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Abstract

Inflammatory bowel disease (IBD) is associated with alterations in the intestinal microbiome.
However, the precise nature of these microbial changes remains unclear. With billions of
microbes within the gut, novel and powerful computational techniques are required to
identify the relevant shifts in the microbiota that contribute to healthy and unhealthy

conditions.

Machine learning (ML) allows a data-driven approach to identify these discrete dynamic
changes. However, the interpretation and biological validation of the findings from ML
algorithms remain a challenge. By combining ML and Systems Biology (SB) approaches, this
thesis aims to characterise key microbial factors in IBD pathogenesis by extracting

prognostic indicators from the human gut microbiome.

The causal relationship between the changes in the gut microbiome and IBD is difficult to
establish. Data from cross-sectional studies are plagued by confounding factors and
inconsistencies between cohorts. Rich longitudinal datasets and integrated metagenomic,
multi-omic, and electronic healthcare records can be used to overcome these limitations. In
this PhD thesis, I have developed an integrated ML-based microbiome analysis pipeline to
identify prognostic indicators for IBD from longitudinal microbiome data. Furthermore,
using a variety of SB approaches, the interplay between the host and the microbiome has
been explored to provide insights into the mechanisms during healthy and unhealthy

conditions.
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List of software developed

Alist of both internal and open-source software packages, tools and pipelines which I

designed, implemented, optimised, or contributed during the course of my PhD from

October 2018 - November 2022.

Software packages /tools/pipelines represented

in the thesis

LongitOmix: A wrangler for the pipeline for the identification of prognostic
indicators of between conditions with a machine learning-based systems biology
approach from longitudinal gut microbiome data using independent component

analysis (Chapter 3 and 4)

MetabolomiX: a lightweight code base for handling, parsing, performing ID

conversion and simple preprocessing steps of metabolomics data (Chapter 4)

Microbiolink2: An Integrated Computational Pipeline to Infer Functional Effects of

Microbiome-Host Interactions (Chapter 5)

Software packages /tools/pipelines /web

resources developed that are not represented in

the thesis

Integrated Single Nucleotide Polymorphism (iSNP) pipeline: A novel precision
medicine workflow designed to determine the mechanisms by which SNPs affect
cellular regulatory networks, and how SNP co-occurrences contribute to disease

pathogenesis in ulcerative colitis (UC). https: //github.com /korcsmarosgroup /iSNP

ScOmix: An internal single-cell and low-input preprocessing and downstream
analysis code base developed to make single-cell analysis more efficient and

interpretable for bioinformaticians (Internal Tool).
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TranscriptOmix: Bulk-RNA preprocessing, downstream and functional analysis
pipeline for large-scale and efficient batch processing of bulk RNA-seq datasets.
Designed to improve collaboration and preprocessing of publicly available datasets

(Internal Tool).

CHAT: Reimplemented a faster, more efficient and updated version of Conext Hub
Analysis Tool (CHAT) for use on internal projects where a graphical user interface
would not be usable. This is a python port of the Contextual Hub Analysis Tool for

the application onto multiple patient-specific networks (Internal Tool).

PyDyNet: A python port of DyNet, a tool for the analysis of protein-protein

interaction networks to identify rewiring in response to different stimuli and in

disease. https: //github.com /korcsmarosgroup /pyDyNet

BioHandler: Fast and efficient parsing and serialisation of biological data to different
formats. This tool was used as the backend for web resources like Signalink,

Salmonet and Autophagy Regulation Network. An example of this can be seen:

htt: /signalin] download

ViralLink: A systems biology workflow which reconstructs and analyses networks
representing the effect of viral infection on specific human cell types.

https: //github.com /korcsmarosgroup /ViralLink

CytokineLink: A map of cytokine communication for inflammatory and infectious

diseases. https: //github.com /korcsmarosgroup /CytokineLink

Signalink3: An integrated resource to analyse signalling pathway cross-talks,

transcription factors, miRNAs and regulatory enzymes. http://signalink.org/

SalmoNet: an integrated network resource containing regulatory, metabolic and

protein-protein interactions of Salmonella. http://salmonet.org/

AutophagyNet: Autophagy Regulatory Network 2 (ARN2) is the updated version of

the previous autophagy-focused network resource. The aim of the tool is to aid

omics analysis and experiment planning. https: //www.autophagynet.org/

Sherlock: an open source data platform, developed in the Korcsmaros Group to
store, analyse and integrate bioinformatics data.

https: //earlham-sherlock.github.io
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List of conference papers, presentations and posters I either presented or contributed to

during the course of my PhD. Conferences where the posters and presentations are not

published in a journal are not included in this list.
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Chapter 1: General Introduction

1.1 Preface

The human gut microbiome plays a vital role in human health. An example where
disruptions of the microbiome can lead to increased inflammation and disease pathogenesis
is a disorder called inflammatory bowel disease. Due to the nature of the disease, it is
difficult to collect biopsies from patients, and therefore, faecal samples provide a
non-invasive way to study the gut microbiome as well as the progression of the disease.
Currently, methods to investigate and extract biomarkers and prognostic indicators from
these datasets remain an active field of research. The majority of current approaches rely on
correlation or compositional approaches but these lack mechanistic or functional insight.
Furthermore, when applying the same approach to a different dataset, the results can be
dramatically different, which points to these approaches' inability to generalise well to new

datasets.

This chapter introduces and summarises the literature on fundamental biological concepts
of the gut microbiome and meta-omics data. Then, it will outline the current state-of-art
methods used in the application of machine learning, bioinformatics and systems biology
approaches to human gut microbiome data. Concluding with an overview of inflammatory
bowel disease (IBD) as a case study for the application and investigation of the microbiome’s
contribution to human health. In Chapter 2, I conduct a “classical” analysis of a publicly
available dataset and perform exploratory data analysis to outline the current limitations in
analytical approaches used to investigate metagenomics. This is twinned with Chapter 3,
which shows the development of a new approach to investigating the dynamics of the
microbiome with respect to its temporal component. Chapter 4 combines the findings from
Chapter 3 to apply dimensionality reduction methodologies to meta-omics data and to
predict disease activity increase in inflammatory bowel disease patients. Chapter 5 explains
the findings of Chapter 4 using systems biology approaches to gain insights into how
host-microbe interaction affects the host. Finally, chapter 6 will summarise the overall
conclusions of the thesis, which are discussed, with an evaluation of the methods developed
and an exploration of potential future directions and developments to explore in more detail

the applications of predicating gut microbes in health and disease.
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This BBSRC iCASE PhD scholarship was supported by BenevolentAl. Together, we aimed to
develop methods to analyse, predict and interpret the human gut microbiome during
healthy and unhealthy conditions. As part of this iCASE project, I worked on placement
within the Precision Medicine Product Team at BenevolentAl to build further on the
methods developed and described in this thesis. In addition to furthering my professional,
research, and personal skills, I have worked closely with BenevolentAl throughout this
project to extend my knowledge and understanding of the application of machine learning
and data science skills in both research and production settings. BenevolentAl’s
contribution and support have resulted in the methodologies and analysis described in
exploring the temporal dynamics of the gut microbiome outlined in Chapter 3 and used to

predict disease activity in inflammatory bowel disease in Chapter 4.

1.2 The human gut microbiome

The human microbiome can be defined as the entirety of the microorganisms that colonise
individual sites in the human body; these include the skin, oral mucosa, lung and
gastrointestinal tract. As a result of the adoption of DNA-sequencing technologies to
investigate, characterise and identify microbes within the human body at the turn of the
century, hundreds of previously unknown microbial communities have been discovered. A
microbiome is not solely composed of bacterial microbes but also contains a vast number of

archaebacterial, protozoan, fungi and viruses (Hill et al., 2014).

The human gut microbiome consists of a vast number and a high diversity of microbes
operating within a complex and dynamic ecosystem. The human gut is colonised by
commensal and pathogenic bacteria along the entire gastrointestinal tract. Furthermore, it
is the largest reservoir of microbes in the human body. The gut microbiota composition
continuously evolves either during its development in the early stages of life or through
perturbations, such as diet, lifestyle and medication, which can lead to dynamic changes in

the abundance levels of specific microbes (Hildebrand et al., 2019; Nayfach et al., 2019).
Although there remain many similarities in bacterial species across individuals, for example,

bacterial phyla like Bacteroidetes, Firmicutes and Actinobacteria, the abundance levels of

the subpopulations of these bacteria can represent differentially. The role that the diversity
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of the microbial communities within the microbiome plays in regulating the host’s health is
well established and can provide preliminary insights into disease progression and
regulation. Consequently, the dysbiotic states of the microbiome and key subpopulations
have been suggested to be a critical prognostic indicator for diseases and disorders, such as
inflammatory bowel disease, irritable bowel syndrome, type 2 diabetes and atopy (Bull and

Plummer, 2014).

Host-microbiota interactions play a key role in maintaining host homeostasis. It is generally
accepted that the regulatory effects of health-promoting interactions contribute to a
symbiotic microbiota or, conversely, a perturbed system that drives a dysbiotic microbiota.
Interestingly, complex and coevolved interdependencies between microbial communities
are commonly observed between individuals within the same ecological niches (Alkasir et
al., 2017; Filyk and Osborne, 2016). This implies that individuals with the same environmental
factors can have contrasting microbiota composition, suggesting that the host’s genetics
and environmental factors are interacting with the host’s gut microbiome and, therefore,
contributing to the shift from symbiotic microbiota and healthy host to a dysbiotic

microbiota and unhealthy host (Figure 1.1).

Healthy Unhealthy
Host \ Host
>
<+
Symbiotic . Dysbiotic
Microbiota Microbiota

Figure 1.1. Schematic of the regulatory effect of the microbiome on human health.

A healthy gut, therefore, is a balancing act between the gut microbiota composition, host
immune response and the physical barrier of the epithelial layer, separating microbes and

the host (Figure 1.2.). The intestinal epithelium prevents microbes from leaving the gut and
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regulates inflammatory states by warning immune cells of injury or pathogen exposure.
Importantly, this means the mucosal surface and its interactions with microbes also

contribute to regulating a symbiotic microbiota (Dovrolis et al., 2019; Eckburg et al., 2005).
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Figure 1.2. Functional effect of host-microbiome interactions in humans. (A) A schematic
of how the microbiome influences the host’'s phenotype through causal/regulatory
interactions between itself and the host’s genetic/transcriptomic processes. (B,C,D)
demonstrates the potential feedback loop between the systems at play. (B) This shows how
host genetics directly controls the phenotype, and this in turn can lead to alterations in the
microbiome. (C) The host genetics can also control the microbiome first and affect the
host’s phenotype indirectly through the microbiome. (D) And finally, the host genetic
variation leads to different/dysfunctional gene regulation resulting in the microbiome and

the host affecting the host phenotype. Figure adapted from (Luca et al., 2018)

However, although there is increasing evidence of the microbiome's role in both healthy,

acute and chronic disease states, no microbiome-based test has been clinically validated for
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either disease diagnosis or treatment (Chiu and Miller, 2019). This is likely due to the
microbiome's complexity in such disease pathogenesis. Accordingly, longitudinal studies are

required to study the disease to identify more robust prognostic indicators.

1.3 Meta-Omics

1.3.1 Metagenomics

Metagenomics has enabled the characterisation of the microbial communities within the
human microbiome and the determination of the relationship between the resident
microbiome and invasive pathogens. The data produced by metagenomic studies have
contributed to understanding the dynamic nature of microbial communities and the impact
these changes have on human health (Malla et al., 2018; Eckburg et al., 2005). There are
numerous protocols and tools that can be used to analyse metagenomic data. In this
section, the advantages and disadvantages of metagenomics protocols will be outlined, and
then bioinformatic pipelines that can be used to conduct downstream analysis of the

datasets produced will be highlighted.

The earliest methods to investigate the microbiome used culture-dependent approaches to
investigate host-microbe interactions. In culture-dependent methods, samples from
patients (humans or animals) are cultured to isolate microbes present within a sample, and
then each cultured microbe interaction with co-cultured microbial taxa is studied (Parker
and Snyder, 1961; Gibbons et al., 1964). However, this approach not only produced a limited
set of microbial taxa and, thus, microbial interactions but also failed to consider spurious
interactions that occur within the microbiome (Malla et al., 2018). Accordingly, with the
emergence of next-generation sequencing (NGS), culture-independent methods are now
the most widely used approach to determine the abundance level of microbes within a
community (Strobl et al., 2008; Bent et al., 2007). There are two main culture-independent
approaches: (1) 16S ribosomal RNA (rRNA) targeted sequencing and (2) shotgun metagenomic
sequencing. In both cases, these approaches cared for small reads, approximately 25-500
base pairs in length, allowing for microbes to be detected, either if they are unknown or in

low abundance.
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The targeted sequencing of the 16S ribosomal RNA (rRNA) subunit gene is the most
commonly used protocol for the identification and classification of microbial taxa within a
community (Weinstock, 2012). The 16S rRNA gene has a high degree of conservation (Alves et
al.,, 2018; Tessler et al., 2017), assumed as the result of the importance of the 16S rRNA as a
critical component of the ribosome. Thus, the area between the conserved regions of the
16S rRNA varies among bacterial species and is known to be species-specific. However, the
16S rRNA sequencing standard operating procedure dictates a library to be built from the
amplification of the variable regions of the 16S gene using multiplex polymerase chain
reaction (PCR) primers. This further step adds more uncertainty to this approach, resulting
in lower-resolution sequencing results. Nevertheless, 16S sequencing is faster, accessible
and inexpensive, therefore better suited for large control and patient-based studies

(Dovrolis et al., 2019).
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Figure 1.3. Schematic of taxonomic rank vs sequencing depth in metagenomics.
Technologies such as 16S rRNS are placed under metabarcoding resolution, while
metagenomic approaches and whole genome sequencing are in the high-resolution

metagenomics category. Figure from (Hildebrand, 2021).

The other culture-independent metagenomic approach is whole genome sequencing (WGS).
This approach is considered the best method for identifying and characterising microbial

communities as it results in high-resolution metagenomics (Figure 1.3.). This is due to its
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ability to provide a much greater level of diversity compared to the targeted approach of 16S
sequencing. Shotgun sequencing takes a whole-genome approach by sequencing random
string fragments of the DNA sequences and using either common sequences or
clade-specific markers to match these fragments to an annotated database of known DNA
sequences (Tessler et al., 2017; Alves et al., 2018; Malla et al., 2018). Therefore, shotgun
metagenomics is more commonly used when cataloguing genes or making a functional
inference (Tessler et al., 2017). In addition to being more expensive, WGS also has the added
complexity of the results, including all the microorganisms within the sample, including the
host, and thus requires a copious amount of processing power, memory and storage.
Metagenomics sequencing remains a very active research space, and there is a need to

increase resolution in metagenomic sequencing approaches (Hildebrand, 2021).

1.3.1.2 Bioinformatic pipelines for metagenomic data

The ability to analyse the human microbiome in its entirety, introduced from
culture-independent such as WGS, enabled the characterisation of all DNA or RNA present
within a sample, resulting in the generation of an enormous quantity of metagenomic data.
This, in turn, has transitioned a microbiology and bioinformatics problem into a big data
challenge. With WGS producing datasets in the magnitude of Gigabytes (10° bytes) per
patient, a patient cohort can now easily exceed Terabytes (10" bytes) of data. The standard
output of a metagenomic protocol is a taxonomic unit (OTU), which holds information

related to clusters of similar sequences (Figure 1.4).
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Figure 1.4. A high-level overview of metagenomic methods. The metagenomic pipeline can
usually be defined in 5 steps; (1) Experimental pipeline, (2) Pre-processing, (3) Sequence
analysis, (4) Post-processing and (5) Validation. During the post-processing stage, further
downstream analysis can be conducted. This can include multivariate statistical methods,

machine learning (ML) methods and network analysis to interpret the data.

There are many metagenomic pipelines to investigate the microbial composition within an
individual sample. The main objective of workflow and tools is to bin each isolated genome
into a bin such that functional downstream analysis can be conducted. This can be achieved
through two methods; assembly-based or assembly-free (read-based) profiling (Chiu and
Miller, 2019). For case-control design, the idea is to determine the encoded functions from
the identified species and match them back to the case or control condition, thus

suggesting a characterisation of the condition within the sample set.

The bioinformatic challenge of the metagenomics pipeline remains a difficult process as it
requires fine-tuning for each dataset; however, with many new models being developed, a
number of different advanced algorithms can be used to better determine and explore the
parameter space. Moreover, depending on the research questions and the method used to
sequence the samples, there are two main methods to analyse the output of the

metagenomic protocols; homology- and prediction-based methods (Dovrolis et al., 2019).
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These methods are both hybrid implementations combining two different approaches to
determine the microbiome composition from small read fasta or FASTAQ files and mapping
files (which contain all the metadata required to conduct the analysis). For 16S rRNA data de
novo and closed-reference OTU picking is used while for shotgun sequencing

homology-independent or -dependent binning methods are used (Dovrolis et al., 2019).

An example of tools used to achieve this approach on shotgun raw sequences is HUMAnN2
(Franzosa et al, 2018), which provides species-resolved functional profiles of both
host-associated and environmental communities, and MetaPhlAn2 (Truong et al., 2015),
which provides methods for metagenomic phylogenetic analysis. These two pipelines are
commonly used in combination to investigate the effects within the microbiome in
case-control studies. Other tools such as metagenomeSeq, QIIME, Phyloseq and PICRUSt
(Paulson et al., 2013; Caporaso et al., 2010; McMurdie and Holmes, 2013; Langille et al., 2013)
also allow similar analysis, providing o-diversity, p-diversity, and microbe-microbe
associations, which enable the characterisation of the overall properties of a microbiome.
Specific algorithms such as Bayesian models to infer environmental factor-microbe
association (mLDM) and a large-scale assessment of microbial metabolic interactions
(MMinte) (Mendes-Soares et al., 2016; Yang, Chen and Chen, 2017) allow for a more semantic

analysis of the microbiome.

From the introduction to metagenomics protocols and analysis pipelines, it is evident that
copious amounts of data are being produced. This is particularly the case when studying the
disease state and healthy state in a longitudinal study to determine biomarkers for the
disease (Vazquez-Baeza et al., 2018). This is framing metagenomic biomarker discovery as a
big-data challenge that requires novel analysis methods (Vazquez-Baeza et al., 2018; Luna,

Mansbach and Shaw, 2020; Kodikara, Ellul and Lé Cao, 2022).

1.3.3 Metaproteomics

Proteomics is the study of all proteins present expressed in a sample and their functions.
Metaproteomics is the extension of proteomics to identify the protein content with
microbial communities, for example, in the gut microbiome from a faecal sample. The main
advantage of metaproteomics over metagenomics for example is the functional information
it provides. In turn, it complements the genetic potential described by metagenomics,

enabling the discovery of potential genotype-phenotype linkages (Van Den Bossche et al.,
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2021; Issa Isaac et al., 2019). A typical analytical approach to metaproteomics would be 1)
extract and purify proteins from the samples, 2) use enzymes to digest the proteins into
peptides, 3) perform mass spectrometric analysis on the separated proteins, and 4) identify
and annotate proteins using large sequence databases (Kolmeder and de Vos, 2014; Petriz

and Franco, 2017; Lee et al., 2017; Issa Isaac et al., 2019).

Metaproteomics leverages the power of mass spectra to identify these microbial
communities however, this has some limitations. The size of data produced is often vast as
each species contains millions of proteins, which leads to an order of magnitude more
peptides to process (Zhang et al., 2018b). This can then result in a large false discovery rate
(FDR) during the protein identification stage of the analysis (Zhang et al., 2018a; Van Den
Bossche et al., 2021). However, multiple bioinformatic approaches, search algorithms,
datasets and ensemble machine learning approaches have been developed to combat this

issue (Issa Isaac et al., 2019).

1.3.4 Metabolomics

Like metaproteomics, metabolomics also provides insights into the functional potential of
the gut microbiome. The metabolome is widely said to be the closest representation of the
phenotype and, therefore, is essential in understanding how cellular processes respond in
both healthy and unhealthy conditions (Bauermeister et al., 2022; Vernocchi, Del Chierico
and Putignani, 2016; Nguyen et al., 2021; Johnson, Ivanisevic and Siuzdak, 2016). Metabolites
are defined as low molecular weight molecules (<1500 Da). These small molecules show both
host and microbe activity. In the case of the host, these molecules appear as byproducts of
host-microbe co-metabolism involved in the regulation of host metabolic homeostasis
(Nicholson et al., 2012; Heinken and Thiele, 2015). Alternatively, molecules act as nutrients
for bacterial species within the gut microbiome which can directly affect the overall

composition (Oliphant and Allen-Vercoe, 2019).

Once again, mass spectrometry is often used to study metabolomics as it has the ability to
process complex biological samples and still quantify a large range of molecules
(Bauermeister et al., 2022). This results in large and complex datasets, particularly in the
case of untargeted metabolomic studies, which require computational methods to handle
and interpret the results. The general approach to processing the result is to 1)

feature/speak detection from data, 2) align and normalise the data, and 3) annotate the
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results from comprehensive metabolite databases. However, not all metabolites can be
annotated from these resources and this remains a major challenge in the field of
metabolomics (Johnson, Ivanisevic and Siuzdak, 2016). Another computational after
identifying the metabolites within the sample is to infer the biological meaning and their
mechanism within the host (Johnson and Gonzalez, 2012; Johnson, Ivanisevic and Siuzdak,

2016).

1.4 Machine learning

Machine Learning (ML) provides the ability to discover hidden structures within datasets.
Going beyond the power of traditional statistics, it can achieve this without explicitly being
programmed to achieve this task. An example of this could be to predict an outcome from
historical data or to determine the cluster of multiple data points in a dataset. Going further
still, Deep Learning (DL) provides architectures which operate in a fashion similar to that of

the brain through the use of Artificial Neural Networks.

There are three main categories for ML algorithms. Supervised, unsupervised and
reinforcement learning. This thesis will focus on supervised and unsupervised learning
(Figure 1.5). In supervised learning, the input vector along with the target vector is used to
train the model, such that a function can calculate a value for the error. This then alters the
function in an attempt to learn the mapping of the data (Bishop, 2006). In unsupervised
learning, the training vector only consists of the input vector with no target vector provided.
The goal here is to cluster the data into groups, project data from a high-dimension space
into a low-dimensional space or determine the distribution of data in an input space

(Bishop, 2006).
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Figure 1.5. Overview of machine learning categories. The two most common classical
machine learning strategies. The key difference is the feedback and training loop found in
the supervised learning strategy and the input of data with labels defining a description of

the data.

1.4.1 Bayesian Models

Bayesian models are based on Bayes’ theorem, which describes the probability (p) of an

event based on prior knowledge of the conditions that might be related to that event. Bayes

theorem takes the form:

0)p(D|6 0)p(D|6
p(6|D) = PEEE. = —2EROR— « p(6)p(D]6)
Jp®)p(D|6)d6

In the form above © represents a parameter of an unknown quantity. The prior p(8) is an
estimation of the uncertainty of the parameter 0 is usually guided by domain knowledge, for
example, research questions, literature reviews and historical data. D is a vector

{x, x, x,.., x } which represents the collected data in an attempt to gain more information

about the unknown parameter ©. The joint probability of observed data D as a function of ©
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is known as likelihood, P(D|0). The posterior distribution, P(©|D), is a conditional probability
that describes the uncertainty about the inference (Bishop, 2006; Casella and Berger, 2001;
van de Schoot et al, 2021). The posterior can then be used to make predictions or
assumptions based on the research question. Bayes’ theorem can be simplified to form

below:
posterior « likelihood x prior
The life cycle of creating a Bayesian model as described above is repeated and updated

based on new domain knowledge by updating the prior or from the collection of new data

(Figure 1.6).
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Figure 1.6. Schematic of a bayesian model life system. (A) Demonstrates the importance of
background research taken before developing a Bayesian model and how to incorporate
this information into the prior. (B) The figure shows the feedback loop involved with the
development of Bayesian models. The likelihood: p(D|®). Data: D. Prior: p(®). Posterior
distribution: p(0|D). Figure from (van de Schoot et al., 2021).

In both Bayesian and frequentist approaches, Bayes' theorem, and more specifically,
likelihood function, plays a vital role in model fitting. In a frequentist approach, the most
used approach is the maximum likelihood, where the aim is to set the value © to maximise
the likelihood function p(D|®). On the other hand, a Bayesian approach estimates the entire
posterior distribution 0. Therefore, the posterior distribution is usually summarised by the

mean of the posterior and the credible interval (Bishop, 2006; van de Schoot et al., 2021).
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Denote N as the number of instances of evidence we possess. As we gather an infinite
amount of evidence, say as N — o, our Bayesian results (often) align with frequentist results.
Hence for large N, statistical inference is more or less objective. On the other hand, for small
N, the inference is much more unstable; frequentist estimates have more variance and larger
confidence intervals. This is where Bayesian analysis excels. By introducing a prior and
returning probabilities (instead of a scalar estimate), we preserve the uncertainty that

reflects the instability of statistical inference of a small-N dataset.

As the Bayesian model wants to estimate the entire posterior distribution, the direct
inference is usually not tractable, particularly for large, highly-dimensional datasets (van de
Schoot et al., 2021). This was one of the reasons frequentist statistics became more popular
than Bayesian statistics. However, multiple methods have been developed for sampling the
posterior distribution and, therefore fitting the models more efficiently. Markov chain
Monte Carlo (MCMC) can be used to fit models by indirectly obtaining inference on the
posterior distribution. The algorithm samples the posterior distribution where the next
sample is dependent on the current sample and thus guides the algorithm to find the values
being estimated. This is known as the Markov Chain. This enables the approximation of the
posterior distribution without having to sample every variable (Titterington, 1997; van de
Schoot et al., 2021). Loosely, MCMC uses the following process to solve Bayesian models; 1) it
starts with an initial guess of the parameters, 2) based on the current parameters, generates
a new set of parameters from a distribution, 3) then according to the posterior distribution
accepts or rejects the new set of parameters and 4) continues to iteratively repeat these
steps. The idea is that after many iterations, the Markov Chains will converge to the target

posterior and this can be used to approximate the posterior.

1.4.2 Dimensionality Reduction

Dimensionality reduction can be used for multiple different feature engineering, machine
learning and statistical analyses. This is most commonly referred to when you have more
features than samples in your data. When data has such high dimensionality, it is not only
difficult to visualise but also due to the amount of noise and redundancy in the data, it can
be challenged to extract statistically meaningful results. The core principle of
dimensionality reduction is to transform the data from a high dimensional state to a low
dimensionality state while preserving the information present in the raw data (Velliangiri,

Alagumuthukrishnan and Thankumar Joseph, 2019). Moreover, the run time complexity of
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analysing a large number of features means that the downstream analysis is often not
tractable. There are numerous different techniques for dimensionality reduction but some
of the most widely used methods are; principal component analysis (PCA), independent
component analysis (ICA), non-negative matrix factorisation (NMF), factor analysis (FA) and

manifold learning.

Dimensionality reduction is a cornerstone of omic data analysis. This is in part because a
typical omic study will have an order of magnitude more biological features (genes, proteins,
metabolites, microbes, etc.) than samples but also because of the complexity of visualising
biological data (Ma and Dai, 2011). Specific tools have been developed for performing
dimensionality reduction on omics data, such as MOFA (Argelaguet et al., 2019) which uses
FA to extract biomarkers and other methods for visualisation and analysis like Poincare
maps for visualisation of single-cell data (Klimovskaia et al., 2020). Dimensionality reduction

methods will be explored further in Chapter 4.

1.4.3 Application of Machine Learning in microbiome studies

To be able to embrace the heterogeneity of the microbiota and thus utilise the robust
random processes employed by ML, and to more of an extent DL algorithms, a large number
of samples need to be collected. This is even more prominent within biological systems. This
can be put down to several different intrinsic factors associated with omic’s data. One of
which is the phenomenon of the curse of dimensionality (Bellman, 1966). This phenomenon
states that when the dimensionality increases, the volume of the space increases so fast that
the available data becomes increasingly sparse. Consequently, it complicates ML
applications to problems, as the essential task is to learn from a finite number of data
samples in a high-dimensional feature space. ML learning algorithms are, therefore,
incredibly well suited to finding prognostic indicators across this wealth of data as they
leverage the ability to learn the subtle underlying structure within both molecular and

clinical datasets.

ML and DL have been used extensively within computational biology, and have many
applications within healthcare (Table 1.1.). An example of the application of DL on
metagenomic data can be seen in the work of (Arango-Argoty et al., 2018) where the authors
developed a DL approach for predicting antibiotic resistance genes from metagenomics data

(Arango-Argoty et al. 2018). Here, the authors developed a multi-layered neural network that
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utilises a dissimilarity matrix generated from all known antibiotic-resistant genes. The
results outperformed other classifiers or search algorithms that produced many false

positives (Arango-Argoty et al., 2018).

There is increasing evidence that longitudinal multi-omic studies provide more actionable
biomarkers (Schissler-Fiorenza Rose et al., 2019). Schiissler-Fiorenza Rose et al. showed this
through the deep-omic profiling of 109 type 2 diabetes mellitus patients over an 8-year
period. The authors created predictive models for insulin resistance using Max-Min parents
and Child (MMPC) to identify the features within the Bayesian Networks constructed from
the integrated dataset. After this feature selection stage, these most informative features
were used to create a ridge-regression model, validated through leave-one-out
cross-validation. Most significantly, using just the clinical data, the model achieved a
cross-validated R* of 0.59 (MSE=0.55) and with all integrated data R*of 0.87 (MSE=0.16), with
the transcriptome, metabolome and microbiome models achieving the highest accuracy of

the individual models (Schiissler-Fiorenza Rose et al., 2019).

Table 1.1. Current studies using ML methods can result in a clinically translatable result
in IBD. Most of the work around IBD has been on investigating the disease pathogenesis or
disease courses. However, this is closely followed by diagnostics and investigating disease
severity. Interesting disease subtyping, treatment responses and disease risk lag behind in
being actively clinically translatable. This table was modified from work done by Stafford et
al. where they investigated how ML methods have been used in investigating IBD in a

clinical setting (Stafford et al., 2022).

Task No. Studies | Chosen ML Models Data Types Used
Disease Course 22 Bayes Network, Boosting, Clinical, Gene
Decision Tree, Hierarchical Expression, Genetic,
Clustering, Neural Network, Imaging,
Partial Least Squares Metabolomic,
Discriminant Analysis, Random | Metatranscriptomic,
Forest, Regression, Support Microbiome

Vector Machine

Diagnosis 18 Boosting, Hierarchical Gene Expression,
Clustering, Neural Network, Genetic, Imaging,
Random Forest, Regression, Metabolomic,
Support Vector Machine Microbiome

Disease Severity | 16 Bayes Network, Boosting, Clinical, Gene
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Decision Tree, Hierarchical
Clustering, Intelligent
Monitoring, Neural Network,
Regression, Support Vector
Machine

Expression, Genetic,
Imaging, Protein
Biomarkers

Disease Subtype

Boosting, Hierarchical
Clustering, Random Forest,
Similarity Network Fusion
Clustering, Support Vector
Machine

Clinical, Gene
Expression,
Metabolomic,
Microbiome

Treatment
Response

Neural Network, Random
Forest

Clinical, Gene
Expression,
Microbiome

Risk of Disease

Ensemble Model, Random
Forest, Regression

Clinical, Gene
Expression, Genetic

Patients

Patient Gaussian Mixture Model, Immunoassay,

Clustering Hierarchical Clustering, Latent | Metagenomic, Online
Dirichlet Allocation, Neural Posts, Questionnaire
Network

Medication Support Vector Machine Clinical

Adherence

Metabolite Sparse Neural Metabolomic,

Abundance Encoder-Decoder Network Microbiome

Identification of Natural Language Processing Clinical

Furthermore, Haran et al. conducted a study which employed all of the currently outlined
approaches to investigate the effects of the microbiome on Alzheimer’s disease (AD). They
looked at the effect of dysregulation of the anti-inflammatory P-Glycoprotein (P-gp)
pathway. Following a patient cohort of 108 patients for up to 5 months, taking stool samples,
and performing metagenomic sequencing in addition to the metadata of G-gp expression
gained from in vitro T84 intestinal epithelial cell functional assays. Then combining machine
learning approaches using clinical and metagenomics data to identify specific predictors of
the bacterial species that lead to the dysregulation of the G-gp pathway. They also
differentiated the microbiome of patients with AD and to those of patients without AD.
Overall, they observed that patients with AD had a higher proportion of microbes

responsible for the synthesis of butyrate and taxa that are linked to proinflammatory
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conditions. This study demonstrated the link between intestinal homeostasis by regulating
inflammatory pathways and microbial metabolism. However, they didn’t look at the effect
across multiple clinical layers and, more importantly, the transition from a healthy to a

diseased state (Haran et al., 2019).

There is an extensive amount of research in the application of ML methods to the
microbiome of IBD patients. This has been in an unsupervised approach with the aim to
explore the structure of sub-communities of the microbes or a supervised approach to
extract biomarkers. Some of the most commonly explored supervised models include;
gradient boosting, random forests, support vector machines and neural networks. This
research is not just limited to the methods themselves but also the preprocessing, feature
selection, feature engineering and model evaluation stages of the machine learning life
cycle. For example, studies have shown that taxonomic data outperforms pathways
(Kubinski et al., 2022). Moreover, the same study also highlighted the performance of
different normalisation and transformation methods applied to microbiome data, further
highlighting the importance of using the correct normalisation method for the model you
have selected (Kubinski et al., 2022). Bakir-Gungor et al benchmarked different feature
selection methods for biomarker selection from microbiome data. Of the approaches the
authors tested, XGBoost (Chen and Guestrin, 2016), Information Gain (Kent, 1983) and Select
K Best (Alex et al., n.d.) obtained the highest overall performance. The combination of Select
K Best and Random Forest classifier outperforms other methods to predict between healthy
controls and IBD patients (0.85 Fl-score, 0.93 AUC, and accuracy 88%) (Bakir-Gungor et al.,
2022). However, it should be noted that feature selection can result in a reduction in the
model's ability to generalise to different datasets, particularly between different cohorts or

sequencing technologies.

1.5 Network Biology and Systems Biology

As described in Barabasi et al., a disease rarely results from an abnormality in a single gene
or factor. Therefore, in multifactorial diseases, a systems-level approach is required to
elucidate the complex perturbations of the intracellular and intercellular mechanisms that
link between organs and systems within the body (Barabasi, Gulbahce and Loscalzo, 2011;

Gosak et al., 2018). Systems biology is a multidisciplinary field, which through a holistic
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approach models complex interactions within biological systems (Chuang, Hofree and

Ideker, 2010; Tavassoly, Goldfarb and Iyengar, 2018; Gosak et al., 2018).

This can be conducted through computational and mathematical analysis of biological data.
One such method to analyse these systems is to model the biological system in a graph data
structure, known as a network. In a biological network, nodes represent components of the
biological system (e.g. a protein) and the edges represent the relationship between these
components (e.g. an interaction). The same is true for metagenomic data, where a node can
show taxa and the edge can show the interaction/relationship between other microbes or
in fact the host. These interaction networks enable us to determine functional connectivity
patterns in multicellular systems. Hence by employing network metrics, mutually exclusive
microbes, co-occurring or associations with metadata can be identified. Computational
tools provided by network biology enable the systematic transverse of multiple molecular
layers of a particular disease, but also the molecular associations among seemingly distinct
phenotypes. Besides phenotype classification these methods also allow the identification of

disease modules and pathways of these phenotypes (Barabasi, Gulbahce and Loscalzo, 2011).

Networks can represent a microbial community structure by integrating multiple types of
information and providing the causal relationships between layers allowing for the
generalisation of the knowledge. More importantly, microbiome networks have been used in
longitudinal studies to determine prognostic indicators. Layeghifard et al. used microbiome
networks and change-point detection statistical methods to determine the point of change
in the distribution of stochastic processes to identify dynamic microbial communities which
lead to cystic fibrosis pulmonary exacerbations (Layeghifard et al., 2019). Meanwhile,
combining systems biology and machine learning approaches, Lugo-Martinez et al.
developed a pipeline that enables the integration of longitudinal data across samples to
investigate dynamic interactions from networks. This was achieved through a dynamic
Bayesian network (DBN), which represents the causal relationships between the clinical and
the taxa (Lugo-Martinez et al., 2019). To test their model applied their DBN model on the
infant’s gut, finding 14 microbial taxa, and 4 clinical and one demographic variables node

(Lugo-Martinez et al., 2019).
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1.5.1 Graph Theory and Network Science

The key to understanding complex systems is knowing how the system's components
interact. One approach is to represent the system as a network consisting of pairwise

connections between the components (nodes) and the interactions (edges) between them.

Although graph theory and network science are often used interchangeably, there are subtle
differences between the two terminologies. A network refers to a real system, while a graph
is a mathematical network representation. For example, we can model the sum of all
chemical reactions between a metabolite and a host as a network. However, the
mathematical representation we can apply would be a metabolic graph. That is to say, the
foundation of a network is underpinned by graph theory. Therefore, there are some overlaps
in the terminology between network science and graph theory (Table 1.2.) which can be used

interchangeably when talking about networks and graphs.

Table 1.2. Terminology between network science and graph theory.

Network Science Graph Theory
Network Graph

Node Vertex

Link Edge

A network can be directed or undirected. Directed networks have signed interactions and
describe a connection between a source node and a target node. In contrast, an undirected
network does not have the same signed interactions (e.g. protein-protein interactions). The
edges within a network can have attributes applied known as weights. A network is
weighted if the edges have weights and unweighted if the edges are not weighted. Finally, a
node can also encode additional information. Either by applying a weight, statistic or other

attributes to the node.

Once a network has been created, certain metrics can be used to describe the properties of
the network. This is often known as the topology of the network. These metrics can be used
to compare networks to one another in a global approach or to look into the local patterns

within the network. This thesis's main network metrics are degree, hub and shortest path.
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The degree represents the sum of the total number of links one node has to other nodes.
The average degree is defined as the total number of edges over the total number of nodes. A
node is defined as a hub when it has a higher level of connectivity than the average degree of

that network.

A hub is an intrinsic property of a scale-free network and is not observed in a random
network generated using Erdés-Rényi model. A network is said to be a scale-free network
where its degree distribution follows the power law. However, interestingly, not all biological
networks show evidence for being scale-free. Nevertheless, by the nature of a hub, it is
highly connected within a network, and therefore removing these nodes results in

disconnected graphs, i.e. there exist two nodes within the network that are not connected.

The final metric is path length, which can be considered a network's “distance” metric. A
path is a journey one would take between linking nodes of a network, and the number of
links within that journey is presented as the length. The shortest path is the fewest number

of links between nodes i and j.

Beyond holistic data analysis, visualising the network can be extremely beneficial. Often
allowing for a visual and interpretable representation of a complex system. Further
information can be encoded through the representation of nodes (size, shape, colour, label,
layout, etc.), edges (thickness, colour, arrow, etc.) and network layout (hierarchical, force

directed, etc.).
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Figure 1.7. Biological interactions are represented as a network. This figure shows how
interactions between biological molecules can be represented as a network. The circles
and squares represent molecules of interest (nodes), and the connections between them
are the interactions (edges). Those that are signed show the direction of the interaction and

those without a sign show a potential interaction can occur.

1.6 Biological databases and tools

To utilise the analytical approaches provided by network and systems biology, typically prior
or reference data is required. Molecular databases provide essential biological, contextual
and domain-specific information to enable not just the identification of biological molecules
but also to aid in determining the biological function as well. These databases have been
rapidly increasing in numbers, and as of writing, there are over 1700 publicly available

biological databases (Imker, 2018).

1.6.1 Sequence databases

The largest and central database for protein sequences and annotations is the UniProt
resource (UniProt Consortium, 2021). The aim of UniProt is to provide a knowledge base of

all protein sequences with high-quality functional metadata. As of writing, there are
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approximately 190 million unique sequences held in UniProt’s sequence database UniProtKB,
which has almost doubled in past years despite the author's best efforts to reduce the

amount of redundancy in the database (UniProt Consortium, 2021).

In addition to the protein sequence and functional annotations, UniProt also holds
taxonomy, interactions, subcellular locations, post-translational modifications, expression
and other biological database information. For example, UniProt holds extensive gene
ontology and alternative identifiers from other databases like PFAM (which is a large-scale,
complete and accurate classification of protein families and domains (Mistry et al., 2021)).
This makes Uniprot well-suited as a central repository to access any protein information.

Table 1.3 outlines UniProt’s proteomes summary statistics as of November 2022.

Table 1.3. Uniprot proteomes summary statistics as of November 2022. Up-to-date

statistics can be found at https:/www.uniprot.org/proteomes (UniProt Consortium,

2021)

Proteome Type/Superkingdom Number
Reference proteomes 22,114
Other proteomes 137,331
Redundant proteomes 282,657
Excluded proteomes 27,603
Bacteria proteomes 349,114
Viruses proteomes 115,399
Eukaryotic proteomes 4,342
Archaea proteomes 3,844

1.6.2 Protein structure databases

Metagenomics, the identification of the composition of the microbiome, frames the
potential of the microbiome between conditions. However, within the gut microbiome
resides microorganisms which are commensal, symbiotic and pathogenic and under most
circumstances, these bacteria and the host are in symbiosis. That is to say, the functional

effect of these same bacteria can change during times of dysbiosis. Two key ways these

47


https://sciwheel.com/work/citation?ids=10304708&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9956308&pre=&suf=&sa=0
https://www.uniprot.org/proteomes
https://sciwheel.com/work/citation?ids=10304708&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10304708&pre=&suf=&sa=0

microbes communicate with the host are; (1) through protein-protein interactions and (2)
through the production of metabolites. Therefore, they are key to understanding how the

bacterial proteins and metabolites within the gut interact with the host.

For protein-protein interactions, there are two predominant types of interactions.
Domain-domain interactions, where a domain of one protein is physically interacting with a
domain of the other leading to one protein exerting its effect on the other (Itzhaki et al.,
2006). Alternatively, domain-motif interactions occur when a protein domain interacts with

a protein-containing motif (Akiva et al., 2012).

In a domain-motif interaction, the protein with the domain exerts its effect on the protein
containing the motif. In particular, these interactions are regulated by short linear motifs
(SLiMs), which are short amino acid sequences of approximately 3-10 base pairs in length
(Brito and Pinney, 2017; Idrees, Pérez-Bercoff and Edwards, 2018). The current standard of
the database holding SLiM is the ELM database developed by the European Molecular
Biology Laboratory (EMBL) (Kumar et al., 2022).

Domain-domain interactions can be identified experimentally by inferring their
three-dimensional structures (Raghavachari et al., 2008). However, it is becoming
increasingly common to use a computational approach instead through methods such as
sequence co-evolution, phylogenetic profiling, probabilistic frameworks and machine
learning approaches (Yellaboina et al., 2011). The largest collection of domain-domain

interactions can be found in the Pfam Database (Mistry et al., 2021).

More recent approaches using Deep Learning architectures have yielded more accurate
results than competing methods. An example of this is Google’s AlphaFold (Jumper et al.,
2021) or Evolutionary Scale Modeling (ESMFold) (Rives et al., 2021). Briefly, AlphaFold
employs a network-based approach and works by incorporating novel neural network
architectures and training procedures based on the evolutionary, physical and geometric
constraints of protein structures. While ESMFold utilised a transformer, a large-scale
language model, which leverages the improved performance in structural learning and

Natural Language Processing (NLP) evaluation methods like perplexity (Rives et al., 2021).
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1.6.3 Protein-protein interaction databases

Protein-protein interaction (PPI) databases are a collection of both experimental and in
silico interactions which have been integrated together to provide fast and efficient access
to this data. The most complete resources are STRING (Szklarczyk et al., 2021), IntACT (Del
Toro et al., 2022), UniHI (Kalathur et al., 2014) and BioGrid (Oughtred et al., 2021). The key
advantage of PPI databases is they give a confidence score to the interaction reflecting the
evidence supporting the interaction. The highest confidence interactions come from
experimentally obtained interactions and the lowest confidence comes from those that are

solely based on predicted interactions.

One of the limitations of PPI databases is that each curation effort takes a different
approach, leading to PPI databases holding differing attributes. An example of this would be
the introduction of new protein identifiers (ID) as the primary key or in some cases a unique
database-specific protein ID. This gives added complexity when performing PPI network

analysis downstream as you need to ensure the quality of any ID.

A database that aims to solve this issue is Omnipath (Ttrei, Korcsmaros and Saez-Rodriguez,

2016; Turei et al., 2021). The Omnipath database (https://omnipathdb.org/) is a large

collection of more than 100 resources that have collected and standardised the data. The
standardised data is then held in five different knowledge bases (sub-databases); network,
enzyme-PTM, Complexes, Annotations and Intercell (Tirei, Korcsmaros and
Saez-Rodriguez, 2016; Tirei et al., 2021). The database has an Application Programming

Interface (API) to request data but is also available as a python, R and Cytoscape package.

1.6.4 Metabolic pathway resources databases

There are multiple large databases used for metabolite identification including; HMBD,
METLIN, GMD and MassBank (Wishart et al., 2007; Smith et al., 2005; Vinaixa et al., 2016;
Horai et al., 2010). However, as of present, they lack high-quality interaction databases for
metabolomics. Typically, metabolomic pathways have been used to fill this gap. A database
such as BioGRID (Oughtred et al., 2021), KEGG pathways (Kanehisa et al., 2023), and MetaCyc
(Caspi et al., 2014), provide manually drawn pathways to aid in mapping metabolomic
signatures to functional and regulatory mechanisms. More recently, a new database was

released called gutMGene (Cheng et al., 2022), which provides a manually curated database

49


https://sciwheel.com/work/citation?ids=10960543&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12004313&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12004313&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3192542&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10309247&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3050563,10728846&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3050563,10728846&pre=&pre=&suf=&suf=&sa=0,0
https://omnipathdb.org/
https://sciwheel.com/work/citation?ids=3050563,10728846&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3050563,10728846&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=42610,4103093,3869340,2005281&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=42610,4103093,3869340,2005281&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=10309247&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13977253&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1209448&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11664091&pre=&suf=&sa=0

of microbial gene and microbial metabolites interaction through potential intermediate

targets.

1.7 Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is a chronic multi-systemic inflammatory disorder of the
gut. There are two distinct disorders which encapsulate IBD; ulcerative colitis (UC) and
Crohn's disease (CD) (Roda et al., 2020; Ungaro et al., 2017; Kobayashi et al., 2020). Although
often grouped together, the two diseases differ in pathophysiology, symptoms,
complications, therapeutic management and disease course. More specifically, CD presents
with patchy lesions throughout the gastrointestinal tract. In contrast, UC presents mucosal
inflammation, starting at the rectum and continually propagating throughout the colon
(Kobayashi et al., 2020). A key difference between the two diseases' pathophysiology is that
the inflammation is typically restricted to only the mucosal layer in UC. In contrast, in CD,
the inflammation can affect all layers of the bowel, which results in added complications,

such as fibrosis, fistulas and strictures.

The exact pathogenesis of UC and CD is still unknown, however, multiple factors have been
implicated in the disease development (de Souza and Fiocchi, 2016). These factors include a
dysregulated immune system, genetic factors, alterations in the gut microbiota (microbes,
fungi and viruses abundances) and external factors (environment, diet, therapy etc.) (de
Souza and Fiocchi, 2016). Each of these factors contributes in part to disease pathogenesis
in IBD (Figure 1.8.). However, the complex interaction between these factors results in IBD is

not completely understood (Roda et al., 2020; Kobayashi et al., 2020).
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Figure 1.8. A high-level overview of the multifactorial nature of IBD. IBD is considered to
have 3 main risk groups. Genetic risk factors, environmental risk factors and
microbiome-related risk factors. These different risk categories together lead to the

pro-inflammatory response.

The incidence and prevalence of both UC and CD are rapidly increasing worldwide. With
both diseases being defined as progressive diseases (i.e. an individual’s disease will spread or
get worse), IBD is putting an ever-increasing strain on healthcare systems worldwide. As of

present, there is no known cure for IBD.

51



1.7.1 Gut bacterial composition in IBD

Since the implication of the microbiome in IBD disease development, gut dysbiosis (i.e. the
alterations in the gut microbial composition) has been studied extensively over the past
decade to try and determine if there are a defined microbiota composition or marker
microbes that are specific to CD and UC (Glassner, Abraham and Quigley, 2020). Studies
have shown how the gut microbiome differs between IBD patients and healthy controls.
These studies demonstrate the reduction in microbiome diversity, lower levels of abundance
of anti-inflammatory taxa and an increase in invasive bacterial species (e.g. Escherichia coli)

(Glassner, Abraham and Quigley, 2020; Lee and Chang, 2021).
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Figure 1.9. Compared to a healthy gut, a schematic and overview of the pathophysiology
of IBD. In the healthy condition (left), a thick and intact mucus layer acts as a barrier
between the gut and the intestinal epithelium. However, in patients with IBD (right), this
layer of protection is missing, leading to bacterial invasion of the intestinal epithelium. In
combination with a dysregulation of the host's immune system, which leads to a

pro-inflammatory response (Figure adapted from BioRender).

When compared to healthy controls, specific changes in the gut microbiome composition
have been identified. Within CD patients, a reduction in the abundance of Firmicutes and
Bacteroidetes and an overrepresentation of Enterobacteria has been characterised in the
microbiota. Furthermore, CD patients have seen an increase in pro-inflammatory bacteria
such as Escherichia coli and in a reduction in anti-inflammatory bacterial species such as
Faecalibacterium prausnitzii (Quévrain et al., 2016). UC studies have linked Akkermansia
muciniphila, and also the genus of bacteria Desulfovibrio and Clostridium (Manichanh et al.,

2012; Bajer et al., 2017).

Table 1.4. Bacterial species extracted from the literature whose change in abundance

levels has been implicated in IBD (CD and UC) compared to healthy control.

Increased abundance in IBD

Decreased abundance in IBD

Fusobacterium species

Bacteroides species

Pasteurellaceae

Bifidobacterium species

Proteobacteria

Clostridium XIVa, IV

Ruminococcus gnavus

Roseburia species

Veillonellaceae

Sutterella species

The microbiota has also been implicated in the disease progression as well as the disease
development. For example, when looking into the disease activity of IBD patients, studies
have linked two locations of the gastrointestinal tract where the bacterial population is the
highest (i.e. the colon) and where the faecal matter remains at equilibrium (i.e. the terminal
ileum and rectum). Cloony et al investigated the microbiome variance in patients during

inactive and active states defined by the clinical marker faecal calprotectin (inactive < 250
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ug/g; active > 250 pg/g). The authors used a random forest and a ratio of two-time points
to implicate Bifidobacterium and Streptococcus bacteria as the top determinants between
active and inactive UC (Clooney et al., 2021). The same analysis was performed in CD, which
suggested that Hydrogenoanaerobacterium saccharovorans and Clostridiales were the top
contributors to stratifying by disease activity (Clooney et al., 2021). Nonetheless, it still
remains unclear whether these shifts in composition in a dysbiotic state are causative or a

response to the increase in intestinal inflammation.

The current therapeutic practice focuses on regulating the host’s immune system through
the use of include mesalazine, corticosteroids, thiopurines, methotrexate, ciclosporin,
anti-TNF, vedolizumab, ustekinumab, tofacitinib and antibiotics (Lamb et al., 2019). These
approaches largely ignore the role of the microbiome in disease pathogenesis. The potential
for the microbiota to act as a therapeutic intervention has shown great promise since the
introduction of faecal microbiota transplantation (FMT) in IBD patients (Costello et al., 2017;
Sokol et al., 2020; Shen et al., 2018). FMT aims to reset the entire microbiome in an IBD
patient from a healthy individual's faecal sample. Another treatment which is being
increasingly used in the clinic is the use of probiotics. Probiotics aim to help restore
symbiosis in the gut by inhibiting pathogenic bacteria, aiding the restoration of the
disturbed mucosal barrier and enhancing the intestinal barrier function (Sartor, 2006; Shen

et al., 2018).

1.7.2 Metaproteomics studies in IBD

Studies have suggested that only limited variance can be explained by the microbiome
composition alone in IBD patients. Although metagenomic outlines the genetic potential of
the microbiome in IBD patients, exploring what happens functionally during IBD could
reveal associations between different microbial taxa as well as the host. Therefore, there has
been an increasing focus on exploring the metaproteome present in the gut of IBD patients

(Lehmann et al., 2019).

Previous studies have investigated the functional potential by investigating the pathways
associated with the annotated metaproteomes. For example, a twin study extracted
metaproteomics data from six pairs of twins that were either healthy or had CD observed an
increase in carbohydrate transport and metabolism, an increase in host-bacterial

interactions and an increase in host-secreted enzymes (Erickson et al., 2012). Comparing
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IBD patients' metaproteomes to control studies have found associations between the
reduction of RprY protein from Bacillus fragilis in both UC and CD (Lehmann et al., 2019).
Moreover, Mills et al. demonstrated how Bacteroides vulgatus proteases are overabundant in
UC patients. To validate this they used an monocolonised IL10-deficient mice model was
with Bacteroides vulgatus and found that mice given broad spectrum-protease prevented
colitis further suggesting the role of overabundant Bacteroides vulgatus proteins play in UC

(Mills et al., 2022).

1.7.3 Metabolomics studies in IBD

The metabolome has been extensively researched in IBD. There have been six main areas of
biosample research; urine, blood (plasma or serum), tissue, breath and stool. However, in
this section, the focus will be on metabolites extracted from stool samples (Gallagher et al.,
2021). Metabolomics has the potential to link and reveal the underlying mechanisms
between the microbiota and the intestinal mucosa (Thomas et al., 2022). There are currently
three main candidates for IBD-related metabolites; Bile acids, Short Chain Fatty Acids (SCFA)
and Tryptophan (Zheng, Wen and Duan, 2022).

Bile acids have been shown to be perturbed in IBD patients compared to the health control,
with IBD patients having a reduction in both primary and secondary metabolites (Weng et
al., 2019; Franzosa et al., 2019). Conversely, other studies have suggested bile acids are
increased within IBD patients when comparing dysbiotic and non-dysbiotic microbiomes
(Lloyd-Price et al., 2019; Gallagher et al., 2021). This contradiction in results can be explained
when looking at integrating these samples with paired metagenomic samples, as bacterial
species associated with an increase in bile acid production were also increased in
abundance in these samples (Gallagher et al., 2021). The resulting shifts in the microbiome
composition and bile acid production have also been seen in blood-based metabolomics.
Work done by Roda et al, where CD patients with impaired primary and secondary bile acid
production saw an increase in production post-treatment of anti-TNF patients (Aden et al.,

2019; Roda et al., 2019).

Another class of metabolites which have seen marked changes in IBD are SCFA. SCFA are a
byproduct of microbial fermentation in the gut. Compared to healthy controls; Acetate,
propionate and butyrate have been found at lower concentrations in IBD patients (Machiels

et al.,, 2014; De Preter et al., 2015; Bjerrum et al., 2015). For example, SCFA like butyrate is
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reduced in active IBD and associated with the reduction of bacterial species Roseburia
inulinivoransa, which is known to be an SCFA-producing bacteria (Bjerrum et al., 2021; Aden
et al., 2019). Conversely, when anti-TNF is given to the patient butyrate levels increase and a
reduction in inflammation is observed (Aden et al., 2019). As well as the anti-inflammatory
effects, SCFA can act as an energy source for the host cell. Once again, a good example of
this is Butyrate which is also a primary source of energy for colonocytes (epithelial cells in

the colon) (Litvak, Byndloss and Baumler, 2018; Parada Venegas et al., 2019).

The final class of metabolites we will discuss here are amino acids. From stool samples,
patients with IBD have increased levels of both amino acids and branched-chain amino acids
when compared to healthy controls. It is considered that due to increased inflammation and
therefore intestinal instability in IBD patients there is a reduction in the gut’s ability to
effectively digest food (malabsorption) (Marchesi et al., 2007). During increased disease

activity, tryptophan metabolism also increases leadings (Nikolaus et al., 2017).

Table 1.5. Stool metabolites associated with IBD. A summary of 11 stool-based
metabolomics studies in IBD and the aggregated results of metabolite class changes in IBD

data compared to controls (Gallagher et al., 2021)

Metabolite Class Increase/Decrease in IBD
Lipid classes Increased
Amino Acids (Alanine, Glycine, Lysine, Increased

Phenylalanine, Taurine, Tyrosine)

Primary and secondary bile acids Decreased
Branched-chain amino acids Decreased
SCFA Increased
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1.8 Mathematical Notation

Uppercase letters such as X are matrices and X i is the i-th row and j-th column of matrix X.

A matrix X , states the i-th row of that matrix as a vector of length D.

Lowercase letters such as x are vectors and X, is the i-th element of vector x.

b
Y x,is just a for-loop that iterates x from a to b, summing all the x..

1=a
Notation f(x) refers to a function called f with an argument of x.
The dot product w - x is the summation of the element-wise multiplication of the elements,

suchthat ¥ (wx) = sum(w®x).

{}is a set of elements and is a [ ] vector of elements.

{X k]K represents a set of matrices of length K where the k-th element of the vector is a
k=1

matrix.

NxD .
R " are real numbers of size N rows and D columns.

NxD .
N " are natural numbers of size N rows and D columns.

H ;: gives the null hypothesis, while /_gives the alternative hypothesis.

NORMAL represents a normal distribution.
BETABINOMIAL represents a beta-binomial distribution.

a ~ represents simulation of a vector given some distribution and any interactions terms.
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1.9 Aims

My PhD project aims to develop an integrated machine learning-based systems biology
workflow to analyse gut microbiome data and identify prognostic indicators of healthy and
unhealthy conditions, using IBD as a case study. The approach is based on gut microbiome
data (e.g. metagenomics, metatranscriptomics, metaproteomics and metabolomic data),
which capture the composition and functional potential of the microbiome in modulating
host processes. Machine learning (ML) can efficiently model microbiome interactions as ML
can (1) learn novel features (by the automatic discovery of “regularities” without relying on a
priori knowledge); (2) capture multiple features (strains, proteins, pathways, etc.) and model

these for prediction; (3) quickly learn complex patterns across large datasets.

Combining ML-based features with host-microbiome interactions and systems biology (SB)
will improve our understanding of how microbiota contribute to health using generated
microbiome datasets. The project outcomes are expected to overcome critical challenges,
leverage existing data, and contribute towards BenevolentAI’s efforts in creating ML-based

solutions for inflammation-related disease treatments.

The research hypothesis of this project is that the machine learning-based analytical
pipeline utilising sequence and systems biology information will identify
microbiome-related features implicated in the transition between healthy and unhealthy

conditions in inflammatory bowel disease (IBD).
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1.10 Objectives

Objective 1. Predict dynamic changes in critical features during the transition between
healthy and unhealthy conditions. Benchmarking and testing existing tools and developing

new methods to fill the gaps identified.

Objective 2: Identifying condition-related features in microbiome data. Available
microbiome data will be collected and analysed using various ML approaches to identify
critical communities/microbial products upon the switch between healthy and unhealthy

conditions.

Objective 3: Combining systems biology with the developed ML approaches to identify
microbiome-host mechanisms. Analyse the ML-based communities and proteins and
predict changes using bioinformatic workflows developed previously at the Korcsmaros

group to infer microbe-host interactions (Sudhakar et al., 2019).

Objective 4: Create an automated ML-SB pipeline for reproducibility and scalability when
running on a complex condition-related dataset. Create proper documentation and
integrate codes into a unified pipeline for repeated use with similar datasets or projects

initiated by BenevolentAl.

60


https://sciwheel.com/work/citation?ids=6713296&pre=&suf=&sa=0

Chapter 2: Exploratory data analysis on
longitudinal metagenomics samples using

traditional microbiome analysis methods

2.1 Introduction

It has been well studied how the microbiome of Inflammatory Bowel Disease (IBD) patients
differs from healthy controls or non-IBD patients (Chapter 1, Table 1.2). The difference
between a healthy and a diseased (dysbiotic) microbiome can be measured in many different
ways. The data extracted from these high-throughput DNA sequencing studies can be
represented as counts, proportions or as ratios. One such approach is compositional data
analysis (CoDa) (Gloor and Reid, 2016; Mandal et al., 2015; Greenacre, Martinez-Alvaro and
Blasco, 2021). CoDA differs from more standard approaches as it describes the dataset as an

arbitrary sum (Aitchison, 1982).

A lot of microbiome studies rely on relative abundance (or proportions). Although this is
suitable for some analyses, if one would like to apply an approach that uses Euclidean
distance, the resulting representation of the data could induce biases, which would lead to
incorrect conclusions being drawn (Ricotta, 2021). Therefore, it is generally accepted that
for a CoDa approach, the counts or proportions need to be a transformed ratio between all
parts (Gloor and Reid, 2016). An example implementation of this is the centred log-ratio

(CLR) transformation (Aitchison, 1982) :

clr(X) = (log(x,/g), log(x,/g) ... log(x /g ))
(Equation .2.1)

where g(x) is the geometric mean of all values in the vector X. CLR is a transformation
method that can be used to remove the constraint that is present in compositional data.
This enables the data to be used by statistical methods and other downstream approaches
and is a fundamental tool used by researchers to explore the complexities of compositional

data (Faith, 2015). This approach would be robust if microbiome data were not sparse. The

61


https://sciwheel.com/work/citation?ids=4205986,479837,12434133&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4205986,479837,12434133&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=7469236&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15877095&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4205986&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7469236&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7973121&pre=&suf=&sa=0

sparsity of the data is problematic for these transformation algorithms as they cannot
compute the geometric mean if the vector they are being applied to is O (Gloor and Reid,
2016; Mandal et al.,, 2015). Methods have been developed to address these issues, for
example, robust centre log ratio (RCLR), which accounts for the sparsity of microbiome data
sets (Martino et al., 2019). However, this transformation requires changes to the ordination
algorithm used, as it treats O as missing. Another approach would be the use of a
Bayesian-based approach. Here, the parameters and transformations can be made in the
model to account for the over-dispersed and zero-inflated count matrix (Sankaran and

Holmes, 2019; Zhou et al., 2022) (this will be explored further in Chapter 3).

After the correct normalisation and transformation of the data, the next approach could be
to find differences between samples or groups of phenotypes. A good first measure is to
assess the diversity of the microbiome. This can be done using alpha or beta diversity. Alpha
diversity observes the number of taxa present in a sample. The simplest example of this
metric is richness, which is defined as the total number of different species within the
sample. Meanwhile, beta diversity measures the variability of the communities of taxa by
calculating the dissimilarity or distance between samples. The resulting measures can then
be used in ordination or by clustering methods to try and group similar samples together
(Walters and Martiny, 2020). These measures are important and fundamental to human gut
microbiome analysis, as associations between healthy and unhealthy conditions, because
they provide insights into the differences and similarities in microbial composition. By
understanding how microbial communities vary from person to person or in different
conditions, patterns and factors that might influence health and disease can be identified
(Manor et al., 2020; Hou et al., 2022). Beta diversity thus plays a crucial role in elucidating
the complex interactions within the gut microbiome and how these interactions might be
linked to various health outcomes, dietary habits, environmental exposures, or disease
states. This level of analysis is essential for advancing personalised medicine and developing
targeted interventions to modulate the gut microbiome for better health outcomes

(Petrosino, 2018; Cammarota et al., 2020).

2.1.1 Aims

In this chapter, I develop a preprocessing pipeline to enable the fast, efficient and

structured preprocessing of metagenomic datasets and then apply this pipeline to publicly
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available IBD and healthy control datasets. I will then perform exploratory data analysis on
this dataset using both typical data science and microbiome analysis approaches. This

chapter aims to:

e Develop a flexible and scalable metagenomic preprocessing pipeline

e Perform exploratory data analysis on longitudinal metagenomics samples from UC,
CD patients and healthy controls to gain a greater understanding of longitudinal
microbiome data in IBD

e Describe and identify the potential limitations of using traditional microbiome

analysing approaches on a longitudinal dataset
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2.2 Methods

To assess the variability of the microbiome over time in IBD patients, we used the largest
publicly available longitudinal metagenomic study available, created by Lloyd-Price et al.
This patient cohort consists of 132 individuals who were recruited as part of the Human
Microbiome Project (HMP) (Human Microbiome Project Consortium, 2012; Lloyd-Price et al.,
2019). The patients were from four US hospitals and were made up of three paediatric and
two adult cohorts. In total, the authors collected 1,785 stool samples along with various

meta-data, including disease activity metrics, diet, therapy, disease age and more (Figure 3).

Table 2.1. Patient Cohort breakdown per sub-disease. A number of patient data were
extracted, including the total cohort, and then patients were removed if they did not have

enough metadata, sequencing depth, or enough time points (t > 4).

Disease N patients before QC N patients after QC
Crohn’s Disease 66 50
Ulcerative Colitis 38 30
Healthy controls (non-IBD) 27 27

2.2.1 Data preprocessing

Raw reads were downloaded from SRA BioPorject PRINA398089. Quality control was
performed using KneadData (https: //github.com /biobakery/kneaddata), and the reads that

mapped to the human genome were first filtered out (although the number of human reads
mapped was kept as a quality control metric). To assign taxonomic profiles to the shotgun
metagenomes MetaPhlAn3 was used (Human Microbiome Project Consortium, 2012; Truong
et al., 2015; Beghini et al., 2021). MetaPhlAn3 is a shotgun sequencing data-specific tool that
uses a library of clade-specific markers to provide pan-microbial (e.g. bacterial, archaeal,
viral, and eukaryotic) profiling from a database of ~17.000 reference genomes (Truong et al.,
2015; Beghini et al., 2021). MetaPhlAn3 is a fast and efficient way to accurately estimate the
number of microbial DNA captured in a sample and map that DNA sequence to a taxa. This is
one of the key advantages of MetaPhlAn3 compared to k-mer-based tools, as it achieves

very similar accuracy with significantly reduced memory (Yang et al., 2021a). Finally,
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MetaPhlAn3 has a large and active community and support network, making it ideal for the
pipeline to be used in a production setting due to its reliability and robustness, which come

from such open-source projects.

For functional profiling, I used the companion tool to MetaPhlAn3, called HUMANN3
(http: //huttenhower.sph.harvard.edu/humann3). HUMAnN3 constructs a sample-specific
reference database from the pangenomes of the subset of species detected in the sample by
MetaPhlAn3 (pangenomes are precomputed representations of the open reading frames of a
given species) (Beghini et al., 2021). Sample reads are mapped against this database to
quantify gene presence and abundance on a per-species basis. A translated search is then
performed against a UniRef-based protein sequence catalogue (Suzek et al., 2015) for all
reads that fail to map at the nucleotide level. The result is abundance profiles of gene
families (UniRef90s), for both metagenomics and metatranscriptomics, stratified by each
species contributing those genes, which can then be summarised to higher-level gene

groupings such as ECs or KOs.

To ensure a reasonable read depth in each sample, only samples (metagenomes and
metatranscriptomes) with at least 1 million reads (after human filtering) and at least one
non-zero microbial abundance detected by MetaPhlAn3 were used in downstream analyses.
In total, this resulted in 1,595 metagenome profiles across all patient cohorts. The final
preprocessing step was to remove individuals with inconsistent metadata or time points.
Individuals were removed if they did not meet the following criterion: 1) had fewer than 4
times points and 2) did not have a disease activity index present in more than 4 times points.

This left 107 individuals for downstream analysis (Table 2.1.)

Metagenomics Pipeline

Metagenamic Taxonomic Functional Merged
- | Schedular e Profiling Praofiling = counts

\‘{ Gana familiss

Figure 2.1. Metagenomics workflow with a custom scheduler to take raw reads as input

and output annotated count matrices for downstream analysis. This schematic
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represents a single run of a parallelised implementation. The metagenomic workflow is
used to process the raw reads, perform quality control, conduct taxonomic and functional
profiling, and export the data. The output of this workflow is the count's matrices for

pathways, enzymes and gene families.

2.2.2 Exploratory data analysis

Before building the new model, I first performed exploratory data analysis (EDA) on the
resulting data from the pipeline outlined in Methods 2.2.1 (Figure 2.1). EDA is primarily used
to see what data can reveal before or even after modelling or hypothesis testing. Therefore,
EDA provides insights into the relationships between features within the data and helps
determine if the desired modelling or statistical analysis techniques are appropriate for the

dataset.

Due to the data from Lloyd-Price et al. being collected across multiple locations, it required
a lot of metadata wrangling, cleaning and processing. There was a wealth of metadata
collected for this study, but the majority of the clinical metadata was either undersampled
(e.g., for patients with fistulas of the 3292 samples collected, only 6 patients presented with
a new fistula over the course of the study), or too general (e.g. therapy for antibiotics being
boolean variable and not giving further information about what extract treatment the

patient received).

2.2.2.1 Compositional Abundance

To assess the compositional abundance between each condition, the top 9 most abundant
microbes and microbial genes in the study were extracted on a patient-specific level. For
each sample, the relative abundance was calculated by performing total sum scaling, i.e.
dividing the feature counts by the total count in the sample. The mean of the relative
abundance was then taken over the entire time course of that patient. The resulting means

were then ranked in descending order.

2.2.2.2 Diversity and Ordination

Diversity is a measure used in ecology to show how many bacteria, usually at the species

level, are within a community. Alpha diversity is the measure of the total number of species
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found within the community. Beta diversity, however, describes the difference between

species composition between individual samples within the community.

To assess the alpha diversity of the processed samples, Gini-Simpson alpha diversity was
calculated for each sample and compared using the Kruskal-Wallis test between the

resulting diversity scores. Gini-Simpson is defined mathematically as:

n
2
Dpi@pop) =1 = E‘l b
(Equation.2.2)
where DGini(pl""' r) denotes the diversity of the community, P, is the relative abundance of

the i-th species and n is the species within the community, {s ..., s }.

To compute the beta diversity, the distance between the samples, Bray-Curtis distances are
calculated between all pairs of samples and quantify the dissimilarity between them (Bray

and Curtis, 1957). Bray-Curtis dissimilarity takes the form:

=

_§]|y1j_y2j 2C,
DBC(xl’ xz) Ty =1- St
; (y1j+y2j)
j=1
(Equation.2.3)

Where D, C(x " x2) is the distance between two samples, p is the number of taxa, y is each
species. Cij is the sum of the lesser values between common species between samples,

while § and Sj is the total number of species counted at each site (Bray and Curtis, 1957).

Principle coordinate analysis (PCoA) was used to perform ordination as an exploratory data
analysis step. PCoA is similar to Principal Components Analysis (PCA) but differs as it can be
applied to any form of distance matrix and it is not just limited to Euclidean distance and
can better handle the sparsity of microbiome data, which would skew the covariance in PCA.
In microbiome analysis, PCoA is used to visualise the distances between these samples in a

lower dimensional space while preserving their distance relationships.
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The distance matrices and PCoA were performed using Scikit-bio (http://scikit-bio.org/,

version 0.5.7) functions skbio.diversity.beta_diversity and skbio.stats.ordination.pcoa.

2.2.3 Defining disease activity

In Crohn's disease, the Harvey-Bradshaw Index (HBI) is used to determine disease activity
(Harvey and Bradshaw, 1980). The HBI was created in 1980 to aid the systematic collection of
clinical data and consists of 5 parameters which are scored. Remission is defined by an HBI

score < 5, mild activity of 5-7, moderate activity of 8-16 and severe activity >16.

Alternatively, in ulcerative colitis, the Simple Clinical Colitis Activity Index (SCCAI) was
developed in 1998 in an attempt to simplify the current scoring index to help evaluate levels
of exacerbation of colitis (Walmsley et al., 1998). It consists of 6 parameters whose sum is
defined as the score. The exact cut-offs for activity are less well defined as in HBI. When
defining remission, an SCCAI score < 2.5 is seen as being in remission or mild activity. While

a score >= 2.5 is seen as active.

The last disease activity indicator is applicable to both UC and CD. Faecal Calprotectin is an
inflammatory marker, which like the scoring indexes above, is a non-invasive method of
assessing disease activity in IBD. For example, a patient with asymptomatic IBD with a high
calprotectin level has an 80% chance of clinical relapse in the next 6 months. On the other
hand, a patient with a low calprotectin level has a ~20% chance of experiencing a clinical
relapse (Pavlidis et al., 2016; Smith and Gaya, 2012). The exact cutoff value for the distinction
between high and low calprotectin levels in this context is debated. Most studies suggest a
cutoff between remission and active disease being 250 pg/mg, though studies have
suggested somewhat lower cutoff points (Pavlidis et al., 2016; Smith and Gaya, 2012). For this
study, I have used cutoffs for SCCAI, HBI and Fecal Calprotectin as defined in Table 2.
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Table 2.2. Breakdown of the cutoffs for disease activity. Remission was defined within UC

(SCCAI) and CD (HBI), respectively. Then, the assessment of intestinal inflammation for

both UC and CD via Fecal Calprotectin was performed.

Activity Index/Marker Remission Score Active Score
SCCAI <25 >=2.5

HBI <5 >=5

Faecal Calprotectin <250 ug/mg >250 pg/mg

2.2.4 Differential abundance analysis

2.2.4.1 Analysis of compositions of microbiome

Analysis of compositions of microbiome (ANCOM) method performs differential abundance

from microbiome data (Mandal et al., 2015; Li, Shen and Li, 2021). This is done by calculating

pairwise log ratios between all features and performing a significance test to determine if

there is a significant difference in feature ratios with respect to the variable of interest

(Mandal et al., 2015).

ANCOM relies on two assumptions:

1. The mean log absolute abundance of 2 taxa is not different within the ecosystem

(dataset).

2. The mean log absolute abundance of all taxa in the ecosystem (dataset) does not

differ by the same amount between the two study groups.

In an experiment with only two treatments, this tests the following hypothesis for feature i,

0 5
H :E log(?) =E log(?) ,

(1) (@]
againstH_: E [log(ui—]))] * E[log(%)}.
K, W

(Equation.2.4)
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1) 2)

where llg is the mean abundance for i-th feature in the first group, uf is the mean

abundance for feature i in the second group and i' is the abundance of every feature that is

not i, e.g. i # i' (Mandal et al., 2015; Li, Shen and Li, 2021).

Using the hypotheses described in Equation 2.4, the test can then be formulated using a

standard ANOVA model:

r(g)

ij _ @ @

109( @ ) =, t Bii' + %xjkﬁii'k + Eii'j '
i'j

(Equation.2.5.)

Where r is the relative abundances of the i-th taxon and j-th samples, i’ is the reference

taxon i' # 1,2, ., m. And g = 1,2, ..,G. is the number of study groups. o, is the overall

9)

. B . . .
common mean and B gives the effect of the g-th group. Finally, €, 1san i.i.d normal

distribution used within standard ANOVA, eiﬁ’f] ) ~ N ORMAL(O, Gizi‘)’ where o is the variance.

Due to the log-ratio approach taken by this method, it cannot handle zero counts as input,
as the logarithm of zero cannot be computed. In this case, zero counts are handled by the

imputation of a pseudocount calculated via multiplicative replacement. In multiplicative

replacement, zero counts are replaced with a small positive § (§ = # where N is the

number of components in the sample) whilst still preserving that the total compositions sum

to 1 (Mandal et al., 2015).

Taxa were identified as differentially abundant if they had a p-value < 0.05 after the
Benjamini-Hochberg multiple correction procedure. The topmost differentially abundant
taxa were then plotted against each other as boxplots, with their abundances being CLR

(Eq.2.1) transformed with a pseudocount imputed by multiplicative replacement as defined

above. This was performed using Scikit-bio (http://scikit-bio.org/, version 0.5.7)

skbio.stats.composition.ancom.

2.2.4.2 Distance-based redundancy analysis

Distance-based redundancy analysis (dbRDA) is another ordination method similar to PCoA.
dbRDA is an extension of redundancy analysis, a constrained analysis method which aims to

explore the feature space and determine the feature(s) which are the most separate class
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labels. The main difference between the two methods is dbRDA’s ability to utilise
non-Euclidean dissimilarity indices, such as Bray-Curtis distance. Importantly, dbRDA
makes the assumption that the dependent variables respond in a linear nature, and thus

non-linear relationships cannot be found using this method.

Briefly, given the response variable, Y a multiple linear regression is run on all variables in
the observation matrix X. Each variable within the set Y is regressed against all variables in

the set X, leading to the computed fitted values. This can be defined as a matrix equation

N

Y = X[X'X]_'X'Y
(Equation.2.6.)

where Y is the fitted values from the multiple regressions, X is the matrix of observations, Y
is the response variable and X' is the transformed matrix of X. After this, a PCoA is
performed on these fitted values, resulting in the extraction of eigenvalues and

eigenvectors. This process yields two distinct ordinations: 1) denoted as YU, is derived from

response variables Y and 2) YU is derived from the explanatory variables X. Additionally, a
separate PCoA ordination can be conducted on the matrix of residuals, again providing

eigenvalues and eigenvectors (Numerical Ecology, 2012).

To determine which species differ the most between UC, CD and non-IBD patients, dbRDA
was run with Bray-Curtis dissimilarities on the relative abundances of the microbiome
samples. A permutational test (PERMANOVA) is then applied to the results of dbRDA. This
results in coefficients, which can then be used to determine how much each species differs
between samples. The coefficients are then visualised using a bar plot, which represents the

weighting of how much each species differs between samples.

Counts data for each species was loaded into a SummarizedExperiment (version 1.28.0)
object and then passed to mia (version 1.6.0) to transform the data into relative abundances.
Vegan (version 2.6.4) was used to perform dbRDA through the dbrda () function. Finally, the
resulting ordination from dbRDA was used to perform a permutation test from the Vegan

(version 2.6.4) package function anova.cca() with the number of permutations set to 9999.
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2.2.4.4 Mixed effects model

Finally, the same mixed effects model as the original authors (Lloyd-Price et al., 2019) of the
dataset was implemented. The model was implemented in R using nlme (Pinheiro and Bates,
2000; Pinheiro et al., 2023) and the code was extracted from the author’s original code
repository and run in isolation of the author’s workflow. The implementation and original
code for performing differential abundance analysis can be found in this repository:

https: //bitbucket.org /biobakeryv/hmp2 analysis/src/master/differential abundance/src

/core DA functions.r.

A linear mixed model can be represented as:
Yy = f(d)l.j, Vi )+ €
i=1.,Mj=1 ., n

L

(Equation.2.7.)

where M is the number of groups, n_is the number of observations for the group, and f is

function of parameter vector c|>ij and Vi q)l,j is a linear mixed-effects model

q)ij = AUB + Bijbi where $ is a vector of mixed-effects and bl_ is the random effects associated

with group i. The final term €; is the random variable describing additive noise (Pinheiro and

Bates, 2000).

For completeness, prior to fitting the model all data was arcsine square-root transformation
and features with no variance or with >90% zeros were removed before fitting linear
models. These steps were taken to reduce the effects of zero inflation caused by the sparsity

of microbiome data. The formula and design of the mixed effects model can be seen below:

feature~ (intercept) + diagnosis + antibiotic + age + (1|site) + (1|subject)
(Equation.2.8)
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2.3 Results

2.3.1 Exploratory Data Analysis

2.3.1.1 Temporal Component

After processing the data using the pipeline described in section 2.2.1, the data was then
mapped to its metadata. In order to assess the quality of the metadata on a patient-level, a
patient report was generated for every patient. Figure 2.2 shows an example of this report.
The reports are aligned by the time along the axis. The report contains (a) the most
abundant species, (b) the most abundant metagenes expressed, (c) the faecal calprotectin
score, (d) the disease activity score (either SCCAI for UC or HBI for CD), (e) electronic health
care records as a boolean value, and (f) results of the diet survey for this patient over time.

All patient reports can be found in the supplementary materials.

The reports provide a visual tool to determine how consistent the sampling was during the
course of the study conducted by Lloyd-Price et al. Prior to any further analysis, visually, the
time component of the data across all patients is not stable or irregularly sampled. This
results in difficulty in applying any sort of time-series analysis to the data. Time-series data
requires regularly sampled data and often has a trend, seasonality and other
time-dependent structures. As this dataset had too many missing and irregularly spaced

time points, time-series analysis was not suitable for this data.

Figure 2.2 (Next page) An example of the summarised patient reports after preprocessing
and metadata extraction. The report is fixed on the x-axis with respect to time, and the
y-axis presents the extracted data. From top to bottom, this report shows (a) the most
abundant species, (b) the most abundant metagenes expressed, (c) the faecal calprotectin
score, (d) the disease activity score (either SCCAI for UC or HBI for CD), (e) electronic
health care records as a boolean value, and (f) results of the diet survey for this patient over

time. This report was produced for each patient individually.
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2.3.1.2 Clinical metadata

The unstructured metadata was cleaned manually to ensure overlapping fields were
concatenated together. The manual curation focused on metadata that would be
informative about the disease activity of the patient. These fields included therapies (oral
corticosteroids, chemotherapy, antibiotics and immunomodulators), general information
(sex, age, cohort and location) and electronic healthcare records information (diagnosis
and hospitalisation). These fields were chosen in particular as they were the most
regularly sampled metadata during the study. This was then mapped to the quality control
metrics extracted from the output files of each sample (pipeline shown in Methods

section 2.2.1).

A correlation matrix was calculated for each sample’s metadata for all IBD samples that
passed quality control to assess the correlation between the metadata features.
Spearman's correlation between the clinical metadata showed a high correlation
coefficient between the clinical data and the quality control metrics. More specifically,
the most correlated features were between the disease activity metrics (SCCAI, HBI and
faecal calprotectin) and the number of human or bacterial reads extracted from the

sample (Figure 2.3).
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samples. Pearson correlation between the disease activity metrics and quality control

metrics. HBI and SCCAI have no values as they are disease-specific. Only samples with full

rank (i.e. no missing values) were used to ensure a fair comparison between variables.

To further investigate the relationship between disease activity metrics and read counts,

linear regression and Pearson correlation coefficient were performed to observe the

trend between data points. A histogram and univariate KDE curves were also plotted to

assess the distribution of the data. Figure 2.4 shows the correlation between the number

of human reads detected in the sample and the disease activity for both UC and CD. This

demonstrates a positive correlation between higher levels of disease activity.

Interestingly, a higher correlation between UC and SCCAI (r=0.467) and the number of

human reads is observed when compared to CD and HBI (r=0.248). Faecal calprotectin is
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similarly positively correlated for both UC (r=0.589) and CD (r=0.447). The data is skewed
in its distribution, however, with the majority of the human reads nearing zero. It should
also be noted that the sampling rate of faecal calprotectin was lower than that of disease
activity, hence the difference in the number of points between the plots. The opposite
case was true when applying the same analysis to the number of bacterial reads extracted
from the sample, which showed a more negative correlation (Figure 2.5). This
phenomenon makes sense both quantitatively and biologically as during points of
increased disease activity, the amount of blood in the stool would increase, particularly
for UC patients, as the disease tends to be situated closer to the anus. The disease activity
metrics are derived from patient-driven surveys where one of the questions is related to

whether the patient experienced blood in their stool.
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Figure 2.4. Regression analysis between the number of human reads extracted from the

faecal samples and paired disease activity metric from IBD patients. (A) Disease activity

in UC (SCCAI) against the number of reads mapped to the human genome in the sample. (B)

UC samples Fecal Calprotectin scores against the number of reads mapped to the human

genome. (C) Disease activity in CD (HBI) against the number of reads mapped to the human

genome. (D) CD samples Fecal Calprotectin scores against the number of reads mapped to

the human genome.
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2.3.2. Ordination

All samples that passed quality control were visualised using PCoA ordination of beta
diversity calculated by Bray Curtis dissimilarity. There was no clear separation between the
diagnosis, locations or sex of the individual. Thus, this demonstrates that the data cannot be

separated by ordination alone.

Most of the variation captured from the PCoA was either from Bacteroidetes or Firmicutes
phylum. Alpha diversity between the groups showed a decrease in diversity in both UC and
CD compared to non-IBD patients (Kruskal-Wallis test p=7.888e-07 Stat=2.439e+01;
p=8.305e-15 Stat=6.026e+01 respectively) (Figure 2.6). This further confirms the
microbiome's increased instability in IBD patients compared to non-IBD patients. There was
no statistically significant difference between UC and CD patients (p=2.65le-01,
stat=1.242e+00).

The effects of repeated measures, in this instance the longitudinal nature of the study, can
clearly be seen on the PCoA plot in Figure 2.7. The variation between subjects is greater than
the variation between time points, resulting in the localisation of samples. The location of
the patient cohort and the sex of the patient seems to show a reasonable mixing; however, a

better mixing could be achieved through batch effect correction.
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Figure 2.6. Assessment of alpha and beta diversity from all metagenomics samples. (A)
PCoA ordination of beta diversity calculated by Bray Curtis dissimilarity. (B) Comparison of
the alpha diversity, Gini-Simpson, between UC, CD and Controls. The Kruskal-Wallis test
was performed between samples. Alpha diversity was not significant between UC vs CD
(p=2.651e-01, stat=1.242e+00), but was significant between UC vs controls (p=7.888e-07
Stat=2.439e+01), and CD vs Controls (p=8.305e-15 Stat=6.026e+01). (C, D, E) Individual
ordinations of UC, CD and Controls. (ns: p <= 1.00e+00 ****: p <= 1.00e-04)

Clinical metadata was overlaid as well to determine at a high level if the samples clustered
by their disease activity. SCCAI, HBI and faecal calprotectin levels for each patient. Note the
reduction in the number of samples due to the lower sampling rate of the data and the
removal of data points not relating to disease activity markers (i.e. non-IBD patients cannot

have SCCAI or HBI scores). There was no obvious clustering of the data by the disease

81



activity of the patients; however, a slight gradient of activity can be seen moving from the

bottom to the top of the PCoA plots (Figure 2.7 D,E,F).

site_name
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Cedars-Sinai

sex
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Figure 2.7. Ordination overlaid with metadata. To investigate potential batch effects and
the effect of repeated measures the metadata was overlaid onto the PCoA projection. (A)
Shows the cohort sites. (B) To investigate the effect of time/repeated measures. (C)
Ordination of the sex of the patient. (D) SCCAI as a gradient overlayed onto the ordination
on UC samples. (E) HBI as a gradient overlayed onto the ordination on CD samples. (F)

Faecal calprotectin measurements as a gradient.

To extend the findings of the ordination analysis the composition and frequency of species
in each diagnosis group were summarised. Figure 2.8 shows the average composition of
each stacked bar plot of the composition at phylum, genus and species-level. This again
further confirmed that Bacteroidetes or Firmicutes phylum were the largest taxa
represented in the patients' microbiome. On average Bacteroides vulgatus and Bacteroides

uniformis were the most abundant species, with a larger abundance level in both UC and CD
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when compared to the non-IBD cohort. However, across the entire cohort, inclusive of IBD

and healthy controls, the most abundant microbial species were Subdoligranulum

unclassified, Faecalibacterium prausnitzii, Ruminococcus torques, Bacteroides vulgatus, and

Bacteroides uniformis (Supplementary Fig 2.1). Conversely, Faecalibacterium prausnitzii and

Prevotella copri are more abundant in non-IBD patients. The histogram of the shared species

within the diagnosis group shows that the majority of the species are shared across all

samples seen from the skew to the left in the histogram.
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Figure 2.8. Compositional analysis between each diagnosis. The mean relative abundance

across conditions at Phylum, Genus and Species levels respectively. The topmost

abundance taxa were selected and the remainder were grouped into the ‘Other’ category.

Histograms representing the frequency of shared species within the diagnosis. The most

frequently observed species

between diagnoses.

(leftmost bin) and rarest (rightmost bin) in each species

83



2.2.3 Differential abundance analysis between non-IBD and IBD
patients

To get a baseline of what existing methods identified as biomarkers, three commonly used
methodologies for biomarker identification were implemented. Each method's top markers
were extracted and then collected together to assess the overlap between each method.
Depending on the algorithm used, the resulting data is presented in a different way. For
ANCOM the data is presented as the centre-log ratio of the abundance after the top 10
features are extracted from the ranking for plotting. For dbRDA, the top 20 absolute highest
coefficients are extracted and plotted on a bar plot with the vector value representing the

weighting of the coefficient.

For ANCOM UC vs non-IBD found a total of 18 differentially abundant taxa which rejected
the null hypothesis (Figure 2.9.). Of which Alistipes genus is found to be higher in the
non-IBD cohort with both Alistipes putredinis, Alistipes shahii and Alistipes finegoldii being
found in the top ten (Figure 2.9.). Odoribacter splanchnicus Only one Bacteroides species

was found in the top 10 differential abundant species (Figure 2.9.).

CD vs non-IBD obtained the greatest number of differentially abundant taxa between the
three analyses. In total 73 species were able to reject the null hypothesis. Again Alistipes
putredinis was found to be the most differentially abundant species. In CD, however,
Bacteroides fragilis, Clostridium bolteae, Flavonifractor plautii, and Ruminococcus gnavus
were all significantly more abundant compared to non-IBD controls. Finally, when looking
between the two IBD conditions, ANCOM identified 13 species as differentially abundant.
Bacteroides and Roseburia genus made up the majority of the 13 species, with Odoribacter

splanchnicus again being the second most abundant species (Figure 2.9.).

In the non-IBD controls, Prevotella copri was noted as the species to observe the most shifts
over the study but only dbRDA identified it (Figure 2.10). dbRDA also showed
Faecalibacterium prausnitzii and Roseburia genera being more influential for non-IBD when
compared to CD (Figure 2.11.). Interestingly, when comparing UC and CD dbRDA suggested
Alistipes putredinis as more relevant to CD suggesting it has both a protective and harmful
effect. When compared with AMCON and the mixed effects model, dbRDA ranked
Escherichia coli much higher up in both CD and UC.
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Figure 2.9.

condition

S.

Comparison of differential abundance analysis using ANCOM between

(A) Top 10 (of 18) most differentially abundant taxa between UC and Control

group. (B) Top 10 (of 73) most differentially abundant taxa between CD and Control group.

(C) Top 10 (of 13) most differentially abundant taxa between UC and CD.
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Figure 2.10. (Previous page) Comparison of species abundance between conditions using

dbRDA. (A) The top most differing abundance of species between non-IBD and UC patients.

(B) The top most differing abundance of species between non-IBD and CD patients. (C) The

top most differing abundance of species between CD and UC patients.

Finally, after multiple testing, the mixed effect model showed no differential abundant taxa.

There were no values with a q-value < 0.286. This demonstrates the limitations of the other

models and the importance of accounting for the environmental and longitudinal data

effects of the data. Aft

er comparing the non-IBD to CD and non-IBD to UC, the top most

differential abundant but not statically significant taxa are shown in Figure 2.11.
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Figure 2.11. Comparison of species abundance between conditions using mixed effects

models. (A) The top differing abundance of species between non-IBD and UC patients. (B)

The top differing abundance of species between non-IBD and CD patients.
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2.4 Discussion

The human gut microbiome plays a vital role in the pathogenesis and prognosis of IBD
patients. Despite this knowledge and other studies investigating its role, no global IBD
microbiome signature has been defined. The lack of a clear IBD microbiome signature is
consistent across all patients and, more broadly, across multiple patient cohorts and
locations. Studies have shown how each individual presents with a relatively unique
microbial fingerprint adding to the complexity of obtaining biomarkers or prognostic
indicators from IBD samples (Ley et al., 2006; Clemente et al., 2012; Lloyd-Price et al., 2019).
This demonstrates the complexity of microbiome data and the effect the environment and
the host can have on the microbial communities in the gut. That being said, some bacterial

communities are linked or correlated with IBD microbiome.

The temporal component of the microbiome is an added complexity, particularly for
computational modelling. It has been observed that the microbiome is present with both
autoregressive and non-autoregressive factors (Gibbons et al., 2017; Integrative HMP (iHMP)
Research Network Consortium, 2014; Liu, 2023). The combination of autoregressive and
non-autoregressive time series makes extracting prognostic indicators even more
challenging. When the data you are presented with displays such a large amount of
complexity it suggests a more complex model might be required. However, in this case, and
many other clinical studies the most powerful techniques struggle to leverage the
inconsistencies and overall lack of data. For example, two powerful machine learning models
for time series analysis are Rocket and Long short-term memory (LSTM) neural networks.
Rocket is a state-of-the-art linear algorithm that leverages the power of random
convolutional kernels to achieve fast and accurate time series classification (Dempster,
Petitjean and Webb, 2020). Even though Rocket is designed for small datasets with irregular
time points, missing time points and short time series mean it is unsuitable for this data set.
The other end of the spectrum is the non-linear deep architecture LSTM neural network
(Hochreiter and Schmidhuber, 1997). These models, however, require a hundreds of times

orders of magnitude larger dataset than is currently available.
Another clear challenge with longitudinal studies is the collection of patient metadata.

Often these meta data are missing from studies, either because they require additional steps

to obtain the data or because of ethical and privacy reasons. Even with a large-scale study
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such as that conducted by Llyod-Price et al without this information, it is difficult to extract
biological meaning. For example, when comparing the meta data of the IBD patients a clear
association between the UC disease activity metric of SCCAI and faecal calprotectin was
observed (r=0.32). Interestingly, this was not the case for HBI (r=-0.012) even though it had
been observed previously. Moreover, the clear correlation between the disease activity
metric and the number of human reads found in a stool sample does not mean a reduction
in microbiome diversity but instead with an increase in disease activity a patient is more
likely to experience complications resulting in blood or tissue being passed with the faecal

matter.

A key area of work research in microbiology is ordination. Multiple studies have applied
numerous ordination methods to try and cluster patients into groups. In my analysis, using
PCoA there were no naturally forming clusters. This suggests the importance of non-linear
dimensionality reduction methods for the projection and clustering of microbiome data.
Two methods currently being used extensively in single-cell RNA-seq analysis are
t-distributed stochastic neighbour embedding (t-SNE) (van der Maaten and Hinton, 2008)
and Uniform Manifold Approximation and Projection (UMAP) (Mclnnes et al., 2018). These
have both been hypothesised as good alternatives to linear models such as PCoA (Armstrong
et al., 2021, 2022). However, they are both less suited to compositional data and are difficult
to interpret without additional models (i.e. differential expression/abundance analysis

between clusters).

After assessing the ordination and the stability of the microbiome, the next step is to
determine what is causing those differences. There are a large number of totals to perform
differential abundance or biomarker identification. By testing four commonly used but
methodologically very different tools, the aim was to identify areas which could be improved
on. The models identified bacterial species that were implicated in IBD already. Other
species have been implicated in IBD more recently like, such as Odoribacter splanchnicus
(Lima et al., 2022) and Clostridium symbiosum (He et al., 2017; Hassouneh, Loftus and Yooseph,
2021), Faecalibacterium prausnitzii and Bacteroides vulgatus (Mills et al., 2022). Bacteroides
species were dominant across all methods but particularly with dbRDA. Methods such as
dbRDA were also able to identify microbial shifts in Prevotella copri occurring in the healthy
condition which the other methods missed which again has been implicated by other

studies (Bajer et al., 2017; Lloyd-Price et al., 2019). All methods pointed towards the role of
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Alistipes genera in the healthy condition which has been described as having protective and
harmful properties across multiple inflammatory diseases (Moschen et al., 2016; Zuo et al.,
2019; Bangsgaard Bendtsen et al., 2012; Parker et al., 2020). Finally, both the mixed effects
model and ANCOM strongly suggested the role of Clostridium bolteae between non-1BD and
CD patients. More recently, studies have shown the metacommunities in Crohn’s disease in
which Clostridium bolteae cluster with other harmful bacterial species like Escherichia coli,

Klebsiella pneumoniae and Streptococcus salivarius (He et al., 2017)

This chapter has identified multiple areas of research to address. From a technical point of
view, the longitudinal nature of the data needs to be accounted for and is an area where
models such as the mixed effects model are most performant. However, these models work
best when you have the meta data to build into the model's covariates and interaction
terms. Most studies lack this fine metadata detailing and a constraint method like dbRDA
could help discover the difference between the phenotypes. AMCON is a popular tool for
differential abundance analysis, which shows in its citation numbers, but also has been
found to be sensitive while simultaneously controlling the FDR effectively. However,
benchmarking studies have shown that AMCON struggles when there are less than 20
samples in each group, meaning larger study sizes are most appropriate for AMCON (Weiss

et al.,, 2017).

In the next chapter, I will address some of these issues by developing a model to fill this gap
and the lack of longitudinal microbiome tools. This model should be able to be used either
to detect shifts in the microbiome composition between phenotypes, as a feature selection

step or in an unsupervised manner to explore the dynamics of the microbiome composition.
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Chapter 3: Exploring the temporal
dynamics of the microbiome in

inflammatory bowel disease

3.1 Introduction

The traditional approaches to microbiome analysis begin to fall apart with the introduction
of a temporal component. The precise nature of the temporal dynamics of the microbiome
remains unclear (Li, Shen and Li, 2021; Glassner, Abraham and Quigley, 2020). This is
particularly the case for the microbiome composition during dysbiosis, which results in an
unbalanced or abnormal microbiome, for example, during times of an increase in disease

activity.

A typical time series can be defined as a series of data points obtained at successive time
points with equal intervals between them. The aim of a time series analysis is to measure the
overall change in the data points over time. Most publicly available data from microbiome
studies are not time series data and are instead longitudinal data. Though similar to time
series data, longitudinal data tends to have fewer time points and is normally taken at
different intervals. The advantage of longitudinal data, over particularly cross-sectional
data, is that the increased sampling allows for distinction between an actual signal and noise
within an individual. Thus, longitudinal studies are more precise and informative as they
help account for any sampling or technical errors which are difficult to detect in
cross-sectional analysis. More specifically, in the case of longitudinal microbiome analysis,

there still remains a key area of research (Kodikara, Ellul and Lé Cao, 2022):

1. Differential abundance over time (e.g. the difference between external/clinical
factors)
2. Clustering of microorganisms evolving concomitantly across time

3. Identification of temporal relationships between microorganisms
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Although whole genome sequencing (WGS) from a faecal sample has the advantage of being
non-invasive, it also has limitations with respect to assessing the microbiome composition
in patients (Hildebrand, 2021). Multiple studies have demonstrated that microbial
communities in the gut are spatially organised (Sheth et al., 2019; Duncan, Carey-Ewend and
Vaishnava, 2021; Mark Welch et al., 2017). This means that a species of bacteria is more likely
to be located next to the same species than it is a different species. It is thought that this
disruption in the spatial organisation of the gut microbiome is a contributing factor to
disease pathogenesis. Furthermore, this means that detecting the composition from a faecal
sample can be challenging in that you are only sub-sampling the population and therefore,

you may need to account for unobserved species of bacteria.

To address these issues outlined above many models have been developed to take into
account covariates such as age, location, sex and even correlation between species which
are known to be co-expressed (Martin, Witten and Willis, 2020). The limitations of these
approaches are that they rely on having a wealth of high-quality metadata and that the
assumptions you are making about the biological prior are correct. These models are mostly
discriminative, meaning that they are trying to separate or predict the changes based on the

observed data to determine decision boundaries which best separate the data.

An alternative approach is generative models. A generative model differs from a
discriminative model as it attempts to model how data is placed in space rather than draw
decision boundaries between the data in this space. Instead, it models P(X |Y = y), the
conditional probability of observing X given the target variable Y. Then by sampling from
this distribution of the input and output data, it creates new synthetic data in the input
space. Loosely, a generative model can be placed in three classes; autoregressive models,

generative adversarial models, and latent variable models (Jebara, 2004).

3.1.1 Aims

In this chapter, in collaboration with my industrial partner, BenevolentAl, I explore the
dynamics of the microbiome by performing exploratory data analysis on the longitudinal

metagenomic dataset. I then develop a Bayesian generative model to infer the dispersion on
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a patient-level, species-level and then a pooled model which accounts for the patient's

individual microbiome over time.

This chapter's aims were as follows:
e Develop a Bayesian model to infer the dispersion of an individual's microbiome
between UC, CD and healthy controls
e Identify similarities or differences in microbial dispersion within patients with
increased disease activity compared with those with lower disease activity
e Identify microbiome difference between patients with flare compared to patients

who remain in remission over time
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3.2 Methods

3.2.1 Bayesian Models

In this section I explore intra- and inter-patient microbiome variability over time. To
achieve this two models are developed. Precision model (PM) which focuses on inter-patient
variability and Species Precision Model (SPM) which focuses on modelling the individual
taxa from each patient over time. The model is designed for analysis of microbiome count
data and is modelled from a beta-binomial distribution. The model includes patient-specific
baselines and scaling factors, allowing for flexibility in how different taxa are represented

across different patients.

3.2.1.1 Model definition for inferring species dispersion per patient

The intra-patient variability was explored by exploring the dispersion of their microbiome
composition over all their sampling points. To account for the steady-state or
patient-specific baseline the parameter p was generated for each patient. p represents the
underlying baseline probability for each patient and is calculated by the mean composition
of the patient over all time points. The model then infers the parameter s (dispersion) for all
the species in each sample within each patient (e.g. one value for s for each sample). This

was modelled over a beta-binomial distribution.

Let X € R"*” be a count matrix where N € N is the number of samples for n = 1,.., N, and

D € N is the number of taxa for d = 1,.., D. pis a vector that represents a patient baseline as

the mean proportion across samples such that p € R”.

To calculate the patient-specific baseline a mask was created for each of the patient’s
repeated measures. Let X € R"™ be a matrix which contains observations relating to

patient k. For each patient k, k=1,.... K we have a set of matrices

{X k}K , (Equation.3.1)

where n,_are observations relating to patient k,
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Define H(Xk)= [“((xk)1)’ u((xk)z), u((xk)D)] to be a vector of column means. The i-th

element of u(xk) as

n
k
u((xk)i) =Y X, (Equation.3.3)
j=1
For all X , we have a set of column means for each patient k = 1,.., K,

{u(X k)}:=1 (Equation.3.4)

t to be an integer vector of total counts, t € ND, where

D
t =Y X ,forn={1.,N} (Equation.3.5)
=1 "

s €R" is a vector of length N which is a sample-specific scaling factor. The transformation

factors « € R"*’ and B € R"*” for each samplen = 1,.,Nand taxad = 1,.,D,

a =S u, (Equation.3.6)

B ,=s -1 —=p). (Equation.3.7)

For each sample n = 1,.., N, the scaling factor s_follows a normal distribution defining the

prior as,

s ~NORMAL(0,10000). (Equation.3.8)
For each sample n = 1,.., N, the count data X follows a beta-binomial distribution,
X ~BETABINOMIAL(t , « , B ).  (Equation.3.9)

The simulation was done using Stan (https://mc-stan.org) and Markov chain Monte Carlo

(MCMC). Stan is a Turing-complete probabilistic programming language used for

performing statistical inference of Bayesian models. In particular, STAN solves MCMC using
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a variant of the Hamiltonian Monte Carlo (HMC) algorithm called the No-U-Trun sampler
(NUTS) (Hoffman and Gelman, 2014). The model was run for 2000 iterations with a warmup
(burnin) of 1000. A model was built per patient; therefore, each patient had their own

microbiome modelled. Once s had been inferred for each patient, the results were

inspected for each patient to determine if patients with an increased disease activity had a

higher level of dispersion in their microbiome signatures.

3.2.1.2 Model definition for inferring species dispersion

To extend the model defined in 3.2.1.1, a pooled model was then created. This time as well as
accounting for the patient’s steady-state and patient dispersion, we also inferred the species
dispersion. Again, this was modelled from a beta-binomial distribution, but this time the
parameter s (dispersion) infers a dispersion for each species rather than each sample given,
while still accounting for the patient’s baseline. The baseline for each patient was calculated

as in Equations 3.1-3.4.

Let X € R"™ be a count matrix where N € N is the number of samples for n = 1,.., N, and

D € N is the number of taxa for d = 1,.., D. pis a vector that represents a patient baseline as
the mean proportion across samples such that p € R”. t to be an integer vector of total

D
counts, t € N', where

D
t = El X,p forn=1.,N, (Equation.3.10)

K € N is the total number of patients . m is a sample map which is a vector of length N, such

that it indicates which sample belongs to which patient for k = 1,.., K. Define two matrices

o € RV and B € R"? for each sample n = 1,.., N and taxa d = 1,.., D where

O =S -u (Equation.3.11)

B.y=5, (1 - ) (Equation.3.12)

s €R” is a vector of length D which is a taxa-specific scaling factor. For each taxon d, s  is

assumed to follow a normal distribution defining the prior as,
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s ,~NORMAL(0, 1000). (Equation.3.13)

And for each sample n and taxon d, if woo> 0, then X . is assumed to follow a beta-binomial

nd

distribution:

X, ,~BETABINOMIAL(t, « ., B, ) (Equation.3.14)

Like with the previous model, the simulation was done using Stan (https://mc-stan.org),

which performed full Bayesian statistical inference with MCMC sampling, solved using the

HMC algorithm. The model was run for 2000 iterations with a warmup (burnin) of 1000.

Differing from the first model, we now extend the model to take account for each taxa’s
dispersion within that patient over the repeated measures. The parameter vector s in the
model plays a crucial role. It is a vector of length D (the number of taxa), with each element

s, representing a non-negative scale factor for each taxon d. The purpose of s is to modulate

the influence of the patient-specific baseline pu on the observed counts X. For each taxon d,

the element sd scales the baseline proportion, p ~ for the corresponding patient mapped by

n,d

m . This scaling results in the parameters « _and f__ which are then used as parameters for
the beta-binomial distribution of the observed count X . The interpretation of s, can be

seen as a measure of the dispersion or variability of each taxon across the samples, relative

to the baseline p. A higher value of s indicates greater variability or influence of taxon d in

the counts observed across different patients. The prior distribution for each sd, a normal
distribution with a mean of 0 and a large variance, allows for a wide range of values,
reflecting the potential for significant differences in the taxa's prevalence and variability
across the samples. This prior also implies a regularisation effect, preventing overfitting by

penalising large values of sd unless supported by the data.
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3.2.3 Benchmarking

To evaluate how well the model performed at identifying and extracting the most variable
species of bacteria in each disease or within the disease, the models above were compared
against a more standard approach. A typical approach would be to perform differential
abundance analysis on the data between the two subsets. In differential abundance, the raw
count data is normalised, and a statistical test is used to discover quantitative changes in
abundance levels between groups (Li, Shen and Li, 2021). In so, the idea is to uncover the
directionality of features within the data to identify up-regulated or down-regulated

features between conditions.
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3.3 Results

To evaluate the models described in 3.2.1 and probe the dispersion of the microbiome over
time in IBD patients, I used the largest publicly available longitudinal metagenomic study
available, created by Lloyd-Price et al. This patient cohort consists of 132 individuals who
were recruited as part of the Human Microbiome Project (HMP) (Human Microbiome
Project Consortium, 2012; Lloyd-Price et al., 2019). The patients were from four US hospitals
and comprised three paediatric and two adult cohorts. In total, the authors collected 1,785
stool samples along with various metadata, including disease activity metrics, diet, therapy,
disease age and more. For more information about the data and preprocessing steps, see

Chapter 2.

3.3.1 Inferring dispersion between active and inactive disease states

To explore how the microbiome varies at a patient-specific level in UC and CD, the first step
was to infer the dispersion of the complete patient microbiome with respect to that
patient's baseline microbiome composition. As the data is longitudinal and therefore doesn't
have the same properties of time series, by defining a patient-specific baseline, the model
can infer the changes over time within a patient. The model was run for n=30 UC and n=50

CD patients who passed the quality control. Only samples had a minimum total read count >

1e10°, a minimum feature count > 100, and a minimum prevalence of 10% of all samples.

Each model was fit with a prior normal distribution of 1000.0.

A trace plot displays the sampled values of a parameter (or parameters) over each iteration
of the MCMC simulation. After an initial "burn-in" period, where the chain might show
non-representative behaviour, the plot should ideally display a "fuzzy caterpillar" pattern.
This indicates that the chain is exploring the parameter space effectively without getting
stuck in any particular region. If the trace plot shows clear, systematic patterns or drifts, it's
a sign that the chain might not have converged. Figures 3.1 and Figure 3.2 show the mixing
of the patient s dispersion parameter for all species within that patient's microbiome for CD
and UC, respectively. Chains are considered healthy when they are well-mixed and
stationery. An unhealthy chain can be an indication of a poorly specified model. The mixings
shown in the trace plot suggest that the chains mixed well and look satisfactory for both CD

and UC models.
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Figure 3.1. Mixing of the patient-dispersion model for each species shows the

convergence of parameter S for each UC patient. Each plot represents an individual

patient's trace for their inferred microbiome dispersion. Each colour presents a single

chain which is a sample from that patient over the 52 weeks of the study.
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Figure 3.2. Mixing of the patient-dispersion model for each species shows the
convergence of parameter S for each CD patient. Each plot represents an individual
patient's trace for their inferred microbiome dispersion. Each colour presents a single

chain which is a sample from that patient over the 52 weeks of the study.
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To interpret the model results. The fitted model, input data, mapping file and metadata were
exported and held in compressed files. The patient baseline p, and the dispersion parameter
S was also extracted from the model. As each model was built on an individual patient these

results were then mapped back to the original metadata using the mapping file.

When accounting for the patient's baseline composition, the model shows a decrease in
stability in the microbiome composition of UC patients who have a high level of disease
activity as defined by an SCCAI score < 2.5 (Figure 3.3. A and 3.3. B). Though a downward
trend was seen, it should be noted there were some outliers and crossovers between the
two distributions (Figure 3.3. A and 3.3. B). To check that the total read count and metadata
were not biassing the model’s results, disease activity metrics (Figure 3.3. C,D,E) and cohort
location (Figure 3.3 F), which were labelled on a plot of the dispersion parameter s plotted
against the total counts captured for each sample (Figure 6F). This shows that a good
mixture between the total reads and the cohort of each patient suggests the baseline

regression approach has not induced further biases in the model.

The same investigation was conducted on CD patients, and again a decrease in
compositional stability was observed (Figure 3.4. A and 3.4. B). Interestingly, the difference
between patients with inactive or active disease was not as striking as seen in UC patients.
Again the model's output dispersion parameter s is plotted against the total counts captured
for each sample annotated with the disease activity metrics and sample cohort location.

This again did not suggest any clear bias towards higher or lower read counts.
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Figure 3.3. Patient dispersion compared to disease activity in UC patients. Aggregated

models for each patient sample microbiome dispersion accounting for the patient’s

baseline composition. (A) The log dispersion (s) against the thresholded SCCAI score,

inactive < 2.5 and active >= 2.5. (B) The log dispersion (s) against the SCCAI for each

sample’s score. (C, D, E, F) The log dispersion (s) against the sum of the total abundance

coloured by the SCCAI, faecal calprotectin, disease activity and cohort location,

respectively.
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Figure 3.4. Patient dispersion compared to disease activity in CD patients. Aggregated

models for each patient sample microbiome dispersion accounting for the patient’s

baseline composition. (A) The log dispersion (s) against the thresholded HBI score, inactive

< 5 and active >= 5. (B) The log dispersion (s) against the HBI for each sample’s score. (C, D,

E, F) The log dispersion (s) against the sum of the total abundance coloured by the HBI,

faecal calprotectin, disease activity and cohort location, respectively.
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3.3.2 Inferring species dispersion between UC, CD and healthy
controls

Differing from the patient dispersion model above, where the entire patient microbiome was
accounted for, the model was then extended to account for features (species) making up the
microbiome composition. Furthermore, rather than modelling the patient samples
individually, this model was pooled across all the patients before the data was passed to the
model. This model was termed the Species Precision Model (SPM) as it was able to capture

both the dispersion between groups and also give feature-level information. The same basic

QC steps were taken. Samples had to meet the following criteria; (1) total reads > 1x10°
reads, (2) had at least 3-time points (i.e. n samples > 3), (3) features with absolute zero

abundance were removed, and (4) features (species) present in at least 10% of the cohort.

To compare the species-level dispersion across conditions, the metagenomic data for UC,
CD and healthy controls were all pooled together. A model for each condition was built
accounting for the patient's baseline to combat the inter- and intra-patient biases. Across
all conditions, Bacteroides and Roseburia genus were very dynamic. Interestingly, when
looking into the individual abundance for each species within these genera, groups of
patients who saw the shifts in one species would not see the shift in other species. This
shows the ecosystem within the microbiome and demonstrates the model can determine

patient-specific changes using the baseline regression approach.

3.3.2.1 Species dispersion in ulcerative colitis patients

In UC, the Bacteroides genus was highly unstable across all patients. Bacteroides have been
shown to be very transcriptionally active at the mucosal surfaces, pointing to a functional
potential in a dysbiotic microbiome (Rehman et al., 2010). The model highlighted Bacteroides
fragilis as having the largest dispersion across all patients. Bacteroides fragilis is a common
bacteria found in the human colon and has been reported to play a role in disease
development and is one of the most common causes of anaerobic infections in humans.
More specifically, in UC certain strains of Bacteroides fragilis are enterotoxigenic and,
therefore, produce toxins which result in vomiting, diarrhoea and an increase in
inflammation, contributing to disease development and progression in both mouse dextran

sodium sulphate (DSS) models and UC patients (Rabizadeh et al., 2007; Zamani et al., 2017).
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3.3.2.2 Species dispersion in Crohn’s disease

The species with the most dispersion in CD was Klebsiella pneumonia, which has been
connected to CD disease development (Rashid, Ebringer and Wilson, 2013; Rashid and
Ebringer, 2011; Garrett et al., 2010). Another species with a large amount of dispersion was
Escherichia coli, which is an invasive pathogen. Escherichia coli, under the correct
conditions, can colonise the intestinal mucosa by adhering to intestinal epithelial cells
(Palmela et al., 2018; Roda et al., 2020; Barnich and Darfeuille-Michaud, 2007). In particular,
this is the case for a pathotype called adherent-invasive Escherichia coli (Palmela et al., 2018).
Moreover, specifically in CD patients, neutrophil cells’ antimicrobial defence system is
defective and therefore their inflammatory responses to kill Escherichia coli are reduced

(Segal, 2018). (Figure 3.5 and Figure 3.6)

3.3.2.3 Species dispersion in healthy controls

Finally, as a control group, we also assessed the species-level dispersion of healthy controls
over time. In this group, Prevotella copri was exceptionally dynamic in the healthy controls.
This was also reported by the authors, who used a different approach to identify shifts

(Lloyd-Price et al., 2019) (Figure 3.5 and Figure 3.6).

Figure 3.5. (Next page) Microbial species with the largest dispersion (s) in each condition.
The microbes with the largest dispersion were UC (red), CD (orange) and controls (blue).
Dispersion is represented by the log inverse of s. This means the greater the value, the
more dispersion is captured by the model. The boxes represent the CI for each species
extracted from the model (the smaller the interval, the higher the confidence). The prior is
presented as the grey dashed lines, which are 5% and 95% percentiles; the green dashed is

the median; the red dashed line is the mean.

Figure 3.6. (Page after the next) Microbial species change compared to the baseline
across all patients (Ap). The top 40 microbes with the largest dispersion in UC (red),
CD (orange), and controls (blue) with the matching ap. The larger the absolute value of
Ap the more dispersion of that species in that sample comparatively to the baseline at

that time point.
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3.3.2 Inferring species dispersion between inactive IBD and active

IBD states

To investigate the role species-level dispersion plays in increased disease activity, the IBD
cohorts were split into two sub-groups within the disease; patients which remained in an
inactive disease state (in UC a SCCAI < 2.5 and CD HBI < 5) and patients who did experience
an increase in disease activity leading to an active disease state (UC a SCCAI > 2.5 and CD
HBI > 5) during the 52 weeks of the study. Comparatively to the previous study, I am now
looking within the disease and, therefore also interested in moderate disease activity. Le.
patients who are sitting around the threshold of SCCAI and HBI. There is a slight
terminology change from the notion outlined in the first experiments (3.3.1) where we
define sub-groups as inactive or active. As this model only considered and inferred the
entire microbiome composition into a single parameter. Therefore, the previous model (1)
cannot infer a species s for each patient but instead defines a global s for that patient, and

(2) it would not enable the visualisation of what happens leading up to the flare point.

When comparing active and inactive UC, there was some overlap between the top-ranked
species. In particular, Roseburia faecis, Bacteroides dorei and Bacteroides faecis (Figure 3.7
and Figure 3.8). These were also seen to be highly unstable when comparing disease and
healthy individuals as well. Again, Bacteroides vulgatus displays a large amount of dispersion
in both the active and inactive sstates in both CD and UC (Figure 3.7 and 3.8). Interestingly,
it was ranked the most unstable species in active CD (Figure 3.8). Moreover,
Faecalibacterium prausnitzii was consistently placed in the most dispersed species of
bacteria when comparing the active and inactive states of both UC and CD. It was
particularly high in CD. Other notable species include Escherichia coli, which was also seen

to be highly dispersed in active UC (Figure 3.7 and Figure 3.8).

Figure 3.7. (Next page) SPM model dispersion difference between active and inactive IBD.
Active and inactive UC defined by SCCAI being inactive < 2.5 and >= 2.5 being active. The
top species were selected based on their distributions being the furthest from the prior
(dashed lines) and ranked by their dispersion parameter S. Active disease is shown in

orange and inactive disease is shown in blue in both UC and CD.
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Figure 3.8. SPM model dispersion difference between active and inactive IBD. Active and
inactive CD defined by HBI being inactive < 5 and >= 5 being active. The top species were
selected based on their distributions being the furthest from the prior (dashed lines) and
ranked by their dispersion parameter S. Active disease is shown in orange and inactive

disease is shown in blue in both UC and CD.

To investigate the co-abundance of each of these identified species from the SPM model a
regression analysis between the disease activity and relative abundance was conducted.
This showed that when looking at just the relative abundance of these species against the
disease activity, it did not display any significant correlation. This further demonstrates the
importance of implementing a patient-specific baseline (Supplementary Figure 3.2-3.5).
Furthermore, the correlation between the set of unique species was plotted in a correlation

matrix to assess the co-abundance of these species.

The bacterial species were identified using the inferred dispersion parameter S produced by
the model defined in 3.2.1.2. The top 15 most unstable species were identified. Then the
inferred p (patient-specific baseline) was used and extracted from the model. The difference
from the patient baseline was calculated to the current sample at that time point and then

plotted over the time course of the study (Supplementary Figure 3.1).

3.4 Discussion

An important concept to note here is that dispersion (s) and diversity (e.g. alpha or beta
diversity) are two different notions of biological variation. Particularly, in this case,
dispersion focuses on the exploration of variable differences among individuals or later on,
between sub-diseases, while diversity is an exploration of numbers of distinct types found

within a sample (Gregorius and Kosman, 2017).

High levels of variability in the microbiome can be an indicator of perturbations caused by a
number of different factors. These could include individual variation, environmental
influences, and cross-talk between microbes and could be an indicator of change in health.
The SPM model tries to mitigate the individual variation by accounting for that patient's

baseline microbiome signature and then seeing if the other patients across the groups share
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the same dispersion of species. The species precision model showed when comparing
inactive CD and active CD that Faecalibacterium prausnitzi was one of the most dispersed
species. Faecalibacterium prausnitzi is an important regulator of intestinal inflammation
(Cao, Shen and Ran, 2014; Lopez-Siles et al., 2017; Sokol et al., 2008) and has been shown to
anti-inflammatory effects in cellular and TNBS colitis models. The authors demonstrated
this was partly because of metabolites that were secreted which have the ability to inhibit
NF-«B activation and IL-8 production (Sokol et al., 2008). Faecalibacterium prausnitzi has
been shown previously to be decreased in IBD patients when compared to healthy controls
(Sokol et al., 2008) and also in other longitudinal studies have been shown to correlate with
changes in faecal calprotectin which is used as marker of inflammation (Bjorkqvist et al.,
2019; Cao, Shen and Ran, 2014). The authors found an inverse correlation between
Faecalibacterium prausnitzi and faecal calprotectin levels. However, it is still unclear where

this decrease is casual or a reflection of the dysbiotic microbiome of CD patients.

When comparing inactive UC and active UC, the stand-out species was Escherichia coli.
Escherichia coli is a bacteria that normally lives within the human gut and can be completely
harmless, but a few strains of Escherichia coli are pathogenic. Pathogenic strains of
Escherichia coli have been linked to IBD, with Adherent invasive Escherichia coli in CD and
diffusely adherent Escherichia coli in UC (Kotlowski et al., 2007; Petersen et al., 2009). Singh
et al. have shown that during an inflammatory response in the gut, even the commensal
bacterial strains of Escherichia coli can contribute to disease (Singh et al., 2015), importantly
demonstrating the mechanism at which Escherichia coli could inhibit the host innate

immune response through the release of siderophore.

By comparing the remission and flaring patient dispersion and accounting for the patient’s
microbiome and, therefore, inter-patient variation, the models have identified microbes that
are seen to be more variable between disease states. Interestingly, there seems to be a
larger difference in the microbiome dispersion in UC inactive vs active than in CD inactive
vs active disease. However, one commonality when comparing disease states independently
was that the most dispersion was seen in Bacteroides genera. The Human Microbiome
Project found that in the healthy human gut Bacteroides were one of the abundant genera.
Since then, a number of studies have shown Bacteroides genera are reduced in IBD (Zhou
and Zhi, 2016; Conte et al., 2006). Interestingly, Bacteroides vulgatus has been implicated in
both the decrease (Zhou and Zhi, 2016) and increase (Mills et al., 2022) of disease severity,
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suggesting that these predominant bacterial species should be investigated further in the

case of IBD.

In UC, n=24 patients remained in remission throughout the course of the study, with n=6
patients experiencing a flare. Meanwhile, in CD, n=32 patients remained in remission
compared to n=18 patients who experienced a flare. This ratio of remission to flare is not
unsurprising, as flares in IBD patients with correct treatment can go months or even years
without experiencing any symptoms or only experiencing mild symptoms. The small sample
size of the cohort evaluated here means that further work would be required to validate the

findings and conduct a more robust overall evaluation of the model.

In most other longitudinal microbiome studies and statistical methods, each patient had a
shared baseline or start point. For example, Velten et al. developed MEFISTO to integrate
multi-modal longitudinal data with the aim to disentangle the sources of variation that
either change slowly compared with the covariate and those which are independent of the
covariate (Velten et al., 2022). In the application to the microbiome, they applied MEFISTO
to investigate how the infant microbiome develops after birth, exploring the effects of
delivery methods, diets and months after birth (Bokulich et al., 2016; Velten et al., 2022;
Martino et al., 2021). This meant that all individuals had the same starting point e.g. birth.
This means that you can use methods such as dynamic time warping (DTW) or imputation

based on similar time points.

The models developed in this chapter demonstrate a new method for analysing longitudinal
microbiome data with no respect to their starting point by regressing the individual
microbiome baseline. The reasoning behind this model design choice is that many complex
diseases progress in a patient-specific way, and most clinical studies are unable to have

individuals who all share a common starting point.

The model demonstrates that the shifts in the microbiome over time occur in a
patient-individual manner. However, the model is still vulnerable to noise and does not
account well for associations between bacterial species. This means further work is needed
to extract the underlying associations in the data. This could be achieved by the addition of
a hierarchical model to try to model the complexities of microbiome composition and

potentially the addition of zero inflation to handle structural zeros (Sankaran and Holmes,
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2019). These additional features have been implemented by others and therefore since the
development of this model, several Bayesian latent variable models have shown to be
performant compared to traditional microbiome methods to stratify patients (Sankaran and
Holmes, 2019). An example of this is the zero-inflated Latent Dirichlet Allocation model
(zinLDA) developed by Deek et al. The authors’ model is a flexible implementation of the
Latent Dirichlet Allocation model that accounted for both the sparsity of microbiome data,
while also allowing for zero-inflated observations in microbial counts data (Deek and Li,
2020). However, it should be noted that this model was developed for application to
cross-sectional data not longitudinal data and although zero inflation was not accounted for
within the SPM model, it was mitigated by the removal of microbial features whose

prevalence was below 10% across all samples.

In this chapter, I developed and demonstrated a method for exploring, detecting shifts, and
as a potential unsupervised feature selection step for downstream analysis or prediction.
Future work for this model could include incorporating statistical tests within the model to
determine the distributions that are most different from the prior. This could be done using
a Kolmogorov-Smirnov test for example. Furthermore, using the SPM model as a basic
hierarchical model could be implemented. In this model, each SPM pooled model would be
created as a sub-model just for the specific patient and these models would then be
integrated together to form the Hierarchical model. This in turn would capture the
individual's temporal trajectory better and create an overall more robust model, as Bayesian

hierarchical models posterior distribution is less sensitive to flexible hierarchical priors.
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Chapter 4: Predicting healthy and
unhealthy status in inflammatory bowel

disease from multi-omic microbiome data

4.1 Introduction

Dimensionality reduction is a powerful technique widely used in biomarker discovery to
identify and isolate relevant signals from complex biological datasets (Velliangiri,
Alagumuthukrishnan and Thankumar joseph, 2019; Velten et al., 2022; Hira and Gillies, 2015;
Bhadra et al, 2022; Argelaguet et al, 2018; Dong and Bacher, 2022). The goal of
dimensionality reduction is to reduce the input data set into a new lower dimensional space.
This aims to identify patterns, signals and trends which would not have been detectable
from the raw data. This is done by taking the high-dimensional input data and identifying a
representation of that data in a lower-dimensional space (Xu et al., 2018). Notably, this
lower-dimensional space remains faithful to the original input data and can be

reconstructed back into the original input.

Dimensionality reduction methods have the added advantage of enabling the visualisation of
the data to understand the structure of the datasets. Some other advantages of
dimensionality reduction include (this list was updated from (Xu et al., 2018; Velliangiri,

Alagumuthukrishnan and Thankumar joseph, 2019) :

e Asthe number of dimensions decreases, storage/memory requirements decrease.

e Reduces computational (time) complexity

e Removal of redundant, irrelevant, and noisy data from the original dataset.

e It can improve the quality of the original data (for example, denoising).

e It is challenging to visualise data in higher dimensions. So, reducing the dimension
may allow us to design and examine patterns more clearly.

e It simplifies the process of classification and also improves efficiency.
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However, dimensionality reduction also has limitations. Firstly, all dimensionality reduction
techniques result in some loss of information when the data is “squeezed” from its
high-dimensionality state to a low-dimensionality state. This means that when applying
these methods, one must balance the tradeoff between information loss and the improved
interpretability gained from dimensionality reduction (Xu et al., 2018; Armstrong et al.,
2022). Another known limitation of dimensionality reduction methods is the
misinterpretation of the projection and the potential display of structures that may not be
present in the original input data. Finally, as dimensionality reduction methods tend to be
unsupervised, it can be challenging to determine whether the embedding accurately
represents the original dataset (Velliangiri, Alagumuthukrishnan and Thankumar Joseph,
2019). This is particularly true when there is a lack of the original labelled data, and instead,

annotations are derived from clusters or communities found in the embeddings.

One of the most commonly used dimensionality reduction methods is principal component
analysis (PCA), which projects the data onto a lower-dimensional space while preserving as
much of the variance in the data as possible (Ma and Dai, 2011). PCA has been applied to
various biological data, including proteomics, genomics, and metabolomics, as either a
preprocessing step, quality control, an exploratory step or a feature extraction step (Ma and
Dai, 2011). Another popular method for dimensionality reduction is independent component
analysis (ICA), which seeks to identify and isolate independent signals in the data. ICA has
been applied to multiple different Omics datasets, including; metabolomics (Liu et al., 2016;
Krumsiek et al., 2012), metaproteomics (Sompairac et al., 2019), microarray (Engreitz et al.,

2010) and transcriptomics (Engreitz et al., 2010; Cantini et al., 2019).

4.1.1 Aims

In this chapter, in collaboration with my industrial partner BenevolentAl, we develop
machine learning (ML) methods for predicting disease activity of inflammatory bowel
disease patients (IBD) based on microbiome omics data (metagenomics, metaproteomics
and metabolomics data). Furthermore, this chapter will utilise both unsupervised and
supervised models together. The aim here is to use the unsupervised models to be two fold,
1) as a feature extraction step and 2) an exploratory analysis to find latents which describe

the biological signal of interest (in this case healthy vs unhealthy conditions). Then to
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evaluate the effectiveness of these discovered latents at determining the condition, they will

then be used as the input of the supervised models.

This chapter's aims were as follows:

e Implement and evaluate machine learning methods and apply them to the
microbiome and metabolome

e Evaluate the performance of baseline transformation methods in predicting the
difference disease states

e [Extract features of interest using interpretable machine learning efficient methods

e Identify subsets of features that can be used to explain the differences between
conditions (e.g. give biological context to the findings of the models)

e Identify potential prognostic indicators from metabolome and microbiome between

IBD and healthy controls

4.2 Methods

4.2.1 Data preprocessing

4.2.1.1 Metagenomics

Metagenomics data was taken from Lloyd-Price et al., 2019 study to compare the gut
microbial ecosystem in inflammatory bowel diseases. Raw reads were downloaded from SRA
BioPorject PRINA398089. MetaPhlAn3 was used as it is widely viewed as the industry
standard approach for shotgun metagenomics preprocessing in addition to a large amount
of support for the pipeline. This means the pipeline is reliable and robust for use in a
production setting. For further information on the preprocessing pipeline and dataset size

see Chapter 2 section 2.2.1 and Table 2.1.

4.2.1.2 Metabolomics

The data used in this study is from the HMP2 project. The metabolomics data was acquired

from Workbench (http://www.metabolomicsworkbench.org), Project ID PR0O00639. The
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authors used the following steps to process the raw LC-MS. Nontargeted data were
processed using Progenesis Qlsoftware, which is a software suite to measure the levels of
small molecules, lipids, and proteins in a sample. Unknown peaks were labelled by their
method, m/z and retention time. To identify non-target metabolites LC-MS peaks were
matched based on the RT and masses or by mapping to the author's own internal database
of compounds. This resulted in 551 metabolites from 546 samples, derived from 106 subjects.

Of the 106 patients (CD=50, UC=30, non-1BD=26).

4.2.2 Normalisation and Transformation methods

4.2.2.1 Normalisation methods

4.2.2.1.1 Relative abundance normalisation

One of the most common normalisation methods used for compositional data is relative
abundance. Essentially, relative abundance provides a measure of how frequent a species is
in a sample relative to the other species found in the sample. A key strength of relative
abundance is how simple the method is both conceptually and to implement. However, as
abundances within a given sample are not truly independent of each other, normalising

using relative abundance makes downstream inference more challenging.

4.2.2.1.2 Probabilistic quotient normalisation

Probabilistic quotient normalisation (PQN) was introduced by Dieterle et al as a robust
normalisation method to account for the complexities found in biological datasets. The
approach of PQN assumes that changes in the concentrations of single analytes only
influence parts of the spectra, whereas changes in the overall concentration of a sample
influence the complete spectrum (Dieterle et al., 2006). In brief, PQN can be thought of as a

normalisation of the sample data by the median fold change of all samples as the reference.

PQN is calculated using the following steps as defined by Dieterle et al:
1. Perform an integral normalisation (typically a constant integral of 100 is used).
2. Choose/calculate the reference spectrum (the best approach is the calculation of the
median spectrum of control samples).
3. Calculate the quotients of all variables of interest of the test spectrum with those of

the reference spectrum.
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4. Calculate the median of these quotients.

5. Divide all variables of the test spectrum by this median.

These steps were implemented using a custom Python function utilising the Numpy (Harris

et al., 2020) for speed of calculations.

4.2.2.2 Transformation methods

Compositional data are data in which the relative abundances of different components or
parts add up to a constant, such as microbiome data (metagenomics, metabolomics or
metaproteomics data), which consist of the relative abundances of different microbial taxa,
proteins or metabolites. Because compositional data have unique statistical properties, such
as closure (the sum of the relative abundances is constant), they require special treatment in
statistical analysis. One of the most common approaches is transforming the data to
alleviate these properties. However, the choice of transformation should depend on the

model, the question being asked and the type of data it's being applied to.

4.2.2.2.1 Centred log-ratio transformation (CLR)

As mentioned in Chapter 2, CLR is a transformation method that can be used to remove the
constraint that is present on compositional data. This enables the data to be used by
statistical methods and other downstream approaches and is a fundamental tool used by
researchers to explore the complexities of compositional data (Faith, 2015). This approach
would be robust if microbiome data were not sparse. The sparsity of the data is problematic
for these transformation algorithms as they cannot compute the geometric mean if the
vector they are being applied to is O (Gloor and Reid, 2016; Mandal et al., 2015). This means a

pseudocount must be added to any zero values before applying this transformation.

Centred log-ratio (CLR) transformation (Aitchison, 1982) is defined as:

clr(X) = (log(x,/g), log(x,/g) ... log(x,/g))

(Equation.4.1)

4.2.2.2.2 Longitudinal patient-baseline transformation

Following up on the work conducted in Chapter 3 by defining a patient-specific baseline, in

this chapter the work is extended to create two new methods. These methods are (1) Log
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Fold Change baseline transformation (FCBT) and (2) Subtracted baseline transformation
(SBT). These methods were applied either as relative abundance or counts depending on the
input data. They could also be extended to group-specific transformation for intra-patient
rather than inter-patient transformation. These methods were implemented as a custom

Python function.

For both implementations, the baseline is calculated using the method defined in chapter 3

(Equations.3.1-3.14).

For the Log Fold Change baseline transformation (FCBT), each patient-specific baseline was
created by generating the mean composition of that patient over all their measures. Let

x € R and FCBF be the transformed matrix of X such that FCBF € R"”. The following

formula describes the implementation to calculate FCBT where X, is the k-th patient for

i

L., K, at the i-th feature for 1,.., D in X. Finally, p, is the baseline for that patient k for the i

-th feature. It can be described as seen by Equation 4.2:

Xk
FCBT(Xk.) = logz(u—k).

i

(Equation 4.2)

Similarly, for subtracted baseline transformation (SBT), each patient-specific baseline was

created by generating the mean composition of that patient and this time was subtracted

from the other time point of that patient. Let SBT € R"*” be a matrix of transformed X
where the baseline of patient k for 1,.., K, at the i-th feature for 1,.., D is subtracted from the

match feature at X . It can be described as seen in Equation 4.3:

SBT(Xk_) =X, ~h

i i

(Equation 4.3)
4.2.3 Matrix factorisation methods

4.2.3.1 Principal Component Analysis

The most popular method for dimensionality reduction is principal component analysis

(PCA) (Pearson, 1901). PCA is a linear dimensionality reduction method used to project data
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into a lower dimensional space. There are multiple different implementations of PCA, but
this work uses the singular value decomposition (SVD) interpretation which results in a

latent factor interpretation. SVD can be thought of as matrix factorisation that takes the

input X and decomposes it into three matrices, X = Usv'. In the latent factor model these

matrices are then rearranged and summed using linear contributions resulting in a weights

. . - T
matrix W. Therefore, we can rewrite decomposition as X = WV .

The input data, X, needs to be centred but not scaled for each feature before applying the
SVD. The implementation from Scikit-learn V1.2.0 (Alex et al., n.d.) uses the LAPACK
implementation of the full SVD or a randomised truncated SVD by Halko et al if the

maximum dimensions of X > 500.

4.2.3.2 Independent Component Analysis

Independent component analysis (ICA) is a method which is typically applied to blind source
separation problems (Herault and Jutten, 1986; Hyvarinen and Oja, 2000; Moldakarimov and
Sejnowski, 2017). The process of blind source separation refers to an input dataset that is
only mixed data with both the original sources or the mixing coefficients not being

observed.

X=SA

genes m

samples

nxm S/
metaassays/metasamples

Figure 4.1. Schematic representing the matrix factorisation used within FastICA. The
labels show where the features (genes, microbes, proteins, etc.) and samples after ICA are
run on the raw input dataset. S represents the factors and A represents the loadings.
Depending on the orientation of the input data. The factors (S) and loadings (4) can either
represent meta-features or meta-samples depending on the objective of the analysis.

Figure from (Akalin, 2020).

122


https://sciwheel.com/work/citation?ids=4745541&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6975972,141723,14536637&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=6975972,141723,14536637&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=12173488&pre=&suf=&sa=0

In the case of temporal data, treating each sample’s time point as i.i.d. creates a generative
model resulting in two latent variables representing the unobserved amplitude of the signal
and two other latent variables that signal from the samples. The observed variables are
described by the linear combination of latent variables, with the latent being the joint
distribution that factorised variables described in equation 5.1, where p(z) is the joint

probability distribution.

M
p(z) = [1 p(zj)-

j=1

(Equation 4.4)

4.2.2.3 Factor Analysis

Factor analysis (FA) is closely related to PCA and often considered to be an extension of it.
The objective of FA differs as it reconstructs the correlations and covariances between
variables. Therefore, FA is a latent variable model where the observed variables and their
covariance structure is modelled in terms of unobserved variables (i.e. latent), but these
latent variables cannot be directly measured. There are two main forms of factor analysis,
confirmatory factor analysis and exploratory factor analysis. In confirmatory factor analysis
the number of factors is specified beforehand and which feature is related to a specific
latent. While in exploratory factor analysis, all data points are related to every late variable.
Like with other dimensionality reduction methods factor analysis provides valuable insights
into underlying relationships in the data and has the added advantage of being highly

interpretable.

4.2.2.4 Orthogonal Projection to Latent Structures Discriminant Analysis

Orthogonal Projection to Latent Structures (OPLS) Discriminant Analysis (DA) is a variant of
the Partial Least Squares (PLS) algorithm (Trygg and Wold, 2002). Although OPLS is a
multivariate regression model, it can easily be modified for binary classification problems.
The biggest advantage of OPLS is its ability to further reduce the number of components
needed in a dimension. In short, it achieves this by regressing variation in the data and
therefore pushing the move of informative features together into a single component (Trygg

and Wold, 2002; Stenlund et al., 2008; Biagioni et al., 2011).
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4.2 .4 Classification

Some of the models described above already have a supervised component to them, namely
OPLS-DA. Other methods such as PCA, FA and ICA do not have an intrinsic classifier built
into the algorithm. Although the performance of the unsupervised algorithms can be
assessed using clustering methods, such as Lovivan clustering and HDBSCAN, the goal here
is to predict class labels rather than investigate the underlying structure of the data. In this

case, we are framing our problem set as a binary classification problem.

PCA, FA and ICA were used as feature engineering steps and the resulting data were passed
to two different classifiers; Logistic Regression (LR) or Random Forest (RF). LR is an
extension to the linear regression model for the application of classification. In this case,
rather than fitting a hyperplane, LR squeezes the output of the linear equation into a logistic
function. This in turns obtains a value between 0 and 1 which represents the probability
between classes. It is generally considered to be one of the best approaches for
low-dimensional and relatively noisy data (i.e. where the number of explanatory variables is
equal to less than the number of noise variables). Furthermore, in addition to LR
performance, it is also very interpretable as coefficients show the influence of a feature.
Although this should be noted this differs from linear regression as this is not a linear

contribution but instead a probability.

In comparison, RF is a more complex algorithm which is less sensitive to noise, can be
applied to high dimensional data, and is less prone to overfitting. RF extends the standard
Decision Tree using two additional approaches; bootstrapping and feature subsetting. In
doing so, RF builds a large number of decision trees where each tree is trained on a random
subset of the original training data and a random subset of features. These trees determine
splits by the best subset of features and continue to grow until the maximum depth is
reached (predefined by the user). The resulting models are then pooled together using
majority voting to determine the class of predictive labels. Finally, like with LR, the resulting
model has a high degree of interpretability. Feature importance scores measure how much
each feature contributes to the overall accuracy of the model. There are several ways to
calculate feature importance in random forests, but one common method is to use mean
decrease impurity. This method computes the total reduction of the impurity measure (such
as Gini index or entropy) of the decision tree due to a feature, averaged over all trees in the

forest. A model that combines both dimensionality reduction and classification is the
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Rotation Forest (RTF) (Juez-Gil et al., 2021). The model combines the benefits of feature
extraction in PCA and tree-based ensemble methods to generate a highly versatile classifier.
Although computationally extensive, it has been shown to perform very well on multiple

datasets in different domains (Bagnall et al., 2018; Juez-Gil et al., 2021).

4.2.5 Model optimisation and evaluation

To evaluate the models the following experimental design was implemented. Each model
was trained in parallel with the same random seed (starting seed was set to 42) and training
set. The Scikit-learn Pipeline class was used to orchestrate each model's experiment. The
advantage of wusing this architecture is that it enables multiple normalisation,
transformation, and hyperparameters to be evaluated on the same data in a more efficient
way. Normalisation and transformation methods were implemented as an extension of the
Scikit-learn’s TransformerMixin and BaseEstimator classes and therefore also built into the

Pipeline.

To find the optimal number Horn’s Parallel analysis is used. Briefly, it works by comparing
the eigenvalues derived from the actual data with those obtained from randomly generated
data sets of the same size and number of variables. The idea is that the actual data should
have larger eigenvalues for the components that are meaningful. The optimal number of
components is typically identified at the point where the actual data's eigenvalues begin to
be smaller than those from the random data (Glorfeld, 1995; Gently Clarifying the
Application of Horn’s Parallel Analysis to Principal Component Analysis Versus Factor
Analysis, 2014). This method is considered more accurate and reliable than the scree test, as

it accounts for the chance that factors that might inflate the eigenvalues.

To ensure a robust evaluation of the model, this was then repeated 100 times each time
changing the starting random seed by incrementing up by 1 each time, with the dataset
permuted before training each time to ensure groups of patients were not together. For

reproducibility a global random seed was set prior to analysis as stated above.

To assess the performance of the model several different metrics are calculated. This is due
to each metric assessing a different measure of performance. The approach taken here aims
to rigorously evaluate the performance of the algorithm, in contrast to other studies which

tend to focus on specific metrics which might be misleading (e.g. just using accuracy alone).
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The F1 score is a measure of accuracy which is calculated using the following formula:

(Precision X Recall)
(Precision + Recall) ’

Fl1 = 2 X

(Equation 4.2)

where Precision is the count of correct positives results over the total number of positive
results, either true positives (TP) or false positives (FP) predicted. Precision is also known as

the False Positive Rate (FPR). It is calculated as:

FpP

Precision (FPR) = ——%7 >

(Equation 4.3)

where TN is the number of true negatives. Recall is the number of true positives, also
known as the True Positive Rate (TPR), is calculated by dividing by the number of all relevant

samples, which includes the number of false negatives (FN). It is calculated as follows:

TP

Recall (TPR) = TPy FN

(Equation 4.4)

The Receiver Operator Curve (ROC) and Area Under the Curve (AUC) can be used together
to represent the probability curve and the measure of separability respectively. AUC has the
advantage over accuracy as it aggregates all the classification thresholds to produce a
performance measure. Therefore, AUC describes the classifier's ability to distinguish
between classes. The AUC can have a value between 0 and 1, where the higher the value the

better the model’'s performance. AUC is calculated using the following equation:

1
AUC = [ TPR d(FPR)
0

(Equation 4.5)

As the brier score is a loss metric, the smaller the resulting value the better. The brier score

takes in the predicted probability score of the predicted label and true label and then
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calculates the mean squared difference between the two. This results in a value between 0

and 1.

f,=0)"

. 1
brier = N
L

LM =

(Equation 4.6)

where N is the number of predictions made, f is the predicted probability class and o is the

actual outcome of the event.

Matthews correlation coefficient (MMC), also known as the phi coefficient, is the measure of
quality of resulting classifications. It has the advantage of being a balanced measure which
can be used even with large class imbalances. The metric returns a coefficient between -1
and +1, where -1 is an incorrect prediction, O is a random prediction and +1 is a perfect

prediction. The metric uses the described as follows:

TP X TN — FP X FN
\(TP+FP)(TP+FN)(TN+FP)(TN+FN)

mcc =

(Equation 4.7)

Using the metrics defined above, grid search was used to explore the parameter space of
each model. Grid Search is an exhaustive search method that systematically goes through
multiple combinations of hyperparameter values specified in a pre-defined grid. This
approach evaluates each combination for the given model to determine which set of values
yields the best performance according to a specified metric, in this case F1-score was used.
Grid search was implemented using scikit-learn’s GridSearchCV
(https: //scikit-learn.org /stable /modules /generated /sklearn.model selection.GridSearchC

Vhtml).

Leave-one group out cross validation (LOGOCV) is a technique used for evaluating ML
algorithms performance, particularly when the data contains distinct groups or clusters (in
this case a group would be a patient with repeated measures). This method is especially
useful in situations where the data may have an inherent grouping structure, and it's
important to ensure that the model generalises well across these groups. To ensure a robust
evaluation of the model, this was then repeated 100 times each time changing the starting

random seed by incrementing up by 1 each time, with the dataset permuted before training
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each time to ensure groups of patients were not together. For reproducibility a global
random seed was set prior to analysis as stated above. LOGOCV was implemented using
scikit-learn's LeaveOneGroupOut model selection function

(https: //scikit-learn.org /stable /modules /denerated /sklearn.model _selection.LeaveOneGr

oupOut.html).

Finally, to compare the overall performance of the models the critical distance was
calculated between each model. Critical distance is a statistical measure used to determine
whether the performance differences between algorithms are significant. If the rank
difference between two algorithms is greater than this critical distance, their performance

is considered significantly different. It was implemented using the method here

https: //github.com /hfawaz /cd-diagram (Ismail Fawaz et al., 2019).

4.2.7 Blind source separation between phenotypes

Building on work conducted in Chapter 3, and extending the FastICA model, a
context-aware implementation was created (this model was defined in section 4.2.2.2). In
this case, using the patient-specific baseline approach time was accounted for in the model.
This was either done by rotating the matrix to make the features (in this case either
metabolites or microbes) as the sources. In addition to this to account for the time
component of the data, both FCBT and SBT were also applied to the data before fitting the

model.

Many studies have used ICA on gene expression, micro-array or metabolomic data where
they used the samples as the sources (Chiappetta, Roubaud and Torrésani, 2004;
Teschendorff et al., 2007; Engreitz et al., 2010; Biton et al., 2014; Nazarov et al., 2018; Cantini
et al.,, 2019; Krumsiek et al., 2012; Liu et al., 2016). In this study, ICA is also used with the
features as the sources. This is due to the nature of ICA in signal processing, where the
features are normally time points. To achieve this, a wrapper function was used to extend
the FastICA (Hyvarinen and Oja, 2000) implementation given by Scikit-learn (Alex et al.,
n.d.). The wrapper handles not only the data preprocessing in transposing the input matrix

but also orientates the factors and loadings such that can be interpreted downstream.
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The selection of the number of components is vital and no trivial problem for ICA as it does
not have the same orthogonality constraint as PCA (Sompairac et al., 2019; Hyvarinen and
Oja, 2000). Consequently, the order of decomposition affects all of the returned factors and
therefore the number of components needs to be selected carefully. Horn’s parallel analysis
is a method for identifying the optimal number of components (Horn, 1965; Glorfeld, 1995;
Crawford et al., 2010). Briefly, it simulates a random dataset of the same dimensions as the
input data. The matrix factorisation method, in this case, ICA, is then run on both the
simulated and actual data with the starting number of components to the maximum number
of components. The steps above are repeated a large number of times to create a
distribution of eigenvalues for both the simulated and actual data for each different number
of components. These distributions are then compared and only factors with eigenvalues
that are greater than the values found in stimulated data are kept. The optimal number of
components can then be extracted. The reasoning behind this approach is that the
eigenvalue which is larger than the resulting eigenvalue from the simulated data set is more
likely to be the real underlying factor. As of writing there are no python packages available

for this so a custom module and scikit-learn wrapper was implemented.

To identify potentially meaningful latent factors extracted from the ICA model several
different methods were implemented. These included supervised methods where the target
variable was taken into account and unsupervised methods where the information captured
in the factor was used. There are 3 methods for supervised factor selection.
Kolmogorov-Smirnov test, Wilcoxon rank-sum and Wilcoxon signed-rank test. Alternatively,
in an unsupervised method, the Kurtosis test (Anscombe and Glynn, 1983) can be used to
identify which factors captured the most amount of information. Each method is accessible
from a custom python module which extends upon the Scipy (Virtanen et al., 2020)
implementations of these statistical tests. These methods can all be used to perform tests
between the factor distributions to determine which latent captured a signal which was
most meaningful, in this case inactive or active IBD (represented by SCCAI or HBI for UC
and CD respectively). However, depending on the downstream analysis, care should be taken

when using supervised methods to avoid data leaks or biassing downstream models.
Finally, to evaluate the contributions of each factor, the loadings were extracted of the

factors which contributed most to the target variable. A thresholding criterion of 2 standard

deviations from the mean was applied to select the microbial features in the loadings matrix

129


https://sciwheel.com/work/citation?ids=7750979,141723&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=7750979,141723&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=529636,9284531,8464935&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=529636,9284531,8464935&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=15877525&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8189935&pre=&suf=&sa=0

to identify features that most contributed to that factor. As the loadings in ICA are an
arbitrary value of the sum of contributions, their sign can be ignored. It should be noted that
in this case the sign of the loadings is dependent on the input data, normalisation,
transformations and scaling applied may not represent up or down-regulation as expected
with differential abundance or expression analysis. Therefore, a greater interpretation of
these top microbial features was then taken as the absolute value. The resulting weights that
are given within the loadings are representative of the top contribution of that feature or
that specific factor and are plotted in the form of a bar plot. This was all wrapped into a

module as seen in Figure 4.2.

Composition Profiling Functional Profiling

Abundance
Matrices

Preprocessing

aaaaaaa

Filter Taxa-level Pair Plot/Projections

Omics (g, mix, mbx, ete )

Metadata

Defining dis

Integration and Biomarker Extraction

Figure 4.2. Overview of the ICA experimental design with microbes as sources
accounting for patient-specific baseline. This framework can be used for any type of
omics and for any binary (i.e. two unique class variables) metadata variables. The
preprocessing stage can be easily switched to another preprocessing pipeline as this

framework was developed in a modular fashion.

4.2.6 Pipeline architecture

The core pipeline developed in this chapter is a machine learning pipeline designed for
analysing microbiome data, along with accompanying metadata such as disease conditions.
It begins by addressing the high dimensionality nature of these microbiome datasets. To do
this pipeline employs dimensionality reduction as its initial step, with Independent
Component Analysis (ICA) set as the default method. This approach effectively uncovers

latent variables within the microbiome data, which are then meticulously evaluated to
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identify those that are most informative with respect to a specific metadata variable.
Subsequently, the top loadings - the variables that contribute most significantly to each
latent feature - are leveraged in a supervised analysis. This critical phase aims to assess and
quantify the predictive power of each latent feature, offering valuable insights into the
intricate relationships between the microbiome composition and the associated metadata,
such as disease manifestations. This pipeline, therefore, serves as a robust tool for
unravelling the complex interplay between microbiome characteristics and various
biological and clinical outcomes. The resulting latents can then be used in a supervised
analysis to determine how well the extracted latents predict that metadata. The pipeline is
intended to be used both as an exploratory tool and as a feature extraction tool by
bioinformatics or computational biologists working on microbiome data. It can be interfaced

with using a command line interface.
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4.3 Results

4.3.1 Metagenomics analysis of IBD vs Healthy controls

To explore the difference between the underlying microbiome profiles between IBD and
healthy control samples, each of the matrix factorisation approaches was run on the data
after different normalisation and transformation stages. For the normalisation stages, the
data was either raw taxonomic count data, log normalised, or relative abundance
normalisation. Then, for the transformation stage, the data were log-transformed,
standardised to a unit-variance, or centre-log transformed. Ultimately the data for ILR
transformation was not used due to the loss of interpretability. Finally, to assess the
longitudinal nature of the data, both longitudinal patient-baseline transformation, FCBT and

SBT, were also applied to the raw counts and the relative abundance of normalised data.

Using Horn’s parallel analysis after 1000 iterations, each model's optimal number of
components was determined out of a search range of 1 - the total number of features in the
input space. The optimal number of components for relative abundance and CLR
transformed data. To run this analysis on multiple different datasets is a very
computationally expensive approach, and interestingly using this method the number of
factors required for each method (i.e. PCA, FA and ICA). For a computational time, this was

then used with just PCA (Supplementary Figure 4.1-4.3).

Each normalisation, transformation and a resulting component of the matrix factorisation
methods were then used to classify between IBD disease types and health controls. This was
done using leave-one group out cross validation (LOGOCV)., LOGOCV was used to avoid
any data leaks resulting in the model learning a patient-specific microbiome and, therefore,
a misleading performance metric. Using the Fl-score and Briers score, each model's
performance was ranked. When comparing between methods using critical distance
(Supplementary Figure 4.4), no models or methods were statistically significant. The
best-performing model was when comparing CD and non-IBD, which was CLR, with RF
having the highest Fl-score (0.749) and lowest Bier score (0.23). The worst-performing

model was UC vs non-IBD. For each method's results, see Figure 4.3 and Figure 4.4.
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Figure 4.3. Model evaluation for prediction of disease phenotypes between IBD patients
and healthy controls from metagenomic data evaluated by their F1 score. Each
experiment was run 100 times with ten splits with LOGOCV. The boxplot colours represent
the normalisation and transformation method used on the data. The x-axis represents the

model wused. The higher the Fl score the more performant the model.
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Figure 4.4. Model evaluation for prediction of disease phenotypes between IBD patients
and healthy controls from metagenomic data evaluated by their Brier Score. Fach
experiment was run 100 times with ten splits with LOGOCV. The boxplot colours represent
the normalisation and transformation method used on the data. The x-axis represents the

model used. The lower the Brier score the more performant the model.

4.3.2 Metabolomics analysis of IBD vs Healthy controls

To explore the difference between the underlying metabolomic profile between the IBD and
healthy control samples, the same framework was used with metagenomic data in section
4.2.1. However, due to the differences in metabolomic data, this time, the normalisation
stages were, PQN normalised counts and relative abundance normalisation. Then for the
transformation stage, the data were log-transformed, standardised to a unit-variance, or
centre-log transformed (note for raw data and PQN normalisation, the data was both logs
and standardised after normalisation). Once again, to assess the longitudinal nature of the
data, both longitudinal patient-baseline transformation, FCBT and SBT, were also applied to
the raw counts and to the relative abundance normalised data. Horn’s parallel analysis was
used again as described in section 4.2.1 and the resulting Scree plots can be seen in

Supplementary Figures 4.5-7.

Compared to metagenomic data, metabolomic profiles enabled better stratification of
patients between non-IBD and IBD. Again a critical distance analysis was used to compare
each model's performance and the results suggested no significant difference after multiple
testing. The highest-performing models in UC were the PCA with an RF (F1-score 0.826) and
RTF (Fl-score 0.820) after log normalisation and then were closely followed by relative
abundance normalisation and FCBT. However, the Bier score showed good results from
FCBT normalisation with RTF obtaining a score of 0.142. The same was true for CD but RF
with KBS had the lowest Brier score and Relative abundance normalisation had the highest
F1 score. However, all models seemed to perform equally well. The lowest-scoring models

were LR and OPLS-DA.
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Figure 4.5. (Previous page) Model evaluation for prediction of disease phenotypes
between IBD patients and healthy controls from metabolomic data evaluated by their F1
score. Each experiment was run 100 times with ten splits with LOGOCV. The boxplot
colours represent the normalisation and transformation method used on the data. The
x-axis represents the model used. The higher the Fl-score, the more performant the

model.
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Figure 4.6. (Previous page) Model evaluation for prediction of disease phenotypes
between IBD patients and healthy controls from metabolomic data evaluated by their F1
score. Each experiment was run 100 times with ten splits with GKFCV. The boxplot colours
represent the normalisation and transformation method used on the data. The x-axis

represents the models used. The higher the Fl-score the more performant the model.

4.3.3 Unsupervised analysis of metabolomics in IBD vs healthy
controls

By transposing the matrix to make the metabolite ICA was able to recover distinct signals
between non-IBD and IBD patients. The best-performing normalisation and transformation
were the FCBT. This analysis was applied to both UC vs non-IBD and CD vs non-IBD
however, as this method requires all of the data and cannot subsequently fix later it was not

used in the classification model.

Compared to other methods FCBT with a pseudo count of 1 before the log transformation
was able to recover the IBD and non-IBD signals from the data. Other methods were also
able to do this, like CLR; however, these had much larger tails suggesting influence from
patient or environmental sources or large differences in the values before being fit by ICA. In
addition to this FCBT accounts for the patient-specific baseline so can better represent the

longitudinal aspect of the data.

The resulting components that captured the most information as ranked by their Kurtios
value were then plotted against each other, and their signals from the loadings were
extracted as described in 4.2.6. In UC, there was a distinct cluster separation between the
phenotypes (Figures 4.7 and 4.8). Between UC and non-IBD both Carnitine (IC18), Bile acids
(IC2), amino acids in (IC1) Long-chain fatty acids (IC13) and triacylglycerols (TAGs)
dominated most of the ICs (Figure 4.9 and 4.10). The same separation is seen in CD (Figures
4.11 and 4.12). While CD sees even more enrichment of Bile acids (IC2, IC5) (Figure 4.13 and
4.14). Compared to UC, CD also has a large amount of enrichment in triacylglycerols (TAGS)
(IC12, 1C3) (Figure 4.13 and 4.14).
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Figure 4.7. Overview of the UC vs healthy controls using ICA with microbes as sources
accounting for patient-specific baseline. Each component is ranked by Kurtosis value, and
the distributions are split by the target variable. There are several components which begin
to show a UC and non-IBD signal difference. The top left-hand corner shows the factor
which captures the most information. The total number of components for this model was

selected as 18 via Horn’s parallel analysis. (Blue; UC and Orange; Healthy Control)
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Figure 4.8. Top metabolites extracted from ICs capture a signal that can stratify samples

between UC and healthy controls. The weights are thresholded by only selecting weights

within the cutoff of 2 standard deviations from the mean. The absolute weights are taken to

account for the arbitrary weight values.
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Figure 4.9. Top metabolites extracted from ICs capture a signal that can stratify samples
between UC and healthy controls. The weights are thresholded by only selecting weights
within the cutoff of 2 standard deviations from the mean. The absolute weights are taken to

account for the arbitrary weight values.

Figure 4.10. Top metabolites extracted from ICs capture a signal that can stratify samples
between UC and healthy controls continued... (Next page). The weights are thresholded by
only selecting weights within the cutoff of 2 standard deviations from the mean. The

absolute weights are taken to account for the arbitrary weight values.
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Figure 4.11. Overview of the CD vs healthy controls using ICA with microbes as sources
accounting for patient-specific baseline. Each component is ranked by Kurtosis value, and
the distributions are split by the target variable. There are several components which begin
to show a UC and non-IBD signal difference. The top left-hand corner shows the factor
which captures the most information. The total number of components for this model was

selected as 18 via Horn’s parallel analysis. (Blue; CD and Orange; Healthy Control)

146



10

value
|
u o w

-10
-15
-20

o u

value
|
(6,]

-10

-15

15

10

value
o w

-10

10

value

-5
-10
=15

10

value
o w

=5

-10

Factor = ICO Factor = IC1 Factor = IC2 Factor = IC3
15 151
10
10 101
5
5 5
0
0- 0
-5 _s5]
_5_
-10 ~101
—10+
. . -15 . =15+ .
ICO IC1 IC2 IC3
Factor = IC4 15 Factor = IC5 Factor = IC6 Factor = IC7
20
10
101 157
5 101
54 54
| 0 0
0 _s5]
-5 -3 -101
T T _10 T _15- T
IC4 IC5 IC6 IC7
Factor = I1C8 20- Factor = I1C9 Factor = IC10 Factor = IC11
10
5
0 diagnosis
-5 I CD
_10 @ nonIBD
-15
IC8 1Co IC10 Ic11
Factor = IC12 20 Factor = IC13 Factor = I1C14 Factor = IC15
20 ]
154 s 20
101 15
10 104
54 5 5
0+ 0 o
—=51 -
5 _s5]
—10- -
: : 10 : -10 :
IC12 IC13 IC14 IC15
Factor
Factor = IC16 Factor = IC17 Factor = IC18
10.0 15
751 10
5.0
5
2.54
0
0.0 5
-2.5 B
—5.0 -10
T T _15 T
IC16 IC17 IC18
Factor Factor Factor

Figure 4.12. Top metabolites extracted from ICs capture a signal that can stratify samples

between CD and healthy controls. The weights are thresholded by only selecting weights

within the cutoff of 2 standard deviations from the mean. The absolute weights are taken to

account for the arbitrary weight values.
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Figure 4.13. Top metabolites extracted from ICs capture a signal that can stratify
samples between CD and healthy controls (previous page). The weights are thresholded
by only selecting weights within the cutoff of 2 standard deviations from the mean. The

absolute weights are taken to account for the arbitrary weight values.

Figure 4.14. Top metabolites extracted from ICs capture a signal that can stratify samples
between CD and healthy controls continued... (next page). The weights are thresholded by
only selecting weights within the cutoff of 2 standard deviations from the mean. The

absolute weights are taken to account for the arbitrary weight values.

149



LTDI =21

aupun
auidsanndjAlacey
3jozepiuodlaw
aupA|bjAoweuun
g-2d $:9€£2
uLieyddes

EVENLS

2d #:8€D
auisouenBAyisw-1
auiuibie
auiwesoloe|eb-|f1a0e
jouaydouiwe-¢
jouindAxo

unol

m:_mm_mnmm
auiwein|bjA1aoe-N
uIpIaA m
aje.einjbolaxy-eydpe
pioe J1uainu,
3jeulioou

ENIES
21BUaINYIUEX

dilpP
aulunedAxolphy
auish||A120e-0N
a1euoiphie
uaydoulwelaze
mv_:E:u:_mn_>Eu
uabourgoydiod
I3eweln|bjAyzoe-N
auiuibie|fiade-eyde-y
ESCITSII=S

wbIEm

SJ1=2l

pIoE 313338 3jozepiwi|Ayizw
a1ein

21euoidoid aj0zepiwi
joyoazedolid

jouaydoiiu-
ane1aoejAuaydAxoipiy-d
Fjeuanyjuex

ewylys
JjejoydAxoapouayd

a1edipe

Fejoyd
21eouejuad|Aylaw-e-AxoipAy-z
3esfingAyaw-g-AxoipAy-z
pI2e D1uaInuAy

auljauobLn
alejoyaunw-eydpe
a3ejoydoyyjodA|b
Julue|e-e1aqg-jAoweded-N
21ejoydAx03p

23ejoyd0uy]

aulaye

FjejoyoAxospolay
3jejoydoylijelne}
a1ejoydAxoapodh|b
I1ejoydAxoapoinel

RUTTE
z0 00
Z101 = DI
z0 00
L3J1= 2l

a]ea0

a]eajoul

VL T:06D
auouaydojaoe|Aylaw-g-Axoipiy-¢
(T:8TP) 2pIWEIZD 7D
OWI T:ZZD tHN
oY 1:22D

VL 0:TED

OVl 0:9%D FHN
ovQ 0:Z€D

Ova 0:9€2 vHN
|1zoigywab

ova 0:ED

OVL 0:TSD vHN
ova 0:9€D

oYL 0:9tD

OYL 0:ZSD FHN
OVL 0:8+D FHN
VL 0:Z5D

OVL 0:8+D

OV 0:05D ¥HN
oYL 0:06D

pioe swuoidoudoulpiuenb-ejaq

syjogessi

a)e|oydAxoaposin/ale|oydixoapoiy

apixo-N-aulwelAylawLy
[IVRESI AT ETIE

aulyuwIed £:07D
ajesfngoulwe-z
a1eourluad|Ayraw-£-AxoIpAy-z
joydaiesouid

aulue|ejfyzde

IPIXOJINS SUIUOIYISW
uIwIo3W
ueydoidAn
auuoaIyy

auluee

aulsolfy
auiue|ejAuayd
auuoIylaw

aupng

auna|os]

aujogezN

150



4.4 Discussion

4.4.1 Metagenomic and Metabolomics prognostic indicator
identification

Overall, this study showed how difficult it is to classify IBD using metagenomic data.
Although the best performance was seen when predicting between CD and non-IBD
controls, it should also be noted that this was with a small dataset (CD n=50, nonIBD n=20).
This means the data is highly imbalanced, and when taking into account the temporal
element, it results in an order of magnitude higher ratio of imbalance. Classifying between
UC and non-IBD was overall very poor with most models displaying a wide confidence
interval in both their F1-score and Bier scores (Figure 4.3-4.4). The top F1 score was between
CD and non-IBD, achieving 0.761 and a ROC-AUC of 0.614 which was significantly worse than
other studies achieved using longitudinal microbiome data (Clooney et al., 2021). However, it
should be noted that for the study conducted by Clooney et al, the authors reported only
doing standard KFold cross-validation, implying the same patient samples were in both the
train and test datasets. If this is the case, this would lead to potential data leak in their
model, hence their reported values of model performance exceeding what was reported in

this chapter.

In comparison, the metabolomic profiles of the patients allowed for much greater predictive
power with most models achieving an F1 score greater than 0.72 and the highest reaching
0.826. The RTF performed much better on metabolomic data than it did on the microbiome,
which can be put down to the overall performance of PCA on this dataset. This is due to RTF
using PCA as a fundamental part of its model. Almost all models performed well; however,
further work and introspection are needed to assess the limitations of these models. This
could be achieved through the use of SHAP, LIME or permutation feature importance to
gain a greater understanding of why the model is predicting the outcome it is. Moreover, to
make this study more robust it should have been applied to multiple different datasets.
Using a validation cohort these models and methods could be more strictly assessed.
Knowing these limitations all the results should not be taken at face value but it shows the

potential power of RTF and combined matrix factorisation for classification.
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4.4.2 Metabolomics blind source separation

IC4 and IC1 loadings present with a high degree of enrichment for bile acids and carnitine
(Supplementary Table 4.1). IBD studies have shown an enrichment of several bile acids
including the primary bile acids (PBA), such as chenodeoxycholic acid and cholic acid as well
as their conjugated forms. In addition, less well-studied bile acids such as keto deoxycholic

acid are also hypothesised to be enriched in IBD.

Other metabolites associated with IBD are secondary bile acids (Roda et al., 2019; Thomas et
al.,, 2022; Heinken et al., 2019) (SBA) (deoxycholic acid and lithocholic acid), alpha-muricholic
(Zhang et al., 2023) acid and 7-oxo-DCA (Yang et al., 2021b). More specifically, there has been
evidence of a deduction of secondary bile acids in patients with IBD compared to healthy
controls (Vich Vila et al., 2023). Due to dysbiosis in IBD, there is a disturbance in the
transformation of PBAs to SBAs resulting in a relative increase in PBAs and a reduction in
SBAs (Yang et al., 2021b; Bromke and Krzystek-Korpacka, 2021). For PBAs to be transformed
into SBAs they first need to be deconjugated. This means removing amino acids such as
taurine and glycine that allow the PBAs to be water-soluble and be secreted into bile. After
this, they wundergo several reactions such as desulphation, dehydrogenation and
dehydroxylation by various bacteria that contain bile-acid-induced (BAI) operon enzymes.
However, these various bacterial transformations are only recently being mapped, so the
precise nature of how they directly relate and interact with the bacteria and then, ultimately
the host is still unknown. These bacteria are perturbed to different degrees in IBD due to
dysbiosis, and this is what results in various changes in bile acids (Lavelle and Sokol, 2020;

Zhang et al., 2023; Pratt et al., 2021).

The blanket statement of in IBD the gut metabolome sees an increase in PBA and a decrease
in SBA is a broad generalisation - for instance in some cohorts the dysbiosis occurs in such a
way that some conjugated forms of SBAs are increased in IBD patients (e.g.
7-ketodeoxycholic acid). In the HMP data however we see a similar trend of PBA increased in
disease and a decrease in SBA when compared to the control which was also seen by the

authors of the data (Lloyd-Price et al., 2019).

These various bile acid metabolites have been linked to immune regulatory roles and can
also affect the gut epithelium. Normally the bile acids help the absorption of lipids as the

conjugated PBAs form micelles. Still, interestingly from a translational perspective, bile acids
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are also important determinants of FMT success in Clostridioides difficile infection (Brown et
al,, 2018). This again demonstrates that they have immune modulatory effects in the gut.
Moreover, in CD patients, studies have shown a correlation with reduced abundances of
certain bacteria that contained bile salt hydrolase (BSH) and 7o-dehydroxylation enzymes
(Wang et al., 2021; Thomas et al., 2022). This correlates the microbiome composition directly
to PBA present in the gut. Studies have shown associations between several genera, such as
Bacteroides, Bifidobacteria, Clostridium, Lactobacillus and Eubacterium (Ridlon et al., 2014;

Staley et al., 2017; Guzior and Quinn, 2021).

The distinction between UC and CD is not very well defined in terms of bile acids. Moreover,
this distinction is even more difficult to elucidate between the various subgroups of UC and
CD (e.g. ileocolonic CD vs colonic CD) (Thomas et al., 2022; Verstockt et al., 2022).
Theoretically, one would expect differences given the enterohepatic circulation of bile acids
that occurs via the distal ileum. Moreover, some UC patients may also have subclinical
primary sclerosing cholangitis (PSC), which can affect the bile acid pool. This demonstrates
the need to better define the changes in bile acid occurring across the spectrum of IBD

clinical phenotypes rather than just between IBD and healthy controls (Thomas et al., 2022).

4.4.3 Reviewing methodologies

One limitation of the work in this chapter is the number of datasets used. Depending on the
dataset, different algorithms may perform significantly better or worse. Therefore the
algorithm chosen should match not only the data it is being applied to but also the question
that is being asked of it. For example, ICA has the advantage of separating multiple
independent sources of signal, being efficient when applied to large data sets, and it
preserves global structures in the data. However, due to very specific assumptions that are
made beforehand, especially that none of the independent sources is normally distributed,
ICA has the limitation that it can suffer from crowding in the presence of a large number of
observations and also, without further modifications, can lack reproducibility. Furthermore,
ICA is sensitive to zero inflation or minimal values resulting in heavy tails. In this case, the
heavy tails resulted from the model separating individual patients' microbiomes rather than
phenotype-specific signals. This was evident from the increase in performance after log

normalisation methods.
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Since this study, there have been multiple methods created for the application of
dimensionality reduction methods to longitudinal omics data (Mor et al., 2022; Velten et al.,
2022). One such method is Tensor Component Analysis with M-product between tensors
(TCAM) (Mor et al., 2022). Tensor Component Analysis (TCA) structure allows for a natural
integration of the 3-dimensional array used in longitudinal data analysis (i.e. the 3rd
dimensional represents the time). This follows from work conducted by Martino et al, where
they created a Compositional Tensor Factorization (CTF) to uncover driving differences in

microbiome compositions between phenotypes (Quinn et al., 2019).

Another method is an extension of the Bayesian factor analysis tool MOFA (Argelaguet et al.,
2018, 2019) called MEFISTO. MEFISTO (Velten et al., 2022) is a method for functionally
integrating spatial and temporal omic data. The model builds on the multimodal sparse
factor analysis framework and uses the Gaussian process to provide a functional view of the
latent factors obtained by the model. It also has temporal and spatial alignment capabilities
through dynamic time warping. Although not reported in the main text, I did apply
MEFISTO (Velten et al., 2022) to the HMP dataset. The 3 approaches to frame the problem
were at the patient level with a group kernel, patient level without a group kernel and
phenotype level with a group kernel. Each of these models was built with and without DTW
as well. However, these models performed poorly and the model was unable to leverage the
data. This was due to the overall size of the data (e.g. small group sides at the patient level)

and the very irregular sampling of the original dataset.

For small datasets, like within a lot of omic studies, dimensionality reduction might not
always perform as well as feature selection. Feature selection methods such as mutual
information-based feature Selection, minimum redundancy maximum relevance, normalised
mutual information feature selection, discriminative feature selection, recursive feature
elimination, K best feature selection, feature selection through genetic algorithms and other
wrapper-based methods (i.e. feature selection built into the model itself) may achieve great
performance on the test set. However, these results do not tend to generalise well to
validation cohorts. This is evident from numerous studies that have investigated IBD using
microbiome data. Although there are numerous limitations to these approaches, the more of
these studies we conduct, the greater our understanding of the disease and the methods we

obtain.
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Since this work was conducted, there has been extensive work and focus on inferring and
extracting information from longitudinal microbiome data (Zhang, Guo and Yi, 2020; Luna,
Mansbach and Shaw, 2020; Lugo-Martinez et al., 2019; Sharma and Xu, 2021; Armoni and
Borenstein, 2022; Joseph, Pasarkar and Pe’er, 2020; Mor et al., 2022; Laccourreye, Bielza and
Larranaga, 2022; Velten et al., 2022). Interestingly there is an overlap between these
methods and the methods that have been developed in this chapter as well as the approach

developed in Chapter 3.

4.4.4 Future work

This study has shown the advantage of matrix factorisation methods for extracting
biologically meaningful insights from various microbiome related omics data. In particular,
using ICA, these subtle biological signals can be isolated from the noisy environment and
then combined together to represent a meaning factor. These factors can be generalised to
studies with the goal of creating a biomarker panel. Though this work shows promise, for a
complex disease such as IBD a single Omic layer is not enough to uncover the underlying
information. Future work could combine the processing, transformation and interpretation
methodologies explored here into a multi-omic model. Furthermore, using pathway analysis
and functional analysis these identified ICs can use both predictive and explainable features
(Wieder, Lai and Ebbels, 2022). This model would be Independent Vector Analysis (IVA) (Kim,
Lee and Lee, 2006). IVA is similar to ICA but is designed for multi-modal blind source
separation problems. As of writing, there are no biological models that leverage this
implementation. This would allow for the metagenomics and metabolomics layers to be
combined into one model with the hope of not only improving the model's predictive
performance but also our understanding of the interplay between the microbiome,
metabolites and ultimately the host as well. For example, the changes in the BA pool, and the

relationship this has with microbial species can be further explored (Thomas et al., 2022).
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Chapter 5: Predicting the effect of the gut
microbiome on the host in inflammatory

bowel disease

5.1 Introduction

Multiple studies have demonstrated the role the human gut microbiome plays in both
healthy and unhealthy conditions (Integrative HMP (iHMP) Research Network Consortium,
2014; Malla et al., 2018; Valdes et al., 2018; Hou et al., 2022). The previous chapters of this
thesis demonstrated how we can leverage the composition of the microbiome-related omic
data to find non-invasive clinical biomarkers for disease stratification. These biomarkers
may provide a powerful diagnostic tool, but it does not explain the role these microbes are

playing within the stratified groups.

Discovering the composition of the microbiome is crucial because the imbalance between
beneficial and harmful bacteria causes a dysbiotic state that can result in inflammation. The
gut microbiome is responsible for preserving the gut lining's integrity and regulating the
immune response. If the balance is disturbed, it can activate the immune system excessively
and trigger inflammation through altered signalling pathways. Additionally, gut
inflammation can cause dysbiosis, as the inflammatory response can damage the epithelial
layer and alter the gut microbiome's environment. This can create a challenging
environment for beneficial bacteria to survive and thrive while allowing harmful bacteria to
dominate. Various inflammatory disorders, such as inflammatory bowel disease (IBD),
autoimmune disorders, allergies, and metabolic conditions, have been linked to dysbiosis

(Zeng, Inohara and Nunez, 2017).

Few studies have determined effective models for engineering the human microbiome from
an unhealthy state back to a healthy state. There have been some successful therapeutic
applications, either from treating recurrent Clostridium difficile infections from Faecal
Microbiota Transplantation (FMT) (Samarkos, Mastrogianni and Kampouropoulou, 2018).

One potential reason for this is the lack of translation from biomarker identification to
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effective therapy, is the limited tools to describe the complex system of interactions

occurring in the microbiome.

There are several ways to investigate host-microbiome crosstalk. One way is through
protein-protein interactions (PPIs). It has been shown that both commensal and pathogenic
bacteria have highly conserved regions, known as microbe-associated molecular patterns
(MAMPs), which have the ability to trigger host-signalling pathways through pattern
recognition receptors present on epithelial and immune cells (Lebeer, Vanderleyden and De

Keersmaecker, 2010; Zhou, Beltran and Brito, 2022).

These PPIs can be modelled in a systematic way using networks. PPl networks are
mathematical representations of the physical interactions that take place between proteins
within a cell (Barabasi and Oltvai, 2004; Bebek et al., 2012). These interactions are highly
specific and only occur between well-defined binding regions on the proteins. Importantly,

PPIs are responsible for specific biological processes and essential functions within the cell.

Although these interactions are well-documented and described within the host. They are
not as well annotated between the microbe and the host, meaning at present there are

limited tools and databases to model these interactions to a high degree of certainty.

Predicted interactions from large-scale language models, like AlphaFold (Jumper et al., 2021)
and ESM (Lin et al., 2022) will begin to fill this gap as the interactions identified are validated
and the prediction improves. At present, there are two approaches. 1) building a network
which contains all the proteins of interest but has a low certainty and annotation level; or 2)
a smaller network containing fewer proteins but with a higher degree of certainty and

annotation.

5.1.1 Aims

In this chapter, 1 leverage microbiome data (metaproteomics) and host data
(transcriptomics) to investigate the role of microbes associated with increased disease
activity in Inflammatory Bowel Disease (IBD) patients. In turn, this would provide insights
into the host-microbe interactions (HMI) but also a framework to provide biological
interpretation to the findings of machine learning (ML) models. This chapter is a proof of
concept on the extended version of MicrobioLink2, a tool developed within the Korcsmaros
Group (led by Lejla Gul). Before my contribution to MicrobioLink2, Lejla Gul during their

PhD developed the original code implementation, concept for modelling host-microbe
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interactions and aided with the conducting the analysis in this chapter. My contribution to
the development of the tool was at the data preprocessing stage, software engineering (i.e.
creating reusable and robust implementations of the original code) and optimisation of the

algorithms used at each stage.

This chapter's aims were as follows:

e Extend the MicrobioLink2 tool to be able to ingest and preprocess metaproteomics
data

e Apply MicrobioLink2 to microbial proteins associated with IBD to investigate the
role of HMI in unhealthy conditions

e Explore the functional role of both microbial and host proteins in unhealthy
conditions

e Provide a proof of concept investigation into the effect selected microbial proteins to

have on the host
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5.2 Methods

5.2.1 Microbial proteins extraction

The metaprotomes were extracted from the study conducted by Mills et al (Mills et al.,
2022). In this study, the data was generated from 40 UC patients using liquid
chromatography (LC)-LC-MS2/MS3 proteomic data, identifying 36,391 proteins. The
authors extracted and determined the protein levels using the following approach: The
relative abundances were normalised first to the pooled standards for each protein and then
to the median signal across the pooled standard. An average of these normalizations was
used for the next step. To account for slight differences in amounts of protein labelled,
these values were then normalised to the median of the entire dataset and reported as final

normalised summed signal-to-noise ratios per protein per sample (Mills et al., 2022).

Proteins which had low expression levels across all patients were removed. The dataset was
then filtered for specific bacterial species identified as most informative between the
control condition and disease state (see Chapter 2, 3 and 4); in this case Bacteroides vulgatus.
The proteins were then remapped to their UniProt (UniProt Consortium, 2021) identifiers
and annotated with PFAM identifiers using a custom python script which made requests to

UniProt (UniProt Consortium, 2021).

5.2.2 Processing human transcriptomics data

Bulk RNA-seq data from colonic tissue of healthy controls (n=123) and UC (n=169) patients
from multiple combined studies was extracted from the IBD TAMMA resource (Massimino et
al., 2021). The normalised count data were then subset based on the tissue location (colon)
and the disease state (control or UC). Batch effects were already handled by the authors
using ComBat (Stein et al., 2015), and dataset specific genes were regressed out. Differential
expression analysis was conducted using DESeq2 (Love, Huber and Anders, 2014) and the
average expression of all genes per condition was calculated independently of one another
using a custom python script. This resulted in three matrices; differentially expressed genes
(DEGs) begin control and UC, average expression of all genes in the control group and

average expression of all genes in UC.
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The average gene expression matrices were filtered to remove genes with low expression
levels that can arise from technical or biological noise. The data were standardised using a
z-score transformation (Cheadle et al., 2003). The z-score, also known as a standard score,
is a statistic that indicates the number of standard deviations that a data point deviates from

the mean of a distribution. The z-score, z, is calculated using the following equation,

(Equation 5.1)

where x is the raw score, p is the mean of the population, and o is the standard deviation of

the population.

A z-value of 0 indicates the value is at the mean of the distribution, whereas a score of +n or
-n implies that the value is n standard deviations away from the mean. In this case, the
z-score is used to identify genes whose expression value differs the most across a
distribution. Hart et al published a z-score-based normalisation method that determines
which genes were expressed using a comparison between expressed genes and active
promoters (Hart et al., 2013). After applying the z-score transformation to the average
expression matrices, genes where the z-score was greater than -3 were kept. This cut-off of
-3 is the default cut-off as suggested by the authors (Hart et al., 2013). This value includes
those genes where the expression value is higher than three times the standard deviation

below the mean.

5.2.3 Predicting the direct effect of microbial proteins on host

To study how bacterial proteins affect host proteins, host-microbe PPI networks were
generated using MicrobioLink2. It should be noted that the underlying assumption made for
this investigation is that a bacterial protein can bind to a human protein if a microbial
protein domain targets a short linear motif (SLiM) - a specific amino acid motif -
(domain-motif interaction (DMI) or domain-domain interaction (DDI)) on the host protein.
These regions and their experimentally verified interactions are identified using the ELM

database (Kumar et al., 2022).

The structure of bacterial proteins was analysed using the InterProScan tool (Jones et al.,

2014) to determine potential domains which were represented as PFAM and IUPRED IDs. For
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the study, I analysed the potential effect of bacterial proteins on host genes derived from UC
conditions. Membrane-based host proteins were extracted from the transcriptomic dataset
based on subcellular location annotations from the OmniPath database (Tirei, Korcsmaros
and Saez-Rodriguez, 2016). This step is required to filter the potential HMIs to those that
can physically happen between host proteins and proteins secreted or displayed by
non-invasive bacterial species. Finally, the sequences and domain structures of the selected
host proteins were obtained from the UniProt database (UniProt Consortium, 2021). The
microbial and host proteins were then connected by inferring their interactions using the

MicorbioLink2 pipeline, resulting in a UC condition-specific host-microbe interactome.

5.2.4 Building up a downstream signalling network

To investigate the spread of signals derived from microbial-host interactions, network
propagation algorithms were employed. These algorithms link the perturbation points, host
proteins in contact with microbial proteins to the differentially expressed genes, via PPIs. In
turn this yielded a comprehensive and ultimately mechanistic insight into signal

dissemination.

This implementation utilised a network propagation algorithm called Tied Diffusion for
Subnetwork Discovery (TieDie) (Paull et al., 2013). The TieDIE approach is a method that
looks for connecting genes on a network using a diffusion strategy, based on a background
interaction network. Which enabled an indirect evaluation of microbial effects on signalling
pathways via their interaction with cell surface proteins. In turn, providing a framework to

assess the effect of microbes on downstream signalling pathways.

In the current study, a network model is constructed to investigate the signalling processes
altered in the context of UC. The final network delineated the order of signal propagation
from bacterial proteins to human targets, downstream signalling pathways, transcription
factors, and to differentially expressed genes. To manage the complexity of large
interactomes, the analysis focuses on the top 150 upregulated genes from the

transcriptomic dataset.

To identify and visualise the main signalling pathways and functions connecting the
membrane-based proteins and transcription factors, the intracellular network was clustered
with GLay community cluster analysis (Su et al., 2010) using the clusterMaker Cytoscape

plug-in.
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5.2.5 Functional analysis

Functional analysis was run through gene set enrichment analysis (GSEA). GSEA determines
if a specific set of genes (or pathway) is statistically significant and, therefore
overrepresented within the sample genes or between conditions. Here, the observed gene
set includes the nodes that are potentially bound by the bacterial proteins, and the
background gene set contains all the expressed genes that are represented in the
transcriptomic dataset. To perform the enrichment analysis, ReactomePA (Yu and He, 2016),
clusterProfiler (Wu et al., 2021) and ggplot2 R packages were used to further visualise the

results.

For network-based functional analysis, the ClueGO Cytoscape plugin was used to visualise
all the functions that the human target proteins play a role in. This tool also uses data from
Reactome and therefore gives consistent results with the enrichment analysis outlined
above. The parameters for the tool are the following: (1) medium network specificity
between the global functions and detailed reactions (3-8 hierarchical levels from the ranked
pathway database), the minimum requirement is that at least 4% of the mapped genes are
represented in the total associated gene list; (2) Kappa-score = 0.5 - the score measures
inter-rater agreement for categorical items. In ClueGO, Kappa-score defines the term-term
interrelations and functional groups based on shared genes between terms; (3) a Two-sided
hypergeometric test for enrichment calculation and Bonferroni step-down p-value

correction.
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5.3 Results

In this study, Bacteroides vulgatus was selected as a focal point due to compelling evidence
presented by Mills et al. Their research illuminated a significant relationship between the
proteases of Bacteroides vulgatus and the severity of UC. However, Mills et al did not extend
to modelling or elucidating the interaction mechanisms between Bacteroides vulgatus and
the host. Our work aimed to bridge this gap by exploring the potential interactions of B.
vulgatus within the host environment. Moreover, Bacteroides vulgatus has been implicated
by multiple models used in chapter 3, but the role Bacteroides vulgatus plays in IBD is widely
unknown (Liu et al., 2022; Mills et al., 2022). This approach was intended to frame a realistic

use case of the Microbiolink2 pipeline.

5.3.1. Identification of domain-domain and domain-motif interactions

I found 812 bacterial proteins identified in the microbiome data of the UC cohort (outlined in
Methods 5.2.1) all of them derived from or associated with Bacteroides vulgatus. These
proteins were then mapped based on their sequences to Uniprot and their PFAM identifiers
were extracted. Of these, 66 bacterial proteins (Supplementary Table 5.1) were connected to
290 human proteins through DDIs, resulting in 899 PPIs. Meanwhile, the DMI analysis
revealed six bacterial proteins that have domains connecting to a motif on host protein
sequences. Because the DDI-mediated PPIs are undirected and less specific compared to
the DMI-based PPIs, I worked with the latter results in the following. These six bacterial
proteins have been outlined in Table 5.1. The two proteins identified as A6KXF4 and A6L2K1
were both from a specific strain of Bacteroides vulgatus, strain ATCC 8482 while
AOA076IWM7, W4UP76 and AOA108T7M9 came from other Bacteroides species and EGMLK6

derived from Prevotella salivae.
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Table 5.1. Bacteroides vulgatus proteins were identified and predicted to bind to host

membrane proteins.

Uniprot ID Description Organism

A6KXF4 Serine/threonine-protein Bacteroides vulgatus strain ATCC 8482
kinase, AfsK-like

A6L2K1 Putative integral membrane Bacteroides vulgatus strain ATCC 8482
protein, with calcineurin-like
phosphoesterase domain

AOAQ76IWM7 | RNA-binding protein Bacteroides dorei

E6MLK6 Phosphorylase family Prevotella salivae DSM 15606 strain

W4UP76 Apolipoprotein Bacteroides reticulotermitis JCM 10512
N-acyltransferase strain

AOA108T7M9 | Putative serine protease, Bacteroides stercoris
AprX-like

5.3.2 Reconstructing the bacteria-human interactome

The MicrobioLink2 pipeline identified 590 HMIs between 6 Bacteroides vulgatus proteins

and 455 human proteins through DMIs (Supplementary Figure 5.1). I found 5 bacterial

domains out of the 562 that are able to connect to the target motifs on the human protein

sequence.
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Figure 5.1. Predicted host-microbe interactions between a putative serine protease AOA108T7M9 (red triangle) and host membrane based

proteins (blue rectangles). (A) direct PPIs interactions (B) results of functional analysis to determine which biological pathways are enriched in

host proteins that are directly interacting with the microbial protein. The colour of the nodes represents the group of reactions that belong to

the broader term (highlighted by bold font type). The size of the nodes correlates with the p-value corrected with Bonferroni step down

approach. The edge between nodes shows the relationship between reactions. The figure was created in Cytoscape using the ClueGO package.
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The edge between nodes shows the relationship between reactions. The figure was created in Cytoscape using the ClueGO package.
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proteins (blue rectangles). (A) direct PPIs interactions. (B) results of functional analysis to determine which biological pathways are enriched in

host proteins that are directly interacting with the microbial protein. The colour of the nodes represents the group of reactions that belong to
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approach. The edge between nodes shows the relationship between reactions. The figure was created in Cytoscape using the ClueGO package.

167



HEG1

IFNLR1
AXL
EBAG9
HRH3
ARL10
RNF225
IL6R SIGLEC11

Figure 5.4. Predicted host-microbiome interactions between W4UP76 (red triangle) with
the host membrane based proteins (blue rectangles). The small number of
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analysis. The figure was created in the Cytoscape network visualisation tool.

5.3.2 Functions of human target proteins

The ClueGO functional analysis highlighted the main pathways and reactions for each
cluster of human target genes (Figure 5.1,, 5.2., and 5.3.). The first cluster included the 186
targets of the AOA108TZM bacterial protein. These molecules are involved in the PTK6 and
Notch signalling, extracellular matrix organisation, post-translational modification of
proteins, intercellular interactions, etc (details in Figure 5.1.). The second cluster involved
134 human proteins targeted by A6L2K1 and A6KXF4 bacterial proteins. Similarly to cluster 1,
proteins related to intercellular interactions are affected but this group of proteins involves
Secretin family receptors and members of the EPH-Ephrin signalling (details in Figure 5.2).
Cluster 3 described 126 targets potentially bound by AOA076IWM7 and E6MLK6 proteins
enriched with rhodopsin-like receptors, Secretin family receptors, members of the GPCR
signalling and intercellular interaction related molecules (details in Figure 5.3). Finally
cluster 4 consisted of 9 human targets where ClueGO could not identify enriched functions
(details in Figure 5.4) but targets included proteins like an Interferon lambda receptor and

Interleukin 6 receptor.
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All host proteins that have direct interactions with the microbial proteins from every cluster
were then aggregated together. clusterProfiler (Wu et al., 2021) and ReactomePA as the
pathway database was used for the over-representation analysis and highlighted the GPCR
signalling as the most enriched pathway but the analysis revealed cell-cell

interaction-related processes as well (Figure 5.5).
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Figure 5.5. Functional enrichment analysis of the human target proteins.
Over-representation analysis of the host proteins which have direct interactions with

microbial proteins across clusters found in the HMI network.
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5.3.3 Effect of bacterial proteins on downstream signalling

A multi-layered network was constructed to model the potential effect of microbial proteins
on downstream signalling. The network consisted of three types of molecular connections,
including host-microbe, human protein-protein, and transcription factor-target gene
interactions. The TieDie algorithm was used to integrate various inputs, including the
expression of 455 host membrane proteins affected by bacteria inUC, 51 transcription
factors regulating the expression of the top 150 upregulated DEGs in UC condition, and an
intracellular signalling network. This resulted in an intermediate contextualised PPI network
with 18,248 directed and signed interactions among 5,390 proteins (derived from the

transcriptomics dataset) in the UC samples.

The output of the algorithm included the inferred signalling network and the heat of each
node in the network. The heat represents the influence or activity generated by a particular
node or set of nodes in the network. The greater the value of the heat the greater the
influence of the node and therefore the behaviour or information is propagated throughout
the network. The inferred network included five types of nodes: bacterial proteins (5),
human membrane proteins (136), intermediate signalling proteins (324), transcription factors

(39), and DEGs (24). Each of these layers has been annotated in Figure 5.6.

The ClueGO analysis identified enriched functions for each cluster in the intracellular PPI
network separately (see Figure 5.6). The combination of pathway information from
Reactome and heat values derived from TieDie revealed the diverse signalling pathways
involved in the effect of bacterial proteins. 14 functional clusters were identified, including
those involved in MAPK, VEGF, TLR4, TGF-beta signalling, apoptosis, and DNA repair. Figure

5.6 provides more detailed information on these clusters.

The analysis showed that the highest heat values were observed in clusters 2, 3, 6, and 9,
which were associated with inflammation-related processes (Supplementary Figure 5.1).
These findings suggest that the identified signalling pathways and functional clusters may

play a critical role in UC pathogenesis mediated by bacteria.

Finally, I examined the over-represented functions among the reached DEGs in the TieDie
network. Not surprisingly, the cytokine-mediated signalling was significantly enriched
(p-value < 0.05) compared to the top 150 upregulated DEGs in UC samples compared to
healthy condition (Figure 5.7).
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functional clusters in the intermediate PPI network. This figure was created using

Cytoscape (Shannon et al., 2003) network visualisation and analysis software environment.
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Figure 5.7. Enriched functions among the DEGs in TieDie compared to the top 150
upregulated genes in UC. The functional enrichment demonstrates a large host immune

response in UC through both cytokine and interleukin signalling.

5.3.4 Effect of Bacteroides vulgatus on GPCR and MAPK pathways

Functional analysis was performed on a diverse set of proteins, bacteria targets and
downstream signalling networks, identifying the potential role of GPCR and MAPK signalling
to mediate the effect of Bacteroides vulgatus. To elucidate this complex TieDie networks
shown in Figure 5.6, the pathways and the cross-talk between bacteria and the host proteins
were reconstructed (Figure 5.8) using collected pathway members from the ReactomeDB
and the transcription factors from the literature (Liu et al., 2018; Guo et al., 2020; Coulthard
et al., 2009; Cuadrado and Nebreda, 2010; Huang, Shi and Chi, 2009).

MAPK and GPCR pathway members were selected from the TieDie network and only DEGs
where the expression is influenced by a transcription factor (TF) in the MAPK and GPCR
pathways were kept. This enabled the focused analysis and modelling of the effect HMIs
have on differentially expressed genes in UC through the MAPK and GPCR signalling
pathways.

Finally, to observe the propagation of the signal through the network, heat values from the

TieDie analysis were used to annotate the network. The result highlighted that the heat
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values are higher in the MAPK pathway suggesting the significant role of the pathway in

downstream signalling (Figure 5.8.).

Figure 5.8. (Next page) Subset network modelling the host-microbe interactions and
regulatory interactions between bacterial proteins and GPCR/MAPK pathway in
ulcerative colitis. Nodes shapes represent the pathways involved: diamond-shaped nodes
are MAPK pathways members; V-shaped nodes are GPCR pathway members;
hexagon-shaped nodes are common members between the two pathways and therefore
highlight cross-talk between MAPK and GPCR pathways; rectangle-shaped nodes
represent differentially expressed genes in ulcerative colitis. Node colour represents the
linker heat of the signal propagation throughout the network. The red dotted line shows
inhibitory interaction and the black line shows stimulatory interaction. This figure was
created using Cytoscape (Shannon et al., 2003) network visualisation and analysis software

environment.

173


https://sciwheel.com/work/citation?ids=121985&pre=&suf=&sa=0

Putative
integral
membrane
protein, with Bacterial
-~ calcineurin-like .
phosphoesterase proteins
domain, .

Serine/threonine-protein
Apolipoprotein i
N-acvltrjnsferase

o

P P P / 1 Y o e
ADRAIBADRAZB_,$_5'I'R4 CHRM5 HCRTR2 SSTR3. CHRM2 HTRLD

o

HCRTRL AVPRIA

o e
_AVPR]_ﬁ_‘ DRD4 ADRAID GPR132

Target
proteins

NPFFR2

N
A

WoIK 3R L . 3 g a "y
GNBS — GNB2 ——GNA13

Intermediate

PPI
network
Linker heat
TFs
1 DEGs

174



5.4. Discussion

The microbiome plays an important role in homeostatic processes in the host therefore, the
altered community composition leads to differences in host signalling (Wu and Wu, 2012).
Currently, there is a lack of studies describing the connection between altered microbial
communities and host signalling responses by analysing and integrating multi-omic
datasets. In this chapter, a proof of concept was presented to predict interactions between
host and microbes by focusing on selected bacterial proteins derived or associated with
strains of Bacteroides vulgatus, and its potential signalling mechanisms in driving UC.
Although Bacteroides vulgatus was previously considered as a commensal bacteria that
exhibits probiotic properties in mouse models, more recent research has shown how this
bacteria can also play a role in not only IBD pathogenesis but also increased disease activity
for individuals with UC (Mills et al., 2022). The presented study highlights the potential

involvement of Bacteroides vulgatus in the development of UC.

[ analysed public metagenomic and transcriptomic datasets and combined them with
network resources to establish a host-microbe interactome and the consequence of these
HMIs on the downstream signalling network in UC conditions. The identified 6 bacterial
proteins are potentially able to bind to and modify host membrane proteins mostly through
enzymatic domains, including kinase, protease, phosphoesterase, phosphorylase and
acyltransferase functions. The classic example of host-microbe interactions comes from
pathogenic bacteria secreting proteins that selectively bind to proteins to regulate the host
cell’s biological activity; these proteins are known as effector proteins (Weigele et al., 2017).
However, bacterial proteins can also interact through other mechanisms such as secreted
human proteins, bacterial proteins secreted into extracellular spaces, membrane vesicles
that are endocytosed or fuse with the human cell membranes, bacterial cellular lysate,
translocation due to dysfunction and direction contact with M cells, dendritic cells or
epithelial cells. The 6 bacterial proteins identified in this chapter are all membrane proteins,
which means they have the ability to interact with the host through a complex system of
signal transduction. By targeting proteins on the plasma membrane, the bacteria leverage a
core part of eukaryotic signalling networks. However, the precise signalling mechanics for

some bacterial proteins are largely unknown, which shows the potential for a tool such as
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MicrobioLink, which enables biologists to create hypotheses about how the bacterial

proteins could be targeting host proteins (Weigele et al., 2017; Zhou, Beltran and Brito, 2022).

The main processes that these proteins target included the GPCR signalling and the cell-cell
interaction. Both functions play critical roles in host-microbe interactions: G
protein-coupled receptors (GPCRs) are cell surface receptors that transmit signals from
outside the cell and are involved in numerous physiological processes. Commensal bacteria,
such as Bacteroides vulgatus, often mimic the ligands for these receptors, therefore
perturbing the signalling in hosts (Cohen et al., 2017). In UC, GPCR signalling contributes to
the recruitment and activation of immune cells, causing chronic inflammation and tissue
damage in the colon (Zeng et al., 2020). The gut microbiome can affect cell-cell interactions,
therefore modifying the integrity of the intestinal epithelial barrier that leads to increased
permeability and allows bacterial products to stimulate the immune system (Gierynska et

al., 2022).

The TieDie network propagation algorithm (Paull et al., 2013) revealed the effect of the
bacteria-perturbed membrane proteins on differential gene expression in UC. The
integrated, multi-layered network highlighted the main clusters where the signal is going
through, including several already published functions, such as the PI3K and MAPK
signalling, but also highlighted new potential candidates (e.g. ERBB2-signalling).

Phosphatidylinositol-3 kinase (PI3K) signalling contributes to the activation and migration of
immune cells and to the disruption of the intestinal epithelial barrier, two factors that play a
key role in UC pathogenesis. Specifically, the PI3K signalling pathway can promote the
production of pro-inflammatory cytokines and chemokines, which can recruit and activate
immune cells in the colon. In addition, the PI3K pathway can influence the integrity of the
intestinal epithelial barrier by regulating the expression of tight junction proteins, which
help to maintain the physical barrier between the gut lumen and the underlying immune
system (Huang et al., 2011). Evidence shows that gut microbiota composition depends on the
PI3K signalling, which has been shown to regulate the production of antimicrobial peptides
by intestinal epithelial cells. Also, the gut microbiome can modulate PI3K signalling, with
certain gut bacteria producing metabolites that activate or inhibit PI3K signalling in host

cells (Mohseni et al., 2021).

Similarly to the PI3K pathway, MAPK signalling is a potential candidate that mediates the

effect of the altered gut microbiome on inflammatory processes by enhancing
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proinflammatory cytokine production. MAPKs are enzymes that regulate cellular processes
such as cell growth, differentiation, and survival, as well as immune response and

inflammation (Yang et al., 2022).

Studies have also demonstrated that dysregulated MAPK signalling influences the gut
microbiome structure and function, which may contribute to the development of IBD

(Guardamagna et al., 2022).

While the functional analysis highlighted the GPCR pathway as the most significant function
targeted by bacterial proteins, the downstream analysis revealed the crucial role of the
MAPK pathway in mediating the effect of the interspecies interactions. The literature
describes a cross-talk between the pathways: upon ligand binding to a GPCR, the receptor
undergoes a conformational change that allows it to interact with a G protein. The activated
G protein dissociates from the receptor and activates downstream effectors, including the
MAPK pathway. The specific G protein that is activated depends on the type of GPCR, and
different G proteins can activate different MAPK pathways (Hur and Kim, 2002). The
reconstructed GPCR-MAPK network supported the same model, as the bacterial proteins
mostly connected to the GPCR signalling members and then the signal connected to the
MAPK pathway through the shared pathway members. The analysis of the heat showed that
the MAPK signalling components have higher values, suggesting that these proteins have
more influence on the network. The novelty of the established workflow presented in this
chapter comes from the exploratory power it provides. Typically, in microbiome analysis,
KEGG or Enzymatic pathways are used to determine the functional potential of a
community of bacteria (Kanehisa et al., 2023). These pathways are derived from a consensus
of all literature research (Creixell et al., 2015). Although PPI networks are often
oversimplifications of complex biological processes, they process the ability to reveal
potential information that cannot be identified or is hidden within a well-defined pathway
(Barabasi, Gulbahce and Loscalzo, 2011; Gosak et al., 2018; Creixell et al., 2015; Yang et al.,
2019).

There are several limitations to using MicrobioLink2 for predicting HMIs. One challenge is
that predicting interactions between bacterial and human proteins is difficult due to limited
knowledge of the motifs bound by bacterial domains. The ELM (Kumar et al., 2022) and 3did
(Mosca et al., 2014) databases also limit results to domains found in eukaryotes, which can
miss bacteria-specific structures. To overcome this, machine learning-based approaches

can be used to predict bacterial domain structures and potential target motifs. Another
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limitation is that it is unclear whether bacterial proteins activate or inhibit host proteins. To
address this, manually curated information about domain-binding motifs could be
integrated into HMI predictions. Additionally, assuming that every expressed transcript in
transcriptomics leads to a functional protein is not accurate, as post-transcriptional and
post-translational modifications can affect the RNA structure and protein activity. Analysing
proteomics and transcriptomics from the same samples could improve the accuracy of the
model. Finally, as these connections are predicted interactions until the resulting pathways

are validated, it is difficult to know if the biological system will behave as described.

There are other existing HMI tools, such as interSPPI (Yang et al., 2019), which use an
ensemble of different machine learning models to score and predict the likelihood of
interspecies interactions. InterSPPI provides a much higher level of coverage than
MicrobioLink2 and, therefore, has the potential to explore a larger range of microbial
proteins. Nevertheless, as MicrobioLink2 uses experimentally validated domain-motif (SLiM)
interactions from ELM upstream of the network, there is a higher level of certainty that the

predicted interactions will hold true.

Despite the limitations described here, the applied HMI pipeline combines gap-filling
approaches, such as structural PPI prediction and network analysis, which highlight the
importance of condition-specific gene expression. I not only identified the potentially
diverse role of Bacteroides vulgatus in UC conditions but also revealed the background of

biological processes on the molecular interaction level.

As the prediction of PPIs has improved in the last few years, and more and more machine
learning approaches have come to light, I plan to focus more on deep learning methods that
use neural networks to model the sequence, structure, or both of the interacting proteins.
AlphaFold2 is a protein structure prediction algorithm developed by the European Molecular
Biology Laboratory and the University of Washington. It uses deep learning techniques to
predict the 3D structure of a protein from its amino acid sequence. While the original aim of
AlphaFold2 is to predict 3D protein structures, bacterial domains can also be inferred with
the same algorithm. Google’s nearest rival in this space is Meta, which released its tool for
protein structure prediction called ESM (Rives et al., 2021). However, they also extended this

to bacterial proteins, releasing the ESM Metagenomic Atlas in 2022 (https: //esmatlas.com/).

It's important to keep in mind that the accuracy of the prediction usually depends on the

specific input, and the quality of the prediction may vary for different bacterial domains. In
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this study a strict filtering threshold was placed on the database used such that only verified
DMIs and DDIs were carried forwards. Although this limited the scope of the study, it did
increase the certainty of the predictions. It is, however, recommended that these
predictions be validated using experimental methods. An example of this would be the study
conducted by Balkenhol et al. In this study, they validated the host-pathogen interactions
using Aspergillus fumigatus in mice as a case study. After identifying candidate PPIs, they
experimentally validated using a ligand binding assay (Balkenhol et al., 2022). However, this
is a non-trivial task as the majority of the bacteria in the human gut are not currently
culturable, thus limiting the experimental validation to a select group of bacteria (Balint and
Brito, 2023). To infer networks on a smaller scale shows how effective MicrobioLink2 is
overall and compared to other interspecies interaction prediction approaches. In this
chapter, I presented a use case that describes the need for this level of granularity when

predicting host-microbe interaction networks.
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Chapter 6: Integrated Discussion

The role the gut microbiome plays in IBD pathogenesis and disease severity remains a key
challenge for researchers and clinicians worldwide. With an ever-increasing incidence rate,
new tools and methods for predicting patient-level diagnosis, prognosis and drug response
are needed. And importantly, we must ensure that these tests should be as accessible and
non-invasive as possible. This is where the human gut microbiome has a vital advantage as it
is completely non-invasive to take faecal samples from IBD patients. That being said,
understanding the complexity of the diseases and that they are not just one component, but
instead, the combination of genetics, environmental factors, and the microbiome, requires

more than just the analysis of a single omics.

In Chapter 2, I showed the current standard of microbiome analysis by applying it to the
largest publicly available longitudinal microbiome study in IBD (Lloyd-Price et al., 2019). This
analysis identified areas of weakness in the current methods to explore longitudinal
microbiome data. Most of the popular tools are not appropriate for compositional analysis,
i.e. those which have been derived from transcriptomic analysis like DESEQ2 (Love, Huber
and Anders, 2014) and EdgeR (Robinson, McCarthy and Smyth, 2010; McCarthy, Chen and
Smyth, 2012; Chen, Lun and Smyth, 2016)), or have not been designed to account for
longitudinal samples, such as LEfSe (Segata et al., 2011). Furthermore, even with increasingly
large studies taking place, there are still ongoing issues with the ordination and clustering of
the microbiome data. The application to longitudinal data would only exacerbate the poor

ordination and clustering of the data.

In an attempt to address these issues, in Chapter 3, I developed an approach to try and
account for the patient-specific baseline as well as to try and identify a global IBD
microbiome signature when compared to healthy controls. The method identified bacterial
species that were more likely to experience a shift over the course of an individual time

course in UC, CD, and healthy controls.

The outcomes of Chapter 3 highlighted the non-linear, highly-dimensional, noisy and
complex nature of microbiome data. In Chapter 4, I extended the approaches to handle

longitudinal data, namely using patient-specific baseline transformation (FCBT and SBT), to
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different matrix factorisation algorithms and machine learning classification algorithms.
Moreover, as matrix factorisation methods are not count data specific like the Pooled
Species Precision (SPM) developed in Chapter 3, the models were also applied to
metabolomics data. This is important as metabolomics are considered to be the closest
omics to phenotype (Johnson and Gonzalez, 2012; Johnson, Ivanisevic and Siuzdak, 2016;
Patti, Yanes and Siuzdak, 2012). Using metabolomics to identify biomarkers has a few major
advantages over metagenomics as extensive metabolomic pathway research has already
been conducted, metabolites directly interact with both the host and microbiome and, like
with metagenomics, it can also be extracted from faecal samples. However, there are two
main challenges with extracting biomarkers from metabolomic data: (1) accurately
identifying the best biomarkers molecules and (2) which molecules among the numerous
other dysregulated metabolites are the best phenotype modulator remains an open question

(Guijas et al., 2018).

To address the limitations in biomarker identification, there is clearly more work to be done
to further utilise ML and DL models. One of the biggest steps forward in the Al models is the
recent introduction of foundational models. A foundation model, for example, a large
language model (LLM), can be trained on broad sets of data that can be adapted to a broad
spectrum of downstream tasks with little to no fine-tuning of parameters. These models
require an extremely large amount of data, which the model uses to apply the information it
has learned to the new question it has been asked. It achieves this through self-supervised
and transfer learning and can perform both generative tasks (i.e. predicting new protein
structures) or classification tasks (e.g. predicting cell-type annotations) depending on the
architecture used. The longitudinal nature of the microbiome and metabolome can be
understood through the information captured across a “gut microbiome atlas”, which could
result in a better understanding of the dynamic systems at play. At the same time, the model
can also retain knowledge from the host's immune system, for example. But like all
foundational models, it needs to be treated with care, and a huge amount of work will be

needed to validate the models’ findings properly.

One limitation of Al models is their lack of interpretability. Interpretability is the ability of
the model to explain the results they are predicting. This is one of the biggest barriers to the
adoption of more complex machine learning algorithms. To address this, a key area of

research with current Al methods is explainable Al. This research area focuses on the
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development of tools and frameworks for interpreting the results of the ML models. This is
particularly important for any biological insights found by ML models. There are several
ways to approach this mathematically; however, in the application of healthcare, the
explainitiablity of a model needs to also be combined with a prior understanding of the
biological system. In Chapter 5, I demonstrate and provide a proof of concept for a
framework to perform downstream analysis and interpretation of how a selected subset of
microbial proteins interact with the host through host-microbiome interactions. In complex
diseases, it is known that the microbiome does not work in isolation, and it is the interplay
between the host and microbes that can result in different biological responses. Thus the
MicrobioLink2 pipeline provides a way to provide additional information to a single omics.
The framework is model agnostic and, therefore, can be used to help explain and explore
any selected microbial proteins and their effect on the host. Moreover, future work could
extend the framework of MicrobioLink2 so that it can also be used on the metabolome.
Once again, further utilising network diffusion and the wealth of existing metabolomic data
as a reference database to model patient-specific host-metabolite interactions. Even though
I did not apply this approach to metabolomic data in this thesis, this, in turn, could address
the second challenge of identifying which dysregulated metabolites are the best phenotype
modulators. The pipeline used in this chapter will be released as a publication and made
open-access. To ensure support for the tool, I will work with other members of the group to

ensure a smooth handover of the tool is made.

In addition to the biological insights described in this thesis, another outcome is the
developed methods. Each of these chapters builds up a framework and workflow for
analysing longitudinal microbiome data. Because of this, there was a heavy emphasis on
productisation and software engineering throughout this thesis. Each chapter has its own
module, which allows for further data analysis. To ensure that the methods implemented are
correct, there are also unit tests throughout the code base. This has the additional
advantage of ensuring reproducibility; for example, after a new package is updated, the unit
test will flag if this affects the codebase or not. The entire code base is wrapped in Python
and is deployable either through local installation, Docker or Singularity image, depending

on the platform; see Figure 6.1 for more details.
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Figure 6.1. Oviewer of the framework created in this PhD research project. The

framework can be broken into 4 key parts. From top to bottom. (1) Preprocessing is a

module which can be replaced easily with any preprocessing scripts/functions that are

needed. Therefore can be quickly adapted to omic data. (2) Integration and biomarker

extraction encompass the work seen in chapter 4. (3) Stratification and prediction

encompass the work in Chapter 3, and 4. (4) For biological interpretation and functional

analysis, which can be seen in Chapter 5.
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The MOTION study is a longitudinal microbiome and multi-omic study following three
different risk categories of dementia patients over multiple years with the aim of identifying
prognostic indicators. The original plan of my PhD project was to apply the developed
models to data generated in parallel through the BBSRC-funded MOTION study. The
restrictions put in place due to COVID-19 resulted in none of the planned data being
generated in time to analyse it for my PhD, meaning the decision was made to switch to
publicly available data. If the MOTION study had gone ahead, the key difference would have
been the sampling rate. Although this is difficult to control in longitudinal studies, the
monthly rate proposed for the MOTION study would've meant there would have been

consistent sampling, and therefore, the data could have been used as a time-series.

In conclusion, this PhD research has provided and explored new ways to investigate and
extract potential prognostic indicators from the human gut microbiome over longitudinal
omic data. This was achieved through both unsupervised or supervised methods, depending
on the amount of metadata or the question at hand. To aid in the overall interpretability of
the model developed, network and systems biology approaches were combined together to
explain how the extracted microbe(s) could interact with the host. This ultimately led to
further mechanistic insights and understanding of the interplay between the host and the
microbes during healthy and unhealthy conditions, as demonstrated with a specific

example.

184



References

Aden, K., Rehman, A., Waschina, S., Pan, W.-H., Walker, A., Lucio, M., Nunez, A.M., Bharti, R.,
Zimmerman, J., Bethge, J., Schulte, B., Schulte, D., Franke, A., Nikolaus, S., Schroeder, J.O.,
Vandeputte, D., Raes, J., Szymczak, S., Waetzig, G.H., Zeuner, R. and Rosenstiel, P., 2019. Metabolic
Functions of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in
Patients With Inflammatory Bowel Diseases. Gastroenterology, 157(5), pp.1279-1292.e11.

Aitchison, J., 1982. The statistical analysis of compositional data. Journal of the Royal Statistical
Society: Series B (Methodological), 44(2), pp.139-160.

Akalin, A., 2020. Computational Genomics with R. Chapman and Hall /CRC.

Akiva, E., Friedlander, G., Itzhaki, Z. and Margalit, H., 2012. A dynamic view of domain-motif
interactions. PLoS Computational Biology, 8(1), p.e1002341.

Alex, F., ALEX, G., Bertr, RE. GRAMFORTINRIA.F., BERTR, T. and THIRION, n.d. Scikit-learn:
Machine Learning in Python.

Alkasir, R., Li, J.,, Li, X, Jin, M. and Zhu, B., 2017. Human gut microbiota: the links with dementia
development. Protein & cell, 8(2), pp.90-102.

Alves, L. de F., Westmann, C.A., Lovate, G.L., de Siqueira, G.M.V,, Borelli, T.C. and Guazzaroni,
M.-E., 2018. Metagenomic approaches for understanding new concepts in microbial science.
International journal of genomics, 2018, p.2312987.

Anon 2012. Numerical Ecology. Developments in environmental modelling. Elsevier.

Anon 2014. Gently Clarifying the Application of Horn’s Parallel Analysis to Principal Component
Analysis Versus Factor Analysis. Community Health Faculty Publications and Presentations.

Anscombe, F.J. and Glynn, W.J., 1983. Distribution of the kurtosis statistic b , for normal samples.
Biometrika, 70(1), pp.227-234.

Arango-Argoty, G., Garner, E., Pruden, A., Heath, L.S., Vikesland, P. and Zhang, L., 2018. DeepARG:
a deep learning approach for predicting antibiotic resistance genes from metagenomic data.
Microbiome, 6(1), p.23.

Argelaguet, R., Arnol, D., Bredikhin, D., Deloro, Y., Velten, B., Marioni, J.C. and Stegle, O., 2019.
MOFA+: a probabilistic framework for comprehensive integration of structured single-cell data.
BioRxiv.

Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J.C., Buettner, F., Huber, W. and
Stegle, O., 2018. Multi-Omics Factor Analysis-a framework for unsupervised integration of
multi-omics data sets. Molecular Systems Biology, 14(6), p.e8124.

Armoni, R. and Borenstein, E., 2022. Temporal alignment of longitudinal microbiome data.
Frontiers in Microbiology, 13, p.909313.

Armstrong, G., Martino, C., Rahman, G., Gonzalez, A., Vazquez-Baeza, Y., Mishne, G. and Knight,
R., 2021. Uniform manifold approximation and projection (UMAP) reveals composite patterns and
resolves visualization artifacts in microbiome data. mSystems, 6(5), p.e0069121.

Armstrong, G., Rahman, G., Martino, C., McDonald, D., Gonzalez, A., Mishne, G. and Knight, R.,
2022. Applications and comparison of dimensionality reduction methods for microbiome data.

185


https://sciwheel.com/work/bibliography/7214850
https://sciwheel.com/work/bibliography/7214850
https://sciwheel.com/work/bibliography/7214850
https://sciwheel.com/work/bibliography/7214850
https://sciwheel.com/work/bibliography/7214850
https://sciwheel.com/work/bibliography/7469236
https://sciwheel.com/work/bibliography/7469236
https://sciwheel.com/work/bibliography/12173488
https://sciwheel.com/work/bibliography/2017861
https://sciwheel.com/work/bibliography/2017861
https://sciwheel.com/work/bibliography/4745541
https://sciwheel.com/work/bibliography/4745541
https://sciwheel.com/work/bibliography/4799719
https://sciwheel.com/work/bibliography/4799719
https://sciwheel.com/work/bibliography/6112967
https://sciwheel.com/work/bibliography/6112967
https://sciwheel.com/work/bibliography/6112967
https://sciwheel.com/work/bibliography/9269293
https://sciwheel.com/work/bibliography/14590560
https://sciwheel.com/work/bibliography/14590560
https://sciwheel.com/work/bibliography/15877525
https://sciwheel.com/work/bibliography/15877525
https://sciwheel.com/work/bibliography/4781005
https://sciwheel.com/work/bibliography/4781005
https://sciwheel.com/work/bibliography/4781005
https://sciwheel.com/work/bibliography/7742944
https://sciwheel.com/work/bibliography/7742944
https://sciwheel.com/work/bibliography/7742944
https://sciwheel.com/work/bibliography/5438841
https://sciwheel.com/work/bibliography/5438841
https://sciwheel.com/work/bibliography/5438841
https://sciwheel.com/work/bibliography/14586626
https://sciwheel.com/work/bibliography/14586626
https://sciwheel.com/work/bibliography/11861758
https://sciwheel.com/work/bibliography/11861758
https://sciwheel.com/work/bibliography/11861758
https://sciwheel.com/work/bibliography/12779706
https://sciwheel.com/work/bibliography/12779706

Frontiers in Bioinformatics, 2, p.821861.

Bagnall, A., Flynn, M., Large, J,, Line, J., Bostrom, A. and Cawley, G., 2018. Is rotation forest the
best classifier for problems with continuous features? arXiv.

Bajer, L., Kverka, M., Kostovcik, M., Macinga, P., Dvorak, J., Stehlikova, Z., Brezina, J., Wohl, P.,
Spicak, J. and Drastich, P., 2017. Distinct gut microbiota profiles in patients with primary
sclerosing cholangitis and ulcerative colitis. World Journal of Gastroenterology, 23(25),
pp-4548-4558.

Bakir-Gungor, B., Hacilar, H., Jabeer, A., Nalbantoglu, O.U., Aran, O. and Yousef, M., 2022.
Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature
selection methods. Peer]J, 10, p.e13205.

Balint, D. and Brito, I.L., 2023. Human-gut bacterial protein-protein interactions: understudied
but impactful to human health. Trends in Microbiology.

Balkenhol, J., Bencurova, E., Gupta, S.K., Schmidt, H., Heinekamp, T., Brakhage, A., Pottikkadavath,
A. and Dandekar, T., 2022. Prediction and validation of host-pathogen interactions by a versatile
inference approach using Aspergillus fumigatus as a case study. Computational and structural
biotechnology journal, 20, pp.4225-4237.

Bangsgaard Bendtsen, K.M., Krych, L., Sgrensen, D.B., Pang, W., Nielsen, D.S., Josefsen, K.,
Hansen, L.H., Sgrensen, S.J. and Hansen, A.K., 2012. Gut microbiota composition is correlated to
grid floor induced stress and behavior in the BALB/c mouse. Plos One, 7(10), p.e46231.

Barabasi, A.-L., Gulbahce, N. and Loscalzo, J., 2011. Network medicine: a network-based approach
to human disease. Nature Reviews. Genetics, 12(1), pp.56-68.

Barabasi, A.-L. and Oltvai, Z.N., 2004. Network biology: understanding the cell’s functional
organization. Nature Reviews. Genetics, 5(2), pp.101-113.

Barnich, N. and Darfeuille-Michaud, A., 2007. Adherent-invasive Escherichia coli and Crohn’s
disease. Current Opinion in Gastroenterology, 23(1), pp.16-20.

Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L.V., Jarmusch, A.K. and Dorrestein, P.C.,
2022. Mass spectrometry-based metabolomics in microbiome investigations. Nature Reviews.
Microbiology, 20(3), pp.143-160.

Bebek, G., Koyutiirk, M., Price, N.D. and Chance, M.R., 2012. Network biology methods integrating
biological data for translational science. Briefings in Bioinformatics, 13(4), pp.446-459.

Beghini, F., Mclver, L.J., Blanco-Miguez, A., Dubois, L., Asnicar, F., Maharjan, S., Mailyan, A.,
Manghi, P,, Scholz, M., Thomas, A.M., Valles-Colomer, M., Weingart, G., Zhang, Y., Zolfo, M.,
Huttenhower, C., Franzosa, E.A. and Segata, N., 2021. Integrating taxonomic, functional, and
strain-level profiling of diverse microbial communities with bioBakery 3. eLife, 10.

Bellman, R., 1966. Dynamic programming. Science, 153(3731), pp.34-37.

Bent, S.J,, Pierson, J.D., Forney, L.J., Danovaro, R., Luna, G.M., Dell'anno, A. and Pietrangeli, B.,
2007. Measuring species richness based on microbial community fingerprints: the emperor has
no clothes. Applied and Environmental Microbiology, 73(7), pp.2399-401; author reply 2399.

Biagioni, D.J., Astling, D.P., Graf, P. and Davis, M.F., 2011. Orthogonal projection to latent
structures solution properties for chemometrics and systems biology data. Journal of
chemometrics, 25(9), pp.514-525.

Bishop, C.M., 2006. Pattern recognition and machine learning. Springer New York.

186


https://sciwheel.com/work/bibliography/12779706
https://sciwheel.com/work/bibliography/14606869
https://sciwheel.com/work/bibliography/14606869
https://sciwheel.com/work/bibliography/3981294
https://sciwheel.com/work/bibliography/3981294
https://sciwheel.com/work/bibliography/3981294
https://sciwheel.com/work/bibliography/3981294
https://sciwheel.com/work/bibliography/12909981
https://sciwheel.com/work/bibliography/12909981
https://sciwheel.com/work/bibliography/12909981
https://sciwheel.com/work/bibliography/15578753
https://sciwheel.com/work/bibliography/15578753
https://sciwheel.com/work/bibliography/15887459
https://sciwheel.com/work/bibliography/15887459
https://sciwheel.com/work/bibliography/15887459
https://sciwheel.com/work/bibliography/15887459
https://sciwheel.com/work/bibliography/313490
https://sciwheel.com/work/bibliography/313490
https://sciwheel.com/work/bibliography/313490
https://sciwheel.com/work/bibliography/589907
https://sciwheel.com/work/bibliography/589907
https://sciwheel.com/work/bibliography/203989
https://sciwheel.com/work/bibliography/203989
https://sciwheel.com/work/bibliography/9362523
https://sciwheel.com/work/bibliography/9362523
https://sciwheel.com/work/bibliography/11728872
https://sciwheel.com/work/bibliography/11728872
https://sciwheel.com/work/bibliography/11728872
https://sciwheel.com/work/bibliography/630851
https://sciwheel.com/work/bibliography/630851
https://sciwheel.com/work/bibliography/11006040
https://sciwheel.com/work/bibliography/11006040
https://sciwheel.com/work/bibliography/11006040
https://sciwheel.com/work/bibliography/11006040
https://sciwheel.com/work/bibliography/6893626
https://sciwheel.com/work/bibliography/2757482
https://sciwheel.com/work/bibliography/2757482
https://sciwheel.com/work/bibliography/2757482
https://sciwheel.com/work/bibliography/8478223
https://sciwheel.com/work/bibliography/8478223
https://sciwheel.com/work/bibliography/8478223
https://sciwheel.com/work/bibliography/12682559

Biton, A., Bernard-Pierrot, L., Lou, Y., Krucker, C., Chapeaublanc, E., Rubio-Pérez, C., Lopez-Bigas,
N., Kamoun, A., Neuzillet, Y., Gestraud, P., Grieco, L., Rebouissou, S., de Reynies, A., Benhamou, S.,
Lebret, T., Southgate, J., Barillot, E., Allory, Y., Zinovyev, A. and Radvanyi, F., 2014. Independent
component analysis uncovers the landscape of the bladder tumor transcriptome and reveals
insights into luminal and basal subtypes. Cell reports, 9(4), pp.1235-1245.

Bjerrum, J.T., Wang, Y., Hao, F., Coskun, M., Ludwig, C., Glinther, U. and Nielsen, O.H., 2015.
Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and
healthy individuals. Metabolomics : Official journal of the Metabolomic Society, 11, pp.122-133.

Bjerrum, J.T., Wang, Y.L., Seidelin, J.B. and Nielsen, O.H., 2021. IBD metabonomics predicts
phenotype, disease course, and treatment response. EBioMedicine, 71, p.103551.

Bjorkqvist, O., Repsilber, D., Seifert, M., Brislawn, C., Jansson, J., Engstrand, L., Rangel, I. and
Halfvarson, J., 2019. Alterations in the relative abundance of Faecalibacterium prausnitzii
correlate with changes in fecal calprotectin in patients with ileal Crohn’s disease: a longitudinal
study. Scandinavian Journal of Gastroenterology, 54(5), pp.577-585.

Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., D Lieber, A., Wu, E.,
Perez-Perez, G.I., Chen, Y., Schweizer, W., Zheng, X., Contreras, M., Dominguez-Bello, M.G. and
Blaser, M.J., 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early
life. Science Translational Medicine, 8(343), p.343ra82.

Bray, I.R. and Curtis, J.T., 1957. An Ordination of the Upland Forest Communities of Southern
Wisconsin. Ecological monographs, 27(4), pp.325-349.

Brito, A.F. and Pinney, JW., 2017. Protein-Protein Interactions in Virus-Host Systems. Frontiers in
Microbiology, 8, p.1557.

Bromke, M.A. and Krzystek-Korpacka, M., 2021. Bile acid signaling in inflammatory bowel disease.
International Journal of Molecular Sciences, 22(16).

Brown, J.R.-M.,, Flemer, B., Joyce, S.A., Zulquernain, A., Sheehan, D., Shanahan, F. and O'Toole,
PW., 2018. Changes in microbiota composition, bile and fatty acid metabolism, in successful
faecal microbiota transplantation for Clostridioides difficile infection. BMC Gastroenterology,
18(1), p.131.

Bull, M.J. and Plummer, N.T., 2014. Part 1: The Human Gut Microbiome in Health and Disease.
Integrative medicine (Encinitas, Calif.), 13(6), pp.17-22.

Cammarota, G., Ianiro, G., Ahern, A., Carbone, C., Temko, A., Claesson, M.J., Gasbarrini, A. and
Tortora, G., 2020. Gut microbiome, big data and machine learning to promote precision medicine
for cancer. Nature Reviews. Gastroenterology & Hepatology, 17(10), pp.635-648.

Cantini, L., Kairov, U., de Reyni¢s, A., Barillot, E., Radvanyi, F. and Zinovyev, A., 2019. Assessing
reproducibility of matrix factorization methods in independent transcriptomes. Bioinformatics,
35(21), pp.4307-4313.

Cao, Y., Shen, J. and Ran, Z.H., 2014. Association between Faecalibacterium prausnitzii Reduction
and Inflammatory Bowel Disease: A Meta-Analysis and Systematic Review of the Literature.
Gastroenterology research and practice, 2014, p.872725.

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N.,
Pefia, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, ST., Knights, D., Koenig, J.E., Ley, R.E.,
Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J. and Knight, R., 2010. QIIME
allows analysis of high-throughput community sequencing data. Nature Methods, 7(5),

187


https://sciwheel.com/work/bibliography/2279853
https://sciwheel.com/work/bibliography/2279853
https://sciwheel.com/work/bibliography/2279853
https://sciwheel.com/work/bibliography/2279853
https://sciwheel.com/work/bibliography/2279853
https://sciwheel.com/work/bibliography/7442557
https://sciwheel.com/work/bibliography/7442557
https://sciwheel.com/work/bibliography/7442557
https://sciwheel.com/work/bibliography/11614570
https://sciwheel.com/work/bibliography/11614570
https://sciwheel.com/work/bibliography/6999477
https://sciwheel.com/work/bibliography/6999477
https://sciwheel.com/work/bibliography/6999477
https://sciwheel.com/work/bibliography/6999477
https://sciwheel.com/work/bibliography/1523582
https://sciwheel.com/work/bibliography/1523582
https://sciwheel.com/work/bibliography/1523582
https://sciwheel.com/work/bibliography/1523582
https://sciwheel.com/work/bibliography/2897249
https://sciwheel.com/work/bibliography/2897249
https://sciwheel.com/work/bibliography/6622767
https://sciwheel.com/work/bibliography/6622767
https://sciwheel.com/work/bibliography/11653760
https://sciwheel.com/work/bibliography/11653760
https://sciwheel.com/work/bibliography/13375084
https://sciwheel.com/work/bibliography/13375084
https://sciwheel.com/work/bibliography/13375084
https://sciwheel.com/work/bibliography/13375084
https://sciwheel.com/work/bibliography/3979274
https://sciwheel.com/work/bibliography/3979274
https://sciwheel.com/work/bibliography/9269721
https://sciwheel.com/work/bibliography/9269721
https://sciwheel.com/work/bibliography/9269721
https://sciwheel.com/work/bibliography/14594457
https://sciwheel.com/work/bibliography/14594457
https://sciwheel.com/work/bibliography/14594457
https://sciwheel.com/work/bibliography/3134318
https://sciwheel.com/work/bibliography/3134318
https://sciwheel.com/work/bibliography/3134318
https://sciwheel.com/work/bibliography/177710
https://sciwheel.com/work/bibliography/177710
https://sciwheel.com/work/bibliography/177710
https://sciwheel.com/work/bibliography/177710

pp-335-336.
Casella, G. and Berger, R.L., 2001. Statistical Inference. 2nd ed. Australia: Cengage Learning.p.660.

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C.A., Holland, T.A., Keseler,
.M., Kothari, A., Kubo, A., Krummenacker, M., Latendresse, M., Mueller, L.A., Ong, Q., Paley, S.,
Subhraveti, P., Weaver, D.S., Weerasinghe, D., Zhang, P. and Karp, P.D., 2014. The MetaCyc
database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome
Databases. Nucleic Acids Research, 42(Database issue), pp.D459-71.

Cheadle, C., Vawter, M.P,, Freed, W.J. and Becker, K.G., 2003. Analysis of Microarray Data Using Z
Score Transformation. The Journal of Molecular Diagnostics, 5(2), pp.73-81.

Cheng, L., Qi, C., Yang, H., Lu, M,, Cai, Y., Fu, T,, Ren, J., Jin, Q. and Zhang, X., 2022. gutMGene: a
comprehensive database for target genes of gut microbes and microbial metabolites. Nucleic
Acids Research, 50(D1), pp.D795-D800.

Chen, T. and Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16.
22nd ACM SIGKDD International Conference. New York, New York, USA: ACM Press.pp.785-794.

Chen, Y., Lun, AT.L. and Smyth, G.K., 2016. From reads to genes to pathways: differential
expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood
pipeline. [version 2; peer review: 5 approved]. FI000Research, 5, p.1438.

Chiappetta, P., Roubaud, M.C. and Torrésani, B., 2004. Blind source separation and the analysis of
microarray data. Journal of Computational Biology, 11(6), pp.1090-1109.

Chiu, CY. and Miller, S.A., 2019. Clinical metagenomics. Nature Reviews. Genetics, 20(6),
pp-341-355.

Chuang, H.-Y., Hofree, M. and Ideker, T., 2010. A decade of systems biology. Annual Review of Cell
and Developmental Biology, 26, pp.721-744.

Clemente, J.C,, Ursell, L.K,, Parfrey, LW. and Knight, R., 2012. The impact of the gut microbiota on
human health: an integrative view. Cell, 148(6), pp.1258-1270.

Clooney, A.G., Eckenberger, J., Laserna-Mendieta, E., Sexton, K.A., Bernstein, M.T., Vagianos, K.,
Sargent, M., Ryan, F.J.,, Moran, C., Sheehan, D., Sleator, R.D., Targownik, L.E., Bernstein, C.N.,
Shanahan, F. and Claesson, M.J., 2021. Ranking microbiome variance in inflammatory bowel
disease: a large longitudinal intercontinental study. Gut, 70(3), pp.499-510.

Cohen, L.J., Esterhazy, D., Kim, S.-H., Lemetre, C., Aguilar, R.R., Gordon, E.A., Pickard, AJ., Cross,
J.R., Emiliano, A.B., Han, S.M,, Chu, J., Vila-Farres, X., Kaplitt, J., Rogoz, A., Calle, PY., Hunter, C.,
Bitok, J.K. and Brady, S.F., 2017. Commensal bacteria make GPCR ligands that mimic human
signalling molecules. Nature, 549(7670), pp.48-53.

Conte, M.P., Schippa, S., Zamboni, I., Penta, M., Chiarini, F., Seganti, L., Osborn, J., Falconieri, P.,
Borrelli, O. and Cucchiara, S., 2006. Gut-associated bacterial microbiota in paediatric patients
with inflammatory bowel disease. Gut, 55(12), pp.1760-1767.

Costello, S.P,, Soo, W., Bryant, RV.,, Jairath, V., Hart, A.L. and Andrews, J.M., 2017. Systematic
review with meta-analysis: faecal microbiota transplantation for the induction of remission for
active ulcerative colitis. Alimentary Pharmacology & Therapeutics, 46(3), pp.213-224.

Coulthard, L.R., White, D.E., Jones, D.L., McDermott, M.F. and Burchill, S.A., 2009. p38(MAPK):
stress responses from molecular mechanisms to therapeutics. Trends in Molecular Medicine,

188


https://sciwheel.com/work/bibliography/177710
https://sciwheel.com/work/bibliography/13979413
https://sciwheel.com/work/bibliography/1209448
https://sciwheel.com/work/bibliography/1209448
https://sciwheel.com/work/bibliography/1209448
https://sciwheel.com/work/bibliography/1209448
https://sciwheel.com/work/bibliography/1209448
https://sciwheel.com/work/bibliography/58827
https://sciwheel.com/work/bibliography/58827
https://sciwheel.com/work/bibliography/11664091
https://sciwheel.com/work/bibliography/11664091
https://sciwheel.com/work/bibliography/11664091
https://sciwheel.com/work/bibliography/2927024
https://sciwheel.com/work/bibliography/2927024
https://sciwheel.com/work/bibliography/2927024
https://sciwheel.com/work/bibliography/2514088
https://sciwheel.com/work/bibliography/2514088
https://sciwheel.com/work/bibliography/2514088
https://sciwheel.com/work/bibliography/9656911
https://sciwheel.com/work/bibliography/9656911
https://sciwheel.com/work/bibliography/6741721
https://sciwheel.com/work/bibliography/6741721
https://sciwheel.com/work/bibliography/152868
https://sciwheel.com/work/bibliography/152868
https://sciwheel.com/work/bibliography/74470
https://sciwheel.com/work/bibliography/74470
https://sciwheel.com/work/bibliography/9127456
https://sciwheel.com/work/bibliography/9127456
https://sciwheel.com/work/bibliography/9127456
https://sciwheel.com/work/bibliography/9127456
https://sciwheel.com/work/bibliography/4290828
https://sciwheel.com/work/bibliography/4290828
https://sciwheel.com/work/bibliography/4290828
https://sciwheel.com/work/bibliography/4290828
https://sciwheel.com/work/bibliography/655795
https://sciwheel.com/work/bibliography/655795
https://sciwheel.com/work/bibliography/655795
https://sciwheel.com/work/bibliography/3807999
https://sciwheel.com/work/bibliography/3807999
https://sciwheel.com/work/bibliography/3807999
https://sciwheel.com/work/bibliography/4083563
https://sciwheel.com/work/bibliography/4083563

15(8), pp.369-379.

Crawford, AV., Green, S.B., Levy, R., Lo, W.-J,, Scott, L., Svetina, D. and Thompson, M.S., 2010.
Evaluation of parallel analysis methods for determining the number of factors. Educational and
psychological measurement, 70(6), pp-885-901.

Creixell, P., Reimand, J., Haider, S., Wu, G., Shibata, T., Vazquez, M., Mustonen, V., Gonzalez-Perez,
A., Pearson, J., Sander, C., Raphael, B.J., Marks, D.S., Ouellette, B.F.F., Valencia, A., Bader, G.D.,
Boutros, P.C., Stuart, J.M., Linding, R., Lopez-Bigas, N., Stein, L.D. and Mutation Consequences
and Pathway Analysis Working Group of the International Cancer Genome Consortium, 2015.
Pathway and network analysis of cancer genomes. Nature Methods, 12(7), pp.615-621.

Cuadrado, A. and Nebreda, A.R., 2010. Mechanisms and functions of p38 MAPK signalling. The
Biochemical Journal, 429(3), pp.403-417.

Deek, R.A. and Li, H., 2020. A Zero-Inflated Latent Dirichlet Allocation Model for Microbiome
Studies. Frontiers in genetics, 11, p.602594.

De Preter, V., Machiels, K., Joossens, M., Arijs, I., Matthys, C., Vermeire, S., Rutgeerts, P. and
Verbeke, K., 2015. Faecal metabolite profiling identifies medium-chain fatty acids as
discriminating compounds in IBD. Gut, 64(3), pp.447-458.

Del Toro, N., Shrivastava, A., Ragueneau, E., Meldal, B., Combe, C., Barrera, E., Perfetto, L., How,
K., Ratan, P,, Shirodkar, G., Lu, O., Mészaros, B., Watkins, X., Pundir, S., Licata, L., lannuccelli, M.,
Pellegrini, M., Martin, M.J., Panni, S., Duesbury, M. and Hermjakob, H., 2022. The IntAct database:
efficient access to fine-grained molecular interaction data. Nucleic Acids Research, 50(D1),
pp.-D648-D653.

Dempster, A., Petitjean, F. and Webb, G.I., 2020. ROCKET: exceptionally fast and accurate time

series classification using random convolutional kernels. Data mining and knowledge discovery,
34(5), pp.1454-1495.

Dieterle, F., Ross, A., Schlotterbeck, G. and Senn, H., 2006. Probabilistic quotient normalization as
robust method to account for dilution of complex biological mixtures. Application in 1H NMR
metabonomics. Analytical Chemistry, 78(13), pp.4281-4290.

Dovrolis, N., Kolios, G., Spyrou, G.M. and Maroulakou, 1., 2019. Computational profiling of the
gut-brain axis: microflora dysbiosis insights to neurological disorders. Briefings in
Bioinformatics, 20(3), pp.825-841.

Duncan, K., Carey-Ewend, K. and Vaishnava, S., 2021. Spatial analysis of gut microbiome reveals a
distinct ecological niche associated with the mucus layer. Gut microbes, 13(1), p.1874815.

Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson,
K.E. and Relman, D.A., 2005. Diversity of the human intestinal microbial flora. Science, 308(5728),
pp.1635-1638.

Engreitz, J.M., Daigle, B.J., Marshall, J.J. and Altman, R.B., 2010. Independent component analysis:
mining microarray data for fundamental human gene expression modules. Journal of Biomedical
Informatics, 43(6), pp.932-944.

Erickson, A.R., Cantarel, B.L., Lamendella, R., Darzi, Y., Mongodin, E.F., Pan, C., Shah, M.,
Halfvarson, J., Tysk, C., Henrissat, B., Raes, J., Verberkmoes, N.C., Fraser, C.M., Hettich, R.L. and
Jansson, J.K,, 2012. Integrated metagenomics/metaproteomics reveals human host-microbiota
signatures of Crohn’s disease. Plos One, 7(11), p.e49138.

189


https://sciwheel.com/work/bibliography/4083563
https://sciwheel.com/work/bibliography/8464935
https://sciwheel.com/work/bibliography/8464935
https://sciwheel.com/work/bibliography/8464935
https://sciwheel.com/work/bibliography/388684
https://sciwheel.com/work/bibliography/388684
https://sciwheel.com/work/bibliography/388684
https://sciwheel.com/work/bibliography/388684
https://sciwheel.com/work/bibliography/388684
https://sciwheel.com/work/bibliography/80580
https://sciwheel.com/work/bibliography/80580
https://sciwheel.com/work/bibliography/10535949
https://sciwheel.com/work/bibliography/10535949
https://sciwheel.com/work/bibliography/886183
https://sciwheel.com/work/bibliography/886183
https://sciwheel.com/work/bibliography/886183
https://sciwheel.com/work/bibliography/12004313
https://sciwheel.com/work/bibliography/12004313
https://sciwheel.com/work/bibliography/12004313
https://sciwheel.com/work/bibliography/12004313
https://sciwheel.com/work/bibliography/12004313
https://sciwheel.com/work/bibliography/14602934
https://sciwheel.com/work/bibliography/14602934
https://sciwheel.com/work/bibliography/14602934
https://sciwheel.com/work/bibliography/3258507
https://sciwheel.com/work/bibliography/3258507
https://sciwheel.com/work/bibliography/3258507
https://sciwheel.com/work/bibliography/4612803
https://sciwheel.com/work/bibliography/4612803
https://sciwheel.com/work/bibliography/4612803
https://sciwheel.com/work/bibliography/10480647
https://sciwheel.com/work/bibliography/10480647
https://sciwheel.com/work/bibliography/593838
https://sciwheel.com/work/bibliography/593838
https://sciwheel.com/work/bibliography/593838
https://sciwheel.com/work/bibliography/5379003
https://sciwheel.com/work/bibliography/5379003
https://sciwheel.com/work/bibliography/5379003
https://sciwheel.com/work/bibliography/1658834
https://sciwheel.com/work/bibliography/1658834
https://sciwheel.com/work/bibliography/1658834
https://sciwheel.com/work/bibliography/1658834

Faith, M., 2015. Centered Log-Ratio (clr) Transformation and Robust Principal Component
Analysis of Long-Term NDVI Data Reveal Vegetation Activity Linked to Climate Processes.
Climate, 3(1), pp.135-149.

Filyk, H.A. and Osborne, L.C., 2016. The multibiome: the intestinal ecosystem’s influence on
immune homeostasis, health, and disease. EBioMedicine, 13, pp.46-54.

Franzosa, E.A., Mclver, L.J., Rahnavard, G., Thompson, L.R., Schirmer, M., Weingart, G., Lipson,
K.S., Knight, R., Caporaso, J.G., Segata, N. and Huttenhower, C., 2018. Species-level functional
profiling of metagenomes and metatranscriptomes. Nature Methods, 15(11), pp.962-968.

Franzosa, E.A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H.J., Reinker, S., Vatanen, T.,
Hall, A.B., Mallick, H., Mclver, L.J., Sauk, J.S., Wilson, R.G., Stevens, BW., Scott, J.M,, Pierce, K.,
Deik, A.A., Bullock, K., Imhann, F., Porter, J.A., Zhernakova, A. and Xavier, R.J., 2019. Gut
microbiome structure and metabolic activity in inflammatory bowel disease. Nature
Microbiology, 4(2), pp-293-305.

Gallagher, K., Catesson, A., Griffin, J.L., Holmes, E. and Williams, H.RT., 2021. Metabolomic
analysis in inflammatory bowel disease: A systematic review. Journal of Crohn’s & colitis, 15(5),
pp-813-826.

Garrett, W.S., Gallini, C.A., Yatsunenko, T., Michaud, M., DuBais, A., Delaney, M.L., Punit, S.,
Karlsson, M., Bry, L., Glickman, J.N., Gordon, J.I., Onderdonk, A.B. and Glimcher, L.H., 2010.
Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally
transmitted colitis. Cell Host & Microbe, 8(3), pp.292-300.

Gibbons, RJ., Socransky, S.S., Dearaujo, W.C. and Vanhoute, J., 1964. Studies of the predominant
cultivable microbiota of dental plaque. Archives of Oral Biology, 9, pp.365-370.

Gibbons, S.M., Kearney, S.M., Smillie, C.S. and Alm, E.J., 2017. Two dynamic regimes in the human
gut microbiome. PLoS Computational Biology, 13(2), p.e1005364.

Gierynska, M., Szulc-Dabrowska, L., Struzik, J., Mielcarska, M.B. and Gregorczyk-Zboroch, K.P.,
2022. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota-A
Mutual Relationship. Animals : an open access journal from MDPI, 12(2).

Glassner, K.L., Abraham, B.P. and Quigley, E.M.M., 2020. The microbiome and inflammatory bowel
disease. The Journal of Allergy and Clinical Immunology, 145(1), pp.16-27.

Gloor, G.B. and Reid, G., 2016. Compositional analysis: a valid approach to analyze microbiome
high-throughput sequencing data. Canadian Journal of Microbiology, 62(8), pp.692-703.

Glorfeld, LW., 1995. An improvement on horn’s parallel analysis methodology for selecting the
correct number of factors to retain. Educational and psychological measurement, 55(3),
pp-377-393.

Gosak, M., Markovi¢, R., Dolensek, J., Slak Rupnik, M., Marhl, M., StozZer, A. and Perc, M., 2018.
Network science of biological systems at different scales: A review. Physics of life reviews, 24,
pp.118-135.

Greenacre, M., Martinez-Alvaro, M. and Blasco, A., 2021. Compositional Data Analysis of
Microbiome and Any-Omics Datasets: A Validation of the Additive Logratio Transformation.
Frontiers in Microbiology, 12, p.727398.

Gregorius, H. and Kosman, E., 2017. On the notion of dispersion: from dispersion to diversity.
Methods in Ecology and Evolution, 8(3), pp.278-287.

190


https://sciwheel.com/work/bibliography/7973121
https://sciwheel.com/work/bibliography/7973121
https://sciwheel.com/work/bibliography/7973121
https://sciwheel.com/work/bibliography/2290187
https://sciwheel.com/work/bibliography/2290187
https://sciwheel.com/work/bibliography/5963760
https://sciwheel.com/work/bibliography/5963760
https://sciwheel.com/work/bibliography/5963760
https://sciwheel.com/work/bibliography/6133487
https://sciwheel.com/work/bibliography/6133487
https://sciwheel.com/work/bibliography/6133487
https://sciwheel.com/work/bibliography/6133487
https://sciwheel.com/work/bibliography/6133487
https://sciwheel.com/work/bibliography/10019939
https://sciwheel.com/work/bibliography/10019939
https://sciwheel.com/work/bibliography/10019939
https://sciwheel.com/work/bibliography/670518
https://sciwheel.com/work/bibliography/670518
https://sciwheel.com/work/bibliography/670518
https://sciwheel.com/work/bibliography/670518
https://sciwheel.com/work/bibliography/6993461
https://sciwheel.com/work/bibliography/6993461
https://sciwheel.com/work/bibliography/3225663
https://sciwheel.com/work/bibliography/3225663
https://sciwheel.com/work/bibliography/14423921
https://sciwheel.com/work/bibliography/14423921
https://sciwheel.com/work/bibliography/14423921
https://sciwheel.com/work/bibliography/8051275
https://sciwheel.com/work/bibliography/8051275
https://sciwheel.com/work/bibliography/4205986
https://sciwheel.com/work/bibliography/4205986
https://sciwheel.com/work/bibliography/9284531
https://sciwheel.com/work/bibliography/9284531
https://sciwheel.com/work/bibliography/9284531
https://sciwheel.com/work/bibliography/4783077
https://sciwheel.com/work/bibliography/4783077
https://sciwheel.com/work/bibliography/4783077
https://sciwheel.com/work/bibliography/12434133
https://sciwheel.com/work/bibliography/12434133
https://sciwheel.com/work/bibliography/12434133
https://sciwheel.com/work/bibliography/13943278
https://sciwheel.com/work/bibliography/13943278

Guardamagna, M., Berciano-Guerrero, M.-A., Villaescusa-Gonzalez, B., Perez-Ruiz, E., Oliver, J.,
Lavado-Valenzuela, R., Rueda-Dominguez, A., Barragan, I. and Queipo-Ortuiio, M.I., 2022. Gut
microbiota and therapy in metastatic melanoma: focus on MAPK pathway inhibition.
International Journal of Molecular Sciences, 23(19).

Guijas, C., Montenegro-Burke, J.R., Warth, B., Spilker, M.E. and Siuzdak, G., 2018. Metabolomics
activity screening for identifying metabolites that modulate phenotype. Nature Biotechnology,
36(4), pp-316-320.

Guo, Y.-J., Pan, W.-W,, Liu, S.-B., Shen, Z.-F., Xu, Y. and Hu, L.-L., 2020. ERK /MAPK signalling
pathway and tumorigenesis. Experimental and therapeutic medicine, 19(3), pp.1997-2007.

Guzior, D.V. and Quinn, R.A., 2021. Review: microbial transformations of human bile acids.
Microbiome, 9(1), p.140.

Haran, J.P,, Bhattarai, S.K,, Foley, S.E., Dutta, P., Ward, D.V,, Bucci, V. and McCormick, B.A., 2019.
Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory
P-Glycoprotein Pathway. mBio, 10(3).

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J,, Berg, S., Smith, N.J., Kern, R, Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M.,
Haldane, A., Del Rio, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P. and Oliphant, T.E., 2020.
Array programming with NumPy. Nature, 585(7825), pp.357-362.

Hart, T., Komori, H.K., LaMere, S., Podshivalova, K. and Salomon, D.R., 2013. Finding the active
genes in deep RNA-seq gene expression studies. BMC Genomics, 14, p.778.

Harvey, R.F. and Bradshaw, J.M., 1980. A simple index of Crohn’s-disease activity. The Lancet,
1(8167), p.514.

Hassouneh, S.A.-D., Loftus, M. and Yooseph, S., 2021. Linking inflammatory bowel disease
symptoms to changes in the gut microbiome structure and function. Frontiers in Microbiology,
12, p.673632.

Heinken, A., Ravcheev, D.A,, Baldini, F., Heirendt, L., Fleming, R.M.T. and Thiele, I., 2019.
Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct
metabolic capabilities in inflammatory bowel disease. Microbiome, 7(1), p.75.

Heinken, A. and Thiele, I., 2015. Systems biology of host-microbe metabolomics. Wiley
interdisciplinary reviews. Systems biology and medicine, 7(4), pp.195-219.

Herault, J. and Jutten, C., 1986. Space or time adaptive signal processing by neural network
models. In: AIP Conference Proceedings. AIP Conference Proceedings Volume 151. AIP.pp.206-211.

He, Q., Gao, Y, Jie, Z., Yu, X., Laursen, J.M,, Xiao, L., Li, Y., Li, L., Zhang, F., Feng, Q., Li, X, Yu, J.,
Liu, C., Lan, P, Yan, T., Liu, X,, Xu, X., Yang, H., Wang, J., Madsen, L. and Jia, H., 2017. Two distinct
metacommunities characterize the gut microbiota in Crohn’s disease patients. GigaScience, 6(7),
pp-1-11.

Hildebrand, F., 2021. Ultra-resolution Metagenomics: When Enough Is Not Enough. mSystems,
p.e0088121.

Hildebrand, F., Moitinho-Silva, L., Blasche, S., Jahn, M.T., Gossmann, T.I., Huerta-Cepas, J.,
Hercog, R., Luetge, M., Bahram, M., Pryszlak, A., Alves, R.J., Waszak, S.M., Zhu, A., Ye, L., Costea,
P.I, Aalvink, S., Belzer, C., Forslund, S.K., Sunagawa, S., Hentschel, U. and Bork, P., 2019.
Antibiotics-induced monodominance of a novel gut bacterial order. Gut, 68(10), pp.1781-1790.

191


https://sciwheel.com/work/bibliography/14018613
https://sciwheel.com/work/bibliography/14018613
https://sciwheel.com/work/bibliography/14018613
https://sciwheel.com/work/bibliography/14018613
https://sciwheel.com/work/bibliography/5133672
https://sciwheel.com/work/bibliography/5133672
https://sciwheel.com/work/bibliography/5133672
https://sciwheel.com/work/bibliography/8792726
https://sciwheel.com/work/bibliography/8792726
https://sciwheel.com/work/bibliography/11490880
https://sciwheel.com/work/bibliography/11490880
https://sciwheel.com/work/bibliography/6972678
https://sciwheel.com/work/bibliography/6972678
https://sciwheel.com/work/bibliography/6972678
https://sciwheel.com/work/bibliography/9673854
https://sciwheel.com/work/bibliography/9673854
https://sciwheel.com/work/bibliography/9673854
https://sciwheel.com/work/bibliography/9673854
https://sciwheel.com/work/bibliography/791099
https://sciwheel.com/work/bibliography/791099
https://sciwheel.com/work/bibliography/642312
https://sciwheel.com/work/bibliography/642312
https://sciwheel.com/work/bibliography/11529558
https://sciwheel.com/work/bibliography/11529558
https://sciwheel.com/work/bibliography/11529558
https://sciwheel.com/work/bibliography/6978008
https://sciwheel.com/work/bibliography/6978008
https://sciwheel.com/work/bibliography/6978008
https://sciwheel.com/work/bibliography/886929
https://sciwheel.com/work/bibliography/886929
https://sciwheel.com/work/bibliography/6975972
https://sciwheel.com/work/bibliography/6975972
https://sciwheel.com/work/bibliography/4218531
https://sciwheel.com/work/bibliography/4218531
https://sciwheel.com/work/bibliography/4218531
https://sciwheel.com/work/bibliography/4218531
https://sciwheel.com/work/bibliography/11656963
https://sciwheel.com/work/bibliography/11656963
https://sciwheel.com/work/bibliography/6298850
https://sciwheel.com/work/bibliography/6298850
https://sciwheel.com/work/bibliography/6298850
https://sciwheel.com/work/bibliography/6298850

Hill, .M., Clement, C., Pogue, A.L,, Bhattacharjee, S., Zhao, Y. and Lukiw, W.J., 2014. Pathogenic
microbes, the microbiome, and Alzheimer’s disease (AD). Frontiers in aging neuroscience, 6, p.127.

Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural Computation, 9(8),
pp-1735-1780.

Hoffman, M.D. and Gelman, A., 2014. The No-U-Turn Sampler: Adaptively Setting Path Lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research.

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S.,
Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M.Y.,
Nakanishi, H., Ikeda, K., Akimoto, N. and Nishioka, T., 2010. MassBank: a public repository for
sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), pp.703-714.

Horn, J.L., 1965. A RATIONALE AND TEST FOR THE NUMBER OF FACTORS IN FACTOR ANALYSIS.
Psychometrika, 30, pp.179-185.

Hou, K., Wu, Z.-X., Chen, X.-Y., Wang, J.-Q., Zhang, D., Xiao, C., Zhu, D., Koya, J.B., Wei, L., Li, J.
and Chen, Z.-S., 2022. Microbiota in health and diseases. Signal transduction and targeted
therapy, 7(1), p.135.

Huang, G., Shi, L.Z. and Chi, H., 2009. Regulation of INK and p38 MAPK in the immune system:
signal integration, propagation and termination. Cytokine, 48(3), pp.161-169.

Huang, X.L., Xu, J., Zhang, X.H., Qiu, B.Y., Peng, L., Zhang, M. and Gan, H.T., 2011. PI3K /Akt
signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflammation Research,
60(8), pp.727-734.

Human Microbiome Project Consortium, 2012. A framework for human microbiome research.
Nature, 486(7402), pp.215-221.

Hur, E.M. and Kim, K.T., 2002. G protein-coupled receptor signalling and cross-talk: achieving
rapidity and specificity. Cellular Signalling, 14(5), pp.397-405.

Hyvarinen, A. and Oja, E., 2000. Independent component analysis: algorithms and applications.
Neural Networks, 13(4-5), pp.411-430.

Idrees, S., Pérez-Bercoff, A. and Edwards, R.J., 2018. SLiM-Enrich: computational assessment of
protein-protein interaction data as a source of domain-motif interactions. PeerJ, 6, p.e5858.

Imker, H.J., 2018. 25 years of molecular biology databases: A study of proliferation, impact, and
maintenance. Frontiers in Research Metrics and Analytics, 3.

Integrative HMP (iHMP) Research Network Consortium, 2014. The Integrative Human
Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of
human health and disease. Cell Host & Microbe, 16(3), pp.276-289.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L. and Muller, P.-A., 2019. Deep learning for
time series classification: a review. Data mining and knowledge discovery, pp.1-47.

Issa Isaac, N., Philippe, D., Nicholas, A., Raoult, D. and Eric, C., 2019. Metaproteomics of the
human gut microbiota: Challenges and contributions to other OMICS. Clinical mass spectrometry
(Del Mar, Calif.), 14 Pt A, pp.18-30.

Itzhaki, Z., Akiva, E., Altuvia, Y. and Margalit, H., 2006. Evolutionary conservation of
domain-domain interactions. Genome Biology, 7(12), p.R125.

Jebara, T., 2004. Machine Learning. Boston, MA: Springer US.

192


https://sciwheel.com/work/bibliography/2199848
https://sciwheel.com/work/bibliography/2199848
https://sciwheel.com/work/bibliography/83435
https://sciwheel.com/work/bibliography/83435
https://sciwheel.com/work/bibliography/15887723
https://sciwheel.com/work/bibliography/15887723
https://sciwheel.com/work/bibliography/2005281
https://sciwheel.com/work/bibliography/2005281
https://sciwheel.com/work/bibliography/2005281
https://sciwheel.com/work/bibliography/2005281
https://sciwheel.com/work/bibliography/529636
https://sciwheel.com/work/bibliography/529636
https://sciwheel.com/work/bibliography/12881191
https://sciwheel.com/work/bibliography/12881191
https://sciwheel.com/work/bibliography/12881191
https://sciwheel.com/work/bibliography/1287113
https://sciwheel.com/work/bibliography/1287113
https://sciwheel.com/work/bibliography/3936318
https://sciwheel.com/work/bibliography/3936318
https://sciwheel.com/work/bibliography/3936318
https://sciwheel.com/work/bibliography/111853
https://sciwheel.com/work/bibliography/111853
https://sciwheel.com/work/bibliography/4436999
https://sciwheel.com/work/bibliography/4436999
https://sciwheel.com/work/bibliography/141723
https://sciwheel.com/work/bibliography/141723
https://sciwheel.com/work/bibliography/5980412
https://sciwheel.com/work/bibliography/5980412
https://sciwheel.com/work/bibliography/10283215
https://sciwheel.com/work/bibliography/10283215
https://sciwheel.com/work/bibliography/907255
https://sciwheel.com/work/bibliography/907255
https://sciwheel.com/work/bibliography/907255
https://sciwheel.com/work/bibliography/6751355
https://sciwheel.com/work/bibliography/6751355
https://sciwheel.com/work/bibliography/12914588
https://sciwheel.com/work/bibliography/12914588
https://sciwheel.com/work/bibliography/12914588
https://sciwheel.com/work/bibliography/1238286
https://sciwheel.com/work/bibliography/1238286
https://sciwheel.com/work/bibliography/13960849

Johnson, C.H. and Gonzalez, F.J., 2012. Challenges and opportunities of metabolomics. Journal of
Cellular Physiology, 227(8), pp.2975-2981.

Johnson, C.H., Ivanisevic, J. and Siuzdak, G., 2016. Metabolomics: beyond biomarkers and towards
mechanisms. Nature Reviews. Molecular Cell Biology, 17(7), pp.451-459.

Joseph, T.A., Pasarkar, A.P. and Pe'er, ., 2020. Efficient and accurate inference of microbial
trajectories from longitudinal count data. BioRxiv.

Juez-Gil, M., Arnaiz-Gonzalez, A., Rodriguez, J.J., Lopez-Nozal, C. and Garcia-Osorio, C., 2021.
Rotation forest for big data. Information Fusion, 74, pp.39-49.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A,
Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T. and Hassabis, D., 2021. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873), pp.583-589.

Kalathur, R.K.R., Pinto, J.P., Hernandez-Prieto, M.A., Machado, R.S.R., Almeida, D., Chaurasia, G.
and Futschik, M.E., 2014. UniHI 7: an enhanced database for retrieval and interactive analysis of
human molecular interaction networks. Nucleic Acids Research, 42(Database issue), pp.D408-14.

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. and Ishiguro-Watanabe, M., 2023. KEGG for
taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1),
pp.D587-D592.

Kent, J.T., 1983. Information gain and a general measure of correlation. Biometrika, 70(1),
pp-163-173.

Kim, T., Lee, I. and Lee, T.-W., 2006. Independent vector analysis: definition and algorithms. In:
2006 Fortieth Asilomar Conference on Signals, Systems and Computers. 2006 Fortieth Asilomar
Conference on Signals, Systems and Computers. IEEE.pp.1393-1396.

Klimovskaia, A., Lopez-Paz, D., Bottou, L. and Nickel, M., 2020. Poincaré maps for analyzing
complex hierarchies in single-cell data. Nature Communications, 11(1), p.2966.

Kobayashi, T., Siegmund, B., Le Berre, C., Wei, S.C., Ferrante, M., Shen, B., Bernstein, C.N., Danese,
S., Peyrin-Biroulet, L. and Hibi, T., 2020. Ulcerative colitis. Nature reviews. Disease primers, 6(1),
p.74.

Kodikara, S., Ellul, S. and Lé Cao, K.-A., 2022. Statistical challenges in longitudinal microbiome
data analysis. Briefings in Bioinformatics, 23(4).

Kolmeder, C.A. and de Vos, W.M., 2014. Metaproteomics of our microbiome - developing insight
in function and activity in man and model systems. Journal of Proteomics, 97, pp.3-16.

Kotlowski, R., Bernstein, C.N., Sepehri, S. and Krause, D.O., 2007. High prevalence of Escherichia
coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut, 56(5),
pp.669-675.

Krumsiek, J., Suhre, K., Illig, T., Adamski, J. and Theis, F.J., 2012. Bayesian independent component
analysis recovers pathway signatures from blood metabolomics data. Journal of Proteome
Research, 11(8), pp.4120-4131.

Kubinski, R., Djamen-Kepaou, J.-Y., Zhanabaev, T., Hernandez-Garcia, A., Bauer, S., Hildebrand, F.,
Korcsmaros, T., Karam, S., Jantchou, P., Kafi, K. and Martin, R.D., 2022. Benchmark of Data
Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis of
Inflammatory Bowel Disease. Frontiers in genetics, 13, p.784397.

193


https://sciwheel.com/work/bibliography/10595238
https://sciwheel.com/work/bibliography/10595238
https://sciwheel.com/work/bibliography/1394746
https://sciwheel.com/work/bibliography/1394746
https://sciwheel.com/work/bibliography/9129058
https://sciwheel.com/work/bibliography/9129058
https://sciwheel.com/work/bibliography/14606877
https://sciwheel.com/work/bibliography/14606877
https://sciwheel.com/work/bibliography/11380218
https://sciwheel.com/work/bibliography/11380218
https://sciwheel.com/work/bibliography/11380218
https://sciwheel.com/work/bibliography/11380218
https://sciwheel.com/work/bibliography/3192542
https://sciwheel.com/work/bibliography/3192542
https://sciwheel.com/work/bibliography/3192542
https://sciwheel.com/work/bibliography/13977253
https://sciwheel.com/work/bibliography/13977253
https://sciwheel.com/work/bibliography/13977253
https://sciwheel.com/work/bibliography/14384640
https://sciwheel.com/work/bibliography/14384640
https://sciwheel.com/work/bibliography/14595625
https://sciwheel.com/work/bibliography/14595625
https://sciwheel.com/work/bibliography/14595625
https://sciwheel.com/work/bibliography/9077492
https://sciwheel.com/work/bibliography/9077492
https://sciwheel.com/work/bibliography/9633608
https://sciwheel.com/work/bibliography/9633608
https://sciwheel.com/work/bibliography/9633608
https://sciwheel.com/work/bibliography/13339274
https://sciwheel.com/work/bibliography/13339274
https://sciwheel.com/work/bibliography/316942
https://sciwheel.com/work/bibliography/316942
https://sciwheel.com/work/bibliography/6419716
https://sciwheel.com/work/bibliography/6419716
https://sciwheel.com/work/bibliography/6419716
https://sciwheel.com/work/bibliography/14594468
https://sciwheel.com/work/bibliography/14594468
https://sciwheel.com/work/bibliography/14594468
https://sciwheel.com/work/bibliography/12918168
https://sciwheel.com/work/bibliography/12918168
https://sciwheel.com/work/bibliography/12918168
https://sciwheel.com/work/bibliography/12918168

Kumar, M., Michael, S., Alvarado-Valverde, J., Mészaros, B., SAmano-Sanchez, H., Zeke, A.,
Dobson, L., Lazar, T., Ord, M., Nagpal, A, Farahi, N., Kaser, M., Kraleti, R., Davey, N.E., Pancsa, R.,
Chemes, L.B. and Gibson, T.J., 2022. The Eukaryotic Linear Motif resource: 2022 release. Nucleic
Acids Research, 50(D1), pp.D497-D508.

Laccourreye, P., Bielza, C. and Larrafiaga, P., 2022. Explainable Machine Learning for Longitudinal
Multi-Omic Microbiome. Mathematics, 10(12), p.1994.

Lamb, C.A., Kennedy, N.A., Raine, T., Hendy, P.A., Smith, P.J., Limdi, J.K., Hayee, B., Lomer, M.C.E.,
Parkes, G.C., Selinger, C., Barrett, K.J., Davies, R.J., Bennett, C., Gittens, S., Dunlop, M.G,, Faiz, O.,
Fraser, A., Garrick, V., Johnston, P.D., Parkes, M. and Hawthorne, A.B., 2019. British Society of
Gastroenterology consensus guidelines on the management of inflammatory bowel disease in
adults. Gut, 68(Suppl 3), pp.s1-s106.

Langille, M.G.1., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C.,
Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. and Huttenhower, C., 2013. Predictive
functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature
Biotechnology, 31(9), pp.814-821.

Lavelle, A. and Sokol, H., 2020. Gut microbiota-derived metabolites as key actors in inflammatory
bowel disease. Nature Reviews. Gastroenterology & Hepatology, 17(4), pp.223-237.

Layeghifard, M., Li, H., Wang, PW., Donaldson, S.L., Coburn, B., Clark, S.T., Caballero, J.D., Zhang,
Y., Tullis, D.E., Yau, Y.C.W., Waters, V., Hwang, D.M. and Guttman, D.S., 2019. Microbiome
networks and change-point analysis reveal key community changes associated with cystic
fibrosis pulmonary exacerbations. npj Biofilms and Microbiomes, 5(1), p.4.

Lebeer, S., Vanderleyden, J. and De Keersmaecker, S.C.J., 2010. Host interactions of probiotic
bacterial surface molecules: comparison with commensals and pathogens. Nature Reviews.
Microbiology, 8(3), pp-171-184.

Lee, M. and Chang, E.B., 2021. Inflammatory Bowel Diseases (IBD) and the Microbiome-Searching
the Crime Scene for Clues. Gastroenterology, 160(2), pp.524-537.

Lee, PY., Chin, S.-F., Neoh, H.-M. and Jamal, R., 2017. Metaproteomic analysis of human gut
microbiota: where are we heading? Journal of Biomedical Science, 24(1), p.36.

Lehmann, T., Schallert, K., Vilchez-Vargas, R., Benndorf, D., Piittker, S., Sydor, S., Schulz, C.,
Bechmann, L., Canbay, A., Heidrich, B., Reichl, U., Link, A. and Heyer, R., 2019. Metaproteomics of
fecal samples of Crohn’s disease and Ulcerative Colitis. Journal of Proteomics, 201, pp.93-103.

Ley, R.E., Turnbaugh, P.J., Klein, S. and Gordon, J.I., 2006. Microbial ecology: human gut microbes
associated with obesity. Nature, 444(7122), pp.1022-1023.

Lima, S.F., Gogokhia, L., Viladomiu, M., Chou, L., Putzel, G., Jin, W.-B., Pires, S., Guo, C.-J.,
Gerardin, Y., Crawford, C.V,, Jacob, V., Scherl, E., Brown, S.-E., Hambor, J. and Longman, R.S.,
2022. Transferable Immunoglobulin A-Coated Odoribacter splanchnicus in Responders to Fecal
Microbiota Transplantation for Ulcerative Colitis Limits Colonic Inflammation. Gastroenterology,
162(1), pp.166-178.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T.,
Candido, S. and Rives, A., 2022. Language models of protein sequences at the scale of evolution
enable accurate structure prediction. BioRxiv.

Liu, F.,, Yang, X., Geng, M. and Huang, M., 2018. Targeting ERK, an Achilles’ Heel of the MAPK
pathway, in cancer therapy. Acta pharmaceutica Sinica. B, 8(4), pp.552-562.

194


https://sciwheel.com/work/bibliography/12175714
https://sciwheel.com/work/bibliography/12175714
https://sciwheel.com/work/bibliography/12175714
https://sciwheel.com/work/bibliography/12175714
https://sciwheel.com/work/bibliography/14586625
https://sciwheel.com/work/bibliography/14586625
https://sciwheel.com/work/bibliography/7882248
https://sciwheel.com/work/bibliography/7882248
https://sciwheel.com/work/bibliography/7882248
https://sciwheel.com/work/bibliography/7882248
https://sciwheel.com/work/bibliography/7882248
https://sciwheel.com/work/bibliography/185384
https://sciwheel.com/work/bibliography/185384
https://sciwheel.com/work/bibliography/185384
https://sciwheel.com/work/bibliography/185384
https://sciwheel.com/work/bibliography/8279564
https://sciwheel.com/work/bibliography/8279564
https://sciwheel.com/work/bibliography/6781336
https://sciwheel.com/work/bibliography/6781336
https://sciwheel.com/work/bibliography/6781336
https://sciwheel.com/work/bibliography/6781336
https://sciwheel.com/work/bibliography/926833
https://sciwheel.com/work/bibliography/926833
https://sciwheel.com/work/bibliography/926833
https://sciwheel.com/work/bibliography/10092090
https://sciwheel.com/work/bibliography/10092090
https://sciwheel.com/work/bibliography/3829475
https://sciwheel.com/work/bibliography/3829475
https://sciwheel.com/work/bibliography/6842269
https://sciwheel.com/work/bibliography/6842269
https://sciwheel.com/work/bibliography/6842269
https://sciwheel.com/work/bibliography/593968
https://sciwheel.com/work/bibliography/593968
https://sciwheel.com/work/bibliography/11841821
https://sciwheel.com/work/bibliography/11841821
https://sciwheel.com/work/bibliography/11841821
https://sciwheel.com/work/bibliography/11841821
https://sciwheel.com/work/bibliography/11841821
https://sciwheel.com/work/bibliography/13357734
https://sciwheel.com/work/bibliography/13357734
https://sciwheel.com/work/bibliography/13357734
https://sciwheel.com/work/bibliography/7621634
https://sciwheel.com/work/bibliography/7621634

Liu, Y., Smirnov, K., Lucio, M., Gougeon, R.D., Alexandre, H. and Schmitt-Kopplin, P., 2016.
MetICA: independent component analysis for high-resolution mass-spectrometry based
non-targeted metabolomics. BMC Bioinformatics, 17, p.114.

Li, J., Shen, X. and Li, Y., 2021. Modeling the temporal dynamics of gut microbiota from a local
community perspective. Ecological Modelling, 460, p.109733.

Litvak, Y., Byndloss, M.X. and Baumler, A.J., 2018. Colonocyte metabolism shapes the gut
microbiota. Science, 362(6418).

Liu, L., Xu, M., Lan, R, Hu, D., Li, X,, Qiao, L., Zhang, S., Lin, X., Yang, J., Ren, Z. and Xu, J., 2022.
Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota
and immune responses. Frontiers in Immunology, 13, p.1036196.

Liu, Y.-Y., 2023. Controlling the human microbiome. Cell Systems, 14(2), pp.135-159.

Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N., Schirmer, M., Avila-Pacheco, J., Poon, TW,,
Andrews, E., Ajami, N.J., Bonham, K.S., Brislawn, C.J., Casero, D., Courtney, H., Gonzalez, A.,
Graeber, T.G., Hall, A.B., Lake, K., Landers, C.J., Mallick, H., Plichta, D.R., Prasad, M. and
Huttenhower, C., 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel
diseases. Nature, 569(7758), pp.655-662.

Lopez-Siles, M., Duncan, S.H., Garcia-Gil, L.J. and Martinez-Medina, M., 2017. Faecalibacterium
prausnitzii: from microbiology to diagnostics and prognostics. The ISME Journal, 11(4),
pp-841-852.

Love, M.L,, Huber, W. and Anders, S., 2014. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biology, 15(12), p.550.

Luca, F., Kupfer, S.S., Knights, D., Khoruts, A. and Blekhman, R., 2018. Functional Genomics of
Host-Microbiome Interactions in Humans. Trends in Genetics, 34(1), pp.30-40.

Lugo-Martinez, J., Ruiz-Perez, D., Narasimhan, G. and Bar-Joseph, Z., 2019. Dynamic interaction
network inference from longitudinal microbiome data. Microbiome, 7(1), p.54.

Luna, P.N., Mansbach, J.M. and Shaw, C.A., 2020. A joint modeling approach for longitudinal
microbiome data improves ability to detect microbiome associations with disease. PLoS
Computational Biology, 16(12), p.e1008473.

van der Maaten, L. and Hinton, G., 2008. Visualizing Data using t-SNE. Journal of Machine
Learning Research.

Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, 1., Eeckhaut, V., Ballet, V., Claes, K., Van
Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P. and Vermeire, S., 2014. A
decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii
defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), pp.1275-1283.

Malla, M.A., Dubey, A., Kumar, A., Yadav, S., Hashem, A. and Abd Allah, E.F., 2018. Exploring the
Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease
Diagnosis and Treatment. Frontiers in Immunology, 9, p.2868.

Mandal, S., Van Treuren, W., White, R.A., Eggesbg, M., Knight, R. and Peddada, S.D., 2015. Analysis
of composition of microbiomes: a novel method for studying microbial composition. Microbial
ecology in health and disease, 26, p.27663.

Manichanh, C., Borruel, N., Casellas, F. and Guarner, F., 2012. The gut microbiota in IBD. Nature
Reviews. Gastroenterology & Hepatology, 9(10), pp.-599-608.

195


https://sciwheel.com/work/bibliography/14594467
https://sciwheel.com/work/bibliography/14594467
https://sciwheel.com/work/bibliography/14594467
https://sciwheel.com/work/bibliography/13915689
https://sciwheel.com/work/bibliography/13915689
https://sciwheel.com/work/bibliography/6091186
https://sciwheel.com/work/bibliography/6091186
https://sciwheel.com/work/bibliography/15888209
https://sciwheel.com/work/bibliography/15888209
https://sciwheel.com/work/bibliography/15888209
https://sciwheel.com/work/bibliography/14401472
https://sciwheel.com/work/bibliography/7010763
https://sciwheel.com/work/bibliography/7010763
https://sciwheel.com/work/bibliography/7010763
https://sciwheel.com/work/bibliography/7010763
https://sciwheel.com/work/bibliography/7010763
https://sciwheel.com/work/bibliography/4051337
https://sciwheel.com/work/bibliography/4051337
https://sciwheel.com/work/bibliography/4051337
https://sciwheel.com/work/bibliography/129353
https://sciwheel.com/work/bibliography/129353
https://sciwheel.com/work/bibliography/4443218
https://sciwheel.com/work/bibliography/4443218
https://sciwheel.com/work/bibliography/6769476
https://sciwheel.com/work/bibliography/6769476
https://sciwheel.com/work/bibliography/11364301
https://sciwheel.com/work/bibliography/11364301
https://sciwheel.com/work/bibliography/11364301
https://sciwheel.com/work/bibliography/14603514
https://sciwheel.com/work/bibliography/14603514
https://sciwheel.com/work/bibliography/886271
https://sciwheel.com/work/bibliography/886271
https://sciwheel.com/work/bibliography/886271
https://sciwheel.com/work/bibliography/886271
https://sciwheel.com/work/bibliography/6378416
https://sciwheel.com/work/bibliography/6378416
https://sciwheel.com/work/bibliography/6378416
https://sciwheel.com/work/bibliography/479837
https://sciwheel.com/work/bibliography/479837
https://sciwheel.com/work/bibliography/479837
https://sciwheel.com/work/bibliography/2331508
https://sciwheel.com/work/bibliography/2331508

Manor, O., Dai, C.L., Kornilov, S.A., Smith, B., Price, N.D., Lovejoy, J.C., Gibbons, S.M. and Magis,
AT., 2020. Health and disease markers correlate with gut microbiome composition across
thousands of people. Nature Communications, 11(1), p.5206.

Marchesi, J.R., Holmes, E., Khan, F., Kochhar, S., Scanlan, P., Shanahan, F., Wilson, I.D. and Wang,
Y., 2007. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease.
Journal of Proteome Research, 6(2), pp.546-551.

Mark Welch, J.L., Hasegawa, Y., McNulty, N.P., Gordon, J.I. and Borisy, G.G., 2017. Spatial
organization of a model 15-member human gut microbiota established in gnotobiotic mice.
Proceedings of the National Academy of Sciences of the United States of America, 114(43),
pp.E9105-E9114.

Martino, C., Morton, J.T., Marotz, C.A., Thompson, L.R., Tripathi, A., Knight, R. and Zengler, K.,
2019. A novel sparse compositional technique reveals microbial perturbations. mSystems, 4(1).

Martin, B.D., Witten, D. and Willis, A.D., 2020. Modeling microbial abundances and dysbiosis with
beta-binomial regression. The annals of applied statistics, 14(1), pp.94-115.

Ma, S. and Dai, Y., 2011. Principal component analysis based methods in bioinformatics studies.
Briefings in Bioinformatics, 12(6), pp.714-722.

Martino, C., Shenhav, L., Marotz, C.A., Armstrong, G., McDonald, D., Vazquez-Baeza, Y., Morton,
J.T., Jiang, L., Dominguez-Bello, M.G., Swafford, A.D., Halperin, E. and Knight, R., 2021.
Context-aware dimensionality reduction deconvolutes gut microbial community dynamics.
Nature Biotechnology, 39(2), pp.165-168.

Massimino, L., Lamparelli, L.A., Houshyar, Y., D'Alessio, S., Peyrin-Biroulet, L., Vetrano, S., Danese,
S. and Ungaro, F., 2021. The Inflammatory Bowel Disease Transcriptome and Metatranscriptome
Meta-Analysis (IBD TaMMA) framework. Nature Computational Science, 1(8), pp.511-515.

McCarthy, D.J,, Chen, Y. and Smyth, G.K., 2012. Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, 40(10),
pp-4288-4297.

Mclnnes, L., Healy, J., Saul, N. and Grofsberger, L., 2018. UMAP: uniform manifold approximation
and projection. The Journal of Open Source Software, 3(29), p.861.

McMurdie, P.J. and Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis
and graphics of microbiome census data. Plos One, 8(4), p.e61217.

Mendes-Soares, H., Mundy, M., Soares, L.M. and Chia, N., 2016. MMinte: an application for
predicting metabolic interactions among the microbial species in a community. BMC
Bioinformatics, 17(1), p.343.

Mills, R.H., Dulai, P.S., Vazquez-Baeza, Y., Sauceda, C., Daniel, N., Gerner, R.R., Batachari, L.E.,
Malfavon, M., Zhu, Q., Weldon, K., Humphrey, G., Carrillo-Terrazas, M., Goldasich, L.D., Bryant,
M., Raffatellu, M., Quinn, R.A., Gewirtz, AT., Chassaing, B., Chu, H., Sandborn, W.J. and Gonzalez,
DJ., 2022. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus
proteases with disease severity. Nature Microbiology, 7(2), pp.262-276.

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto,
S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D. and Bateman, A., 2021. Pfam: The protein
families database in 2021. Nucleic Acids Research, 49(D1), pp.D412-D419.

Mohseni, A.H., Casolaro, V., Bermudez-Humaran, L.G., Keyvani, H. and Taghinezhad-S, S., 2021.

196


https://sciwheel.com/work/bibliography/9843872
https://sciwheel.com/work/bibliography/9843872
https://sciwheel.com/work/bibliography/9843872
https://sciwheel.com/work/bibliography/8738562
https://sciwheel.com/work/bibliography/8738562
https://sciwheel.com/work/bibliography/8738562
https://sciwheel.com/work/bibliography/4347819
https://sciwheel.com/work/bibliography/4347819
https://sciwheel.com/work/bibliography/4347819
https://sciwheel.com/work/bibliography/4347819
https://sciwheel.com/work/bibliography/7268631
https://sciwheel.com/work/bibliography/7268631
https://sciwheel.com/work/bibliography/8861279
https://sciwheel.com/work/bibliography/8861279
https://sciwheel.com/work/bibliography/2309047
https://sciwheel.com/work/bibliography/2309047
https://sciwheel.com/work/bibliography/9562165
https://sciwheel.com/work/bibliography/9562165
https://sciwheel.com/work/bibliography/9562165
https://sciwheel.com/work/bibliography/9562165
https://sciwheel.com/work/bibliography/11569892
https://sciwheel.com/work/bibliography/11569892
https://sciwheel.com/work/bibliography/11569892
https://sciwheel.com/work/bibliography/802156
https://sciwheel.com/work/bibliography/802156
https://sciwheel.com/work/bibliography/802156
https://sciwheel.com/work/bibliography/5973004
https://sciwheel.com/work/bibliography/5973004
https://sciwheel.com/work/bibliography/593992
https://sciwheel.com/work/bibliography/593992
https://sciwheel.com/work/bibliography/2538839
https://sciwheel.com/work/bibliography/2538839
https://sciwheel.com/work/bibliography/2538839
https://sciwheel.com/work/bibliography/12365808
https://sciwheel.com/work/bibliography/12365808
https://sciwheel.com/work/bibliography/12365808
https://sciwheel.com/work/bibliography/12365808
https://sciwheel.com/work/bibliography/12365808
https://sciwheel.com/work/bibliography/9956308
https://sciwheel.com/work/bibliography/9956308
https://sciwheel.com/work/bibliography/9956308
https://sciwheel.com/work/bibliography/14423927

Modulation of the PI3K /Akt /mTOR signaling pathway by probiotics as a fruitful target for
orchestrating the immune response. Gut microbes, 13(1), pp.1-17.

Moldakarimov, S. and Sejnowski, T.J., 2017. Neural computation theories of learning vr. In:
Learning and memory: A comprehensive reference. Elsevier.pp.579-589.

Mor, U., Cohen, Y., Valdés-Mas, R., Kviatcovsky, D., Elinav, E. and Avron, H., 2022. Dimensionality
reduction of longitudinal 'omics data using modern tensor factorizations. PLoS Computational
Biology, 18(7), p.e1010212.

Mosca, R., Céol, A., Stein, A., Olivella, R. and Aloy, P., 2014. 3did: a catalog of domain-based
interactions of known three-dimensional structure. Nucleic Acids Research, 42(Database issue),
pp-D374-9.

Moschen, A.R., Gerner, R.R., Wang, J., Klepsch, V., Adolph, T.E., Reider, S.J., Hackl, H., Pfister, A.,
Schilling, J., Moser, P.L., Kempster, S.L., Swidsinski, A., Orth Hoéller, D., Weiss, G., Baines, J.F.,
Kaser, A. and Tilg, H., 2016. Lipocalin 2 Protects from Inflammation and Tumorigenesis
Associated with Gut Microbiota Alterations. Cell Host & Microbe, 19(4), pp.455-469.

Nayfach, S., Shi, Z.J., Seshadri, R., Pollard, K.S. and Kyrpides, N.C., 2019. New insights from
uncultivated genomes of the global human gut microbiome. Nature, 568(7753), pp.505-510.

Nazarov, PV., Wienecke-Baldacchino, A.K., Zinovyev, A., Czerwinska, U., Muller, A., Nashan, D.,
Dittmar, G., Azuaje, F. and Kreis, S., 2018. Independent component analysis provides clinically
relevant insights into the biology of melanoma patients. BioRxiv.

Nguyen, Q.P., Karagas, M.R., Madan, J.C., Dade, E., Palys, T.J., Morrison, H.G., Pathmasiri, WW.,
McRitche, S., Sumner, S.J., Frost, H.R. and Hoen, A.G., 2021. Associations between the gut
microbiome and metabolome in early life. BMC Microbiology, 21(1), p.238.

Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W. and Pettersson, S., 2012.
Host-gut microbiota metabolic interactions. Science, 336(6086), pp.1262-1267.

Nikolaus, S., Schulte, B., Al-Massad, N., Thieme, F., Schulte, D.M., Bethge, J., Rehman, A., Tran, F.,
Aden, K., Hasler, R., Moll, N., Schiitze, G., Schwarz, M.J., Waetzig, G.H., Rosenstiel, P., Krawczak,
M., Szymczak, S. and Schreiber, S., 2017. Increased tryptophan metabolism is associated with
activity of inflammatory bowel diseases. Gastroenterology, 153(6), pp.1504-1516.€2.

Oliphant, K. and Allen-Vercoe, E., 2019. Macronutrient metabolism by the human gut
microbiome: major fermentation by-products and their impact on host health. Microbiome, 7(1),
p-9L

Oughtred, R., Rust, J., Chang, C., Breitkreutz, B.-J., Stark, C., Willems, A., Boucher, L., Leung, G.,
Kolas, N., Zhang, F., Dolma, S., Coulombe-Huntington, J., Chatr-Aryamontri, A., Dolinski, K. and
Tyers, M., 2021. The BioGRID database: A comprehensive biomedical resource of curated protein,
genetic, and chemical interactions. Protein Science, 30(1), pp.187-200.

Palmela, C., Chevarin, C., Xu, Z., Torres, J., Sevrin, G., Hirten, R., Barnich, N., Ng, S.C. and
Colombel, J.-F., 2018. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut,
67(3), pp.574-587.

Parada Venegas, D., De la Fuente, M.K., Landskron, G., Gonzalez, M.J., Quera, R., Dijkstra, G.,
Harmsen, H.J.M., Faber, K.N. and Hermoso, M.A., 2019. Short Chain Fatty Acids (SCFAs)-Mediated
Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases.
Frontiers in Immunology, 10, p.277.

197


https://sciwheel.com/work/bibliography/14423927
https://sciwheel.com/work/bibliography/14423927
https://sciwheel.com/work/bibliography/14536637
https://sciwheel.com/work/bibliography/14536637
https://sciwheel.com/work/bibliography/13338184
https://sciwheel.com/work/bibliography/13338184
https://sciwheel.com/work/bibliography/13338184
https://sciwheel.com/work/bibliography/917535
https://sciwheel.com/work/bibliography/917535
https://sciwheel.com/work/bibliography/917535
https://sciwheel.com/work/bibliography/2922973
https://sciwheel.com/work/bibliography/2922973
https://sciwheel.com/work/bibliography/2922973
https://sciwheel.com/work/bibliography/2922973
https://sciwheel.com/work/bibliography/6620559
https://sciwheel.com/work/bibliography/6620559
https://sciwheel.com/work/bibliography/14594460
https://sciwheel.com/work/bibliography/14594460
https://sciwheel.com/work/bibliography/14594460
https://sciwheel.com/work/bibliography/13976834
https://sciwheel.com/work/bibliography/13976834
https://sciwheel.com/work/bibliography/13976834
https://sciwheel.com/work/bibliography/111893
https://sciwheel.com/work/bibliography/111893
https://sciwheel.com/work/bibliography/5926240
https://sciwheel.com/work/bibliography/5926240
https://sciwheel.com/work/bibliography/5926240
https://sciwheel.com/work/bibliography/5926240
https://sciwheel.com/work/bibliography/7105078
https://sciwheel.com/work/bibliography/7105078
https://sciwheel.com/work/bibliography/7105078
https://sciwheel.com/work/bibliography/10309247
https://sciwheel.com/work/bibliography/10309247
https://sciwheel.com/work/bibliography/10309247
https://sciwheel.com/work/bibliography/10309247
https://sciwheel.com/work/bibliography/4509426
https://sciwheel.com/work/bibliography/4509426
https://sciwheel.com/work/bibliography/4509426
https://sciwheel.com/work/bibliography/6762641
https://sciwheel.com/work/bibliography/6762641
https://sciwheel.com/work/bibliography/6762641
https://sciwheel.com/work/bibliography/6762641

Parker, B.J., Wearsch, P.A., Veloo, A.C.M. and Rodriguez-Palacios, A., 2020. The genus alistipes: gut
bacteria with emerging implications to inflammation, cancer, and mental health. Frontiers in
Immunology, 11, p.906.

Parker, R.B. and Snyder, M.L., 1961. Interactions of the oral microbiota I. A system for the defined
study of mixed cultures. Experimental biology and medicine, 108(3), pp.749-752.

Patti, G.J,, Yanes, O. and Siuzdak, G., 2012. Innovation: Metabolomics: the apogee of the omics
trilogy. Nature Reviews. Molecular Cell Biology, 13(4), pp.263-2609.

Paull, E.O., Carlin, D.E., Niepel, M., Sorger, P.K., Haussler, D. and Stuart, J.M., 2013. Discovering
causal pathways linking genomic events to transcriptional states using Tied Diffusion Through
Interacting Events (TieDIE). Bioinformatics, 29(21), pp.2757-2764.

Paulson, J.N., Stine, O.C., Bravo, H.C. and Pop, M., 2013. Differential abundance analysis for
microbial marker-gene surveys. Nature Methods, 10(12), pp.1200-1202.

Pavlidis, P., Gulati, S., Dubois, P., Chung-Faye, G., Sherwood, R., Bjarnason, I. and Hayee, B., 2016.
Early change in faecal calprotectin predicts primary non-response to anti-TNFa therapy in
Crohn’s disease. Scandinavian Journal of Gastroenterology, 51(12), pp.1447-1452.

Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical
Magazine Series 6, 2(11), pp.559-572.

Petersen, A.M., Nielsen, E.M., Litrup, E., Brynskov, J., Mirsepasi, H. and Krogfelt, K.A., 2009. A
phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel
disease. BMC Microbiology, 9, p.171.

Petriz, B.A. and Franco, O.L., 2017. Metaproteomics as a complementary approach to gut
microbiota in health and disease. Frontiers in chemistry, 5, p.4.

Petrosino, J.F., 2018. The microbiome in precision medicine: the way forward. Genome Medicine,
10(1), p-12.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., NAEISPACK authors, Heisterkamp, S., Van Willigen,

B., Ranke, J. and R Core Team, 2023. Linear and Nonlinear Mixed Effects Models, R package nlme
version 3.1-162. RCAN.

Pinheiro, J.C. and Bates, D.M., 2000. Mixed-Effects Models in S and S-PLUS. New York:
Springer-Verlag.

Pratt, M., Forbes, J.D., Knox, N.C., Bernstein, C.N. and Van Domselaar, G., 2021.
Microbiome-Mediated Immune Signaling in Inflammatory Bowel Disease and Colorectal Cancer:
Support From Meta-omics Data. Frontiers in cell and developmental biology, 9, p.716604.

Quévrain, E., Maubert, M.A., Michon, C., Chain, F., Marquant, R., Tailhades, J., Miquel, S., Carlier,
L., Bermudez-Humaran, L.G., Pigneur, B., Lequin, O., Kharrat, P., Thomas, G., Rainteau, D., Aubry,
C., Breyner, N., Afonso, C., Lavielle, S., Grill, J.P.,, Chassaing, G. and Seksik, P., 2016. Identification
of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium
deficient in Crohn’s disease. Gut, 65(3), pp.415-425.

Quinn, T.P,, Erb, L, Gloor, G., Notredame, C., Richardson, M.F. and Crowley, T.M., 2019. A field
guide for the compositional analysis of any-omics data. GigaScience, 8(9).

Rabizadeh, S., Rhee, K.-J., Wu, S., Huso, D., Gan, C.M,, Golub, J.E., Wu, X., Zhang, M. and Sears,
C.L., 2007. Enterotoxigenic bacteroides fragilis: a potential instigator of colitis. Inflammatory
Bowel Diseases, 13(12), pp.1475-1483.

198


https://sciwheel.com/work/bibliography/10055926
https://sciwheel.com/work/bibliography/10055926
https://sciwheel.com/work/bibliography/10055926
https://sciwheel.com/work/bibliography/6993465
https://sciwheel.com/work/bibliography/6993465
https://sciwheel.com/work/bibliography/454895
https://sciwheel.com/work/bibliography/454895
https://sciwheel.com/work/bibliography/1531596
https://sciwheel.com/work/bibliography/1531596
https://sciwheel.com/work/bibliography/1531596
https://sciwheel.com/work/bibliography/465801
https://sciwheel.com/work/bibliography/465801
https://sciwheel.com/work/bibliography/7190673
https://sciwheel.com/work/bibliography/7190673
https://sciwheel.com/work/bibliography/7190673
https://sciwheel.com/work/bibliography/2390701
https://sciwheel.com/work/bibliography/2390701
https://sciwheel.com/work/bibliography/2867982
https://sciwheel.com/work/bibliography/2867982
https://sciwheel.com/work/bibliography/2867982
https://sciwheel.com/work/bibliography/13976749
https://sciwheel.com/work/bibliography/13976749
https://sciwheel.com/work/bibliography/6062148
https://sciwheel.com/work/bibliography/6062148
https://sciwheel.com/work/bibliography/14595800
https://sciwheel.com/work/bibliography/14595800
https://sciwheel.com/work/bibliography/14595800
https://sciwheel.com/work/bibliography/5302988
https://sciwheel.com/work/bibliography/5302988
https://sciwheel.com/work/bibliography/13974579
https://sciwheel.com/work/bibliography/13974579
https://sciwheel.com/work/bibliography/13974579
https://sciwheel.com/work/bibliography/1169647
https://sciwheel.com/work/bibliography/1169647
https://sciwheel.com/work/bibliography/1169647
https://sciwheel.com/work/bibliography/1169647
https://sciwheel.com/work/bibliography/1169647
https://sciwheel.com/work/bibliography/7571083
https://sciwheel.com/work/bibliography/7571083
https://sciwheel.com/work/bibliography/5074476
https://sciwheel.com/work/bibliography/5074476
https://sciwheel.com/work/bibliography/5074476

Rashid, T. and Ebringer, A., 2011. Gut-mediated and HLA-B27-associated arthritis: an emphasis on
ankylosing spondylitis and Crohn’s disease with a proposal for the use of new treatment.
Discovery medicine, 12(64), pp.187-194.

Rashid, T., Ebringer, A. and Wilson, C., 2013. The role of Klebsiella in Crohn’s disease with a
potential for the use of antimicrobial measures. International journal of rheumatology, 2013,
p.610393.

Rehman, A., Lepage, P., Nolte, A., Hellmig, S., Schreiber, S. and Ott, S.J., 2010. Transcriptional
activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients.
Journal of Medical Microbiology, 59(Pt 9), pp.1114-1122.

Ricotta, C., 2021. From the euclidean distance to compositional dissimilarity: What is gained and
what is lost. Acta Oecologica, 111, p.103732.

Ridlon, J.M., Kang, D.J., Hylemon, P.B. and Bajaj, J.S., 2014. Bile acids and the gut microbiome.
Current Opinion in Gastroenterology, 30(3), pp.332-338.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C.L., Ma, J. and
Fergus, R., 2021. Biological structure and function emerge from scaling unsupervised learning to

250 million protein sequences. Proceedings of the National Academy of Sciences of the United
States of America, 118(15).

Robinson, M.D., McCarthy, D.J. and Smyth, G.K., 2010. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics, 26(1), pp.139-140.

Roda, G., Chien Ng, S., Kotze, P.G., Argollo, M., Panaccione, R., Spinellij, A., Kaser, A.,
Peyrin-Biroulet, L. and Danese, S., 2020. Crohn’s disease. Nature reviews. Disease primers, 6(1),
p-22.

Roda, G., Porru, E., Katsanos, K., Skamnelos, A., Kyriakidi, K., Fiorino, G., Christodoulou, D.,
Danese, S. and Roda, A., 2019. Serum Bile Acids Profiling in Inflammatory Bowel Disease Patients
Treated with Anti-TNFs. Cells, 8(8).

Samarkos, M., Mastrogianni, E. and Kampouropoulou, O., 2018. The role of gut microbiota in
Clostridium difficile infection. European Journal of Internal Medicine, 50, pp.28-32.

Sankaran, K. and Holmes, S.P., 2019. Latent variable modeling for the microbiome. Biostatistics,
20(4), pp-599-614.

Sartor, R.B., 2006. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis.
Nature Clinical Practice. Gastroenterology & Hepatology, 3(7), pp.-390-407.

van de Schoot, R., Depaoli, S., King, R., Kramer, B., Martens, K., Tadesse, M.G., Vannucci, M.,
Gelman, A., Veen, D., Willemsen, J. and Yau, C., 2021. Bayesian statistics and modelling. Nature
Reviews Methods Primers, 1(1), p.1.

Schiissler-Fiorenza Rose, S.M., Contrepois, K., Moneghetti, K.J., Zhou, W., Mishra, T., Mataraso, S.,
Dagan-Rosenfeld, O., Ganz, A.B., Dunn, J., Hornburg, D., Rego, S., Perelman, D., Ahadi, S., Sailani,
M.R, Zhou, Y., Leopold, S.R., Chen, J., Ashland, M., Christle, JW., Avina, M. and Snyder, M.P., 2019.
A longitudinal big data approach for precision health. Nature Medicine, 25(5), pp.792-804.

Segal, AW., 2018. The role of neutrophils in the pathogenesis of Crohn’s disease. European
Journal of Clinical Investigation, 48 Suppl 2, p.e12983.

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S. and Huttenhower, C.,
2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), p.R60.

199


https://sciwheel.com/work/bibliography/11734848
https://sciwheel.com/work/bibliography/11734848
https://sciwheel.com/work/bibliography/11734848
https://sciwheel.com/work/bibliography/5419823
https://sciwheel.com/work/bibliography/5419823
https://sciwheel.com/work/bibliography/5419823
https://sciwheel.com/work/bibliography/3168487
https://sciwheel.com/work/bibliography/3168487
https://sciwheel.com/work/bibliography/3168487
https://sciwheel.com/work/bibliography/15877095
https://sciwheel.com/work/bibliography/15877095
https://sciwheel.com/work/bibliography/974995
https://sciwheel.com/work/bibliography/974995
https://sciwheel.com/work/bibliography/10850722
https://sciwheel.com/work/bibliography/10850722
https://sciwheel.com/work/bibliography/10850722
https://sciwheel.com/work/bibliography/10850722
https://sciwheel.com/work/bibliography/673952
https://sciwheel.com/work/bibliography/673952
https://sciwheel.com/work/bibliography/8623411
https://sciwheel.com/work/bibliography/8623411
https://sciwheel.com/work/bibliography/8623411
https://sciwheel.com/work/bibliography/7294098
https://sciwheel.com/work/bibliography/7294098
https://sciwheel.com/work/bibliography/7294098
https://sciwheel.com/work/bibliography/10906958
https://sciwheel.com/work/bibliography/10906958
https://sciwheel.com/work/bibliography/6517349
https://sciwheel.com/work/bibliography/6517349
https://sciwheel.com/work/bibliography/707848
https://sciwheel.com/work/bibliography/707848
https://sciwheel.com/work/bibliography/10297554
https://sciwheel.com/work/bibliography/10297554
https://sciwheel.com/work/bibliography/10297554
https://sciwheel.com/work/bibliography/6916005
https://sciwheel.com/work/bibliography/6916005
https://sciwheel.com/work/bibliography/6916005
https://sciwheel.com/work/bibliography/6916005
https://sciwheel.com/work/bibliography/13027813
https://sciwheel.com/work/bibliography/13027813
https://sciwheel.com/work/bibliography/185595
https://sciwheel.com/work/bibliography/185595

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B.
and Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Research, 13(11), pp.2498-2504.

Sharma, D. and Xu, W., 2021. phyLoSTM: a novel deep learning model on disease prediction from
longitudinal microbiome data. Bioinformatics.

Shen, Z.-H., Zhu, C.-X., Quan, Y.-S., Yang, Z.-Y., Wu, S., Luo, W.-W,, Tan, B. and Wang, X.-Y., 2018.
Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical
application of probiotics and fecal microbiota transplantation. World Journal of Gastroenterology,
24(1), pp.5-14.

Sheth, R.U,, Li, M., Jiang, W., Sims, P.A., Leong, KW. and Wang, H.H., 2019. Spatial metagenomic
characterization of microbial biogeography in the gut. Nature Biotechnology, 37(8), pp.877-883.

Singh, V., Yeoh, B.S., Xiao, X., Kumar, M., Bachman, M., Borregaard, N., Joe, B. and Vijay-Kumar,
M., 2015. Interplay between enterobactin, myeloperoxidase and lipocalin 2 regulates E. coli
survival in the inflamed gut. Nature Communications, 6, p.7113.

Smith, C.A., Maille, G.O., Want, E.J., Qin, C., Trauger, S.A., Brandon, T.R., Custodio, D.E., Abagyan,
R. and Siuzdak, G., 2005. METLIN. Therapeutic Drug Monitoring, 27(6), pp.747-751.

Smith, L.A. and Gaya, D.R., 2012. Utility of faecal calprotectin analysis in adult inflammatory
bowel disease. World Journal of Gastroenterology, 18(46), pp.6782-6789.

Sokol, H., Landman, C., Seksik, P., Berard, L., Montil, M., Nion-Larmurier, I., Bourrier, A., Le Gall,
G., Lalande, V., De Rougemont, A., Kirchgesner, J., Daguenel, A., Cachanado, M., Rousseau, A.,
Drouet, E., Rosenzwajg, M., Hagege, H., Dray, X., Klatzman, D., Marteau, P. and Simon, T., 2020.
Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized
controlled study. Microbiome, 8§(1), p.12.

Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermtdez-Humaran, L.G., Gratadoux, J.-J.,
Blugeon, S., Bridonneau, C., Furet, J.-P., Corthier, G., Grangette, C., Vasquez, N., Pochart, P.,
Trugnan, G., Thomas, G., Blottiere, H.M., Dor¢, J., Marteau, P., Seksik, P. and Langella, P., 2008.
Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut
microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of
the United States of America, 105(43), pp.16731-16736.

Sompairac, N., Nazarov, PV., Czerwinska, U., Cantini, L., Biton, A., Molkenov, A., Zhumadilov, Z.,
Barillot, E., Radvanyi, F., Gorban, A., Kairov, U. and Zinovyev, A., 2019. Independent component
analysis for unraveling the complexity of cancer omics datasets. International Journal of
Molecular Sciences, 20(18).

de Souza, H.S.P. and Fiocchi, C., 2016. Inmunopathogenesis of IBD: current state of the art.
Nature Reviews. Gastroenterology & Hepatology, 13(1), pp.13-27.

Stafford, I.S., Gosink, M.M., Mossotto, E., Ennis, S. and Hauben, M., 2022. A Systematic Review of
Artificial Intelligence and Machine Learning Applications to Inflammatory Bowel Disease, with
Practical Guidelines for Interpretation. Inflammatory Bowel Diseases, 28(10), pp.1573-1583.

Staley, C., Weingarden, A.R., Khoruts, A. and Sadowsky, M.J., 2017. Interaction of gut microbiota
with bile acid metabolism and its influence on disease states. Applied Microbiology and
Biotechnology, 101(1), pp.47-64.

Stein, C.K., Qu, P., Epstein, J., Buros, A., Rosenthal, A., Crowley, J., Morgan, G. and Barlogie, B.,
2015. Removing batch effects from purified plasma cell gene expression microarrays with

200


https://sciwheel.com/work/bibliography/121985
https://sciwheel.com/work/bibliography/121985
https://sciwheel.com/work/bibliography/121985
https://sciwheel.com/work/bibliography/14586624
https://sciwheel.com/work/bibliography/14586624
https://sciwheel.com/work/bibliography/6272830
https://sciwheel.com/work/bibliography/6272830
https://sciwheel.com/work/bibliography/6272830
https://sciwheel.com/work/bibliography/6272830
https://sciwheel.com/work/bibliography/7217423
https://sciwheel.com/work/bibliography/7217423
https://sciwheel.com/work/bibliography/5433575
https://sciwheel.com/work/bibliography/5433575
https://sciwheel.com/work/bibliography/5433575
https://sciwheel.com/work/bibliography/4103093
https://sciwheel.com/work/bibliography/4103093
https://sciwheel.com/work/bibliography/7190997
https://sciwheel.com/work/bibliography/7190997
https://sciwheel.com/work/bibliography/8186461
https://sciwheel.com/work/bibliography/8186461
https://sciwheel.com/work/bibliography/8186461
https://sciwheel.com/work/bibliography/8186461
https://sciwheel.com/work/bibliography/8186461
https://sciwheel.com/work/bibliography/1144871
https://sciwheel.com/work/bibliography/1144871
https://sciwheel.com/work/bibliography/1144871
https://sciwheel.com/work/bibliography/1144871
https://sciwheel.com/work/bibliography/1144871
https://sciwheel.com/work/bibliography/1144871
https://sciwheel.com/work/bibliography/7750979
https://sciwheel.com/work/bibliography/7750979
https://sciwheel.com/work/bibliography/7750979
https://sciwheel.com/work/bibliography/7750979
https://sciwheel.com/work/bibliography/1735105
https://sciwheel.com/work/bibliography/1735105
https://sciwheel.com/work/bibliography/14536700
https://sciwheel.com/work/bibliography/14536700
https://sciwheel.com/work/bibliography/14536700
https://sciwheel.com/work/bibliography/2669750
https://sciwheel.com/work/bibliography/2669750
https://sciwheel.com/work/bibliography/2669750
https://sciwheel.com/work/bibliography/3287371
https://sciwheel.com/work/bibliography/3287371

modified ComBat. BMC Bioinformatics, 16, p.63.

Stenlund, H., Gorzsas, A., Persson, P., Sundberg, B. and Trygg, J., 2008. Orthogonal projections to
latent structures discriminant analysis modeling on in situ FT-IR spectral imaging of liver tissue
for identifying sources of variability. Analytical Chemistry, 80(18), pp.6898-6906.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. and Zeileis, A., 2008. Conditional variable
importance for random forests. BMC Bioinformatics, 9, p.307.

Sudhakar, P., Jacomin, A.-C., Hautefort, 1., Samavedam, S., Fatemian, K., Ari, E., Gul, L., Demeter,
A, Jones, E., Korcsmaros, T. and Nezis, 1.P., 2019. Targeted interplay between bacterial pathogens
and host autophagy. Autophagy, 15(9), pp.1620-1633.

Suzek, B.E., Wang, Y., Huang, H., McGarvey, P.B., Wu, C.H. and UniProt Consortium, 2015. UniRef
clusters: a comprehensive and scalable alternative for improving sequence similarity searches.
Bioinformatics, 31(6), pp.926-932.

Su, G., Kuchinsky, A., Morris, J.H., States, D.J. and Meng, F., 2010. GLay: community structure
analysis of biological networks. Bioinformatics, 26(24), pp.3135-3137.

Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T., Legeay,
M., Fang, T., Bork, P., Jensen, L.J. and von Mering, C., 2021. The STRING database in 2021:
customizable protein-protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Research, 49(D1), pp.D605-D612.

Tavassoly, 1., Goldfarb, J. and Iyengar, R., 2018. Systems biology primer: the basic methods and
approaches. Essays in biochemistry, 62(4), pp.487-500.

Teschendorff, A.E., Journée, M., Absil, P.A., Sepulchre, R. and Caldas, C., 2007. Elucidating the
altered transcriptional programs in breast cancer using independent component analysis. PLoS
Computational Biology, 3(8), p.e161.

Tessler, M., Neumann, J.S., Afshinnekoo, E., Pineda, M., Hersch, R., Velho, L.F.M., Segovia, B.T.,
Lansac-Toha, F.A., Lemke, M., DeSalle, R., Mason, C.E. and Brugler, M.R., 2017. Large-scale
differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing.
Scientific Reports, 7(1), p.6589.

Thomas, J.P., Modos, D., Rushbrook, S.M., Powell, N. and Korcsmaros, T., 2022. The emerging role
of bile acids in the pathogenesis of inflammatory bowel disease. Frontiers in Immunology, 13,
p.829525.

Titterington, D.M., 1997. Introduction to Gelfand and Smith (1990) Sampling-Based Approaches to
Calculating Marginal Densities. In: S. Kotz and N.L. Johnson, eds. Breakthroughs in Statistics,
Springer series in statistics. New York, NY: Springer New York.pp.519-550.

Truong, D.T., Franzosa, E.A., Tickle, T.L., Scholz, M., Weingart, G., Pasolli, E., Tett, A.,
Huttenhower, C. and Segata, N., 2015. MetaPhlAn2 for enhanced metagenomic taxonomic
profiling. Nature Methods, 12(10), pp.902-903.

Trygg, J. and Wold, S., 2002. Orthogonal projections to latent structures (O-PLS). Journal of
chemometrics, 16(3), pp.119-128.

Tirei, D., Korcsmaros, T. and Saez-Rodriguez, J., 2016. OmniPath: guidelines and gateway for
literature-curated signaling pathway resources. Nature Methods, 13(12), pp.966-967.

Tirei, D., Valdeolivas, A., Gul, L., Palacio-Escat, N., Klein, M., Ivanova, O., Olbei, M., Gabor, A.,
Theis, F., Modos, D., Korcsmaros, T. and Saez-Rodriguez, J., 2021. Integrated intra- and

201


https://sciwheel.com/work/bibliography/3287371
https://sciwheel.com/work/bibliography/14607378
https://sciwheel.com/work/bibliography/14607378
https://sciwheel.com/work/bibliography/14607378
https://sciwheel.com/work/bibliography/387583
https://sciwheel.com/work/bibliography/387583
https://sciwheel.com/work/bibliography/6713296
https://sciwheel.com/work/bibliography/6713296
https://sciwheel.com/work/bibliography/6713296
https://sciwheel.com/work/bibliography/4249964
https://sciwheel.com/work/bibliography/4249964
https://sciwheel.com/work/bibliography/4249964
https://sciwheel.com/work/bibliography/3427282
https://sciwheel.com/work/bibliography/3427282
https://sciwheel.com/work/bibliography/10960543
https://sciwheel.com/work/bibliography/10960543
https://sciwheel.com/work/bibliography/10960543
https://sciwheel.com/work/bibliography/10960543
https://sciwheel.com/work/bibliography/6400217
https://sciwheel.com/work/bibliography/6400217
https://sciwheel.com/work/bibliography/1233752
https://sciwheel.com/work/bibliography/1233752
https://sciwheel.com/work/bibliography/1233752
https://sciwheel.com/work/bibliography/4046514
https://sciwheel.com/work/bibliography/4046514
https://sciwheel.com/work/bibliography/4046514
https://sciwheel.com/work/bibliography/4046514
https://sciwheel.com/work/bibliography/12562222
https://sciwheel.com/work/bibliography/12562222
https://sciwheel.com/work/bibliography/12562222
https://sciwheel.com/work/bibliography/11642488
https://sciwheel.com/work/bibliography/11642488
https://sciwheel.com/work/bibliography/11642488
https://sciwheel.com/work/bibliography/1151970
https://sciwheel.com/work/bibliography/1151970
https://sciwheel.com/work/bibliography/1151970
https://sciwheel.com/work/bibliography/1435092
https://sciwheel.com/work/bibliography/1435092
https://sciwheel.com/work/bibliography/3050563
https://sciwheel.com/work/bibliography/3050563
https://sciwheel.com/work/bibliography/10728846
https://sciwheel.com/work/bibliography/10728846

intercellular signaling knowledge for multicellular omics analysis. Molecular Systems Biology,
17(3).

Ungaro, R., Mehandru, S., Allen, P.B., Peyrin-Biroulet, L. and Colombel, J.-F., 2017. Ulcerative
colitis. The Lancet, 389(10080), pp.1756-1770.

UniProt Consortium, 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids
Research, 49(D1), pp.D480-D489.

Valdes, A.M., Walter, J., Segal, E. and Spector, T.D., 2018. Role of the gut microbiota in nutrition
and health. BMJ (Clinical Research Ed.), 361, p.k2179.

Van Den Bossche, T., Arntzen, M.@., Becher, D., Benndorf, D., Eijsink, V.G.H., Henry, C., Jagtap,
P.D., Jehmlich, N., Juste, C., Kunath, B.J., Mesuere, B., Muth, T., Pope, P.B., Seifert, J., Tanca, A.,
Uzzau, S., Wilmes, P., Hettich, R.L. and Armengaud, J., 2021. The Metaproteomics Initiative: a
coordinated approach for propelling the functional characterization of microbiomes.
Microbiome, 9(1), p.243.

Vazquez-Baeza, Y., Gonzalez, A., Xu, Z.Z., Washburne, A., Herfarth, H.H., Sartor, R.B. and Knight,
R., 2018. Guiding longitudinal sampling in IBD cohorts. Gut, 67(9), pp.1743-1745.

Velliangiri, S., Alagumuthukrishnan, S. and Thankumar joseph, S.I., 2019. A review of
dimensionality reduction techniques for efficient computation. Procedia Computer Science, 165,
pp-104-111.

Velten, B., Braunger, J.M., Argelaguet, R., Arnol, D., Wirbel, J., Bredikhin, D., Zeller, G. and Stegle,
0., 2022. Identifying temporal and spatial patterns of variation from multimodal data using
MEFISTO. Nature Methods, 19(2), pp.179-186.

Vernocchi, P., Del Chierico, F. and Putignani, L., 2016. Gut microbiota profiling: metabolomics
based approach to unravel compounds affecting human health. Frontiers in Microbiology, 7,
p.1144.

Verstockt, B., Vetrano, S., Salas, A., Nayeri, S., Duijvestein, M., Vande Casteele, N. and Alimentiv
Translational Research Consortium (ATRC), 2022. Sphingosine 1-phosphate modulation and
immune cell trafficking in inflammatory bowel disease. Nature Reviews. Gastroenterology &
Hepatology, 19(6), pp.351-366.

Vich Vila, A., Huy, S., Andreu-Sanchez, S., Collij, V., Jansen, B.H., Augustijn, H.E., Bolte, L.A.,
Ruigrok, R.A.A.A., Abu-Ali, G., Giallourakis, C., Schneider, J., Parkinson, J., Al-Garawi, A.,
Zhernakova, A., Gacesa, R., Fu, J. and Weersma, R.K., 2023. Faecal metabolome and its
determinants in inflammatory bowel disease. Gut, 72(8), pp.1472-1485.

Vinaixa, M., Schymanski, E.L., Neumann, S., Navarro, M., Salek, R.M. and Yanes, O., 2016. Mass
spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future
prospects. TrAC Trends in Analytical Chemistry, 78, pp.23-35.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J.,
Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J. and SciPy 1.0 Contributors,
2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3),
pp.261-272.

Walmsley, R.S., Ayres, R.C., Pounder, R.E. and Allan, R.N., 1998. A simple clinical colitis activity
index. Gut, 43(1), pp.29-32.

202


https://sciwheel.com/work/bibliography/10728846
https://sciwheel.com/work/bibliography/10728846
https://sciwheel.com/work/bibliography/2739974
https://sciwheel.com/work/bibliography/2739974
https://sciwheel.com/work/bibliography/10304708
https://sciwheel.com/work/bibliography/10304708
https://sciwheel.com/work/bibliography/5852521
https://sciwheel.com/work/bibliography/5852521
https://sciwheel.com/work/bibliography/12197513
https://sciwheel.com/work/bibliography/12197513
https://sciwheel.com/work/bibliography/12197513
https://sciwheel.com/work/bibliography/12197513
https://sciwheel.com/work/bibliography/12197513
https://sciwheel.com/work/bibliography/4410433
https://sciwheel.com/work/bibliography/4410433
https://sciwheel.com/work/bibliography/14515205
https://sciwheel.com/work/bibliography/14515205
https://sciwheel.com/work/bibliography/14515205
https://sciwheel.com/work/bibliography/12263818
https://sciwheel.com/work/bibliography/12263818
https://sciwheel.com/work/bibliography/12263818
https://sciwheel.com/work/bibliography/2304704
https://sciwheel.com/work/bibliography/2304704
https://sciwheel.com/work/bibliography/2304704
https://sciwheel.com/work/bibliography/12828202
https://sciwheel.com/work/bibliography/12828202
https://sciwheel.com/work/bibliography/12828202
https://sciwheel.com/work/bibliography/12828202
https://sciwheel.com/work/bibliography/14589450
https://sciwheel.com/work/bibliography/14589450
https://sciwheel.com/work/bibliography/14589450
https://sciwheel.com/work/bibliography/14589450
https://sciwheel.com/work/bibliography/3869340
https://sciwheel.com/work/bibliography/3869340
https://sciwheel.com/work/bibliography/3869340
https://sciwheel.com/work/bibliography/8189935
https://sciwheel.com/work/bibliography/8189935
https://sciwheel.com/work/bibliography/8189935
https://sciwheel.com/work/bibliography/8189935
https://sciwheel.com/work/bibliography/8189935
https://sciwheel.com/work/bibliography/1331027
https://sciwheel.com/work/bibliography/1331027

Walters, K.E. and Martiny, J.B.H., 2020. Alpha-, beta-, and gamma-diversity of bacteria varies
across habitats. Plos One, 15(9), p.e0233872.

Wang, Y., Gao, X., Zhang, X., Xiao, F., Hu, H., Li, X., Dong, F., Sun, M., Xiao, Y., Ge, T., Li, D., Yu, G,
Liu, Z. and Zhang, T., 2021. Microbial and metabolic features associated with outcome of
infliximab therapy in pediatric Crohn’s disease. Gut microbes, 13(1), pp.1-18.

Weigele, B.A., Orchard, R.C,, Jimenez, A., Cox, G.W. and Alto, N.M., 2017. A systematic exploration
of the interactions between bacterial effector proteins and host cell membranes. Nature
Communications, 8(1), p.532.

Weinstock, G.M., 2012. Genomic approaches to studying the human microbiota. Nature,
489(7415), pp.250-256.

Weiss, S., Xu, Z.Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J.R.,
Vazquez-Baeza, Y., Birmingham, A., Hyde, E.R. and Knight, R., 2017. Normalization and microbial
differential abundance strategies depend upon data characteristics. Microbiome, 5(1), p.27.

Weng, Y.J., Gan, HY., Li, X,, Huang, Y., Li, Z.C., Deng, H.M., Chen, S.Z., Zhou, Y., Wang, L.S., Han,
Y.P,, Tan, Y.F.,, Song, Y.J., Du, Z.M,, Liu, Y.Y., Wang, Y., Qin, N., Bai, Y., Yang, R.F., Bi, Y.J. and Zhi, F.C.,
2019. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease.
Journal of digestive diseases, 20(9), pp.447-459.

Wieder, C., Lai, R.P.J. and Ebbels, T.M.D., 2022. Single sample pathway analysis in metabolomics:
performance evaluation and application. BMC Bioinformatics, 23(1), p.481.

Wishart, D.S., Tzur, D., Knox, C., Eisner, R., Guo, A.C., Young, N., Cheng, D., Jewell, K., Arndt, D.,
Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M.-A., Forsythe, L., Tang, P., Shrivastava, S.,
Jeroncic, K., Stothard, P., Amegbey, G. and Querengesser, L., 2007. HMDB: the human
metabolome database. Nucleic Acids Research, 35(Database issue), pp.D521-6.

Wu, H.-J. and Wu, E., 2012. The role of gut microbiota in immune homeostasis and autoimmunity.
Gut microbes, 3(1), pp.4-14.

Wu, T, Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X,, Liu, S.,

Bo, X. and Yu, G., 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics
data. Innovation (Cambridge (Mass.)), 2(3), p.100141.

Xu, X., Liang, T\, Zhu, J., Zheng, D. and Sun, T., 2018. Review of classical dimensionality reduction
and sample selection methods for large-scale data processing. Neurocomputing, 328, pp.5-15.

Yang, C., Chowdhury, D., Zhang, Z., Cheung, W.K,, Lu, A., Bian, Z. and Zhang, L., 2021a. A review of
computational tools for generating metagenome-assembled genomes from metagenomic
sequencing data. Computational and structural biotechnology journal, 19, pp.6301-6314.

Yang, J., Pei, G., Sun, X, Xiao, Y., Miao, C., Zhou, L., Wang, B., Yang, L., Yu, M., Zhang, Z.-S., Keller,
ET., Yao, Z. and Wang, Q., 2022. RhoB affects colitis through modulating cell signaling and
intestinal microbiome. Microbiome, 10(1), p.149.

Yang, M., Gu, Y., Li, L., Liu, T\, Song, X., Sun, Y., Cao, X., Wang, B., Jiang, K. and Cao, H., 2021b. Bile
Acid-Gut Microbiota Axis in Inflammatory Bowel Disease: From Bench to Bedside. Nutrients,
13(9).

Yang, S., Li, H., He, H., Zhou, Y. and Zhang, Z., 2019. Critical assessment and performance

improvement of plant-pathogen protein-protein interaction prediction methods. Briefings in
Bioinformatics, 20(1), pp.274-287.

203


https://sciwheel.com/work/bibliography/14607304
https://sciwheel.com/work/bibliography/14607304
https://sciwheel.com/work/bibliography/12216811
https://sciwheel.com/work/bibliography/12216811
https://sciwheel.com/work/bibliography/12216811
https://sciwheel.com/work/bibliography/4232109
https://sciwheel.com/work/bibliography/4232109
https://sciwheel.com/work/bibliography/4232109
https://sciwheel.com/work/bibliography/546009
https://sciwheel.com/work/bibliography/546009
https://sciwheel.com/work/bibliography/3880748
https://sciwheel.com/work/bibliography/3880748
https://sciwheel.com/work/bibliography/3880748
https://sciwheel.com/work/bibliography/7118231
https://sciwheel.com/work/bibliography/7118231
https://sciwheel.com/work/bibliography/7118231
https://sciwheel.com/work/bibliography/7118231
https://sciwheel.com/work/bibliography/14606697
https://sciwheel.com/work/bibliography/14606697
https://sciwheel.com/work/bibliography/42610
https://sciwheel.com/work/bibliography/42610
https://sciwheel.com/work/bibliography/42610
https://sciwheel.com/work/bibliography/42610
https://sciwheel.com/work/bibliography/767484
https://sciwheel.com/work/bibliography/767484
https://sciwheel.com/work/bibliography/11321768
https://sciwheel.com/work/bibliography/11321768
https://sciwheel.com/work/bibliography/11321768
https://sciwheel.com/work/bibliography/8047745
https://sciwheel.com/work/bibliography/8047745
https://sciwheel.com/work/bibliography/12535426
https://sciwheel.com/work/bibliography/12535426
https://sciwheel.com/work/bibliography/12535426
https://sciwheel.com/work/bibliography/13626929
https://sciwheel.com/work/bibliography/13626929
https://sciwheel.com/work/bibliography/13626929
https://sciwheel.com/work/bibliography/12208757
https://sciwheel.com/work/bibliography/12208757
https://sciwheel.com/work/bibliography/12208757
https://sciwheel.com/work/bibliography/14414278
https://sciwheel.com/work/bibliography/14414278
https://sciwheel.com/work/bibliography/14414278

Yang, Y., Chen, N. and Chen, T., 2017. Inference of Environmental Factor-Microbe and
Microbe-Microbe Associations from Metagenomic Data Using a Hierarchical Bayesian Statistical
Model. Cell Systems, 4(1), pp.129-137.e5.

Yu, G. and He, Q.-Y., 2016. ReactomePA: an R /Bioconductor package for reactome pathway
analysis and visualization. Molecular Biosystems, 12(2), pp.477-479.

Zamani, S., Hesam Shariati, S., Zali, M.R., Asadzadeh Aghdaei, H., Sarabi Asiabar, A., Bokaie, S.,
Nomanpour, B., Sechi, L.A. and Feizabadi, M.M., 2017. Detection of enterotoxigenic Bacteroides
fragilis in patients with ulcerative colitis. Gut Pathogens, 9, p.53.

Zeng, MY., Inohara, N. and Nufez, G., 2017. Mechanisms of inflammation-driven bacterial
dysbiosis in the gut. Mucosal Immunology, 10(1), pp.18-26.

Zeng, Z., Mukherjee, A., Varghese, A.P., Yang, X.-L., Chen, S. and Zhang, H., 2020. Roles of G
protein-coupled receptors in inflammatory bowel disease. World Journal of Gastroenterology,
26(12), pp.1242-1261.

Zhang, E., Yan, Y., Lei, Y., Qu, Y., Fan, Z., Zhang, T., Xu, Y., Du, Q., Brugger, D., Chen, Y. and Zhang,
K., 2023. Bacteroides uniformis regulates TH17 cell differentiation and alleviates chronic colitis by
producing alpha-muricholic acid. Research square.

Zhang, X., Deeke, S.A., Ning, Z., Starr, A.E., Butcher, J,, Li, J., Mayne, J., Cheng, K., Liao, B., Li, L.,
Singleton, R., Mack, D., Stintzi, A. and Figeys, D., 2018a. Metaproteomics reveals associations
between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory
bowel disease. Nature Communications, 9(1), p.2873.

Zhang, X., Guo, B. and Yi, N., 2020. Zero-Inflated gaussian mixed models for analyzing
longitudinal microbiome data. Plos One, 15(11), p.e0242073.

Zhang, X., Li, L., Mayne, J., Ning, Z., Stintzi, A. and Figeys, D., 2018b. Assessing the impact of
protein extraction methods for human gut metaproteomics. Journal of Proteomics, 180,
pp.120-127.

Zheng, L., Wen, X.-L. and Duan, S.-L., 2022. Role of metabolites derived from gut microbiota in
inflammatory bowel disease. World journal of clinical cases, 10(9), pp.2660-2677.

Zhou, F., He, K., Li, Q., Chapkin, R.S. and Ni, Y., 2022. Bayesian biclustering for microbial
metagenomic sequencing data via multinomial matrix factorization. Biostatistics, 23(3),
pp.891-909.

Zhou, H., Beltran, J.F. and Brito, I.L., 2022. Host-microbiome protein-protein interactions capture
disease-relevant pathways. Genome Biology, 23(1), p.72.

Zhou, Y. and Zhi, F., 2016. Lower Level of Bacteroides in the Gut Microbiota Is Associated with
Inflammatory Bowel Disease: A Meta-Analysis. BioMed research international, 2016, p.5828959.
Zuo, K., Li, J,, Li, K., Hy, C,, Gao, Y., Chen, M., Hu, R,, Liu, Y., Chi, H., Wang, H., Qin, Y., Liu, X, Li, S.,
Cai, J., Zhong, J. and Yang, X., 2019. Disordered gut microbiota and alterations in metabolic
patterns are associated with atrial fibrillation. GigaScience, 8(6).

204


https://sciwheel.com/work/bibliography/3038026
https://sciwheel.com/work/bibliography/3038026
https://sciwheel.com/work/bibliography/3038026
https://sciwheel.com/work/bibliography/1509333
https://sciwheel.com/work/bibliography/1509333
https://sciwheel.com/work/bibliography/4512845
https://sciwheel.com/work/bibliography/4512845
https://sciwheel.com/work/bibliography/4512845
https://sciwheel.com/work/bibliography/1987185
https://sciwheel.com/work/bibliography/1987185
https://sciwheel.com/work/bibliography/8676641
https://sciwheel.com/work/bibliography/8676641
https://sciwheel.com/work/bibliography/8676641
https://sciwheel.com/work/bibliography/14395199
https://sciwheel.com/work/bibliography/14395199
https://sciwheel.com/work/bibliography/14395199
https://sciwheel.com/work/bibliography/5885693
https://sciwheel.com/work/bibliography/5885693
https://sciwheel.com/work/bibliography/5885693
https://sciwheel.com/work/bibliography/5885693
https://sciwheel.com/work/bibliography/11363898
https://sciwheel.com/work/bibliography/11363898
https://sciwheel.com/work/bibliography/4578148
https://sciwheel.com/work/bibliography/4578148
https://sciwheel.com/work/bibliography/4578148
https://sciwheel.com/work/bibliography/12844530
https://sciwheel.com/work/bibliography/12844530
https://sciwheel.com/work/bibliography/10688894
https://sciwheel.com/work/bibliography/10688894
https://sciwheel.com/work/bibliography/10688894
https://sciwheel.com/work/bibliography/12614519
https://sciwheel.com/work/bibliography/12614519
https://sciwheel.com/work/bibliography/2891555
https://sciwheel.com/work/bibliography/2891555
https://sciwheel.com/work/bibliography/8322231
https://sciwheel.com/work/bibliography/8322231
https://sciwheel.com/work/bibliography/8322231

Appendix 1: Supplementary Chapter 2

Subdoligranulum unclassified
Faecalibacterium prausnitzii
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Bacteroides vulgatus
Bacteroides uniformis
Ruminococcus obeum
Bacteroides ovatus
Eubacterium rectale
Oscillibacter unclassified
Clostridium bolteae
Bacteroides thetaiotaomicron
Roseburia inulinivorans
Bacteroides caccae
Bacteroides xylanisolvens
Flavonifractor plautii

Dorea longicatena
Bacteroides stercoris
Roseburia hominis
Bacteroides dorei
Eubacterium eligens
Bifidobacterium longum
Roseburia intestinalis
Veillonella unclassified
Lachnospiraceae bacterium 3 1 46FAA
Escherichia coli
Ruminococcus gnavus
Alistipes putredinis
Parabactercides distasonis
Eubacterium hallii
Parabacteroides merdae
Alistipes onderdonkii
Bacteroides fragilis
Haemophilus parainfluenzae
Bilophila unclassified
Veillonella parvula
Coprococcus comes
Collinsella aerofaciens
Clostridium leptum
Clostridium symbiosum
Alistipes finegoldii

Dialister invisus
Parasutterella excrementihominis
Alistipes shahii

Clostridium hathewayi
Burkholderiales bacterium 11 47
Parabacteroides unclassified
Odoribacter splanchnicus
Eubacterium siraeum
Escherichia unclassified
Eubacterium ventriosum
Bacteroides faecis
Streptococcus salivarius
Akkermansia muciniphila
Bacteroides massiliensis
Bifidobacterium adolescentis
Bacteroides cellulosilyticus
Veillonella atypica
Clostridium clostridioforme
Roseburia unclassified
Ruminococcus bromii
Veillonella dispar

Barnesiella intestinihominis
Lachnospiraceae bacterium 1 1 57FAA
Bacteroidales bacterium ph8
Clostridium citroniae
Ruminococcus lactaris
Prevotella copri

Sutterella wadsworthensis
Bifidobacterium bifidum
Peptostreptococcaceae noname unclassified
Coprobacillus unclassified
Bacteroides finegoldii
C2likevirus unclassified
Ruminococcus callidus
Bacteroides eggerthii
Clostridium nexile
Paraprevotella unclassified
Bifidobacterium pseudocatenulatum
Alistipes unclassified
Eubacterium sp 31 31
Acidaminococcus unclassified
Bacteroides intestinalis
Paraprevotella clara
Parabacteroides goldsteinii
Coprobacter fastidiosus
Klebsiella pneumoniae
Bacteroides salyersiae

0.0

Species

0.2

0.4

Prevalence

0.6

0.8

1.0
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Supplementary Figure 2.1. Prevalence of microbial species across the dataset that appear

in more the 10% of all samples.
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Supplementary Figure 2.2. (Previous pages 3 pages) Show the autocorrelation of each

species in each patient in UC, CD and healthy controls respectively.
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ts that flared over the
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ien

t

1n remission vs pa

; the dashed line shows a patient who experiences a flare during the course of
> 5).

course of the study. The top 15 most unstable species in UC (left blue) and CD (right red)
patients between remission and flare states. Ap shows the current sample subtracted by

the baseline regression for that patient. The solid line shows a patient in remission (SCCAI

< 2, HBI < 5)

Supplementary Figure 3.1. IBD patients

the study (SCCAI > 2, HBI
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Supplementary Figure 3.2. SPM model selected top species in UC active regression against disease activity and relative abundance.
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Supplementary Figure 3.3. SPM model selected top species in UC inactive regression against disease activity and relative abundance.
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Supplementary Figure 3.5. SPM model selected top species in CD inactive regression against disease activity and relative abundance.




variable = s__Bacteroides_vulgatus variable = 5_Bacteroides fragilis  variable = s_ Faecalibacterium_prausnitzii  variable = s__Bacteroides_uniformis variable = s__Bacteroides_ovatus
L] L] L] L] L]

157 . ® e i : .
. - *

__10'; - .. 1 . 1% ° 1 .: ] 1
I T RO g - . > _

i

L L]
W‘ E‘é“q\. ! = %
0 - L * 1 ® L] 9 ?.. - ... 1 * @ L] q
T T T T T T T T T T T T T T T T T T T T T
00 02 04 06 08 0.0 0.z 04 06 0.8 0.0 0.z 04 0.6 0.0 0.2 0.4 0.6 0.0 02 0.4
i}a riable = s_ Bacteroides_thetaiotaomicron variable = s_ Bacteroides_caccae variable = s_ Eubacterium_rectale  variable = s_ Parabacteroides_distasonis variable = s_ Blautia_wexlerae
1 . 1 = Te 1e 1T e
B o ° ° 1
e
— lo T T T
2
5 1 1
o] X3 AL RN | A
T T T T T T T T T T T T T T T T T T T T T T T
00 01 oz 00 01 oz 03 04 00 01 oz 03 o4 00 0z o4 06 08 000 002 004 006 008
variable = s_ Bacteroides_xylanisolvens  variable = s Eubacterium_eligens variable = s_ Fusicatenibacter_saccharivorans variable = s_ Flavenifractor_plautii _ variable = s_ Roseburia_hominis
X LJ L] L] L ] L ]
] L . 1 ]
"3
] .. * ]
[
1 L .. 1 1 L ] % e
T T T T T T T T T T T T T T T T T T T T T T T
0.0 01 0.2 0.000 0.025 0.050 0.O75 0.100 0125 Q.00 0.05 010 015 0.0 01 0.2 03 000 001 002 003 004 005
value value value value value

Supplementary Figure 3.6. SPM model selected top species in CD active regression against disease activity and relative abundance.
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Appendix 3: Supplementary Chapter 4

. -e- data -8- data (] -8- data
0254 b -%- -random 0121 | —%- random 0121 | —%- random
- ° ' |
v | 1
1 1 1
H 0101 | o104 |
0204 1 i i
i i i
1 i l
! 0087 ! 0087 !
0151 & ' '
v o °
' 006 1 0061 1
| 1 1
0101 | * L]
° 0.04 k 0.04 k
1
®
0.05 'Y 0.02 5 0.02 5
0.00 M 0.00 0.00
o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140
MGX: UC vs HC | SBT: Parallel analysis plot (k=16) MGX: UC vs HC | Rel: Parallel analysis plot (k=10) MGX: UC vs HC | CLR: Parallel analysis plot (k=17)
. -e- data 025 f -®- data . -@- data
i . H
—»- random —»- -random —»- -random
0061 ! ! o121 !
1 1 i
| * 1
005 1| 0.20 1 o010 |
1 i 1
i i i
[ ! i
0.04
b 0151 | 0081
! 1
0.03 R ! 0.06 ?
\ o] ¢ ®
\ X
L °
0.02 i 0.04
L ]
v
0.05 Y
0.01 . 0.02
L]
. oo | —— | 000
o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140 o 20 40 60 80 100 120 140

MGX: UC vs HC | Raw Data: Parallel analysis plot (k=9)

MGX: UC vs HC | LogNorm: Parallel analysis plot (k=17)

MGX: UC vs HC | LFCBT: Parallel analysis plot (k=17)

Supplementary Figure 4.1. Metagenomic UC vs HC Scree plot for assessing the number of

components needed for matrix factorisation algorithms based on Horn’s parallel

analysis.
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MGX: CD vs HC | Raw Data: Parallel analysis plot (k=11) MGX: CD vs HC | LogNorm: Parallel analysis plot (k=16)
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Supplementary Figure 4.2. Metagenomic CD vs HC Scree plot for assessing the number

of components needed for matrix factorisation algorithms based on Horn’s parallel

analysis.
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MGX: UC vs CD | Raw Data: Parallel analysis plot (k=11)

MGX: UC vs CD | LogNorm: Parallel analysis plot (k=15) MGX: UC vs CD | LFCBT: Parallel analysis plot (k=15)
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Supplementary Figure 4.3. Metagenomic UC vs CD Scree plot for assessing the number

of components needed for matrix factorisation algorithms based on Horn's parallel
analysis.

220



Accuracy

8 7 6 5 4 3 2 1
l ] ] ] ] ] ] ]
ICA_RF6.8333 2.5000RF
FA‘RF 5.5000 3.5000 RF'KBS
LR5.3333 3.8333 OPLS'DA
PCA‘RF 4.5000 4.0000 RTF
Accuracy
8 7 6 5 4 3 2 1
l ] ] ] ] ] ] ] ] ]
RTF?Q 3 2.166?RF
LRG.OOOD 2.6667 PCA_RF
OPLs_DA5.8333 3.6667 ICA-RF
RF-KBS 4.1667 3.6667 FA-RF
Accuracy
8 7 6 5 4 3 2 1

OPLS-DA’3333

RTF 7.1667

LR5.666?

PCA- RF 3.5000

2.8333 RF-KBS

3.0000 RF

3.1667 |CA_RF

3.3333 FA_RF
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Supplementary Figure 4.5. Metabolomic CD vs HC Scree plot for assessing the number

of components needed for matrix factorisation algorithms based on Horn’s parallel

analysis.
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MBX: UC vs nonIBD | Raw Data: Parallel analysis plot (k=9)
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Supplementary Figure 4.6. Metabolomic UC vs HC Scree plot for assessing the number

of components needed for matrix factorisation algorithms based on Horn’s parallel

analysis.
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MBX: UC vs CD | Raw Data: Parallel analysis plot (k=9)

MBX: UC vs CD | LogNorm: Parallel analysis plot (k=19)
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Supplementary Figure 4.7. Metagenomic UC vs CD Scree plot for assessing the number

of components needed for matrix factorisation algorithms based on Horn’s parallel

analysis.
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Supplementary Table 4.1. Table of results for Metagenomic classifiers using different
normalisation methods. The table only includes prediction based sources and not

probability based scores (i.e. log loss and Biers score).

avg(Me avg(Metr avg(Me avg(Me avg(Me std(Met std(Met std(Met std(Met std(Met

tric) ic) tric) tric) tric) ric) ric) ric) ric) ric)
matthew precisi roc_au matthe precisi roc_au

fl_scor s_corrco on_sco recall_ c_scor fl_scor ws_cor on_sco recall_ c_scor
Metric e ef re score e e rcoef re score e
Preprocessing  Model
MBX: UC vs
nonIBD | CLR FA-LR 0.7736  0.5398 0.7730 0.7800 0.7670 0.1185 0.2308 0.1052 0.1474 0.1129
MBX: UC vs
nonIBD | CLR ICA-LR 0.7441 0.4887 0.7516 0.7533 0.7415 0.1166 0.2059 0.1126 0.1509 0.1043
MBX: UC vs
nonIBD | CLR LR 0.7625 0.5251 0.7868 0.7538 0.7601 0.0840 0.1706 0.1145 0.1021 0.0865
MBX: UC vs OPLS-D
nonIBD | CLR A 0.7777  0.5602 0.7904 0.7862 0.7735 0.0914 0.1624 0.0947 0.1444 0.0813
MBX: UC vs
nonIBD | CLR PCA-LR 0.7307 0.4579 0.7548 07200 0.7275 0.0981 0.2136 0.1404 0.1045 0.1062
MBX: UC vs
nonIBD | CLR RF 0.8107 0.6073 0.8125 0.8167 0.8033 0.1347 0.2908 0.1562 0.1327 0.1460
MBX: UC vs
nonIBD | CLR RF-KBS 0.7893 0.5613 0.7844 0.8033 0.7774 01326 0.2630 0.1450 0.1401 0.1330
MBX: UC vs
nonIBD | CLR RTF 0.8080 0.6019 0.8163 0.8090 0.8003 0.1423 0.3116 0.1699 0.1337 0.1563
MBX: UC vs
nonIBD | FCBT  FA-LR 0.7570  0.5439 0.7953 0.7386 0.7708 0.1480 0.2269 0.1185  0.1711 0.1166
MBX: UC vs
nonIBD | FCBT  ICA-LR 0.8141  0.6460 0.8327 0.8162 0.8181 0.1183 0.2187 0.1254 0.1668 0.1102
MBX: UC vs
nonIBD | FCBT LR 0.7920 0.5785 0.8019 0.7943 0.7872 0.0951 0.1943 0.1171 0.1113  0.0980
MBX: UC vs OPLS-D
nonlBD | FCBT A 0.7744  0.5505 0.7874 0.7795 0.7705 0.0908 0.1583 0.0971 0.1319 0.0796
MBX: UC vs
nonlBD | FCBT  PCA-LR 0.8085 0.6298 0.8549 0.7743 0.8124 0.0952 0.1947 0.1200 0.1033 0.0971
MBX: UC vs
nonlBD | FCBT  RF 0.7943  0.5697 0.8016 0.8038 0.7824 0.1333 0.3139 0.1673 0.1388 0.1559
MBX: UC vs
nonIBD | FCBT  RF-KBS 0.7979  0.5880 0.7982 0.8090 0.7922 0.1318 0.2689 0.1470 0.1461 0.1357
MBX: UC vs
nonIBD | FCBT = RTF 0.8149 0.6255 0.8267 0.8162 0.8105 0.1339 0.2856 0.1602 0.1452 0.1433
MBX: UC vs
nonIBD |
LogNorm FA-LR 0.7675 0.5518 0.7950 0.7529 0.7746 0.1305 0.2356 0.1193 0.1533 0.1195
MBX: UC vs
nonIBD |
LogNorm ICA-LR 0.8173 0.6261 0.7984 0.8505 0.8077 0.1049 0.2157 0.1164 0.1423 0.1069
MBX: UC vs
nonlIBD |
LogNorm LR 0.7892 0.5717 0.7965 0.7943 0.7836 0.0932 0.1903 0.1152 0.1113  0.0959
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Supplemenatry Figure 4.8. Critical difference between models build for predicting

phenotype based on metabolomic profiles.
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Supplementary Table 4.2. Top ICA loadings for UC vs nonIBD with metabolites as

sources. The weights are taken to 2 standard deviations from the mean and transformed to

their absolute value.

Metabolite

eicosatrienoate

sphingosine-isomer2
docosapentaenoate

palmithoylethanolamide

palmitoylethanolamide

linoleoyl ethanolamide
linoleoylethanolamide

palmitoleate

sphingosine-isomerl

adrenate
docosahexaenoate

eicosadienoate

myristoleate

10-nonadecenoate
phytanate
arachidonate
eicosapentaenoate
eicosanedioate

12.13-diHOME

5alpha-cholestan-3beta-ol

4-hydroxybenzeneacetonitrile

suberate

phenylacetylglutamine

2-hydroxyhexadecanoate

5-aminolevulinic acid

phytosphingosine

IC
IC1

IC1
IC1
IC1

IC1

IC1
IC1
IC1

IC1

IC1
IC1
IC1

IC1

IC1
IC1
IC1
IC1
IC1
IC1

IC1

IC1
IC1

IC1

IC1

IC1

IC1

Weight
0.1723400207

0.1706317201
0.168800648
0.1631793961

0.1605885992

0.1523316643
0.1503143928
0.136222285

0.1335828701

0.1311870753
0.129839287
0.1255578872

0.1228697361

0.1193601686
0.111757101
0.1111453228
0.110879999
0.1054568384
0.1033519056

0.10312341

0.1022143958
0.1017912639

0.0988816629
8

0.0942514068
4

0.093466808
92

0.0918609412
2

UC Metabolite

0

1

w
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1

12

13
14
15
16
17
18

19

20
21

22

stearate

nonadecanoate
arachidate

palmitate

17-methylstearate

nervonic acid
fumarate/maleate

eicosenoate

oleate

13-docosenoate
malate

oxalate

10-nonadecenoate

phytanate
myristate
C20:0 LPE
malonate
olmesartan

linoleate

NH4_C16:1 MAG

tetradecanedioate

eicosadienoate

3-hydroxyoctanoate

ketodeoxycholate

chenodeoxycholate

cholate

IC
IC13

IC13
IC13
IC13

IC13

IC13
IC13
IC13

IC13

IC13
IC13
IC13

IC13

IC13
IC13
IC13
IC13
IC13
IC13

IC13

IC13
IC13

IC13

IC2

IC2

IC2

Weight
0.2251969265

0.2157857473
0.2148027687
0.2023151499

0.1849058092

0.1747971184
0.1692744014
0.1691315205

0.1513342409

0.149570768
0.1472579823
0.1315086329

0.1264219298

0.1188874959
0.1136883641
0.1098077952
0.1026516257
0.09880319401
0.09454650606

0.09128807249

0.08979551146
0.08952790936

0.08840556137

0.2356543607

0.2291600505

0.2251047858
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NH4_C52:2 TAG

IC1
IC1

IC3

IC3
IC3

IC3

IC3

IC3

IC3
IC3

IC3
IC3
IC3

IC3

IC3
IC3

IC3
IC3
IC3
IC3

IC3
IC3

IC3

IC3
IC3

IC3
IC3

IC3

0.0897192941
6
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0.1911791761
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hyodeoxycholate /ursode

oxycholate

lithocholate

N-methylproline
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taurocholate

alpha-muricholate

taurolithocholate

taurochenodeoxycholate

glycoursodeoxycholate

atenolol

4-pyridoxate

glycochenodeoxycholate

trigonelline

ectoine

deoxycholate

pantothenate

pipecolic acid
12.13-diHOME
oxymetazoline

acetylcholine

methylimidazole acetic

acid

riboflavin

1.2.3.4-tetrahydro-beta-c
arboline-1.3-dicarboxylat

€

C18:1 CE
NH4_C16:0 CE

NH4_C18:1CE
C22:4 CE

C16:0 CE

IC2
IC2

IC2

IC2
IC2

IC2

IC2

IC2

IC2
IC2

IC2
IC2
IC2

IC2

IC2
IC2

IC2
IC2
IC2
IC2

IC2
IC2

IC2

IC7
IC7

IC7
IC7

IC7

0.2059582606
0.166259314

0.15908302

0.1527717886
0.14196063

0.1418591161

0.1184172052

0.1158424758

0.1110751257
0.1097205733

0.1056992169
0.1043793403
0.1037521252

0.1030338937

0.1014881474
0.1009645073

0.09943683225
0.09884696306
0.0980670256
0.09776819624

0.09593914516
0.09305898528

0.08926144481

0.2007309474
0.1905340177

0.1785183952
0.1776111072

0.1760505765
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29

30

31
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ul

10
1
12
13

14

15

16
17
18

19

20

21

22

23
24

25

C54:3 TAG

NH4_C56:3 TAG
C54:2 TAG
C51:3 TAG

C48:2 TAG

C44:1 TAG

C22:1 SM

C20:0 SM
heptadecanoate
C22:0 SM

hydroxymyristate

2-hydroxyhexadecanoate
pentadecanoate

hyodeoxycholate /ursodeoxyc
holate

alloisoleucine
C16:0 SM

C16:1 SM

C14:0 SM
glycolithocholate

acetylcholine

C16:1 MAG

hippurate

NH4_C49:1 TAG
C24:1 SM

phytanate

NH4_C50:5 TAG

5alpha-cholestan-3beta-ol

glycodeoxycholate

chenodeoxycholate

C24:0 SM
C18:0 SM

C34:4 PC plasmalogen

IC3

IC3
IC3
IC3

IC3

IC3
IC6
IC6
IC6
IC6
IC6

IC6
IC6

IC6
IC6
IC6
IC6
IC6
IC6
IC6

IC6

IC6

IC6
IC6
IC6

IC6

IC6

IC6

IC6

IC6
IC6

IC6

0.0984088897
1

0.0962495159
1

0.09272716167
0.0925117874

0.0921782660
9

0.0882439549
3

0.1714234574
0.1672335699
0.1615576824
0.1562406137
0.1481921518

0.1424553177
0.1377203121

0.1376130385
0.128175241
0.1249952397
0.1236673779
0.1191233848
0.1181332621
0.1175144571

0.1134412628

0.1126672814

0.1105021852
0.109720217
0.108244512

0.107613969

0.105622764

0.1045984754

0.1041166062

0.1023389856
0.101163135

0.0986871674
8

25

26

27
28

—_

C18:2 CE

C18:0 CE
NH4_C18:0 CE
NH4_C22:6 CE

C20:3 CE

C18:3 CE
C20:4 CE
C22:6 CE
C16:1 CE
C22:5CE
NH4_C16:1 CE

NH4_C18:3 CE
NH4_C18:2 CE

NH4_C20:4 CE
NH4_C22:4 CE
NH4_C22:5 CE
NH4_C20:3 CE
C20:5 CE

C14:0 CE

NH4_C20:5 CE

NH4_C53:3 TAG

NH4_C53:2 TAG

NH4_C51:2 TAG
C56:7 TAG
C34:1PC

C36:1PC

C32:0 PC

C36:2 PC

C34:1 PC plasmalogen

C36:2 PC plasmalogen
C32:1PC

C38:2PC

IC7

IC7
IC7
IC7

IC7

IC7
IC7
IC7
IC7
IC7
IC7

IC7
IC7

IC7
IC7
IC7
IC7
IC7
IC7
IC7

IC7

IC7

IC7
IC7
IC17

IC17

IC17

IC17

IC17

IC17
IC17

IC17

0.1745011035

0.1709378368
0.1708924111
0.1642264553

0.1629294982

0.1608066661
0.1601831066
0.1590207646
0.1568889782
0.155469127
0.1552822665

0.1520640791
0.1485851279

0.1456293264
0.136513491
0.1271931792
0.1175927704
0.1169912185
0.1145628173
0.1115988762

0.09451443514

0.09193711721

0.0878859856
0.08770020279
0.1648996997

0.1617996355

0.1595068826

0.1584505303

0.157769903

0.1539508206
0.1493422782

0.1416527131
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26

27

28

29

30

© o N o

1
12
13
14
15

16
17
18
19
20
21

22

23

metronidazole

ketodeoxycholate

indoleacetate

valerate/isovalerate

2-aminoheptanoic acid

N-methylproline

taurohyodeoxycholate/taurou

rsodeoxycholate

taurocholate

taurochenodeoxycholate

taurodeoxycholate

alloisoleucine

tauro-alpha-muricholate /taur

o-beta-muricholate
acetylcholine
hexadecanedioate
taurolithocholate

pterin

N-acetylhistidine
hippurate

glycocholate

glycochenodeoxycholate

dimethylglycine

5-aminolevulinic acid
pipecolic acid
taurine
N6-acetyllysine
creatinine

C20:4 carnitine

C3 carnitine

glycoursodeoxycholate

IC6

IC6

IC6

IC6

IC6

IC2

IC2

IC2

IC2

IC2
IC2

IC2
IC2
IC2
IC2
IC2

IC2
IC2
IC2
IC2
IC2

IC2
IC2
IC2
IC2
IC2
IC2

IC2

IC2

0.0984395647

0.0932044416
5

0.0907411807
2

0.08947277771

0.0877917736
8

0.1732328731

0.1653491454

0.1619438974

0.1592194826

0.1588787361
0.1533717983

0.1484505661
0.1384824974
0.1352478998
0.1280712948
0.1244410105

0.1159922966
0.1140534845
0.1138567355
0.1136217042

0.1129830638

0.1095677945
0.1089564682
0.1083012845
0.103869968
0.1020016269
0.0999049732

0.0988801722
4

0.0974894005
8

8

10

1

juy

12

13

14

15

16

17
18

19
20
21
22
23

24
25
26
27
28

29
30
31
32
33
34

35

36

C16:0 SM

C18:0 LPE

C16:1 SM

C34:2 PC plasmalogen

C22:0 SM

C38:4 PC plasmalogen

C36:3 PC

C36:1 PC plasmalogen

C36:4 PC plasmalogen

C36:5 PC plasmalogen
C18:0 SM

(C38:4 PC
C34:0 PC
C34:3 PC
C34:2 PC
C30:0 PC

C241SM
C18:0 LPC
C14:0 SM
C24:0 SM
C20:0 SM

C22:0 LPE
C18:1 LPE
C20:3 LPC
deoxycholate
C36:4 PC-B

4-pyridoxate

C9 carnitine

C18:1SM

IC17

IC17

IC17

IC17

IC17

IC17

IC17

IC17

IC17

IC17
IC17

IC17
IC17
IC17
IC17
IC17

IC17
IC17
IC17
IC17
IC17

IC17
IC17
IC17
IC17
IC17
IC17

IC17

IC17

0.1414927676

0.1383652931

0.137540197

0.1358876752

0.1328138091

0.1317636956

0.1313663523

0.1254489674

0.1245386363

0.1237390002
0.1233155677

0.122688541
0.1208025627
0.1185750056
0.1184449847
0.1181826314

0.1176472406
0.1164154175
0.1159214735
0.1155899642
0.1091444296

0.1071643288
0.1041956225
0.1022587489
0.09671476666
0.09671135541
0.09429848645

0.09391792716

0.09267960553
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24

25

26

27
28

29

30
31

10

11

12

13

14

15

16

17

tetrahydro-1-methyl-beta-car

boline-3-carboxylate

olmesartan

trimethylamine-N-oxide

imidazoleacetic acid

C20 carnitine

glycodeoxycholate

serotonin
chenodeoxycholate

C341DAG

C34:2 DAG

NH4_C36:1 DAG
C36:2 DAG

C36:3 DAG
C32:2 DAG

NH4_C36:3 DAG

NH4_C34:2 DAG
C36:1 DAG
C36:4 DAG

NH4_C32:1 DAG

C34:3 DAG

NH4_C34:3 DAG

C32:1 DAG

NH4_C36:2 DAG

NH4_C32:2 DAG

NH4_C34:1 DAG

NH4_C36:4 DAG

IC2

IC2

IC2

IC2
IC2

IC2

IC2
IC2
IC10

IC10

IC10
IC10

IC10
IC10

IC10

IC10
IC10
IC10

IC10

IC10

IC10

IC10

IC10

IC10

IC10

IC10

0.0971460387
2

0.095233550
04

0.0946512961
5

0.0943998739
8

0.0940911539

0.0914448708
8

0.090249325
89

0.0887472313
0.1734706299

0.1701702701

0.1678197529
0.1676386823

0.1642294709
0.1616643834

0.1614093317

0.1610646115
0.1596390214
0.1578744997

0.1575201141

0.1547739396

0.1533284134

0.1510448075

0.1505554696

0.1493148436

0.1452657641

0.1439608335

37

10

1
12

13

14
15
16

17

18

19

20

21

22

23

24

C22:1 SM

4-guanidinobutanoic
acid

cortisol

C16 carnitine

C18 carnitine

suberate

metformin
metronidazole

gabapentin

21-deoxycortisol

azelate

C18:1 carnitine

4-hydroxybenzaldehyde

shikimate

C18:1 LPE

homovanillate
hexadecanedioate

pyridoxine

cholesterol
N-acetylglutamine
masilinate

C18:1-OH carnitine
4-hydroxybenzeneaceto
nitrile

C18:0 MAG

NH4_C18:0 MAG

4-aminophenol

IC17

IC18

IC18

IC18
IC18

IC18

IC18
IC18
IC18

IC18

IC18
IC18

IC18
IC18

IC18

IC18
IC18
IC18

IC18

IC18

IC18

IC18

IC18

IC18

IC18

IC18

0.08910133844

0.1849762577

0.1602664299

0.1474481336
0.135657182

0.1328012152

0.1290957698
0.1279809024
0.1257528136

0.1239567698

0.123597865
0.1161172516

0.1153016278
0.1149799878

0.1137089446

0.1130027166
0.1110736494
0.1099179282

0.1082352912

0.1059054258

0.1053687996

0.105282717

0.1050962488

0.1045362571

0.1041398937

0.103815935
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18

19

20
21
22

23

24

25

26

27

10
1
12

13
14
15
16
17
18

19

3-methylglutaconate

C30:0 DAG

NH4_C18:0 MAG
C18:0 MAG
C32:0 DAG

2-hydroxyglutarate

3-hydroxymethylglutarate

C34:0 DAG

10-heptadecenoate

linoleate

hypoxanthine

2'-O-methyladenosine

8-hydroxy-deoxyguanosine

5-acetylamino-6-amino-3-me

thyluracil

1-methylguanine

1-methylguanosine

xanthine

1-3-7-trimethylurate
hydroxycotinine

caffeine

2-deoxyadenosine
shikimate

theophylline

porphobilinogen
acetytyrosine
uracil

inosine

xylose

guanine

13-cis-retinoic acid

IC10

IC10

IC10
IC10
IC10

IC10

IC10

IC10

IC10

IC10
IC16

IC16

IC16

IC16

IC16

IC16
IC16

IC16
IC16
IC16

IC16
IC16
IC16

IC16
IC16
IC16
IC16
IC16
IC16

IC16

0.1429828029

0.1357052405

0.1291626968
0.1291479495
0.1098921319

0.1092001002

0.1084628347

0.1062751718

0.093879600
91

0.092709465
04

0.1960222681

0.1949465598

0.1873478179

0.175932787

0.1651955836

0.1522032787
0.1494644609

0.1484802391
0.1385520194
0.1375654145

0.1359403779
0.1355995912
0.1350725754

0.1299797038
0.1292386949
0.1259877352
0.1233405866
0.1225787342
0.1207669801

0.1126240602

25

26

27
28
29

30

31

32

33

34
35

10
1

12
13
14
15
16
17

18

trimethylbenzene

acetyl-galactosamine

hippurate
C18:2 carnitine

2-aminoadipate

C18:2 LPE

C16:1 LPE

13-cis-retinoic acid

C16-OH carnitine

myristoleate

C56:7 TAG

methionine

glutamine

leucine

isoleucine

threonine

phenylalanine

citrulline
tryptophan

tyrosine

lysine
serine

alanine

methionine sulfoxide
histidine

saccharin

glycine

aspartate

acetytyrosine

valine

IC18

IC18

IC18
IC18
IC18

IC18

IC18

IC18

IC18

IC18
IC18

IC1

IC1

IC1

IC1

IC1
IC1

IC1
IC1
IC1

IC1
IC1
IC1

IC1
IC1
IC1
IC1
IC1
IC1

IC1

0.09894614044

0.09717170553

0.09564303683
0.09555173563
0.09493140186

0.09426297674

0.09416043979

0.09293804626

0.08997261999

0.08994670672
0.08906457228

0.2045420393

0.1986374793

0.1955400544

0.1899661623

0.1832168747
0.1829898498

0.1769021063
0.1715365634
0.1698616556

0.169847571
0.1689354676
0.1626914258

0.1225882452
0.1183561492
0.1126574125
0.1124380402
0.1084524295
0.1078335983

0.105903855
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20

21
22

23
24

25

26

27

28

29

30

31

32

o N oy Ul Ww N

10

1

12

13
14
15
16

norepinephrine

phytanate

fructose/glucose/galactose

N-acetylglutamine

cotinine

corticosterone

thymine

oxypurinol

masilinate

guanosine

tetrahydro-1-methyl-beta-car
boline-3-carboxylate

4-nitrophenol

glycerate
isoleucine

leucine

methionine
phenylalanine
tyrosine
alanine
threonine
tryptophan

metformin

methionine sulfoxide

glutamine

citrulline

serine

urate
proline
thymine

glycine

IC16

IC16
IC16

IC16
IC16

IC16

IC16

IC16

IC16

IC16

IC16

IC16

IC16
IC7
IC7

IC7
IC7
IC7
IC7
IC7
IC7
IC7

IC7
IC7

IC7

IC7

IC7
IC7
IC7
IC7

0.1125912905

0.1113842117
0.1110316143

0.1052783951
0.1052192394

0.0963487515
7

0.09567176187

0.0956564773
6

0.0952949461
9

0.0921749244

0.0910998076
5

0.0901315108
8

0.0882866184
6

0.2095094687
0.2038344678

0.1982446152
0.188082129
0.1747896742
0.1723949071
0.1687410011
0.1680189831
0.1556539536

0.147669256
0.1474372076

0.1472559078

0.1367012312

0.1252377572
0.1207700195
0.1202703178
0.1134225094

20
21

22
23

24

20
21
22
23

pyrocatechol

4-hydroxybenzaldehyde

proline

4-aminophenol

asparagine

5-hydroxytryptophan

imidazoleacetic acid

guanosine

2'-O-methyladenosine

3-methylxanthine

hypoxanthine

8-hydroxy-deoxyguanosi

ne

N-acetylhistamine
inosine

histamine

7-methylxanthine
pipecolic acid
cytosine

cytidine

uridine
N-acetyalanine

oxypurinol

spermidine

uracil

7-methylguanine

2-deoxyadenosine

N-methylproline
taurolithocholate
diaminopimelate

quinine

IC1

IC1
IC1

IC1
IC1

IC1

IC8

IC8

IC8

IC8

IC8

IC8

IC8
IC8
IC8

IC8
IC8
IC8
IC8
IC8
IC8
IC8

IC8
IC8

IC8

IC8

IC8
IC8
IC8
IC8

0.1024795046

0.1016324301
0.09835692928

0.09831498875
0.09783403407

0.09354204049

0.1990694621

0.1956044667

0.18543885

0.171287925

0.1635291179

0.1630872985

0.1557581016
0.1518006001
0.1505165189

0.150239602
0.1285162652
0.1261630794
0.124183716
0.1235508932
0.1202770161
0.1172169358

0.1142324412
0.1108153538

0.1049965435

0.1006407008

0.1001613552
0.09541828516
0.09502067252
0.09068178499



17

18
19

20

21

22

23

24

25

26

27
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]

10
11

12

13
14

15

glutamate

lysine

acetylalanine

pyrocatechol

2-hydroxy-3-methylpentanoat
e

2-aminobutyrate

C20:4 carnitine

4-methylcatechol

trimethylamine-N-oxide

hyodeoxycholate /ursodeoxyc
holate

beta-guanidinopropionic acid

taurodeoxycholate

glycodeoxycholate

taurolithocholate

ketodeoxycholate
caffeine
lithocholate

deoxycholate

N-carbamoyl-beta-alanine

glycolithocholate

alpha-muricholate
trigonelline

kynurenic acid

2-hydroxy-3-methylbutyrate

2-hydroxy-3-methylpentanoat
e

cholate

adipate

IC7

IC7
IC7

IC7

IC7

IC7

IC7

IC7

IC7

IC7

IC7

IC5
IC5

IC5

IC5
IC5
IC5
IC5

IC5
IC5

IC5
IC5
IC5

IC5

IC5
IC5

IC5

0.1126004323

0.1105432724
0.1067432574

0.1061495207

0.1042616488

0.0981340032
4

0.0946119059
7

0.093085346
91

0.0907454512
4

0.0899522194
3

0.0898443297
2

0.2209295176
0.2142056326

0.1999994324

0.1877490543
0.1770555862
0.1655287623
0.1575044322

0.1417898376
0.1406571036

0.1359328204
0.1337312279
0.1267396464

0.1251401579

0.1241005493
0.1202743218

0.1182802112

24

25
26

27

10
1
12
13

14
15

16
17
18

19

20
21

22

cadaverine

tauro-alpha-muricholate
/tauro-beta-muricholat
e

ribothymidine

taurohyodeoxycholate /t
auroursodeoxycholate

phenylacetylglutamine

urate

C18:3 LPC

pseudouridine

C16:0 LPC

erythronate

2-aminoheptanoic acid

C16:1 LPC plasmalogen
C22:6 LPE

C18:1 LPC plasmalogen

N-carbamoyl-beta-alani
ne

mandelate
norepinephrine

C14:0 LPC

deoxycholate

C18:0 LPE-B

C18:2 LPC
alanylalanine

C20:1LPC

C18:0 LPC

C18:1LPC
Cl16:1 LPC

tetrahydro-1-methyl-bet
a-carboline-3-carboxylat
e

IC8

IC8
IC8

IC8

IC14

IC14

IC14

IC14

IC14

IC14

IC14

IC14
IC14

IC14

IC14
IC14
IC14
IC14

IC14
IC14

IC14
IC14
IC14

IC14

IC14
IC14

IC14

0.09060339549

0.08981373665
0.08880309368

0.08834971643

0.1976087623

0.1700876636

0.168198117

0.1526471439

0.1479415027

0.1463516069

0.1429996398

0.1407843493
0.1399964665

0.1386548952

0.1360623441
0.1359088287
0.1311528765
0.13104104

0.1309800216
0.1281075464

0.1215154908
0.1210992583
0.1202093292

0.1130938182

0.1092960868
0.1081349495

0.1078944861
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16
17

18

19
20

21

22

23

24

10
1
12
13

14
15

16
17
18

chenodeoxycholate

shikimate

xanthurenate

p-hydroxyphenylacetate

4-nitrophenol

pyrocatechol

imidazole propionate

urate

methylimidazole acetic acid

salicylate

N-alpha-acetylarginine

N-acetylglutamate

porphobilinogen

ethyl glucuronide

acetaminophen
erythronate
N6-acetyllysine

hydroxycotinine

dTMP

xanthurenate
serine
nicotinate

kynurenic acid

alpha-ketoglutarate

biliverdin

N-acetylglutamine
asparagine

biotin

IC5
IC5

IC5

IC5
IC5

IC5

IC5

IC5

IC5

IC17

IC17

IC17
IC17

IC17

IC17
IC17
IC17
IC17

IC17

IC17
IC17
IC17
IC17

IC17
IC17

IC17
IC17
IC17

0.1126006781
0.1114744004

0.1079547659

0.1050846174
0.1023208863

0.094256844
09

0.092986096
57

0.0901961378
5

0.088609888
72

0.2209026361

0.1792701847

0.1587539618
0.1581015927

0.1512058366

0.150878326
0.147749398
0.1406568101
0.138495966

0.1360995876

0.1348113527
0.1319732186
0.1290856449
0.1227004685

0.119865859
0.1186126715

0.1184953466
0.1117822362
0.1091600943

23
24

25

26
27

28

29

30

31

coO N o U

10
11
12
13

14
15

16
17
18

lithocholate
C20:3 LPC

3-methylglutaconate

S-methylcysteine-S-oxid

e

choline

C18:0 LPE-A

biliverdin

pterin

theophylline

5-acetylamino-6-amino-

3-methyluracil

1-3-7-trimethylurate

1-methylguanine

carnosol

N-acetylhistidine

2-hydroxy-3-methylbuty

rate
caffeine
norepinephrine

imidazolelactate

2-aminoheptanoic acid

2-hydroxy-3-methylpent

anoate
pseudouridine
theophylline

serotonin

tetrahydro-1-methyl-bet
a-carboline-3-carboxylat

€

C20:4 carnitine

lactate
acetytyrosine

dTMP

IC14
IC14

IC14

IC14
IC14

IC14

IC14

IC14

IC14

IC6

IC6

IC6
IC6

IC6

IC6
IC6
IC6
IC6

1C6

IC6
IC6
IC6
IC6

IC6
IC6

IC6
IC6
IC6

0.1076641073
0.1033516351

0.1012529913
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0.09854785563
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0.09024622926
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0.1244922972

0.1231068676

0.1230202199
0.1220092999
0.1217883867
0.1172168955

0.1168803937
0.1154574415

0.1121870199
0.1112592866
0.1064419311
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IC17
IC17
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IC17
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IC17
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IC17

IC17

IC17

IC17

IC17

IC17
IC12

IC12
IC12

IC12

IC12

IC12
IC12
IC12

IC12
IC12

IC12

IC12

IC12

IC12
IC12
IC12

0.1085871503
0.1040094302
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0.1011985166
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4
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IC12

IC12
IC12

IC12
IC12

IC12

IC12

IC12
IC12
IC12

IC12
IC12

IC12

IC12

IC12

IC12
IC12
IC12

0.1050358224
0.1035415352

0.1021348977
0.09513731607

0.09101632944

0.09044120583

0.0902295169
0.08926113957

0.08853305944

0.08783003064

0.1579671004

0.1460405531
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0.1359540814
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0.1051941071
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Supplementary Figure 4.11. Hierarchical clustering of the ICs extracted between UC and

healthy controls when using Metabolites as the sources. The weights are then normalised

to standard scale between 0 and 1. There are 4 clear clusters. Cluster 1is presented by IC5;

Cluster 2 by IC14, IC4, 10, and IC6; Cluster 3 IC1, IC10, IC11, IC13, IC7, IC2

and IC3; and

Cluster 4 by IC9, IC8 and ICI2. Hierarchical clustering was performed using the SciPy

package, with the linkage method to use for calculating clusters set as average and the

distance metric set as euclidean.
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Appendix 4: Supplementary Chapter 5

Supplementary Table 5.1. 65 bacterial proteins that had domain-domain interactions.

Protein identifiers that have been converted to their Uniprot IDs. Further information can

be found at https:/www.uniprot.org/

UniProt ID
B3JG17
S8FI70

AOAOPOM566
K9E3T6
A6KXF4
A6L2K1
G8UNS2
S37591
Q8A9V4
F3PQK3
A6L8N5
F4KUX7
F3PQB4
Q8AIGO
WI1I596

AOAOK6BUV2

KI1SR17
D4VDIO
AOAOPOFT08
AOAO078QIK9
E6MQG1

AOAONT7IF12

D4V5A1
AB6KYX9
SOGGR1
R7AE42
B5CXY1

AOAOPOMI1P2

R6E4C6

UniProt ID contin.

J9GDD5
Q8A9BS
W4UTT1
AOAOK6BYZ4
D7VKC1
B2RIW6
AOA0A2VU39
RII6YS
Q8AAUS
AOAOPOGBI7
B3JKVO
195454
AOAOK6BPI8
EIWS50
Q64TC3
Q68H09
E6MPJ8
E4T6ES
AOAOPOGTS6
F9P7L9
F3QWA7
AOAI27T5P2
R5V370
KITGG7
AOAOPOG4X6
D2QSGl
QIX4N3
AOA132GWKO
AOA108T7M9
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Supplementary Figure 5.1. Inferred multi-layer host-microbe protein-protein interaction
(PPI) network from the source Bacteroides vulgatus microbial proteins to the host target
proteins in ulcerative colitis. The full resulting PPI network from Microbiolink2 pipeline
annotated for the both functional clusters in intermediate PPI network and heat (signal
propagation) value for each protein in the network. The larger the value of heat

propagation the more influence that protein has on the network.
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ABSTRACT

IBD is a complex multifactorial inflammatory disease of
the gut driven by extrinsic and intrinsic factors, including
host genetics, the immune system, environmental
factors and the gut microbiome. Technological
advancements such as next-generation sequencing,
high-throughput omics data generation and molecular
networks have catalysed IBD research. The advent of
artificial intelligence, in particular, machine learning,
and systems biclogy has opened the avenue for the
efficient integration and interpretation of big datasets
for discovering clinically translatable knowledge. In this
narrative review, we discuss how big data integration
and machine leaming have been applied to translational
IBD research. Approaches such as machine learning
may enable patient stratification, prediction of disease
progression and therapy responses for fine-tuning
treatment options with positive impacts on cost,

health and safety. We also outline the challenges and
opportunities presented by machine learning and big
data in clinical IBD research.

INTRODUCTION
Precision medicine holds great promise to improve
the landscape of IBD course of care for an indi-
vidual patient, providing the most beneficial
therapy while minimising the risk. The ultimate
goals of precision medicine include stratifying
patients based on disease subtypes and severity,
disease progression and treatment response using
personal and clinical data coupled with molec-
ular profiling data of patients.! * IBD, with its two
main subtypes, Crohn’s disease (CD) and UC, is a
complex inflammatory disease with a wide range
of contributing factors including host genetics,
immune system, environmental exposures and the
gut microbiome.*™ The inherent complexity of the
disease introduces a large number of confounding
factors, which stand in the way of accurate diag-
nosis and precision medicine.®

The term ‘big data’ is generally referred to as
large volume of rapidly produced data from variable
sources, known as the three “V's (volume, velocity
and variety).” Over the past decades, the production
and availability of data that could inform health-
care has increased remarkably mainly due to tech-
nological advancements and falling costs of data
generation. Most important sources of data in IBD
comprise study cohorts, clinical trials, administra-
tive and electronic health record databases, patient-
reported outcomes databases, medical imaging
databases and omics datasets (including genomics,
transcriptomics, proteomics and metabolomics, as
well as environmental omics) (figure 1). The use of

,' Matthew Madgwick,** Padhmanand Sudhakar,
%> Tamas Korcsmaros, > Séverine Vermeire'

big data in [BD allows medical researchers to reveal
disease-related trends, associations and patterns
to propel our understanding of IBD forward and
to inform clinical practice.” * However, due to
the high complexity of big data and the long list
of confounding factors, interpreting these data
is not trivial and warrants approaches that can
uncover hidden patterns in these large and complex
datasets.”

Recent developments in computational biology
have driven the integration of big data and molec-
ular networks using the principles of systems
biology and machine learning. Systems biology
centres around the holistic and mathematical
modelling of complex biological system.'® Machine
learning is a subset of artificial intelligence, which
refers to the ability of algorithms to learn from
data in order to detect patterns and make decisions
(without explicitly being programmed what to do)
(Box 1)."" Machine learning algorithms provide the
means and opportunity to investigate large amounts
of data and thus help identify patterns behind
complex medical conditions. These analytical
approaches allow categorisation of patients based
on their specific differences through screening a
patient’s genome, transcriptome, proteome, epig-
enome, immunome and microbiome. Integrating
the omics datasets using systems biology-based
approaches may advance understanding of the
underlying causative factors in individual patients.
The arrival of systems biology and machine learning
into IBD clinical research has allowed researchers
to capture complex associations andincreased
understanding of disease mechanisms in IBD. In
this narrative review, we provide an overview of the
sources of big data in IBD. We discuss how artificial
intelligence could help us better understand 1BD
pathogenesis and how some components of it have
already begun to shape our knowledge of IBD. We
address how artificial intelligence could contribute
to the diagnosis and prognosis of IBD, and whether
it could assist with predictions of therapy efficacy
and adverse effects. As a final point, we argue the
potential that artificial intelligence provides for
personalised medicine in IBD and evaluate the
feasibility of big data in IBD disease management.

ROLE OF MACHINE LEARNING AND SYSTEMS
BIOLOGY IN THE INTERPRETATION OF BIG DATA
IN IBD RESEARCH

The main challenge faced by many scientists is to
extract meaningful information through integrating
different sources of data and thereby discover
disease association patterns. Classical statistical
methods are not powerful enough to explain the
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Figure 1 Precision medicine in IBD. Generation of big data from thousands of individuals, along with analytical advancements such as machine
learning and systems biology, assists the application of precision medicine and therefore allows patient stratification for personalised therapeutic
intervention and disease management strategies. MR, magnetic resonance; PCA, principal component analysis; RF, random forest.

underlying milieu of pathogenic and causative factors in IBD.
Hence, scientists have adopted different analytical methodolo-
gies. Generally, such analytical methodologies are categorised
into two main groups, namely, systems biology and machine
learning. These are more powerful and flexible methods in
biomedical data science and have the potential to uncover novel
insights into disease pathogenesis.” '

Systems biology paves the way for data integration and analysis
from a functional perspective, and it has assisted in identifying the
pathophysiological mechanisms of IBD. The approach of systems
biology typically involves the use of networks (mostly molecular
networks such as protein—protein interaction networks, regu-
latory networks involving transcription factors and metabolic
networks) to capture the physical and signalling interactions
and to interpret contextual measurements such as expression of

genes, proteins and metabolites. This approach thereby provides
a framework to identify key components and/or pathways which
mediate the pathogenesis of the disease. Brooks et al identified
different clusters of patients with UC using network footprints
created by combining mutation data, protein-protein interaction
networks and gene expression data.'

In the past decade, machine learning has attracted much atten-
tion from groups engaged in IBD research, owing to its ability
to learn complex patterns and make prediction. With machine
learning as a framework, several attempts have been made to
use different types of omics and clinical datasets to improve our
understanding of disease mechanism. Given that omics data-
sets, such as RNAseq data, comprise expression information of
thousands of genes (features) with far few samples, feature selec-
tion is of great importance. Machine learning algorithms take

Seyed Tabib NS, et af. Gut 2020;69:1520-1532. doi:10.1136/gutjnl-2019-320065
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Artificial intelligence terminology

Artificial intelligence: the field of computer science which
concems the theory and development of computers to perform
tasks which usually requires human intelligence, such as imagine
classification, speech recognition and decision-making.

Machine learning: a field of artificial intelligence which refers

to the computers’ ability to learn to make decisions or detect
pattems (without explicitly being programmed) from data.

Deep learning: a subfield of machine learning that exploits many
layers of non-linear information processing for supervised or
unsupervised feature extraction and transformation, and for
pattem analysis and classification using various neural network
frameworks.

Supervised learning: the task of an algorithm learning a function
that maps an input to an output based on provided example
data.

Unsupervised learning: the task of a machine learning algorithm
to learn the underlying data structure of unlabeled example
data, for example, finding commonalities, leading to insights and
therefore a greater understanding of the example data.
Classification: the process of predicting a class/subcategory of
given data points from known example data.

Generalisation: refers to how well the machine learning model
leams the underlying data and the model's ability to apply this
to specific examples not seen by the model during training.
Ensemble learning: the union of homologous or heterogeneous
machine learning algorithms whose predictions are combined

to achieve greater performance than just the individual machine
leaming algorithm could achieve alone.

Support vector machine: this is a discriminative classifier which
determines classes from a separating hyperplane. Through

the use of a kernel, SVMs can be adapted to suit non-linear
problems.

Random forests: a homologous ensemble algorithm which
constructs a great number of decision trees at training.

Matrix factorisation: an algorithm which extracts meaningful
association from an incomplete data matrix and transforms
them in a lower dimensional latent space, also known as
recommender systems.

advantage of data-dependent automatic feature learning, while
systems biology approaches need to be manually programmed.
Machine learning algorithms can learn how to integrate several
predictors to identify a representative subset of input data";
for example, a machine learning algorithm using the concept of
random forests identified a panel of 50 faecal bacteria capable of
distinguishing active and remission states in patients with CD.'®

Genomics

IBD is considered as a polygenic disease, with the exception of
rare monogenic cases.” The notable example of research into
the genetic basis of IBD is the introduction of NOD2 as the
first CD susceptibility gene.'® To date, the continued search for
genetic determinants of IBD identified 242 variants associated
with IBD,"” of which 45 have been fine mapped to statistically
significant causal variants. Interestingly, associated regions indi-
cate that there is a profound overlap between IBD and other
immune-mediated inflammatory diseases. However, merely a
small percentage of heritability is explained by the identified
loci."

To further resolve the genetic architecture of IBD, machine
learning and data integration could be employed to propel the
gene discoveries. The main issue with association studies is
the imbalance between the number of patient samples and the
number of single-nucleotide polymorphisms (SNPs) that are
being analysed. In addition, the classical genotype—phenotype
association at high statistical confidence neglects a considerable
fraction of genetic variation. Machine learning could be used
to detect meaningful patterns containing thousands of DNA
variants, regardless of the statistical significance level.'*** This
could result in predictions of genetic markers and variants with
greater accuracy. An exemplary study was conducted using data
from the International IBD Genetics Consortium’s Immuno-
chip project. To reduce the number of SNPs, Wei and colleagues
applied a less rigid statistical confidence limit (p values of <10*
and minor allele frequency of <0.01) followed by a machine
learning classifier-based feature selection method (the penalised
logistic regression model). The authors defined 573 SNP-based
CD and 366 SNP-based UC predictive models with superior area
under the receiver operating characteristic curve (AUC) values
than the log OR-based models (AUCs of 0.86 (95% CI 0.85 to
0.86) and 0.826 (95% CI 0.81 to 0.83) for CD and UC, respec-
tively).”* Another interesting study was conducted using the UK
Inflammatory Bowel Disease Genetics Consortium and UK10K
consortium for the controls, which cumulatively comprises
approximately 8000 individuals (4280 patients and 3652
controls). In this study, a machine learning model, a support
vector machine (SVM), was used to hunt for novel genetic vari-
ants, which resulted in the identification of a missense variant
in ADCY7 associated with UC with a frequency of 0.6%.** A
recent study reanalysed the Immunochip dataset using different
machine learning models, including random forests and neural
networks. Romagnoni et al identified new variants with minor
effects, in addition to almost all of the previously known variants
among the best predictors of CD.”

Advancements in sequencing technologies allow a more
in-depth genomic screening. Scientists have used whole genome/
exome sequencing particularly to discover rare genetic vari-
ants, such as NOXI, contributing to very early-onset IBD.*®
Machine learning methodologies, particularly deep learning,
are resourceful tools for not only making predictions but also
extracting biomedical insights.””*? In a notable publication, Zou
et al provided a primer on deep learning for genomic data anal-
ysis accompanied with practical guidelines for the discovery of
DNA-binding motifs.*!

Transcriptomics and proteomics

Investigating the downstream effects of genomic aberrations,
namely, on the transcriptome and proteome, provides additional
molecular details to unravelling IBD pathogenesis. Differential
gene expression analysis has been used to identify key genes and
pathways underlying IBD pathogenesis. Transcriptomic analyses
of human ileum and colonic samples have helped to uncover
the roles of different pathways driving inflammation in IBD. For
example, inflamed and non-inflamed tissues have altered gene
expression in CD and UC. To investigate the functional signifi-
cance of these modifications and to characterise their molecular
signatures in colonic tissue, an integrated systems approach has
highlighted significant enrichment in proteasome and apoptosis
pathways.”* With protein-protein interaction network analysis,
Li et al identified MAPK3, NDRG1 and HLA-DRA as key players
in disease pathogenesis. Following a similar approach, Hong et
al identified altered gene expression profiles and key cellular
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pathways in patients with inflamed and non-inflamed intestinal
mucosa with CD, including immune response, chemokine signal-
ling and cell adhesion.™

Weighted gene coexpression network analysis allows
researchers to detect genes that are upregulated or downregu-
lated in tandem under specific conditions.’ ** For example, Lin
et al revealed important pathogenic roles for IL-§ and MMP-9 in
the colonic tissues of patients with UC by combining gene coex-
pression and protein—protein interaction networks.*® A similar
study in the context of gene expression alteration in different
stages of CD by Verstockt et al pinpointed that dysregulation of
the coexpression network is more evident in newly diagnosed
and late-stage CD compared with recurrent CD.*” Likewise, this
network approach can elucidate biological mechanisms driving
treatment resistance to biological therapies, such as with tumour
necrosis factor (TNF) inhibitor agents.*® Another functional
approach to explore the gene expression data is metabolism-
level interpretation using Recon 2,*” the model of the human
metabolic network. Using this model, critical pathways such as
cellular transport of thiamine and bile acid metabolism have
been identified.*

Yuan and colleagues reported 41 discriminatory IBD-related
genes by combining machine learning and systems biology. In
searching for novel candidate genes, the authors used a two-step
feature selection on microarray data from patients with CD, UC
and control individuals. First, they ranked thousands of genes
according to their correlation to diagnosis and the redundancies
between each gene related to all other genes in the ranked list.
Then, using an SVM as a machine learning classifier, they iden-
tified a feature set containing 21 genes, which yield the highest
prediction accuracy. Additionally, based on the concept of func-
tional similarity among closely related proteins, the authors used
the protein-protein interaction network of the proteins encoded
by those 21 genes and applied the shortest path approach (typi-
cally defined as the path with the least number of links between
two proteins in a network) to find an additional 20 candidate
genes.'" In another interesting study by Isakov et al, novel candi-
date genes were identified by developing a machine learning
model trained on expression values of known IBD susceptibility
genes and their functional annotations. The authors used the
feature importance of a machine learning classifier as the feature
selection method.*

Environmental ‘omics’

The gut microbiota, which comprise intestinal bacteria, fungi,
archaea and viruses, is an essential part of the human GI tract and
plays a pivotal role in human health. In homeostatic condition,
there is a state of immunological tolerance to the commensal
intestinal microbiota. It has been established that perturbation
of composition, function and structure of the gut microbiota,
known as dysbiosis, is one of the key players in IBD pathogen-
esis.* However, it is still not clear whether this dysbiosis is the
cause or consequence in patients with IBD.

There is a decline in both species diversity and richness in
patients with IBD. Several studies have reported an increase in
the abundance of certain species from the Proteobacteria phylum,
such as Escherichia coli, and a decline in anti-inflammatory
butyrate-producing bacteria species, such as Faecalibacterium
prausnitzii, belonging to the Firmicutes phylum. Additionally, a
longitudinal study suggested an increase in dynamic fluctuation
of the gut microbiome composition in patients with IBD.*

Much less is currently known on the role played by viruses
in the dysbiotic state in patients with IBD. Recent advances

in sequencing technologies and data analytic techniques have
enabled in-depth characterisation of microbiota communities
to investigate IBD pathogenesis using meta-level omics datasets,
namely, metagenomics, metatranscriptomics, metaproteomics
and metabolomics. Deep metagenomics paved the way to study
gut resident fungi, archaea and viruses in both healthy and
disease states. Different stool virome profiles have been observed
in patients with IBD compared with healthy individuals.* Zuo
and colleagues used machine learning-based clustering to define
viral metacommunities in rectal mucosa derived from patients
with UC. The predominant viral community among patients
with UC showed decreased viral diversity, richness and evenness,
particularly among Caudovirales species. However, two species
of Caudovirales (Escherichia phage and Enterobacteria phage)
were much more common among patients with UC compared
with healthy controls. This suggests a loss of corelationship
between the viruses and bacteria, which can cause microbiota
dysbiosis and intestinal inflammation. **

The interplay between the microbial composition and metab-
olism of the gut is an interesting nexus in IBD. While much of
the previous research on this interaction level has been inter-
pretive in nature, most of the studies on the gut protein and
metabolic composition used shotgun metagenomic technique.
Thus, by comparing the abundance of enzymatic genes across
samples, scientists have been able to infer the effect of variations
in microbial composition on the protein and metabolic levels.
An example of this is the study by Greenblum et al in which they
used faecal metagenomics to build metabolic networks. They
demonstrate topological differences by which IBD-associated
metabolic networks interact with the gut environment and the
host.*” There is a growing number of investigations applying the
approaches of metaproteomics and metabolomics. Particularly,
there are two avenues in which metaproteomics-based inves-
tigations have been employed, the mucosal-luminal interface
analysis and the stool metaproteome profiling. Li et al investi-
gated the protein co-occurrence network at the mucosal surface
of six different colonic regions. Employing weighted correlation
network analysis and multiple clustering methods such as hier-
archical clustering, they identified distinct functional protein
modules (protein clusters that alter together) in association with
non-IBD, UC and CD disease states.*® In addition to systems
biology methods, machine learning could be applied to define
relevant protein clusters. Profiling of stool samples revealed
that metaproteomic signatures in patients with CD differ from
those of healthy individuals. By integrating metagenomics and
metaproteomics, and applying a hierarchical clustering method,
Erickson et al reported a depletion of several microbial proteins
in patients with CD with ileal involvement, such as proteins in
the butyrate pathway which corresponded to a reduction in the
Firmicutes phylum.*

Multiomics data integration

In more recent investigations, researchers have been collecting
different levels of omics data from patients with IBD to inves-
tigate the crosstalk between the key players in IBD pathogen-
esis. An interesting area in which multiomics data integration
has been applied is to characterise the dysregulated multifaceted
interactions between various host and microbial factors in IBD.
For example, Hisler et al studied the transition of intestinal
homeostasis to dysbiosis by integrating multiple levels of data,
namely, the mucosal transcriptomic, post-transcriptional alter-
ations and the mucosal microbiome of patients with UC and CD
in comparison with healthy individuals. The authors identified
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the enrichment of host transcript splicing events as a result of
the interplay between microbial and host factors which probably
mediate the transition of intestinal homeostasis to dysbiosis in
patients with IBD.*" In order to investigate the dysbiosis at the
functional level, Lloyd-Price et al followed up 132 patients with
IBD for 1lyear and performed extensive molecular profiling of
all patients. The authors revealed a distinctive upsurge in the
ratio of facultative anaerobes to obligate anaerobes, along with
disruptions at the molecular level, including microbial tran-
scription division (within clostridia) and metabolite disruptions
(acylcarnitines, bile acids, and short-chain fatty acids). Addition-
ally, they reported noticeable alterations in the composition and
function of microbiota with regard to different disease activity
states.’!

CURRENT PARADIGM OF 1BD DISEASE MANAGEMENT AND
ITS LIMITATIONS

The scope of IBD treatment is extending swiftly, with the intro-
duction of new biologics and small molecules as a result of the
improved understanding of the disease pathophysiology. With
novel treatment options (targeting different aspects of IBD
pathophysiology) such as anticytokine or chemokine agents,
antiadhesion molecules, stem cell therapy and manipulation of

©

Management

Diagnosis

the gut microbiota becoming increasingly available, it is time to
move beyond the ‘one-size-fits-all’ approach.””

IBD management (figure 2) encompasses three different stages,
starting with diagnosis, followed by the assessment of disease
and the choice of therapy regimens, follow-up assessments and
associated treatment changes, if necessary. Disease monitoring is
key and is currently carried out by tracking different markers like
faecal calprotectin, serum C reactive protein, also colonoscopy
and/or medical imaging technologies such as abdominal ultra-
sound and MRL**** Hitherto, the clinical decision on the choice
of therapeutic strategy depended on the response and tolerability
of treatment in patients. However, in light of recent innovative
therapies in IBD, a more accurate method is warranted to assist
and complement existing management.*’ In recent years, there
has been an increasing interest in the application of machine
learning in IBD clinical research. Using machine learning for
personalised predictions will not only strengthen medical care
and improve outcomes but also considerably decrease health-
care expenditure. Despite the importance of health economics,
there are little published data on the cost-effectiveness of arti-
ficial intelligence in healthcare. An interesting example is the
study conducted by Bremer et al, who deployed a machine
learning methodology to predict the individual outcome and

Life management
Diet

A Smoking
Quality of life
Pregnancy
Depression
Fatigue

Treatment algorithm

Risk / Benefit assessment
Response prediction
Personalised therapy regimen

Clinical assessment

Risk calculation
Biomarker measurement
Imaging investigation

Complications & Prognosis
Fistula

Abscesses

Surgery

Colorectal cancer
Extraintestinal manifestations

Figure 2 Clinical management of IBD from the point of diagnosis to life-term monitoring and follow-up. Each stage of the disease management
process can potentially be subjected to precision medicine-aided improvement of patient care to reduce the socioeconomic burden on patients,

clinicians and the healthcare system.
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costs for patients with depressive disorders prior to the start of
intervention in order to allocate patients to the most beneficial
treatment.’® In the field of gynaecology, Wang et al proposed
a machine learning-based strategy for urinalysis which signifi-
cantly increased the detection rate of the pathogen Trichomonas
vaginalis in a cost-effective manner.*”

Diagnosis and risk stratification

The current paradigm of IBD classification, which relies on inva-
sive ileocolonoscopy and biopsies, does not adequately capture
the broad spectrum of phenotypes of the disease or the patient-
specific manifestations of its comorbid conditions. Recent
research has focused on identifying and evaluating potential
non-invasive diagnostic markers to diagnose IBD, differentiate
it from other disorders and potentially improve its classifica-
tion. There is great interest in the diagnostic value of genomics
data, with over 240 IBD-associated risk loci already identified
using genome wide association study (GWAS) data. A geno-
type—phenotype study associated three loci, NOD2, MHC and
MST, with subphenotypes of IBD, particularly disease location.**
Exome sequencing has arisen with the promise of unravelling
the genetics of complex diseases. However, extracting disease-
associated sequence variants is challenging due to inherited
diversity of genomic variation. By incorporating exome sequence
data with biological knowledge, such as functional interaction
networks, into a matrix factorisation-based machine learning
model, Jeong and Kim were able to distinguish patients with CD
from healthy individuals (AUC=0.81).""

Likewise, molecular and cellular signatures can enable stratifi-
cation of patients based on underlying pathways that drive their
disease. Gene expression profiling is a major area of interest in
the search of clinically associated signatures for [BD class predic-
tion. To identify a set of genes distinguishing between UC and
CD, novel machine learning-based methods have been used. Two
examples which stand out are the PROPhet software package,®
which automatically selects the best classifier and the optimal
selection of genes to distinguish disease subtypes. Montero-
Meléndez et al used this technique with microarray gene
expression profiling of colonic biopsies to identify predictive
transcriptional signatures associated with either CD or UC.?!
The second example is the Probabilistic Pathway Score, which
is a pathway-based machine learning model that uses gene inter-
actions to identify molecular pathways affected by the disease of
interest and identify similarities and differences between them.*
Proteomic signature is another promising nexus in biomarker
research. Machine learning models have also been used with
proteomic data to stratify patients with IBD. For example, Seeley
et al investigated the protein signatures from colonic tissues
using an SVM machine learning classifier trained on 25 peaks
from histology-based mass spectrometry data. The model was
able to discriminate patients with CD and UC from each other
with an accuracy rate of 76.9%.%* Another interesting area of
biomarker research in IBD is microRNAs (miRNAs), a group
of small noncoding RNA molecules which control gene expres-
sion and protein production and are detectable in many sources
such as blood and urine. Hence, miRNAs hold great promise as
potential non-invasive diagnostic markers. miRNAs are dysregu-
lated in IBD.** Therefore, researchers have attempted to demon-
strate the diagnostic value of circulating miRNAs signatures
in the blood as diagnostic biomarkers using machine learning
modelling, including random forests and SVM.®* ©¢

An interesting example of exploring the diagnostic value of a
set of biomarkers is the study conducted by Plevy et al combining

Recent advances in cli

ical practice
genetic variants, serological and inflammatory markers to estab-
lish a diagnostic model to distinguish patients with IBD from
those without IBD (healthy individuals or other diseases) and
to separate patients with CD from UC. Based on the data from
1520 individuals, the authors selected 17 statistically signifi-
cant markers and trained a random forest classifier, a machine
learning algorithm, to differentiate the clinical groups.®”

Machine learning approaches also hold great promise in
unravelling disease-specific microbial signatures. Multiple
machine learning-based microbiome frameworks have been
established such as Multivariate Association with Linear
Models (MaAsLin),® Metagenomic prediction Analysis based
on Machine Learning® and phylogenetic convolutional neural
networks™ which incorporate patient clinical data, knowledge
of microbial strains and knowledge of phylogenetic structure,
respectively. Integrating additional information is expected to
enhance the classification performance of microbiome-based
machine learning models. As an example, Gevers et al were able
to use rectal mucosa-associated microbiome signatures to distin-
guish paediatric patients with CD from patients with other GI
tract conditions by integrating patient clinical data age, gender
and past antibiotic use with the microbiome profiles using
MaAsLin workflow.”*

While the initial results of biomarker identification are prom-
ising, there is still a long way to go before these biomarkers can
be applied in clinical practice, mainly due to the heterogeneity
of the disease, diverse comorbidity factors and, importantly,
lack of validation. The emergence of big data and big data
analytics has led to a pile of studies and hypotheses. Although
these approaches show great potential in a study-by-study basis,
to translate these findings to a clinical setting, it is crucial to
distinguish true discoveries from red herrings. Therefore, repli-
cation and validation studies in much larger cohort sizes are
required. To achieve this, large and up-to-date clinical biobanks
with a variety of different data types, including molecular, clin-
ical and host characteristics, will be required to fully leverage
these analytical methodologies. In precision medicine era, many
national and international collaborative efforts are under way
aimed at improving clinical research (figure 3)."*%

Advances in imaging technologies

Image recognition is one of the major applications of artificial
intelligence, particularly deep learning, and holds great promise
in assisting the fields of biological and medical imaging. Deep
learning is a collection of algorithms in the field of machine
learning with an outstanding ability to decode the contents of
images. This has led to a proliferation of studies with an attempt
to automate the interpretation and the evaluation of medical
images, such as endoscopy, histopathology, and CT/MRI. Eval-
uating endoscopic inflammation, characterisation of lesions and
assessment of mucosal healing is essential for proper manage-
ment in IBD. However, endoscopic assessment of inflammation
in IBD is highly subjective with high interobserver variability.
Computer-aided scores would be much more objective for
the interpretation of the endoscopic images.** For example, a
deep learning-based model showed performance comparable to
those of experienced gastroenterologists for the classification of
endoscopic severity of UC into two groups: remission (Mayo
0 or 1 endoscopic score) and moderate to severe (Mayo 2 or 3
endoscopic score).”® A novel objective computer-based score to
assess UC disease activity based on endoscopic images has been
developed. In particular, deep learning has been used to extract
different layers of pixel data, such as measuring the redness
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Dutch IBD Biobank
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Figure 3  Academic initiatives with cohorts/biobanks in IBD. The numbers in each circle represent the approximate patient cohort size.

degree through extraction of the intensity and distribution of red
pixels in the red density score in UC.*” ** Similarly, assessment
of CT/MRI images in IBD is extremely subjective; therefore,
computer-aided scores could potentially overcome interobserver
variation. A semiautomated image analysis software showed a
performance similar to those of experienced radiologists for the
assessment of CD structural bowel damage in abdominal CT-en-
terography data.*” Also, machine learning methods and algo-
rithms have been applied to predict the grading of severity of
CD in abdominal MRI data.”” *! Additionally, machine learning
algorithms could assist with the time-consuming assessment
of wireless capsule endoscopy data. It paves the way for auto-
mated analysis of wireless capsule endoscopy images to detect
CD lesions via detection of predefined structural and textural
characteristics, as well as enhancement of the underlying pixel
information.”” **

Machine learning may also improve the analysis of histo-
pathology and possibly tackle the unmet need of patients
with unclassified IBD. Raman microspectroscopy as a cell and
tissue diagnostics approach has been investigated to distin-
guish different IBD subtypes. Bielecki et al proposed that a

machine learning-based workflow is capable of distinguishing
tissue morphology among healthy subjects, CD and UC with
great accuracy.”’ Ultimately, artificial intelligence is promising
in medical imaging and will undoubtedly have a considerable
impact on endoscopy practice in the future (figure 4).

Predicting prognosis

Predicting disease progression and severity is pivotal to the design
of appropriate disease management strategies for individual
patients. Machine learning has the potential to assist with this.
Extraction of information from routinely collected electronic
medical records (EMRs), such as physician’s clinical observa-
tions and endoscopy reports, will allow researchers to perform
prognostic research on longitudinal data. A machine learning
maodel trained on codified information (International Classifica-
tion of Diseases, Ninth Revision (ICD-9)) retrieved from EMRs,
including a set of baseline laboratory parameters, patient demo-
graphics and clinical characteristics, accurately (AUC=0.93)
predicted disease severity in patients with CD."* Similarly, Waljee
et al constructed a random forests machine learning model to
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Figure 4  Artificial intelligence in medical imaging. Graphical representation of a simple deep learning-based image segmentation approach to
predict boundaries of inflamed areas. The top section of the figure represents the endoscopic image of colonic CD demonstrating the ‘cabblestone’
appearance and ulceration. Using a simple deep learning-based image segmentation method inflamed boundaries could be predicted: cobblestone in
grey and inflamed ulcer in red. The bottom section of the figure illustrates a histopathology image of inflamed stenosis from ileal CD. A deep learning-
based method could be used for image segmentation and predicting boundaries of inflamed areas: acute infiltration (ulcer) in red, muscolari mucosae

thickening in blue and adipocytes hyperplasia in yellow. CD, Crohn'’s disease.

predict IBD-related hospitalisation and outpatient steroid use, as
surrogate markers of disease flares (AUC=0.87, 95%CI 0.87 to
0.88). The authors pointed out older age, high serum albumin,
platelet counts, immunosuppressive medication, history of
corticosteroid use and hospitalisation as risk predictors.”® One
way to improve and facilitate data extraction from plain text
in medical records is by employing natural language processing
(NLP), another field of artificial intelligence.”” For example, an
NLP-based model showed superior performance in comparison
to an ICD-9-based model for extracting extraintestinal manifes-
tation data from EMRs.”® In the IBD therapeutic space, Cai et al
applied NLP to clinical notes in identifying the risk of arthralgia
in two groups of IBD patients: one treated with vedolizumab and
another with TNF inhibitor.”® Hou et al examined the perfor-
mance of NLP-based software to classify the endoscopy proce-
dure in patients with IBD that was performed in a diagnostic or
follow-up context by mining the pathology reports.”

Most investigation in prognostic research has centred on
investigating the diversity of underlying disease pathophysiology
aiming to identify predictive correlates, which shed light onto the
factors prompting disease progress, severity and clinical manifes-
tations. Genome-wide association studies in patients with CD
pinpointed the distinct genetic bases of susceptibility and prog-
nosis and hence separate biology. These prognosis-associated
SNPs are enriched for pathways involved in the regulation of
innate and adaptive immune responses and responses to micro-
organisms. Among those, four loci have been identified to be
significantly associated with prognesis in CD, namely, FOXO3,
XACT, aregion upstream of IGFBP1 and MHC. This serves as the
point of departure for better understanding of the biology that
determines disease prognosis.'”" Advancement of omics tech-
niques and data analytics have led to molecular and functional-
based disease classification. For example, on combining mucosal
gene expression, metagenomics and CD4 +Tcell population
signatures, Tang et al employed a machine learning approach
to define a list of 26 predictors, which were effective in distin-
guishing between normal intestinal regions and those with active
inflammation in IBD patients. Using network analysis to further
interpret the inferred predictors, the authors pinpointed the role
of SAAT in the induction of IL17 and IL22 secretion by CD4+ T
cells in relation to Bacteroides abundance.'""

To date, various studies have assessed the predictive value of
gut microbiota. Machine learning models, especially random

forests, are used extensively in microbiome research due to
their ease of understanding, excellent performance and incor-
porated feature selection (via estimating feature importance).
Douglas and colleagues studied microbial taxa and their inferred
function in intestinal biopsies of 20 treatment-naive paediatric
patients with CD and 20 control patients. The authors pointed
to the predictive value of microbiome profiling using 16s rRNA
sequencing for the disease state, whereas metagenomic-based
identified markers performed best for classifying treatment
response. '’

When large integrated EMRs and multiomics datasets are
combined with a powerful and robust machine learning frame-
work, they can achieve exceptional results. Cushing et al
identified a unique expression profile in anti-TNF-naive and
anti-TNF-exposed patients with CD that could predict postop-
erative disease recurrence. The authors uncovered 30 influential
transcripts in anti-TNF-naive patients using random forests-
based machine learning models built on demographic and clin-
ical data extracted from the EMR and transcriptomic profile of
non-inflamed ileal tissue.'"”

These methodologies provide a promising initiative to the
application of machine learning to predict IBD disease course
and outcome, a research scope demanding comprehensive and
longitudinal investigations. By expansion of data resources as
well as advancement in analytic approaches, prediction of prog-
nosis and identifying low-risk and high-risk patients doubtlessly
become feasible. Future studies should aim at mining health
records and integrating them with multiomics data.

Predicting drug response

In the past decades, enormous efforts have been made to predict
the response to medications. Since prospective indicators of
drug responses are expected to have a big impact on pharma-
coeconomics, machine learning approaches have been applied
to dissect the underlying complexities and predict responses to
drugs used in IBD treatments. Integration of clinical and labo-
ratory data has been used for monitoring drugs with narrow
therapeutic window, such as thiopurine, to assess the risk of
developing adverse events. Currently, evaluation of clinical effi-
cacy and risk management of thiopurine is either through blood
count or measuring and monitoring of the level of its metabo-
lites 6-thioguaninenucleotide, as an indicator of response, and
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6-methylmercaptopurine, which is associated with the risk of
hepatotoxicity. Waljee and colleagues studied the predictive
value of a set of clinical and laboratory data to differentiate clin-
ical responders from non-responders using a machine learning
model, random forests. The proposed model has an AUC of
0.85, in contrast to the conventional model with an AUC of
0.59.'% Subsequent work has shown significant clinical benefits,
including decreased steroid prescriptions, hospitalisations and
surgeries. '

Using clinical trial data from the GEMINI I and GEMINI IT
studies with vedolizumab, Waljee and colleagues developed a
machine learning model, random forests, incorporating demo-
graphic data, clinical data and laboratory tests to predict the
likelihood of achieving week 52 corticosteroid-free endoscopic
remission in patients with UC'"® and CD'" treated with vedol-
izumab. Interestingly, the strongest positive prognostic markers
in patients with UC were low levels of faecal calprotectin and
albumin; and those in patients with CD were low levels of serum
C reactive protein and albumin.

An example of efforts to generate and integrate molec-
ular and clinical data to guide treatment relates to identifying
biomarkers predictive of drug response. In an interesting study,
Zarringhalam and colleagues searched for predictive biomarkers
for response to infliximab for refractory UC. First, an in-house
algorithm incorporating causal prior knowledge (relationships
between genes defined from the literature) with gene expres-
sion data was used to define upstream gene regulators. The
newly defined features were subsequently used in a machine
learning model (panelised logistic regression) to predict patient’s
response to infliximab (accuracy =70%). The authors pinpointed
interferon gamma (IFNG), lipopolysaccharide (LPS) and TNF
as key regulators. They inferred that the lack of response could
be due to higher expression of the TNF pathway components,
enzymatic dysregulation in the IFNG pathway and activation
of the LPS-TLR4 pathway triggered by the presence of Gram-
negative bacteria.'”

Given that the human gut hosts billions of microorganisms,
the gut microbiome is increasingly known to be a contributor
of drug efficacy.'™ Doherty and colleagues used a machine
learning model using the concept of random forests to predict
the therapeutic response to ustekinumab in patients with CD.'""
The model helped in the identification of microbial signatures
such as altered levels of Faecalibacterium that were predictive
of remission. Similarly, Shaw et al performed an analysis using
a similar classifier model based on longitudinal microbiome
data derived from 19 treatment-naive paediatric individuals
diagnosed with IBD and exposed to biologics.'!! The authors
were able to achieve a 76.5% accuracy in predicting responders
based on the pretreatment microbiome. These studies suggest
that stratification of patients according to their molecular and
clinical characteristics would be beneficial for evaluating thera-
peutic efficacy. Multiomics data integration could prove useful in
biomarker discovery for treatment response. Recently, our group
identified 10-feature transcriptomic (accuracy of 98%) and
15-feature genomic (accuracy 96.6%) panels predicting endo-
scopic response to ustekinumab by incorporating genomics and
transcriptomics data into a matrix factorisation-based machine
learning model in patients with CD.''*

KEY CHALLENGES AND OPPORTUNITIES

Big data and artificial intelligence represent a great step forward
in precision medicine with a high reward stand-off. With the
potential to simultaneously discover new therapies, make

informed treatment decisions and identify disease subgroups,
there is a massive effort towards making artificial intelligence
commonplace in clinical and biomedical research. The increasing
availability of big data, especially multiomics datasets from large
IBD cohorts, development of machine learning-based algorithms
and systems biology-based tools have enabled the discovery of
biological knowledge relevant to IBD. However, key challenges
remain especially in the realm of how such datasets become
useful in clinical translation and precision medicine (figure 5).
Even though existing datasets have yielded interesting biolog-
ical insights, the number of cases of such datasets resulting in
direct clinical benefits, has been few and far in between. This is
striking especially given the fact that there is a call for person-
alised therapies.

This translational gap is not unsurprising since the causality
axis for IBD has not yet been established. In part, this could
be attributed to the temporal nature (cross sectional or longi-
tudinal) and/or the composition (type of multiomics data types)
of datasets. Longitudinal profiling of multiomics datasets even
from smaller cohorts may have higher performance and informa-
tion richness than larger cohorts without longitudinal profiling.
This has been demonstrated in other complex diseases such as
diabetes and obesity.""* '™* The cross-sectional nature of most
IBD datasets tends to limit their usefulness in inferring causal
mechanisms.

Missing data are also a key challenge since these leave
researchers with a choice of having to leave out particular
samples or imputing missing data points, which results in
reduced data and unintended errors, respectively. Also unbal-
anced distribution of clinical or phenotypical heterogeneity is
a real-world issue affecting the interpretation of any integra-
tive analyses. There is also a dearth of omics datasets such as
proteomics, which are closer to phenotypical manifestations
than other data types such as genotyping or transcriptomics. The
availability of already assembled large IBD cohorts with stored
biomaterial throws open multiple opportunities for improving
and delivering on the research front. Sampling the biomaterials
for generating the missing datatypes provides new opportunities
to explore complete datasets. Thus, coordination between lead
researchers and funding agencies to generate coherent multilay-
ered datasets from the same patient samples is a major require-
ment. Harmonised collection, storage and usage of patient
metadata and medical records are also a key challenge for infer-
ring knowledge and clinical translation.

The contribution of disease complexity to the usefulness
of multiomics datasets also extends to the composition and
completeness of these datasets. The specific roles of distinct
cellular populations and lineages in driving and contributing to
specific phenotypes are becoming increasingly clear in IBD."51#
Adding to the complexity is the recently discovered fact that
mutations occur in a cell type-specific manner.'” Most of the
datasets from organised cohorts have either profiled expression
and genotyping from bulk RNA and DNA extracted from biopsy
material or whole blood respectively, making it difficult to inves-
tigate the role of specific cell types in the aetiology and patho-
genesis of IBD. As a case in point, Smillie et 4l demonstrated the
power of profiling the expression of more than 50 cell types to
pinpoint intercellular circuits which distinguish UC and healthy
states.'*”

The implementation of big data and artificial intelligence
approaches into clinical practice and meaningful benefits for
patients is the ultimate challenge. On one hand, the deployment
and operationalisation of big data are challenging, which are
being addressed using computational sciences and algorithmic
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Figure 5 Opportunities and challenges in the use of machine learning and data integration to achieve improved and personalised healthcare in IBD.
While challenges exist in generating good quality data in a standardised manner and at a volume deemed suitable for ensuring baseline performance
of machine learning models, there remain difficulties in terms of the expertise needed to identify and employ appropriate tools for data integration
and interpretation. However, with emerging advances in the data integration field, the incentives and opportunities to advance precision medicine
with clinical implications are expected to drive integrative IBD research forward.

frameworks to manage problems related to storage, analysis,
integration and interpretation of big data. Most of the infrastruc-
tures are being explored and adopted from the computer science
field into healthcare. These include cloud-based data storage and
analysis, and massively parallel processing hardware to tackle the
rapid increase in the volumes of data from EMR, imaging and
omics measurements, for example. Moreover, there is a need for
user-friendly software and workflows to facilitate the integration
of big data analytics into clinical practice. For instance, there
have been efforts into developing NLP-based software to assist
medical investigators with extracting data from plain text, such
as clinical reports. 2! 122

On the other hand, many clinicians are cautious of artificial
intelligence approaches mainly because most of these approaches
are essentially black boxes and do not link predictions to under-
lying mechanisms, nor provide functional explanations for the
discovered associations, correlations and recommended deci-
sions. However, causal mechanistic insights are key for clinical
applicability so as to enhance reliability and thereby patient
safety, especially in a complex heterogeneous disease such as
IBD. Furthermore, as poorly validated models could do more
harm than good, in depth experimental and clinical validation
is crucial for machine learning-based models before implemen-
tation in clinical setting. From the analytics point, interpretable
machine learning models should be developed.'® Besides, there
is a need to benchmark performance indices and parameters to
evaluate the performance of machine learning techniques.'?*
Other challenges include the uncertainties associated with
analyses involving the use of biological networks despite the
functional context provided by the networks. Even though high-
quality manually curated and benchmarked networks exist,'> 126
analytical methods which take into account the uncertainties
of individual interactions and their contextuality need to be

developed. Clinical validation is fundamental for the implemen-
tation of artificial intelligence-based approaches. In one of the
first randomised clinical trials using artificial intelligence, Lin et
al compared the efficacies of childhood cataracts diagnosed by
senior ophthalmologists with those from CC-Cruiser, a previ-
ously developed artificial intelligence platform for risk stratifi-
cation and treatment guidance. This trial showed that regardless
of the inferior accuracy of CC-Cruiser compared with senior
ophthalmologists, artificial intelligence had the capacity to assist
doctors in decision-making.'*” '** All in all, clinicians are right
to be sceptical of the implementation of these otherwise inex-
plicable approaches in clinical practice, and although there have
been considerable advances in the implementation of big data,
there still remain many technological, translational and cultural
barriers for the assimilation of artificial intelligence approaches
into clinical practice.

CONCLUSION

By enabling data integration and assisting the discovery of non-
trivial patterns and translatable knowledge in the integrated
datasets, machine learning and systems biology offer unique
opportunities to study and investigate the aetiology of complex
diseases such as IBD. Machine learning guided IBD research
has great potential to accelerate the formulation of cutting-
edge precision medicine applications with clinical relevance and
utility. However, for the promise of machine learning to come
to translational fruition, there remain many stumbling blocks.
However, almost all of the challenges also come with a huge
potential for discovering knowledge and translating it to IBD
clinical practice. It is expected that, with the availability of large
IBD initiatives such as national biobanks with stored biomaterial,
datasets can be made more coherent and complete, thus filling
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the biological gap for systems biology and the statistical gap for
machine learning to produce knowledge which is closer to clin-
ical practice and translation.

SEARCH STRATEGY

Articles were retrieved from PubMed after employing the
following search criteria. Two key-word groups were created,
with the first one comprising “Inflammatory Bowel Disease”,
“Crohn’s disease” and “ulcerative colitis” and second one
comprising “machine learning”, “Artificial Intelligence”, “deep
learning”, “-omics”, “big data”, “systems biology”, “network
biology”, “genomics”, “transcriptomics”, “GWAS”, “proteomics”
and “microbiome™. Pairwise combination of keywords from the
two groups was used to search for articles published until July
2019. Only articles written in English were included.
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