
function Ψ leading to the mean-squared-error (MSE) and out-of-sample classi-
fication accuracy.

2.2.1. Asymptotic MSE

By choosing Ψ(x, y) = (x− y)2 in Lemma 2.1 and defining the MSE of β̂ as

MSE(β̂) = 1
p

p∑
j=1

(
β̂j − β∗

j

)2
,

the asymptotic MSE expression E[{ηλστ (στ · (θB + r√
δ
Z)) − B}2] follows im-

mediately. By using the system of equations (6), Proposition 2.2 provides a
simplified expression, its proof is in Appendix A.1.1.

Proposition 2.2. Take β̂(λ) as in (3), where Xi· satisfies (A1) and the com-
ponents of β∗ satisfy (A2) with density function fB. For given parameters κ, δ,
λ, assume that the six parameters (α, σ, γ, θ, τ, r) are a unique solution to the
system of equations in (6). Then, when p → ∞,

MSE(β̂) = 1
p

p∑
j=1

(
β̂j − β∗

j

)2
P→ E

[
ηλστ

(
στ ·

(
θB + r√

δ
Z

))
−B

]2

= κ2(α− 1)2 + σ2, (9)

where Z ∼ N(0, 1) is independent of B.
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Fig 1. Tuning parameter λ against asymptotic MSE (upper-left), fixed point solutions of
α (upper-right), σ (bottom-left), γ (bottom-right). We take the signal strength κ2 = 2, the
sparsity s = 0.2, the nonnull component B′ ∼ N(0, κ2/s).

We plot the obtained asymptotic MSE expression in (9) against λ in the
upper-left panel of Figure 1, where we clearly see that there is a unique minimum
of the MSE curves.

By Proposition 2.2, we propose to tune the parameter λ ∈ R+ by minimizing
the asymptotic MSE expression, i.e.,

λopt =arg min
λ

E

[{
ηλστ

(
στ ·

(
θB+ r√

δ
Z

))
−B

}2]
= arg min

λ

{
κ2(α−1)2+σ2},

(10)
where given κ, δ, the parameters of the system of equations (α, σ, γ, θ, τ, r) vary
for different values of the tuning parameter λ. The proposed optimal tuning
parameter in (10) is important for Section 3 using selection by knockoffs, where
we first tune λ. Figure 2 presents the minimum MSEs obtained by (9) for the
following settings: (Left panel) s = 0.1, κ2 = 2, δ = 0.5, 1; (Right panel) s = 0.5,
κ2 = 2, δ = 2, 5. Further, the limiting minimum MSEs obtained by (9) shown
by solid triangles are compared with the boxplots based on R = 300 times finite
sample replications. In each replication, a new dataset is randomly generated
and β̂ is obtained using the R package glmnet with λ obtained by leave-one-out
cross-validation (CV). The solid triangle-shaped points refer to the minimum
MSE value from (9) and the horizontal lines refer to the median minimum MSE
by glmnet over 300 replications. We observe that the theoretical minimum MSE
is close to the median minimum MSE by leave-one-out CV. This agrees with
the conclusion from [52] for high dimensional linear models and suggests that
our theoretical tuning well approximates the optimal tuning by CV in practice.

The tuning in (10), see Figure 2, is important for the following reasons:
(1) Corollary 3.2 provides the limiting expressions for the tradeoff curves, which
requires tuning λ on the basis of limiting expressions. (2) Figure 2 shows that
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Fig 2. Minimum MSE from (9) (solid triangle) and boxplots for finite samples. The boxplots
are based on R = 300 times replication. In each replication, a new dataset is randomly
generated, and β̂ is obtained using the R package glmnet with λ set by leave-one-out cross-
validation. We present the following settings: (Left panel) sparsity s = 0.1, κ2 = 2, δ = 0.5, 1;
(Right panel) sparsity s = 0.5, κ2 = 2, δ = 2, 5.

the minimum MSE by Corollary 3.2 is very close to tuning by leave-one-out CV
which provides optimal tuning of λ and minimizes the estimation risk [52]. This
suggests that when tuning by Corollary 3.2 for limiting curves; the corresponding
limiting curves approximate the optimal situation for finite sample curves using
CV-tuned λ.

2.2.2. Classification accuracy

Since logistic regression is a powerful classification tool, it is interesting to for-
mally investigate classification accuracy. Assume we have new samples (Y ′

i·, X
′
i·),

i = 1, . . . , nnew for prediction. By the logistic link function in (1), Ŷi· = 1 is clas-
sified to have label 1 if Xi·β̂ ≥ 0 and 0 if Xi·β̂ < 0. Consequently, we define the
classification accuracy (CA) by

CA(β̂) =
nnew∑
i=1

I

{{
Y ′
i − I

{
p∑

j=1
X ′

i,j β̂j ≥ 0
}

= 0
}}

/nnew.
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When nnew → ∞, we obtain the following convergence by the strong law of
large numbers.

Proposition 2.3. For a fixed regularization parameter λ > 0, let Xi· sat-
isfy (A1) for all i = 1, . . . , n and the entries of β∗ satisfy (A2) with density
function fB. Given parameters κ, δ, λ, assume that the system of equations
in (6) has a unique solution to the six parameters (α, σ, γ, θ, τ, r). The following
almost sure convergence holds for the out-of-sample prediction accuracy

CA(β̂) a.s.→ P

({
Y − I

{[
p∑

j=1
X·j · ηλστ

(
στ ·

(
θβ∗

j + r√
δ
Z

))]
≥ 0

}}
= 0

)
.

(11)

Proof. By [40, Eq. (90)] taking

β̂j = ηλστ

(
στ ·

(
θβ∗

j + r√
δ
Z

))
, j = 1, . . . , p

and applying the strong law of large numbers letting nnew → ∞, (11) follows
immediately.

By observing the almost sure convergence in Proposition 2.3, it is obvious
that the classification accuracy is determined by the distribution of Y,X, and
the estimator β̂. Further, the estimator β̂, for a given tuning parameter λ, can
be expressed using the six parameters (α, σ, γ, θ, τ, r) which are uniquely deter-
mined by the ratio n/p → δ and the signal strength κ. Hence, the classification
accuracy for the data generating process in (1) is determined by δ, κ as a func-
tion of λ. That is, for a system with fixed δ, κ, for given λ, we obtain a set of
fixed point solutions (α, σ, γ, θ, τ, r), which determines the limiting classification
accuracy in (11) for logistic regression in (2).

2.3. A tradeoff curve based on selection by β̂ �= 0

Emerging literature has attempted to analyze the tradeoff between true and
false discoveries, i.e., the correctly and incorrectly estimated nonnulls for high
dimensional linear models using the limiting AMP analysis, see for example
[49, 41, 9, 48]. The tradeoff curve helps us to understand the connection be-
tween the falsely estimated nonnulls and the correctly estimated nulls. We first
show Lemma 2.4 for the Gaussian min-max theorem framework for a smoother
transition to obtain the limiting proportions of FDPest and TPPest. Lemma 2.4
can be obtained by taking the locally-Lipschitz function Ψ in the general result in
Lemma 2.1 to be an indicator function for events such as {j : βj = 0, β̂j(λ) = 0}.
Lemma 2.4 agrees with [49, Lemma 2.1] and [41, Lemma A.1] for the case of
linear regression, which are obtained similarly using [7, Theorem 1] and [4, The-
orem 1.5] in the approximate message passing framework. Further, the system
of equations (6) specifies certain parameters that are relevant to the true pa-
rameter vector β∗, such as B′, B, κ2, s; this structure has both pros and cons.
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Due to this specification, we can investigate the impact of sparsity s and sig-
nal strength κ2 on the selection tradeoff. The downside is that plugging in the
estimators of these parameters brings bias to the tradeoff curve for practical
use.

To discuss the selection tradeoff, we first introduce the “false discovery pro-
portion” (FDP) and “true positive proportion” (TPP) for variable selection. In
addition, specifying the sparsity s is unavoidable since FDP and TPP are com-
putable only when the estimated nulls (nonnulls) are compared with the true
nulls (nonnulls). We denote the index set H = {1, . . . , p}.

For any λ > 0 with a corresponding estimator β̂(λ) in (3), we denote V est(λ)=
#{j ∈ H : β̂j(λ) 
= 0, βj = 0} the number of false discoveries, T est(λ) = #{j ∈
H : β̂j(λ) 
= 0, βj 
= 0} the number of true discoveries, and #{j ∈ H : βj 
=
0} → s · p the number of true nonnulls.

The “false discovery proportion” (FDP) and the “true positive proportion”
(TPP) for the estimator β̂(λ) are defined as

FDPest = V est(λ)
max(#{j ∈ H : β̂j(λ) 
= 0}, 1)

, (12)

TPPest = T est(λ)
max(#{j ∈ H : βj 
= 0}, 1) . (13)

By the system of equations in (6), we obtain the limiting expressions of
FDPest and TPPest in Lemma 2.4, letting pn → ∞. The proof is in Ap-
pendix A.1.2.

Lemma 2.4. For a fixed regularization parameter λ > 0, for i = 1, . . . , n let Xi·
satisfy (A1) and the components of β∗ satisfy (A2) with density function fB. In
addition, assume for given parameters κ, δ, λ, the system of equations in (6)
has a unique solution for the six parameters (α, σ, γ, θ, τ, r). Then, as p → ∞,
the �1-regularized logistic regression coefficient estimator β̂(λ) complies with

V est(λ)
p

P→ 2(1 − s) · Φ
(
− λ

r√
δ

)
, (14)

T est(λ)
p

P→ s · P
(∣∣∣∣θB′ + r√

δ
Z

∣∣∣∣ > λ

)
, (15)

where Z ∼ N(0, 1) independent of B′, and θ, r are unique solutions of the system
of equations (6) with six parameters (α, σ, γ, θ, τ, r). Consequently, the limiting
expressions of “false discovery proportion” (FDP) and “true posititve propor-
tion” (TPP) based on β̂ are as follows

FDPest(λ) P→
2(1 − s) · Φ(− λ

r√
δ

)

2(1 − s) · Φ(− λ
r√
δ

) + s · P (|θB′ + t2Z| > λ)
= fdpest(λ), (16)

TPPest(λ) P→ P

(
|θB′ + r√

δ
Z| > λ

)
= tppest(λ). (17)
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Fig 3. qB
′ (TPPest(λ); s, δ, κ2) = FDPest(λ) for δ = 0.5, s = 0.1, κ2 = 2. The blue dotted

curve qB
′ (tppest(λ); s, δ, κ2) = fdpest(λ) is obtained by the limiting expressions in (16), (17).

The red curves are from 10 times finite sample realization by glmnet.

The limiting expressions (16), (17) clearly show that tppest is a compo-
nent of the denominator of fdpest. This complies with the conclusion in [41]
that FDPest is a function of TPPest and relevant parameters. We denote this
function by qB

′(TPPest(λ); s, δ, κ2) = FDPest(λ) for which the limiting curve
qB

′(tppest(λ); s, δ, κ2) = fdpest(λ). Figure 3 shows example limiting and 10 times
finite sample tradeoff curves for δ = 0.5, s = 0.1 and κ2 = 2. The finite sample
curves are generated using p = 500 fitted by the R package glmnet. The dashed
turquoise curve is obtained by the limiting expressions in (16) and (17). The
overall trend of the finite samples curves is captured by the limiting curve. Due
to sampling variability, we observe the difficulty of selection, especially for low
TPP.

The derived limiting curve resembles the type-I and type-II error tradeoff
curves for classical hypothesis testing. It is foreseeable since, in principle, the
variable selection problem classifies the β∗

j ’s to be nulls and nonnulls. Then
the FDP and TPP are calculated by comparing the discrepancy between the
estimated and the true nonnull vector. For hypothesis testing, the hypothesis is
either true or false, which is also a binary outcome similar to a variable being null
or nonnull. The derived limiting function qB

′(TPPest(λ); s, δ, κ2) validates the
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Fig 4. Comparison of the impact of sparsity on the limiting tradeoff curve
qB

′(tppest(λ); s, δ, κ2) = fdpest(λ). The sparsity levels s = 0.01, 0.1 are considered for the
setting where κ2 = 2, δ = 0.5 (left panel), while the sparsity levels s = 0.1, 0.5 are considered
for the setting where κ2 = 2, δ = 2 (right panel).

tradeoff of type-I (FDP) and type-II (1-TPP) variable selection errors. Type-I
and type-II errors cannot be both low; focusing on minimizing the type-I error
would inflate the type-II error. For convenience, we follow the convention of
[41] and name the curve qB

′(TPPest(λ); s, δ, κ2) a “tradeoff” curve. Since the
tradeoff function qB

′(TPPest(λ); s, δ, κ2) has three deterministic parameters s,
δ, and κ2, we investigate the individual impact of the three parameters on the
tradeoff curve.

Figure 4 compares the tradeoff curve influenced by different sparsity values
for two settings: (1) κ2 = 2, δ = 0.5; (2) κ2 = 2, δ = 2. Since the consistency
of the �1-regularized estimator requires certain sparsity, for the setting where
δ = 0.5, i.e. p ≥ n, we consider high sparsity s = 0.01 and medium sparsity
s = 0.1. For δ = 2, i.e. p < n, we consider s = 0.1, 0.5. From Figure 4, we
observe that for given FDP level, high sparsity causes TPP loss, which in plain
words is: high sparsity induces difficulty in selecting relevant variables.

In addition, Figure 5 investigates the impact of the signal strength κ2 in
various settings where δ = 2, 5 and s = 0.1, 0.5. Two different signal strengths
κ2 = 2, 4 are considered. It is not surprising that, given FDP, we observe higher
TPP for stronger signal strength κ2.

Further, we propose two practical uses of the tradeoff curve for variable
selection—sample size calculation in Section 2.3.1 and FDR level calibration
in Section 2.3.2.
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Fig 5. Comparison of the impact of the signal strength κ2 on the limiting tradeoff curve
qB

′(tppest(λ); s, δ, κ2) = fdpest(λ). Two different signal strengths κ2 = 2, 4 are considered for
settings where δ = 2, 5 and s = 0.1, 0.5.

2.3.1. Sample size calculation

Similar to the hypothesis testing procedure, the FDP (type-I error) is often
predetermined. We manually set the FDP to be under a certain level q. By
using the limiting tradeoff curve qB

′(TPPest(λ); s, δ, κ), a corresponding tppest
can be determined by the inverse of qB′ . In experimental design, we expect the
experimenters to collect a certain number of variables in experiments indicating
unchanged p, s, κ2. Thus, for predetermined fdpest, one could consider multiple
values of δ corresponding to different sample sizes n, to achieve the desired
tppest.

Figure 6 shows an example simulation by fixing the sparsity s = 0.1, κ2 = 2
and for different ratios δ = 0.2, 0.5, 1, 2. As expected, given FDP, larger val-
ues of the ratio δ provide a higher TPP suggesting a higher percentage of cor-
rectly selected true relevant variables. In this example, if the experiment requires
FDP ≤ 0.2 and TPP ≥ 0.2, only δ = 2 suffices. Since Assumption (A1) suggests
independence of the predictive variables providing an optimal (uncorrelated)
design for selection, the TPPs obtained in this scenario provide an upper bound
for TPPs for fixed κ2, δ, and s. In practice, when the X.j ’s are correlated, we
expect a TPP loss resulting in a steeper tradeoff curve. This phenomenon is
relevant to the “irrepresentable condition” discussed in [36, 55]. In general, to
guarantee asymptotic selection consistency, the small eigenvalues of the popu-
lation covariance matrix of the submatrix consisting of the relevant variables
should be bounded away from zero. Some example population covariance ma-
trix structures such as constant positive correlation, power decay correlation,
and bounded correlation are discussed in [55]. But as mentioned in the Intro-
duction, sparsity pattern recovery of β̂ is merely an asymptotic property, and
the “irrepresentable condition” is often violated in practice making estimation
more challenging. When the desired TPP cannot be achieved for certain δ under
this uncorrelated design, this selection TPP is not achievable using this δ for
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Fig 6. The impact of the ratio δ on the limiting tradeoff curve qB
′ (tppest(λ); s, δ, κ2) =

fdpest(λ). The curves are obtained for different ratios δ = 0.2, 0.5, 1, 2 while fixing s = 0.2,
κ2 = 2.

any other correlation structure. Further, we observe a sharp decrease of TPP
for the �1-regularized logistic regression model compared to the �1-regularized
least-squares estimator for the linear regression model [41]. The detailed rea-
son for the sharp decrease is unknown but possibly due to the binary response
for logistic regression or the link function, which builds a nonlinear association
between X.j ’s and Y . This aspect deserves further investigation.

2.3.2. FDR level calibration

Often a dataset with fixed δ, s, κ2 is obtained, and we want to select variables rel-
evant to the response variable. While the selection is performed by �1-regularized
estimator, the tradeoff curve qB

′(TPPest(λ); s, δ, κ) can be utilized to determine
a suitable level q for FDP which correspondingly provides a reference level of
TPP. Setting a low target level of FDP would inevitably restrict the level of
TPP in high dimensions, suggesting that the selected variables can hardly pro-
vide sufficient information for further analysis since not many truly relevant
variables are selected. The proposed tradeoff curve could assist in determining
a suitable target FDP level for which the corresponding TPP level is adequate.
We illustrate this using the Wisconsin Breast Cancer dataset obtained from
the UCI machine learning repository in Section 4.
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3. Knockoff calibration

Section 2.3 introduced a TPP-FDP tradeoff curve for �1-regularized logistic
regression based on correctly and falsely estimated nonnulls. However, variable
selection by the regularized estimator β̂ has been controversial for long. The
selection uncertainty of β̂ causes false discovery bias, i.e, true nulls are falsely
selected, which causes concerns about the reproducibility of research in different
fields. Further, similar to hypothesis testing using the tradeoff curve to compare
multiple tests, we want to construct the tradeoff curve for an alternative selection
method. By comparing the curves in one plot, one can easily identify the method
with a better TPP for a given FDP.

For comparing the tradeoff curves, we consider an FDR-controlled selection
method called model-X knockoff [11], of which the selection still relies on regu-
larization hence it does not deviate far from the approach in Section 2.3. Fur-
ther, we want to investigate if selection by knockoffs has reasonable TPP. Since
controlling FDR would inevitably set restrictions on the selection, which intu-
itively would cause a loss on TPP, see [50] showing the power loss of knockoff
as opposed to selection by �1-regularized least-squares estimators for the linear
model.

Let the knockoff vector X ′ = (X ′
·1, . . . , X

′
·p) be an independent copy of X with

i.i.d components X ′
·j ∼ N(0, 1/p), j = 1, . . . , p. This also indicates that X ′ is

independent of Y since X ′ is simply an independent random Gaussian vector. By
this construction, we consider the optimal selection TPP for knockoffs since the
correlation between X ′ and X can affect the TPP. The samples X ′

i·, i = 1, . . . , n
are i.i.d. copies of the vector X ′. The importance of the original variables X·j ’s
is measured by an importance statistic in the knockoff framework, which is
computed by using the original variables X·j ’s and their knockoff counterparts
X ′

·j ’s corresponding to the estimator

β̂(λ) = arg min
β

{
n∑

i=1

(
ρ(X̃i·β) − Yi(X̃i·β)

)
+ λ

2p‖β‖1

}
, (18)

where X̃i· = (Xi·, X
′
i·), i = 1, . . . , n with true coefficient vector β̃∗ = (β∗�,0�

p )�,
0p = (0, . . . , 0)� ∈ Rp. With the extra p zero components, we denote the
number of parameters p̃ = 2p, the ratio n/p̃ → δ̃, and the sparsity (the limiting
probability of β being nonnull) s̃ = s/2. In addition, the signal strength becomes
‖β̃∗‖2

2/p̃ → κ̃2 = κ2/2.
Following the knockoff framework, for any importance statistic Wj and fixed

threshold t, the false discovery proportion (FDP) and true positive proportion
(TPP) are similar to the expressions in (12) and (13) with the selection adjusted
from β̂j 
= 0 to Wj ≥ t. Then, the false discovery proportion (FDP) for selection
by knockoffs is defined as

FDPkno(t) =
#{j ∈ H : Wj ≥ t, β∗

j = 0}
#{j ∈ H : Wj ≥ t} , (19)
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and the true positive proportion (TPP) is defined as

TPPkno(t) =
#{j ∈ H : Wj ≥ t, β∗

j 
= 0}
#{j ∈ H : β∗

j 
= 0} . (20)

To obtain detailed FDPkno and TPPkno expressions, the feature statistic Wj

needs to be specified. Two prevailing options—Lasso Coefficient Difference and
Lasso Signed Max—are investigated thoroughly in various literature [see for
example 2, 11, 30]. The Lasso Signed Max statistic is defined as

W lsm
j = sign(|Zj | − |Zj+p|)max{|Zj |, |Zj+p|}, (21)

where |Zj | = sup{λ : β̂j(λ) 
= 0}. The LSM statistic can be simplified to the
following two cases

W lsm
j =

{
Zj Zj ≥ Zj+p

−Zj+p Zj < Zj+p.

The absolute value signs are dropped since the Zj ’s are values of the tuning
parameter λ which are nonnegative. Alternatively, the Lasso Coefficient Differ-
ence statistic, which is shown to be more powerful than the Lasso Signed Max
statistic in various simulation settings in [11], is defined as

W lcd
j = |β̂j(λ)| − |β̂p+j(λ)|. (22)

The selection set Ŝ containing the selected important parameters is defined
as

Ŝ = {j : Wj ≥ t̂},

where the estimated threshold t̂ determines the number of variables entering Ŝ.
We discuss next in Section 3.1 the choices of the threshold t.

3.1. Choices of the threshold t for FDR and k-FWER control

An often-seen choice of t in the knockoff literature performs FDR control at
level q and is defined as follows

t̂ = min
{
t > 0 : ̂FDP(t) ≤ q

}
, ̂FDP(t) = #{j : Wj ≤ −t}

#{j : Wj ≥ t} . (23)

Alternatively, the k-FWER control in multiple testing is also of practical
interest, which considers the following probability

P (V ≥ k) ≤ q,

where V est(λ) = #{j ∈ H : β̂j(λ) 
= 0, βj = 0} is the number of false discov-
eries. Similar to [30] for the Lasso Signed Max statistic based on the ordered
importance statistics W(j)’s, we propose the threshold for

W(1) ≥ W(2) ≥ · · · ≥ W(p)
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defined by
tv = sup

{
t > 0 : #{j : W(j) ≤ −t} = v

}
, (24)

which allows in total v statistics W(j)’s exceeding a certain threshold. Define
the number of false discoveries V = #{j ∈ H : W(j) ≥ tv, β

∗
j = 0}. Next, we

explain the choice of using a Poisson distribution with mean v, i.e., Pois(v), to
approximate V . By (24), the threshold tv is chosen such that the number of
W(j)’s with values less than −tv is v. Then

#
{
j ∈ H : W(j) ≤ −tv, β

∗
j = 0

}
= (1 − s)#{j ∈ H : W(j) ≤ −tv} = (1 − s)v,

(25)
where the first equality holds simply by conditioning and the second equality
holds by the definition of tv. In practice, W(j) ≤ −t happens mostly for the true
nulls β∗

j = 0 when β∗
j = β∗

j+p = 0. While given β∗
j 
= 0, W(j) ≤ −t happens when

β∗
j is a weak signal which does not deviate far from 0. Further, by [2, Lemma 1],

it holds that

#
{
j ∈ H : W(j) ≤ −tv, β

∗
j = 0

} d= #
{
j ∈ H : W(j) ≥ tv, β

∗
j = 0

}
= V (tv).

(26)
Hence, by (25) and (26), the number of false discoveries V (tv) = (1 − s)v. In
high sparsity settings where s → 0, V (tv) → v, dropping the unknown scaling
factor s would still lead to a satisfactory estimator for V . Similar approximation
for estimating V is a common technique in the knockoff literature to obtain esti-
mators that can be used in practice; see for example, [11, Section 3.3]. We use a
Poisson distribution with parameter v denoted by Pois(v) to model V (tv), where
tv denotes a continuous threshold/timeline and (W(j) ≤ tv)’s are the events. No-
tice that the intensity parameter v is upward biased, leading to a conservative
k-FWER control. A similar construction can be found in [30, Theorem 3.1],
who investigated the Lasso Signed Max statistic and used a negative binomial
distribution, while we used a Poisson distribution of the false discoveries V .

Then, for any integer k ≥ 1 for k-FWER control and significance level q ∈
(0, 1), let v be the largest integer satisfying

∞∑
iv=k

vive−v

iv!
≤ q. (27)

It follows that the knockoff procedure controls k-FWER control at significance
level q, i.e., P (V ≥ k) ≤ q.

3.2. Limiting tradeoff curve after knockoff calibration

The Lasso Coefficient Difference statistic calculates the differences of coefficient
estimators of the original variables and their knockoff counterparts. In this sec-
tion while letting pn → ∞ (or simply p → ∞), we consider an optimal parameter
tuning for λ by minimizing the asymptotic MSE expressions of β̂, see (10). Fur-
ther, we consider the system of equations (6) to investigate FDP and TPP in
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the limit for p → ∞, the latter which are critical for this paper by the extensions
of [50, Corollary 3.1 and 3.2].

The following discussion is based on the limiting expressions of performance
measures of β̃∗ = (β∗�,0�

p )� for X̃i· = (Xi·, X
′
i·)’s where X ′

i· consists of knock-
off variables. Hence, we first adjust Lemma 2.1 [40, Theorem 1] for knockoff
calibration. We denote the estimator in (18) β̂ = ((β̂org)�, β̂′ �)� for which the
following Theorem holds. The proof is in the Appendix.

Theorem 3.1. Take β̂(λ) as in (18) and given the adjusted parameters κ̃, δ̃,
λ̃, assume that the system of equations in (6) has a unique solution to the six
parameters (α̃, σ̃, γ̃, θ̃, τ̃ , r̃). Then, as p̃ → ∞, for any locally-Lipschitz function
Ψ : R×R→ R and Ψ̃(x1, x2, x3) = Ψ(x1, x2) + Ψ(x3, 0),

1
p

p∑
j=1

Ψ̃
(
β̂j , β

∗
j , β̂j+p

)
P→ E

[
Ψ̃
(
ηλ̃σ̃τ̃

(
σ̃τ̃

(
θ̃B + r̃√

δ̃
Z

))
, B, ηλ̃σ̃τ̃

(
σ̃τ̃

(
r̃√
δ̃
Z ′

)))]
, (28)

where Z,Z ′ are independent with N(0, 1) distribution and are further indepen-
dent of B.

Remark: the additional standard Gaussian distributed random variable Z ′

is crucial for differentiating β̂org
j and β̂′

j , j = 1, . . . , p, especially for the true
nonnulls. Intuitively, Z and Z ′ come from the original predictive variables X·j ’s
and the corresponding knockoff variables X ′

·j ’s; using two independent variables
Z,Z ′ better describes the independence of the knockoff variables which ensures
an optimal TPP for the knockoff selection.

We denote the limiting proportions for a fixed threshold t by

tppkno(t) = lim
pn→∞

TPPkno(t),

fdpkno(t) = lim
pn→∞

FDPkno(t), f̂dp
kno

(t) = lim
pn→∞

̂FDP
kno

(t). (29)

While using the Lasso Coefficient Difference statistic in (22) for knockoff
calibration, the limiting proportions in (29) are expressed analytically in Corol-
lary 3.2, which is consistent with [50, Corollary 3.1, 3.2] for the Lasso Coefficient
Difference statistics. Further, while using the Lasso Signed Max statistic, the
limiting expressions and the bias analysis are also coherent (see Appendix A.2
for details), meaning the upward biased estimator of the FDP can be decom-
posed into FDP and the bias term in the limit. Further, the bias increases with
FDP.

Corollary 3.2. For any t > 0, the limiting expressions of the fdpkno(t) and
tppkno(t), while using the Lasso Coefficient Difference statistic for knockoff cal-
ibration, are as follows

fdpkno(t) =
(1 − s) · P (|ηλ̃σ̃τ̃ (σ̃τ̃ · r̃√

δ̃
Z)| − |ηλ̃σ̃τ̃ (σ̃τ̃ · r̃√

δ̃
Z ′)| ≥ t)

P (|ηλ̃σ̃τ̃ (σ̃τ̃ · (θ̃B + r̃√
δ̃
Z))| − |ηλ̃σ̃τ̃ (σ̃τ̃ · r̃√

δ̃
Z ′)| ≥ t)

, (30)



416 J. Zhou and G. Claeskens

tppkno(t) = P

(∣∣∣∣ηλ̃σ̃τ̃(σ̃τ̃ ·
(
θ̃B′ + r̃√

δ̃
Z

))∣∣∣∣− ∣∣∣∣ηλ̃σ̃τ̃(σ̃τ̃ · r̃√
δ̃
Z ′

)∣∣∣∣ ≥ t

)
. (31)

Similarly, the estimator f̂dp(t) has the following limiting expression

f̂dp
kno

(t) =
P (|ηλ̃σ̃τ̃ (σ̃τ̃ · (θ̃B + r̃√

δ̃
Z))| − |ηλ̃σ̃τ̃ (σ̃τ̃ · r̃√

δ̃
Z ′)| ≤ −t)

P (|ηλ̃σ̃τ̃ (σ̃τ̃ · (θ̃B + r̃√
δ̃
Z))| − |ηλ̃σ̃τ̃ (σ̃τ̃ · r̃√

δ̃
Z ′)| ≥ t)

. (32)

It is known that the knockoff estimator ̂FDP
kno

is larger than the true
FDPkno. The limiting proportions in Corollary 3.2 provide a tool to theoret-
ically evaluate the bias. The bias of the estimator ̂FDP

kno
for any statistic Wj

can be rewritten as the true fdpkno plus a remainder term R(t). We present here

̂FDP
kno

(t) = #{j ∈ H : Wj ≤ −t}
#{j ∈ H : Wj ≥ t}

=
(1−s) · #{j∈H : Wj≤−t, β∗

j =0} + s · #{j∈H : Wj≤−t, β∗
j 
=0}

#{j ∈ H : Wj ≥ t}

≈
(1 − s) · #{j : Wj ≥ t, β∗

j = 0} + s · #{j ∈ H : Wj ≤ −t, β∗
j 
= 0}

#{j ∈ H : Wj ≥ t}
P→ fdpkno(t) + R(t). (33)

For the Lasso Coefficient Difference statistic, the remainder term is obtained
as follows

Rlcd(t) =
s · P (|ηλ̃σ̃τ̃ (σ̃τ̃ · (θ̃B′ + r̃√

δ̃
Z))| − |ηλ̃σ̃τ̃ (σ̃τ̃ · r̃√

δ̃
Z ′)| ≤ −t)

P (|ηλ̃σ̃τ̃ (σ̃τ̃ · (θ̃B + r̃√
δ̃
Z))| − |ηλ̃σ̃τ̃ (σ̃τ̃ · r̃√

δ̃
Z ′)| ≥ t)

, (34)

which is expected to be small and becomes negligible when increasing the magni-
tude of B′ (the limiting representation of the nonnull β∗

j ’s). In addition, Figure 7
shows that the estimator f̂dp is quite accurate for small fdp (large t); this is also
reflected later in Figure 8.

3.3. Accuracy-error tradeoff curve based on knockoff selection

Similar to Section 2.3, Corollary 3.2 validates that the TPPkno and FDPkno

in (30), (31) still satisfy a tradeoff curve when the selection is by knockoffs
using the Lasso Coefficient Difference statistic in (22). Figure 8 compares the
limiting tradeoff curves qB

′(TPPest(λ); s, δ, κ) for knockoff selection and for se-
lection by β̂. We consider two settings where δ = 1, 2, s = 0.2, κ2 = 4. While
performing selection by knockoffs, the fixed point solutions of the six parameters
(α, σ, γ, θ, τ, r) are obtained using the adjusted parameters δ̃ = δ/2, s̃ = s/2,
κ̃2 = κ2/2. From Figure 8, we observe the loss on TPP for knockoff selection in
contrast to selection by the regularized estimator β̂ given large values of FDP.
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Fig 7. The red solid curve refers to f̂dp(t) by (32) and the turquoise dashed curve refers to
fdp by (32). With a proper choice of t, f̂dp(t) is an accurate estimator of fdp.

Fig 8. The limiting tradeoff curves qB
′ (tpp(t); s, δ, κ2) = fdp(t) for knockoff selection and

for selection by β̂. The red solid curve (legend “kno est”) depicts qB
′(tppkno(t); s, δ, κ2) =

f̂dp
kno

(t) using f̂dp
kno

(t) in (32); the green dotted curve (legend “kno sys”) uses fdpkno(t) in
(30). The blue dashed curve (legend “regularization”) corresponds to qB

′ (tpp(λ); s, δ, κ2) =
fdp(λ) using (16), (17). Two settings where δ = 1, 2, s = 0.2, κ2 = 4 are considered.

However, for a smaller ratio δ, the TPP for knockoff selection is close to selec-
tion by β̂ for a small threshold of FDP, which is realistic in practice since we
often predetermine the FDR level to be 0.05 or 0.1. Notice that constructing
the knockoffs in this paper already eliminates the correlation between not only
the knockoffs X ′ = (X ′

·1, . . . , X
′
·p)’s and the X·j ’s, but also the correlation be-

tween the X̃·j ’s. Hence, the loss of TPP for selection by knockoff is not caused
by the generation of knockoffs, i.e. in [11], the TPP (power) is affected by the
correlation between X ′ and X. A similar TPP loss is also observed in [50] for
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the �1-regularized least-squares estimator, but appears more optimistic with less
TPP loss severity.

Similar to Sections 2.3.1 and 2.3.2, the limiting tradeoff curves for selection
by knockoff denoted by qB

′(tpp(t); s, δ, κ2) = fdp(t), can be incorporated in
practice to calculate the sample size or adjust the FDR level. The advantage
of using the tradeoff curve for knockoff selection with the Lasso Coefficient
Difference statistic is that the FDP and TPP are dominated by the threshold t
in (23). More importantly, the FDP is estimable for the knockoff selection. The
selection is much more robust compared to selection by the estimated nonnull
coefficients of β̂.

4. Wisconsin breast cancer data

We consider the Breast Cancer Wisconsin (diagnostic) dataset on the UCI ma-
chine learning repository. The dataset consists of 569 samples, among which 357
are diagnosed as benign and 212 are malignant. The binary response (benign
and malignant) is correlated with 30 continuous predictive variables, which are
metrics for cell nuclei such as radius, texture, perimeter. Using 30 contin-
uous predictive variables, we construct the corresponding pairwise interactions
of all 30 predictive variables, resulting in an expanded dataset with 465 predic-
tive variables and 569 samples. To comply with Assumption (A1) for obtaining
the solutions to the six parameters (α, σ, γ, θ, τ, r), we consider incorporating a
singular value decomposition

X = UDV � =
min{n,p}∑

i=1
diuiv�

i .

The columns of U ∈ Rn×min{n,p} are singular vectors of the samples, and the
rows of V � ∈ Rp×min{n,p} are singular vectors of the predictive variables. For
further analysis, X is replaced by UV �, such that the linear predictor Xβ =
UV � = UV �β̆ where β̆ = diag(D,1max{n,p}−min{n,p})β. This suggests that the
problem changes from estimating the regression coefficient vector β to estimating
β̆, which incorporates the eigenvalues of X.

Next, we consider a simple initial �1-regularized logistic regression estimate
obtained by the R package glmnet with the tuning parameter chosen by 5-
fold cross-validation in order to: (1) obtain the inputs δ, κ2 for finding the
fixed point solutions (α, σ, γ, θ, τ, r); (2) estimate the distribution of B which
is the limiting random variable describing the components of β (see Assump-
tion (A2)). The nonnull components B′ are modeled by a Gaussian distribution
N(0, κ2/s), where s is estimated by the number of nonnull components of the
initial estimate. This initial estimate can be largely improved by more advanced
numerical estimation, especially more adaptive methods to estimate κ2 and the
distribution of B, which is not in the scope of this paper and is worth further
investigation.

We elaborated in Section 2.3.2 about guidance for a proper choice of the FDP
level. Figure 9 shows the tradeoff curves for selection by β̂ and by knockoffs.
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Fig 9. The limiting tradeoff curves qB
′ (tpp; s, δ, κ2) = fdp for the Wisconsin Breast Cancer

dataset. The red solid curve (legend “kno est”) depicts qB
′ (tppkno(t); s, δ, κ2) = f̂dp

kno
(t)

using f̂dp
kno

(t) in (32); the green dotted curve (legend “kno sys”) uses fdpkno(t) in (30). The
blue dashed curve (legend “regularization”) corresponds to qB

′ (tpp(λ); s, δ, κ2) = fdp(λ) using
(16), (17).

Often in practice, the FDP level q is set to 0.05 or 0.1; however, the correspond-
ing TPP is quite low for this dataset with δ ≈ 1.22. Figure 9 indicates that
with a high probability, we would select less than 5% among all true positive
variables for FDP level q = 0.05. Based on Figures 4, 6, this steep tradeoff
curve is possibly due to n > p and medium level s. If the selection objective
is to identify the top 10 relevant predictive variables and is sensitive to false
discoveries, setting the FDP level q at 5% could be acceptable. However, if the
objective is to identify at least 10% of the relevant predictive variables, setting
the FDP level at 5% would hardly give a satisfying result; in fact, we have to
set the FDP level at 0.25 to achieve the desired TPP.

Since the software in the R package glmnet standardizes the predictive vari-
ables, there is a mismatch between the λ’s obtained from glmnet and (3). Due
to the mismatch, plugging in the value of λ obtained from choosing the thresh-
old q and obtaining an estimator becomes infeasible. However, we observe that
the curves by the two selection methods are close, which suggests that selection
by knockoffs achieves a similar selection TPP as selection by regularization for
a given FDP. Thus, we report selection results by knockoffs in the two scenar-
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ios mentioned above. In the case where the FDP level is set to be q = 0.05,
only 11 interaction terms based on 6 main effects perimeter_mean, area_mean,
area_worst concave.points_se, texture_worst, perimeter_worst are se-
lected. However, when raising the FDP level up to q = 0.25, among total 45
selected variables, the 6 main effects mentioned above are all selected.

5. Discussion

This paper aims at giving insight into aspects of variable selection for regularized
logistic regressions in both n > p and n ≤ p settings, where �1-regularization is
investigated in detail. Traditionally, the literature discussing variable selection
properties addresses n ≤ p with certain sparsity assumptions. Since regulariza-
tion is also often used in practice where n > p and the sparsity assumptions are
not always satisfied, we believe the technical methods used in this paper bring a
new perspective for investigating the regularized estimators for future research.

Relevant to the sparsity assumptions, we observe in Figure 4 that a high
sparsity for p ≥ n in general leads to a better selection TPP when the targeted
FDP is low, and the selection TPP for medium sparsity generally has trouble.
Unsurprisingly, Figure 6 suggests that a large sample size is, in general, helpful
in achieving a higher TPP for a given FDP.

A critique we noticed is that the numerical optimization of the system of
equations (6) is computationally demanding and sometimes returns incorrect
solutions. Moreover, the solution does not always exist. For example, for n ≤ p
when λ is close to zero, numerical optimization cannot find the solutions to the
system of equations. This is realistic in practice since, without regularization,
finding the MLE for logistic regression when p ≥ n is impossible to our best
knowledge. However, this could leave people with the impression that we are
“cherry-picking”. It is of future research interest to know when the solutions
to the six equations exist; this is also a big topic in [42] where the system of
equations has no solution when the MLE does not exist. The computation in
this paper relies on R and high-performance computing, which is not optimal
for practical use. We hope to improve this by developing better algorithms and
numerical optimization in other programming languages.

Further, for practical use (see the example application for the Wisconsin
Breast Cancer dataset), this method requires an initial estimation of the true
signal B, which appears to be unrealistic at first glance. However, since FDP and
TPP expressions also require information on the true nulls and nonnulls, using
the estimated signal B to replace the true one is unavoidable for the current
paper. In the current stage, we suggest using bootstrap to obtain a more accurate
initial estimate of the signal. Deriving estimators for FDP and TPP, as well as
a new version of the system of equations, such that these equations do not rely
on the true signal B is of future research interest.

In addition, the framework in this paper can also be extended to other loss
functions such as used in generalized linear models and robust estimators with a
general Gaussian design matrix. Alternatively, the tradeoff curves can be used to
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choose the tuning parameter λ based on the targeted FDP and TPP. Since the
tuning parameter λ determines the selection properties for l1-regularized logistic
regression, based on the FDP and TPP to be achieved, one could use this to
decide if the tuning parameter selected by the available software is suitable.

Appendix A

A.1. Technicalities

A.1.1. Proof of Proposition 2.2

Proof. By taking the function Ψ(x, y) = (x − y)2 in Lemma 2.1, the following
convergence holds, as n → ∞,

MSE(β̂) = 1
p

p∑
j=1

(
β̂j − β∗

j

)2 P→ E

[(
ηλστ

(
στ ·

(
θB + r√

δ
Z

))
−B

)2]
. (35)

By simple polynomial expansion, the RHS of (35) can be written as the sum
of three expectations which also satisfy the system of equations (6),

E

[(
ηλστ

(
στ ·

(
θB + r√

δ
Z

))
−B

)2]
= E

[
(ηλστ

(
στ ·

(
θB + r√

δ
Z

))2]
+ E

[
B2]

− 2E
[
B · ηλστ

(
στ ·

(
θB + r√

δ
Z

))]
= κ2α2 + σ2 + κ2 − 2κ2α

= κ2(α− 1)2 + σ2.

The second equality holds by the first and third expressions in (6), and the
assumption on the averaged signal strength.

A.1.2. Proof of Lemma 2.4

Proof. To obtain the four limiting expressions, we apply Lemma 2.1 by taking
the locally Lipschitz function Ψ to be indicator functions. We demonstrate the
idea by first presenting the proof of (14). By definition, the number of false
discoveries is defined as V est(λ) = #{j ∈ H : β̂j(λ) 
= 0, βj = 0}, which
can further be written as

∑p
j=1 I{β̂j(λ) 
= 0, βj = 0}. The indicator function

I{β̂j(λ) 
= 0, βj = 0} on R2 is locally Lipschitz since the indicator function
is either equal to 0 or 1, the absolute value of the difference of the indicator
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function at any two points cannot exceed 1, which can be easily bounded by a
sufficiently large Lipschitz constant. Then,

V est(λ)
p

= 1
p

p∑
j=1

I
{
β̂j(λ) 
= 0, βj = 0

}
P→ EI

{
ηλστ (στ ·

(
θB + r√

δ
Z

)

= 0, B = 0

}
= P

(
ηλστ

(
στ ·

(
θB + r√

δ
Z

))

= 0, B = 0

)
= P

(
ηλστ

(
στ ·

(
θB + r√

δ
Z

))

= 0 | B = 0

)
· P (B = 0)

= P

(
ηλστ

(
στ ·

(
r√
δ
Z

))

= 0

)
· P (B = 0)

= P

(
|στ · r√

δ
Z| > λστ

)
· (1 − s)

= P

(
|Z| > λ

r√
δ

)
· (1 − s) = 2(1 − s) · Φ

(
− λ

r√
δ

)
.

The fifth equality holds by the definition of soft-thresholding function; the last
equality holds since Z ∼ N(0, 1). The limiting expressions of the other three
proportions are obtained similarly.

A.1.3. Proof of Theorem 3.1

Proof.

1
p

p∑
j=1

Ψ̃
(
β̂j , β

∗
j , β̂j+p

)
= 1

p

p∑
j=1

{
Ψ
(
β̂j , β

∗
j

)
+ Ψ(β̂j+p, 0)

}
= 2 · 1

p̃

p̃∑
j=1

Ψ
(
β̂j , β̃

∗
j

)
P→ 2EΨ

(
ηλ̃σ̃τ̃

(
σ̃τ̃

(
θ̃B̃ + r̃√

δ̃
Z

))
, B̃

)
= 2

{
E

[
Ψ
(
ηλ̃σ̃τ̃

(
σ̃τ̃

(
θ̃B̃ + r̃√

δ̃
Z

))
, B̃

)
| B̃ = B

]
· P (B̃ = B)

+ E

[
Ψ
(
ηλ̃σ̃τ̃

(
σ̃τ̃

(
θ̃B̃ + r̃√

δ̃
Z

))
, B̃

)
| B̃ 
= B

]
· P (B̃ 
= B)

}
= 2 ·

{
1
2EΨ

(
ηλ̃σ̃τ̃

(
σ̃τ̃

(
θ̃B+ r̃√

δ̃
Z

))
, B

)
+ 1

2EΨ
(
ηλ̃σ̃τ̃

(
σ̃τ̃

(
r̃√
δ̃
Z ′

))
,B̃

)}
= EΨ̃

(
ηλ̃σ̃τ̃

(
σ̃τ̃

(
θ̃B + r̃√

δ̃
Z

))
, B, ηλ̃σ̃τ̃

(
σ̃τ̃

(
r̃√
δ̃
Z ′

)))
.
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The first equality holds by p̃ = 2p; the convergence in probability holds by
Lemma 2.1. The third equality holds since the true parameters for knockoffs are
zero, and integration over Z is equivalent to over Z ′ since Z,Z ′ are i.i.d.

A.2. Limiting expressions of FDP and TPP for Lasso Signed Max
statistic

To derive similar limiting FDP and TPP expressions, we consider the numerator
and denominator in (19) separately. We divide the numerator by the number of
the hypotheses H.

#{j ∈ H : Wj ≥ t, j ∈ H0}
p

= (1 − s) · #{j ∈ H0 : Wj ≥ t}
p

= (1 − s)
{

#{j ∈ H0 : Zj ≥ t, Zj ≥ Z̃j}
p

+ #{j ∈ H0 : −Z̃j ≥ t, Z̃j ≥ Zj}
p

}
.

For any t > 0, the second term #{j ∈ H0 : −Z̃j ≥ t, Z̃j ≥ Zj}/p is equal to
zero, since Z̃j = sup{λ : β̂j+p(λ) 
= 0} is nonnegative hence −Z̃j ≥ t does not
hold for t > 0. Further, for the first term, we argue that for any fixed t > 0,
Zj ≥ t is equivalent to stating that β̂j(t) 
= 0 stays in the path. The main
challenge in this proof is developing an alternative representation for the event
Zj ≥ Z̃j , taking into account the unknown relationship between Z̃j and t. Recall
that Zj = sup{λ : β̂j(λ) 
= 0}, notice that Zj ≥ Z̃j indicates Z̃j = Zj − εZ̃j

where εZ̃j
> 0 can be infinitely small. This implies that β̂j(Z̃j) 
= 0, since Zj

is the smallest tuning parameter to guarantee β̂j leave the path but Zj > Z̃j .
Similarly, β̂j+p(Z̃j) = 0 holds. Following the reasoning above,

#{j ∈ H0 : Zj ≥ t, Zj ≥ Z̃j}
p

= #{j ∈ H0 : β̂j(t) 
= 0, β̂j(Z̃j) 
= 0, β̂j+p(Z̃j) = 0}
p

P→ P

(
ηtσ̃τ̃

(
σ̃τ̃ ·

(
θ̃B + r̃√

δ̃
Z

))

= 0; there exists t′, such that

ηt′σ̃τ̃

(
σ̃τ̃ ·

(
θ̃B + r̃√

δ̃
Z

))

= 0, ηt′σ̃τ̃

(
σ̃τ̃ ·

(
r̃√
δ̃
Z ′

))
= 0 |B = 0

)
= P

(∣∣∣∣ r̃√
δ̃
Z

∣∣∣∣ > t,

∣∣∣∣ r̃√
δ̃
Z

∣∣∣∣ > t′ ≥
∣∣∣∣ r̃√

δ̃
Z ′

∣∣∣∣)
= P

(∣∣∣∣ r̃√
δ̃
Z

∣∣∣∣ > t,

∣∣∣∣ r̃√
δ̃
Z

∣∣∣∣ > ∣∣∣∣ r̃√
δ̃
Z ′

∣∣∣∣).
We collect all pieces and obtain the numerator of (19) divided by p as follows

#{j ∈ H : Wj ≥ t, j ∈ H0}
p

= (1 − s) · #{j ∈ H0 : Wj ≥ t}
p
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P→ (1 − s) · P
(∣∣∣∣ r̃√

δ̃
Z

∣∣∣∣ > t,

∣∣∣∣ r̃√
δ̃
Z

∣∣∣∣ > ∣∣∣∣ r̃√
δ̃
Z ′

∣∣∣∣). (36)

Similarly, for the denominator of (19) divided by p it follows that

#{j ∈ H : Wj ≥ t}
p

= #{j ∈ H : Zj ≥ t, Zj ≥ Z̃j}
p

P→ P

(∣∣∣∣θ̃B + r̃√
δ̃
Z

∣∣∣∣ > t,

∣∣∣∣θ̃B + r̃√
δ̃
Z

∣∣∣∣ > ∣∣∣∣ r̃√
δ̃
Z ′

∣∣∣∣). (37)

Replacing the numerator and denominator in the general FDP expression (19)
by (36) and (37), and letting pn → ∞, we obtain the limiting expression fdp(t),

fdplsm(t) =
(1 − s) · P (| r̃√

δ̃
Z| > t, | r̃√

δ̃
Z| > | r̃√

δ̃
Z ′|)

P (|θ̃B + r̃√
δ̃
Z| > t, |θ̃B + r̃√

δ̃
Z| > | r̃√

δ̃
Z ′|)

. (38)

Similarly, the limiting tpp expression can be obtained as

tppkno(t) = lim
pn→∞

#{j ∈ H : Wj ≥ t, j 
∈ H0}
#{j ∈ H : j 
∈ H0}

= P

(
ηtσ̃τ̃

(
σ̃τ̃ ·

(
θ̃B + r̃√

δ̃
Z

))

= 0; there exists t′, such that

ηt′σ̃τ̃

(
σ̃τ̃ ·

(
θ̃B + r̃√

δ̃
Z

))

= 0, ηt′σ̃τ̃

(
σ̃τ̃ ·

(
r̃√
δ̃
Z ′

))
= 0 |B 
= 0

)
= P

(∣∣∣∣θ̃B′ + r̃√
δ̃
Z

∣∣∣∣ > t,

∣∣∣∣θ̃B′ + r̃√
δ̃
Z

∣∣∣∣ ≥ ∣∣∣∣ r̃√
δ̃
Z ′

∣∣∣∣). (39)

And the limiting expression of the fdp estimator is

f̂dp
kno

(t) = lim
p→∞

#{j : −Z̃j ≤ −t, Z̃j ≥ Zj}/p
#{j : Zj ≥ t, Zj ≥ Z̃j}/p

=
P (| r̃√

δ̃
Z ′| > t, |θ̃B + r̃√

δ̃
Z| ≤ | r̃√

δ̃
Z ′|)

P (|θ̃B + r̃√
δ̃
Z| > t, |θ̃B + r̃√

δ̃
Z| ≥ | r̃√

δ̃
Z ′|)

. (40)

Recall that the f̂dp
kno

is upward biased for fdpkno. Similar to (34) for the
Lasso Coefficient difference statistic, the remainder term, bias of the estimator
f̂dp

kno
for the Lasso Signed Max statistic, is given by

Rlsm(t) =
s · P (| r̃√

δ̃
Z ′| > t, |θ̃B′ + r̃√

δ̃
Z| ≤ | r̃√

δ̃
Z ′|)

P (|θ̃B + r̃√
δ̃
Z| > t, |θ̃B + r̃√

δ̃
Z| ≥ | r̃√

δ̃
Z ′|)

. (41)
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