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Abstract

Background: Interest in quitting smoking is common among young adults who smoke, but it can prove challenging. Although
evidence-based smoking cessation interventions exist and are effective, a lack of access to these interventions specifically designed
for young adults remains a major barrier for this population to successfully quit smoking. Therefore, researchers have begun to
develop modern, smartphone-based interventions to deliver smoking cessation messages at the appropriate place and time for an
individual. A promising approach is the delivery of interventions using geofences—spatial buffers around high-risk locations for
smoking that trigger intervention messages when an individual’s phone enters the perimeter. Despite growth in personalized and
ubiquitous smoking cessation interventions, few studies have incorporated spatial methods to optimize intervention delivery using
place and time information.

Objective: This study demonstrates an exploratory method of generating person-specific geofences around high-risk areas for
smoking by presenting 4 case studies using a combination of self-reported smartphone-based surveys and passively tracked
location data. The study also examines which geofence construction method could inform a subsequent study design that will
automate the process of deploying coping messages when young adults enter geofence boundaries.

Methods: Data came from an ecological momentary assessment study with young adult smokers conducted from 2016 to 2017
in the San Francisco Bay area. Participants reported smoking and nonsmoking events through a smartphone app for 30 days, and
GPS data was recorded by the app. We sampled 4 cases along ecological momentary assessment compliance quartiles and
constructed person-specific geofences around locations with self-reported smoking events for each 3-hour time interval using
zones with normalized mean kernel density estimates exceeding 0.7. We assessed the percentage of smoking events captured

within geofences constructed for 3 types of zones (census blocks, 500 ft2 fishnet grids, and 1000 ft2 fishnet grids). Descriptive
comparisons were made across the 4 cases to better understand the strengths and limitations of each geofence construction method.
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Results: The number of reported past 30-day smoking events ranged from 12 to 177 for the 4 cases. Each 3-hour geofence for

3 of the 4 cases captured over 50% of smoking events. The 1000 ft2 fishnet grid captured the highest percentage of smoking
events compared to census blocks across the 4 cases. Across 3-hour periods except for 3:00 AM-5:59 AM for 1 case, geofences
contained an average of 36.4%-100% of smoking events. Findings showed that fishnet grid geofences may capture more smoking
events compared to census blocks.

Conclusions: Our findings suggest that this geofence construction method can identify high-risk smoking situations by time
and place and has potential for generating individually tailored geofences for smoking cessation intervention delivery. In a
subsequent smartphone-based smoking cessation intervention study, we plan to use fishnet grid geofences to inform the delivery
of intervention messages.

(JMIR Mhealth Uhealth 2023;11:e43990) doi: 10.2196/43990
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Introduction

Cigarette Smoking and Smoking Cessation Among
Young Adults
Although cigarette use has declined in recent decades, of a
weighted sample of 4200 young adults (ages 19-30 years), 491
(11.7%) young adults in the United States reported current (past
30-day) cigarette smoking in 2019 [1]. Smoking cessation
interventions can provide societal and health care cost savings,
as well as immediate and long-term health benefits for young
adults (eg, decreased risk of cardiovascular diseases, chronic
obstructive pulmonary disease, and several types of cancer) [2].

Young adults who smoke rarely use evidence-based smoking
cessation strategies in their quit attempts. We need novel
interventions that can reach young people and help them quit
smoking. A recent study using data from the Population
Assessment of Tobacco and Health found that almost all young
adults who smoke would like to quit at some point in their lives,
but few young adults with a recent quit attempt relied on
evidence-based cessation strategies [3]. One explanation for
this may be that many interventions for young adults attempt
to prevent smoking initiation rather than support smoking
cessation [4].

Mobile Phones for Smoking Cessation
The ubiquity of smartphones may help enhance the feasibility,
acceptability, and reach of smoking cessation interventions.
Almost all 18- to 29-year-olds in the United States own a
smartphone [5]. As a result, GPS-enabled smartphones allow
researchers to study the behaviors, mobility, and activity spaces
of individuals and deliver mobile health (mHealth) interventions
that were previously not feasible for potential consumers to
access [6]. However, the efficacy of mHealth is understudied
in many areas of public health, including smoking cessation.

Few interventions with location information (eg, GPS) include
formal spatial science components that may improve
intervention delivery. Smoking is often a geographically
triggered behavior; people may regularly smoke in the same
locations (eg, bars) or have cravings due to an environmental
exposure (eg, product or advertisement exposure in a
convenience store) [7,8]. GPS-enabled smartphones can register

when an individual is near or at a location at-risk for smoking
and deliver just-in-time cessation support to resist environmental
triggers [9].

Spatial methods are essential for improving smoking cessation
by examining the nexus between health and place [8,10,11].
For example, 1 study developed a deep learning model to predict
smoking events based on GPS smartphone data [12]. The authors
were able to predict smoking events accurately on weekdays
and weekends (mean 0.87, SD 0.08) using a 1D convolutional
neural network [12]. Overall, the literature using fine-grained
geographic information to inform smoking cessation intervention
delivery on smartphone apps is scarce, and this proof-of-concept
study aims to address this gap.

Geofences for Smoking Cessation
Geofences are virtual perimeters or zones that can trigger
smartphone notifications for individuals when entering, exiting,
or dwelling within a specified geographic area [13]. Geofences
may benefit mHealth interventions since individuals can receive
interventions at high-risk locations [14]. Using participants’
mobility patterns to generate geofences with the goal of
promoting positive behavior change is a growing area of interest
in geography and public health research [15,16]. For example,
geofencing applications have been developed to support dentist
accessibility [17], gambling cessation [18], awareness of air
pollution exposure [19], COVID-19 surveillance [20], and
tobacco retail exposure for smoking cessation [8], among other
uses.

In the context of smoking cessation, Naughton et al [9] studied
a cohort of 15 individuals in the United Kingdom and
disseminated geofenced-triggered messages to participants when
they entered high-risk smoking zones (ie, circular zones with a
100 m radius containing at least 4 self-reported smoking events);
the study, however, did not use formal spatial analytical
techniques to generate geofences. To extend this previous
research, our goal for this study is to generate geofences around
high-risk locations for smoking using a kernel density estimation
(KDE) approach, which is reliable for analyzing GPS-based
activity space data [21]. KDE is a proven spatial method that
identifies hot spots of point patterns in space and time. Although
other point-pattern techniques are available, KDE is very flexible
regarding its parameter customization (eg, bandwidth, output
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resolution of the density surface, and kernel functions), which
is described more in the Methods section [22]. However, the
literature on using KDE approaches to generate high-risk
geofences is very limited (eg, transportation injury prevention
[23,24]) and has been underused for creating geofences tailored
to individuals’ spatiotemporal patterns of health risk behaviors.

Additionally, the uncertain geographic context problem
(UGCoP) poses a challenge for geofence construction [25].
UGCoP represents the concern that the geographic units used
for analyses may not represent the “true causally relevant”
geographical context [25]. UGCoP is an issue for geofence
construction because the geofenced location influences a
person’s smoking behaviors across space and time, but as
presented in UGCoP, the appropriate spatial and temporal
dimensions for geofence construction are uncertain. Individuals
often report smoking at home, outside, or in the car [26], which
could constitute the “true causally relevant” geographic context
[25], but few interventions sensitive to capturing the “true
causally relevant” geographic context have been developed or
tested.

Research Objectives and Anticipated Contributions
This study uses self-reported smartphone surveys and passively
tracked GPS data collected from young adults who smoke. The
objective is to develop a spatial analytical approach to identify
hot spots of self-reported smoking events and to produce
KDE-informed geofences for catered smoking cessation
intervention delivery in future studies. The proposed method,
which incorporates spatial methods, may be applicable to
intervene on other health conditions or other substance use as
well. In this study, we demonstrate an exploratory method of
generating person-specific geofences for high-risk smoking
areas by presenting 4 case studies. We chose to test this method
on 4 participants as a case study rather than the entire sample
to examine the nuances of this methodological approach that
would be more difficult to observe within the entire sample. By
focusing on 4 participants, we can identify individual-level
variation in smoking behaviors and locations that may influence
geofence construction and performance. More importantly, we
can better understand why this method may not have worked
for certain situations or individuals. Although these 4
participants do not capture the full variation of smoking
behaviors, they provide an important first step to evaluating this
method in light of unanticipated situations and circumstances.
For the 4 cases, we create individually tailored geofences that
vary temporally, accounting for behavioral changes over the
course of a day. A KDE-informed approach can capture the
intersection of place and health by taking a person-centered,
data-driven approach. To address UGCoP, we experiment with
time-specific geofences constructed by various geographical
zones and assess how well the different geofences capture
smoking events for each case. We operationalize geofence
performance as the percent of smoking events captured, such
that an ability to capture greater than 80% of smoking events
within geofences for a particular time frame was considered
good, while greater than 50% was considered adequate.

Methods

Study Design
Young adults from Alameda and San Francisco counties
participated in an ecological momentary assessment (EMA)
study for 30 days that captured individual-level, spatiotemporal
patterns of smoking behaviors. Demographic information,
smoking history, and alcohol use were assessed through
Qualtrics [27] at baseline. For 30 days, participants reported
smoking events and completed 3 daily surveys distributed
randomly throughout the day through the PiLR Health app [28].
In the app, participants recorded if they were about to smoke
(ie, a smoking event), after which some were asked to complete
a smoking survey based on the average number of daily
cigarettes smoked at baseline (eg, a baseline rate of 10 cigarettes
per day was associated with a 33% chance of receiving a
smoking survey). To minimize the burden of participation,
smoking surveys were limited to at most 3 per day. Each
submitted survey was date-, time-, and GPS-stamped. See
previous publications for more information on data collection
procedures [29-31].

We selected 4 participants for the case study based on their
overall compliance with EMA data collection procedures. The
total available data, which includes both smoking and
nonsmoking reports, served as a proxy for compliance. We
selected 4 case study participants from the total available data
quartiles. This sampling strategy was chosen to investigate the
feasibility of geospatial analyses for participants with different
rates of EMA self-report compliance and to improve the
generalizability of findings.

Ethics Approval
All study procedures were approved by the San Francisco
Committee on Human Research, University of California
(15-18033).

Participants
Eligible participants were recruited using Facebook and
Instagram advertisements between 2016 and 2017, were between
18 and 26 years of age, were established smokers (ie, at least
100 cigarettes per lifetime), and reported currently smoking at
least one cigarette per day on at least 3 days per week. Study
eligibility also required daily smartphone use with GPS
capabilities. Women identifying as a sexual minority were
oversampled for a nested qualitative study [29]. Study consent
was provided electronically on Qualtrics. To confirm their
identity, participants were required to send a photo of their ID.

Measures

Smoking Events
The outcome of interest was self-reported cigarette smoking
events (yes or no). EMA data included smoking events (eg,
cigarette self-reports) and nonsmoking events (eg, random
surveys with nonsmoking events) with a linked GPS location.
Smoking events reported within 5 minutes of another smoking
event were dropped to correct for measurement errors due to
technical difficulties with the app. GPS locations were converted
to North American Datum 1983 California Zone 3 in US feet.
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Time
EMA data included time stamps that were collected in
Coordinated Universal Time (UTC) and converted to Pacific
Time for analyses. Time was categorized into 3-hour periods
(eg, midnight-2:59 AM, 3 AM-5:59 AM, 6 AM-8:59 AM, and
9 AM-11:59 AM).

Baseline Demographics
Demographic data (eg, age, gender, race or ethnicity, and
education) were collected at baseline. The frequency of past
30-day cigarette use was also obtained.

Spatial Analyses

Framework of KDE
We employed KDE to identify high-risk zones for each
individual. In other words, KDE was run separately for each
participant to effectively tailor the resulting geofences to each
individual. KDE is a moving window method that calculates
the density as the number of events based on their distance to
the center of a circle with a radius of the specified bandwidth
τ, which determines the degree of spatial smoothing [32]. The
window moves and centers along the intersections of a grid and
calculates the density at each intersection, which is then
considered in unison to provide a weighted average for a
location. Events (ie, points) closer to the center of the search
radius receive higher weight [33]. The KDE function is defined
in Equation 1:

where is the kernel density value at grid point g; is the

Euclidean distance between grid point g and event i; and is
the weight where its value equals “0” at distance τ [34]. To
identify high-risk areas for smoking for each participant, we
plotted a kernel density plot of smoking events with a bandwidth
of 1320 ft (ie, 0.25 miles), a proxy for comfortable walking

distance [35], and a raster cell output size of 150 ft2. We then
extracted high-risk zones using zonal statistics. Zonal statistics
calculate a statistic of interest for raster values falling within a
“zone” chosen by researchers in another data set [36]. For our
study, we averaged KDE raster values within 3 zones: 2020 US

census blocks, 500 ft2 fishnet grid cells, and 1000 ft2 fishnet
grid cells. We then minimum-maximum normalized the mean
KDE to the range of 0 to 1 and retained zones with normalized
mean KDEs above a threshold chosen during sensitivity
analyses. To distinguish risk levels within zones, we categorized
zones with normalized mean KDEs above the threshold into
terciles (ie, low, medium, and high risk) for each case.

To identify the threshold for “high-risk,” we assessed the
performance of geofences constructed for normalized mean
KDE thresholds of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9
for the 4 case studies. We identified the high-risk normalized
mean KDE threshold at the block-level. Performance was
assessed by examining the percent of smoking events captured
within geofences, irrespective of time of day.

Zonal Statistics by Census Block
We had first chosen census blocks as the “zone” because census
blocks are the smallest geographical unit with demographic data
and are a federally recognized statistical area [37]. A
geographical unit tied to demographic data could be useful for
researchers interested in controlling societal-level demographic
variables. Further, the census block is a stable geographical unit
across the United States with a unique identifier determined by
the US Census Bureau. In terms of stability, the census block
is reconsidered once every decade [37].

The census block, however, is constructed by both physical (eg,
roads, streams, and railroad lines) and nonphysical structures
(eg, property lines and city limits), which leads to variability in
census block size [37] and thus a normalized mean KDE. Census
blocks may be the size of a city block in urban environments
or up to hundreds of square miles in rural areas [37]. As a result,
differences in census block size may affect block-level
normalized mean KDEs (eg, smaller blocks may have fewer
raster values to average across than larger blocks). Larger blocks
may also have more heterogeneity in raster values than smaller
blocks, decreasing the precision of the mean KDE.

Moreover, identifying a large census block as high-risk poses
some challenges for intervention delivery. Based on our method,
the geofence around the entire census block would trigger the
intervention for a large area even though the participant may
smoke only in a small subarea of the census block. Census
blocks, however, may still offer value in cities where blocks
are often equivalent to city blocks and in studies seeking to
account for demographic variables [37].

Zonal Statistics by Fishnet Grid
Alternatively, we can create uniform zones by overlaying a
fishnet grid over the area of interest (eg, Alameda and San
Francisco counties). A fishnet grid is an array of square cells
fitted within a geographical area [38]. We repeated the same
process of finding the normalized mean KDE and labeling
high-risk areas as zones with a normalized mean KDE above
the threshold chosen from the census block analyses, except
that the zone was a cell in the fishnet grid rather than a census

block. We created 2 fishnets, one with 500 ft2 cells and another

with 1000 ft2 cells.

Geofence Construction
For each 3-hour time interval, high-risk zones were identified
as those with (1) normalized mean KDEs above the threshold
of 0.3 and (2) at least one smoking event. Normalized mean
KDEs were based on all observations of a given participant.
For example, each block has the same normalized mean KDE
value across all hours of the day and for each day of the week.
A block, however, may be high-risk at 1 time of day (eg,
evening) yet low-risk at another time of day (eg, morning) only
because the participant has no history of smoking during the
time of day it is considered low-risk (eg, morning). Once the
high-risk blocks were identified, geofences were constructed
by generating 100-m buffers around groups of adjacent high-risk
blocks or cells. All spatial analyses were conducted in ArcGIS
Pro (version 2.8.0) [39].
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Results

Sample
The population included 144 participants with a mean age of
22.7 (SD 2.6) years at baseline; 76 of 144 (52.8%) were female;
and 57 of 144 (39.6%) identified as non-Hispanic White, 31 of

144 (21.5%) as Hispanic or Latino, and 30 of 144 (20.8%) as
Asian (Table 1). Most of the population had either completed
some college (54/144, 37.5%) or received an associate or
bachelor’s degree (51/144, 35.4%). The median number of days
with at least one cigarette smoked was 30 (IQR 24-30). On days
with at least one smoking event, participants reported smoking
a median of 5 (IQR 3-8) cigarettes per day.

Table 1. Baseline characteristics.

Overall (N=144)Cases not sampled (N=140)Cases sampled (N=4)Characteristics

22.7 (2.5)22.7 (2.4)21.3 (2.6)Age (years), mean (SD)

Sex, n (%)

68 (47.2)66 (47.1)2 (50)Male

76 (52.8)74 (52.9)2 (50)Female

Highest education, n (%)

31 (21.5)30 (21.4)1 (25)Less than or equal to high school

54 (37.5)52 (37.1)2 (50)Some college

51 (35.4)50 (35.7)1 (25)Associate or bachelor’s degree

8 (5.6)8 (5.7)0 (0)Master’s degree or higher

Race or Ethnicity, n (%)

57 (39.6)54 (38.6)3 (75)Non-Hispanic White

6 (4.2)6 (4.3)0 (0)Non-Hispanic Black

30 (20.8)29 (20.7)1 (25)Asian

1 (0.7)1 (0.7)0 (0)American Indian or Alaska Native

2 (1.4)2 (1.4)0 (0)Native Hawaiian or Pacific Islander

31 (21.5)31 (22.1)0 (0)Hispanic

17 (11.8)17 (12.1)0 (0)Other or Multiracial

5 (1-30)5 (1-30)3.5 (3-5)Cigarettes per smoking day, median (range)

30 (0-30)30 (0-30)30 (25-30)Smoking days in the past 30 days, median (range)

Cases Selected for Analysis
Of the 4 cases sampled; their ages ranged from 19 to 25 years,
with an average age of 21.3 (SD 2.6) years at baseline. Two
were male and 2 were female at birth. Three participants
identified as non-Hispanic White and one as Asian. One had
less than or equal to a high school education, 2 had some
college, and 1 had an associate’s or bachelor’s degree. Three

of the cases reported daily smoking in the past 30 days, while
one reported smoking on 25 of the past 30 days. The cases
reported smoking between 3 and 5 cigarettes per smoking day
in the baseline assessment.

The number of smoking events reported by these 4 cases in
EMA data ranged from 16 to 177, while the number of
nonsmoking events ranged from 8 to 67 (Table 2). All smoking
events were in San Francisco and Alameda counties.

Table 2. Smoking and nonsmoking events of cases.

Total reports, n (%)Nonsmoking events, n (%)Smoking events, n (%)Quartile

24 (5.7)8 (33.3)16 (66. 7)25th

59 (14.1)47 (79.7)12 (20.3)50th

98 (23.4)67 (31.6)31 (31.6)75th

238 (56.8)61 (74.4)177 (74.7)100th

Threshold for Identifying High-Risk Census Blocks
The percent of smoking events captured in time-independent
geofences at varying normalized mean KDE thresholds of

high-risk for census blocks are presented in Figure 1. The figure
displays the percentage of smoking events contained within
constructed geofences if zones with normalized mean KDE
values above each threshold are retained. For all but 1
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participant, a normalized mean KDE threshold of 0.5 captured
50% or more of all possible smoking events within generated
geofences.

We proceeded to construct geofences across 3-hour time
intervals for census blocks with normalized mean KDEs greater
than or equal to 0.3 because they captured at least 80% of
smoking events for all but 1 case.

Figure 1. Percent of smoking events within geofences for census blocks among 4 participants at quartiles of ecological momentary assessment
self-reported data.

Of note, 3 participants had no geofences generated for census
blocks with a normalized mean KDE of 1.0 due to rounding
differences (eg, rounding was done to 6 decimal places such
that 0.999998 would not be included for this threshold). A 0.0
threshold should capture every block with at least one smoking
event reported; however, we had 2 participants that were missing
1 block with at least one smoking event reported in it. This
occurred because these smoking events occurred in very small,
narrow blocks that were part of roadways, which consequently

did not rasterize for a cell output size of 150 ft2. In other words,
these blocks were missing normalized mean KDE values
because the blocks were smaller than the cell’s output size. In
some cases, this may have left out a block at risk for smoking.
See Table S1 in Multimedia Appendix 1 for summary statistics
of the 4 cases’ normalized mean KDEs.

Comparison of Geofence Construction Methods of
Census Blocks Compared to Fishnet Grid Across
3-Hour Time Intervals for Each Case
Across 3-hour time intervals, the average percentage of smoking
events within geofences ranged from 36.4% to 100%. Geofences
contained the highest percentage of smoking events between
midnight and 3 AM and between 9 AM and 11:59 AM.
Conversely, geofences contained the lowest percentage of
smoking events reported between 6 AM and 8:59 AM.

Across the 4 cases, the 1000 ft2 fishnet grid captured the highest
percentage of smoking events for each 3-hour interval (Figure
2), both within cases and averaged across cases. Although there
was no difference in the percentage of smoking events captured
across geofence construction methods between midnight and
noon, the constructed geofences looked very different from each
other. Figure 3 compares the geofences constructed by the

census block and 500 ft2 fishnet grid methods for 1 case between
noon and 2:59 PM. The census block method’s geofence covers

a larger area than the 500 ft2 fishnet grid method’s geofence
from noon to 2:59 PM, even though they capture the same
percentage of smoking events. Further, the census block method
generated a wider range of high-risk blocks (normalized mean
KDEs between 0.35 and 1.00) across the whole day, whereas

the 500 ft2 fishnet grid method generated a smaller range of
high-risk cells (normalized mean KDEs between 0.64 and 1.00).
By depicting the tertiles, we can identify how the distribution
of normalized mean KDEs changed spatially across time and
method within individuals. For example, Figure 3 tells us that

in this period of noon to 2:59 PM, the 500 ft2 fishnet grid method
created a geofence only around a high-risk cell, whereas the
census block method’s geofence encompassed potentially
low-risk blocks, yet both capture the same percentage of
smoking events for this participant at this time of day. From
this, we may visually compare geofence methods and ensure
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that the highest-risk areas within a geofence are captured, even
if the geofence perimeter may differ by method.

Although the 500 ft2 fishnet grid method captured a slightly
higher percentage of smoking events from 9 AM to 6 PM for
the case with the most data, the 100th percentile case (Figure
2), it captured the same percentage of smoking events at all
other hours relative to the census block method. To understand
why this may have happened, we examined the 100th
percentile’s smoking profile. Figure 4 shows where the 100th
percentile participant smoked over 26 noncontiguous blocks
generated without any thresholds. The blocks are predominantly
yellow, representative of normalized mean KDEs below 0.2.
This means that many of these blocks contain fewer smoking

events. In fact, 73 of 177 (41.8%) smoking events occurred
across 2 block areas, while the remaining 104 of 177 (58.2%)
smoking events were dispersed across 24 noncontiguous block
areas. This is highlighted in census block normalized mean
KDE quintiles, in which the bottom 4 quintiles have normalized
mean KDEs below 0.35.

As a result, a majority of the 100th percentile case’s zones with
smoking events will not result in a geofence to inform
intervention delivery because only zones with normalized mean
KDEs above 0.3 were retained. For this participant, our method
identified that most zones were low-risk relative to other zones,
and these low-risk zones would result in a low percentage of
smoking events captured in geofences.

Figure 2. Percent of smoking events captured within each geofence method for 4 participants.
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Figure 3. Geofences constructed by the census block versus 500 ft2 fishnet grid at noon to 2:59 PM for 1 case. KDE: kernel density estimation.
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Figure 4. Census blocks with any smoking reports for 100th percentile case across all hours of the day.

Discussion

Overview
This study’s objective was to design a spatial approach to
identify and construct geofences around person- and
time-specific high-risk smoking areas. We collected
self-reported, smartphone-delivered surveys on smoking
behaviors with passive GPS tracking from young adults who
smoke.

Our study found that a kernel density approach for geofence
construction could systematically label locations at high risk
for smoking. Second, of the 3 methods we used to construct the

geofence, the 1000 ft2 fishnet grid captured the highest
percentage of smoking events within and across the 4 cases.
Last, we found that although methods may capture the same
percentage of smoking events in the early and late hours of the
day, the physical geofences appeared different from each other,
which may affect intervention delivery.

Identified Locations at High Risk for Smoking
Through Kernel Density Methods
To our knowledge, this is the first study to examine an
individual’s smoking risk profile using KDE methods. Kernel
density approaches have already been applied in the tobacco
literature to define risk in terms of the tobacco environment (eg,
tobacco outlet density) [11,40], and this study demonstrates that

KDE methods may also hold value for informing
smartphone-based smoking cessation intervention delivery. For
our case studies, we found that a normalized mean KDE
threshold of 0.3 adequately defined smoking risk.

A KDE approach allowed us to define high-risk locations
specific to an individual’s smoking profile. Previous studies
have examined risks unspecific to the individual, such as the
occurrence of more than 4 smoking events within a geographical
region [9]. Four smoking events, however, may be considered
high-risk for some individuals and low-risk for others, relative
to an individual’s smoking patterns. If we had generated
geofences around blocks with smoking events without
classifying person-specific, high- and low-risk locations, the
intervention delivery would be triggered at locations where the
individual rarely smoked relative to other locations. For an
ecological momentary intervention, the cumulation of
intervention delivery at both efficient and inefficient times and
appropriate and inappropriate locations could lead to
intervention burden, which may undermine intervention
effectiveness and adherence [41]. Prioritizing these high-risk
locations and times may be able to reduce intervention burden
and improve intervention delivery effectiveness.

The fact that the KDE methods captured most smoking events
also highlights their use for people who smoke, especially if
they tend to smoke in the same locations. We saw that our
methods captured over 50% of smoking events for 3 of the 4
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cases. The fourth case, however, was the heaviest smoker based
on the self-reported data and frequently smoked in new
locations. This may be due to the fact that more frequent
smoking indicates greater nicotine dependence and, hence, a
more regular need to maintain blood nicotine levels to avoid
withdrawal [42]. In addition, this individual may have a more
variable activity space than the other 3 cases, resulting in a more
spatially dispersed smoking profile. Other strategies than the 1
employed here may be needed to improve intervention delivery
for individuals with spatially dispersed smoking profiles.

Fishnet Grid Geofences Captured More Smoking
Events Than Census Block Geofences
We recognized that the UGCoP may result in missing the “true
causally relevant” geographic context [25] for smoking cessation
geofences, so we generated geofences with 3 different

geographical areas—census blocks, 500 ft2 fishnet grid cells,

and 1000 ft2 fishnet grid cells. Of these 3 geographical areas,

the 1000 ft2 fishnet grid captured the highest percentage of

smoking events, followed by the 500 ft2 fishnet grid and census
blocks. Even the most limited method (census blocks) still
effectively captured over half of smoking events. Furthermore,
the buffer size of 100 m around adjacent high-risk blocks helped
capture some smoking events that would not have been captured
otherwise.

Census blocks, however, are often delineated by roads [37] and
may misrepresent smoking on the road (eg, the road itself is a
very small block below the cell output size, or the smoking
event may be forced to one of the adjacent blocks). In the
transportation literature, a fishnet grid of half a mile predicted
how people traveled better than aggregating to census blocks

[43]. Thus, it is possible that the 1000 ft2 fishnet grid may have
captured more smoking if our cases were smoking in the car,

which may have been missed in the 500 ft2 fishnet grid and
census block methods. Future studies can ask for the smoking
location context to discern if this may be the case.

Selected Method for Effective Intervention Delivery
We found that interventions using the census blocks to create
geofences will cover a wider area and may trigger more

intervention delivery than interventions using 500 ft2 fishnet
grid cells for geofence construction. In another study that
constructed geofences around locations with more than 4
smoking events, participants had mixed reviews for the
frequency of intervention delivery, such that some reported too
many alerts and others reported too few [9]. Aligned with the
census block method, some participants may want more
proactive alerts slightly further away from their usual smoking
location, triggered by larger geofences. Future studies may want
to compare these different geofence construction methods and
their impact on intervention delivery and participant satisfaction.

As researchers seek to define how spaces are categorized as
risky or not risky, the modifiable area unit problem needs to be
considered as well [44]. As different geofence construction
methods may yield different results in intervention delivery,
there is a need for a standardized approach for constructing
geofences to improve cross-study comparisons. Census blocks

are stable for 10 years [37], while fishnet grid cells can shift
based on entered parameters [38]. Clear descriptions of all
parameters chosen to construct geofences are needed for
reproducibility and to help the field develop standards.
Depending on the study goal, studies that want to include
demographic census data may use census blocks, while those
solely interested in optimal intervention delivery may choose
fishnet grids. There are also other methods that can weight
noncensus data with demographic information [45] that can be
further explored.

While a large number of smoking cessation apps are available
on the Apple and Google Play app stores, many lack scientific
evidence [46,47]. To support individuals in quitting smoking,
we need evidence-based interventions that can promote behavior
change through positive engagement and personal relevance
(eg, appropriate time and place of intervention delivery) [48,49].
Our approach of identifying hot spots of self-reported smoking
events and producing geofences that represent high-risk areas
for smoking may be helpful to inform future smartphone-based
smoking cessation interventions. The proposed approach for
generating geofences will be used in an ongoing smoking
cessation intervention study with young adults. Given its ability
to capture a good percentage of smoking events across
compliance levels and the specificity of the constructed

geofences, we plan to automate a version of the 1000 ft2 fishnet
grids to create geofences for participants of an app-based
smoking cessation intervention.

Limitations
Our study has several limitations. First, this was an observational
study with individuals who were not ready to quit smoking,
which may have impacted compliance to report all smoking
events. We attempted to address this issue of compliance by
selecting cases to study at quartiles of available data to evaluate
the method’s performance for various compliance scenarios.
However, EMA compliance may vary significantly between
locations, which could potentially affect the results. Second,
we assumed smoking reports within 5 minutes of another report
were due to technical issues or double reporting based on expert
opinion and dropped these reports. Future studies would benefit
from including an app feature that sends a follow-up survey to
participants after reporting a high volume of smoking events to
confirm the number of cigarettes smoked. Third, some census
blocks did not rasterize, meaning they were missing a
normalized mean KDE due to the block size being smaller than
the cell output size. The fishnet grid method captured any of
these points that were not rasterized in the census blocks method.
Fourth, the risk threshold was determined solely based on the
census blocks to allow for a comparison across methods. The
census blocks had the greatest variability in normalized mean
KDE, and the fishnet grids captured as many or more smoking
events than the census blocks. Fifth, our KDE approach used a
fixed kernel with a constant bandwidth (which tends to over
smooth), whereas adaptive kernels can better capture the scale
at which the point pattern process operates [50]. However, we
ran KDE for each individual; therefore, the bandwidths were
tailored to the individual. Finally, the temporal snapshots of the
geofences may not accurately depict the “true” spatiotemporal
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point-pattern process since we employed a spatial KDE
approach. Therefore, future research will employ spatiotemporal
point-pattern methods, such as space-time KDE [50] to fully
capture the space-time dynamics of the participants and the
subsequent creation of geofences for smoking cessation
interventions.

Conclusions
For ecological momentary interventions, it is important to
optimize intervention message delivery to minimize intervention
burden for participants. Prioritizing intervention delivery to
high-risk locations and times may make these interventions
relevant for individual participants and consequently improve
intervention efficacy. A spatial approach of generating geofences
based on high-risk zones (eg, fishnet girds for capturing a greater

percentage of events or census blocks for linking spatial data
with demographic information) identified through normalized
mean KDE surpassing a chosen threshold may assist with
prioritizing high-risk locations for intervention delivery, tailored
to the needs of an individual participant. By stratifying event
occurrence by periods of time, intervention messages can also
be appropriately delivered throughout the day. Our study
demonstrates that this method can capture a good percentage
of smoking events within an urban and suburban environment
and illustrates the potential for assessing if it improves
person-specific smoking cessation intervention delivery and
efficacy. Most importantly, this study highlights that researchers
must carefully consider the implications of their chosen
geographical unit when designing place-based interventions.
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