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Abstract

In this paper, we assess the effectiveness of early climate policy in emerging economies by
causally evaluating the impact of China’s Low-carbon City Pilot (LCCP) on city-level per-capita
CO2 emissions and CO2 intensity of GDP over the period 2003-2017. The idiosyncrasies of the
policy design pose significant challenges for causal identification, which we overcome within
a synthetic control framework. Contrary to previous contributions, our results suggest that the
LCCP had no significant impact on either carbon emissions or intensity. The main takeaway of
our empirical investigation is that even in emerging economies, effective environmental policy
requires transparent, quantifiable targets, and credible enforcement.
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1 Introduction

With the urgent need to effectively tackle climate change now beyond doubt (Masson-Delmotte
et al., 2021), a fierce debate has broken out between developed and emerging economies on who
should shoulder the responsibility – and the costs – of reducing carbon emissions. Undeniably,
western economies ought to bear the responsibility for their historical emissions; at the same
time almost all the growth in global energy demand – and therefore emissions – over the coming
decades is expected to originate in emerging markets (Wei et al., 2012). Sound policies are there-
fore needed in both the Global North and the Global South to ensure that the expansion in human
activity is finally decoupled from greenhouse gas emissions. Most of the research that aims to eval-
uate the effectiveness and the consequences of climate policy has to date focused on developed
economies, while much less is known about how climate policies perform in emerging economies.
Gaining a sufficient understanding of whether climate policies are working in the fastest-growing
emerging economies is nevertheless vital to the debate on how to share the mitigation burden
among countries.

In this paper, we contribute to this debate by analysing the impact of the Low-Carbon City Pilot
(LCCP) – the first national climate policy introduced in China. Launched in 2010 by the National
Development and Reform Commission (NDRC), the pilot was introduced to ‘develop and demon-
strate’ the pathways that would help to accelerate the transition to a low-carbon economy (NCSC,
2020, In Chinese). The LCCP is particularly relevant, from our point of view, because it has been
identified as an effective template for other countries to emulate (e.g., Hong et al., 2021).1

Given the specific focus of the LCCP on facilitating the shift to a low-carbon economy, in what fol-
lows we ask whether it indeed had a significant mitigation effect on both per-capita carbon emis-
sions and carbon intensity of GDP.2 These questions have not been satisfactorily answered in the
literature so far. A rich literature has so far focused on efficiency and productivity effects, conclud-
ing that the LCCP had modest but statistically significant positive impacts, yet only a few studies
have directly considered carbon emissions and, to the best of our knowledge, no study has directly
addressed per-capita emissions.3 Yu et al. (2019), Huo et al. (2022), and Tu et al. (2022) investigate
directly the impact of the LCCP on carbon emissions; Feng et al. (2021), Zhou and Zhou (2021) and
Hong et al. (2021) focus instead on emissions intensity, and are therefore closer in spirit to our in-
vestigation. None of these papers presents a credible framework for causal inference, however. Vir-
tually all of the papers mentioned here adopt (some version of) the difference-in-differences (DiD)
approach and, therefore, fail to address the idiosyncratic design of the LCCP, where the selection

1The LCCP was introduced in response to China’s commitment, at the 2009 Copenhagen Conference of the Parties
(COP15), to reduce by 2020 the CO2 intensity of its GDP by 40-45% relative to its 2005 levels.

2Our outcome variables have the advantage of providing direct comparability across different administrative divi-
sions as well as being immediately related to the long-run relationship between CO2 emissions and economic growth.

3Most of the existing literature has used methods linked to productivity analysis such as Data Envelopment Analysis
(DEA) to provide estimates of changes in efficiency and productivity that they would then link to the LCCP. Cheng et al.
(2019), Yu and Zhang (2021), and Wen et al. (2022), for example, all point to positive, albeit limited, impacts of the LCCP
on technical efficiency. Others, who used measures of productivity as their outcome of interest – such as Yao and Shen
(2021) and (Zhou and Zhou, 2021)– conclude that the impact of the LCCP was less clear cut, and could have even been
negative.
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of the cities into the treatment group was far from random and the treatment staggered over time
(e.g., Goodman-Bacon, 2021). The only exception to this is represented by Yu et al. (2019), who fo-
cus on Guangdong Province as a case study over the period 2010-2015. They construct a synthetic
counterfactual for Guangdong and conclude that the LCCP reduced carbon emissions by approxi-
mately 10%. Their study is unsatisfactory, however, since they do not account for the simultaneous
introduction of China’s emissions trading scheme (ETS) pilots. Because of these methodological
shortcomings, these papers fail to convincingly gauge whether the LCCP has been effective in kick-
starting China’s low-carbon transition. Our main contribution is, therefore, to provide a robust
design for the causal identification of the impact of the LCCP on both per-capita carbon emissions
and the carbon intensity of GDP and to present credible results to inform the debate on climate
policy effectiveness in emerging economies.

To analyse the impact of the LCCP, we construct a unique dataset that merges socioeconomic and
energy-related data. Overall, our dataset comprises detailed information on socioeconomic and
environmental indicators, as well as CO2 emissions for 245 Chinese prefecture-level cities over the
period 2003-2017.4 This dataset allows us to causally assess the impact of the LCCP on emissions
per capita and carbon intensity for the administrative units treated in the first two waves (in 2010
and 2012, respectively).

A serious challenge to naïve identification in the context of the LCCP is that, as discussed in more
detail below, the selection into treatment is not random. We overcome this problem by adopting
an approach based on recent developments in the field of synthetic control method (SCM) that
uses the pool of cities outside the LCCP to create credible counterfactuals that match the (pre-
treatment) outcome variables of the treated ones (Ben-Michael et al., 2022). We then estimate the
treatment effect by comparing the actual post-treatment outcomes of the treated cities to the rel-
evant synthetic controls. We perform multiple tests to validate our identification strategy and con-
duct several robustness checks to shore up confidence in our empirical findings.

Our work complements the existing literature along three dimensions. First, as discussed above,
we identify and overcome a range of potential challenges to causal inference that arise from the
idiosyncratic design and the timing of the LCCP, thereby presenting empirical evidence which cor-
rects the record in the literature on the actual effectiveness of the LCCP. Second, given that the
implementation of the LCCP is largely voluntary, we contribute one state-of-the-art piece to the
scant empirical literature that evaluates voluntary environmental policy instruments (e.g., OECD,
2000; Borck and Coglianese, 2009; André and Valenciano-Salazar, 2022). Third, we take a step for-
ward in the literature by assessing the impact of policy on carbon emissions in China by applying
the methodology developed by Shan et al. (2017), which is based on the Intergovernmental Panel
on Climate Change (IPCC) guidelines, to construct an alternative emission inventory (IPCC, 2006).
This alternative dataset not only allows us to examine the sensitivity of our results to changes in

4In this context ‘cities’ is our short-hand for administrative divisions that comprise an urban centre and the surround-
ing county-level divisions. In China, there are three levels of administrative divisions: province-level, prefecture-level
and county-level. Province-level divisions are the highest administrative level. In total, there are 34 province-level divi-
sions, including 23 provinces, 5 autonomous regions, 4 municipalities and 2 special administrative regions. Prefecture-
level cities are subordinate to the province-level division and comprise 293 prefecture-level cities, 30 autonomous pre-
fectures, 7 prefectures and 3 leagues.
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the data source but also enables us to look closer at the sectoral impacts of the LCCP and to discuss
the potential for fuel-switching.

Overall, our results present a clear and robust picture whereby the LCCP is shown not to have had
any significant impact either in terms of reducing per-capita emissions or carbon intensity of GDP.
While these results contrast sharply with the results found elsewhere in the literature, they are not
surprising when put in the context of a regulation that is fundamentally voluntary, provides no
binding targets and lacks enforcement. We conclude that this early policy experiment did not de-
liver on its stated goals, at least not in terms of promoting a rapid de-coupling of economic growth
from carbon emissions.

The rest of the paper develops as follows, in Section 2, we describe the policy background and dis-
cuss the specific design characteristics that complicate causal identification in this case. Building
on this, we discuss the identification strategy and the data in Section 3. Section 4 is devoted to the
discussion of the main empirical results, their validity and some robustness checks. Section 5 dis-
cusses the potential economic mechanism and the sectoral impacts. Finally, Section 6 summarises
and concludes.

2 Policy background

Starting from a relatively low level of technological development, China’s fast economic growth
has come at the cost of severe environmental consequences over the last five decades (Smil, 1993).
The sheer scale of China’s economy has also meant that its rapidly increasing CO2 emissions have
greatly contributed to a rise in atmospheric concentrations of greenhouse gases with significant
global impacts (Grimm et al., 2013).

In 2007, recognising the severity of this problem, China issued its National Climate Change Program
(NDRC, 2007). This was followed in 2008 by the white paper on the country’s actions and strategy
on climate change (SCPRC, 2008). In 2009, following on the commitments agreed to within the
framework of the 2009 United Nations Climate Change Conference, the State Council for the first
time announced a target of reducing the carbon intensity of its GDP by 40–45% by 2020 compared
to the 2005 level (SCPRC, 2009). This emissions mitigation target was then incorporated into the
national 12th Five-Year Plan (FYP) (2011-2015) for the very first time, at the same time setting a bind-
ing target of 17% reduction in CO2 emissions per unit of GDP between 2011 to 2015 (NPC, 2011).5

Within the framework of the 12th FYP, each province was assigned a mitigation target, according
to its socioeconomic characteristics and growth trajectories. When the 13th FYP (2016-2020) was
published in 2016, the reduction target for the carbon intensity of GDP was set at 18% between
2016 to 2020 and further decomposed into different targets for each city (NPC, 2016).

Against this backdrop, the NDRC launched the LCCP, designed to accelerate the transition to a low-
carbon economy and demonstrate pathways to achieve ambitious carbon reduction goals for the

5The FYPs are a series of regulations in China, focusing on devising social and economic development guidelines for
the entire country. The first Five-Year Plan (1953-1957) was implemented in 1953, the latest and current one is the 14th

Five-Year Plan (2021-2025), introduced in 2021.
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benefit of other cities. On 19 July 2010, the NDRC issued a ‘Notice on the Piloting Work of Low-
carbon Provinces and Cities’ and then the first wave of the pilot started (NCSC, 2020, in Chinese).
This first phase included two municipalities, five provinces, and six prefecture-level cities. The sec-
ond wave began two years later and covered two municipalities, one province, and 26 prefecture-
level cities. Finally, the third wave was introduced in 2017 and focused on prefecture-level cities
and smaller administrative divisions. In total, eight additional county-level divisions (seven coun-
ties and one district) and 35 prefecture-level cities were included in the pilot scheme in the final
stage.

It should be noted that, according to the NDRC, these pilot cities and provinces were selected based
on their geographic, social and economic diversity and representativeness, rather than being iden-
tified at random (NCSC, 2013, in Chinese). Moreover, in choosing the pilot locations account was
taken of any ongoing work in low-carbon development and of any expression of interest by the
regions to be part of the pilot.6 Naturally, this process was also prone to political bargaining and
manipulation. Therefore, assignment to treatment cannot be thought of as random by any stretch
of the imagination, which poses a serious challenge to our empirical investigation.

Rather than being assigned binding targets or given specific mandates, by the central government,
each pilot division had significant flexibility in defining its own mitigation targets as long as they
were consistent with the overarching FYP mandates. In particular, they were free to decide on the
allocation of abatement across sectors. As mandated by the NDRC, the pilot cities were required to
compile an explicit low-carbon development plan, which would articulate the measures needed
to promote an effective local low-carbon economy, accelerate the establishment of a low-carbon
industrial system, build a management system for greenhouse gas emission statistics, and encour-
age low-carbon lifestyles and green consumption patterns. To date, however, publicly available
information on the overarching implementation process and any specific guidance offered to the
local authorities remain scarce. Therefore, we collected additional information by scouring the
official websites of the regional municipal people’s governments, wherever available.7

In the majority of cases, we found that targets were set in terms of carbon intensity, the share
of non-fossil energies, retiring outdated power plants, and forest coverage rate. Specific efforts
were made to compile greenhouse gas inventories, decarbonise farming, public transportation
systems and construction, introduce green nudges, and promote wetland conservation. For some
of these measures, targets were set in some cities. For instance, Shijiazhuang was treated in the
second wave and its online agenda clearly states that the share of ‘new energy automobiles’ in the
personal transportation system should exceed 90% by 2015.8

6Baoding and Shanghai, for example, had both been working with the World Wildlife Fund (WWF) on the ‘Low-Carbon
City Initiative’ pilot to reduce CO2 emissions since 2008, two years prior to the LCCP implementation. They were included
in the first and second wave, respectively.

7We managed to find online agendas for 20 of the 40 regulated administrative units, including two municipalities,
three provinces, and 15 prefecture-level cities. As an example, see the online agenda (in Chinese) in Ningbo: https://
www.ningbo.gov.cn/art/2013/4/28/art_1229541831_59033042.html. For the cities that did not publish agendas
online or whose agendas are untraceable, we contacted the Regional Development and Reform Commission (DRC) for
additional information. Based on their response, these cities either did not have a specific agenda or their agendas have
been incorporated as a part of the 12th FYP.

8The term ‘new energy automobiles’ is often used by the Chinese government to refer to plug-in hybrid electric ve-
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To conclude, unlike traditional policy instruments, the LCCP is by and large a voluntary program,
without mandated enforcement. In this sense, we would not expect it to have much impact, based
on the evidence available in the literature (Borck and Coglianese, 2009). The mitigation pathways
were devised by the regional authorities based on their regional economies and their local prefer-
ences. While mitigation pathways differ across treated units, almost all cities had targets on CO2

emissions or GDP CO2 intensity, and a few of which were more stringent than FYP mandates (see
Khanna et al., 2014, for a detailed analysis of the first wave). In what follows, we, therefore, focus
on assessing whether the LCCP was effective in bringing about additional mitigation, compared to
elsewhere in the country, with a focus on emissions per capita and the CO2 intensity of GDP.

3 Identification strategy and data

As discussed in the introduction, much of the existing literature on the LCCP employs a DiD ap-
proach to estimate the average treatment effect. Our empirical investigation, therefore, starts by
replicating these efforts within a DiD framework.

Mindful of recent contributions that warn against using standard fixed-effect methods in the pres-
ence of heterogeneous treatment effects (e.g., Goodman-Bacon, 2021; Baker et al., 2022), and keep-
ing in mind the staggered adoption of the LCCP, however, we adopt the dynamic DiD framework
for intertemporal treatment effects proposed by de Chaisemartin and D’Haultfoeuille (2022).9 To
the best of our knowledge we are the first to use this methodology in this context.

While we believe that the use of dynamic DiD estimators à la de Chaisemartin and D’Haultfoeuille
(2022) could control for the issue of heterogeneous treatment effects, it is clear that a naïve iden-
tification of the impact of the LCCP based on DiD methods would still be flawed, due to the non-
random nature of the process whereby cities were included in the pilot. In fact, the pilot cities
selected themselves, at least in part, into the pilot group and were otherwise chosen based on
characteristics – such as their current level of industrialisation and their energy intensity – that are
clearly correlated to the outcomes we seek to evaluate. To overcome these issues, we design our
identification strategy around the pooled SCM recently introduced in the literature.

Generally speaking, SCMs estimate the treatment effect by constructing synthetic counterfactuals
and comparing them to the actual outcomes for the treated units. The synthetic control is con-
structed by assigning weights to selected units drawn from the pool of control units (donors) so
that the synthetic controls closely match the outcome of the treated units in the pre-treatment
phase (Abadie and Gardeazabal, 2003; Abadie et al., 2010). While the SCM was originally designed
to study a single treated unit, a number of recent contributions suggest possible extensions of
the SCM to multiple treated units (Dube and Zipperer, 2015; Galiani and Quistorff, 2017; Donohue
et al., 2019, among others). Estimating weights that minimise the average pre-treatment imbal-

hicles, battery electric vehicles, fuel cell electric vehicles, as well as liquefied natural gas vehicles. The exact definition
may vary depending on the regional governments, however.

9Given the staggered adoption and the substantial differences in the treated units, heterogeneous treatment effects
are indeed likely.
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ance across different treatment units, however, could produce an almost perfect fit for the aver-
age, while leading to poor unit-specific fits.10 On the other hand, focusing on a separate synthetic
control for each treatment unit and estimating the average treatment effect on the treated could
yield good fits for the unit-specific predictors while producing a poor balance for the average.11 Re-
cently, Ben-Michael et al. (2022) have instead proposed the so-called partially-pooled SCM, which
seeks to mitigate such biases within a staggered treatment framework. Their method decomposes
the error of the average treatment effect on the treated (ATT) estimate into errors stemming from
the pooled fit and the unit-specific fits and then proceeds to minimise a weighted combination
of the two. In an extension of their basic model, Ben-Michael et al. (2022) further recommend in-
corporating auxiliary covariates to insure a good pre-treatment fit not only for the main outcome
variable of interest but also for other key characteristics of the units of analysis. In what follows,
we adopt this augmented partially-pooled approach for staggered treatment as it fits well with the
need to ensure a good fit across a range of treated units that are heterogeneous by design, and that
are treated at different points in time.

3.1 Data

Our outcome variables of interest are the CO2 emissions per capita (in ton/person) and the CO2

intensity of GDP (in ton/10,000 CNY). Emissions per capita are calculated by dividing the regional
CO2 emissions by resident population, and the CO2 intensity of GDP is calculated as CO2 emissions
per 10,000 CNY of regional GDP.12

The most challenging part of the data collection is to find reliable information on city-level CO2

emissions. While in general preferable, estimates of emissions based on the IPCC guidelines are
only available for a limited set of cities due to the lack of complete data on city-level energy use
(see Shan et al., 2017, for a discussion). In what follows, we, therefore, use the widely used data of
Chen et al. (2020), that provide county-level carbon emissions data based on nighttime light data
from satellite imagery. The emission inventories include 2,735 counties and districts in around 350
administrative divisions from 1997 to 2017. We obtain the data from the Carbon Emission Accounts
Datasets and aggregated the CO2 emissions at the city level (CEADS, 2020).

NCSC (2020, in Chinese) provides us with the information we need to construct our treatment in-
dicators, which distinguish between the cities treated in each successive wave of the LCCP. Due
to data availability, however, our data spans the period 2003-2017 and, therefore, omits the third
wave of treatment. We exclude from our sample all the cities that will be subject to treatment in the
third wave of the LCCP so that the control group more correctly reflects the ‘never-treated’ status

10Kreif et al. (2016), for example, follow a similar approach and construct an aggregate treated unit and match the
average pre-treatment aggregate outcome using weighted controls.

11For instance, Dube and Zipperer (2015) propose a modified SCM by converting the estimates to elasticities by rank-
ing them based on the treatment intensity and aggregating the elasticities across different treatments. Similarly, Galiani
and Quistorff (2017) and Donohue et al. (2019) focus on finding separate synthetic control for each of the treated units
and then estimate the average treatment effect on the treated (ATT) by averaging the unit-specific SCM estimates.

12The use of the resident population en lieu of the registered population is generally recommended as it better reflects
actual economic activities in China. This is also in line with the practice for calculating GDP per capita adopted by China’s
National Bureau of Statistics since 2004 (NBS, 2004, in Chinese).
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of the non-LCCP cities.13

Table 1: Descriptive statistics, 2003-2017.

Mean Std. dev. Min. Max. Obs.

Panel A: Treated cities
Outcome variable:
CO2 emissions per capita (ton/person) 6.13 4.20 0.35 32.86 1,230
GDP CO2 intensity (ton/10,000 CNY) 2.31 1.39 0.19 10.12 1,230
Socioeconomic measurement:
GDP per capita (10,000 CNY) 3.28 2.37 0.11 15.41 1,230
Employment (million people) 0.50 0.56 0.06 4.64 1,230
Industrialisation rate (%) 47.67 9.92 18.14 84.39 1,230
Social fixed asset investment (10 billion CNY) 8.46 9.60 0.26 65.30 1,230
Expenditure on science and technology (billion CNY) 0.48 1.76 0.00 34.42 1,228
Industrial SO2 discharge (10,000 ton) 5.09 4.69 0.01 33.90 1,225

Panel C: Donor cities
Outcome variable:
CO2 emissions per capita (ton/person) 6.44 5.63 0.46 55.22 2,443
GDP CO2 intensity (ton/10,000 CNY) 2.60 1.58 0.52 15.07 2,443
Socioeconomic measurement:
GDP per capita (10,000 CNY) 2.90 2.35 0.16 20.24 2,443
Employment (million people) 0.35 0.29 0.04 3.80 2,443
Industrialisation rate (%) 48.56 11.84 2.66 90.97 2,443
Social fixed asset investment (10 billion CNY) 7.45 7.85 0.20 63.59 2,443
Expenditure on science and technology (billion CNY) 0.20 0.37 0.00 4.82 2,443
Industrial SO2 discharge (10,000 ton) 5.38 4.86 0.01 33.19 2,428

Notes: The table shows means, standard deviations, minimum values, maximum values and the num-
ber of observations. Panel A displays the statistics of the cities under either the first or second wave;
panel B displays the statistics of the cities that are never included in any treatment pool under the
LCCP.

To construct the synthetic controls for the treated cities, we first use the values of the outcome vari-
ables – per-capita CO2 emissions and CO2 intensity of GDP – in the pre-treatment period. Abadie
(2021) warns of the dangers of matching only on pre-treatment outcomes, which may lead to over-
fitting to noise and introduce potential sources of bias. We, therefore, introduce additional covari-
ates in our predictor set that we use to try and balance against systematic differences between the
treated cities and weighted donor units. We include per-capita GDP (in 10,000 CNY), the industrial-
isation rate, i.e. the GDP share of the secondary sector, social fixed asset investments (in 10 billion
CNY), and industrial SO2 discharges (in 10,000 ton) as additional predictors. As a robustness check,
in what follows we also include employment (million people) and investment in science and tech-
nology (billion CNY) to the predictor set to gauge the sensitivity of our results to changes in the
predictor set. All these data come from the China City Statistical Yearbook (NBS, 2017), and the
monetary values are normalised to 2010 CNY. All our data was also cross-checked with the rele-
vant data from prefectural and provincial statistical yearbooks – which may be accessed via the

13Using the third-wave cities as donor units for the previous waves implies that we assume that they did not prepare
in any way ahead of the regulation, i.e. that there is no anticipation effect. This is questionable, however, given the
possibility of political bargaining and the strong connections between regional authorities and the central government.
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cities’ or provinces’ municipal bureau of statistics – to ensure accuracy and consistency.

In our baseline results, we classified as treated all the cities that were included either directly or
indirectly, i.e. via municipality-, province- or prefecture-level treatment in either the first or second
wave. As a control group, we use all cities that were not treated in either wave. An important
caveat in creating reliable synthetic controls is that both pre-treatment outcomes and additional
predictors of the treated unit should fall in the convex hull of the donor units (as indicated by the
minimum and maximum). As explained in Section 2, however, the assignment to treatment is not
random, so that the treated cities are on average cleaner and more advanced, making it impossible
to create close matches on some of the measurements. We, therefore, identify and exclude as
outliers the cities of Beijing, Tianjin, Shanghai, Suzhou, Guangzhou, Shenzhen and Chongqing, for
which no plausible donors exist. After the adjustment, we are left with 245 cities, 82 of which were
included in the LCCP in either the first or the second wave.

Table 1 provides the descriptive statistics of the variables used in the analysis, divided by treat-
ment status, over the period 2003-2017. Although as mentioned the treated cities exhibit better
economic and environmental performances, their minimum and maximum values fall approxi-
mately in the support of the donor cities for most measurements. We are therefore confident in
fitting reliable synthetic counterfactuals that closely match the treated cities’ historical outcomes
and additional predictors.

4 Empirical results

We begin this section by presenting the results we obtain within the DiD framework discussed in
Section 3. This approach allows us to clarify the placement of our contribution within an exist-
ing literature that has mostly relied on naïve DiD estimations, before moving on to discussing the
results that emerge from our preferred synthetic-control-based methodology.

Table 2 and Figure 1 present the results of a staggered DiD estimation, following the methodology
introduced by de Chaisemartin and D’Haultfoeuille (2022). The goal of this procedure is to capture
the aggregate effect of the LCCP on the outcome variables of interest over the first two waves.14

The results in the Table suggest that the LCCP had a statistically significant impact on per-capita
CO2 emissions, with a reduction of 0.38 ton per capita – about 7% less than the average emissions
in the pre-treatment phase – whereas there is no significant effect on the carbon intensity of GDP,
compared to the control group.

Figure 1 plots the evolution over time of the impacts of the policy across the first two waves of the
LCCP and shows downward-sloping trends over time, at least initially. This pattern is particularly
pronounced for per-capita emissions. For the emissions measure, the results become significantly
negative at t = 3 and remain so until the end of the horizon. The results are less clear-cut for

14The table provides the point estimates, the standard errors and the p-values for the treatment effects, as well as the
number of cities in the sample and the total number of observations. In the figure, the treatment effects are normalised
relative to the beginning of the corresponding treatment period, i.e. t = 0 represents 2010 for the first wave and 2012
for the second one.
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Table 2: Staggered difference-in-differences estimation

ATT estimate Std. error p-value N/Obs.

CO2 emissions per capita -0.363*** 0.139 0.009 245/3,673GDP CO2 intensity -0.061 0.041 0.140

Note: The table displays the estimates of staggered difference-in-differences estima-
tions of CO2 emissions per capita and GDP CO2 intensity for the first two waves of the
LCCP. *, **, *** indicate 10%, 5% and 1% statistical significance, respectively.

CO2 intensity. The DiD estimates are negative in the short run, albeit only significantly so at t =

3, and rebound strongly towards zero at the end of the time window. Alarmingly, however, for
both outcomes, the estimates in the treatment period suggest that they are the continuation of
trends started well before t = 0, thus violating the ‘parallel-trends’ assumption needed for DiD
identification. These results confirm that naïve regressions of this type are not the ideal approach
to identify causality in this context.

While problematic, our emissions results are broadly consistent with the existing literature that
considers the role of the LCCP in mitigating carbon emissions using a DiD approach. For example,
Huo et al. (2022) and Tu et al. (2022) find that the LCCP reduces CO2 emissions by 2-3%.15 Our null
results on the impact of the LCCP on the carbon intensity of GDP, however, contrast both with the
findings of Feng et al. (2021) and Zhou and Zhou (2021), who argue that the LCCP has increased
the carbon content of GDP, and those of Hong et al. (2021), who instead find a significant reduc-
tion of energy consumption relative to GDP.16 These differences might be due to the heterogeneity
of treatment effects, which have been shown to give rise to biased estimates in the presence of
staggered treatments (e.g., Baker et al., 2022).

Overall, our assessment of this first set of results is that even if they represent an improvement
on the current state-of-the-art, in that they at least address the potential biases in the estimated
treatment effects due to the staggered nature of the treatment, they still fall short of providing
a convincing identification framework for the causal effects of the LCCP. Indeed, it is clear that –
as argued in Section 2 – the selection into the LCCP is not random. As a consequence, the iden-
tification strategy that underlies the DiD efforts discussed above is unsatisfactory. In view of this
discussion, we now move on to the main part of our analysis, where we apply the partially-pooled
SCM introduced by Ben-Michael et al. (2022) to the LCCP.

The results of the partially-pooled, staggered synthetic control procedure run for the first two
15Huo et al. (2022) do not control for the staggered nature of the treatment, nor do they account for the non-random

nature of the selection into treatment, both of which bias their results, and call their identification strategy into question.
While Tu et al. (2022) account for the staggered treatment, they also fail to control for the selection into treatment aspect.
Neither study, moreover, discusses the potential misattribution of the effect that arises from the partial overlap of the
LCCP with the ETS pilots, so their identification strategy is questionable.

16We note here that, taken together, these results would imply that China moved to a much more carbon-intensive
energy mix as a consequence of the LCCP, which is hard to believe. These studies, however, suffer from a number of
limitations that might explain their somewhat erratic conclusions. In particular, neither Feng et al. (2021) nor Hong et al.
(2021) control for the staggered nature of the treatment, while Zhou and Zhou (2021) focuses on Wave II only. Neither
of the two latter studies controls for the non-random treatment selection, and all fail to account for policy overlaps.
Overall, their identification strategies are not very convincing, which might explain their contrasting results.
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Figure 1: Plots of the staggered difference-in-differences effects

Notes: The figure shows the results of intertemporal difference-in-differences estimations on CO2 emissions
per capita and GDP CO2 intensity for the first two waves of the LCCP (de Chaisemartin and D’Haultfoeuille,
2022). The effects are normalised relative to the beginning of the corresponding treatment, i.e. 2010 for
Wave I and 2012 for Wave II.

Table 3: Staggered synthetic control estimation – baseline

ATT estimate Std. error p-value N/Obs.

CO2 emissions per capita -0.148 0.174 0.395 245/3,673GDP CO2 intensity -0.065 0.077 0.399

Notes: The table displays the estimates of the staggered synthetic control method on
CO2 emissions per capita and GDP CO2 intensity for the first two waves of the LCCP. *,
**, *** indicate 10%, 5% and 1% statistical significance, respectively.

waves of the LCCP are presented in Table 3.17 These results show that the LCCP had no statisti-
cally significant effect at conventional levels on the treated cities, relative to the non-treated ones.
Figure 2 plots the estimates of the effects over time. Overall, the pre-treatment fits are satisfactory
and, based on the confidence intervals plotted, the treatment effects on both measures remain
insignificant throughout the treatment period.

These findings are clearly at odds with the ones currently available in the literature, so in the re-
mainder of this section, we delve deeper into the data to shore up our confidence that these results
are indeed correct and robust.

4.1 Challenges to identification

One of the most critical challenges to identification in the context of the LCCP derives from the fact
that several policy initiatives aimed at decoupling carbon emissions from economic growth were
undertaken in China around the same time as the LCCP. For example, shortly after the introduc-

17The conventional practice to claim statistical inference of synthetic control method is to run a number of falsification
tests. Specifically, one can estimate treatment effects τ̂j for each of the j = 2, ...,D donor units following the main
specification, using the remaining D − 2 donor units. Here we follow Ben-Michael et al. (2022) and provide statistical
inference using the leave-one-unit-out jackknife approach. See the online appendix of Ben-Michael et al. (2022) for more
details.
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Figure 2: Plots of the Staggered synthetic control effects – baseline

Notes: The figures show the results of the staggered synthetic control method on per-capita CO2 emissions
and GDP CO2 intensity. The effects are normalised relative to the beginning of treatment.

tion of the LCCP, the Chinese authorities started discussing the introduction of emissions trading
as a climate change mitigation tool. Beginning in 2011, with trading commencing in 2013, seven
emissions trading scheme (ETS) pilots were launched. The pilots included one prefecture-level
city (Shenzhen), two provinces (Hubei and Guangdong) and four municipalities (Beijing, Shang-
hai, Tianjin, Chongqing).18 This poses two parallel challenges for us since, on the one hand, cities
in the donor pool might be affected by the pilots leading to a potential attenuation bias; on the
other hand, some of the LCCP cities might have been also included in these ETS pilot schemes,
making it impossible to attribute any treatment effect to the LCCP alone causally.

To control for this confoundedness, we exclude all ETS-regulated cities from our sample, leaving
us with a total sample of 214 cities, 51 of which were treated under the LCCP. Using this restricted
sample, we run our SCM model once again to confirm the validity of our design.

Figure 3 and Table 4 report the results of this exercise. The effect of excluding the cities treated by
the ETS pilots is relatively small. Compared to the baseline discussed in Table 3, the changes in
the estimated coefficients are small and they remain insignificant, with the p-value for the carbon
intensity increasing to 0.699. For completeness, we repeat the same exercise using the staggered
difference-in-differences approach of de Chaisemartin and D’Haultfoeuille (2022) and report it in
the lower half of Table 4. In this case, the results are quite striking as the coefficient of the per-capita
emissions becomes much smaller and strongly insignificant compared to the ones presented in
Table 2.

Taken together, these findings suggest that the inclusion of the ETS pilot cities in the LCCP treat-
ment group might lead to significant biases in the results of DiD estimates. The fact that we find
no evidence that our SCM baseline results are significantly impacted by them suggests that the

18The cap covered around 40% of the total CO2 emissions in each division, including a range of entities and industries
(Swartz, 2016). The empirical literature has suggested that the ETS pilots reduced CO2 emissions by around 15.5% (Hu
et al., 2020).
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pooled SCM methodology may be more robust to this type of overlap than other approaches. It
is worth noting that, to the best of our knowledge, none of the significant results reported in the
literature control for the policy overlap discussed here. This strongly suggests that taking them at
face value might lead to misleading conclusions.

Figure 3: Staggered synthetic control estimation – controlling for policy overlap

Notes: The figures show the results of the staggered synthetic control method on per-capita CO2 emissions
and GDP CO2 intensity on a restricted sample that excludes all the cities taking part in the ETS pilots. The
effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

Table 4: Controlling for policy overlap – excluding ETS cities

ATT estimate Std. error p-value N/Obs.

Panel A: Staggered synthetic control
CO2 emissions per capita -0.236 0.230 0.304 214/3,210GDP CO2 intensity -0.034 0.087 0.699

Panel B: Staggered difference-in-differences
CO2 emissions per capita -0.070 0.147 0.632 214/3,210GDP CO2 intensity -0.081 0.055 0.138

Notes: The table displays the estimates of the staggered synthetic control method on
CO2 emissions per capita and GDP CO2 intensity for the first two waves of the LCCP on
a restricted sample that excludes all the cities taking part in the ETS pilots. *, **, ***
indicate 10%, 5% and 1% statistical significance, respectively.

As discussed in Section 2, alongside the LCCP the Chinese government was making concurrent
efforts to decarbonise the economy, via the increasingly stringent targets mandated by the FYPs.
Our identification framework implicitly assumes that treated and donor units are assigned similar
reduction targets under the FYPs, thus not biasing our estimates of the impact of the LCCP. To test
whether this assumption holds, we collect information on the reduction targets mandated for each
of the cities in our sample under both the twelfth and thirteenth FYPs. We then perform equiva-
lence tests for the average reduction targets to ensure that the FYPs’ mandates do not introduce
biases to our estimates above.
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Table 5 reports the results of these tests. As the t -statistics and the p-values suggest, we cannot
reject the null hypothesis that the reduction targets are equal between the two groups. This im-
plies that our results above are not likely to be driven by differences in the reduction targets in the
FYPs.19

Table 5: Testing differences in reduction targets under the 12th and 13th Five-Year Plans

Treated units
Mean

Donor units
Mean Diff. t -statistic p-value N/Obs.

12th Five-Year Plan (2011-15) 17.04 17.08 -0.04 -0.18 0.86 214/3,21013th Five-Year Plan (2016-20) 18.54 18.88 -0.35 -0.96 0.34

Notes: The table reports the results of the t -test for the equality of means between the treated and donor
units for the carbon emissions reduction targets set by 12th and 13th Five-Year Plans. *, **, *** indicate 10%,
5% and 1% statistical significance, respectively.

Another possible limitation of our identification strategy is that the LCCP was introduced follow-
ing an earlier announcement and the selection process of suitable pilot candidates was also rather
slow. From this point of view, our choice to start the treatment period from the official inception
dates of wave I and II – in 2010 and 2012, respectively – might be considered naïve. It is indeed
plausible that at least in some of the treated cities, both officials and economic agents might have
been aware of their future treatment status through their own lobbying for selection into the pilot
or other political connections. If this were indeed the case and at least some of the pilot cities had
taken early actions to prepare for the pilot, this could introduce biases in the selection of donors.
Selecting donors with lower emissions would then potentially lead to an attenuation of the esti-
mated effect, and to insignificant results. To control for this potential bias, we conduct our analysis
again, this time moving the notional start of the treatment to one year prior to the official start of
the pilot.20

Figure 4 and Panel A of Table 6 present the results of the above discussion. While the develop-
ment trajectories are not subject to major changes, we find that the estimates attenuate for both

19As indicated by one anonymous reviewer, another policy – the Two Control Zones (TCZ) policy – might be another
possible source of confoundedness here. While the TCZ has been shown to have been successful at reducing polluting
emissions (e.g., Cai et al., 2016), however, it had only a minimal overlap with the LCCP. On the one hand, it stopped
running in 2010, the first year in which the LCCP was introduced; on the other hand, its goal was to mitigate acid rains
by reducing SO2 emissions from coal combustion, rather than focusing on carbon emissions. The main consequences
of SO2 regulation were the closure of older coal-fired boilers and a switch to lower-sulfur coal (including washed coal).
According to Zhang et al. (2016), these behavioural responses to the regulation have significantly contributed to decou-
pling economic growth from SO2 discharge in China. The effect of the TCZ on CO2 emissions in the control zones is more
uncertain, however, because switching from high-sulfur coal to cleaner coal does not necessarily reduce CO2 emissions
(e.g., Zhang et al., 2016). In fact, low-sulfur coal has a higher net caloric value than dirtier coal and therefore produces
more CO2 emissions per unit of weight during combustion (Shan et al., 2018b). As discussed by Glomsrød and Taoyuan
(2005), moreover, switching from dirtier to cleaner coal has complex system-wide implications, which might even lead
to an increase in CO2 emissions. For the sake of completeness, however, we have re-run our SCM analysis excluding the
TCZ cities, to control for any policy overlap; we also repeated our analysis using only the set of cities treated under the
TCZ, to isolate the potential additional effects of the LCCP. In both cases, we fail to identify any impact from the LCCP.
If anything, the results are even more insignificant than our baseline ones. The full set of results is available from the
authors upon request.

20While a two-year anticipation effect seems excessive in this context, for completeness we also performed this anal-
ysis moving the treatment date up by two years. The results do not change qualitatively, as the treatment effect remains
insignificant for both outcomes. Full details are available from the authors upon request.
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Figure 4: Controlling for potential anticipation effect – alternative policy start

Notes: The figures show the results of the staggered synthetic control method on per-capita CO2 emissions
and GDP CO2 intensity anticipating the treatment effect by one year. The effects are normalised relative to
the beginning of treatment, i.e. 2009 for wave I and 2011 for Wave II.

outcomes compared to Table 3. In the presence of an anticipation effect, we would instead ex-
pect larger estimates and smaller p-values, because by backdating the treatment start date, the
anticipation effect would be incorporated into the treatment effect. Overall, we find no evidence
to support the existence of a significant anticipation effect. For completeness, we also exclude the
cities treated under the ETS pilots. The results are reported in Panel B of Table 6 and in the Ap-
pendix (see Figure C.1). Again, we find no indication that an anticipation effect might have taken
place.

Table 6: Controlling for potential anticipation effect – alternative policy start

ATT estimate Std. error p-value N/Obs.

Panel A: Baseline sample
CO2 emissions per capita 0.030 0.329 0.927 245/3,673GDP CO2 intensity -0.061 0.091 0.502

Panel B: Excluding the ETS-regulated cities
CO2 emissions per capita -0.236 0.268 0.377 214/3,210GDP CO2 intensity -0.033 0.110 0.766

Notes: The table displays the estimates of the staggered synthetic control method on
CO2 emissions per capita and GDP CO2 intensity for the first two waves of the LCCP
anticipating the treatment effect by one year. *, **, *** indicate 10%, 5% and 1% sta-
tistical significance, respectively.

Lastly, we focus on the potential for treatment spillovers to the control group, which would com-
promise our identification. On the one hand, it is possible that the pilot was successful in identi-
fying, developing and demonstrating low-carbon pathways that may have been adopted by other
cities. This would potentially lead to reductions in both outcomes among treated and control units.
On the other hand, the introduction of the LCCP might have increased the cost of carbon emissions
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in the treatment regions and pushed economic activities towards areas with less stringent environ-
mental regulations, thus leading to carbon leakage. In this case, emissions would increase in the
destination cities alongside economic activity.

Table 7: Controlling for treatment spillovers

ATT estimate Std. error p-value N/Obs.

Panel A: Excluding neighboring cities
CO2 emissions per capita -0.304 0.372 0.415

136/2,040GDP CO2 intensity -0.030 0.142 0.830
GDP per capita 0.104 0.146 0.476

Panel B: Using neighboring cities as donor units
CO2 emissions per capita -0.168 0.332 0.612

129/1,935GDP CO2 intensity -0.001 0.094 0.993
GDP per capita 0.062 0.142 0.660

Notes: The table displays the estimates of the staggered synthetic control method on
CO2 emissions per capita, GDP CO2 intensity, and GDP per capita for the first two waves
of the LCCP. Panel A shows the results excluding neighbouring cities from our sample;
Panel B shows the results using only neighbouring cities as donor units. *, **, *** indi-
cate 10%, 5% and 1% statistical significance, respectively.

To test for the presence of these treatment spillovers, and assuming that any spillover is more
likely to occur in cities ‘close’ to the pilot ones, we first excluded from the donor pool cities that
are in close geographical proximity to the pilots from our sample.21 Using this restricted sample,
we re-run our synthetic control estimations for both outcomes. Next, we restrict the donor pool
to include the neighbouring cities only and repeat the analysis. The overall idea here is that, in
the presence of treatment spillovers, this latter set of results ought to be less significant than the
former.

Finally, to control for possible leakage effects, we also run an additional test using per-capita GDP
as an outcome that allows us to identify economic leakage.22

Table 7 presents the results of our investigation into treatment spillovers. All the estimates remain
insignificant, although – consistent with the idea that spillovers are more likely in neighbouring
cities – all point estimates in Panel B are rather attenuated. Overall, we discard the idea that treat-
ment spillovers or carbon leakage drive our insignificant results in the baseline.

4.2 Robustness checks

Having acknowledged the possible challenges to our identification strategy and having found that
they do not invalidate our approach, we now start our discussion of the robustness of our results
to several possible changes in the data. For the remainder of this section, we work with a restricted

21Specifically, we drop all control units that share a border with a treated city.
22To achieve treatment-control balance in the GDP per capita analysis, we use employment, industrialisation rate,

social fixed asset investment and expenditure in science and technology as additional predictors in the construction of
the synthetic control.
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dataset from which we have removed the ETS-regulated cities, for cleaner identification.

Our first step is to make sure that the main results are not driven by the set of predictors used
to construct the synthetic controls in our main specification. In what follows, we repeat our esti-
mates with different sets of predictors, starting from matching on outcomes only. We then expand
the predictor set one variable at a time, until we have used all the variables at our disposal. The
complete set of predictors includes the two original outcome variables, GDP per capita, industri-
alisation rate, social fixed asset investments, industrial SO2 discharges, employment, and expen-
diture on science and technology. If the results do not change substantially, we can conclude that
the selection of the predictors does not drive our SCM results.

Figure 5: Robustness checks – changing predictor sets

Notes: The figures show the results of examining the sensitivity to different predictor sets on CO2 emissions
per capita and GDP CO2 intensity using a staggered synthetic control method. Effects are normalised
relative to the beginning of treatment, i.e. 2010 for wave I and 2012 for Wave II.

Table 8 and Figure 5 present the results of our sensitivity analysis to the different predictor sets. We
find that including or excluding predictors only marginally changes the point estimates, and no es-
timate comes close to being significant. Overall, this exercise shows that our results are extremely
robust across predictor sets.

We next look into possible differential effects across the first two waves of the LCCP that might
be hidden by the staggered treatment analysis of Table 3. We replicate our previous analysis sep-
arately for each wave. Panel A and B in Table 9 show the estimates for the treatment effects on
CO2 emissions per capita and the CO2 intensity of GDP for the different waves. The estimates are
broadly consistent with our baseline results above in that they confirm that the LCCP had no sta-
tistically significant effect in the first wave for both outcomes, and for the carbon intensity of GDP
in the second wave. The coefficient for emissions per capita in the second wave, however, is much
larger than the one in the baseline and marginally significant, with a p-value of 0.085. While these
results per se do not change our overall assessment of the policy, it might suggest that any bene-
fits of the LCCP are rather muted in the short to medium term but might take longer to materialise.
The difficulty with this type of reasoning, of course, is that the counterfactual might become rather
less convincing over longer periods of time, akin to a violation of the Stable Unit Treatment Value
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Table 8: Robustness checks – changing predictor sets

Baseline S1 S2 S3 S4 S5 S6 N/Obs.

CO2 emissions
per capita

-0.236
(0.223)

-0.081
(0.209)

-0.266
(0.204)

-0.274
(0.216)

-0.221
(0.227)

-0.241
(0.226)

-0.241
(0.280)

214/3,210
GDP CO2

intensity
-0.034
(0.087)

-0.058
(0.135)

0.010
(0.095)

-0.015
(0.108)

-0.008
(0.087)

-0.041
(0.096)

-0.016
(0.099)

Notes: The table displays the estimates of the staggered synthetic control method on CO2 emissions per
capita and GDP CO2 intensity for the first two waves of the LCCP, for different predictor sets. *, **, *** indicate
10%, 5% and 1% statistical significance, respectively.
Baseline: Predictor set as in the main results.
S1: Only outcome variables in the pre-treatment periods as predictors.
S2: Outcome variables and GDP per capita as predictors.
S3: Outcome variables, GDP per capita and industrialisation rate as predictors.
S4: Outcome variables, GDP per capita, industrialisation rate and social fixed asset investment as predictors.
S5: Outcome variables, GDP per capita, industrialisation rate, social fixed asset investment, industrial SO2

discharge and employment predictors.
S6: Outcome variables, GDP per capita, industrialisation rate, social fixed asset investment, industrial SO2

discharge, employment and expenditure on science and technology as predictors.

Assumption (SUTVA).

Table 9: Checking for robustness — results for individual waves

ATT estimate Std. error p-value N/Obs.

Panel A: LCCP first wave
CO2 emissions per capita -0.274 0.340 0.420 192/2,880GDP CO2 intensity 0.050 0.146 0.732

Panel B: LCCP second wave
CO2 emissions per capita -0.511* 0.297 0.085 183/2,745GDP CO2 intensity 0.010 0.114 0.930

Notes: The table displays the estimates of the staggered synthetic control method on
CO2 emissions per capita and GDP CO2 intensity for the first two waves of the LCCP.
Panel A shows the results of the first wave; panel B shows the results of the second
wave. *, **, *** indicate 10%, 5% and 1% statistical significance, respectively.

As a further test for the robustness of our results, we now distinguish between cities that were
assigned to treatment directly (which we refer to as city-level treatment) versus cities that were
assigned treatment status as part of a province-level treatment assignment. The rationale for this
further test is the two types of treatments might differ with respect to the enforcement pressure.23

Table 10 reports on the outcome of this test, showing that the treatment effect is insignificant,
irrespective of the level of their assignment into treatment.

Our next robustness check is conducted to ensure that our insignificant results do not arise be-
cause of an averaging of heterogeneous treatment effects across units. In particular, we are con-
cerned that, given the significant differences that exist across more developed regions and less

23We thank one anonymous reviewer for suggesting this additional test.
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Table 10: Checking for robustness – heterogeneous treatment levels

ATT estimate Std. error p-value N/Obs.

Panel A: City-level treatment
CO2 emissions per capita -0.410 0.316 0.195 187/2,805GDP CO2 intensity -0.012 0.084 0.882

Panel B: Province-level treatment
CO2 emissions per capita -0.248 0.496 0.617 188/2,820GDP CO2 intensity -0.036 0.124 0.769

Notes: The table displays the estimates of the staggered synthetic control method on
CO2 emissions per capita and GDP CO2 intensity for the first two waves of the LCCP.
Panel A shows the results of the city-level treatment; panel B shows the results of the
province-level treatment. *, **, *** indicate 10%, 5% and 1% statistical significance,
respectively.

developed ones in China, our aggregate results might not be very informative as to the actual im-
pact of the LCCP. We, therefore, group the treated cities by affluence level and by geographical
position before running our SCM tests again separately for each group – Table B.2 in Appendix B
provides the details.

Starting with the results by income level, we use the cities’ GDP per capita to proxy for the units’
level of economic development, grouping them by mean GDP per capita between 2003 and 2017.
Specifically, we define three groups: cities with mean GDP per capita smaller than 35K CNY are
defined as low-income cities; those between 35K and 65K CNY are defined as middle-income cities;
those in excess of 65K CNY are defined as high-income cities.

Figure 6 – the estimates can be found in Panel A of Table B.1 in Appendix B – reports the results of
this exercise. Once again, the treatment effects remain clearly insignificant across all groups for
both outcome variables although the precision of the estimates varies greatly.

Figure 6: Checking for robustness - cities with different affluence levels

Notes: The figures show the results of differential effects in cities with different affluence levels on CO2

emissions per capita and GDP CO2 intensity using the staggered synthetic control method.
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We now turn to possible heterogeneous impacts across different regions in China. Chinese regions
differ substantially from each other by their different degree of reliance on coal, and the quality
of their infrastructures, for example. These differences make it likely that carbon emissions mit-
igation would happen at different rates. We classify the treated cities into regions according to
the framework for Chinese human geography proposed by Fang et al. (2017). Based on the cities’
location, we are able to estimate treatment effects across seven regions.

Figure 7 – and Panel B of Table B.1 in Appendix B – reports the results of this analysis. Also in this
case, the results suggest that the LCCP had no significant effect on carbon intensity.

Figure 7: Checking for robustness - cities in different geographical regions

Notes: The figures show the results of differential effects in cities in different regions on CO2 emissions
per capita and GDP CO2 intensity using the staggered synthetic control method.

Figure 8: Checking for robustness - resource-based and non-resource-based cities

Notes: The figures show the results of the differential effects on resource-based and non-resource-
based cities’ CO2 emissions per capita and GDP CO2 intensity using the staggered synthetic control
method.

Lastly, we explore whether resource-based cities behave differently from non-resource-based cities.
We define cities as resource-based if their dominant industries are based on the exploitation and
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processing of local natural resources, based on the classification contained in the National Sus-
tainable Development Plan for Resource-based Cities (2013–2020) issued by the State Council.24

We perform SCMs separately for each group.

Figure 8 and Panel C of Table B.1 present the results. The estimated treatment effects are clearly
insignificant for both categories and outcomes, again suggesting that the LCCP had no significant
effect.

Having come so far, we are confident that our identification strategy is correct and that the method-
ology we deploy is appropriate for the case study at hand. We are, however, also conscious that,
while the data we used so far has been extensively used in the literature, they are far from perfect.
Indeed, the county-level CO2 emission inventories our data are constructed from might be prob-
lematic, as they are down-scaled to the county level starting from provincial carbon emissions
estimates based on nighttime light data. One of the problems, of course, is that nighttime light
data are only able to offer a direct proxy for the electricity used for illumination and any other ex-
trapolation (to the level of economic activity or the overall energy demand and carbon emissions)
is at best the result of a noisy procedure (see Shan et al., 2018a,b, 2020, for a discussion of these
issues). Fortunately, an alternative is available in the form of consumption-based CO2 emissions
estimates using the IPCC guidelines with updated emission factors from survey studies in China.25

The energy consumption data necessary to compile the new emission inventories are collected
from the respective city-level statistical yearbook (e.g., Beijing Municipal Bureau of Statistics, 2021;
Shanghai Municipal Bureau of Statistics, 2021), which also allows us to decompose the aggregate
emissions into emissions from 17 different fossil fuels, 47 socioeconomic sectors, and cement pro-
duction. In this section, we use these alternative emission inventories to examine the sensitivity
of our results to changes in emissions data.

Using this alternative data presents us with a trade-off, however. On the one hand, the data have
been shown to be more accurate and reliable; on the other hand, by relying on city-level energy
consumption estimates for its construction, it only allows the construction of a narrower and shorter
panel dataset. The new dataset covers the period 2005-2016 and a total of 122 cities (45 treated, 77
donor units). We report the descriptive statistics in Table 11, alongside the corresponding descrip-
tive statistics from our original dataset. Overall, the two sets of emission data appear noticeably
different, especially in terms of the minimum-maximum spread. This is likely because the origi-
nal emissions data obtained by downscaling the nighttime light data may average out the extreme
values.

We examine the sensitivity of our results to using different datasets by applying the SCM using the
IPCC data as the basis to construct alternative outcome variables. For comparability, we use the
same covariates and definition of the treatment group and exclude cities regulated by China’s ETS
pilots or whose predictors do not fall in the convex hull.26 Figure 9 and Table 12 present the results.

24See the Development Plan at http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm (in Chinese). 262
administrative units were classified as resource-based cities, including 126 prefecture-level divisions, 120 county-level
divisions, and 16 districts.

25See Appendix A for a discussion of how this inventory is constructed.
26We exclude 25 ETS-regulated cities and two outliers (Suzhou and Qingdao) from the sample. After the exclusion, we
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Table 11: Comparison of emissions data between different sources

Mean Std. dev. Min. Max. Obs.

Panel A: Cities received treatment
IPCC Guidelines:
CO2 emissions per capita (ton/person) 6.94 4.72 0.51 39.74 540
GDP CO2 intensity (ton/10K CNY) 1.97 1.44 0.35 10.27 540
Nighttime light:
CO2 emissions per capita (ton/person) 6.13 2.71 1.73 14.05 540
GDP CO2 intensity (ton/10K CNY) 1.75 0.91 0.31 5.87 540

Panel B: Donor units
IPCC Guidelines:
CO2 emissions per capita (ton/person) 12.90 19.75 0.53 177.34 924
GDP CO2 intensity (ton/10K CNY) 3.17 3.29 0.37 28.63 924
Nighttime light:
CO2 emissions per capita (ton/person) 8.24 7.01 1.14 53.54 924
GDP CO2 intensity (ton/10K CNY) 2.24 1.28 0.57 10.99 924

Notes: The table compares the means, standard deviations, minimum and maximum
values as well as the number of observations using data collected using the IPCC
Guidelines and data based on nighttime light data. Panel A displays the values of the
pilot cities. Panel B displays the values of the never-treated cities.

Table 12: Checking for robustness – alternative emissions data

ATT estimate Std. error p-value N/Obs.

Panel A: Staggered estimation
CO2 emissions per capita 0.151 1.076 0.888 80/960GDP CO2 intensity 0.085 0.240 0.722

Panel B: LCCP first wave
CO2 emissions per capita -0.992 0.958 0.301 68/816GDP CO2 intensity -0.103 0.237 0.665

Panel C: LCCP second wave
CO2 emissions per capita 1.005 1.939 0.604 74/888GDP CO2 intensity 0.262 0.383 0.494

Notes: The table displays the estimates of the staggered synthetic control method
on CO2 emissions per capita and GDP CO2 intensity for the first two waves of the Low
Carbon-City Pilot. The outcome variables are calculated based on the IPCC Guidelines
using city-level statistics on energy use. *, **, *** indicate 10%, 5% and 1% statistical
significance, respectively.

Despite the change in data, the results are consistent with those in Figure 3 in that the treatment
effects are clearly insignificant. The only difference of relevance is that using this alternative data,
the marginal significance of the treatment effect on per-capita emissions in the second wave van-
ishes. To conclude this section, we believe that our robustness checks support the idea that our
main results are correct in that the LCCP had negligible effects on the treated cities.

have 18 treated units and 77 donor units left.
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Figure 9: Checking for robustness – alternative emissions data

Notes: The figures show the results of the staggered synthetic control method on CO2 emissions per
capita and GDP CO2 intensity, using outcome variables calculated based on the IPCC Guidelines using
city-level statistics on energy use.

5 Discussion and sectoral analysis

Until now, we have focused our attention on gauging the effect of the LCCP on two key variables
of interest in climate policy debates, namely CO2 emissions per capita and the carbon intensity
of GDP. Consistently, our efforts in this paper show that the introduction of this pilot scheme had
no significant differential effect on the treated cities. Indeed, there seems to be no doubt that the
effect of the policy has been negligible.

In this section, we focus on a few potential channels that we would expect to underpin the ‘demon-
stration’ effect expected of the policy. In particular, we investigate signs of an increase in invest-
ment activity in treated cities versus their untreated counterparts. We look for investments in both
physical and knowledge capital as we would expect that the LCCP would provide incentives to in-
novation in treated areas, and/or that older machinery and infrastructure would need replacing to
support a low-carbon transition.

We use data on ‘Investment in Science and Technology’ and ‘Investment in Social Fixed Capital’ as
proxies for the type of investment activities discussed above.27 Table 13 reports the results of our
staggered synthetic control estimations. We find no evidence that LCCP cities are investing more
than other cities, at least at this level of aggregation.

One possible explanation for this pattern could be that low-carbon investments might have simply
crowded out other types of investments, leaving the total unchanged. Unfortunately, we have no
disaggregated investment data to test for this.

Even if aggregate investment remained constant, we should be able to infer the presence of low-
carbon structural changes via changes in sectoral emissions. If any sector became relatively greener

27In the analysis that follows, we exclude four of the treated cities (Hangzhou, Ningbo, Qingdao, and Xiamen) from the
evaluation of the impact of the LCCP on the investment in science and technology because we are unable to construct
acceptable counterfactuals given our donor pool.
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Table 13: Investment in Science and Technology and Social Fixed Capital

ATT estimate Std. error p-value N/Obs.

Investment in Science and Technology 0.005 0.032 0.880 210/3,150
Social fixed asset investment 0.551 0.502 0.272 214/3,210

Notes: The table displays the estimates of the staggered synthetic control method on each of
the outcomes for the first two waves of the LCCP on a restricted sample that excludes all the
cities taking part in the ETS pilots. *, **, *** indicate 10%, 5% and 1% statistical significance,
respectively.

in LCCP cities than in control ones, we should observe changes in CO2 emissions patterns across
sectors. Similarly, any greening of economic activity should be flagged up by fuel switching, e.g.
moving from coal to gas in manufacturing or a reduction in oil consumption in the transportation
sector. The data constructed following the IPCC methodology discussed in the previous section
provides an unprecedented wealth of information in this context. We next use this data to present
a sectoral analysis of the impact of the LCCP.

Given the lack of sector-specific GDP data, we focus here on sectoral-level CO2 emissions as our
outcome variable of interest. In what follows, for ease of exposition, we group the 47 socioeco-
nomic sectors and 17 fossil fuels available to us into broader categories – see Table B.3 and Table
B.4 in Appendix B for the details. As before, we exclude the ETS-regulated cities and the cities
whose predictors do not fall in the convex hull of the donor set.28

Table 14 summarises the synthetic control estimates for the impact of the LCCP on CO2 emissions
for each broader sector, by fuel. Even at this level of disaggregation, we fail to find any evidence of
a significant low-carbon transition brought about by the LCCP. This is surprising, given the degree
of flexibility afforded to each city to focus its efforts on specific sectors, or on specific energy uses.

In fact, reading through the details contained in the online agendas published by the LCCP pilot
cities, we found a surprising degree of consistency in the type of targets they set (Khanna et al.,
2014, See also). Figure 10 provides the distribution of the sectoral targets across the 11 cities for
which we are able to locate an online agenda. Most of these cities published targets aimed at pro-
moting the service sector, decarbonising the public transportation system, boosting low-carbon
construction and introducing green nudges.29

Our next step is to focus on the cities whose agendas we used to construct Figure 10. Using this
(admittedly small) set of cities, we once again drill down to the sector/fuel level. Table 15 provides
the results of this more focused analysis, including a sectoral-level analysis by a level-of-treatment
split, similar to our discussion in Table 10.

28For each broader sector in each year, we winsorize the observations’ first differences to control for the outliers due
to the potentially mis-reported data on energy consumption.

29As discussed in the footnote in Section 2, for the cities that did not publish online agendas or their online agendas
are not traceable, we contacted the regional DRC for additional information. For these cities, however, we were unable to
distinguish the details of their sectoral targets, either because they do not have specific ones, or because their agendas
have been subsumed into the 12th FYP.
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Table 14: Sectoral analysis by fuel type

Sectors
CO2 emissions

N/Obs.
Total Coal products Gas Oil products

Agriculture -0.060
(0.044)

-0.021
(0.039)

0.000
(0.001)

0.011
(0.030)

80/960

Mining -0.673
(0.656)

-0.790
(0.622)

0.026
(0.019)

-0.006
(0.009)

Light manufacturing -0.161
(0.182)

-0.078
(0.145)

-0.002
(0.036)

-0.008
(0.012)

Heavy manufacturing -0.318
(1.364)

-0.314
(1.034)

0.121
(0.350)

-0.156
(0.157)

High-tech manufacturing 0.005
(0.035)

0.011
(0.036)

-0.001
(0.006)

-0.006
(0.005)

Energy supply sector -3.106
(2.033)

-3.239*
(1.966)

0.077
(0.093)

0.003
(0.004)

Construction -0.004
(0.039)

-0.012
(0.013)

-0.001
(0.001)

0.021
(0.019)

Transportation -0.062
(0.190)

-0.022
(0.023)

-0.008
(0.017)

-0.161
(0.268)

Service sector -0.046
(0.204)

-0.127
(0.183)

0.035
(0.028)

0.045
(0.053)

Household usage 0.049
(0.187)

-0.028
(0.129)

-0.004
(0.040)

-0.060
(0.047)

Notes: The table shows the treatment effects on CO2 emissions for the first two waves of
the Low Carbon-City Pilot using the staggered synthetic control method. Results are di-
vided by fuel type and economic sector. *, **, *** indicate 10%, 5% and 1% statistical sig-
nificance, respectively.

Overall, while acknowledging that the data we use represent just a subset of the overall population
of treated cities, using consumption-based data reveals the surprising result that the LCCP had
no statistically significant effect on sector-level emissions across China, even in sectors that were
set clear targets. The only exception is a statistically significant increase in emissions related to
natural gas use in the Service sector, which might signal some degree of fuel switching to a cleaner
fuel. Interestingly, also the treatment-level analysis also returns null results, suggesting that the
intensity of enforcement did not play a role either.

Coming towards the end of our analysis, we must conclude that the LCCP had no significant impact
on the carbon emissions of the treated cities, either at an aggregate level or at a sectoral level. We
want to conclude our analysis by checking whether we can find evidence that the LCCP might have
led to an increase in the costs of production in treated cities. Not having a direct way to assess
these costs, we look at the level of employment across treated and non-treated cities, as well as
their GDP. Our last results, in Table 16 show that, neither in the full sample nor among the cities
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Figure 10: Distribution of cities by LCCP sectoral-level target.

Notes: The figure shows the distribution of cities according to their LCCP sectoral mitigation targets, based
on the information contained in their online agendas.

Table 15: Sectoral analyses by fuel type

Sectors
CO2 emissions

N/Obs.
Total Coal products Gas Oil products

Agriculture -0.024
(0.070)

0.022
(0.052)

0.000
(0.001)

0.031
(0.052) 66/792

Heavy Manufacturing 3.135
(2.705)

2.197
(1.928)

0.606
(0.590)

-0.220
(0.360) 69/828

High-tech Manufacturing 0.046
(0.062)

0.046
(0.057)

0.007
(0.011)

0.001
(0.007) 70/840

Construction 0.023
(0.069)

-0.005
(0.019)

-0.002
(0.002)

0.027
(0.026) 69/828

Transportation -0.383*
(0.226)

-0.020
(0.039)

0.005
(0.031)

-0.321
(0.286) 70/840

Service sector 0.100
(0.274)

0.012
(0.257)

0.060**
(0.029)

0.064
(0.073) 71/852

Household usage 0.308
(0.249)

0.071
(0.167)

0.023
(0.060)

-0.026
(0.084) 70/840

Notes: The table shows the treatment effects on CO2 emissions for the first two waves of the
Low Carbon-City Pilot using the staggered synthetic control method. Results are divided by
fuel type and economic sector. *, **, *** indicate 10%, 5% and 1% statistical significance,
respectively.

that have published online agendas, we can find any evidence that the LCCP made any difference
to the treated cities.30

30As previously mentioned, we exclude treated cities for which we are unable to find appropriate counterfactuals. In
Panel A, two cities (Hangzhou and Qingdao) are excluded when evaluating the impact of the LCCP on GDP, and one city
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Table 16: Staggered synthetic control estimation – other outcomes

ATT estimate Std. error p-value N/Obs.

Panel A: Full sample
GDP 0.641 3.558 0.857 212/3,180
GDP per capita 0.134 0.129 0.298 214/3,210
Employment -0.039 0.056 0.488 213/3,195

Panel B: Cities with published agendas
GDP -0.936 4.738 0.843

190/2,850GDP per capita 0.156 0.146 0.285
Employment -0.047 0.053 0.375

Notes: The table displays the estimates of the staggered synthetic control method on
other outcomes for the first two waves of the LCCP on a restricted sample that excludes
all the cities taking part in the ETS pilots. *, **, *** indicate 10%, 5% and 1% statistical
significance, respectively.

6 Concluding remarks

In this paper, we set out to evaluate the effectiveness of early climate policy efforts in the largest
emerging economy in the world. We focus on the LCCP because it was the first policy implemented
to mitigate climate change and because it was hailed as the first significant step taken by the Chi-
nese authorities in the transition to a more sustainable development path. From this point of view,
a careful assessment of the policy’s impacts is essential to make (further) progress towards miti-
gating climate change. Our focus is, moreover, motivated by the fact that, despite its idiosyncratic
design, the LCCP has been recognised as a success story in much of the literature (e.g., Feng et al.,
2021; Hong et al., 2021; Huo et al., 2022; Tu et al., 2022). Our results, unfortunately, hardly support
this optimistic view. We find, instead, that the LCCP did not lead to a reduction in carbon emissions
per capita, nor did it have a significant impact on the carbon intensity of GDP.

Our results contrast with the existing literature on the LCCP that emphasises a small but generally
positive impact of the pilot.31 We are confident, however, that our work benefits from a more care-
ful identification strategy and better accounts for the impacts of overlapping policies. In particular,
our use of the synthetic control method increases our confidence that our counterfactuals are not
biased by the non-random nature of the selection of the cities into the pilot. Furthermore, we are
particularly careful in controlling for the impacts of China’s ETS pilots, which partially overlap with
the LCCP, and for the measures contained in the 12th and 13th Five-Year Plans, both of which have
received little attention in the literature and might have been important confounding factors in the
results published to date.

In our analysis, besides considering the main outcomes of interest, we forensically discuss both the
identification strategy and the robustness of the baseline results. We also include an analysis of the
main channels through which the demonstration role of the policy would likely play out. We find

(Hangzhou) is excluded when assessing the impact on employment.
31It is fair to point out that our results also contradict the findings of the contributions that find significant and nega-

tive impacts linked to the LCCP (e.g., Zhou and Zhou, 2021; Feng et al., 2021).
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no evidence that the LCCP led to an increase in investment in either physical capital or science and
technology, both of which would be expected to play a key role in any low-carbon transitions. We
also test for evidence that the LCCP might have put pressure on pilot cities through an increase in
production costs. Indeed, neither the level of economic activity nor the level of employment shows
any deviation from the relevant counterfactual. Using the rich sectoral level energy consumption
data collected from the respective city-level statistical yearbook (e.g., Beijing Municipal Bureau of
Statistics, 2021; Shanghai Municipal Bureau of Statistics, 2021), we are able to construct emissions
data for different economic sectors and by fossil fuel type. Using this data we are the first to be able
to discuss the sectoral impact of the LCCP. Our analysis shows that, even at such a disaggregated
level, we cannot identify any impact of the LCCP.

Overall, our work leads us to conclude that the measures introduced by the treated cities as part
of the LCCP failed to generate a differential response by the economic agents operating in their
jurisdictions. That is not to say, of course, that China’s climate policy efforts had no mitigating
effects, based on our results, however, we can clearly conclude that – in the context of a country
that was starting to ready itself for a lower-carbon future – the LCCP failed to mobilise sufficient
resources, political attention and creativity to galvanise a low-carbon transition. Given the general
lack of evidence of any significant change over time, across regions and economic sectors, we must
conclude that the LCCP’s design was simply not conducive to generating sufficient incentives to
cause a significant response across the economy.

While our results run counter the existing literature, our conclusions in fact are well aligned with
the theoretical priors on the likely impacts of the LCCP. The LCCP was designed and introduced
fundamentally as a voluntary scheme, which the administrators of Chinese cities might sign up
to. The policy provided only vague ambitions to ‘demonstrate pathways’ to a transition to the low-
carbon economy. The scheme also lacked explicit mandates in terms of the instruments to use and
had no specific quantitative target. The policy also lacked any actual enforcement mechanism. On
all these grounds, we would indeed not expect the policy to have made much of a difference to the
choices of the agents in the economy. From this point of view, the main lesson to be drawn from
our analysis is that, even among emerging economies, the design of effective environmental policy
requires the careful setting of transparent and quantifiable targets, the introduction of economic
instruments that affect economic incentives, and credible enforcement mechanisms.
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A Emission inventories using the IPCC Guidelines

Recent contributions in the literature have used the method developed by the IPCC to calculate
CO2 emissions, i.e. they multiply energy consumption by standard emissions factors (IPCC, 2006).
However, recent survey data from 602 samples from 100 different mining areas that cover the ma-
jority of China’s coal production suggests that the default emission factors proposed by the IPCC
are on average 40% higher than than the actual values for China (Liu et al., 2015; Shan et al., 2018b).
In addition, most studies do not take the CO2 emissions from industrial processes into account. In
the year 2016, the aggregate CO2 emissions in China was 9,217.15 Mt, 7.6% of which are emissions
due to chemical reactions linked to industrial processes rather than due to fossil fuels combustion
(Shan et al., 2020). To correctly assess the amount of carbon emissions across cities, it is, therefore,
necessary to both use the revised emission factors and to include process emissions.

In this paper, we, therefore, follow Shan et al. (2017) and calculate CO2 emissions for each of our
observations using the updated emission factors to compile the CO2 emission inventories. The
data for compiling the CO2 emission inventory for each city is collected from the respective city-
level statistical yearbook, which allows us to decompose the aggregate emissions into emissions
from 17 different fossil fuels, 47 socioeconomic sectors and cement production.

Formally, the CO2 emissions from fossil fuel combustion are calculated as:

CEEnergy,pt =
∑
i

∑
j

CEpt i j =
∑
i

∑
j

ADpt i j × NCVpt i × CCpt i ×Opt i j , (1)

where p denotes cities; t denotes the year; i indexes the 17 different fossil fuel types in the data and
j indexes the 47 different economic sectors. ADpt i j represents the activity data, i.e. the physical
quantity of fuel i consumed by sector j ; NCVi represents the net caloric value, i.e. is the heat
value for each physical unit of the fossil fuel; CCi represents CO2 emissions per unit of the net
caloric value of the fossil fuel; O i j represents the oxygenation rate, which is the oxidation rate in
the process of fossil fuel combustion.

Similarly, the CO2 emissions from industrial processes can be expressed as:

CEProcess,pt =
∑
m

CEptm =
∑
m

ADptm × EFm , (2)

where m indexes the 7 different industrial processes for which we have information. ADptm de-
notes the production (in physical quantity) from industrial process m and EFm denotes the corre-
sponding emission factors. Table A.1 summarises the net caloric values and the emission factors
for calculating CO2 emissions from both fossil fuel combustion and industrial processes. For the
combustion emissions, we used the oxygenation rates provided by Shan et al. (2018b).
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Table A.1: Emission factors for CO2 emissions calculations

No. Fossil fuel types NCVi CCi Industrial process EFt

1 Raw coal 0.21 96.51 Cement production 0.4985
2 Cleaned coal 0.26 96.51
3 Other washed coal 0.15 96.51
4 Briquette 0.18 96.51
5 Coke 0.28 115.07
6 Coke oven gas 1.61 78.80
7 Other gas 0.83 78.80
8 Other coking products 0.28 100.64
9 Natural gas 3.89 56.17

10 Crude oil 0.43 73.63
11 Gasoline 0.44 69.30
12 Kerosene 0.44 71.87
13 Diesel oil 0.43 74.07
14 Fuel oil 0.43 77.37
15 Other petroleum products 0.51 74.07
16 Liquefied petroleum gas (LPG) 0.47 63.07
17 Refinery gas 0.43 73.33

Note: "Briquettes" includes briquettes and gangue. "Other gas" includes blast furnace
gas, converter gas and other unclassified gas. "Other petroleum products" includes naph-
tha, lubricants, paraffin, white spirit, bitumen asphalt, petroleum coke and other unclas-
sified petroleum products.
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B Additional tables

Table B.1: Staggered synthetic control estimation - excluding ETS pilot cities

CO2 emissions per capita GDP CO2 intensity N/Obs.

Panel A. Different affluence levels

Low-income cities -0.236
(0.204)

-0.075
(0.109) 195/2,925

Middle-income cities -0.138
(0.658)

0.120
(0.155) 178/2,670

High-income cities -1.075
(0.830)

-0.039
(0.082) 167/2,505

Panel B. Different geographical regions

Northwest China 0.405
(0.700)

0.133
(0.244) 173/2,595

North China -0.314
(0.510)

0.018
(0.125) 168/2,520

Northeast China -0.145
(0.389)

-0.136
(0.193) 176/2,640

Central China 0.091
(0.213)

0.111
(0.120) 166/2,490

East China -0.488*
(0.272)

-0,002
(0.092) 169/2,535

South China -0.315
(0.734)

0.138
(0.181) 167/2,505

Southwest China -0.601
(0.470)

-0.187
(0.176) 173/2,595

Panel C. City category

Resource-based cities -0.202
(0.388)

-0.059
(0.144) 190/2,850

Non-resource-based cities -0.374
(0.305)

0.010
(0.074) 187/2,805

Notes: The table displays the estimates of the staggered synthetic control method on CO2

emissions per capita and GDP CO2 intensity for the first two waves of the LCCP on a sample
which excludes all cities treated under China’s ETS pilots. *, **, *** indicate 10%, 5% and 1%
statistical significance, respectively.
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Table B.2: Distribution of LCCP cities by affluence levels and geography

China’s Low-Carbon City Pilot

The first wave The second wave

Panel A. Affluence levels
High-income cities Hangzhou, Xiamen Zhenjiang, Ningbo

Middle-income cities
Anshan, Fushun, Benxi, Yingkou, Panjin,

Nanchang, Kunming, Xi’an, Yan’an,
Yulin (Shaanxi)

Jilin, Wenzhou, Qingdao,
Kunming, Yan’an, Jinchang, Ürümqi

Low-income cities

Baoding, Dandong, Jinzhou, Fuxin,
Liaoyang, Tieling, Huludao, Guiyang,
Qujing, Baoshan, Zhaotong, Lijiang,

Pu’er, Lincang, Tongchuan, Baoji,
Xianyang, Weinan, Hanzhong

Shijiazhuang, Qinhuangdao, Jincheng,
Hulunbuir, Huai’an, Chizhou, Nanping,
Jingdezhen, Ganzhou, Guilin, Haikou,

Guangyuan, Zunyi

Panel B. Geographical distribution

North China Baoding Shijiazhuang, Qinhuangdao, Jincheng,
Qingdao

Northeast China
Anshan, Fushun, Benxi, Dandong,
Jinzhou, Yingkou, Fuxin, Liaoyang,

Panjin, Tieling, Huludao
Hulunbuir, Jilin

East China Hangzhou Huai’an, Zhenjiang, Ningbo,
Wenzhou, Chizhou

South China Xiamen Nanping, Guilin, Haikou

Central China Nanchang Jingdezhen, Ganzhou

Southwest China Guiyang, Kunming, Qujing, Baoshan,
Zhaotong, Lijiang, Pu’er, Lincang Guangyuan, Zunyi, Kunming

Northwest China Xi’an, Tongchuan, Baoji, Xianyang, Weinan,
Yan’an, Hanzhong, Yulin (Shaanxi) Yan’an, Jinchang, Ürümqi

Notes: The table displays the list of LCCP cities by affluence levels and geographic locations. Note that Yulin may
refer to multiple prefecture-level cities, therefore, we use Yulin (Shaanxi) to avoid confusion.
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Table B.3: Economic sectors

No. Economic sectors Category

1 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy Agriculture

2 Coal Mining and Dressing

Mining

3 Petroleum and Natural Gas Extraction
4 Ferrous Metals Mining and Dressing
5 Nonferrous Metals Mining and Dressing
6 Non-metal Minerals Mining and Dressing
7 Other Minerals Mining and Dressing

8 Logging and Transport of Wood and Bamboo

Light Manufacturing

9 Food Processing
10 Food Production
11 Beverage Production
12 Tobacco Processing
13 Textile Industry
14 Garments and Other Fibre Products
15 Leather, Furs, Down and Related Products
16 Timber Processing, Bamboo, Cane, Palm Fibre & Straw Products
17 Furniture Manufacturing
18 Papermaking and Paper Products
19 Printing and Record Medium Reproduction
20 Cultural, Educational and Sports Articles
21 Medical and Pharmaceutical Products

22 Petroleum Processing and Coking

Heavy Manufacturing

23 Raw Chemical Materials and Chemical Products
24 Chemical Fibre
25 Rubber Products
26 Plastic Products
27 Non-metal Mineral Products
28 Smelting and Pressing of Ferrous Metals
29 Smelting and Pressing of Nonferrous Metals
30 Metal Products
31 Ordinary Machinery
32 Equipment for Special Purposes
33 Transportation Equipment Manufacturing

34 Electric Equipment and Machinery

High-tech Manufacturing
35 Electronic and Telecommunications Equipment
36 Instruments, Meters, Cultural and Office Machinery
37 Other Manufacturing Industry
38 Scrap and waste

39 Production and Supply of Electric Power, Stream and Hot Water
Energy Supply Sector40 Production and Supply of Gas

41 Production and Supply of Tap Water

42 Construction Construction

43 Transportation, Storage, Post and Telecommunication Services Transportation

44 Wholesale, Retail Trade and Catering Services Service Sector45 Other Service Sectors

46 Urban Resident Energy Usage Household Usage47 Rural Resident Energy Usage

Notes: The table shows the economic sectors and categorisation. In general, we categorise 47 economic sec-
tors into nine broader categories, partly following the suggestion in Shan et al. (2018b).
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Table B.4: Fossil fuel types

No. Fossil fuel types Category

1 Raw Coal

Coal Products

2 Cleaned Coal
3 Other Washed Coal
4 Briquettes
5 Coke
6 Other Coking Products

7 Coke Oven Gas

Gas
8 Other Gas
9 Liquefied Petroleum Gas
10 Refinery Gas
11 Natural Gas

12 Crude Oil

Oil products
13 Gasoline
14 Kerosene
15 Diesel Oil
16 Fuel Oil

17 Other Petroleum Products Petroleum Products

Note: The table shows the fossil fuel types and categorisa-
tion. In general, we categorise 17 types of fossil fuel into
4 broader categories. “Briquettes” includes briquettes and
gangue. “Other gas” includes blast furnace gas, converter
gas and other unclassified gas. “Other petroleum prod-
ucts” includes naphtha, lubricants, paraffin, white spirit,
bitumen asphalt, petroleum coke and other unclassified
petroleum products.
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C Additional figures

Notes: The figures show the results of examining the anticipation effect on CO2 emissions per capita and
GDP CO2 intensity using staggered synthetic control method on a sample which excludes all cities treated
under China’s ETS pilots. Effects are normalised relative to the beginning of treatment, i.e. 2010 for wave I
and 2012 for Wave II.

Figure C.1: Staggered synthetic control estimation - excluding ETS pilot cities
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