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Abstract: The linear two-dimensional problem of interaction between an hydroelastic wave propagat-
ing along an elastic floating ice plate with built-in vertical rigid plate is studied. The fluid under the
ice is inviscid and incompressible. The fluid depth is finite. The deflection of the ice plate is described
by the linear theory of thin elastic plates. The flow under the ice is potential. The total velocity
potential is decomposed into the potential of the incident wave, even potential caused by the vertical
motion of the rigid plate, and an odd potential caused by the rotation of the rigid plate. The vertical
mode method is used. The third potential is obtained by solving a mixed boundary-value problem
numerically using Chebyshev polynomials. The solution is validated by analysis of its convergence.
The first and second potentials, and the corresponding deflections and strains of the ice plate, are
obtained analytically. The motions of the rigid plate, as well as deflection and strains in the floating
plate, are numerically analyzed. It is shown that the rotation of the rigid plate due to the incident
wave is the main factor of increasing strains in the ice plate.

Keywords: hydroelasticity; flexural-gravity wave; floating ice plate; interaction; vertical mode
method; strains; deflections

1. Introduction

Wave propagating under sea ice cover has been studied intensively for several decades.
The importance of this topic has been increasing year by year as the ice reduction accelerates
in the polar regions. Thanks to the global temperature rising, sea ice can be found further
from the pole, and a chance of shipping through the ice-covered regions increases. New
commercial routes through the Arctic can significantly reduce the shipping time and
improve its economic efficiency. On the other hand, the amount of natural resources in
the polar regions is vast. Gautier et al. [1] wrote “the United States Geological Survey has
assessed the area north of the Arctic Circle and concluded that about 30% of the world’s
undiscovered gas and 13% of the world’s undiscovered oil may be found there, mostly
offshore under less than 500 meters of water. Undiscovered natural gas is three times more
abundant than oil in the Arctic and is largely concentrated in Russia.” The potential of
renewable energy, such as solar and wind energies, in the polar regions is too important
to be ignored. The economic needs in the polar region have attracted more attention to
modeling sea ice.

Modeling sea ice and waves propagating in ice-covered waters is challenging because
the properties of the ice change significantly from place to place, see [2–6]. They depend
on air temperature, water salinity, and how the ice was built up. This makes it difficult to
construct a stable and reliable sea ice mechanical model. However, modeling the ice cover
as a thin floating elastic plate of constant thickness proved to be a reasonable approach to
practical problems with relatively long waves, see [7]. The ice/water interaction problems
become more complicated in the presence of other structures in either water or on ice, or
in both of them. Flexural-gravity waves diffracted by vertical cylinders frozen in ice were
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studied in [8–12]. Waves propagating in an ice channel with vertical walls are investigated
in [13–17]. In all of these studies, the structural motion was not included.

Problems of flexural-gravity wave interaction with a free moving structure are more
complicated. Such problems are coupled: deflection of the floating ice plate, flow under
the ice, and the motions of the structure should be determined at the same time. A vertical
rigid plate built-in a floating ice sheet could be the simplest model of ice/water/structure
interaction. This problem is investigated in the present paper using the vertical mode
method [8,9,11,12] for water of finite depth. There are parts of the rigid plate below the ice
in water and above the ice. The part of the rigid plate above the ice does not participate in
interaction with water, but it changes the mass of the plate and its moment of inertia. The
thickness of the plate is assumed to be small, which simplifies the analysis and makes it
possible to separate the vertical motion of the plate and the plate rotation. The rigid plate
motions are caused by a linear incident wave and are governed by equations of mechanics.
A similar problem was considered recently in [18] but for infinite water depth, where the
vertical mode method is not applicable, and for elastic vertical plate.

The approach of the present paper is to divide the original problem in parts, which
are easier to solve and validate, and finally combine all of the obtained solutions to arrive
at the complete solution of the original problem. The finite depth of the liquid under the
floating elastic plate makes it possible to use the so-called vertical modes to represent the
velocity potential. The vertical modes accommodate the complex boundary conditions at
the elastic plate. Integral transforms also can be used to this aim, see [10], but they provide
the same result as the vertical mode method as it was proved in [9]. To find the odd part of
the velocity potential, the solution of a mixed boundary-value problem is required. This is
a challenging problem, which is solved by using the Chebyshev polynomials.

This paper aims to provide a theoretical basis for subsequent research on a floating
elastic plate with several built-in vertical plates. The structure of the paper is organized as
follows. The formulation of the problem is given in Section 2. The vertical mode method is
applied to solve the problem in Section 3. Numerical algorithms are described in Section 4.
Numerical results are presented in Section 5. Conclusions and future work are discussed in
Section 6.

2. Formulation of the Problem

The two-dimensional linear problem of a flexural-gravity wave interacting with a rigid
vertical plate built in a floating ice sheet is studied, see Figure 1. The ice sheet is considered
as an infinite thin elastic plate of constant thickness h. The density of the ice is ρice, and the
ice rigidity is D = Eh3/[12(1− ν2)], where E and ν are the Young’s modulus and Poisson’s
ratio of the ice respectively. The liquid under the ice is inviscid, incompressible, and of
finite depth H. The rigid plate built-in the ice sheet is of length L under the ice and of
length ` above the ice, of negligible thickness, and of mass m0, and the moment of inertia J0
with respect to the point is where the rigid plate is in contact with the ice sheet. This point
is taken as the origin of the Cartesian coordinate system Oxy, see Figure 1. The ice/liquid
interface corresponds to the line y = 0 at equilibrium without any motions of the ice plate
and any flow under the plate. The line y = −H corresponds to the bottom of the flow
region. Note that L ≤ H. The liquid flow caused by the ice plate deflection and the rigid
plate motions is assumed potential. The flow region Ω within the linear potential theory
is the the strip −H < y < 0 with the cut x = 0, −L < y < 0, which corresponds to the
submerged part of the rigid plate at equilibrium. The flow region is independent of time
within the linear approximation. This is the coupled problem of linear hydroelasticity,
where the plate deflection y = W(x, t); t is the time; the flow under the ice is described by a
velocity potential Φ(x, y, t); and the motions of the rigid plate should be determined at the
same time.



J. Mar. Sci. Eng. 2023, 11, 697 3 of 19

Figure 1. Sketch of wave propagating in an ice sheet with a rigid plate.

The incident flexural-gravity wave, Winc(x, t) = ai cos(k0x−ωt), is of small amplitude
ai with a frequency ω and wavenumber k0, where ω and k0 are related by the dispersion
relation [7],

ω2(ρiceh +
ρ

k0 tanh(k0H)
) = ρg + Dk4

0, (1)

ρ is the liquid density, g is the gravitational acceleration, and ω > 0, k0 > 0. The velocity
potential of the incident wave is given by

Φinc(x, y, t) = aiω
cosh[k0(y + H)]

k0 sinh(k0H)
sin(k0x−ωt). (2)

The linear theory of hydroelasticity is applicable if the wave slope, aik0, is small. The
floating ice plate can be treated as a thin elastic plate if the plate thickness h is much smaller
than the incident wave length 2π/k0, which provides the condition k0h� 1.

Note that the deflection W(x, t) is continuous together with its first derivatives at
x = 0, but the second and third derivatives, Wxx(x, t) and Wxxx(x, t), are, in general,
discontinuous at the place of the rigid plate, x = 0. It is convenient to write the thin plate
equation separately for the right, x > 0, and the left, x < 0, parts,

ρiceh
∂2W
∂t2 + D

∂4W
∂x4 = P(x, 0, t) (−∞ < x < 0, 0 < x < +∞, y = 0), (3)

where P(x, 0, t) is the hydrodynamic pressure on the ice/liquid interface, which is given by
the linearised Bernoulli equation

P(x, 0, t) = −ρ
∂Φ
∂t

(x, 0, t)− ρgW(x, t). (4)

The plate deflection in the far field on the left from the rigid plate behaves as

W(x, t) = ai cos(k0x−ωt) + aR cos(−k0x−ωt + δR) + o(1) (x → −∞), (5)

and in the far field on the right from the rigid plate as

W(x, t) = aT cos(k0x−ωt + δT) + o(1) (x → ∞), (6)

where o(1) stands for terms decaying exponentially as |x| → ∞, aR and aT are the ampli-
tudes and δR and δT are the phase shifts of the reflected and transmitted flexural-gravity
waves correspondingly. The values of aR, aT , δR, and δT are to be determined as part of the
solution.
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The velocity potential Φ(x, y, t) satisfies the Laplace equation in the flow region,

∇2Φ = 0 ((x, y) ∈ Ω), (7)

the boundary conditions on the bottom,

∂Φ
∂y

= 0 (y = −H), (8)

the linearized kinematic boundary condition on the ice/liquid interface,

∂Φ
∂y

=
∂W
∂t

(x, t) (y = 0), (9)

and the conditions on the right, x = +0, and left, x = −0, surfaces of the moving rigid plate,

∂Φ
∂x

(0±, y, t) = −y
dθ(t)

dt
(−L < y < 0), (10)

where θ(t) is the inclination angle of the rigid plate; θ = 0 at equilibrium; when the rigid
plate is vertical, θ is positive anticlockwise, see Figure 1. The behavior of the velocity
potential as x → ±∞ follows from (5) and (6) in a similar way as (2) follows from the form
of the incident deflection wave.

The time-dependent vertical displacement η(t) and inclination angle θ(t) of the rigid
plate are governed by equations,

m0
d2η(t)

dt2 = Ns(0−, t)− Ns(0+, t), (11)

J0
d2θ(t)

dt2 = [Ms(0+, t)−Ms(0−, t)] + [M f (0
+, t)−M f (0

−, t)], (12)

where M(x, t), N(x, t) are the bending moment and shear force, respectively; subscript
s stands for solid (ice); subscript f stands for fluid; and m0 and J0 are the mass and the
moment of inertia of the rigid plate per unit width, respectively. A rigid plate, which is
of length L below the floating elastic plate and ` above the the floating plate, is of mass
m0 = ρrhr(L + `), where ρr is the density of the rigid plate material and hr is the rigid plate
thickness. The moment of inertia of such a plate is J0 = 1

3 m0(L3 + `3)/(L + `).
The bending moment and shear force in the ice plate are proportional to the second

and third derivatives of the deflection W(x, t) with respect to x,

Ms = D
∂2W
∂x2 , Ns = D

∂3W
∂x3 . (13)

The hydrodynamic moments acting on the submerged part of the rigid plate are given by

M f (0
±, t) = −ρ

d
dt

∫ 0

−L
Φ(0±, y, t)y dy (14)

within the linear theory. At the connection point between the floating elastic plate and the
rigid plate, we have

η(t) = W(0+, t) = W(0−, t), θ(t) =
∂W
∂x

(0+, t) =
∂W
∂x

(0−, t). (15)

No initial conditions are required for the formulated problem (1)–(15). We shall determine
the time-periodic solution of this problem.

The velocity potential Φ(x, y, t), the plate deflection W(x, t), the vertical displacement
of the rigid plate η(t), and the inclination angle of the rigid plate θ(t) are sought in the form
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W(x, t) = <(w(x)e−iωt), Φ(x, y, t) = <(−iωφ(x, y)e−iωt),

η(t) = <(ηae−iωt), θ(t) = <(θae−iωt),
(16)

where w(x) and φ(x, y) are complex-valued functions, ηa and θa are complex numbers to
be determined, and < stands for the real part of a complex number. The complex plate
deflection w(x) and the velocity potential φ(x, y) are convenient to decompose as

w(x) = winc(x) + wo(x) + we(x), φ(x, y) = φinc(x, y) + φo(x, y) + φe(x, y), (17)

where winc(x) and φinc(x, y) correspond to the incident wave,

winc(x) = aieik0x, φinc(x, y) = ai
cosh[k0(y + H)]

k0 sinh(k0H)
eik0x, (18)

wo(x) and φo(x, y) are unknown odd with respect to x functions, wo(−x) = −wo(x), and
we(x) and φe(x, y) are unknown even with respect to x functions, we(−x) = we(x). Only
the right-hand side of the flow region, x > 0, can be considered from now on. In particular,
the matching conditions (15) read now as

ηa = ai + we(0), θa = ik0ai + w′0(0), (19)

where a prime stands for derivative with respect to x. The deflections wo(x) and we(x)
describe outgoing waves in the far field,

wo(x) = Aoeik0x + o(1), we(x) = Aeeik0x + o(1) (x → +∞), (20)

where the complex amplitudes Ao and Ae are to be determined. Equations (5), (6), (17),
and (20) provide the parameters of the radiated and transmitted waves as

aTeiδT = ai + Ae + Ao, aReiδR = Ae − Ao. (21)

The equations and boundary conditions in the formulated problem (1)–(15), which
are satisfied in the right part of the flow region, x > 0, are valid for the odd and even
components of the solution separately. Using ∗ for either o or e, we find

∇2φ∗ = 0 (x > 0,−H < y < 0), (22)

∂φ∗
∂y

= 0 (x > 0, y = −H), (23)

∂φ∗
∂y

= w∗(x) (x > 0, y = 0), (24)

D
d4w∗
dx4 + (ρg− ρicehω2)w∗ = ρω2φ∗(x, 0) (x > 0). (25)

The conditions at x = +0 have different forms for odd,

w′e(0) = 0, (26)

2Dw′′′e (0)−m0ω2we(0) = m0aiω
2, (27)

∂φe

∂x
(0, y) = 0 (−H < y < 0), (28)

and even components,
wo(0) = 0, (29)

2Dw′′o (0) + J0ω2w′o(0) = −2ρω2
∫ 0

−L
φo(0, y)ydy− iaik0 J0ω2, (30)
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φo(0, y) = 0 (−H < y < −L), (31)

∂φo

∂x
(0, y) = −iyaik0 − yw′o(0)− iai

cosh[k0(y + H)]

sinh(k0H)
(−L < y < 0). (32)

The conditions (26)–(28) for the even component of the solution imply that there is no
flow through x = 0, the slope of the floating plate at this edge is zero, and the edge is
connected to the bottom with a spring, see section 7 in [19], with the vertical forcing applied
to the edge. The conditions (29)–(32) for the odd component of the solution imply that
the plate edge does not move vertically but can rotate subject to the restoring force and
the forcing caused by the incident wave and the hydrodynamic pressure acting on the
submerged part of the rigid plate, see [20]. The far-field conditions (20) should also be
satisfied, where the complex amplitudes Ao and Ae are to be determined. These amplitudes
and the unknown functions wo(x), φo(x, y) and we(x), φe(x, y) are proportional to the
amplitude of the incident wave ai, which can be set unity in the analysis and returned back
in the final solution as the factor.

The ratio of amplitude of the reflected wave aR to the amplitude of the incident wave
ai is known as the reflection coefficient R, and the ratio of amplitude of the transmitted
wave aT to the amplitude of the incident wave ai is known as the transmission coefficient T.
We shall investigate these coefficients depending on the wave frequency and parameters of
the problem. The distribution of the deflection amplitude |w(x)| will be studied with focus
on the maximum amplitude depending on parameters of the rigid plate. The time-periodic
strains in the elastic plate are given by the formula

E(x, t) = <(ε(x)e−iωt), ε(x) =
h
2

d2w
dx2 , εmax = max

x≥0
|ε(x)|. (33)

We are concerned with εmax depending on the parameters of the problem.

3. Solution of the Problem by the Vertical Mode Method

Note that the odd and even components of the solution are independent of one another
and are calculated independently. Both components are obtained by the so-called vertical
mode method. The vertical modes of a floating elastic plate were introduced in [21,22], ap-
plied to two-dimensional problems in [23,24], and applied to three-dimensional problems
in [8,9]. For liquid of depth H, the vertical modes are given by

fn(y) =
cosh[kn(y + H)]

kn sinh[kn H]
, (34)

where kn are the complex roots of the dispersion Equation (1) with positive imaginary
parts. These roots include real positive root k0, two complex roots k−2 = (−a + ib)/H,
k−1 = (a + ib)/H, where a > 0, b > 0, and infinite numbers of pure imaginary roots
kn = iµn, µn+1 > µn > 0 for n ≥ 1. The modes satisfy the equations

f ′′n − k2
n fn = 0 (−H < y < 0), (35)

f ′n(−H) = 0, D
d5 fn

dy5 (0) + (ρg− ρicehω2)
d fn

dy
(0) = ρω2 fn(0), (36)

and f ′n(0) = 1. The modes are orthogonal in the following sense,

〈 fn(y), fm(y)〉 = 0 (n 6= m), 〈 fn(y), fn(y)〉 = Qn (n ≥ −2), (37)

where the scalar product is defined by

〈F1(y), F2(y)〉 =
∫ 0

−H
F1(y)F2(y) dy +

D
ρω2 (F′′′1 (0)F′2(0) + F′1(0)F′′′2 (0)), (38)
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for any two functions F1(y) and F2(y) defined in the interval −H < y < 0, and

Qn =
H3

2κ2
nq2

[
(κ4

n + δ)2κ2
n + q(5κ4

n + δ− q)
]
, (39)

κn = kn H is the dimensionless wavenumber, q = ρω2H5/D, and δ = (ρg− ρicehω2)H4/D.
The dispersion relation (1) written with respect to dimensionless wavenumber κ reads
(κ4 + δ)κ tanh κ = q. Equations (38) and (39) are similar to Equations (32) and (33) from [9]
but written in the dimensional variables.

The products eiknx fn(y) satisfy Equations (22)–(25) and decay as x → +∞ except for
n = 0. The product eiko x f0(y), where k0 is real and positive, describes a wave propagating to-
wards x = +∞. Therefore, a general solution of the boundary-value problem (20), (22)–(25)
is given by a superposition,

φ∗(x, y) =
∞

∑
n=−2

A∗neiknx fn(y), w∗(x) =
∞

∑
n=−2

A∗neiknx, (40)

with undetermined coefficients A∗n, where ∗ stands either for o (odd component of the
solution) or e (even component of the solution). These coefficients and the complex
amplitudes Ao and Ae in (20) are obtained using the conditions (26)–(32) at x = 0.
Equations (20) and (40) provide Ao

0 = Ao and Ae
0 = Ae.

3.1. Even Component of the Plate Deflection

We calculate the following limit for m ≥ −2 in two ways, by using (40) and (37), where
∗ is changed to e, and by using the definition (38) of the scalar product,

lim
x→0
〈∂φe(x, y)

∂x
, fm(y)〉 = lim

x→0
〈

∞

∑
n=−2

Ae
nikneiknx fn(y), fm(y)〉 = Ae

mikmQm, (41)

lim
x→0
〈∂φe(x, y)

∂x
, fm(y)〉 =

= lim
x→0

[ ∫ 0

−H

∂φe

∂x
(x, y) fm(y)dy +

D
ρω2 (−w′′′e (x) f ′m(0) + w′e(x) f ′′′m (0))

]
=

=
−Dw′′′e (0)

ρω2 = −m0

2ρ
(ai + we(0)). (42)

In (42), conditions (26)–(28) and equalities

∂3(∂φe/∂x)
∂y3 (x, 0) =

∂2(∂2φe)/∂x∂y)
∂y2 (x, 0) = −∂3(∂φe/∂y)

∂x3 (x, 0) = −w′′′e (x),

∂2φe

∂x∂y
= w′e(x)

were used. Equating the right-hand sides in (41) and (42), we obtain the formula for the
coefficients Ae

m, where m ≥ −2,

Ae
m =

im0

2ρkmQm
(ai + we(0)). (43)

The unknown deflection we(0) at x = 0 is obtained by substituting (43) in (40), setting
x = 0, and resolving the result with respect to we(0),

we(0) = ai
γ

1− γ
, γ =

im0

2ρ

∞

∑
n=−2

1
knQn

. (44)



J. Mar. Sci. Eng. 2023, 11, 697 8 of 19

Equations (44), (43), and (40) provide the even component of the elastic plate deflection,

we(x) =
iaim0

2ρ(1− γ)

∞

∑
n=−2

eiknx

knQn
. (45)

The even component of the strain in the plate follows from (33) as

εe(x) =
−iaim0h

4ρ(1− γ)

∞

∑
n=−2

kneiknx

Qn
. (46)

The complex amplitude of the radiated wave Ae in (20) is given by

Ae = Ae
0 =

iaim0

2ρ(1− γ)k0Q0
. (47)

It is shown in [9] that Qn = O(n8) as n→ ∞. Therefore, the series in (44), (45), and (46)
converge quickly. There is no even component of the solution if the mass of the rigid plate
m0 is negligible.

3.2. Odd Component of the Plate Deflection

The odd component is calculated in the same way as the even component in section
3.1. The solution is sought in the form (40), (34), where ∗ is changed to o. It is convenient to
introduce the unknown derivative (∂φo/∂x)(0, y) = u(y), on the vertical interval −H <
y < −L. This derivative is determined using the condition (31). Note that the new unknown
function u(y) is square-root singular at y = −L and u′(−H) = 0 to match the boundary
condition at the bottom y = −H. We introduce a new variable ξ = (y + H)/(H − L) for
the interval (−H,−L), where 0 < ξ < 1, and search the function u[y(ξ)] as the series

u[y(ξ)] =
1√

1− ξ2

∞

∑
k=0

ukT2k(ξ), (48)

where T2k(ξ) are the even Chebyshev polynomials of the first kind and degree 2k. The
limits (41) and (42), where m ≥ −2, calculated now for φ0(x, y) provide

lim
x→0

〈∂φo(x, y)
∂x

, fm(y)
〉
= Ao

mikmQm, (49)

lim
x→0

〈∂φo(x, y)
∂x

, fm(y)
〉
= −(iaik0 + w′o(0))

∫ 0

−L
y fm(y)dy− iaik0

∫ 0

−L
f0(y) fm(y)dy

+
∫ −L

−H
u(y) fm(y) dy +

D
ρω2 (k

2
mw′o(0)− w′′′o (0)). (50)

The integrals in (50) are denoted as Pm, P(0)
m , and P(G)

m , correspondingly. Multiplying
Equation (35) by f0(y) and y, and integrating the results with respect to y from −L to 0 by
parts, we obtain

Pm =
L f ′m(−L) + fm(−L)− fm(0)

k2
m

, P(0)
m =

f0(0)− fm(0) + [ f ′0 fm − f0 f ′m](−L)
k2

m − k2
0

. (51)

The series (48) provides

P(G)
m =

∞

∑
k=0

ukGmk, Gmk =
H − L

km sinh[km H]

∫ 1

0
T2k(ξ) cosh[km(H − L)ξ]

dξ√
1− ξ2

. (52)
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The coefficients Gmk can be presented using the dimensionless wavenumber κm = km H,
the parameter L̃ = L/H, and the dispersion relation through the modified Bessel functions
of complex arguments,

Gmk =
πH2(1− L̃)(κ4

m + δ)

2q cosh[κm]
I2k(κm(1− L̃)), (53)

where I2k(z) are the modified Bessel functions of the first kind and order 2k.
Equating (49) and (50), we find

Ao
m = −aik0

Pm + P(0)
m

kmQm
+

ikm

Qm

(Pm

k2
m
− D

ρω2

)
w′o(0) +

iD
ρω2kmQm

w′′′0 (0) +
P(G)

m
ikmQm

, (54)

where w′o(0), w′′′0 (0), and P(G)
m are to be determined using the conditions (29), (30) and (31).

The condition (31) and the series (40) provide

0 = φo(0, y(ξ)) =
∞

∑
n=−2

Ao
n fn[y(ξ)] (0 < ξ < 1). (55)

Multiplying both sides of this equation by T2m(ξ)/
√

1− ξ2, where m ≥ 0, and integrating
with respect to ξ from 0 to 1, we find

∞

∑
n=−2

Ao
nGnm = 0,

which yields the following system for the coefficients uk using (54) and (52)

∞

∑
k=0

ukSkm =
D

ρω2 w′′′o (0)F(3)
m + w′o(0)F(1)

m + iaik0F(0)
m , (56)

Skm =
∞

∑
n=−2

GnkGnm

knQn
, F(0)

m =
∞

∑
n=−2

(Pn + P(0)
n )Gnm

knQn
,

F(1)
m =

∞

∑
n=−2

PnGnm

knQn
− D

ρω2

∞

∑
n=−2

knGnm

Qn
, F(3)

m =
∞

∑
n=−2

Gnm

knQn
.

It is seen that Gnk = O(n
7
2 ) as n→ ∞. It can be shown that Pn and P(0)

n are of order O(n3)

as n → ∞. Therefore, the series for Skm, F(0)
m and F(1)

m converge slowly and should be
evaluated with care.

The solution of the system reads

uk =
D

ρω2 w′′′o (0)u(3)
k + w′o(0)u

(1)
k + iaik0u(0)

k , (57)

where u(j)
k , j = 0, 1, 3 are solutions of the systems

∞

∑
k=0

u(j)
k Skm = F(j)

m .

Substituting (57) in (52) and (54), one finds the coefficients Ao
m through two unknown,

w′0(0) and w′′′0 (0),

Ao
m =

aik0

kmQm
B(0)

m +
ikm

Qm
w′o(0)B(1)

m +
iD

ρω2kmQm
w′′′0 (0)B(3)

m , (58)
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B(0)
m = −Pm − P(0)

m +
∞

∑
k=0

u(0)
k Gmk,

B(1)
m =

Pm

k2
m
− D

ρω2 −
1

k2
m

∞

∑
k=0

u(1)
k Gmk,

B(3)
m = 1−

∞

∑
k=0

u(3)
k Gmk.

The conditions (29), (30), and the series (40) provide two equations with respect to
w′0(0) and w′′′0 (0),

w′0(0)
∞

∑
n=−2

knB(1)
n

Qn
+ w′′′0 (0)

D
ρω2

∞

∑
n=−2

B(3)
n

knQn
= iaik0

∞

∑
n=−2

B(0)
n

knQn
, (59)

w′0(0)
[ J0

2ρ
+ i

∞

∑
n=−2

(
Pn −

D
ρω2 k2

n

) knB(1)
n

Qn

]
+ w′′′0 (0)

iD
ρω2

∞

∑
n=−2

(
Pn −

D
ρω2 k2

n

) B(3)
n

knQn
=

− aik0

[
i

J0

2ρ
+

∞

∑
n=−2

(
Pn −

D
ρω2 k2

n

) B(0)
n

knQn

]
. (60)

The solution w′0(0) and w′′′0 (0) of this system is substituted in (58), which finalises the
calculations of the coefficients Ao

m in the odd component of the deflection.
In the important limiting case, where the rigid plate length under the ice plate is equal

to the water depth, L = H, in (50) we have P(G)
m = 0,

Pm =
H3

q
κ4

m + δ

κ2
m

1− cosh κm

cosh κm
, P(0)

m = −H3

q
(κ2

m + κ2
0),

and the series with uk in the definitions of B(0)
n , B(1)

n , and B(3)
n should be removed. Then,

the coefficients in the system (59) and (60) are readily calculated, which makes the solution
of this limiting problem straightforward.

In another limiting case, where the rigid plate is only above the floating plate, L = 0,
we use the limits (49), (50) but for the potential, φo(0, y) = 0 for −H < y < 0 . The
calculations provide an account for (29),

Ao
m = −Dw′′o (0)

ρω2Qm
. (61)

Equation (30), where now the integral is zero, and (61) give

2Dw′′o (0)
[
1 + i

J0

2ρ

∞

∑
n=−2

kn

Qn

]
= −iaik0 J0ω2, (62)

which together with (61) explicitly define the coefficients Ao
m .

4. Numerical Algorithms

Calculations in this and the following sections are performed for a sea ice plate with
ice density ρice = 917 kg/m3, thickness h = 1 m, Young’s modulus E = 4.2× 109 N/m2,
and Poisson’s ration ν = 0.33, see [10,25]. The water density is 1025 kg/m3, the water depth
is H = 10 m, and the gravitational acceleration is g = 9.8 m/s2. The rigid plate is made of
the same ice, ρr = ρice, with the plate length above the floating plate, ` = 1 m, and the plate
length below the floating plate L varies from 0 m to 10 m. The plate thickness hr is 10 cm.
Then, the mass of the vertical plate per unit width, m0 = ρrhr(L+ `), varies from 91.7 kg/m
for L = 0 m to 1008.7 kg/m for L = 10 m. Correspondingly, the moment of inertia of the
vertical plate per unit width, J0 = 1

3 m0(L3 + `3)/(L + `), varies from 30.6 kgm for L = 0 m
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to 30,597.2 kg/m for L = 10 m. The ice rigidity D is equal approximately to 4× 108 Nm.
The characteristic length of the floating ice plate Lc = (D/ρg)

1
4 is equal to 14.13 m, which

is comparable with the water depth. Therefore, the finite depth of the water is important
for the selected conditions.

The parameters q = ρω2H5/D and δ = (ρg − ρicehω2)H4/D in the dispersion
relation (1) written with respect to the dimensionless wavenumber κ = kH read (κ4 +
δ)κ tanh κ = q are related by the equation δ = a − bq, where a = (H/Lc)4 and b =
(ρiceh)/(ρH). In the selected conditions, a ≈ 0.251 and b ≈ 0.0895. The parameter δ is
positive for the wave frequencies such that q < a/b, where a/b ≈ 2.8.

The ice deflection and the velocity of the flow are proportional to the incident wave
amplitude ai within the linear theory of hydroelasticity. We calculate the ice deflection for
ai = 1 m, bearing in mind that the deflections for other amplitudes are obtained by using a
corresponding factor.

The period of the incident wave is assumed to be between 2 and 30 s, which corre-
sponds to the wave frequency ω in the interval 0.21 s−1 < ω < 3.14 s−1. This interval
provides 0 < q < 2.526, and therefore δ > 0. The dispersion relation (1) provides that
this range of the wave frequencies corresponds to the range of the incident wave numbers
0.2133 < k0H < 1.2462 and the incident wave length 50.43 m < 2π/k0 < 294.98 m. The
roots of the dispersion relations are simple because δ > 0 for the present conditions, see [8].

Note that the terms of the series (44) and (45) decay as O(n−9), and the terms of the
series (46) decay as O(n−7) for n→ ∞. These series provide the even components of the
plate deflection and strains in the plate. The series are evaluated numerically by direct
summation. The series for the odd components of the solution decays slowly and care
should be taken to evaluate these series with good accuracy.

4.1. Convergence Analysis for Odd Components of the Solution

The accuracy of the numerical solutions for the odd deflection and velocity potential
depends on the number of terms Mo retained in the series (48) for the auxiliary function
u(y) and the number of pure imaginary roots of the dispersion relation No retained in the
series (40) for wo(x) and φo(x, y). Then, the matrix in the algebraic system (56) is of size
Mo ×Mo, and the values of each element of this matrix and of the right-hand side of the
system are obtained by the summation of No + 3 terms.

The series for Skr, see (56) converges slowly. The terms in this series are of order of
O(n−2) as n → ∞. To find a reasonable value of No, which provides accurate numerical
solution, we set Mo = 20 first and increase No starting from 100 with the step ∆No = 10.
The convergence of Skr is demonstrated in Figure 2, where the maximum value, Smax, of
|Skr(N0)− Skr(N0 − 10)| for 1 ≤ k, r ≤ M0 is shown as a function of N0. The maxima are
achieved at diagonal elements Skk. Figure 2 shows that No = 300 provides the numerical
values of Skr with accuracy better than 10−5. To ensure accuracy, No = 500 is used in our
calculations.

It was shown that the accuracy of the solution depends mainly on No but not on M0.
The value of Mo affects the shape of u(y) but has little influence on the deflection. Mo = 20
is used in the present calculations.
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Figure 2. Convergence of the series Skr with respect to No.

4.2. Roots of the Dispersion Relation

There is a single positive root of the dispersion equation, (κ4 + δ)κ tanh κ − q = 0, be-
cause the left-hand side of this equation is negative at κ = 0, and it increases monotonically
with the increase in κ. The real solution κ0 is calculated by the bisection method, which
narrows an interval that contains a root down to 1× 10−14. The pure imaginary roots of
the dispersion relation, κn = iµn, where n ≥ 1, satisfy the equation

tan µ = − q
µ(µ4 + δ)

, (63)

where the right-hand side is negative for positive µ if δ > 0 as in our conditions. The visual
inspection of the sides of Equation (63) suggests that µn = πn− σn, where σn is calculated
by iterations,

σ
(k+1)
n = arctan

( q

[πn− σ
(k)
n ]([πn− σ

(k)
n ]4 + δ)

)
, (64)

with the initial guess σ
(0)
n = 0. Equation (64) shows that µn = πn− q(πn)−5 + O(n−6) as

n→ ∞. This asymptotic formula is used to investigate, and improve if needed, convergence
of the series from Section 3.

As to the complex roots, κ−1 = a + ib and κ−2 = −a + ib, where a > 0 and b > 0, the
values a and b are obtained by solving the system of two nonlinear equations,

a5 − 10a3b2 + 5ab4 + δa = q
sinh(2a)

cosh(2a)− cos(2b)
, (65)

5a4b− 10a2b3 + b5 + δb = −q
sin(2b)

cosh(2a)− cos(2b)
, (66)

by the Newton iteration method. Equations (65) and (66) yield that b > a for q > 0.
The asymptotic behaviors of κ−1 as q→ 0 were investigated in [9].

5. Numerical Results

In this section, the numerical results for the amplitudes of heave and pitch motions
of the rigid plate, and the deflection of the ice plate and the strain in it, are presented.
Calculations are performed for the parameters of the floating plate, the rigid plate, and
the frequency range of the incident wave listed in Section 4. In the present study, only the
length of the rigid plate in water L and the wavenumber of the incident wave k0 vary. We
use the corresponding dimensionless quantities L̃ = L/H and κ0 = k0H below.
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5.1. Motions of the Rigid Elastic Plate

The complex amplitude of the vertical displacement of the rigid plate is given by (19)
and (44),

ηa =
ai

1− γ
, (67)

where γ is defined in (44),

γ =
im0q2

ρH2

∞

∑
n=−2

1
κn(κ4

n + δ)2Q̃n
, Q̃n = 1 + q

5κ4
n + δ− q

(κ4
n + δ)2κ2

n
. (68)

It is seen that ηa = ai if the mass of the rigid plate is negligible. Note that γ → 0 as
q→ 0, which is for long waves. In general, ηa = |ηa|eiδη , where δη is the phase shift of the
heave response of the rigid plate. The dimensionless amplitude |ηa|/ai as a function of
the dimensionless frequency

√
q = ω

√
ρH5/D is shown in Figures 3a,c for the different

dimensionless length of the rigid plate, L̃ = L/H, keeping all other parameters constant.
The gap between the vertical rigid plate and the bottom is small in Figure 3c. These figures
show that the amplitude of the heave motion of the vertical rigid plate is close to the
amplitude of the incident wave ai. The heave amplitude is slightly greater than ai for
long waves and smaller than ai for short waves decreasing monotonically with the wave
frequency. The length of the plate L increases its mass and, therefore, its inertia.
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Figure 3. The dimensionless amplitudes of the heave (a,c), and pitch (b,d), motions of the rigid plate
as functions of the dimensionless frequency

√
q for different dimensionless length of the rigid plate

L̃ = L/H.
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The complex amplitude of the rigid plate rotation is given by (19), θa = ik0ai + w′o(0),
where w′o(0) is the solution of the system (59) and (60). The scaled amplitude of the
pitch motion, |θa|/(k0ai), is shown in Figures 3b,d as a function of the dimensionless
frequency

√
q for different dimensionless length of the rigid plate L̃. The pitch amplitude

strongly depends on the wave frequency. The amplitude sharply increases for long waves,
where q � 1, and then peaks at a certain value of qc(L̃), which depends on the rigid
plate length. Note that qc(L̃) decreases with increase in L̃, see Figures 3d. The value
qc(L̃) can be estimated using the Equation (12), where the first term on the right-hand
side, Ms(0+, t)−Ms(0−, t), represents the restoring force proportional to the angle θ(t)
approximately. The second term, M f (0+, t) − M f (0−, t), represents the hydrodynamic
moment acting on the oscillating rigid plate. This term contains the component −Jaθ′′(t),
where Ja is the added moment of inertia of the rigid plate. It is clear that Ja increases with
increase in L̃. Therefore, the natural frequency of the system decreases with increase in L̃,
which explains the shift of the peak frequency in Figure 3d. More details about the rigid
plate motions in long waves, which is for small dimensionless frequency

√
q, are shown in

Figures 4a,b.
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Figure 4. The dimensionless amplitudes of the heave (a) and pitch (b) motions of the rigid plate for
small dimensionless frequency

√
q and different length of the rigid plate L̃

5.2. Deflection of the Floating Ice Plate

The complex plate deflection w(x) is given by (17), which provides

w(x) = winc(x) + wo(x) + we(x) =

=

{
aeik0x + ∑Ne

n=−2 Ae
neiknx + ∑No

n=−2 Ao
neiknx (x ≥ 0),

aeik0x + ∑Ne
n=−2 Ae

ne−iknx −∑No
n=−2 Ao

ne−iknx (x < 0).
(69)

Here, Ne = 10 was used. The value of No was discussed in subsection 4.1.
The length of the rigid plate is the main parameter affecting reflection and transmission

of incident waves. The dimensionless amplitude of the plate deflection, |w(x)|/ai, is shown
in Figure 5, where we set the incident wave frequency ω = 0.5 s−1 and vary the length of
the rigid plate L. It can be seen that the length of the rigid plate does not change the pattern
of the deflection curve but affects the amplitudes of reflection and transmission waves.
The amplitude of the transmitted wave decreases, and the amplitude of the reflected wave
increases with the increase in the length of the rigid plate.

The dimensionless amplitudes of the even, |we(x)|/ai, and odd, |wo(x)|/ai, compo-
nents of the plate deflection are shown in Figure 6 for different frequencies of the incident
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wave ω and L̃ = 0.5. It is seen that the odd component of the plate deflection, which is
associated with the pitch motion of the rigid vertical plate, is much more important than
the even component, which is associated with the heave motion of the rigid plate.
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Figure 5. The dimensionless amplitudes of ice deflection for ω = 0.5 s−1 and different rigid plate
length.
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Figure 6. The dimensionless amplitudes of the even (a), |we(x)|/ai, and odd (b), |wo(x)|/ai, compo-
nents of the plate deflection for different frequencies of the incident wave ω and L̃ = 0.5. (a) Heave
motion case. (b) Pitch motion case.

5.3. Strain Distribution in the Ice Plate

Similar to decomposition of the plate deflection (69), the complex strain in the plate,
see (33), can be decomposed as

ε(x) = εinc(x) + εo(x) + εe, (70)

where εinc(x) is the complex strain in the incident wave,

εinc(x) = −1
2

haia2
0eik0x, (71)
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εe(x) is the even strain component given by (46), and εo(x) is the odd strain component.

εo(x) =
1
2

d2w0

dx2 = −1
2

h
∞

∑
n=−2

Ao
nk2

neik0x, (72)

see (33) and (40). The value |εinc(x)| is taken as the strain scale εsc. The total strain
amplitude, |ε|(x)/εsc, is shown in Figure 7a for different length of the rigid plate L and
ω = 0.5 s−1. It is seen that the total strain is twice greater than the strain εsc in the incident
wave just in front of the vertical rigid plate for the incident wave travelling from left to
right and L = H/2. The even strain component, see Figure 7b, is much smaller than the
odd component, see Figure 7c.
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Figure 7. The scaled amplitudes of the total (a), even (b), |εe(x)|/εsc, and odd (c), |εo(x)|/εsc,
components of the strain distribution in the floating plate for ω = 0.5 s−1 and different lengths of the
rigid plate. (a) Total strain. (b) Even strain. (c) Odd strain.

6. Conclusions

The two-dimensional problem of interaction between an incident hydroelastic wave
and a floating elastic ice plate with a rigid vertical plate built in it was studied within the
linear theory of hydroelasticity. Due to the symmetry of the problem, the solution was
decomposed into the sum of even and odd components, which represent the solution of
the heave motion problem and the solution of the pitch motion problem for the rigid plate
respectively. The vertical mode method was used to find the even and odd solutions. The
even problem was solved analytically. The odd problem required one to satisfy mixed
boundary conditions by the odd component of the velocity potential.
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The numerical results for the motions of the rigid plate and the amplitude of ice plate
deflection and strain were presented and discussed. The influence of the incident wave
frequency and the length of the rigid plate on the floating plate response was investigated.
It was revealed that the heave motion of the rigid plate much less affect the floating plate
deflection than the pitch motion of the rigid plate. Longer rigid plates were shown to reflect
more energy of the incident wave. The heave motion of the rigid plate decreases with
increases of the frequency of the incident wave. Figures 6 and 7 indicate that the rotation
of the rigid plate due to the incident wave is the main factor of increasing strains in the
ice plate.

The obtained solutions will be used to investigate the strain distributions in the floating
plate and the effect of the rigid plate on the magnitude of the strains in the plate. It is
expected that the maximum strain is achieved in front of the rigid plate, see Figure 7, and
can approach the yield strain leading to breaking of the floating plate in front of the rigid
vertical plate. The problem with two and more vertical plates built in a floating elastic plate
will be also studied. It is expected that trapped modes can be found for configurations with
several plates.
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Nomenclature

x Horizontal coordinate
y Vertical coordinate
t Time
H Water depth
ρ Water density
g Gravity acceleration
h Ice plate thickness
ρice Ice density
E Youngs modulus of ice
ν Poissons ratio of ice
D Ice rigidity
` Length of the rigid plate above the ice
L Length of the rigid plate under the ice
hr Rigid plate thickness
m0 Mass of the rigid plate
J0 Moment of inertia of the rigid plate
ai Incident wave amplitude
ω Incident wave frequency
k0 Wave number of the incident wave
Φ Total velocity potential
φ Spatial velocity potential
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φinc Velocity potential of the incident wave
φe Even component velocity potential
φo Odd component velocity potential
W Total ice deflection
w Spatial ice deflection
winc Ice deflection of incident wave
we Even component ice deflection
wo Odd component ice deflection
P Hydrodynamic pressure
θ Inclination angle of the rigid plate
θa Complex amplitude of rigid plate inclination angle
η Vertical displacement of the rigid plate
ηa Complex amplitude of rigid plate vertical displacement
Ns Shear force in the ice plate
Ms Bending moment in the ice plate
M f Hydrodynamic moments acting on the submerged part of the

rigid plate
aT Amplitude of transmitted wave
δT Phase of transmitted wave
aR Amplitude of reflected wave
δR Phase of reflected wave
k Wave number
κ Dimensionless wave number, κ = kH
q Dimensionless parameter in dimensionless dispersion relation
δ Dimensionless parameter in dimensionless dispersion relation
E(x, t) Time-periodic strains in the ice plate
ε Amplitude of strains in the ice plate
fn(y) Vertical mode function
Qn Scalar product of vertical mode function
Ae

m Unknown coefficients for even functions
Ao

m Unknown coefficients for odd functions
εe Strain for even ice deflection
u(y) Unknown function
uk Coefficients of the unknown function
ξ = (y + H)/(H − L) Stretched vertical coordinate variable
T2k(ζ) Chebyshev polynomials of the first kind and degree 2k
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